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Abstract. We present Protoss, a new balanced PAKE protocol with optimal communication
efficiency. Messages are only 160 bits long and the computational complexity is lower than all
previous approaches. Our protocol is proven secure in the random oracle model and features
a security proof in a strong security model with multiple parties and multiple sessions, while
allowing for generous attack queries including multiple Test-queries. Moreover, the proof is
in the practically relevant single-bit model (that is harder to achieve than the multiple-bit
model) and tightly reduces to the Strong Square Diffie-Hellman assumption (SSQRDH).
This allows for very efficient, theoretically-sound instantiations and tight compositions with
symmetric primitives.
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1 Introduction

In a password-based key agreement protocol two parties can securely compute a session key
over some insecure network. The secret input to both parties is solely a common password.
To restrict the damage from low entropy passwords, PAKE (password authenticated key
exchange) protocols aim at additionally providing security against offline dictionary attacks,
where the attacker can successfully launch a brute-force search on the password without
further communication.

State-of-the-Art: Computational Complexity. The most efficient PAKE protocols today
follow the SPEKE design (31) which intuitively first hashes the password to derive a new
generator g′ = H(pwd) of some common cyclic group G. Next, this generator is used to
run a basic Diffie-Hellman key exchange. So instead of a fixed generator g that is part
of a shared group setup as usual in classical authenticated key exchange protocols, the
SPEKE design uses several generators, one g′ for each communication partner, to run the
Diffie-Hellman key exchange. A computational disadvantage of this approach is that we
cannot easily apply well-known optimization techniques for exponentiation. The existing
techniques for fast exponentiation of g essentially rely on using pre-computed powers, so-
called ladders of g, consisting of g2
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, . . ., that are simply multiplied up according
to the bit representation of the exponent. In cases where we only use a single generator g
for all group related-operations, the computation of such a subset-product is generally very
beneficial. Typically, g is chosen with certain properties that make these operations optimal,
for example, by letting g have a small hamming-weight.
It is clear that this technique does not provide speedups in case the generator is computed
on the fly with some fresh randomness that is derived by both parties, e.g. as g′ = H(r, pwd).
In these cases the ladder cannot be pre-computed without knowing r. Moreover, even in case
where we have a fixed generator per pair of communication partners that share a password,
i.e. g′ = H(pwd), the device has to perform pre-processing operations before the PAKE
can be used in an optimized way. Not only does this have to be done for all passwords
stored per user. It is also important, that the so-preprocessed ladders (g′2
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1

, . . .) are all
stored securely on the computer system as they depend on the password. Crucially, any
ladder that we so obtain is not only dependent on a secret password, but can essentially be
treated as a secret cryptographic key: once an attacker obtains the ladder, she can easily
authenticate as the user by participating in a Diffie-Hellman key exchange using g′. Since
each ladder for a g′ acts like a conventional symmetric secret key, it needs to be protected in
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the same way traditional cryptographic keys need to be protected. This defeats the purpose
of PAKE protocols. Furthermore, any speed benefits that could be gained do not transfer to
new computer systems: whenever Alice logs into a new computer system to run her PAKE
protocol, she will always perform all the pre-computations (implicitly or explicitly) before
deriving the key since she cannot use existing values that she had computed beforehand.
Using a fixed standardized group and a single generator g has the advantage that a) the ladder
is readily available on every computer system, b) that the ladder is not security-critical and
thus does not require extra protection, and c) that the ladder relies on a generator that is
optimized yielding the highest speed benefits.
Let us clarify again that the use case for password-based protocols does not assume that
passwords are securely stored on devices. In case we have secure key storage, we can readily
rely on full entropy keys and use traditional key exchange protocols that are less vulnerable
to guessing attacks. Indeed one of the main benefits of password-based protocols is that in
contrast to plain passwords over TLS, plain passwords are not sent to the server and thus
cannot be logged and (inadvertently) be stored on intermediate nodes. This makes password-
based authentication much more robust to for example bugs in the logging system that major
cloud provider have suffered from3.

State-of-the-Art: Optimal Message Number and Size. The optimal number of messages
for a PAKE protocol in a strong security model is two, one per party. This is because to
support perfect forward secrecy (PFS) we need that session keys are not only derived from
long-term passwords but also from fresh (public) keys.4 We note that the smallest asymmetric
keys used in practice are always at least 160 bits long (at a security level of around 280 bits)
due to birthday attacks.

Tight Security Proofs. All existing practical PAKE protocols with optimal message number
and size are characterized by non-tight security losses that either depend on the global
parameters or the attacker’s behavior (an overview can be found in Table 2). It is well-
known that cryptographic constructions with a non-tight security loss transfer to higher
security parameters in practice when instantiated in a theoretically-sound way, e.g. (10).
Tight security reductions, in contrast, allow smaller parameters and so result in more efficient
schemes. Thus they are preferable and in the last years a long line of research has been
devoted to finding cryptographic schemes with tight security reductions for cryptographic
systems (9; 41; 10; 28; 23; 24). Moreover, for PAKE protocols specifically tight security
reductions, are extremely important as pinted out in (5).

Research Question. In this paper, we consider the following question:

Can we construct a PAKE scheme that is optimal in the following three dimensions?
1. Communication Complexity: The number of bits exchanged should be optimal while only

sending a single message per party. Due to the birthday bound this amounts to two 160-bit
messages (see (42)).

2. To support implementations with aggressive parameter choices in a theoretically-sound
way, the protocol should ideally feature a tight security proof in a setting with multiple
users and sessions.

3. The computational complexity should outperform all existing PAKE protocols.

Contribution. We present the first PAKE protocol, called Protoss (Protocol for Tight
Optimal Symmetric Security), that fulfills all of these properties. The protocol resembles
the EKE (16) construction while not relying on ideal ciphers (thus our assumptions are less
demanding). This deviates from the widespread SPEKE method of designing PAKE proto-
cols (31). Essentially, our protocol relies on a simple Diffie-Hellman key exchange where each
contribution, i.e. each ephemeral public key epk = ga, is blinded by the hashed password of
that user as

m = H(pwd) · ga.

3 https://mailarchive.ietf.org/arch/msg/cfrg/1QQ_FfRsOxvoLGqX0t48WLTMSNU/
4 Jumping ahead, PFS guarantees that even in case the long-term password is revealed, security of a
session is still guaranteed based on the security of the ephemeral asymmetric keys.
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Of course knowing the password allows the receiver to re-compute epk = ga and compute the
Diffie-Hellmann value gab. This key will additionally be hashed together with the transcript
T , and other context information to yield the final session key

K = H(gab, T, context).

Security Assumption. The protocol is proven secure under a security assumption that
we call the Strong Squared Diffie-Hellman assumption (SSQRDH). Essentially it says that
given g, gx it is hard to compute gx
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even when given access to an oracle O that outputs
DDH(g, gx, ·, ·) ∈ {0, 1}, s.t.

DDH(g, gx, S, T ) = 1⇔ Sx = T.

This assumption is closely related to the Strong Diffie-Hellman assumption and in fact it
is well known that for very weak oracles (where O does not output anything) and very
powerful oracles (where O computes DDH(g, ·, ·, ·)) both assumptions are equivalent under
polynomial-time reductions.

Model. We use a strong (game-based) model that captures multiple users and sessions while
allowing for generous attack capabilities. We allow adaptive corruptions of the passwords and
that the attacker can make multiple Test-queries. To provide meaningful results for security
loss we also use a single-bit notion of security as advocated in (32) and formally shown
necessary for tightly secure hybrid constructions in (43). In Appendix A, we also provide a
tight proof of Protoss security in the UC-based model of (35).

Challenges. Although our construction is very simple and extremely efficient when in-
stantiated in elliptic curves, providing a tight proof (under a single computational security
assumption) in our strong model is challenging. In particular, we cannot rely on classical
partitioning arguments that are so common in AKE research as they lead to non-constant
security losses via guessing. For example, allowing multiple Test queries complicates the
proof, as it is now not clear anymore which of the Test-sessions the attacker used to decide
whether the challenge key is real or random.

Achieved Security Loss. Our final result shows that the security loss L, i.e. the relative
increase

L = tR/εR · εA/tA
in resources used by the reduction, does not lose a multiplicative factor, i.e. εR ≈ εA and
tR ≈ tA for runtime t and success probability ε. This results in a tight security proof (with
a constant loss).

Construction Idea. Our construction deviates from the widespread SPEKE formula where,
intuitively, classical Diffie-Hellman-based AKE protocols are turned into PAKE protocols
by making the generator be computed as the hashed password, i.e. gpwd = H(pwd) and
then applying classical ideas. Protoss rather follows the EKE2 paradigm (12) that encrypts
Diffie-Hellman shares symmetrically as m = ENC(pwd, ga) where ENC is modeled as an
ideal cipher and the password is used as the symmetric encryption key. However, we do not
rely on ideal ciphers in our construction and thus overall can rely on weaker assumptions.
For the proof we follow a technique that is inspired by (42). Intuitively, Protoss consists of
a simple exchange of the hashed password that additionally is multiplicatively blinded in
each message by a fresh Diffie-Hellman share. This guarantees that the hashed password is
statistically hidden thus making offline attacks impossible from the protocol messages alone.
The Diffie-Hellman shares are then used to derive a Diffie-Hellman key which, after another
hashing with additional context information, results in the final session key.
On a high level, our proof idea is similar to the one taken by Paterson et al. (34). In a nutshell,
the reduction makes each session key be a truly random value output by the random oracle.
The difficulty lies in the fact that we need to ensure consistency with random oracle queries
in case the attacker can correctly compute all the inputs to the final hash call and send it to
the random oracle. However, the use of the additional decision oracle helps us to recognize
such input and, once it is received, we can break the complexity assumption. One qualitative
difference between our work and (34) is that we do not rely on full-fledged gap problems
where the attacker is given access to a decision oracle that can recognize tuples g, S, T such
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that Sx = T for any x. The SSQRDH variant that we require only needs to work for a fixed
exponent x.
A construction very similar to ours has already been proposed as a variant of the EKE2
protocol in (12) but has not been formally investigated further. Here the authors propose to
use ENC(pw,M) = M · h(pw) and DEC(pw,M) = M/h(pw) as encryption and decryption
algorithms and refer to the analysis of this case as ongoing work. To the best of our knowledge,
there is neither a dedicated analysis of this protocol in the literature nor do the authors show
that their proposal is even suitable to instantiate their generic EKE2 protocol. In any case,
the work of (12) treats the algebraic operations only as instantiations of ciphers that could
be used for EKE2. Moreover, their generic proof is non-tight. (As a side note, we remark, in
2006, Zhao, Dong, and Wang (44) showed an attack on an instantiation of the idea. However,
a closer inspection reveals, that this attack relies on a hash function that does not map to the
underlying prime order group). We remark that (12) rely on standard definitions of classical
symmetric encryption systems where encryption and decryption operations cannot rely on
common intermediate results. Essentially, this reflects the typical application scenario of
encryption systems where encryption and decryption operations are performed by distinct
parties and thus cannot rely on common computations. Protoss however, heavily exploits the
fact that both message generation (that corresponds to an encryption operation in EKE2)
and key derivation (that includes a decryption operation in EKE2) rely on the same value
V = h(pw). In Protoss, this value thus only has to be computed once. This represents a new
avenue for computational savings as compared to EKE2. At the same time, however, the
proof of EKE2 (12) that relies on the ideal cipher abstraction does formally not apply to
Protoss, and we need to provide a new, dedicated proof. Our new proof only relies on the
(weaker) random oracle model, and fortunately, it features a tight security reduction.
Another construction that is very similar to Protoss is the PPK protocol in (20) that is defined
over finite fields. The main differences are that it uses a more complex password hashing
while not re-using the hashed passwords when deriving the symmetric key of the initiator.
Moreover, it uses a simulation-based security model and features a non-tight security proof
that relies on guessing arguments.

Performance. In terms of efficiency, our construction outperforms all previous constructions.
This is because essentially, each message consists of only a blinded hashed password. The
blinding factor that is required to compute the session key consists of a single Diffie-Hellman
share that was computed via an exponentiation to a fixed base. Moreover, this base is public
and the same for each communication partner so that a single ladder in combination with
a single well-chosen generator can be used everywhere. For standard groups, this ladder is
likely to be already be pre-computed on all systems that support the group. At the same
time, extracting the DH share from a message simply consists of a single group operation.

Related Work. In the last three decades, several PAKE protocols have been proposed. They
can roughly be grouped in two sets, symmetric or asymmetric (balanced or unbalanced)
PAKE protocols. Asymmetric PAKE protocols like (33; 38; 22; 40) typically consider a
communication scenario where several clients communicate with a single server. To contain
the damage from server corruptions, the server may not obtain the full password of the
client but only a value that is derived from it. Our protocol Protoss in contrast is symmetric
such that both communication partners share the same password. Generally, symmetric
PAKE protocols are overall more efficient than asymmetric ones. Other important symmetric
PAKE protocols are EKE (17), EKE2 (12), SPAKE1 (7), SPAKE2 (7), SPEKE (31; 30), J-
PAKE (29), CPace (6). However, none of them fulfills all our requirements simultaneously:
– Several protocols or variants like EKE, J-PAKE, and PAK, have more than two protocol

moves.
– Several protocols, like EKE, EKE2 and J-PAKE, use additional cryptographic primitives

like symmetric encryption systems or zero-knowledge proofs, besides group operations.
– Protocols like J-PAKE exchange messages that can be larger than 160 bits, since they

have to contain zero-knowledge proofs.
– Protocols like (35) have message sizes much larger than 160 bits, since each message

contains the encryption of two group elements.
– With respect to computational efficiency we have that the most efficient among these

protocols, like CPace, rely on the SKEME approach where in the first step, fresh gener-
ators g′ are derived that are then used in a Diffie-Hellman key exchange. When consid-
ering the difference between the computation of m1 = H(pwd)x and Protoss’s approach
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m2 = H(pwd)gx, we can see that the latter involves a single fixed-base exponentia-
tion while the former deals with variable-base exponentiations. It is well-known that
fixed-base exponentiations can be faster than variable-base exponentiations (36). When
deriving keys later, the two approaches are similar in efficiency, both accounting for a
single variable-base exponentiations: my

1 = (H(pwd))xy vs. (m2/(H(pwd)))y = gxy. We
note that the computation of (H(pwd))−1 simply amounts to a change of sign in elliptic
curves when using point coordinates.
On the other hand, the SPAKE1 and SPAKE2 protocols use two fixed-base computations
to create a message m = gxMpwd (or one multi-exponentiations) where both g,M are
public generators. Since the key derivation is again comparable to the one in Protoss,
Protoss is overall more efficient. For an overview see Table 2.

– None of the existing protocols has been shown to be provably secure with a tight re-
duction that allows aggressive but theoretically-sound parameter choices in practice.
Protocols that give explicit concrete bounds include TBPEKE, e.g. (37). The security
proof of that protocol refers to the proof of VBTBPEKE in the same paper. The cor-
responding security theorem claims a security loss of (qH)2 where H is a hash function.
In contrast, the SPAKE2 (2) protocol loses a factor of 2qs in the security reduction
in a strong model that provides perfect forward secrecy, where qs is the number of
Send-queries. (The security proof of Protoss also provides perfect forward secrecy, see
Section 3.1.)

On the Importance of the Security Framework. In the literature, we can find two differ-
ent approaches to formally analyze PAKE protocols. Several authors have already contrasted
these two frameworks, e.g. (37; 18; 1). The first framework uses classical game-based security
reductions, whereas second relies on the universal composability (UC) framework. UC def-
initions are better suited for handling general correlations between passwords, e.g., when a
client uses unequal but related passwords with different servers. At the same time, UC defi-
nitions also ensure security under arbitrary protocol compositions, an advantage that makes
UC-secure protocols usable in a very flexible way. However, there are also major disadvan-
tages when proving security in the UC framework. For our purposes, the most important one
is that UC-based proofs say very little about how security parameters should be implemented
in practice when considering realistic application scenarios with multiple users, multiple ses-
sions, and adaptive corruptions. One the one hand, UC-based proofs have generally higher
definitional complexity (double-quantifier structure) that complicates concrete-security as-
sessments (13). On the other hand, they tend to simplify the analysis by showing security for
only a single session. For the proof of CPace, this is explicitly stated as a goal to simplify the
analysis (6). Next, the composition theorem is invoked to argue for the security of multiple
sessions. We stress that this is a hybrid argument in essence. And as such it will generally
incur a security loss in scenarios with multiple sessions that is equal to the maximum number
of sessions per user. At the same time, analyses usually only concentrate on a single party.
Again, when considering multi-user security, this essentially transfers to a hybrid argument
that would account for another factor in the security loss - the number of users in the sys-
tem. Thus, in this work, we rely on a game-based security analysis like (39; 2). This is the
standard for all works that investigate tight security reductions. We proceed by specifying a
strong and realistic security model with multiple users, multiple sessions, and even multiple
test queries (while using only a single, global bit to define indistinguishability) and precisely
derive the corresponding security loss. In Section 6.1, we argue why our notion is suited to be
used in hybrid cryptographic systems (PAKE plus symmetric primitives) that feature tight
security reductions.

Abdalla’s Open Problem. By providing the first practical PAKE protocol with a tight
reduction, Protoss addresses an observation by Abdalla:5 "Interestingly, proving perfect for-
ward secrecy without the key confirmation step seems to be significantly harder. In the case
of SPAKE2, we were able to provide a game-based proof for it under gap CDH6, but the
reduction is not tight and requires an intermediate assumption previously used in the proof
of SPAKE1. A similar result is currently not known for CPace, TBPEKE, and SPEKE."

5 https://mailarchive.ietf.org/arch/msg/cfrg/XOKmh5lKMsCQhWJTIjoYxmbleZU/, see bullet point 5.
6 https://eprint.iacr.org/2019/1194
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2 Notation and Preliminaries

Notation We let κ ∈ N denote the security parameter and 1κ the string that consists
of κ ones. Let [n] = {1, . . . , n} ⊂ N be the set of integers between 1 and n. If S is a
set, a $← S denotes the action of sampling a uniformly random element from S. If A() is
an algorithm, m $← AO(·)() denotes that A (probabilistically) outputs m with the help of
another algorithm O(·). Let X||Y denote the operation concatenating two binary strings X
and Y . For a generator g and two group elements S, T with S = gx and T = gy we use
CDH(g, S, T ) ∈ G to denote the Diffie-Hellman value of S and T as CDH(g, S, T ) = gxy.
Finally, we use the predicate DDH(g, S, T, U) ∈ {0, 1} which equals 1 iff CDH(g, S, T ) = U .
If A(·) is a probabilistic algorithm, we may also make the randomness rand explicit via
A(·; rand).

Strong Square Diffie-Hellman Problem Let G be a cyclic group of a large prime
order p. Let g be a generator of G. The Strong Square Diffie-Hellman Problem (SSQRDH)
is defined as: given a pair (g, gx) for x $← Zp, find the element C = gx

2

with the help of a
Decisional Diffie-Hellman Oracle

Ox(·, ·) := DDH(g, gx, ·, ·).

This means, the oracle Ox(·, ·) answers whether for a given pair S, T ∈ G we have Sx = T .

Definition 1. We say that A (t, ε)-breaks the Strong Square Diffie-Hellman problem if A
runs in time t while having the following success probability

AdvSSQRDH
A := Pr

[
Z = gx

2

: Z
$← AOx(·,·)(g, gx);x

$← Zp
]
≥ ε,

where the probability is taken over the random coins of the attacker and the random choice of
x. We say that the (t, ε)-SSQRDH assumption holds if no attacker can (t, ε)-break the Strong
Square Diffie-Hellman problem.

In case no oracle queries are allowed in the above definition we obtain the classical Square
Diffie-Hellman assumption (SQRDH) (25). The SSQRDH assumption is conjectured to hold
in bilinear groups where an efficient decision procedure is readily available via the pair-
ing operation. In this work, we assume that the assumption also holds in elliptic curves
more generally. For comparison let us review the classical Strong Diffie-Hellman assumption
(SDH) (4; 22).

Definition 2. We say that A (t, ε)-breaks the Strong Diffie-Hellman problem if A runs in
time t while the following success probability

AdvSDH
A := Pr

[
Z = gxy : Z

$← AOx(·,·)(g, gx, gy);x, y
$← Zq

]
≥ ε

where the probability is taken over the random coins of the attacker and the random choice
of x, y. We say that the (t, ε)-SDH assumption holds if no attacker can (t, ε) break it.

As before, in case no oracle queries are allowed, we obtain the well-known Decisional Diffie-
Hellman (DDH) assumption.
Let us investigate the relationship between the SSQRDH assumption and the SDH assump-
tion. We can show that the SSQRDH assumption implies the SDH assumption.

Lemma 1. The (t, ε)-SSQRDH assumption implies the (t, ε)-SDH assumption.

Proof. Assume we are given the SSQRDH challenge g, gx
′
while having access to an SDH

attacker A that takes as input g, gx, gy. The reductions draws random exponent r and sets
gx := gx

′
and gy := gx

′r. Moreover, the reduction relays any oracle queries that A makes
to the SDH oracle and the results back to A. Finally, A outputs T = gxy = g(x

′)2r which
immediately helps the reduction to compute a solution to the SSQRDH problem as T 1/r =

g(x
′)2 .

It is also well-known that in case the attacker is not allowed to query oracles, the SSQRDH
and the SDH assumptions are equivalent:
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Lemma 2. If the attacker is not allowed to make any oracle calls, the (2t, ε2)-SDH assump-
tion implies the (t, ε)-SSQRDH assumption under Turing reductions.

Proof. Use g, gx
′
to denote the input to the SSQRDH attacker. Given the SDH challenge

g, gx, gy, the reduction can compute g, gxr, gys for random r, s
$← Zp and then use the

SSQRDH attacker twice, on U = g(xr+ys)/2 and V = g(xr−ys)/2 to obtain U2 and V 2. From
that the reduction can easily compute

(
U2/V 2

)1/(rs)
= gxy. The overall probability for this

to happen is ε2.

Definition 3 (Gap Assumptions). Assume in Definitions 1 and 2 we substitute Ox =
DDH(g, gx, ·, ·) by

O∗(·, ·, ·) := DDH(g, ·, ·, ·)
and denote the resulting assumptions as SSQRDH∗ and SDH∗.

In the literature, the SDH∗ assumption is commonly known as the Gap Diffie-Hellman as-
sumption and the SSQRDH∗ assumption is known as the Gap SQRDH assumption (8).
We remark that some authors define the Gap Diffie-Hellman assumption to also allow the
attacker to choose the generator g when evaluating the oracle.

Lemma 3. Under Turing reductions the (2t, ε2)-SDH∗ assumption implies the (t, ε)-SSQRDH∗

assumption.

Proof. The proof essentially uses the reduction idea of the proof of Lemma 2. The only
issue is that we now also have to show how the oracle of the SSQRDH∗ assumption can be
used to simulate queries to the SDH∗ oracle. However, since both oracles are equal and now
independent of any of the exponents in the challenge g, gx, gy (respectively g, gx

′
), one oracle

can always be directly used to simulate the other by simply relaying queries to each other
and answers back.

The security of the Gap SQRDH assumption holds in the algebraic group model under the
discrete logarithm assumption with a tight reduction (11). Since a full-fledged gap oracle
O∗(·, ·, ·) provides more freedom to an attacker as our more restricted DDH oracle Ox(·, ·),
it is obvious that the SSQRDH assumption also holds in the algebraic group model with a
tight security reduction under the discrete logarithm assumption (in fact the proof in (11)
holds for oracles that check general polynomial relations between the discrete logarithms of
input group elements and thus directly also covers the SSQRDH assumption).

3 PAKE

A PAKE protocol PAKE = (Init,RspDer,Der) consists of three algorithms which are executed
interactively by two parties as shown in Figure 1. Let us assume the party which initiates the
session is Pi and the party which responds to the first message is Pj . We assume that at the
beginning Pi and Pj have shared a password pwd uniformly random from some dictionary
D of size |D|. The initialization algorithm Init inputs pwd, Pi, Pj and outputs a message
I ∈M and a state state. The responder’s response and derivation algorithm RspDer takes as
input pwd, Pi, Pj and a message I. It computes a message R ∈M and a session key K. The
initiator’s derivation algorithm Der inputs pwd, a message R and a state state. It outputs a
session key K.

Party Pi (pwd) Party Pj (pwd)

(I, state)← Init(pwd, Pi, Pj)

(R,K)← RspDer(pwd, Pi, Pj , I)

K := Der(pwd, R, state)

I

R

state

Fig. 1: Running a key exchange protocol between two parties.
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3.1 Security Model for PAKE

In this section, we present a formal security model for two party password-based AKE
protocols (PAKE) that builds on the classical model by Bellare, Pointcheval and Rogaway
(12). Following the tradition of the seminal work of Bellare and Rogaway (14) (39), we
provide an ‘execution environment’ for adversaries that emulates the attack capabilities of
an active adversary.

Execution Environment. In the following let `, d ∈ N be positive integers (indicating the
number of overall parties and overall sessions per party). In the execution environment, we
fix a set of ` honest parties P = {P1, . . . , P`}. In our symmetric setting, each party holds
symmetric long-term passwords, each of which is shared with one of the other parties. We
denote with pwdi,j = pwdj,i (i 6= j) the symmetric password shared between parties Pi and
Pj .
Next, the execution environment manages for every i ∈ [`] a vector corruptionstatei ∈
{corrupted, uncorrupted}` that is used to denote the corruption state of all long-term pass-
words used by Pi, each component corruptionstatei,j ∈ {corrupted, uncorrupted} indicat-
ing whether pwdi,j has been corrupted or not. Additionally, the execution environment
uses vector corruptionTimei ∈ [` · d]d, to store the times of corruption, each component
corruptionTimei,j indicating that pwdi,j was corrupted via the corruptionTimei,j-th query of
the adversary. Moreover, the execution environment draws a global bit b ∈ {0, 1}, indicating
whether or not the attacker will be presented with a real or a random key when making a
Test-query (as defined next). The bit b will help to capture single-bit security. As argued
in (32), this is the right notion of security when examining tight security reductions in the
multi-user setting. For a more in-depth discussion, see Section 6.1.
Each honest party Pi can sequentially and concurrently execute the protocol multiple times.
This is characterized by a collection of oracles {πsi : i ∈ [`], s ∈ [d]}. Oracle πsi behaves as
party Pi, carrying out a process to execute the s-th protocol instance with some partner Pj .
All oracles of Pi have access to pwdi,j with j ∈ {1, . . . , `}. Moreover, we assume each oracle
πsi maintains a list of independent internal state variables as described in Table 1, each of
which uses supertext s and subtext i to indicate that it is held by πsi . These variables are:
exstatesi , Pidsi , rolesi , Ksi , and Tsi .

Variable Description
exstatesi denotes the execution-state of oracle πsi , i.e.

exstatesi ∈ {uninitialized,waiting, accepted}
Pidsi stores the identity of the intended communica-

tion partner, i.e. Pidsi ∈ P
rolesi denotes the role that Pi assumes in the protocol

run: rolesi ∈ {uninitialized, initiator, responder}
Ksi stores the session key(s) Ksi ∈ K∪ {uninitialized}
Tsi records the transcript of messages sent and re-

ceived by oracle πsi in chronological order, i.e.
T ∈M×M

statesi is used to store the state of the initiator.
Table 1: Internal States of Oracle πs

i

Additionally, the execution environment associates to each oracle the variable keystatesi which
denotes the freshness keystatesi ∈ {exposed, fresh} of the session key. The remaining variables
are only used by the execution environment. Among these variables, the execution environ-
ment will dedicate uniformly random bits randsi to each oracle. The variables of each oracle
πsi will be initialized as follows:
– The execution-state exstatesi is set to uninitialized.
– The variable keystatesi is set to fresh.
– All other variables are set to only contain the special string uninitialized.

We always have that Ksi = uninitialized iff πsi has not reached accepted-state (yet).

Definition 4 (Partnering). Two oracles (πsi , πtj) are said to be partnered if they share the
same transcript Tsi = Ttj and Pidsi = j and Pidtj = i.
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Adversarial Model. An adversary A in our model is a probabilistic algorithm with poly-
nomial running time (PPT), which takes as input the security parameter 1κ and the public
information, and may interact with these oracles by issuing the following queries.
– SendInit(πsi , j): if exstatesi 6= uninitialized this query aborts. Otherwise, this query calls

(I, state)← Init(pwdi,j , Pi, Pj)

and outputs I. Additionally, it sets
• exstatesi = waiting,
• rolesi = initiator,
• Tsi = I,
• statesi = state, and
• Pidsi = j

– SendRspDer(πsi , j, I): if exstatesi 6= uninitialized this query aborts. Otherwise, this query
calls

(R,K)← RspDer(pwdi,j , Pi, Pj , I)

and outputs R. Additionally, it sets
• exstatesi = accepted,
• rolesi = responder,
• Tsi = I,R,
• Ksi = K, and
• Pidsi = j

– SendDer(πsi , R): if exstatesi 6= waiting this query aborts. Otherwise, this query calls

K← Der(pwdi,j , statesi , R).

Additionally, it sets
• exstatesi = accepted,
• Tsi := Tsi , R, and
• Ksi = K.

– Corrupt(i, j): the execution environment returns pwdi,j and sets

corruptionstatei,j := corruptionstatej,i := corrupted.

Moreover, if this was the w-th overall query of the attacker, the execution environment
sets

corruptionTimei,j := corruptionTimej,i := w.

We also say that pwdi,j and pwdj,i is w-corrupted.

– RevealKey(πsi ): this oracle will output key Ksi in case that exstatesi = accepted and abort
otherwise. Oracle πsi responds to a RevealKey-query with the contents of variable Ksi and
sets keystatesi = exposed. If at the point when an adversary issues this query there exists
another oracle πtj which is partnered to πsi , then keystatetj = exposed for πtj .

– Test(πsi ): if the oracle πsi has state exstatesi 6= accepted, then we abort. If the oracle πsi
is queried for the first time, a random key K̂si

$← K is drawn. Finally, Kb is returned,
where K0 is the real key Ksi and K1 is the random key K̂si .

– Execute(πsi , π
t
j): we define this query for convenience only. This query internally simply

calls
I ← SendInit(πsi , j), R← SendRspDer(πtj , i, I),

and
SendDer(πsi , R).

We also say that this query models a passive protocol run between the two oracles πsi , πtj .

Let us now capture what it means for πsi to be attacked passively and actively. This is
important when we define security in the presence of corruptions. Intuitively, a passive attack
on an oracle says that the oracle receives a message such that the attacker cannot trivially
compute the session key.
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Definition 5 (Passive and Active Attacker). We say that an attacker is passive with
respect to πsi if the following two conditions always hold:
1. If the `-th query was SendRspDer(πsi , j, I) then either i) there has also been a query I ←

SendInit(πtj′ , i
′) that has output I (i.e. message I has been produced by an oracle) or ii)

Corrupt(i, j) has not been queried before query ` (i.e. the password remains uncorrupted).
2. If the `-th query was SendDer(πsi , R) then either i) there has also been a query R ←

SendRspDer(πtj , i, ·) that has output R (i.e. message R has been produced by an oracle)
or ii) Corrupt(i, pidsi ) has not been queried before query `.

We say that the attacker is active with respect to πsi if it is not passive with respect to session
πsi , i.e. if one of the two conditions is violated.

Note that in the case of passive attacks we do not require that the message m received by
πsi has been generated by a potential partner oracle. Rather, m could be any message that
has been produced by the query SendInit or SendRspDer. What this intuitively guarantees
is that the implicit ephemeral key of m remains hidden from the attacker. This is slightly
stronger than the notion of origin session as defined by Cremers and Feltz that implicitly
defines passively secure runs by defining a prefix relation among two oracles: essentially, the
transcript generated by one oracle should be the prefix of the transcript generated by some
other oracle. In contrast, our definition allows for example the message I sent by initiator
oracle πsi to be modified on transit by the attacker. Nevertheless, as long as πsi receives a
message from some other oracle (as a result of a call to SendRspDer), we always say that the
attacker is passive with respect to πsi .

Definition 6 (Completeness). We say that a PAKE protocol Π is complete, if for any
two oracles πsi , πtj that are partnered with Pidsi = j and Pidtj = i and exstatesi = accepted
and exstatetj = accepted it always holds that Ksi = Ktj.

Definition 7 (Security Game). We formally consider a security experiment that is played
between an adversary and a challenger. In this game, the challenger implements the collec-
tion of oracles {πsi : i ∈ [`], s ∈ [d]}. First, the challenger draws a fair coin b ∈ {0, 1}.
Next, it generates long-term passwords pwdi,j for each pair of honest parties i, j by drawing

each pwdi,j
$← D. The adversary may start issuing SendInit, SendRspDer, SendDer, Corrupt,

RevealKey, Execute and Test queries. Finally, the adversary outputs a bit b′ that indicates its
guess of b and terminates.

For the security definition, we need the notion of freshness of oracles.

Definition 8 (Oracle Freshness). Let πsi be an accepting oracle held by party Pi with
intended partner Pidsi = Pj. Let πtj be an oracle (if it exists), such that πsi and πtj are
partnered. Then the oracle πsi is said to be w-fresh for w ∈ N if none of the following
conditions holds:
– the adversary has either made a RevealKey(πsi ) query or a RevealKey(πtj) query, (if πtj

exists),
– Pi or Pj is w′-corrupted with w′ ≤ w and the attacker has been active with respect to πsi

after query w′,
– the attacker has made query Test(πtj).

Observe that in the above definition, it is only a violation of freshness if the adversary sends
attacker messages to πsi after Pi has been corrupted. However, even after the corruption of Pi,
sending messages to πsi that have been constructed by some πtj is not considered a violation.
This definition is essential in capturing full PFS as it helps to formalize security even if the
attacker sends her own messages to πsi . The crucial fact is that whenever those messages
have been sent to πsi , Pi must not be corrupted – as this would trivially break security: the
adversary can easily obtain all secret information needed to compute the session key.
In the following, we provide a general security definition for PAKE protocols that captures
key indistinguishability.

Definition 1 (PAKE Security Definition). We say that an adversary A (t, ε)-breaks a PAKE
protocol if the following three conditions are all fulfilled:
1. A runs in time t.
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2. When the adversary terminates and outputs a bit b′ it always holds:

the w-th query is Test(πsi ) for some oracle πsi ⇒ πsi is w-fresh.

3. The probability that b′ equals b is bounded by∣∣Pr[b′ = b]− 1/2
∣∣ ≥ ε+ (qSendRspDer + qSendDer)/|D|

where qSendRspDer is the number of SendRspDer-queries made and qSendDer is the number of
SendDer-queries. If an adversary outputs b′ such that b′ = b and the above conditions are
met, then we say that the adversary answers the Test-challenge correctly. We say that the
PAKE protocol is (t, ε)-secure, if there exists no adversary that (t, ε)-breaks it.

We remark that this is a very strong security model that can be regarded as a combination
of the classical model of (12) with ideas from (32). We also remark that drawing passwords
uniformly is just for simplicity. We support any password distribution (15). This is because in
our protocol, passwords are immediately hashed and the hashed value is used throughout all
the remaining computations. In the ROM, all distributions map to uniformly random values,
so even if passwords are related, as long as they are distinct they will map to independent
values. Jumping ahead, our theorem does not explicitly mention the password distribution at
all. Of course, our protocol would thus also work if we exchange passwords for shared high-
entropy keys. This makes it a very efficient tool in scenarios where parties have a shared
long-term key but now would love to derive secure session keys (featuring perfect forward
secrecy) to communicate with.

Perfect Forward Secrecy. We stress that our security definition models strong perfect for-
ward secrecy. To see this, we need to show that two conditions, i) and ii), are fulfilled which
grant the attacker the right to choose the oracle π that it wants to test in a very liberal way.
The first condition i) says that after π finished its computations, the attacker may corrupt
the password. If this condition only applies to sessions π that have received messages from
other oracles (instead of adversarially generated ones) researchers often speak of weak per-
fect forward secrecy. However, several authors have argued that weak perfect forward secrecy
(wPFS) is not enough in practice, see for example (26; 42). Therefore we immediately define
the stronger notion of (strong) PFS, which allows that the attacker may also corrupt sessions
π that i) have finished and ii) received a message produced by the attacker. Our security
definition captures strong PFS since it does at no point require tested sessions to not have
received attacker messages. In case π has received an attacker message, our freshness notion
simply requires that π’s password has not been corrupted before π finished and that no
RevealKey query was asked to π (trivial attack).

Impossibility of RevealState Queries. At the same time, and like all other existing (symmetric)
PAKE protocols, we do not consider state reveal attacks in our model, in contrast to models
for classical AKE protocols. Although this may seem like a severe restriction, we can observe
that any PAKE protocol which allows the adversary to reveal states cannot provide security
of the session key (key indistinguishability). Briefly, if an attacker can obtain the ephemeral
secret state through some RevealState-query for any session, she can next reveal the session
key K of the same session via a RevealKey query. She can now perform an offline brute force
search for the password by calling the key derivation algorithm for different passwords until
the output equals K. This is possible since the key derivation algorithm is deterministic and
all secret values that are input to the key derivation algorithm – except for the password
– are known to the attacker. With the so obtained password, the attacker can activate a
fresh session as test session by selecting a fresh ephemeral secret key esk′ and computing
a valid message m1 by using pwd to an honest party (P1) which in return responds with a
valid message m′. If this session is completed, because the attacker knows the pwd and the
ephemeral secret esk′ contained in m1, it can compute the same session key of this fresh
session, thereby breaking the security of the session key.

4 Protocol Description

Here we present our new symmetric PAKE protocol called Protoss (short for Protocol with
Tight, Optimal, Symmetric Security). It is defined in a public cyclic group G of prime order
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p generated by g ∈ G and the hash functions H and H′. We use multiplicative notation.
H : {0, 1}∗ → G maps passwords to group elements. The hash function H′ : {0, 1}∗ → K
outputs elements in the session key space K. We model H,H′ as random oracles in our proof.
Our Protoss protocol is symmetric and can be implemented with two flows. We assume that
Pi holds pwdi,j and that Pj has pwdj,i, where pwdi,j = pwdj,i. The protocol construction
is depicted in Figure 2. In order to establish a session key, parties Pi and Pj can use the
following algorithms:
– Init(pwdi,j , Pi, Pj): this algorithm generates a uniformly random x in Zp and computes
X = gx and V = H(pwdj,i). Then, it outputs I = X · V and state = (x, I, Pi, Pj , V ).

– RspDer(pwdi,j , Pi, Pj , I): this algorithm generates a random y ∈ Zp and computes Y = gy

and V = H(pwdj,i). Then, it outputs R = Y · V . Finally, it computes X ′ = I/V ,
Z = (X ′)y and outputs K = H′(Z, I,R, Pi, Pj , V ).

– Der(pwdi,j , state, R): this algorithm parses the input state as state = (x, I, Pi, Pj , V ).
Next, it computes Y ′ = R/V and Z = (Y ′)x and outputs the session key K as K =
H′(Z, I,R, Pi, Pj , V ).

Reducing the Reaction Time. In Figure 2, we can further optimize the reaction time by let-
ting the initiator compute V −1 when she waits for the response. Key derivation will then
only require a simple group operation.

Concurrent Variant of Protoss.
Observe that I and R can be precomputed for any pair of parties Pi, Pj . Since R is inde-
pendent of I the messages, could also be sent concurrently if necessary, allowing for much
shorter reaction times. To this end, we simply would have Pj call Init(pwdj,i, Pj , Pi) to com-
pute R and after receiving I, compute the key via Der(pwdj,i, state, I). (The key derivation
K = H′((X ′)y, I, R, Pi, Pj , V ) must additionally be adapted to not have the inputs I,R, Pi, Pj
in chronological but lexicographic order.)

Party Pi (pwdi,j) Party Pj (pwdj,i)

x
$← Zp, V = H(pwdi,j)

state := (x, I, Pi, Pj , V )

y
$← Zp, V = H(pwdj,i)

Z = (R/V )x Z = (I/V )y

K = H′ (Z, I,R, Pi, Pj , V ) K = H′ (Z, I,R, Pi, Pj , V )

I = V · gx

R = V · gy
state

Fig. 2: The Protoss Protocol.

Let us now state our main result.

Theorem 1. Assume we have ` parties and at most n oracles per party. Assume the attacker
makes qSendInit SendInit-queries, qSendRspDer SendRspDer-queries, qSendDer SendDer-queries, qH
hash queries to H : {0, 1}∗ → G, and qH′ queries to H′ : {0, 1}∗ → K. Also, assume that we
work in a group G of prime order p. Assume that log2(p) = poly(κ) and log2(|K|) = poly(κ).
For any attacker A that (t, ε)-breaks the Protoss-protocol, there is an attacker R that can
break the security of the SSQRDH assumption in time t′ with probability ε′ where

t′ ≈ t

and
ε′ ≥ ε−

(
2 + (`n)2 + (qH)2

)
/p− (qH′)2/|K|.

So, under the (t′, ε′)-SSQRDH assumption no attacker can exist that (t, ε)-breaks Protoss.
Moreover, the proof is independent of the dictionary size |D|. (The inevitable loss due to
guessing in online attacks is already addressed in the security definition. The definition is
specifically interested in the advantage of an attacker over simple guessing.)
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5 Security

Before we begin, let us describe our proof strategy intuitively.

5.1 Overview

We make heavy use of the programmability of the two random oracles. Observe that the
messages I and R bear no information on the passwords whatsoever. In fact, they perfectly
blind the passwords. So the only information an attacker might get on the passwords (without
resulting into a trivial attack), is via the key that is derived in the final step. Now, in the
centre of our strategy we will make the reduction generally output random values for each
input to the random oracle H′. The only exception is when H′ is queried by inputs that
correspond to the correct inputs that are, by at least one oracle, used to compute the session
key. In this case, we additionally need to make sure that the output is equal to the output
of the RevealKey query for that oracle. Otherwise, the output can be truly random and,
importantly, independent of all the remaining information sent. We will use the SSQRDH
oracle to recognize these cases. This strategy already guarantees that an attacker can only
obtain additional information by making at least one hash query (consisting of a set of correct
inputs). However, to thwart offline-attacks this is not enough, since the attacker could try –
via repeated hash queries – to gather information on several passwords. Let us go into more
detail: consider an attacker that can solve the CDH problem. Then this attacker could easily
compute CDH (g, I/H(pwd), R/H(pwd)) = Zpwd for each password pwd ∈ D in an offline
attack. Assume that after a RevealKey query this attacker has obtained key K. It can now
ask H′(Zpwd, I, R, Pi, Pj ,H(pwd)) =: Kpwd repeatedly for all password in D to the random
oracle H′. Observe that if for the real key it holds that K 6= Kpwd, the password pwd is wrong.
This decreases the set of candidate passwords shared between Pi and Pj by one. Moreover,
if K = Kpwd the password is correct. In this way, the attacker could find a password via an
offline attack from a single protocol run between Pi and Pj . It can now use its knowledge
of the password to correctly answer the Test query for some other session. To thwart this
attack, we intuitively show that such a strategy is computationally impossible unless the
attacker breaks our security assumption. In more detail, we show that if the attacker is able
to send two such values Zpwd and Zpwd′ for pwd 6= pwd′ to the random oracle – we call this
a critical event – then we can break the SSQRDH assumption. Moreover, critical events
are recognizable by the reduction via the SSQRDH oracle. So this means that, in absence
of a critical event for any oracle, the attacker can verify (confirm or exclude) only a single
password per session. This gives us the important additive contribution of (qRspDer +qDer)/|D|
in the security theorem which captures that password tests can only be made via online-
attacks where the adversary sends a message to some party. The final argument shows that
if the attacker is able to distinguish the real key from a random key, it must have asked Z
to the random oracle. However, this directly breaks the SSQRDH assumption.
To achieve a tight security proof, we avoid partitioning arguments that rely on guessing
which sessions will be either tested (i.e the attacker obtains a key that is either random or
real and the attacker has to decide which case it is) or revealed (i.e. the attacker asks to see
the session key at some point). Typically, security proofs aim to follow such a partitioning
argument to embed the complexity challenge into the tested sessions while behaving largely
honestly in the revealed sessions. Such a guessing step would still allow for a polynomial-
time security reduction but would account for a security loss in the number of sessions. Our
strategy to obtain a tight security proof insists on embedding the complexity challenge into
all messages, heavily relying on the random self-reducibility of the SSQRDH assumption.
Similarly, to avoid partitioning arguments when dealing with Corrupt-queries, we set up the
reduction so that it knows all passwords.
Let us become more formal.

5.2 Proof of Theorem 1

As usual the proof is by contradiction developing a reduction algorithm R, which plays the
role of the challenger/execution environment.

Game 0: This is the original security game. By definition, the attacker runs in time t with
success probability

ε0 = ε+ (qRspDer + qDer)/|D|.
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Game 1: The reduction now aborts if at some point two distinct oracles produce the same
message (I or R). Since there are only `n oracles in total we get

ε1 ≥ ε0 − (` · n)2/p.

Game 2: The reduction now aborts if at some point two distinct inputs will be asked to H′

that collide. We get
ε2 ≥ ε1 − (qH′)2/|K|.

Game 3: We now change how the reduction simulates the setup parameters. Assume, the
reduction chooses a single random exponent x′ $← Zp but x′ 6= 0 to create a random group
element X ′ = gx

′
∈ G. It can now define each output of the random oracle as a power of

X ′. For every query to the random oracle H the reduction draws a random u
$← Zp and

outputs (X ′)u. In particular, for each pair of parties (Pi, Pj) with i 6= j the reduction draws
ui,j

$← Zp and programs the random oracle H to map to H(pwdi,j) = (X ′)ui,j = Vi,j . As this
change is only conceptual, we get

ε3 ≥ ε2.

Game 4: The reduction now aborts if at some point two distinct inputs will be asked to H
that collide. We get

ε4 ≥ ε3 − (qH)2/p.

Game 5: In this game, the reduction generates the ephemeral keys produced by the oracles
differently. Instead of drawing x random when computing m = H(pwd) · gx the reduction
draws ri,j,s

$← Zq for all parties i, j ∈ [`] and all sessions s ∈ [d] and computes

Wi,j,s =
(
X ′
)ri,j,s .

Now, each message will be computed as m = H(pwd) ·Wi,j,s Thus, the ephemeral keys are
implicitly set to wi,j,s = x′ · ri,j,s. This change is only conceptual and we get

ε5 ≥ ε4.

Game 6: In this game, the reduction aborts whenever event E1 or event E2 happens. In the
event E1 we have that the attacker makes two distinct random oracle queries Z, I,R, Pi, Pj , V
and Z′, I, R, Pi, Pj , V ′ to H′ such that we have
1) there exists an oracle πsi that has accepted with transcript I,R while using password

pwdi,j (or V = H(pwdi,j)) to generate messages and derive the session key. (Observe
that since we have excluded collisions in H we have that for any V there is a unique
pwdi,j with V = H(pwdi,j).)

2) we have that the two equations hold:

DDH(g, I/V,R/V, Z) = 1

and
DDH(g, I/V ′, R/V ′, Z′) = 1

hold for any other password V ′ = H(pwdi,j′) with (i, j′) 6= (i, j).

In the event E2 we have that for at least one oracle πsi
1) there exists another oracle πtj that is partnered with πsi , and Tsi = Ttj = (I,R) is the

transcript of the protocol run between them and
2) the attacker has queried the random oracle on H′(Z, I,R, Pi, Pj , V ) where V = H(pwdi,j)

and DDH(g, I/V,R/V, Z) = 1.

Let us now bound the probability that

E = E1 ∨ E2

will happen. To this end, we show that in the event E the reduction can break the SSQRDH
assumption. In the following, let X = gx be the challenge received by the SSQRDH chal-
lenger and let Ox be the SSQRDH oracle that the reduction can access. The reduction now
implicitly sets X ′ = X. This has major consequences for the simulation. Observe that the
reduction does neither know x′ nor the ephemeral keys. To nevertheless simulate correctly,
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it can use the SSQRDH oracle.

Simulation
Specifically, the reduction will use the following basic two-step strategy: each time the at-
tacker asks a RevealKey-query the reduction responds with a truly random value in K. Sim-
ilarly, each time the attacker asks a H′-query, the reduction responds with a truly random
value in K. However, there is a situation in which the reduction needs to deviate from
this strategy and outputs a value that it has output before to make sure the outputs of
RevealKey and H′ are equal. This happens if the attacker makes a query to H′ of the form
Z, I,R, Pi, Pj , V with V = H(pwdi,j) and there exists at least one oracle πsi that has accepted
with transcript I, R and Pidsi = j while

DDH(g, I/V,R/V, Z) = 1.

In this case, we must have that RevealKey(πsi ) = H′(Z, I,R, Pi, Pj , V ) to keep the simulation
consistent. We also call such a situation a consistency event for πsi . Fortunately, the reduction
can recognize these cases with the help of Ox. Let us go into more detail. Let us assume that
πsi is an initiator oracle. (The case when it is a responder oracle is analogous.) By setup we
then have that

I/V = Xri,j,s−ui,j .

Now the reduction can recognize a consistency event via the oracle query

Ox(R/V,Zri,j,s−ui,j ) = DDH(g, I/V,R/V, Z).

Only if the result is 1, the reduction has encountered a consistency event. In this way, the
reduction can make the simulation consistent.

Extraction in Case E2
Now let us show how we can extract a solution to the SSQRDH problem in the event E2.
Recall that in this case we have that 1) there is an oracle πsi that also has a partner or-
acle πtj and Tsi = Ttj = (I,R) is the transcript of their protocol run, and 2) the attacker
has queried the random oracle on H′(Z, I,R, Pi, Pj , V ) with V = H(pwdi,j) and we have
DDH(g, I/V,R/V, Z) = 1 for some password pwd. However, since

R/V = Xrj,i,t−ui,j ∧ I/V = Xri,j,s−ui,j

we must have that
Z = gx

2(rj,i,t−ui,j)(ri,j,s−ui,j)

from which we can easily compute

gx
2

= Z1/((rj,i,t−ui,j)(ri,j,s−ui,j)).

This does not work if
(rj,i,t − ui,j)(ri,j,s − ui,j) = 0

but since the wi,j,s, ui,j are drawn uniformly random, the probability for such a failure is
only 2/|G|.

Extraction in Case E1
Let us now show how to extract a solution in the event E1. Recall that in this event the
attacker makes two random oracle queries Z, I,R, Pi, Pj , V and Z′, I, R, Pi, Pj , V ′ to H′ with
V = H(pwdi,j) and V ′ = H(pwdi,j′) for (i, j′) 6= (i, j) such that we have
– there exists one oracle πsi that has accepted with transcript I, R.
– we have that the equations

DDH(g, I/V,R/V, Z) = 1 ∧ DDH(g, I/V ′, R/V ′, Z′) = 1

hold for two distinct passwords pwdi,j 6= pwdi,j′ .

Let us again assume that πsi is an initiator oracle. In case it is a responder oracle, the
arguments are analogous. If πsi is an initiator oracle, we have that

I/H(pwdi,j) = Xri,j,s−ui,j ∧ I/H(pwdi,j′) = Xri,j,s−ui,j′ .
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Moreover, we have that
H(pwdi,j′)/H(pwdi,j) = Xui,j′−ui,j .

At the same time, it holds that

Z1/(ri,j,s−ui,j) = CDH(g,X,R/H(pwdi,j))

and
Z′1/(ri,j′,s−ui,j′ ) = CDH(g,X,R/H(pwdi,j′)).

Let us now consider

Z1/(ri,j,s−ui,j)/Z′1/(ri,j′,s−ui,j′ )

= CDH(g,X, (R/H(pwdi,j))/(R/H(pwdi,j′)) )

which implies

Z1/(ri,j,s−ui,j)/Z′1/(ri,j′,s−ui,j′ ) = CDH(g,X, Xui,j′−ui,j ).

This shows that

gx
2

=
(
Z1/(ri,j,s−ui,j)/Z′1/(ri,j′,s−ui,j′ )

)1/(ui,j′−ui,j)

gives a solution to the SSQRDH problem unless

ui,j′ − ui,j = 0, ri,j′,s − ui,j′ = 0, or (ri,j,s − ui,j) = 0.

However, each of these events only happens with statistically small probability 1/|G|.
The reduction can easily identify the two queries that exist by assumption in this case. To
this end it sends each random oracle query that has been sent to the H′-oracle to the DDH
oracle by evaluating

Ox(R/V,Zri,j,s−ui,j )

(when appropriately parsed). The result of this evaluation is stored. Now, for any two queries
Z, I,R, Pi, Pj , V and Z′, I, R, Pi, Pj , V ′ where the result of this oracle call is positive while
we have at the same time that both V = H(pwdi,j) and V ′ = H(pwdi′,j′) for some distinct
passwords pwdi,j , pwdi′,j′ can be used by the reduction to break the security assumption.
To sum up, in either event E1 or E2 the reduction can simulate the oracles correctly and
also extract a solution to the SSQRDH assumption. Taking the worst case of both events,

ε6 ≥ ε5 − ε′ − 2/p.

Final Analysis. The remaining event we have to analyse is

Ē = Ē1 ∧ Ē2.

Recall that in the event Ē2, we have that for every oracle πsi it holds that either 1) πsi
has no partner oracle or 2) πsi has a partner oracle πtj with common transcript Tsi = Ttj =
(I, R) but the attacker has never queried the random oracle on H′(Z, I,R, Pi, Pj) such that
DDH(g, I/H(pwd), R/H(pwd), Z) = 1 for some password pwd. Observe that in case of 2) it is
easy to see that, because of the random oracle, the attacker gains no additional information
on the session key of πsi . Crucially observe that messages I and R do not bear any information
on passwords since the ephemeral keys are random group elements and thus act as one-time
keys in a one-time pad. Moreover, since there are no consistency events for πsi , queries made
to H′ do not bear any information on the passwords and essentially every output is an inde-
pendently drawn random value in the keyspace. So, the attacker simply passively observes a
protocol run without gaining any information on the session key (since it does not query the
random oracle on meaningful inputs in the sense of DDH(g, I/H(pwd), R/H(pwd), Z) = 1).
In case 1) we must have that one of the messages has been generated by the attacker. Let us
again assume πsi is an initiator oracle (and R has been generated by the attacker). Again, in
case it is a responder oracle the arguments are analogous. With the previous game we have
also guaranteed that for any πsi with transcript I, R and Pidsi = j there has only been at
most a single query Z, I,R, Pi, Pj such that

Ox(R/H(pwdi,j), Z
ri,j,s−ui,j ) = 1.
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Furthermore, observe that for an attacker to be successful, we must have that Corrupt(i, j)
has only been asked to πsi after it accepted, so R has been computed independently of this
query.
The only values that the attacker can obtain that depend on the password is the key output by
Ksi = RevealKey(πsi ). However, the key has in fact been chosen truly random and otherwise
bears no structural information. So, the only way for the attacker to test for candidate
passwords is to ask H′ queries and check whether they equal the output of RevealKey(πsi ).
Now observe that we have guaranteed that for each oracle πsi with Pidsi = j and transcript
I, R there is only one input Z, I,R, Pi, Pj to H′ with

DDH(g, I/H(pwdi,j), R/H(pwdi,j), Z) = 1.

Now, any test that the attacker can make for a password must consist of such a query, as
any other input to H′ can never result in an output that equals Ksi (since we have excluded
collisions in H′) – independent of whether the computations involve the correct password or
not. So 1) since the attacker can only gain information on the password via these special
Z, I,R, Pi, Pj queries to H′ and 2) since there is only a single such query per oracle πsi and
3) because each query can only be used to test at most a single password (since the query
itself only depends on a single password), we get that in total the attacker can only test a
single password for any message that it sent to an oracle message. Since the overall number
of messages that the attacker can send to oracles is at most qSendRspDer + qSendDer and since we
have now exhaustively covered all the events E and Ē we get that

ε6 = (qSendRspDer + qSendDer)/|D|, and thus

(qSendRspDer + qSendDer)/|D|
≥ ε+ (qSendRspDer + qSendDer)/|D| − (` · n)2/p− (qH)2/p

−(qH′)2/|K| − ε′ − 2/p

which concludes the proof. Overall the reduction makes at most O(qH′) queries to the DDH-
oracle.

6 Security Loss

Our main theorem shows that the security loss L = t′/ε′ · ε/t, does not lose a multiplicative
factor. Indeed ε′ is statistically close to ε. A crude bound is ε′ ≥ ε/2. Since t′ ≈ t we so obtain
that the security reduction is tight. To better explain the nature of our reduction and the
consequences for parameter sizes we argue similar to (10) (Appendix A). When instantiating
parameters to achieve k-bit security in the sense that any successful attacker must have
runtime t ≥ 2k and advantage 2−k ≥ ε we can now setup the system parameters such that
any R has success probability at most 2−k−1 ≥ ε′ when running in time at most t′ ≥ 2k. In
this way, the reduction only loses one bit of security and it is simple to compensate for that
with an appropriate parameter choice.

2−k−1 ≥ ε′ ≥ ε/2 ⇒ 2−k ≥ ε.

6.1 Tight Composability

Via the choice of our security model we believe that direct compositions of Protoss and
(tightly secure) symmetric primitives (without a prior key confirmation step) can immedi-
ately be shown with a security loss that does not exceed that of Protoss. The reasons for that
are that we 1) consider several Test queries and 2) a single, global bit b that decides whether
we are in the real or random case. The authors in (43; 32) call this multi-challenge single-bit
security and show that this notion can guarantee that we can avoid hybrid arguments when
we combine symmetric primitives with such a key exchange protocol. Roughly, the intuition
is that all the (challenge) keys of all the symmetric primitives can be exchanged for random
keys at once without the attacker noticing. In our reduction, this step does only account
for a constant loss in security. Classical techniques, however, often need to apply a hybrid
argument to exchange the keys one by one that incurs a considerable security loss in the
number of instances that need to be exchanged.
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Protocol |I|+|R| Msg. Key
Der.

Overall Tight
Proof?

Assumpt. Trusted
Setup?

TBPEKE (38)
(Theorem 2)

320 2 FB 1 VB 2 FB + 1 VB
= (αβ + 2α) HG

n (GB) GSDH
ROM

y

EKE2 (12)
(Theorem 1)

320 1 E
+ 1 FB

1 D
+ 1 VB

1 E + 1 D
+ 1 FB +1 VB
= (αβ + α+ γ) HG

n (GB) CDH
Ideal
Cipher

n

SPEKE (30) 320 1 HG
+ 1 VB

1 VB 1 HG + 2 VB
= (2αβ + 1) HG

– – n

SPAKE1 (7)
(Theorem 4.1)

320 2 FB 1 FB
+ 1 VB

3 FB + 1 VB
= (αβ + 3α) HG

n (GB) CDH
ROM

y

SPAKE2 (7)
(Theorem 5.1)

320 2 FB 1 FB
+ 1 VB

3 FB + 1 VB
= (αβ + 3α) HG

n (GB) CDH
ROM

y

CPace (6)
(Theorem 5.1)

320 1 HG
+ 1 VB

1 VB 1 HG + 2 VB
= (2αβ + 1) HG

n (UC) sSDH
ROM

n

PPK (20) 320 2 HG
+ 1 FB

1 VB 2 HG + 1 FB + 1 VB
= (αβ + α+ 2) HG

n (SB) DDH
ROM

n

Protoss
(this work)

320 1 HG
+ 1 FB

1 VB 1 HG + 1 FB + 1 VB
= (αβ + α+ 1) HG

y (GB) SSQRDH
ROM

n

Table 2: Efficiency of Symmetric Two-Move PAKE Protocols with Optimal Communication Com-
plexity. We count hash-to-group operations (HG), fixed-base exponentiations (FB), variable-base
exponentiations (VB). symmetric encryptions (E), and symmetric decryptions (D). We assume
that neither passwords nor their hashes will be stored on computing devices after a protocol run.
We assume 1 FB = α HG, 1 VB= β FB, and 1 E +1 D=γ HG. The entry ’–’ indicates that no
formal proof exists. GSDH indicates the Gap Simultaneous Diffie-Hellman Assumption while sSDH
stands for the Strong Simultaneous CDH assumption. GB indicates proofs in game-based security
models, SB indicates proofs in simulation-based security model, while UC refers to proofs in the
universal composability framework. The proof for CPace is tight for a single session only. Invoking
the composition theorem of the UC framework will introduce a hybrid argument and a loss in the
number of sessions.
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6.2 Performance Analysis

Assume we implement Protoss in groups over elliptic curves with prime order p such that
log2(p) = 160 and group element representation of around 160 bits. To compute a message
m = H(pwd) · gx = V · gx we, essentially require 1 hash-to-group (HG) operation to compute
V = H(pwd) and one fixed-base exponentiation (FB) gx. The cost for the key derivation
(m/V )y essentially accounts for a variable-base exponentiation (VB). For more generality,
let us assume that the costs are related such that 1 FB=α HG, 1 VB=β FB=αβ HG, and 1
E + 1 D=γ HG. Table 2 shows that our protocol is computationally more efficient than the
existing ROM-based ones with optimal message size in case two assumptions hold. These
assumptions are i) that variable-base exponentiations are computationally more expensive
than fixed-base exponentiations (β ≥ 1) and that ii) the hash-to-group operation is more
efficient than fixed-base exponentiation (α ≥ 1). In practice these assumptions are generally
fulfilled, the first because of the computational advantage of using pre-computed public
ladders for fixed-base exponentiations as detailed in the introduction, and the second because
hashing is generally more efficient than exponentiation in groups (19).
The table also counts the costs of the general EKE2 protocol when it’s based on symmet-
ric encryption ciphers. The general EKE2 protocol requires one symmetric encryption and
one decryption. For dedicated ciphers these operations usually have comparable computa-
tional costs. We stress that, the decryption operation must injectively map to the underlying
group that we work in, thus standard symmetric ciphers like AES cannot be used. This
requirement seems generally more challenging (or equivalent) than what we require from
our hash-to-group operation which we allow to be compressing. As compared to the general
EKE2 protocol, Protoss can also make use of an important synergy between message gener-
ation and key derivation as compared to the general EKE2 protocol. This synergy revolves
around the fact that we do not need to compute with the password twice. Instead, we hash
it once and obtain the value V that can be used in message generation and key derivation
as well. Importantly, once we have V each computation then only accounts for a single mul-
tiplication only. This efficiency improvement does not generically apply to ciphers where
encryption and decryption do not share state information. We thus assume that in general
1 E + 1 D ≥ 1 HG, and γ ≥ 1. We also note that there is a crucial conceptual difference
between Protoss and the traditional EKE approach. The cipher in the EKE encrypts the
ephemeral key and so guarantees that it is confidential. The key used in this encryption
routine is the password. Since this encryption operation is applied several times, each time
a pair of communication partners exchange messages anew, we require relative strong secu-
rity properties of the cipher (multi-use security). Our approach however, can be thought of
as reversing this relation. We encrypt the hashed password with a fresh one-time key (the
ephemeral public key) in a statistically secure way. Since we only work with a one-time pad
the security requirements are in general less demanding than for multi-use ciphers and con-
structions are simpler. Our encryption guarantees that over the several runs of the protocol
the messages do not reveal any information on the hashed password. Conversely, under the
assumption that the hashed password remains secret, all ephemeral keys remain secret as
well. Our proof shows that there are no algebraic attacks.
Finally, we note that although the ideal cipher model is known to imply the random oracle
model, we have no conclusive evidence on whether the other direction is true (12). In this
sense, relying on ideal ciphers for the proof seems like a stronger assumption than relying on
the random oracle model. To give some concrete values, we have experimentally computed
α = 2.5 and β = 3.33 on a standard laptop computer for Curve25519 using Elligator2 (Elli-
gator2Hash) (19) (11th Gen Intel(R) Core(TM) i7-1165G7 @2.80GHz, Java, BouncyCastle).
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A UC-Proof of Protoss

We will now present a security proof in the UC framework. We rely on the multi-user, multi-
session model presented by (35). In contrast to models like (6), it inherently accounts for
several instances of the protocol run. The (6) model focusses on only a single session. Then it
invokes the UC theorem to show security in a more dynamic setting with several parties and
sessions. However, this is essentially a hybrid argument that will account for a security loss in
the number of implicit applications of the UC-theorem. Though this number is polynomial, it
still accounts for a tightness loss overall. We thus use the model by (35) which is specifically
suited to keep track of the tightness loss in a dynamic setting.

A.1 Security Model

For better reference, we here recall the security model of (35). We take the model almost in
verbatim from (35) adapted to our notation. Moreover, we use parties more generally instead
of clients and servers. Intuitively we can think of clients and servers in (35) to correspond
to initiators and servers in our setting. Similarly sessions πsi will be denoted as instances
(Pi, iidi). The original paper provides detailed intuition for the rest of the model.
Moreover, as emphasized in (35) this PAKE framework implicitly also deals with static
corruptions of parties, i.e., the adversary can corrupt some parties and get their passwords
before the protocol execution. Almost all UC frameworks (21; 27) for PAKE are defined in the
way of static corruptions. Also as in (35) the corruption process is not explicitly modeled. We
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specifically use the security model in (35) that models lazy extraction as introduced in (3).
As indicated in (3), it seems necessary for protocols like SPEKE, SPAKE2, or TBPEKE in
the UC model.

A.2 Theorem in the UC Framework

Theorem 2 (Protoss is UC secure). If the SSQRDH assumption holds in G and if H and
H′ are modelled as a random oracles, then Protoss securely emulates FlePAKE. More precisely,
for any PPT environment Z and real world adversary A which has access to random oracles
H and H′, there exist a PPT simulator Sim, which has access to the ideal functionality FlePAKE,
and algorithm B s.t. the advantage of environment Z in distinguishing the real world running
with A and the ideal world running with Sim is bounded by

AdvProtoss,Z ≤ AdvSSQRDH
G,B +

(qH)2 + (` · n)2

p
+

(qH′)2

|K|
where qH and qH′ denote the maximum number of random oracle queries to H and H′.

Proof. Fundamentally, the proof is very similar to our game-based proof. Observe that in our
game-based proof, the first five game transitions are either conceptually only or they only
introduce statistically low error terms to exclude collisions. In this proof, to not repeat the
arguments, we intuitively move to this point immediately via the first game transition. This
will be formally described in our first intermediate simulator Sim in Figure 5. This already
uses programming of H. In the next game, we will transition to the next simulator Sim in
Figure 6 that also programs the random oracle H′. Finally, we will show what happens when
we introduce the ideal functionality FlePAKE in Figure 7. As in our game-based proof, we will
exploit the analysis of events E1 and E2 to conclude that the two games are indistinguishable.
In particular, this will ultimately show that no offline attack can be successful (event E1)
and that the attacker is not able to compute non-trivial Z values while remaining passive
(E2). As a consequence, we have that all session keys are truly random. Being able to exclude
events E1 and E2 allows us to make the final game transition towards the ideal scenario,
where keys are always drawn uniformly random via FreshKey queries. Also, since we now
know that for any key exchange the attacker can perform only a single password check (since
we exclude event E1), this can easily be emulated by the simulator via a TestPW query.
We use some of the conventions used in (35).
– Good/Bad party instance. We call a party instance (Pi, iidi) a good (resp. bad)

instance, if the password pwd used in this instance equals (resp. differs from) the correct
password ˆpwd shared between Pi and its intended partner Pj .

– Linked instances. We say that an instance (Pj , iidj) is linked to another instance
(Pi, iidi) if I generated by (Pi, iidi) is received by one instance (Pj , iidj) of its intended
partner Pj . Similarly, we say that an instance (Pi, iidi) is linked to another instance
(Pj , iidj) if R generated by (Pj , iidj) is received by one instance (Pi, iidi) of its intended
partner Pi. If two instances are linked to each other, they are referred to as linked
instances.

The central aim of the proof is to develop a PPT simulator Sim, which has access to FlePAKE

and interacts with the environment Z, and simulates the real world Protoss protocol inter-
actions among the adversary A, parties, and the environment Z. With this goal in mind,
Sim has to simulate honestly generated messages from real parties, respond to adversarial
messages, and simulate the random oracles H and H′. The functionality FlePAKE provides
information to Sim through interfaces including TestPW, NewInstance, FreshKey, CopyKey,
CorruptKey, as defined in Fig. 3. Recall that Sim has no secret inputs (i.e. passwords).
The full description of Sim is given in Fig. 5. Let RealZ,A be the real experiment where
environment Z interacts with real parties and adversary A, and IdealZ,Sim be the ideal
experiment where Z interacts with simulator Sim. We prove that |Pr[RealZ,A ⇒ 1] −
Pr[IdealZ,Sim ⇒ 1]| is negligible via a series of gamesGame 0-3, whereGame 0 isRealZ,A,
Game 3 is equivalent to the ideal game IdealZ,Sim, and argue that two adjacent games are
indistinguishable from Z’s point of view.

Game 0. This is the real experiment RealZ,A. In this experiment, Z initializes a password
for each pair of party, observes the interactions among the parties and the adversary A, and
also obtains the corresponding session keys of protocol instances. Here A may implement
attacks as view, modify, insert, or drop messages over the network. We have

Pr[RealZ,A ⇒ 1] = Pr[Game 0⇒ 1].

24



Game 1. (Move to Game 5 of the Game-based Proof.) In Game 1, Sim (depicted in
Figure 5) still needs to take passwords as inputs. With the help of passwords, it perfectly
simulates the executions in RealZ,A, except that the ROs H,H′ are simulated in a collision-
free way and H is programmed as H(pwdi,j) = (gx

′
)ui,j . Moreover, ephemeral group values

produced by instance iidi are computed as (gx
′
)wi,j,iidi . Also, collisions among the messages

are excluded. Meanwhile, Sim also necessarily keeps all these corresponding exponent values
in DL(g) and DL(X ′).
We have

|Pr[Game 1⇒ 1]− Pr[Game 0⇒ 1]| ≤ (qH′)2

|K| +
(qH)2 + (` · n)2

p
,

where qH (qH′) denotes the maximum number of queries to H (H′).

Game 2. We now exploit that the event E1 ∨ E2 (as defined in the game-based security
proof) will result in a break of the SSQRDH assumption. So the only remaining real attack
behavior that the simulator should simulate is conditioned on the event Ē1 ∧ Ē2. We only
concentrate on the changes to the previous game. Recall events E1 and E2 as defined in the
game-based proof. These events are independent of queries of the security model except for
queries to the random oracles H and H′.

|Pr[Game 2⇒ 1]− Pr[Game 1⇒ 1]| ≤ AdvSSQRDH
G,B .

Game 3. (Use FlePAKE interfaces.) In this game, depicted in Figure 7, we introduce the
ideal functionality FlePAKE (Figure 3). By querying FlePAKE, the simulator Sim can perfectly
simulate Game 2 via the queries FreshKey,CopyKey,CorruptKey,TestPW, RegisterTest, and
LateTestPW.

Pr[Game 3⇒ 1] = Pr[Game 2⇒ 1].

Next, observe that the simulator in Game 3 is indistinguishable from the experiment in the
ideal world. Therefore, we have that Pr[IdealZ,Sim ⇒ 1] = Pr[Game 3⇒ 1].
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Functionality FlePAKE

The functionality FlePAKE is parameterized by security parameter κ. It interacts with a simulator Sim
and a set of parties via the queries described next. Moreover, it manages lists L,L′, L′′ that are initially
empty.

– The list L holds entries of the format (file, Pi, Pj , pwd).
– Entries in L′ have format (Pi, iidi, Pj , pwd, z, t) where we have that z ∈ {fresh, completed, compromised,

interrupted} and t ∈ {−, sid}.
– Entries in L′′ have format (Pi, Pj , sid,K).

Password Storage

Upon receiving a query (StorePWFile, Pi, Pj , pwd) from party Pi:
If there already exists some record R = (file, Pi, Pj , pwd′) ∈ L with some pwd′, ignore this
query. Otherwise, add Ri,j = (file, Pi, Pj , pwd) and Rj,i = (file, Pj , Pi, pwd) to L and send
(StorePWFile, Pi, Pj) to Sim.

Sessions

Upon receiving a query (NewInstance, iidi, Pj , pwd) from Pi:
Retrieve the entry Ri,j = (file, Pi, Pj , pwd′) from L. Set b = 1 in case pwd′ = pwd and b = 0
otherwise. Send (NewInstance, Pi, iidi, Pj , b) to Sim.
Add R′ = (Pi, iidi, Pj , pwd, fresh,−) to L′. We also say that Pj is the intended partner of (Pi, iidi).

Upon receiving a query (NewInstance, iidi, Pj) from Pi:
Retrieve the entry Ri,j = (file, Pi, Pj , pwd) from L. Send (NewInstance, Pj , iidj , Pi) to Sim. Add
(Pj , iidj , Pi, pwd, fresh,−) to L′.

We also say that Pi is the intended partner of (Pj , iidj) and that R′ is (marked as) fresh.
Two instances (Pi, iidi) and (Pj , iidj) are said to be partnered if there are two entries in L′,
(Pi, iidi, Pj , pwd, z, t) and (Pj , iidj , Pi, pwd′, z′, t′), with pwd = pwd′.

Active Session Attacks

Upon receiving a query (TestPW, P, iid, pwd′) from Sim:
If there is a fresh entry R′ = (Pi, iidi, Pj , pwd, fresh,−) in L′ for some (Pi, iidi) = (P, iid) do the
following:
– If pwd′ = pwd overwrite R′ := (Pi, iidi, Pj , pwd, compromised,−) and reply to Sim with “cor-

rect guess”. We also say that R′ is compromised.
– If pwd′ 6= pwd overwrite R′ := (Pi, iidi, Pj , pwd, interrupted,−) and reply to Sim with “wrong

guess”. We also say that R′ is interrupted.

Upon receiving a query (RegisterTest, P, iid) from Sim: If there is a fresh entry R′ =
(Pi, iidi, Pj , pwd, fresh,−) in L′ for some (Pi, iidi) = (P, iid) then overwrite it to R′ :=
(Pi, iidi, Pj , pwd, interrupted,−) mark it as interrupted and flag it tested.

Upon receiving a query (LateTestPW, P, iid, pwd′) from Sim:
If there is a entry R′ = (Pi, iidi, Pj , pwd, interrupted, sid) in L′ for some (Pi, iidi) = (P, iid) that is
flagged tested and a corresponding entry (Pi, Pj , sid,K) in L′′ remove the flag tested and do the
following:
– If pwd′ = pwd output K
– If pwd′ 6= pwd output a random K ∈ K

Fig. 3: The PAKE functionality FlePAKE.
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Session Key Generation

Upon receiving a query (FreshKey, P, iid, sid) from Sim:
If 1) there is a fresh or interrupted entry R′ = (Pi, iidi, Pj , pwd, z,−) in L′ with z ∈
{fresh, interrupted} for some i, j ∈ [n] such that (P, iid) = (Pi, iidi); and 2) there is no other
entry (Pi, Pj , sid,K′) in L′′ with iidi 6= iid′i:
– pick a new random key K ∈ K, overwrite R′ := (Pi, iidi, Pj , pwd, completed, sid) in L′, send

(iid, sid,K) to Pi, and add R′′ = (Pi, Pj , sid,K) to L′′.

Upon receiving a query (CopyKey, P, iid, sid) from Sim:
If 1) there is a fresh record R′ = (Pi, iidi, Pj , pwd, fresh,−) in L′ and a completed record
R̃′ = (Pj , iidj , Pi, pwd, completed, sid) s.t. (Pi, iidi) and (Pj , iidj) are partnered; and 2) there is no
other entry (Pi, Pj , sid,K′) in L′′ with iidi 6= iid′i: and 3) there is exactly one entry (Pj , Pi, sid′,K)
in L′′ with sid′ = sid:
– Retrieve the entry (Pj , Pi, sid,K) from L′′ and overwrite
R′ = (Pi, iidi, Pj , pwd, completed, sid) and send (iid, sid,K) to P .

Upon receiving a query (CorruptKey, P, iid, sid,K) Sim:
If 1) there is a compromised record R′ = (Pi, iidi, Pj , pwd, compromised,−) in L′ with (Pi, iidi) =
(P, iid) for some i; and 2) there is no other entry R′′ = (Pi, Pj , sid,K′) in L′′ with iidi 6= iid′i:
– overwrite R′ := (Pi, iidi, Pj , pwd, completed, sid) and send (iid, sid,K) to P .

Fig. 4: Continuation of Fig. 3.
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Sim maintains group element X ′ and sets LH, LH′ , T , DL(g), DL(X ′), CR that are initially empty in
the simulation.

– Sim maintains internally a global group element X ′ that is computed as gx
′
for some uniformly

random x′ ← Zp.
– LH, LH′ : store entries (x,H(x)) and (x,H′(x)) w.r.t random oracles H and H′.
– T : stores messages M sent by instances (Pi, iidi) of parties in the format (Pi, iidi,M) where M is

typically denoted as I (initiator message) or R (responder message).
– DL(g): stores pairs (X,x) of group elements and corresponding discrete logarithms with respect to

basis g.
– DL(X ′): stores pairs (X,x) of group elements and corresponding discrete logarithms with respect to

basis X ′.
– Q: stores hashed passwords Vi,j shared between parties Pi, Pj in the format (Pi, Pj , Vi,j)
– CR: stores triples (Pi, iidi, b) where b ∈ {0, 1} with b = 1 indicating that the provided password was

correct.
– Similarly to (35), we also assume Sim has received all (StorePWFile, Pi, Pj) queries for all the pairs

of parties Pi, Pj .

PAKE Sessions

on (NewInstance, Pi, iidi, Pj , b) from FlePAKE:

– Draw wi,j,iidi ← Zp and compute X = (X ′)wi,j,iidi and I = XVi,j = (X ′)(wi,j,iidi
+ui,j) where

we get ui,j via entries (Pi, Pj , Vi,j) ∈ Q and (Vi,j , ui,j) ∈ DL(X ′). Set T := T ∪{(Pi, iidi, I)}
and send I from Pi to A. Also add (Pi, iidi, b) to CR, (X,wi,j,iidi) to DL(X ′).

– Add (X,x′wi,j,iidi) to DL(g).

on (NewInstance, Pj , iidj , Pi) from FlePAKE and I from A as a party message from
Pi to (Pj , iidj):

– Draw wj,i,iidj ← Zp and compute X = (X ′)
wj,i,iidj and R = XVj,i = (X ′)

(wj,i,iidj
+uj,i). Set

T := T ∪ {(Pi, iidi, R)} and send R from Pj to A. Also add (Pj , iidj , b) to CR, (X,wj,i,iidj )
to DL(X ′).

– Add (X,x′wj,i,iidj ) to DL(g).

– Compute a new key as K = H′(Z, I,R, Pi, Pj , Vi,j) where Z = (I/Vi,j)
x′wj,i,iidj .

– Set sidj,i,iidj := Pi||Pj ||I||R.

on R from A as a message from Pj to (Pi, iidi):

– Retrieve (Pi, iidi, I) ∈ T , sidi,j,iidi := Pi||Pj ||I||R.
– Set sidi,j,iidi := Pi||Pj ||I||R.
– Compute a new key as K = H′(Z, I,R, Pi, Pj , Vi,j) where Z = (R/Vi,j)

x′wi,j,iidi .

On Random Oracles

on H(pwd) from A:

If ∃(pwd, V ) ∈ LH : return V .
Otherwise draw u ← Zp and compute V = (X ′)u. Add LH := LH ∪ {(pwd, V )} and
DL := DL ∪ {(V, u)}, and return V .

on H′ (Z, I,R, Pi, Pj , V ) from A:

If ∃ (Z, I,R, Pi, Pj , V,K) ∈ LH′ : return K.
Otherwise draw K

$← K, set LH′ := LH′ ∪ {(Z, I,R, Pi, Pj , V,K)}, and return K.

Fig. 5: Intermediate simulator Sim for Protoss in the proof of Theorem 2
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PAKE Sessions (conditioned on the event Ē1 ∧ Ē2)

on (NewInstance, Pi, iidi, Pj , b) from FlePAKE:

– Draw wi,j,iidi ← Zp and compute X = (X ′)wi,j,iidi and I = XVi,j = (X ′)(wi,j,iidi
+ui,j) where

we get ui,j via entries (Pi, Pj , Vi,j) ∈ Q and (Vi,j , ui,j) ∈ DL(X ′). Set T := T ∪{(Pi, iidi, I)}
and send I from Pi to A. Also add (Pi, iidi, b) to CR, (X,wi,j,iidi) to DL(X ′).

on (NewInstance, Pj , iidj , Pi) from FlePAKE and I from A as a party message from
Pi to (Pj , iidj):

– Draw wj,i,iidj ← Zp and compute X = (X ′)
wj,i,iidj and R = XVj,i = (X ′)

(wj,i,iidj
+uj,i). Set

T := T ∪ {(Pi, iidi, R)} and send R from Pj to A. Also add (Pj , iidj , b) to CR, (X,wj,i,iidj )
to DL(X ′).

– Compute a new key K as follows: Sim checks whether there is a password pwd′ with
(pwd′, V ) ∈ LH, (Pi, Pj , I) ∈ T , and (I/V, x) ∈ DL(X ′). (This means that X = I/V
has been generated by some instance beforehand). If such a pwd′ exists, use the SSQRDH
decision oracle to check whether there is (Z′, Pi, Pj , I, R, V,K

′) ∈ LH′ with Z′ being equal to
Z = CDH(g, I/V,R/V ). In this case, use this K = K′. Otherwise, draw a random K ← K.
(If at some later point (Z,Pi, Pj , I, R, V ) is asked to H′, we keep the responses consistent by
outputting K as well).

– Set sidj,i,iidj := Pi||Pj ||I||R.

on R from A as a message from Pj to (Pi, iidi):

– Retrieve (Pi, iidi, I) ∈ T , sidi,j,iidi := Pi||Pj ||I||R.
– Set sidi,j,iidi := Pi||Pj ||I||R.
– Sim checks whether there is a password pwd′ with (pwd′, V ) ∈ LH, (Pj , Pi, R), and (R/V, x) ∈
DL(X ′) (This means that X = R/V has been generated by some instance beforehand). If
such a pwd′ exists, compute the key K as follows: use the SSQRDH decision oracle to deter-
mine if there is (Z′, Pi, Pj , I, R, V,K

′) ∈ LH′ with Z′ being equal to Z = CDH(g, I/V,R/V ).
In this case use this K = K′. Otherwise, draw a random K ← K.(Again, if at some later
point (Z,Pi, Pj , I, R, V ) is asked to H′, we keep the responses consistent by outputting K
as well).

On Random Oracles

on H(pwd) from A:

If ∃(pwd, V ) ∈ LH : return V .
Otherwise draw u ← Zp and compute V = (X ′)u. Add LH := LH ∪ {(pwd, V )} and
DL := DL ∪ {(V, u)}, and return V .

on H′ (Z, I,R, Pi, Pj , V ) from A:

If ∃ (Z, I,R, Pi, Pj , V,K) ∈ LH′ : return K.
Otherwise draw K

$← K, set LH′ := LH′ ∪ {(Z, I,R, Pi, Pj , V,K)}, and return K.

Fig. 6: Next simulator Sim for Protoss in the proof of Theorem 2
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PAKE Sessions

on (NewInstance, Pi, iidi, Pj , b) from FlePAKE:

– Draw wi,j,iidi ← Zp and compute X = (X ′)wi,j,iidi and I = XVi,j = (X ′)(wi,j,iidi
+ui,j) where

we get ui,j via entries (Pi, Pj , Vi,j) ∈ Q and (Vi,j , ui,j) ∈ DL(X ′). Set T := T ∪{(Pi, iidi, I)}
and send I from Pi to A. Also add (Pi, iidi, b) to CR, (X,wi,j,iidi) to DL(X ′).

on (NewInstance, Pj , iidj , Pi) from FlePAKE and I from A as a party message from
Pi to (Pj , iidj):

– Draw wj,i,iidj ← Zp and compute X = (X ′)
wj,i,iidj and R = XVj,i = (X ′)

(wj,i,iidj
+uj,i). Set

T := T ∪ {(Pi, iidi, R)} and send R from Pj to A. Also add (Pj , iidj , b) to CR, (X,wj,i,iidj )
to DL(X ′).

– Add (X,x′wj,i,iidj ) to DL(g).
– Set sidj,i,iidj := Pi||Pj ||I||R.
– The computation of the key K now depends on whether certain conditions are fulfilled or

not.
• If (Pj , iidj) is linked to a good instance (Pi, iidi), the key K of (Pj , iidj) will be computed

via query (FreshKey, Pj , sidj,i,iidj ) to FlePAKE. (According to the definition of the FreshKey
query this does not change the distribution).

• Otherwise, Sim checks whether there is a password pwd′ with (pwd′, V ) ∈ LH,
(Pi, Pj , I) ∈ T , and (I/V, x) ∈ DL(X ′). (This means that X = I/V has been gen-
erated by some instance beforehand). If such a pwd′ exists query (TestPW, Pj , iidj , pwd′)
to FlePAKE to learn whether pwd′ is equal to the correct password pwd used in instance
(Pj , iidj).

∗ If such a pwd′ exists and the response of FlePAKE indicates pwd′ = pwd (correct guess),
compute the key K as follows: use the SSQRDH decision oracle to determine if there
is (Z′, Pi, Pj , I, R, V,K) ∈ LH′ with Z′ being equal to Z = CDH(g, I/V,R/V ). In
this case use this K. Otherwise, draw a random K ← K.a Moreover, we make a
(CorruptKey, Pj , iidj , sidj,i,iidj ,K) to FlePAKE. (This does not change the view of Z).

∗ If such a pwd′ does not exist or if FlePAKE returns wrong guess, query
(FreshKey, Pj , iidj , sidj,i,iidj ) to FlePAKE. (This does not change the view of Z).

on R from A as a message from Pj to (Pi, iidi):

– Retrieve (Pi, iidi, I) ∈ T ,
– Set sidj,i,iidj := Pi||Pj ||I||R.
– The computation of the key K now depends on whether certain conditions are fulfilled or

not.
• If (Pi, iidi) and an instance (Pj , iidj) of Pj are linked to each other and (Pi, iidi, 1) ∈ CR,

then a random key K must have been assigned to (Pj , iidj). Now Sim sets sidi,j,iidi =
sidj,i,iidj and query (CopyKey, Pi, iidi, sidi,j,iidi) to FlePAKE (According to the definition of
the CopyKey query this does not change the distribution from Z’s point of view).

• Otherwise, Sim checks whether there is a password pwd′ with (pwd′, V ) ∈ LH, (Pj , Pi, R),
and (R/V, x) ∈ DL(X ′) (This means that X = R/V has been generated by some in-
stance beforehand). If such a pwd′ exists, query (TestPW, Pi, iidi, pwd′) to FlePAKE to
learn whether pwd′ is equal to the correct password pwd used in instance (Pi, iidi).

∗ If such a pwd′ exists and the response of FlePAKE indicates pwd′ = pwd (correct guess),
compute the key K as follows: use the SSQRDH decision oracle to determine if there
is (Z′, Pi, Pj , I, R, V,K) ∈ LH′ with Z′ being equal to Z = CDH(g, I/V,R/V ). In
this case use this K. Otherwise, draw a random K ← K.b Moreover, we make a
(CorruptKey, Pi, iidi, sidi,j,iidi ,K) to FlePAKE. (This does not change the view of Z).

∗ If such a pwd′ does not exist or if FlePAKE returns wrong guess, query
(FreshKey, Pi, iidi, sidi,j,iidi) to FlePAKE (This does not change the view of Z).

a If at some later point (Z,Pi, Pj , I, R, V ) is asked to H′, we keep the responses consistent by outputting
K as well.

b Again, if at some later point (Z,Pi, Pj , I, R, V ) is asked to H′, we keep the responses consistent by
outputting K as well.

Fig. 7: Simulator Sim for Protoss in the proof of Theorem 2 that is equivalent to the ideal game.
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On Random Oracles

on H(pwd) from A:
If ∃(pwd, V ) ∈ LH : return V .
Otherwise draw u ← Zp and compute V = (X ′)u. Add LH := LH ∪ {(pwd, V )} and
DL := DL ∪ {(V, u)}, and return V .

on H′ (Z, I,R, Pi, Pj , V ) from A:
If ∃ (Z, I,R, Pi, Pj , V,K) ∈ LH′ : return K.
Otherwise draw K

$← K, set LH′ := LH′ ∪ {(Z, I,R, Pi, Pj , V,K)}, and return K.

Fig. 8: Continuation of Fig. 7.
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