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Abstract

We construct a quantum money/quantum lightning scheme from class group actions on elliptic curves
over Fp. Our scheme, which is based on the invariant money construction of Liu-Montgomery-Zhandry
(Eurocrypt ’23), is simple to describe. We believe it to be the most instantiable and well-defined quan-
tum money construction known so far. The security of our quantum lightning construction is exactly
equivalent to the (conjectured) hardness of constructing two uniform superpositions over elliptic curves
in an isogeny class which is acted on simply transitively by an exponentially large ideal class group.

However, we needed to advance the state of the art of isogenies in order to achieve our scheme. In
partcular, we show:

� An efficient (quantum) algorithm for sampling a uniform superposition over a cryptographically
large isogeny class.

� A method for specifying polynomially many generators for the class group so that polynomial-
sized products yield an exponential-sized subset of class group, modulo a seemingly very modest
assumption.

Achieving these results also requires us to advance the state of the art of the (pure) mathematics of
elliptic curves, and we are optimistic that the mathematical tools we developed in this paper can be used
to advance isogeny-based cryptography in other ways.

1 Introduction

Quantum money is a way of implementing digital money where “banknotes” that represent the money are
quantum states. The idea for quantum money was first sketched out by Wiesner [Wie83], and since then
quantum money has captivated the quantum computing research community. In this work, we focus on
publicly verifiable quantum money [Aar09], which means that any observer without privileged information
can verify the correctness of the banknotes, and quantum lightning [Zha19], which guarantees that even the
mint cannot cheat by producing duplicate banknotes.

Unfortunately, constructing publicly verifiable quantum money has proven to be rather elusive. Farhi,
Gosset, Hassidim, Lutomirski, Nagaj, and Shor showed that, even with some natural modifications, Wiesner’s
quantum money scheme cannot be used to directly build a publicly verifiable scheme [FGH+10]. The first
candidates for truly publicly verifiable quantum money were given by Aaronson [Aar09] and Aaronson
and Christiano [AC12], and gave publicly verifiable quantum money constructions relative to quantum and
classical oracles, respectively. Unfortunately, the proposed instantiations of oracles in both constructions were
later broken [LAF+10] [CPDDF+19], casting doubt on the possibility that such oracles could be securely
implemented in the real world. Zhandry’s concrete construction of quantum lightning [Zha19] was also
broken by Roberts [Rob21]. More recently, the lattice-based construction of Khesin, Lu, and Shor [KLS22]
was broken by Liu, Montgomery, and Zhandry [LMZ23].

On the other hand, there are a handful of candidates have been proposed that have not been bro-
ken, including constructions from knots [FGH+12] and quaternion algebras [Kan18, KSS21]. In addition,
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Zhandry [Zha19], as suggested by [BDS16], showed how to build publicly verifiable quantum money from
quantum-secure indistinguishability obfuscation (iO). Unfortunately, none of these assumptions have re-
ceived much cryptanalytic attention at all, and all known candidates of post-quantum iO [GGH15, BGMZ18,
BDGM20, WW21] do not have strong connections to well-studied cryptographic assumptions.

Liu, Montgomery, and Zhandry recently showed a generic, oracle construction for quantum money that
they called invariant money [LMZ23]. They showed a number of possible constructions, but all of these
were either oracle constructions or schemes that were not known to be efficiently instantiable. In particular,
they showed an uninstantiable construction from class group actions on elliptic curves. In particular, they
mention how invariant money could potentially be instantiated from isogenies. However, they also comment,
“We do not know if it is even possible to instantiate such a scheme, as it would likely require new ideas in
isogeny-based cryptography.”

Very recently, Zhandry [Zha24] showed how to build a construction of quantum money from regular group
actions that was loosely based on the generic construction of [LMZ23]. While Zhandry’s construction was
the first instantiable construction from group actions, it unfortunately resorts to nonstandard assumptions
that seem significantly stronger than the assumptions used in the invariant money construction would be for
an instantiable construction.

1.1 Our Contributions

In this work, we prove new results in isogeny-based cryptography necessary to build quantum money from
the invariant money framework of [LMZ23]. We use these results to build a new quantum money scheme
based on class group actions on elliptic curves, sharing some features with a proposal in [LMZ23]. Rather
than come up with a new verification algorithm like that of Zhandry [Zha24], we advance the state of the
art in the mathematics of elliptic curves, which enables us to build a very simple construction with simple
(although still non-standard) assumptions.

Our quantum money scheme is conceptually very simple (modulo the new mathematical techniques
required for its construction) and has an extremely easy to state security assumption. For instance, for
quantum lightning, the scheme is exactly as secure as the problem of sampling two uniform superpositions
over all elliptic curves over Fp with N points, for some N corresponding to elliptic curves with large class
group. We also show that this new assumption is hard assuming that it is hard to compute isogenies
between random isogenous elliptic curves (which is a standard assumption in cryptography at this point)
and a quantum knowledge assumption similar to the one proposed recently by Zhandry [Zha24].

Our quantum money/lightning scheme is the first fully instantiable construction with a simple, offline
(albeit quantum) security assumption. We also believe it is the simplest scheme proposed so far, and the
one that rests on assumptions that are closest to traditional cryptographic security assumptions.

To enable such a simple scheme with a very nice security assumption, we advance the state of the art
in elliptic curve mathematics and algorithms. In particular, for the minting algorithm to be efficient, it is
necessary that a random elliptic curve mod p has non-negligible probability of having large associated class
group. Previous work has either relied on heuristic assumptions, or worked exclusively with supersingular
elliptic curves. In our work, we give new explicit lower bounds on the number of elliptic curves whose
endomorphism ring has large discriminant, which together with a result of Tatuzawa show that at least
14% of elliptic curves mod p have endomorphism ring with exponentially large class group. We also, to
our knowledge, for the first time apply a heuristic model due to Erdös-Rényi on encodings of class group
elements.

Heuristics on sizes of class groups and efficiency of encodings for class groups are ubiquitous in isogeny-
based cryptography. Consequently our formalization of these heuristics should find other uses in cryptography
and mathematics outside of quantum money.

1.2 Other Related Work

Quantum money has been a key primitive in quantum computing, especially as quantum money and quantum
lightning are closely tied to numerous other areas in quantum computing. For instance, the first message in
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the quantum key distribution protocol of Bennet and Brassard [BB87] is just a banknote in Wiesner’s quan-
tum money scheme. Recent works on copy protection [ALL+21, CLLZ21] [LLQZ22] require at a minimum
a computational assumption that implies quantum money.1

In the isogeny realm, our work makes precise estimates used for parameter selection in CRS-style cryp-
tosystems. Previous work (for example [Cou06], [RS06], [DKS18]) relies completely on heuristics that imply
a randomly chosen elliptic curve mod p will have large associated class group. Those heuristics are made
precise here. We also show that, under a very plausible heuristic assumption, with overwhelming probability
every element of the class group has a compact encoding.

1.3 Outline

The rest of this paper proceeds as follows. In Section 2, we provide a brief technical overview of our
construction and new isogeny results. We hope this enables the reader to understand our ideas at a high
level. Then, in Section 3, we provide preliminary material. In Section 4, we build the mathematical tools
we need for our constructions. We note this section utilizes math that is outside the scope of knowledge
of most cryptographers, but we do our best to make it as accessible as possible. We then present our full
algorithm for sampling a superposition of elliptic curves in Section 5 and our algorithm for verifying these
superpositions in Section 6. We then have a proof that our superposition verification algorithm is correct
in Section 7. This is somewhat analogous to a similar proof in [LMZ23], although our proof is much more
detailed than theirs. We finally present our full quantum money construction in Section 8.

In Section 9, we prove the security of our quantum money scheme. In Section 10, we present some
additional number theory background that will be useful for readers that aren’t as familiar with mathematics
to use as reference. Finally, in Section 11, we give evidence for an Assumption 4.19, which underlies our
verification algorithm.

2 Technical Overview

In this section we explain our main results and contributions at a high level. We begin by giving an overview
of the new mathematical tools that are needed for its construction. We then outline our new quantum money
scheme.

2.1 New Techniques and Facts on Elliptic Curves

In [LMZ23], it is stated that “generating superpositions over X, where X is the set of all elliptic curves with
some (even polynomially likely) property seems difficult. In fact, we do not even know how to generate a
uniform superposition over all elliptic curves efficiently.” Our minting algorithm solves this problem by first
efficiently generating a uniform superposition over all elliptic curves, by encoding elliptic curves as pairs (j, b),
where j is the j-invariant and b is twisting data. We then show how to efficiently generate the superposition
over a random exponentially large isogeny class. Note that we believe generating a superposition over a
specified exponentially large isogeny class is difficult, and indeed the security of our scheme depends on this
being the case.

Passing from the uniform superposition over all elliptic curves over a particular finite field to a superpo-
sition over a large isogeny class is accomplished by an explicit estimate on sizes of class groups associated
to elliptic curves. The previous literature either restricts to isogeny classes of supersingular elliptic curves
(which constitute a negligible fraction of all elliptic curves mod p), or relies on heuristics stating that the
class group associated to a random elliptic curve mod p has size O(

√
p). We make these heuristics precise

by focusing on elliptic curves whose Frobenius discriminant (that is, the discriminant of the characteristic
polynomial of Frobenius) is both square-free and ≥ 3p. We show that for p > 263, at least 14% of ellip-
tic curves mod p have such a Frobenius discriminant. We then use Tatuzawa’s effective version of Siegel’s
Theorem [Tat51] to obtain the following:

1This holds true even for certain weaker versions such as copy detection, also known as infinite term secure software leasing.
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Corollary 2.1. Let p > 263 be prime. Given an ordinary elliptic curve E/Fp, let O be End(E). If an elliptic
curve E is drawn from either the distribution Dp or the distribution Up, then with probability at least 14%,
the class group of O and the isogeny class of E both have size at least

0.089

√
p

log p
,

Here, Up is the uniform distribution on elliptic curves, and Dp is a related distribution defined in §3.3.
In addition to [Tat51], the proof of Corollary 4.14 relies on statistical analysis of the trace of Frobenius

due to Murty-Prabhu [MP19b], and statistical analysis of the values of 4p− t2, 1 ≤ t <
√
p, using methods

of Friedlander-Iwaniec [FI10].
Finally, we give a new treatment of computations in class groups. Typically, one cannot directly compute

ideals coming from random ideal classes, since these ideals can have exponentially large generators. Instead,
one attempts to express ideal classes as products of prime ideals with small norm. By treating small norm
prime ideals as random elements in the class group, we use results of Erdös-Rényi to show that with all
but negligible probability, every ideal class can be represented by a product of distinct prime ideals of small
norm; see §4.4 and §4.5.

2.2 Quantum Money from Class Group Actions on Elliptic Curves

As we have alluded before, our scheme generally falls into the invariant framework of [LMZ23]. However,
other than the obvious choice of using isogeny classes (determined by the number of points on elliptic curves
(#E (Fp)) as the invariant, essentially every other choice we make deviates from the suggestions of [LMZ23]
for implementing invariant money using class group actions on elliptic curves, and, as we have previously
mentioned, our scheme accomplishes or circumvents some tasks they find difficult or impossible.

Recall that, informally speaking, a (public key) quantum money scheme is a tuple of algorithms (Gen,Ver)
where Gen creates a quantum money state |ψ⟩ which we refer to as a banknote and a serial number σ, and
Ver takes as input a banknote |ψ⟩ and a serial number σ and outputs 0 or 1, depending on whether or not
the quantum money state is valid.

We say that a money scheme satisfies quantum money unforgeability if, given a random valid banknote
and serial number pair (|ψ⟩ , σ) it is hard to generate two banknotes |ψ′⟩ , |ψ′′⟩ that both verify with serial
number σ. A scheme constitutes secure quantum lightning if it is hard for an adversary to find two states
|ψ′⟩ , |ψ′′⟩ that both verify for any serial number σ. We formally define quantum money and quantum
lightning in §3 and, for familiar readers, note that we use the “mini-scheme” definition from [AC12].

Our Construction. For an elliptic curve E, let t be the trace of Frobenius acting on E, and define the
Frobenius discriminant to be ∆Fr(E) = 4p− t2. (This is the negative of the usual definition.) Note that ∆ in
the elliptic curve literature designates the discriminant of E itself; that is, if E is given by y2 = x3 + ax+ b,
the discriminant is 4a3 + 27b2. We use ∆Fr exclusively for the Frobenius discriminant.

Suppose we let Esf,3p represent the set of isomorphism classes of elliptic curves E over Fp for prime p
with ∆Fr (E) ≥ 3p and square-free, and let IN denote the set of elliptic curves over Fp with N points. Recall
that two elliptic curves over Fp are isogenous if and only if they have the same number of points.

Our construction at a high level works as follows:

Money States: a valid quantum money state is a uniform superposition over a single isogeny class in
Esf,3p.

Gen: To generate a money state, at a high level we do the following:

1. Sample a uniform superposition of elliptic curves in Esf,3p, getting a state |ψ⟩ =
∑
|E⟩.

2. In superposition, compute, in an adjacent register, the number of points in |E⟩ using Schoof’s algorithm.

4



3. Measure this new adjacent register and denote its value as N .

4. Output the tuple (|ψ⟩ , N) as the money state. Note that |ψ⟩ will have been altered by the measurement.

We note that sampling such a superposition as we do in step (1) was previously unknown and listed as an
open problem in [LMZ23], and it requires new results in number theory to solve; namely, we require precise
lower bounds on the proportion of elliptic curves with ∆Fr(E) large and square-free. This follows from our
mathematical work that we explained earlier in this overview.

Ver: Let |IN ⟩ := 1√
#IN

∑
E∈IN

|E⟩. In other words, |IN ⟩ is the state corresponding to a uniform superpo-

sition over all elliptic curves with N points. Our goal, similar to [LMZ23], is to compute an approximation
of the projection-valued measure VN = |IN ⟩ ⟨IN |.

To do this, we take a similar approach as both [LMZ23] and [FGH+12]. We simulate a (invertible) random
walk in superposition over the isogeny class group and continually check to see if the state has changed using
projection-valued measures. Intuitively, correct money states will not change when we compute invertible
maps on the state since these maps will map uniform superpositions to uniform superpositions. On the other
hand, most incorrect money states will have changed substantially by such a walk. For instance, a classical
state consisting of a single elliptic curve will likely be completely different after a random walk and thus fail
verification.

While our verification algorithm closely resembles that of the invariant money in [LMZ23] at a high level,
we emphasize that we need substantially new techniques to make it work. Most notably, to our knowledge
the fact that a random elliptic curve has large associated class group with non-negligible probability has
never been formally shown.

Security. The security of our construction is based on a simple assumption:

Definition 2.1. The Elliptic Curve Superposition Collision Problem (ECSCPp): The prime p is
fixed. Create two (possibly entangled) quantum states that are each negligibly far from the superposition of
all elliptic curves over Fp in some isogeny class with Frobenius discriminant ∆Fr ≥ 3p and square-free.

We justify below why mathematicians believe this to be a hard problem. An astute reader will note that
this security assumption is tied very closely to our scheme itself, and a reduction is simple. This is true—see
Section 9 for the formal reduction—but we believe this to be a positive facet of our construction, in the same
vein as the fact that the security of ElGamal encryption trivially following from the DDH assumption is a
positive of that scheme, too.

[LMZ23] and [Zha24] argue that their constructions are secure using quantum assumptions of knowledge,
and we can actually argue that not just our construction but the security assumption of our construction
that we informally mentioned above is secure using assumptions of knowledge. As in [LMZ23] and [Zha24],
we use two problems to prove the security of the ECSCPp. First, we assume that it is hard to compute
isogenies between random isogenous elliptic curves (the group action discrete log problem [ADMP20] over
isogeny class groups). Second, we make a quantum assumption of knowledge: we assume that if there
exists an adversary that breaks our main assumption (generating two superpositions) with non-negligible
probability, we assume that there also exists some adversary that breaks our main assumption with similar
probability from whose state “paths” (isogenies) between elliptic curves that it uses can be extracted. This
is a relatively new type of assumption and we defer to [Zha24] for an extensive discussion on this sort of
quantum knowledge assumption.

Construction Rationale. An adversary can efficiently fabricate money states if they can solve the group
action discrete log problem for ideal classes acting on elliptic curves; fortunately, this problem is believed to
be hard. But the hardness requires that the ideal class group is large. By Tatuzawa’s estimate [Tat51], with
overwhelming probability it is sufficient that ∆Fr(E) be large for any elliptic curve E in the isogeny class.
Thus we choose only isogeny classes for which ∆Fr ≥ 3p. (Note that as E varies over elliptic curves mod p,
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by the Hasse-Weil bounds ∆Fr(E) varies between 0 and 4p.) Finally, it may happen that the isogeny class
is a disjoint union of sets, each acted upon by different a class group corresponding to a different choice of
endomorphism ring inside a given imaginary quadratic field (for instance, elliptic curves with endomorphism

ring isomorphic to Z[
√
−3] along with elliptic curves with endomorphism ring isomorphic to Z[ 1+

√
−3

2 ]). We
introduce a square-freeness condition to guarantee that the entire isogeny class forms a single homogeneous
space.

Comparison to Zhandry’s Scheme [Zha24]. Zhandry’s recent quantum money construction is also
loosely based on the invariant money construction in [LMZ23]. However, his construction turns out to be
very different from ours. Zhandry makes a very nice observation that the Fourier domain can be useful
for creating verifiable quantum states over group actions and builds a quantum lightning scheme based on
this observation. On the other hand, our construction is more closely tied in nature to the invariant money
scheme itself, although we need to solve or formalize several open problems in the mathematics of elliptic
curves in order to make the scheme work.

We also note that Zhandry’s assumptions are more complicated and seemingly stronger than ours: he
proves his scheme secure in two different ways: one way uses what he calls the “D2X” assumption, which
is an interactive assumption that requires a quantum oracle, and the other uses a quantum knowledge
assumption. On the other hand, we can prove our scheme secure using a simple, noninteractive (albeit
quantum) assumption, and we can prove this assumption secure using a simpler knowledge assumption as
compared to Zhandry.

3 Definitions

In this section we provide basic definitions. For our quantum notations and definitions, we mostly borrow
from and mimic [LMZ23].

Basic Cryptographic Notation. When we say a function is negligible, we mean that it is (asymp-
totically) smaller than 1

f(λ) for any polynomial f and security parameter λ. When we say a function is

non-negligible, we mean that there is some polynomial function f for which the function grows (asymptoti-
cally) faster than 1

f(λ) for security parameter λ.

3.1 Quantum Specifics

We attempt to avoid any complicated quantum specifics. For general background and notation on quantum
computing, we highly recommend [NC10].

Notation. Following [LMZ23], for quantum notation, we denote |·⟩ as the notation for a pure state and
|·⟩⟨·| for its density matrix. ρ denotes a general mixed state. We let “†” denote the conjugate transpose.

Definition 3.1. A projection-valued measure on a Hilbert space H is a set of outcomes i ∈M and, for each
outcome, a positive semi-definite matrices Pi, such that:

1.
∑
M Pi = I,

2. each Pi is Hermitian,

3. P2
i = Pi and Pi = P†

i , and

4. for i ̸= j ∈M , PiPj = 0.
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We say that the probability of obtaining output i on a pure state |ψ⟩ is just ⟨ψ|Pi |ψ⟩, with the measured

state collapsing to Pi|ψ⟩√
⟨ψ|Pi|ψ⟩

; the analogous result for a mixed state is defined in the natural way using the

trace.
For simplicity, we will abuse notation and refer to a single PVM operator Pi as a measurement, and

the complementary operator I − Pi will be implicit. In this case, a “successful” measurement on a state

|ψ⟩ will result in the output Pi|ψ⟩√
⟨ψ|Pi|ψ⟩

; we will typically be less concerned about the output of “failed”

measurements.

3.2 Quantum Money and Quantum Lightning

Here, we define public key quantum money and quantum lightning. We use the definitions of [LMZ23]
verbatim. As they do, following Aaronson and Christiano [AC12], we will only consider so-called “mini-
schemes”, where there is only a single banknote.

Both quantum money and quantum lightning share the same syntax and correctness requirements. There
are two quantum polynomial-time algorithms Gen,Ver such that:

� Gen(1λ) samples a classical serial number σ and a quantum state |ψ⟩.

� Ver(σ, |ψ⟩) outputs a bit 0 or 1, and, if the output bit is 1, also outputs a state |ψ′⟩.

Definition 3.2. We say that our quantum money scheme is correct if there exists a negligible function negl
such that, for any polynomially sized integer i, we have Pr[Veri(Gen(1λ))] ≥ 1− negl(λ). In other words, a
correctly generated money state can be verified any polynomial number of times and verification will still
pass.

Where public key quantum money and quantum lightning differ is in security. The differences are
analogous to the differences between one-way functions and collision resistance.

Definition 3.3 (Quantum Money Unforgeability). (Gen,Ver) is secure public key quantum money if, for
all quantum polynomial-time A, there exists a negligible negl such that A wins the following game with
probability at most negl:

� The challenger runs (σ, |ψ⟩)← Gen(1λ), and gives σ, |ψ⟩ to A.

� A produces a potentially entangled joint state ρ1,2 over two quantum registers. Let ρ1, ρ2 be the states
of the two registers. A sends ρ1,2 to the challenger.

� The challenger runs b1 ← Ver(σ, ρ1) and b2 ← Ver(σ, ρ2). A wins if b1 = b2 = 1.

Definition 3.4 (Quantum Lightning Unforgeability). (Gen,Ver) is secure quantum lightning if, for all quan-
tum polynomial-time A, there exists a negligible negl such that A wins the following game with probability
at most negl:

� A, on input 1λ, produces and sends to the challenger σ and ρ1,2, where ρ1,2 is a potentially entangled
joint state over two quantum registers.

� The challenger runs b1 ← Ver(σ, ρ1) and b2 ← Ver(σ, ρ2). A wins if b1 = b2 = 1.

In summary, the difference between quantum lightning and quantum money is therefore that in quantum
lightning, unclonability holds, even for adversarially constructed states.
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3.3 Elliptic curves

Consider a large prime p. We represent isomorphism classes of elliptic curves over Fp by pairs (j, b) ∈ Fp×Z,
where b ∈ {0, 1} except in the following cases:

� If j ≡ 1728 mod p and p ≡ 1 (mod 4), then 0 ≤ b ≤ 3.

� If j ≡ 0 mod p and p ≡ 1 (mod 3), then 0 ≤ b ≤ 5.

Fix α ∈ Fp a quadratic nonresidue. When j ̸= 0, 1728, define the elliptic curve associated to the pair (j, b)
to be given by

y2 = x3 +
3jα2b

j − 1728
x+

2jα3b

j − 1728
.

If j = 1728, define (j, b) to be given by
y2 = x3 + αbx.

If j = 0 and p ≡ 1 (mod 3), we require that α be both a quadratic and a cubic nonresidue. Then (j, b) is
given by

y2 = x3 + αb.

There is a bijection between pairs (j, b) and Fp-isomorphism classes of elliptic curves; see [Sil09, Cor. X.5.4.1].
In the literature, j is known as the j-invariant of the elliptic curve, and b enumerates twists of elliptic curves
with given j.

Definition 3.5. Let Up denote the uniform probability distribution on isomorphism classes of elliptic curves
over Fp, given by uniformly randomly choosing a pair (j, b) as above.

There are many statistical results in the literature which refer to a different distribution Dp, defined as
follows.

Definition 3.6. We say (a, b) ∈ F2
p is a Weierstrass pair if 4a3 + 27b2 ̸= 0. We associate to the Weierstrass

pair the elliptic curve given by y2 = x3+ax+b. TheWeierstrass distribution Dp is the probability distribution
on isomorphism classes of elliptic curves over Fp induced by the uniform distribution on Weierstrass pairs
(a, b).

Note that there are exactly p pairs (a, b) for which 4a3 + 27b2 = 0: when −3a is a quadratic residue,
there are 2 values for b, plus the pair (0, 0) yields 2 · p−1

2 + 1 = p. Thus there are p2 − p pairs (a, b) yielding
elliptic curves.

Looking ahead, in Lemma 4.11 we show that the distance between Up and Dp is at most 2/p, and hence
is negligible.

Definition 3.7. For an elliptic curve E/Fp, let t = t(E) = p+ 1−#E(Fp) be the trace of Frobenius on E,
let t

2
√
p be the normalized trace, let ∆Fr := ∆Fr(E) be 4p− t2 the Frobenius discriminant, let K = K(E) =

Q(
√
−∆Fr), and let D = D(E) be the discriminant of K. Let Esf,3p be the set of elliptic curves E over Fp

such that ∆Fr(E) ≥ 3p and ∆Fr(E) is square-free.

The trace t is an Fp-isogeny invariant of E, and hence an invariant of the isomorphism class of E. Thus
the derived invariants ∆Fr and D depend only on the isomorphism class of E, not on the equation used to
define E. Thus by abuse of notation, we write E ∈ Esf,3p to mean that the isomorphism class of E is in
Esf,3p.

Definition 3.8. Given an imaginary quadratic field K with discriminant D, let OK be the ring of integers
of K, and define the Bach generating set BK to be the set of ideal classes of unramified primes l of OK with
N(l) < 6(logD)2.

Bach [Bac90, p. 376] showed that, assuming GRH, BK generates Cl(OK).
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4 Isogeny Building Blocks

In this section we build the isogeny-related tools we will need for our quantum money construction. Some
are already known, some have been folklore (but, to our knowledge, never formalized), and some are new.
For example, the prior isogeny literature uses the heuristic that the size of the class group is proportional
to
√
D, where D is the discriminant of End(E) ⊂ K; in fact, the heuristic is sometimes made by precise

by noting that the constant of proportionality is given by a certain infinite series depending on D. While
this suffices if the elliptic curve E is fixed, it is not strong enough to give bounds across large sets of elliptic
curves where D varies. In §4.1 we give, to our knowledge, the first precise lower bounds for the number of
elliptic curves mod p having large class groups—see Corollary 4.14. As a consequence for our protocol, we
will obtain that minting is efficient, and that forgery attacks which rely on solving the isogeny problem are
hard.

Ideal classes are typically encoded as products of prime ideals with small norm. After giving an algorithm
for enumerating these prime ideals, we give a new analysis for the effectiveness of these encodings in §4.4 and
§4.5, specifically by proving an eigenvalue bound for the adjacency matrix of the associated Cayley graph in
Prop. 4.22. Our quantum money verification algorithm utilizes the class group action on elliptic curves, and
the eigenvalue bound guarantees that verification is efficient.

The results in this section often use number theory that is new to the cryptography literature; while this
enables proofs of new results, there is no easy way to present this material to readers who do not have the
requisite background in mathematics. However, we have done our best to make the mathematics readable to
cryptographers and have also summarized the necessary number theory in Section 10. We encourage readers
who are unfamiliar with the number theory to read that section, which is near the end of the paper.

4.1 Probability of Large Isogeny Class

The goal of this section is to prove Corollary 4.14, which shows that for large p, a random elliptic curve
belongs to an exponentially large isogeny class with probability ≥ 14%.

Our estimate will be accomplished in three steps:

� In Theorem 4.1, we compute the probability that a random elliptic curve E has Frobenius discriminant
in a specified range.

� We determine how likely a random number of the form 4p − t2 is square-free in Theorem 4.9, and
combine this with Theorem 4.1 to obtain, in Corollary 4.12, that a random elliptic curve is in Esf,3p

with probability ≥ 14%.

� In Corollary 4.14, we use a result of Tatuzawa to show that for elliptic curves in Esf,3p, the size of the

associated class group is at least 0.089

√
p

log p
.

In the next result, we use the Weierstrass representation of elliptic curves, so a pair (a, b) ∈ Fp × Fp
corresponds to the elliptic curve y2 = x3 + ax+ b.

Theorem 4.1. Let I ⊂ [−1, 1] be an interval, and let µST (I) =
2
π

∫
I

√
1−X2 dX. Let NI(p) be the number

of elliptic curves over Fp, encoded as pairs (a, b) with 4a3 + 27b2 ̸= 0, with normalized Frobenius trace
t

2
√
p ∈ I. Then ∣∣∣∣NI(p)p2

− µST (I)
∣∣∣∣ ≤ 8

3p1/4
+

4

3p1/2
++

4

p2
+

4

p9/4
+

4 log p

p5/2
.

The measure µST is known as the Sato-Tate measure.

Proof. Birch [Bir68] showed that

lim
p→∞

∣∣∣∣NI(p)p2
− µST (I)

∣∣∣∣ = 0.

9



An asymptotic error bound for |NI(p)/p2−µST (I)| is given in [MP19b]; we follow that proof to compute the
explicit constant. Our notation follows that of [MP19b], with one exception. Suppose that I = [x0, x1] ⊂
[−1, 1], and define J = [α, β] ⊂ [0, 1] where cosπα = x1, cosπβ = x0. Let µ′

ST (J) = 2
∫
J
sin2 πθ dθ. Murty-

Prabhu [MP19b] work with the measure µ′
ST in place of µST , but the substitution x = cosπθ translates

between the two.
Let m ≥ 2 be an integer. For the elliptic curve y2 = x3 + ax + b, define θa,b as the angle in [0, π] for

which cos θa,b is its normalized trace. If m = 2k is even, we have∑
a,b∈Fp

4a3+27b2 ̸=0

sin 2kθa,b
sin θa,b

= 0 (1)

as follows. Fix c ∈ Fp a quadratic nonresidue. Consider the elliptic curve corresponding to (a, b), having
Frobenius trace t. Then the elliptic curve corresponding to (c2a, c3b) has Frobenius trace −t. Thus θca,cb =
π − θa,b, and so the set of θ values appearing in the sum are symmetric with respect to θ 7→ π − θ. But
sin(π − θ) = sin θ, while sin 2k(π − θ) = − sin 2kθ. Therefore,

∑
sin 2kθ
sin θ = 0.

Now suppose m is odd. By [DS05, Thm. 3.5.2], the dimension of the space of weight m+ 1 cusp forms
is ≤ ⌊m+1

12 ⌋. Let Tm+1(p) be the p-Hecke operator acting on the latter space of cusp forms. By [Del74,

Thm. 8.2], the eigenvalues of Tm+1(p) all have magnitude pm/2. Therefore the trace of Tm+1(p) is bounded
by 1

12 (m + 1)pm/2. Substituting into the Eichler-Selberg trace formula appearing on [MP19b, p. 31] and
combining with [MP19b, eq. (3.3)], we obtain∣∣∣∣∣∣∣∣

∑
a,b∈Fp

4a3+27b2 ̸=0

sinmθa,b
sin θa,b

∣∣∣∣∣∣∣∣ ≤
1

6
(m+ 1)p3/2 + 2p−

m−3
2 . (2)

LetM ≥ 2 be an integer. Let Ŝ±
J′,M denote the Fourier transform of theMth Beurling-Selberg polynomial

for the interval J ′ = 1
2J = [α2 ,

β
2 ]; see [MP19b, §2.3].1 From [MP19b, p. 30, (c)], we have

Ŝ±
J′,M (0) =

β − α
2
± 1

M + 1
(3)

and, for 0 < m ≤M , ∣∣∣∣Ŝ±
J′,M (m) + Ŝ±

J′,M (−m)− sinπmβ − sinπmα

πm

∣∣∣∣ ≤ 2

M + 1
. (4)

Since 2
M+1 ≤

2
m and | sinπmβ−sinπmα

πm | ≤ 2
m ,

|Ŝ±
J′,M (m) + Ŝ±

J′,M (−m)| ≤ 4

m
. (5)

An elementary calculation shows that

µST (I) = (β − α)− sin 2πβ − sin 2πα

2π
. (6)

From (3), (4) with m = 2, and (6),∣∣∣2Ŝ±
J′,M (0)− Ŝ±

J′,M (2)− Ŝ±
J′,M (−2)− µST (I)

∣∣∣ ≤ 4

M + 1
. (7)

1Note that there are several mistakes in the calculation of [MP19b], including an incorrect choice for J ′. See the preprint
version [MP19a] for a more accurate treatment.
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From (1), ∣∣∣∣∣∣(Ŝ±
J′,M (1) + Ŝ±

J′,M (−1))
∑

4a3+27b2 ̸=0

sin 2θa,b
sin θa,b

∣∣∣∣∣∣ = 0. (8)

From (2) and (5), ∣∣∣∣∣∣(Ŝ±
J′,M (2) + Ŝ±

J′,M (−2))
∑

4a3+27b2 ̸=0

sin 3θa,b
sin θa,b

∣∣∣∣∣∣ ≤ 4

3
p3/2 + 4 (9)

and∣∣∣∣∣∣(Ŝ±
J′,M (m) + Ŝ±

J′,M (−m))
∑

4a3+27b2 ̸=0

[
sin(m+ 1)θa,b

sin θa,b
− sin(m− 1)θa,b

sin θa,b

]∣∣∣∣∣∣
≤ 4(m+ 2)

3m
p3/2 +

16

m
p−

m−2
2 . (10)

From (10), we obtain

∑
3≤m≤M

∣∣∣∣∣∣(Ŝ±
J′,M (m) + Ŝ±

J′,M (−m))
∑

4a3+27b2 ̸=0

[
sin(m+ 1)θa,b

sin θa,b
− sin(m− 1)θa,b

sin θa,b

]∣∣∣∣∣∣
≤ 8

3
Mp3/2 + 16p−

1
2 logM. (11)

Let

B± =p2(2Ŝ±
J′,M (0)− Ŝ±

J′,M (2)− Ŝ±
J′,M (−2))

+

2∑
m=1

(Ŝ±
J′,M (m) + Ŝ±

J′,M (−m))
∑

4a3+27b2 ̸=0

sin(m+ 1)θa,b
sin θa,b


+

M∑
m=3

(Ŝ±
J′,M (m) + Ŝ±

J′,M (−m))
∑

4a3+27b2 ̸=0

sin(m+ 1)θa,b
sin θa,b

− sin(m− 1)θa,b
sin θa,b

 .

From [MP19a, eq. (6)], we have
B− ≤ NI(p) ≤ B+. (12)

Letting M = ⌊p1/4⌋, and putting together (7)–(12) we obtain the claim.

Next, we determine what portion of elliptic curves with |t| < √p satisfy that 4p− t2 is square-free. The
following argument through Corollary 4.10 is modeled after the proof of [FI10, Theorem 2.1].

Lemma 4.2 ([You91]). Let γ ≈ 0.577 be Euler’s constant. Then for x ≥ 2 an integer,

x∑
n=1

1

n
≤ log x+ γ +

1

2x

For n ∈ N, let τ(n) be the number of positive divisors of n.

Lemma 4.3. For x ≥ 2, ∑
d≤x

τ(d) ≤ x log x+ (2γ − 1)x+ 4
√
x.
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Proof. Let {x} denote x− ⌊x⌋. According to the proof of [BKZ18, Theorem 2], we have∑
d≤x

τ(d) = 2
∑
d≤

√
x

⌊x
d

⌋
− ⌊
√
x⌋2.

Continuing with that proof, but keeping track of the error terms, we get∑
d≤x

τ(d) ≤ 2
∑
d≤

√
x

(x
d
+ 1

)
− (
√
x− {

√
x})2

≤ 2x
∑
d≤

√
x

1

d
+
√
x− x+ 2

√
x.

Simplifying and applying Lemma 4.2, the claim follows.

Let ρ(n) be the number of solutions to t2 ≡ 4p (mod n) with t ∈ Z/nZ.

Lemma 4.4. For d ≥ 1, ρ(d2) ≤ 4τ(d).

Proof. Suppose the prime factorization of d is qe11 · · · qess . By Sun Tzu’s Theorem (Chinese Remainder
Theorem), ρ(d2) =

∏
i ρ(q

2ei
i ). Observe that 4p is not a square mod p2, and hence ρ(d2) = 0 if qi = p for

any i. Assume qi ̸= p for all i. If qi is odd, then ρ(q
2ei
i ) = ρ(qi) by Hensel’s Lemma, and ρ(qi) ≤ 2. If qi = 2,

then ρ(q2eii ) ≤ 8. Finally, observe that 2s ≤ τ(d), with equality precisely when ei = 1 for all i. The claim
follows.

Lemma 4.5. If 2 ≤ Y < p, then

Y∑
d=1

ρ(d2) ≤ 4Y log Y + (8γ − 4)Y + 16
√
Y .

Proof. Combine Lemmas 4.3 and 4.4.

Let A(n) be the number of solutions to t2 ≡ 4p (mod n) with 1 ≤ t ≤ √p.

Lemma 4.6. For d ≥ 1, |A(d2)− ρ(d2)
√
p

d2 | ≤ ρ(d
2).

Proof. LetM = ⌊
√
p

d2 ⌋. In each of the intervals [1, d2], [d2+1, 2d2], . . . , [(M−1)d2+1,Md2], there are exactly

ρ(d2) contributions to A(d2). In the interval [Md2+1,
√
p

d2 ], there are at most ρ(d2) additional contributions.

Lemma 4.7. If 2 ≤ Y <
√
p, then

∑
Y <d<

√
p

A(d2) ≤ 36p

Y 2
.

Proof. For positive integers κ, Y , let

N(κ) = #{(t, d) ∈ Z2 : d > Y, 1 ≤ t ≤ √p, 4p− t2 = κd2}
= #{(t, d) ∈ Z2 : d > Y, 1 ≤ t ≤ √p,NmQ(

√
−κ)/Q(t+ d

√
−κ) = 4p}.

If (t, d) is a pair counted by N(κ), then we have κ = 4p−t2
d2 , and hence N(κ) = 0 for κ > 4p

Y 2 . We have∑
Y <d<

√
p

A(d2) ≤
∑

1≤κ≤ 4p

Y 2

N(κ). We claim that N(κ) ≤ 9, from which the lemma follows. To see this, suppose

12



that (2) and (p) each split as the product of two principal ideals in Q(
√
−κ); say (2) = l1 · l1 and (p) = l2 · l2.

Then (t, d) is counted by N(κ) if and only if t+ d
√
−κ is a generator for an ideal of norm 4p, which must lie

in the list l21l2, (2)l2, l
2

1l2, l
2

1l2, (2)l2, l
2
1l2. Conjugation changes the sign of d, and since we only count d > 0, we

need only consider half of the above ideals. The number of generators for each ideal is at most the size of the
units in the ring of integers of Q(

√
−κ), which is at most 6 (occurring when κ = 3). But multiplication by

−1 only changes the sign of the pair (t, d), and so there are at most 3 generators per ideal which contribute
to the count of N(κ). Therefore N(κ) ≤ 9.

Finally, if the splitting behavior of (2), (p) differs from our assumption above, then N(κ) can only shrink.

Let µ(n) denote the Möbius function.

Lemma 4.8. If 2 ≤ Y <
√
p is an integer, then∣∣∣∣∣∑

d>Y

µ(d)
ρ(d2)

d2

∣∣∣∣∣ ≤ 12Y −0.7.

Proof. We have ∣∣∣∣∣∑
d>Y

µ(d)
ρ(d2)

d2

∣∣∣∣∣ ≤
∞∑

d=Y+1

4τ(d)

d2
.

The first displayed inequality in the proof of Lemma 5 from [NR83] yields τ(d) ≤ 5d0.3. The result follows

from the fact that

∞∑
d=Y+1

20

d1.7
≤

∫ ∞

Y

20x−1.7 dx.

Theorem 4.9. Let C =
∏

q prime

(
1− 2

q2

)
and let p be an odd prime. Let np be the number of values of t

for which 1 ≤ t < √p and 4p− t2 is square-free. Then

np ≥ Cp
1
2 − 4

3
p

1
3 log p− (8γ + 32)p

1
3 − 12p

4
15 − 16p

1
6 .

Proof. By inclusion-exclusion, np =

∞∑
d=1

µ(d)A(d2). Let Y = 3
√
p. Using Lemma 4.6, we have

∞∑
d=1

µ(d)A(d2) =
∑
d≤Y

µ(d)A(d2) +
∑
d>Y

µ(d)A(d2)

≥ √p
∑
d≤Y

µ(d)
ρ(d2)

d2
−

∑
d≤Y

ρ(d2)−
∑
d>Y

A(d2)

Additionally,

√
p
∑
d≤Y

µ(d)
ρ(d2)

d2
≥ √p

∞∑
d=1

µ(d)
ρ(d2)

d2
−√p

∣∣∣∣∣∑
d>Y

µ(d)
ρ(d2)

d2

∣∣∣∣∣ .
Combining Lemmas 4.5, 4.7, and 4.8 with the fact that

∞∑
d=1

µ(d)
ρ(d2)

d2
=

∏
q prime

(
1− ρ(q2)

q2

)
≥ C,

we obtain the result.
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Corollary 4.10. If p > 263 is prime, then the probability that 4p − t2 is square-free, where t is randomly
chosen in 1 ≤ t < √p, is at least 25%.

Proof. We wish to bound np/
√
p. The Feller-Tornier constant [OEI24, Seq. A065493] is

1

2
+

1

2

∏
q prime

(
1− 2

q2

)
> .66,

from which it follows that C > 0.32. Thus by Theorem 4.9,
np√
p ≥ 0.32− ϵ(p), where

ϵ(p) =
4

3
p−

1
6 log p+ (8γ + 32)p−

1
6 + 12p−

7
30 + 16p−

1
3 .

Since p > 263, ϵ(p) ≤ ϵ(263) < 0.07, the claim follows.

Recall from Definitions 3.5 and 3.6 the probability distributions Up and Dp on the set of isomorphism
classes of elliptic curves over Fp.

Lemma 4.11. For any prime p ≥ 5, the ℓ2 distance between the distributions Dp and Up is ≤ 2
p .

Proof. In the distribution Dp, we represent elliptic curves by the p2 − p pairs (a, b) ∈ Fp × Fp satisfying

4a3+27b2 ̸= 0. As observed in [Bir68, §1], for each isomorphism class of elliptic curves, there are (p−1)
2 pairs

(a, b) giving rise to it, except for the cases of y2 = x3 + ax and y2 = x3 + b. For y2 = x3 + ax, there are
(p−1)/4 pairs (a, 0) if p ≡ 1 (mod 4) for each of 4 isomorphism classes of elliptic curves, and (p−1)/2 pairs
for each of 2 isomorphism class if p ≡ 3 (mod 4). For y2 = x3 +1, there are (p− 1)/6 pairs if p ≡ 1 (mod 3)
yielding 6 isomorphism classes of elliptic curves, and (p − 1)/2 pairs if p ≡ 2 (mod 3) for 2 isomorphism
classes of elliptic curves. Then Dp chooses isomorphism classes with a, b ̸= 0 with probability 1

2p ; curves

with b = 0 with probability between 1
2p and 1

4p ; and curves with a = 0 with probability between 1
2p and 1

6p .

The largest discrepancy from the uniform distribution Up occurs when p ≡ 1 (mod 12). In this case, for Dp

there are 2p − 2 isomorphism classes of elliptic curves with a, b ̸= 0, 4 with b = 0, and 6 with a = 0, while
Up is uniform across all 2p+ 8 isomorphism classes. A routine calculation now yields the result.

Corollary 4.12. Let p > 263 be prime. The probability that an elliptic curve drawn from the distribution
Dp lies in Esf,3p is at least 14%. The same holds if we draw from the distribution Up.

Proof. We first choose an elliptic curve according to Dp. Note that | t
2
√
p | <

1
2 implies that ∆Fr(E) ≥ 3p.

Next, we cannot directly use Corollary 4.10 since the distribution of t values is not uniform. But since the
density function dµST

dX = 2
π

√
1−X2 is decreasing as a function of |X| = | t

2
√
p |, the probability that ∆Fr(E) is

square-free, given that |t| < √p, is lowest when all of the square-free values occur for |t| as large as possible.
(In fact, this will never occur, since even t values result in 4 | ∆Fr(E); but the probability we obtain with
this assumption will in any case be a lower bound for the true probability.) Via Corollary 4.10, we therefore
assume that the elliptic curves with square-free t and 4p− t2 ≥ 3p occur when 0.75

√
p < |t| < √p. Applying

Theorem 4.1, we see that at least 14% of all elliptic curves mod p have trace t in this range.
The analogous results for Up follow from applying Lemma 4.11.

Theorem 4.13. Suppose 0 < ϵ < 1
2 and K is an imaginary quadratic field. Let D be the absolute value of

the discriminant of K, and h the class number of K. If D > max(e1/ϵ, e11.2), then h > 0.655ϵ
π D

1
2−ϵ except

for at most one choice of K.

Proof. See the remarks immediately following Theorem 2 in [Tat51]. The idea is that according to the
Dirichlet class number formula, h = 1

π

√
D · LD(1), where LD is the L-function associated to K (this is a

power series related to the Riemann zeta function which encodes number theoretic information about K).
Tatuzawa in [Tat51] provides lower bounds for LD(1).
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For somewhat better bounds, see [Hof80, Theorem 1].

Corollary 4.14. Let p > 263 be prime. Given an ordinary elliptic curve E/Fp, let O be End(E). If an
elliptic curve E is drawn from either the distribution Dp or the distribution Up, then with probability at least

14%, E ∈ Esf,3p and both the class group of O and the isogeny class of E have size at least 0.089
√
p

log p .

Proof. By Corollary 4.12, there is a probability of at least 14% such that E ∈ Esf,3p. For E ∈ Esf,3p, consider
Fr the Frobenius endomorphism and K = Q(Fr). Since ∆Fr(E) is square-free, Z[Fr] = End(E) ∼= OK , and
this must hold for any elliptic curve isogenous to E. Therefore ∆Fr(E) = D(E) and the isogeny class of E
is acted upon simply transitively by the class group, and so has the same size as the class group.

For the size claim, choose ϵ = 1
ln p in Theorem 4.13. Note that the one possible exceptional K in that

Theorem is subsumed by the round-off error in the probability calculation of Corollary 4.12.

4.2 The SEA isogeny algorithm

We recall the complex multiplication theory of elliptic curves. Given an imaginary quadratic number field K
and an order O ⊂ K, we say that E has complex multiplication by O if End(E) ∼= O, or if O is isomorphic
to a subring of End(E), and there is no larger order of K isomorphic to a subring of End(E); this second
case is only necessary for supersingular elliptic curves.

Identify O with (the corresponding subring of) End(E). Given an integral ideal I of O, define E[I] =
{∩ ker(α) : α ∈ I}; it is a subgroup of E of order the ideal norm N(I). Write φI for the canonical isogeny
φI : E → EI := E/E[I]. Observe that deg(φI) = N(I). The isomorphism class of EI depends only on the
ideal class of I. We let M(p) be the complexity of one arithmetic operation in Fp. Then we have

Theorem 4.15. Let E be an elliptic curve over Fp with complex multiplication by O, and let l ⊂ O be a
prime ideal of norm ℓ, where ℓ is a rational prime. Then there is a classical algorithm which computes the
isogeny φl in time O (ℓM(p) log ℓ log log ℓ log p).

Proof. See [DKS18, p. 12], specifically “Elkies steps” (Algorithms 3 and 4). See Section 10 for more details.

As we’ll see in §4.3, we will be concerned with the case where ℓ ≤ 6 log2(4p).

4.3 Building the Generating Set of Isogenies

Below we will give an algorithm to list prime ideal classes in BK . We will omit prime ideals of the form
ℓOK for ℓ a rational prime, since such so-called inert primes are principal and hence yield the trivial class.
(Additionally, the ideal norm of ℓOK is ℓ2, so the inert primes will quickly exceed the Bach bound.) The
prime ℓ is inert if and only if −D is a quadratic nonresidue mod ℓ. If ℓ is not inert and does not divide D,
then ℓ factors as the product of a prime ideal, say l, and its conjugate.

We now give an algorithm to generate a list of prime ideals li representing BK .
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Algorithm 4.1: Bach Generating Set Algorithm

Input: K an imaginary quadratic field with discriminant D
Output: (li), list of primes in OK

1 Initialize i = 1 and ℓ = 2.

2 Check if ℓ is inert by determining if the Legendre symbol (−Dℓ ) = −1; if yes, go to step 5.

3 By enumeration, find the smallest positive x satisfying x2 ≡ −D (mod ℓ). Let l = (ℓ, x+
√
−D) and

l′ = li = (ℓ, x−
√
−D).

4 Check if the class of l has already been generated by determining if l · lj is a principal ideal for any lj
with j < i. If yes, go to the next step. Otherwise, set li = l. Check if l2 is principal, and if not,
then also set li+1 = l′. Increment i by 1 or 2 accordingly.

5 Increment ℓ to the next larger rational prime. If ℓ > 6(logD)2, then output the list (li) and
terminate.

We remark on accomplishing each of these steps. Step 2 is clear. For step 3, such an x with 1 ≤ x ≤ ℓ
2 is

guaranteed to exist, as the Legendre symbol is +1 and solutions come in additive inverse pairs. For step 4,
take the pairwise products of the generators of l · lj , and let Λ ⊂ C be the lattice generated by these products
(where we view Q(

√
−D) ⊂ C using either field embedding). Then apply Lagrange-Gauss reduction to the

lattice; l · lj is principal if and only if λ1(Λ) = ℓ · ℓj .

Proposition 4.16. If B̃K is the output of Algorithm 4.1, then the map B̃K → BK given by l 7→ [l] is a
bijection. Furthermore, if [l] ∈ BK , then [l]−1 ∈ BK .

Proof. The definition of BK immediately yields that the map is well-defined and surjective. Let l ∈ B̃K of
norm ℓ. If l2 is principal, then [l] is its own inverse. Otherwise in step 4, we also have l ∈ B̃K and since

l · l = ℓOK

is principal, we get [l]−1 = [l] ∈ B̃K . This proves the second claim.
For the first claim, it suffices to show that the map is injective. Step 4 of the algorithm shows that

∀l, l′ ∈ B̃K , l · l′ is not principal. Since B̃K is closed under inversion, this implies that if li, lj ∈ B̃K with
i ̸= j, then li · l−1

j is not principal; in other words, [li] · [lj ]−1 ̸= [(1)], and hence [li] ̸= [lj ].

Proposition 4.17. Algorithm 4.1 requires O((logD)7) bit operations and uses O((logD)2 log logD) bits of
memory.

Note that logD = O(log p).

Proof. Each of the first three steps take O((logD)2). The length of the generators for the lattice Λ in step 4
is O(D), and hence Lagrange-Gauss take O((logD)3). There are O((logD)2) pairs to check in one invocation
of step 4, and the algorithm repeats O((logD)2) times, whence the time estimate.

Each prime is recorded as a pair of generators whose coefficients are of size log ℓ = O(log logD). Since
there are O((logD)2) primes, the space complexity follows.

4.4 The Distribution of Class Group Generators

Let G be a finite abelian group. We say that a sequence h1, . . . , ht ∈ G is weakly Erdös-Rényi if, for every
g ∈ G, ∃e1, . . . , et ∈ {0, 1} such that g = he11 h

e2
2 · · ·h

et
t .

Definition 4.18. We define the Bach-Erdös-Rényi game as follows. Given a parameter λ, an adversary wins
if it can find an imaginary quadratic field K with discriminant D > 2λ such that the classes BK ⊂ Cl(OK)
are not weakly Erdös-Rényi.

16



Assumption 4.19. For every quantum polynomial time adversary, the probability of winning the Bach-
Erdös-Rényi game is a negligible function of λ.

Why should we believe this assumption? First, consider the following theorem.

Theorem 4.20 ([ER65], Theorem 2). If G is a finite abelian group, δ > 0, and

t ≥ log(#G) + log log(#G)− 2 log δ + 5,

then a randomly chosen sequence h1, . . . , ht ∈ G is weakly Erdös-Rényi with probability at least 1− δ.

Taking G = Cl(OK) and δ = 1
D , the assumption holds as long as BK acts like a random set of elements

from G. In Section 11, we give heuristic evidence that BK acts “sufficiently randomly.”

4.5 Eigenvalue bounds

A vertex-transitive graph Γ is one for which for every pair of vertices v, w, there is an automorphism of the
graph γ such that γ(v) = w.

Proposition 4.21 (Lemma 6.1, [Bab91]). Let Γ be a vertex-transitive graph of degree d and diameter δ.
Then the second largest eigenvalue of the adjacency matrix of Γ is ≤ d− 1

16.5δ2 .

Fix an isogeny class IN ⊂ Esf,3p. Let X be the graph with vertex set IN and for which E,E′ are adjacent
if and only if ∃[l] ∈ BK such that [l] ∗ E = E′.

Proposition 4.22. Suppose BK is weakly Erdös-Rényi for Cl(OK), and let r = #BK . Then the second
largest eigenvalue µ2 of the adjacency matrix of X satisfies µ2 ≤ r − 1

16.5r2 .

Proof. Let E1, E2 ∈ IN . Since ∆Fr(E1),∆Fr(E2) are square-free, we must have ∆Fr(E1) = D(E1) = ∆Fr(E2).
Therefore ∃c ∈ Cl(OK) such that c ∗E = E′. Since BK is weakly-Erdös-Rényi, ∃[l1], . . . , [lt] ∈ BK such that
c =

∏
[li]. The map E 7→ (

∏
[li]) ∗ E yields an automorphism of X which sends E to E′, and hence X is

vertex-transitive.
Observe that X is a regular graph with degree equal to r. If BK is weakly Erdös-Rényi, then the diameter

of X is bounded above by r. The result now follows from the previous proposition.

5 Sampling a Superposition of Elliptic Curves over Fp
Suppose p is a large prime. Recall that we represent elliptic curves over Fp by a pair (j, b) where j ∈ Fp and
b is twisting data. In this subsection, we show how to sample a uniform superposition over elliptic curves
over Fp. To our knowledge, this is not known for supersingular elliptic curves [MMP22], and most “natural”
ways of generating random elliptic curves run into the index erasure problem [AMRR11] when used to try
to generate a superposition of elliptic curves.

Algorithm 5.1: Algorithm ECSupGen

Input: p a prime
Output: |E⟩ a quantum state
Let S be a register that can store a pair (j, b), where j ∈ Fp and 0 ≤ b ≤ 5.
Generate a uniform superposition |ψ⟩ ∈ S over all pairs (j, b), where

� If j ̸≡ 0, 1728 (mod p), then b = 0 or 1.

� If j ≡ 1728 and p ≡ 1 (mod 4), then 0 ≤ b ≤ 3. If p ≡ 3 (mod 4), then b = 0 or 1.

� If j ≡ 0 and p ≡ 1 (mod 3), then 0 ≤ b ≤ 5. If p ≡ 2 (mod 3), then b = 0 or 1.
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Proposition 5.1. Let |ψ⟩ be the output of Algorithm 5.1. Then |ψ⟩ is a uniform superposition over all
isomorphism classes of elliptic curves over Fp. The algorithm takes time O(log p).

Proof. The first claim is immediate from the discussion in §3.3. The complexity estimate comes from
generating the superposition over all j, which dominates the conditional superposition over b-values.

We remark that encoding a superposition using the Weierstrass encoding (a, b) (corresponding to the
elliptic curve y2 = x3 + ax+ b) is also possible. However, the Weierstrass encoding requires about twice as
many qubits. Additionally, since there are O(p) pairs (a, b) corresponding to the same isomorphism class,
the group action will not be as nicely behaved; for instance, the set of elliptic curves is the disjoint union of
O(p) orbits under the class group action.

6 Verifying a Superposition of Elliptic Curves

In this section, we give an algorithm that verifies that a quantum state is negligibly close to a uniform
superposition of elliptic curves over Fp with a given number of points. Our algorithm is based on the
verification algorithm of [LMZ23] (which is in turn an abstraction of the verification procedure of [FGH+12]);
at a high level, it is the same as that of [LMZ23], although we have made a number of changes that are
specific to our scheme.

6.1 Overview of Verification Algorithm.

Let IN denote the set of elliptic curves over Fp with N points, and let |IN ⟩ := 1√
#IN

∑
E∈IN

|E⟩. In other

words, |IN ⟩ is a uniform superposition over all elliptic curves with N points.
Our goal, similar to [LMZ23], is to compute an approximation of the projection-valued measure VN =

|IN ⟩ ⟨IN |. Unlike [LMZ23], for us there is only a single orbit in IN (because the class group acts transitively
on the isogeny class), so we can simplify our corresponding PVM relative to theirs.

Note that if we started with a uniform superposition |IN ⟩, then VN |IN ⟩ = |IN ⟩ immediately. If instead
we compute VN |ψ⟩ for some superposition |ψ⟩ that does not put much weight on |IN ⟩, we know that VN is
likely to reject. We emphasize that such a projection does not disturb a “correct” state |IN ⟩. We will show
that our algorithm closely mimics the behavior of the PVM VN .

At a rough level, our algorithm works as follows: we first check to make sure that we are given a state that
contains a representation of a (possible) superposition of elliptic curves with N points. Then, as in [LMZ23],
we mimic taking a random walk (in superposition) over all elliptic curves with N points. If we ensure that
our “steps” in the random walk are invertible (i.e., the mapping is one-to-one), then we have the following
nice property: if we start with |IN ⟩, then taking a step of our walk brings us to |IN ⟩, which is where
we started. If, on the other hand, we started with, say, a single elliptic curve E, then taking a random
walk would likely leave us with a different elliptic curve, which is a totally different state. As in previous
work [FGH+12, LMZ23], we build this intuition into a full verification algorithm.

6.2 Verification Algorithm Definitions.

Definition 6.1. The Isogeny Computation σi. Fix E0 ∈ Esf,3p, and let IN be its isogeny class. Let
V = CIN ; that is, the complex vector space with orthonormal basis given by |E⟩ for E ∈ IN . Let K =
End(E0)⊗Q. Let l1, ..., lr denote prime ideals which form a system of representatives for the classes in BK ,
as discussed in Section 10. For each i ∈ [1, r] we let σi : V → V denote the unitary given by σi |E⟩ = |li ∗ E⟩.

Note that by giving only p andN := #E0(Fp), IN is determined, whileK,BK can be efficiently computed.
Recall that if [l] ∈ BK , then [l]−1 ∈ BK as well. Therefore the σi come in pairs which are inverses of each

other.
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Definition 6.2. The State |1n⟩. If n is an integer, define the state |1n⟩ := 1√
n

∑n
i=1 |i⟩ and if n′ > n,

define |1n,n′⟩ := 1√
n′−n+1

∑n′

i=n |i⟩.

Definition 6.3. For integers n and k, let Pn,k := |1n⟩ ⟨1n| ⊗ Ik, where Ik denotes the identity matrix
acting on k qubits.

We view Pn,k as a projection-valued measure with outputs 0 and 1. By Definition 3.1, the probability of
obtaining output 1 when we apply the operator Pn,k to a pure state |ψ⟩ is ⟨ψ|Pn,k |ψ⟩, with the measured

state collapsing to
Pn,k|ψ⟩√
⟨ψ|Pn,k|ψ⟩

.

Lemma 6.4. We have the following:

1. Each Pn,k is a positive semi-definite Hermitian matrix.

2. P2
n,k = Pn,k.

3. Pn,k = P†
n,k, where “†” denotes conjugate transpose.

Definition 6.5. Let r = #BK , k = #IN , and W = Cr ⊗ V. Let U :W →W be the unitary given by

U :=

r∑
i=1

|i⟩ ⟨i| ⊗ σi +
2r∑

i=r+1

|i⟩ ⟨i| ⊗ Ik.

Equivalently, for 1 ≤ i ≤ r and E ∈ IN ,

U(|i, E⟩) = |i, li ∗ E⟩ and

U(|i+ r, E⟩) = |i+ r, E⟩ .

Recall that instead of V, we work in the larger vector space of all pairs (j, b). But if E /∈ IN (which can
be efficiently determined via Schoof’s algorithm), then we may define σi to act trivially on |E⟩. However,
valid bank notes lie in V, which can be checked efficiently. Thus the action of σi on |E⟩, E /∈ IN , will not
be relevant.

6.3 Verification Algorithm.

Algorithm 6.1: Algorithm ECSupVer

Input: a prime p, integers N and τ , and a quantum state |ψ⟩ stored in a register S
Output: a bit 0 or 1. If it returns 1, then ECSupVer alters |ψ⟩ to a state |ψ′⟩ which it then outputs.

1 Check that |ψ⟩ is properly formatted as a superposition over pairs (j, b) ∈ Fp × {0, . . . , 5} with b
following the restrictions of Algorithm 5.1, and that 4p− (p+ 1−N)2 ≥ 3p and is square-free. If
not, output 0.

2 Use Schoof’s algorithm to compute the number of points in the elliptic curve representation of |ψ⟩ in
a new register.

3 Measure the value in the new register. If it is not N , output 0 and terminate. From N , compute K,
BK with Algorithm 4.1, and U as in Definition 6.5. Then discard this register.

4 Let r = #BK . Using a new register, create the state |φ⟩ := 12r ⊗ |ψ⟩ ∈ W := C2r ⊗ V.
5 Repeat the following τ times:

1. Apply the unitary U to |φ⟩.

2. Apply the projection-valued measurement corresponding to P2r,k to the resulting state. If the
measurement fails (i.e., we do not get a state lying in the set 12r ⊗ V) output 0 and terminate.

Discard the first register and output 1 as well as the resulting state.

We will say that ECSupVer “accepts” if it returns 1 and a state.
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6.4 Verification Algorithm Efficiency

We next prove that our verification algorithm is efficient. We do this with the following lemma.

Lemma 6.6. On input a prime p, integers N and τ , and a quantum state |ψ⟩, the algorithm ECSupVer
runs in time

max
(
O
(
log8 p

)
, O

(
τ
(
log3 p

) (
log log2 p

) (
log log log2 p

)))
.

Proof. Note that Schoof’s algorithm (see Theorem 10.1) used in step 2 takes time O
(
log8 p

)
, which dominates

the running time of the algorithm before the loop in step 4.
Step 4 is dominated by the cost of step (a), which is the application of the unitary U which performs

the isogeny computation. If we let M(p) be the complexity of one arithmetic operation in Fp, then we
know from Theorem 4.15 that there is a classical algorithm which computes a degree ℓ isogeny in time
O (ℓM(p) log ℓ log log ℓ log p). Since, in our case, ℓ = O

(
log2 p

)
and M (p) = O

(
log3 p

)
, we know that each

iteration of step 4 is upper-bounded by a function which is O
((
log5 p

) (
log log2 p

) (
log log log2 p

))
. The claim

follows.

7 Proof of Verification Algorithm.

We now argue that our verification algorithm accepts with all but negligible probability.

Definition 7.1. The Matrix M. Define a unitary operator M : V → V by

M :=
1

r

r∑
i=1

σi.

Equivalently, for E ∈ IN ,

M |E⟩ = 1

r

r∑
i=1

|li ∗ E⟩ .

The operator M is analogous to a similar operator in [LMZ23], and we can borrow from, and make more
precise, their analysis and explanation.

Lemma 7.2. The eigenvalues of M are real. The largest eigenvalue of M is 1; the corresponding eigenvector
is precisely |IN ⟩ =

∑
E∈IN

|E⟩. Furthermore, if BK is weakly Erdös-Rényi Cl(OK), then the second largest

eigenvalue λ2 for M is at most 1− 1
16.5r3 .

Proof. Consider the graph Γ whose vertices are the elliptic curves in IN , and whose edges are all pairs
(E, li ∗E) for E ∈ IN , 1 ≤ i ≤ r. If we identify M with the matrix representing it in the computational basis
{|E⟩ : E ∈ IN}, then rM is precisely the adjacency matrix of Γ. Since the li come in inverse pairs, it follows
that M is real symmetric, and hence has real eigenvalues. As Γ is r-regular, the largest eigenvalue of the
adjacency matrix is r with corresponding eigenvector |IN ⟩ =

∑
E∈IN

|E⟩. Therefore the largest eigenvector
of M is 1, with eigenvector |IN ⟩.

From Proposition 4.22, if BK is weakly Erdös-Rényi, then the second largest eigenvalue λ2 for the matrix
M is at most 1− 1

16.5r3 .

Let |ψ1⟩ , ..., |ψk⟩ be an eigenbasis for M, where we let |ψ1⟩ = |IN ⟩. For each j, let aj denote the
eigenvalue corresponding to the eigenstate |ψj⟩; if BK is weakly Erdös-Rényi, then aj ≤ 1− 1

16.5r3 for j ≥ 2.
As in [LMZ23], we will begin by showing a simple example where the state |ψ⟩ is an eigenvector state.

In the following lemma we examine what the state will look like after one operation of the “loop” in our
verification algorithm, assuming the first PVM accepts, which we can then reuse for other calculations.
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Lemma 7.3. P2r,kU |12r⟩ |ψj⟩ = 1+aj
2 |12r⟩ |ψj⟩ .

Proof. By the definitions of P2r,k, U (Definition 6.5), M, and aj , and the facts that ⟨i| |1r⟩ = ⟨i| |1r+1,2r⟩ =
1√
r
and (A⊗B) (C⊗D) = AC⊗BD, we have:

P2r,kU |12r⟩ |ψj⟩ = (|12r⟩ ⟨12r| ⊗ Ik)

[
r∑
i=1

|i⟩ ⟨i| ⊗ σi +
2r∑

i=r+1

|i⟩ ⟨i| ⊗ Ik

]
|12r⟩ |ψj⟩

=
1√
2
(|12r⟩ ⟨12r| ⊗ Ik)

[
r∑
i=1

|i⟩ ⟨i|1r⟩ ⊗ σi +
2r∑

i=r+1

|i⟩ ⟨i|1r+1,2r⟩ ⊗ Ik

]
|ψj⟩

=
1√
2r

(|12r⟩ ⟨12r| ⊗ Ik)

[
r∑
i=1

|i⟩ ⊗ σi +
2r∑

i=r+1

|i⟩ ⊗ Ik

]
|ψj⟩

=
1√
2r

(|12r⟩ ⟨12r| ⊗ Ik)

[
r∑
i=1

|i⟩ ⊗ σi |ψj⟩+
2r∑

i=r+1

|i⟩ ⊗ |ψj⟩

]

=
1

2
√
r
|12r⟩

[
r∑
i=1

⟨1r|i⟩ ⊗ Ikσi |ψj⟩+
2r∑

i=r+1

⟨1r+1,2r|i⟩ ⊗ Ik |ψj⟩

]

=
1

2r
|12r⟩

[
r∑
i=1

σi |ψj⟩+ r |ψj⟩

]
=

1

2
|12r⟩ [M |ψj⟩+ |ψj⟩] =

1 + aj
2
|12r⟩ |ψj⟩ .

The next lemma extends Lemma 7.3.

Lemma 7.4. The probability that algorithm ECSupVer does not fail in the first iteration of its loop on an

input |ψj⟩ is
(

1+aj
2

)2

.

Proof. We note that the state at the first measurement by P2r,k is U |12r⟩ |ψj⟩. Therefore, by Definition 6.3,
this first measurement by P2r,k outputs 1 with probability

⟨ψj | ⟨12r|U†P2r,kU |12r⟩ |ψj⟩

which, since (by Lemma 6.4) P2r,k is Hermitian and real, and P2
2r,k = P2r,k, is(

⟨ψj | ⟨12r|U†P†
2r,k

)
(P2r,kU |12r⟩ |ψj⟩) ,

which by Lemma 7.3 is

⟨ψj | ⟨12r|
(
1 + aj

2

)2

|12r⟩ |ψj⟩ =
(
1 + aj

2

)2

.

The next lemma extends Lemmas 7.3 and 7.4 to the operation of the entire ECSupVer algorithm, not just
one loop. It holds for all states, not just eigenvectors.

Lemma 7.5. If |ψ⟩ =
∑k
j=1 αj |ψj⟩ with αj ∈ C, then

(P2r,kU)
τ |12r⟩ |ψ⟩ = |12r⟩ ⊗

∑
j∈M

αj

(
1 + aj

2

)τ
|ψj⟩ .
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Proof. It follows from Lemma 7.3 that

P2r,kU |12r⟩ |ψj⟩ = |12r⟩ ⊗
∑
j∈M

αj

(
1 + aj

2

)
|ψj⟩ .

Iterating this τ times gives the desired result.

We can now define the state of ECSupVer at a particular point in time.

Lemma 7.6. Suppose that ECSupVer accepts for the first i iterations in the loop on some input |ψ⟩. Then
the state of the R× S registers after step i in the loop is:

(P2r,kU)
i |12r⟩ |ψ⟩√

⟨ψ| ⟨12r| (U†P2r,k)
i−1

U†P2r,kU (P2r,kU)
i−1 |12r⟩ |ψ⟩

.

Proof. Recall that by Definition 6.3, assuming that the first measurement by P2r,k of ECSupVer accepts,
after that the R× S registers will be in a state

P2r,kU |12r⟩ |ψ⟩√
⟨ψ| ⟨12r|U†P2r,kU |12r⟩ |ψ⟩

.

The next iteration of the loop, as all of the interations of the loop do, involves multiplying by U and then
taking the PVM P2r,k. Assuming ECSupVer accepts in the second round of the loop, this gives us the
following state:

P2r,kU
P2r,kU|12r⟩|ψ⟩√

⟨ψ|⟨12r|U†P2r,kU|12r⟩|ψ⟩√(
P2r,kU|12r⟩|ψ⟩√

⟨ψ|⟨12r|U†P2r,kU|12r⟩|ψ⟩

)†

U†P†
2r,kU

P2r,kU|12r⟩|ψ⟩√
⟨ψ|⟨12r|U†P2r,kU|12r⟩|ψ⟩

.

Cancelling terms and simplifying gives

(P2r,kU)
2 |12r⟩ |ψ⟩√

⟨ψ| ⟨12r|U†P2r,kU†P2r,kUP2r,kU |12r⟩ |ψ⟩
.

After the ith step, we are left with the state

(P2r,kU)
i |12r⟩ |ψ⟩√

⟨ψ| ⟨12r| (U†P2r,k)
i−1

U†P2r,kU (P2r,kU)
i−1 |12r⟩ |ψ⟩

as desired.

Lemma 7.7. The probability that ECSupVer accepts with input |ψ⟩ =
∑k
j=1 αj |ψj⟩ in the ith iteration is

∑k
j=1 |αj |2

(
1+aj

2

)2i

∑k
j=1 |αj |2

(
1+aj

2

)2i−2
.

Proof. First, recall that we do not need to condition this probability on accepting in previous rounds because
ECSupVer aborts and outputs 0 if any PVMs fail. By Lemma 7.6, the state of the R × S registers at the
(i− 1)th step is

(P2r,kU)
i−1 |12r⟩ |ψ⟩√

⟨ψ| ⟨12r| (U†P2r,k)
i−2

U†P2r,kU (P2r,kU)
i−2 |12r⟩ |ψ⟩
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Therefore the probability of the PVM P2r,k accepting in the ith loop of ECSupVer is just (P2r,kU)
i−1 |12r⟩ |ψ⟩√

⟨ψ| ⟨12r| (U†P2r,k)
i−2

U†P2r,kU (P2r,kU)
i−2 |12r⟩ |ψ⟩

†

U†P†
2r,kU

·

 (P2r,kU)
i−1 |12r⟩ |ψ⟩√

⟨ψ| ⟨12r| (U†P2r,k)
i−2

U†P2r,kU (P2r,kU)
i−2 |12r⟩ |ψ⟩


which is

⟨ψ| ⟨12r|
(
U†P†

2r,k

)i−1

U†P2r,kU (P2r,kU)
i−1 |12r⟩ |ψ⟩

⟨ψ| ⟨12r|
(
U†P†

2r,k

)i−2

U†P2r,kU (P2r,kU)
i−2 |12r⟩ |ψ⟩

By Lemma 7.5, this is ∑k
j=1 αj

(
1+aj

2

)i
⟨ψ| ⊗ ⟨12r|12r⟩ ⊗

∑k
j=1 αj

(
1+aj

2

)i
|ψ⟩∑k

j=1 αj

(
1+aj

2

)i−1

⟨ψ| ⊗ ⟨12r|12r⟩ ⊗
∑k
j=1 αj

(
1+aj

2

)i−1

|ψ⟩

which is ∑k
j=1 |αj |2

(
1+aj

2

)2i

∑k
j=1 |αj |2

(
1+aj

2

)2i−2

as desired.

The following lemma extends Lemma 7.7:

Lemma 7.8. Suppose that, on some inputs |ψ⟩, N , and τ , the algorithm ECSupVer does not reject be-
fore it reaches the loop. Then the probability that algorithm ECSupVer accepts on this set of inputs is∑k
j=1 |αj |2

(
1+aj

2

)2τ

, where we note that the weights αj are the weights of |ψ⟩ at the time the loop in EC-

SupVer starts.1

Proof. First, note that the probability that ECSupVer accepts on an input |ψ⟩ is just the product of the
probabilities that it accepts in each of the τ steps of the loop. This is because we abort if we ever fail a
measurement, so we do not need to worry about conditional probabilities. By Lemma 7.7, the probability
that ECSupVer accepts in the ith step of the loop is∑k

j=1 |αj |2
(

1+aj
2

)2i

∑k
j=1 |αj |2

(
1+aj

2

)2i−2
.

The product of these terms as i runs from 1 to τ is a telescoping product, and gives the desired result.

The next result, which is the main result of this section, shows that Algorithm ECSupVer approximately
implements the PVM Vj . Theorem 7.9 implies that “proper” money states (where α1 = 1) are always
accepted, and “bad” money states (where α1 is negligible) are not accepted with noticeable probability.
Moreover, if we start with a “good enough” money state, we will still have one post-verification.

1Note that earlier measurements could have changed these weights.
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Theorem 7.9. Let p be a prime. Let N be a positive integer for which D := 4p− (p+1−N)2 is square-free
and larger than 3p. Let K = Q(

√
−D), BK the Bach generating set for K, and suppose BK is weakly

Erdös-Rényi. Let r = #BK , and suppose τ = 33r3λ.

1. If |ψ⟩ =
∑k
j=1 αj |ψj⟩ ∈ V is an arbitrary state, then the probability that ECSupVer accepts on input

|ψ⟩ is at least |α1|2 and at most |α1|2 + 2−λ.

2. If ECSupVer accepts on some input state |ψ⟩ =
∑k
j=1 αj |ψj⟩, and |ψ′⟩ =

∑k
j=1 α

′
j |ψj⟩ is the corre-

sponding output of ECSupVer, then |α′
1| ≥

|α1|√
|α2

1|+2−λ
.

Proof. By Lemma 7.8, the probability that ECSupVer accepts on input |ψ⟩ is
∑k
j=1 |αj |2

(
1+aj

2

)2τ

. By

Lemma 7.2, we know that λ2 (M) ≤ 1− 1
16.5r3 , where λ2 (M) is the second largest eigenvalue for the matrix

M. Thus, ∑
j ̸=1

|αj |2
(
1 + aj

2

)2τ

≤
∑
j ̸=1

|αj |2
(
1− 1

33r3

)2τ

≤
(
1− 1

33r3

)66r3λ

≤ 2−λ.

Since
k∑
j=1

|αj |2
(
1 + aj

2

)2τ

= |α1|2 +
∑
j ̸=1

|αj |2
(
1 + aj

2

)2τ

,

it is immediate that ECSupVer accepts with probability at least |α1|2, and moreover, we obtain

k∑
j=1

|αj |2
(
1 + aj

2

)2τ

≤ |α1|2 + 2−λ, (13)

proving that ECSupVeraccepts with probability at most |α1|2 + 2−λ, which proves part (1).
For the second part, recall that Lemma 7.6 shows that, on an accepting input, just before discarding the

|12r⟩ qubits at the end of algorithm ECSupVer, the R× S registers will be in state

(P2r,kU)
τ |12r⟩ |ψ⟩√

⟨ψ| ⟨12r| (U†P2r,k)
τ−1

U†P2r,kU (P2r,kU)
τ−1 |12r⟩ |ψ⟩

,

which by Lemma 7.5 is

|12r⟩ ⊗
∑k
j=1 αj

(
1+aj

2

)τ
|ψj⟩√

⟨ψ| ⟨12r| (U†P2r,k)
τ−1

U†P2r,kU (P2r,kU)
τ−1 |12r⟩ |ψ⟩

.

After discarding the state in the R-register (which is |12r⟩), the S-register has the state:

|ψ′⟩ =

∑k
j=1 αj

(
1+aj

2

)τ
|ψj⟩√∑k

j=1 αj

(
1+aj

2

)τ
⟨ψ| ⊗ ⟨12r|12r⟩ ⊗

∑k
j=1 αj

(
1+aj

2

)τ
|ψ⟩

,

which (using the argument in the proof of Lemma 7.7) is∑k
j=1 αj

(
1+aj

2

)τ
|ψj⟩√∑k

j=1 |αj |2
(

1+aj
2

)2τ
=
α1 |ψ1⟩+

∑
j ̸=1 αj

(
1+aj

2

)τ
|ψj⟩√

|α1|2 +
∑
j ̸=1 |αj |2

(
1+aj

2

)2τ
.
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Since |ψ′⟩ =
∑k
j=1 α

′
j |ψj⟩, we have

|α′
1| ≥

|α1|√
|α1|2 +

∑
j ̸=1 |αj |2

(
1+aj

2

)2τ

By (13) we now have

|α′
1| ≥

|α1|√
|α2

1|+ 2−λ
,

which is part (2).

8 The protocol

Our elliptic curve-related security parameter is a large prime p. We can derive this from the “true” security
parameter λ, where λ ≈ log p. In general, the choice of p will be derived from security of elliptic curve
isogeny-related problems.

Minting. The minting algorithm Gen
(
1λ

)
takes as input parameter p (determined implicitly by the security

parameter λ) and proceeds as follows.

Algorithm 8.1: Minting Algorithm Mint

Input: A prime p ∈ Z
Output: |ψ⟩, σ ∈ Z

1 Let S be a quantum register that is capable of holding a representation of an elliptic curve. In S,
construct a superposition

∑
|E⟩ over all elliptic curves over Fp using the Algorithm 5.1.

2 Use Schoof’s algorithm to compute the number of points in |E⟩ in superposition, and store the
result in a new register, yielding the state

∑
|E⟩ |#E(Fp)⟩

3 In superposition, compute ∆Fr(E), then set a third register to be 1 if ∆Fr(E) is square-free and
∆Fr(E) > 3p, and 0 otherwise. Measure this last register; if the result is 0, start over at step 1.

4 Measure the 2nd register (containing |#E (Fp)⟩), and output the resulting state, which we refer to
as |ψ⟩ and the measured value σ. The state |ψ⟩ is the bank note and σ is the serial number.

Observe that the state is a superposition over elliptic curves in a specific isogeny class. Note that Gen
(
1λ

)
outputs tuples of the form (|ψ⟩ , σ) as desired.

Verification. The verification algorithm Ver (|ψ⟩ , σ) does the following. Recall that |ψ⟩ is (supposed to
be) a superposition of elliptic curves, and σ is supposed to be the number of points in each of the elliptic
curves in superposition.

Algorithm 8.2: Verification Algorithm V er

Input: |ψ⟩, σ ∈ Z
Output: {0,⊥} or {1, |ψ′⟩}

1 Run ECSupVer (|ψ⟩ , σ) and receive an output tuple (|ψ′⟩ ∈ S, b ∈ {0, 1}).
2 if b = 0 then return 0 and ⊥ and discard |ψ′⟩
3 else return 1 and |ψ′⟩

We have deferred a considerable amount of complexity to the actual description of ECSupVer here which
is located in §6.
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8.1 Correctness of the Scheme

We next argue that our construction is correct and efficient. We note that this follows almost immediately
from the analysis of our ECSupGen and ECSupVer algorithms, but we will present formal arguments here
regardless. We start by arguing that, with all but negligible probability, our Gen and Ver algorithms are
efficient.

Proposition 8.1. Let p > 263. For some parameter λ, the minting algorithm Gen on inputs p and λ runs
in time O

(
3λ log8 p

)
with probability 1− 2−λ.

Proof. From Theorem 10.1, we know that Schoof’s algorithm for point counting takes time O
(
log8 p

)
, and

this dominates asymptotically the cost of minting. From Corollary 4.12, we know that the probability of
failure in step 3 is at most 86%. Thus, the probability that the algorithm has not terminated after 3λ
iterations of step 3 is less than 2−λ.

We make one further (but important) note on the minting algorithm.

Proposition 8.2. Let p > 263 be prime. Let O be End(E) for all E output by the minting algorithm. Then

the class group of O and the isogeny class of E both have size at least 0.089
√
p

log p .

Proof. This follows immediately from Corollary 4.14.

Proposition 8.3. The verification algorithm Ver on inputs |ψ⟩ and σ runs in time

max
(
O
(
log8 p

)
, O

(
τ
(
log5 p

) (
log log2 p

) (
log log log2 p

)))
.

where we set τ = 33r3λ for r = #BK .

Proof. This follows immediately from Lemma 6.6.

Proposition 8.4. Our quantum money/lightning protocol (Gen,Ver) is correct. More precisely, as required
by Definition 3.2, for any polynomially sized (in λ) integer i, we have

Verk
(
Gen

(
1λ

))
= (|ψ′⟩ , 1) (14)

with probability at least 1− i2−λ+1 for all k ≤ i for some state |ψ′⟩.

Proof. This follows from our earlier results evaluating ECSupGen and ECSupVer. More precisely, from
Lemma 4.11, we know that, for any prime p ≥ 5, the algorithm ECSupGen outputs a state |ψ⟩ that has
distance ≤ 2

p from the uniform superposition of all elliptic curves over Fp. Therefore, if we write |ψ⟩ in terms

of an eigenbasis, the weight α1 of the eigenstate |ψ1⟩ must be at least α1 ≥
√

1− 2
p .

From Theorem 7.9 we know that Ver (|ψ⟩ , j) accepts on an input with probability at least |α1|2. Thus,
Ver accepts on Gen

(
1λ

)
with probability at least 1− 2

p .

Also from Theorem 7.9, we know that the output state of ECSupVer (and thus Ver) on some input |ψ⟩ can
be written in eigenbasis form where the state |ψ1⟩ has weight at least

√
|α1|2

|α1|2+2−λ . Note that, for 2−λ

|α1|2 ≥ 2,

we have √
|α1|2

|α1|2 + 2−λ
≥

√
1− 2−λ

|α1|2
(15)

Therefore, in the output state |ψ′′⟩ = Ver
(
Gen

(
1λ

))
, we have that |ψ′′⟩ contains the eigenstate |ψ′′

1 ⟩ with
weight α′′

1 ≥
√
1− 2−λ

1− 2
p

. Note that this is exceptionally close to 1.

In particular, as long as |α1|2 ≥ 1
2 for any |ψ⟩ that is input to ECSupVer, we know that the output will

be at most a distance of 2−λ+1 from |ψ1⟩. Through a simple inductive argument, we can see that this will
always be the case. Therefore ECSupVer and, correspondingly, Ver will accept on an input from Gen with
probability at least 1− 2−λ+1 in each verification. The final result follows from a simple union bound.
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9 Security of our Construction

In this section we discuss security and security proofs for our construction.

9.1 Security Proofs and Assumptions

Quantum Money. We begin by defining our immediate security assumption for quantum money. Looking
ahead, this assumption is slightly more complicated than our immediate security assumption for quantum
lightning (but also directly implied by it).

In Theorem 9.2 below we show that the security of our quantum money protocol from section 8 is equiv-
alent to the difficulty of the following problem, which we call the Elliptic Curve Superposition Duplication
Problem for a prime p.

Definition 9.1. Elliptic Curve Superposition Duplication Problem (ECSDPp): The prime p is
fixed. Suppose we consider an elliptic curve Es sampled uniformly at random from all elliptic curves E over
Fp with Frobenius discriminant ∆Fr (E) ≥ 3p and square-free. Given a superposition |ρ⟩ =

∑
|E⟩ of all

elliptic curves over Fp in the same isogeny class as Es, create two (possibly entangled) quantum states that
are negligibly far from |ρ⟩.

The security of our construction in the quantum money game is equivalent to this hardness assumption,
which we formalize in the following theorem.

Theorem 9.2. Any adversary that can win the quantum money unforgeability game of Definition 3.3 with
respect to the quantum money protocol in §8 on input value p with non-negligible advantage can be used to
solve the ECSDPp with non-negligible advantage. Moreover, any adversary that can solve the ECSDPp
with non-negligible advantage can be used to win the quantum money unforgeability game with respect to the
quantum money protocol on input p with non-negligible advantage.

Proof. We show both directions of the implication below.

The Forward Direction. First, suppose that there exists an adversary A that can solve the quantum
money unforgeability game in Definition 3.3 with non-negligible probability. We show that the adversary A
can be used to create a new adversary A′ that solves the ECSDPp problem with non-negligible probability.

Recall that in the ECSDPp problem, for an elliptic curve Es sampled uniformly at random from all elliptic
curves over Fp with discriminant ∆Fr ≥ 3p and square-free, the adversary A′ will be given a superposition
|ρ⟩ of all elliptic curves over Fp in the same isogeny class as Es. A′ computes the number of points in
the superposition |ρ⟩ in an adjacent register using Schoof’s algorithm, calls this number N , and measures
this new register. Note that the measurement will not affect the state |ρ⟩ because it is guaranteed by the
definition of the ECSDPp problem that |ρ⟩ contains only elliptic curves in the same isogeny class.

Then A′ sends the tuple (|ρ⟩ , N) to the adversary A. Note that, by definition 3.3 and the description
of our protocol 8 this is correct distribution of inputs that the quantum money unforgeability adversary A
requires.

Next, A outputs two states |ψ⟩ , |ψ′⟩ such that Ver (|ψ⟩ , N) = Ver (|ψ′⟩ , N) = 1 with non-negligible
probability. Therefore, |ψ⟩ and |ψ′⟩ must be accepted by ECSupVer with non-negligible probability. As in

§6, for a state |ψ⟩, let |ψ1⟩ , ..., |ψk⟩ be an eigenbasis for M and write |ψ⟩ =
∑k
j=1 αj |ψj⟩, where the αjs are

listed in decreasing order of their norms. From Theorem 7.9, we know that ECSupVer can be run on these
states to output a state |ψ′⟩ where α′

1 will be ≥ 1− negl (λ)). Thus, A′ only needs to run ECSupVer on the
outputs it receives from A and then output these states, and this output will be two states that solve the
ECSDPp with non-negligible probability.

The Reverse Direction. Next, suppose that there exists an adversary A that can solve the ECSDPp
with non-negligible advantage. We show how to build an adversary A′ that can solve the quantum money
unforgeability problem for our protocol with non-negligible advantage.
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So, suppose that A′ is given an instance of the quantum money unforgeability problem, which consists of
a tuple (|ψ⟩ , N), where |ψ⟩ represents a uniform superposition over all elliptic curves in Esf,3p with N points.
A′ immediately forwards this to A, which then outputs two states |ψ′⟩, |ψ′′⟩ which are negligibly far from
the uniform superposition over all elliptic curves in Esf,3p with N points with non-negligible probability.

From Theorem 7.9, we know that ECSupVer (and thus Ver) accepts on some state |ψ⟩ with probability
α2
1 + 2−λ. Since |ψ′⟩ and |ψ′′⟩ are negligibly far from the uniform superposition over all elliptic curves in

Esf,3p with N points with non-negligible probability, we know that, respectively, α′
1 and α′′

1 are negligibly far
from one. Therefore A′ can immediately output the tuple (|ψ′⟩ , |ψ′′⟩ , N) and this will be a tuple that wins
the quantum money unforgeability game with non-negligible probability.

Conclusion. Since we have shown both directions of our claim, we have completed the proof.

A Note on State Amplification. Once again, for a state |ψ⟩, let |ψ1⟩ , ..., |ψk⟩ be an eigenbasis for M

and write |ψ⟩ =
∑k
j=1 αj |ψj⟩, where the αjs are listed in decreasing order of their norms. In the proof of

Theorem 9.2, we used the fact that the algorithm ECSupVer could take a state |ψ⟩ with a non-negligible
weight α1 and turn it into some state |ψ′′⟩ where all but non-negligible weight is on α′′

1 . Note that this means
for the ECSDPp problem that we can turn states that are “somewhat” close to correct into states that are
negligibly far from perfect. This observation may be useful for studying the hardness of the ECSDPp
problem in the future.

Quantum Lightning. We next define our immediate security assumption for quantum lightning. In
Theorem 9.4 below we show that the security of our quantum lightning protocol from §8 is equivalent to the
difficulty of the following problem, which we call the Elliptic Curve Superposition Collision Problem for a
prime p.

Definition 9.3. Elliptic Curve Superposition Collision Problem (ECSCPp): The prime p is fixed.
Create two (possibly entangled) quantum states that are each negligibly far from the superposition of all
elliptic curves over Fp in some isogeny class with Frobenius discriminant ∆Fr ≥ 3p and square-free.

Theorem 9.4. Any adversary that can win the quantum lightning game of Definition 3.4 with respect to the
protocol with respect to the quantum lightning protocol in §8 on input value p with non-negligible advantage
can be used to solve the ECSCPp with non-negligible advantage. Moreover, any adversary that can solve the
ECSCPp with non-negligible advantage can be used to win the quantum lightning game with respect to the
quantum lightning protocol on input p with non-negligible advantage.

Proof. Our proof here is essentially a simpler version of that of Theorem 9.2. This is because the quantum
lightning security game can be thought of as similar to the quantum money game, except the adversary is not
provided with an initial money state/elliptic curve superposition. We note that the fact that the adversary
gets to choose the isogeny class in the lightning game does not change the logic of the reduction at all.

Thus, our logic for this proof follows from exactly the same reasoning as in 9.2, so we omit it here to
avoid duplication.

9.2 Intuition for the Hardness of these Assumptions

In this subsection, we offer evidence as to why our assumptions might be hard. To start, suppose we consider
the following problem: given N and E1 ∈ IN , construct the superposition |IN ⟩. While assuming this problem
is hard clearly implies a weaker assumption than what we need for security, examining it is intuitive. The
only known method to accomplish this is some variant of Computing |IN ⟩ using the class group action, as
follows.
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We compute the ideal class group Cl(O) associated to K, and construct the superposition∑
c∈Cl(O)

|c⟩ .

Then in superposition we apply c to E1 to obtain∑
c

|c ∗ E1⟩ |c⟩ .

We uncompute and discard the second register. The resulting state is then |IN ⟩. (If we do not uncompute
the second register, then the state will with overwhelming probability fail to verify; see below.)

But uncomputing c is exactly the elliptic curve isogeny problem for ordinary curves: given isogenous
elliptic curves E,E1, find c such that c ∗ E1 = E. This is precisely the problem underlying the security of
CRS.

Of course if #IN is small, then we can uncompute c. But by Corollary 4.14, Algorithm 8.1 generates an

isogeny class of size ≥ 0.089
√
p

log p , which is superpolynomial.

Now consider our security problem 9.1. In that problem, the adversary is given one copy of |IN ⟩.
By measuring, the adversary obtains a single elliptic curve E1 ∈ IN . But then they must construct a
superposition from E1 as discussed above.

We now show that if we do not uncompute the second register of∑
c∈Cl(O)

|c ∗ E1⟩ |c⟩ ,

then verification fails with all but negligible probability. To take into account the additional register contain-
ing the class group data in our verification protocol, we replace P2r,k,U with P2r,k⊗Ik,U⊗Ik, respectively.
Note thatP2r,k⊗Ik = P2r,2k. Let c1, . . . , ck be the elements of Cl(O) with c1 the identity, and let Ej = cj∗E1,
so that IN = {E1, . . . , Ek}.

Let |ψ1⟩ , . . . , |ψk⟩ be as in our proof of the verification algorithm. As they are eigenvectors for the real
symmetric matrix M, we can additionally require that they form an orthonormal basis. Suppose

|ψi⟩ =
k∑
j=1

uij |Ej⟩ .

Set

|φi⟩ =
k∑
j=1

uij |cj⟩ .

Let δij denote the Kronecker delta.

Lemma 9.5. For all 1 ≤ r, s ≤ k,
k∑
i=1

uiruis = δrs.

Proof. Let Ψ be the matrix with entries given by the uij . The rows of Ψ are the coordinates of the |ψi⟩. The
|ψi⟩ are orthonormal, so Ψ is unitary and therefore has orthonormal columns as well. The claim follows.

Proposition 9.6.
k∑
i=1

|Ei⟩ |ci⟩ =
k∑
i=1

|ψi⟩ |φi⟩ .
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Proof. For all 1 ≤ r, s ≤ k, we have

⟨cs| ⟨Er|
∑
i

|Ei⟩ |ci⟩ = δrs.

On the other hand,

⟨cs| ⟨Er|
∑
i

|ψi⟩ |φi⟩ =
∑
i

⟨cs| ⟨Er|ψi⟩ |φi⟩

=
∑
i

uir ⟨cs|φi⟩

=
∑
i

uiruis

= δrs.

Since the |Er⟩ |cs⟩ form a basis for the ambient vector space, the claim follows.

Theorem 9.7. Let p be a prime. Let N be a positive integer for which D := 4p− (p+1−N)2 is square-free
and larger than 3p. Let K = Q(

√
−D), BK the Bach generating set for K, and suppose BK is weakly

Erdös-Rényi. Let r = #BK , and suppose τ = 33r3λ. If |β⟩ = 1√
k

∑k
i=1 |Ei⟩ |ci⟩, then the probability that

ECSupVer accepts on input |β⟩, with the last register hidden, is at most 1
k + 2−λ.

In particular, since k is superpolynomial in λ, the probability of acceptance is negligible.

Proof. From the previous proposition,

|β⟩ = 1√
k

k∑
i=1

|ψi⟩ |φi⟩ .

As P2r,2k and U⊗ Ik act trivially on the last register of 12r ⊗ |β⟩, the analysis of Section 7 goes through. In
particular, we can apply Theorem 7.9, where for |β⟩, we have α1 = 1√

k
. The claim follows.

9.3 Application of Proofs from [LMZ23] and [Zha24]

In [LMZ23], the authors showed that their generic construction of invariant money could be secure if two
assumptions held: the “hardness of path finding” and “knowledge of path”. Rather than spell these out
generically, we will explain them in terms of elliptic curve isogenies (and later formally define them, of
course). Informally, the “hardness of path assumption” translates to the hardness of the discrete log on class
group actions in our setting, and the “knowledge of path” assumption translates to the assumption that if
any adversary knows two elements in some isogeny class, it must know an isogeny (or set of isogenies) that
represents a path between them.

Zhandry’s Attack. In his very recent work [Zha24], Zhandry showed that the knowledge of path as-
sumption did not hold over group actions. Instead, Zhandry created a new assumption that he called the
quantum modified knowledge of group element assumption (q-mKGEA) and used this as one of the ways that
he proved security of his construction. Informally speaking, this assumption stated that even if an adversary
did create two group action set elements for which a “path” between them could not be inferred from its
state, it wasn’t useful for the adversary’s final outputs, and there existed an equally powerful adversary that
did not do this.
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Our Extensions. In this subsection, we extend this line of reasoning to give evidence why our ECSCPp
might be hard. In particular, we show that, informally speaking, that if the group action discrete log (GA-
DLog) problem over isogeny class groups is hard, and a modification of the q-mKGEA assumption is hard,
then the ECSCPp is hard. It is also possible to interpret these results as saying that, assuming the GA-DLog
problem is hard (which seems likely to us), any adversary that solves the ECSCPp problem must exploit a
peculiar quantum property in a way that would be very interesting in and of itself.

Below, we formally state our assumptions necessary for our proofs.

Definition 9.8. Arbitrary Isogeny Class Group Action Discrete Logarithm Problem with prime
p (AICGA-DLogp). Consider some prime p. The AICGA-Dlogp problem is defined between a challenger
and an adversary as follows: the adversary picks an elliptic curve E over Fp such that D ≥ 3p. The challenger
selects two elliptic curves E1 and E2 uniformly at random from the isogeny class of E. The adversary wins
the game if they can output an isogeny (or polynomially-sized path of isogenies) that map E1 to E2.

We note that this is very similar to traditional discrete log, with the exception that the adversary is
allowed to choose the isogeny class from which the challenge is sampled. We note that this would be
analogous to letting the adversary choose a particular group from a family of groups in the traditional,
classical discrete log setting.

We next introduce our variant of Zhandry’s q-mKGEA assumption. To do this, we will first need to
define our analogue of group action games, which Zhandry also introduced in [Zha24].

Definition 9.9. Isogeny Class Group Action Game. A one-round isogeny class group action game
with parameter p is given by an interactive algorithm called a challenger, which we will denote by Ch. In the
game, Chsends a set of (classical) parameters derived from some setup algorithm taking as input a security
parameter λ (and p) to an adversary A and then receives back a single quantum message from A, before
deciding if A wins and outputting 1 if this is the case. We denote such a game Chp and say that an adversary
δ (λ)-wins Chp if Chp (λ) outputs 1 with probability at least δ (λ) when interacting with A.

With this in mind, we are ready to define our own variant of Zhandry’s q-mKGEA assumption, which
we call the q-mKCGEAp assumption. We note that our assumption is in a sense applying the principles of
Zhandry’s mKGEA assumption to the KGEA assumption from [LMZ23].

Definition 9.10. Quantum Modified Knowledge of Class Group Element Assumption with
parameter p (q-mKCGEAp). Fix a parameter p. The q-mKGEAp assumption holds if the following is
true: consider a one-round isogeny class group action game Ch and any QPT adversary A that δ (λ) wins
Ch for some non-negligible function δ.

Suppose we write the message from A to Ch as ρ1,2,3, which we define as a joint system over two
registers which we denote 1, 2, and 3, respectively. Consider measuring the first and second registers and
suppose that we obtain elliptic curves E1 and E2. We can denote this process and output as (E1E2 |ψ⟩)←[
A′ (1λ)↔ Ch

(
1λ

)]
.

Then, for all such δ, A, and Ch, there exists another non-negligible δ′ and a QPT A′ that δ′-wins Ch,
and moreover there exists a QPT extractor E and function ϵ of λ such that the following holds:

Pr

[
E1, E2 ∈ Esf,3p and E2 ̸= φ (E1) :

(E1E2 |ψ⟩)←
[
A′ (1λ)↔ Ch

(
1λ

)]
φ← E (E1E2 |ψ⟩)

]
≤ ϵ (λ) (16)

What does this mean in words? Suppose there is some adversary that can win a isogeny class group action
game. Then there must exist some other adversary that succeeds with similar advantage that knows isogenies
between certain elliptic curves (possibly in superposition) in the adversary’s final state. Zhandry [Zha24]
discusses at length how this “patches” the knowledge of group element assumption (KGEA) from [LMZ23]
and how it allows for many oblivious samplers of elliptic curves, which is not the case for the KGEA
assumption, so we defer a length discussion on this assumption to that work.
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Proof of Security. We are finally ready to show that the ECSCPp is hard assuming that AICGA−DLogp
is hard and that the q −MKCGEAp assumption holds. Our proof mirrors that of the security proof for
invariant money in [LMZ23], although we specifically tailor it to elliptic curve isogenies. We state this in the
following theorem:

Theorem 9.11. Suppose that the AICGADLogp problem as defined in definition 9.8 is hard and that the
q − mKCGEAp assumption as defined in definition 9.10 holds true. It is the case that the ECSCPp as
defined in definition 9.3 is hard.

Proof. We will argue a proof by contradiction. So, suppose A is a QPT adversary that can solve the
ECSCPp with non-negligible advantage ϵ. We note that we can effectively guarantee that A wins with all
but negligible probability since we can just run A a total of λ

ϵ times, ensuring we get a success with high
probability. Note that we can always check whether or not an attempt by A was successful by using the Ver
algorithm. For simplicity and ease of understanding, we will assume the success probability is actually 1,
incurring only a negligible error. Not assuming this would only complicate our expressions and not change
anything fundamental about the proof.

By the deferred measurement principle, we may assume without loss of generality that A is unitary, so
that the output is a pure state

∑
x,z,s αx,z,s|x, z, s⟩, where the first two registers are the supposed quantum

money states, and the last register is auxiliary state left over by running A.
Suppose we let |ψ′⟩ denote the uniform superposition of elliptic curves in Esf,3p with j points. Since the

output of A passes verification with probability 1− negl, we can instead write the output of A as something
negligibly far from:

|S⟩ =
∑
s

βs |ψj⟩ |ψj⟩ |s⟩ (17)

Let E be the extractor guaranteed by applying the q −mKCGEAp assumption to the adversary A. Now
consider measuring both of the registers containing |ψ′⟩, getting elliptic curves E1 and E2, respectively, and
leaving the auxiliary state as

ψ′′ ∝
∑
s

β′
s |s⟩ (18)

Then we know that E (E1, E2, |ψ′′⟩) outputs φ such that, with overwhelming probability over E1 and E2,
we have E2 = φ (E1). Next, notice that for any E,E′ in the set Esf,3p with j points, the probability of
obtaining E1, E2 in our measurement is identical to the probability of obtaining any other elliptic curves
E,E′, and the state ψ′′ ∝

∑
s β

′
s |s⟩. In particular, we have that E (E1, E2, |ψ′′⟩) outputs an isogeny ψ such

that E2 = ψ (E1) with non-negligible probability.
We can use this observation to construct an adversary for the AICGA−DLogp problem, contradicting

our assumptions and completing the proof.
Let AD be the following AICGA−DLogp adversary:

� Run A and measure both registers containing |ψj⟩, obtaining the state |ψ′′⟩.

� Send the elliptic curve E1 to the challenger, obtaining two elliptic curves E, E in response.

� Run E (E,E′, |ψ′′⟩) to get an output φ. Output φ.

Note that the probability of the measurement outputting E and E′ is exactly the same as of it outputting
E1 and E2. Therefore the extractor E should work with both sets of elliptic curves with equal probability,
contradicting the AICGA−DLogp assumption, which completes the proof.

Comments on the Assumptions. We note that the AICGA − DLogp essentially boils down to the
group action discrete log problem for isogenies, except that the adversary controls the isogeny class where
the discrete log challenge happens. While in a traditional key exchange protocol the adversary would not get
to pick the isogeny class, we note that if this assumption is not hard, then key exchange from isogeny class
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groups is also very unlikely to be hard–the only way this would not be the case is if some isogeny classes
where ∆Fr ≥ 3p and square-free were substantially harder than others, which would be quite surprising.

On the other hand, the q −mKCGEAp is very much an unstudied assumption and could certainly be
false. Notably, as we mentioned earlier, Zhandry [Zha24] broke the analogous KGEA assumption in [LMZ23],
which is why the assumption we use here takes its current form. What we can use this assumption to show,
though, is that any adversary that solves the ECSCPp algorithm must most likely not remember the isogenies
between elements in the isogeny class groups that it uses, which means that such an adversary must take
considerably different form than most simple quantum algorithms today.

10 Additional number theory background

Given an elliptic curve E/Fp, the Frobenius endomorphism satisfies a quadratic polynomial of the form
x2− tx+p, where t is an integer, called the Frobenius trace, and |t| < 2

√
p. Two elliptic curves are isogenous

over Fp if and only if their Frobenius traces are equal. The number of points #E(Fp) is equal to p+ 1− t.

Theorem 10.1. Given an elliptic curve E/Fp, there is a classical algorithm for computing the trace of
Frobenius t, and #E(Fp), in time O(log8 p).

This is Schoof’s point-counting algorithm; see [Sch95, p. 235].
We say E is ordinary if t ̸= 0. Going forward, we will restrict our attention to ordinary elliptic curves

since the isogeny classes in our protocol are always ordinary. Let K be the quadratic extension of Q
generated by a root of x2 − tx + p, and let D = D(E) denote the absolute value of its discriminant. Write
∆Fr(E) = 4p− t2, so that ∆Fr = f2D for some integer f . Let Fr denote the Frobenius endomorphism of E.
Then the endomorphism ring O of E is isomorphic to an order in K containing Z[Fr]. We have Z[Fr] equals
the maximal order of K if and only if ∆Fr = D. It follows that if ∆Fr is square-free, then O = Z[Fr] = the
maximal order of K.

Let Cl(O) denote the ideal class group of O. The main theorem of complex multiplication states that
Cl(O) acts simply transitively on the set of isomorphism classes of elliptic curves with endomorphism ring
O. Therefore if D(E) = ∆Fr(E), then Cl(O) acts simply transitively on the entire isogeny class of E.

The proof of Theorem 4.1 makes reference to the theory of modular forms, an extremely technical and deep
area of number theory. For our purposes, we will only need the following. Let H = {z = x+ yi ∈ C : y > 0}.
For an even positive integer k, a cusp form of weight k is a holomorphic function

f : H→ C

which can be written f(z) =
∑∞
n=1 ane

2πinz, and such that if [ a bc d ] is a 2×2 integer matrix with determinant
1, we have

f

(
az + b

cz + d

)
= (cz + d)kf(z).

For a given k, the space of weight k cusp forms Sk forms a vector space over C. Given a prime p, there is a
linear operator Tk(p) called the p-Hecke operator of weight k,

Tk(p) : Sk → Sk,

given by

Tk(p)(f) = pk−1f(pz) +
1

p

p−1∑
b=0

f

(
z + b

p

)
.

For (much!) more background on modular forms, cusp forms, and Hecke operators and their uses, see [DS05].
For an application of modular forms to quantum money, see [KSS21].

The proof of Theorem 4.1 also makes use of Beurling-Selberg polynomials. For a given interval I = [x0, x1],
let χI be the characteristic, or indicator, function of I; that is, χI(x) = 1 if x ∈ I and χI(x) = 0 otherwise.
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For a positive integer M , the Beurling-Selberg polynomials S+
M,I and S−

M,I are degree M trigonometric
polynomials giving close approximations to χI , and satisfying

S−
M,I(x) ≤ χI(x) ≤ S

+
M,I(x)

for all x. See Montgomery [Mon94, §1.2] for more information.
Recall that for I ⊂ [−1, 1], µST (I) = 2

π

∫
I

√
1−X2 dX. The measure µST is known as the Sato-Tate

measure, and appears in many statistical results in number theory.

Lemma 10.2 (Hensel’s Lemma). Let p be prime, i a positive integer, and f an integer polynomial. If α
is an integer satisfying f(α) ≡ 0 (mod pi) and f ′(α) ̸≡ 0 (mod p), then there exists unique β ∈ Z/pi+1Z
satisfying β ≡ α (mod pi) and f(β) ≡ 0 (mod pi+1).

The Möbius function µ is defined as follows: if n is not square-free, then µ(n) = 0. Otherwise, µ(n) is
(−1)r, where r is the number of prime factors of n.

SEA algorithm. Here, we elaborate on the proof of Theorem 4.15. In [DKS18, p. 12], the authors mention
that the bottleneck in the SEA algorithm is computing the Fp-rational roots of the modular polynomial
Φℓ(x, j0). This is a degree ℓ + 1 polynomial whose roots are the j-invariants of elliptic curves ℓ-isogenous
to the curve with j-invariant j0. In our protocol, Φℓ will always have at most 2 roots. To compute these
roots, we compute gcd(Φℓ, x

p − x). To do this efficiently, use successive squaring to compute xp (mod Φℓ);
this take O(log p) steps. Each step involves multiplying polynomials of degree O(ℓ). Using the fast Fourier
transform, each multiplication can be accomplished in time O(M(p)ℓ log ℓ log log ℓ).

11 Heuristic for Erdös-Rényi assumption

We now give heuristic evidence for Assumption 4.19. The Chebotarev density theorem states that if we
fix K, then asymptotically the classes of the primes are uniformly distributed in Cl(OK), giving evidence
for random distribution. Unfortunately the primes contributing to BK are small, so the asymptotic is not
so helpful. However, Lagarias and Odlyzko prove an effective version of the Chebotarev density theorem
that ensures a certain uniformity in the distribution of small primes, as follows. Let χ : Cl(OK) → Z/nZ
be a surjective homomorphism for some small n. Lagarias and Odlyzko [LO77, Corollary 1.2] show that,
assuming GRH, for each i ∈ Z/nZ, there is a prime l of size O(n2(logD)2) with χ([l]) = i. Taking n to be
the product of small sets of small prime factors p1, . . . , pr of #Cl(OK), this suggests that the distribution
of classes in BK in

Cl(OK)/p1 Cl(OK)× · · · × Cl(OK)/pr Cl(OK)

should look like a product of r independent distributions. It is in this sense that BK looks like randomly
sampled elements.
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