
Simplified PIR and CDS Protocols
and

Improved Linear Secret-Sharing Schemes

Bar Alon∗

Georgetown University.
alonbar08@gmail.com

Amos Beimel∗
Department of Computer Science,

Ben Gurion University.
amos.beimel@gmail.com

Or Lasri∗
Department of Computer Science,

Ben Gurion University.
orshlomo@post.bgu.ac.il

March 18, 2025

Abstract

We consider 3 related cryptographic primitives, private information retrieval (PIR) protocols,
conditional disclosure of secrets (CDS) protocols, and secret-sharing schemes; these primitives
have many applications in cryptography. We study these primitives requiring information-
theoretic security. The complexity of the three primitives has been dramatically improved in
the last few years and they are closely related, i.e., the 2-server PIR protocol of Dvir and Gopi
(J. ACM 2016) was transformed to construct the CDS protocols of Liu, Vaikuntanathan, and
Wee (CRYPTO 2017, Eurocrypt 2018) and these CDS protocols are the main ingredient in the
construction of the best-known secret-sharing schemes. To date, the message size required in
PIR and CDS protocols and the share size required in secret-sharing schemes are not understood
and there are big gaps between their upper bounds and lower bounds. The goal of this paper is to
try to better understand the upper bounds by simplifying current constructions and improving
their complexity.

We obtain the following two independent results:
• We simplify, abstract, and generalize the 2-server PIR protocol of Dvir and Gopi (J. ACM

2016), the recent multi-server PIR protocol of Ghasemi, Kopparty, and Sudan (STOC
2025), and the 2-server and multi-server CDS protocols of Liu et al. (CRYPTO 2017,
Eurocrypt 2018) and Beimel, Farràs, and Lasri (TCC 2023). In particular, we present one
PIR protocol generalizing both the 2-server and multi-server PIR protocols. This is done
by considering a new variant of matching vectors and by using a general share conversion.
In addition to simplifying previous protocols, our 2-server protocols can use matching
vectors over any m that is the product of two distinct primes. Our construction does not
improve the communication complexity of PIR and CDS protocols; however, construction
of better matching vectors over any m that is the product of two distinct primes will
improve the communication complexity of 2-server PIR and CDS protocols.

∗Partially supported by ISF grant 391/21 and by the Frankel center for computer science.

1

• In many applications of secret-sharing schemes it is important that the scheme is linear,
e.g., by using the fact that parties can locally add shares of two secrets and obtain shares
of the sum of the secrets. We provide a construction of linear secret-sharing schemes
for n-party access structures with improved share size of 20.7563n. Previously, the best
share size for linear secret-sharing schemes was 20.7576n and it is known that for most
n-party access structures the shares’ size is at least 20.5n. This result is achieved by a
reduction to unbalanced CDS protocols (compared to balanced CDS protocols in previous
constructions).

1 Introduction
Private information retrieval (PIR) protocols, conditional disclosure of secrets (CDS) protocols,
and secret-sharing schemes are cryptographic primitives that have many applications. We study
these primitives requiring information-theoretic security. The three primitives are closely related,
e.g., the same techniques are used to construct PIR and CDS protocols, and CDS protocols are
used to construct secret-sharing schemes for arbitrary access structures. Furthermore, the goal of
these primitives is to protect the secrecy of some inputs (i.e., a database, private inputs of servers,
or a secret), and they are non-interactive.

The complexity of PIR and CDS protocols and secret-sharing schemes has been dramatically
improved in the last few years; yet their complexity is far from being understood. For example,
the share size in the best-known secret-sharing schemes for arbitrary n-party access structure is
exponential, i.e., 2O(n), while the best lower bound is Ω(n2/ log n) [31, 30]. Determining the optimal
complexity of these primitives is a major open problem. Improving the known upper bounds will
lead to better complexity in the protocols that use them, and proving better lower bounds will show
their limitations. Furthermore, understanding the exact complexity of these primitives may lead to
understanding the optimal complexity of more complex interactive cryptographic primitives, e.g.,
the communication complexity required for information-theoretic secure multi-party computation
(MPC) protocols. Our goal in this paper is to advance the understanding of the upper bounds
for PIR and CDS protocols and secret-sharing schemes, especially linear secret-sharing schemes.
Towards this goal, we will try to simplify and generalize the current constructions, provide new
tools for better constructions, and construct better schemes.

1.1 PIR, CDS, and Linear Secret Sharing
Before presenting our results, we informally discuss the primitives we study in this work.

Private information retrieval. Private information retrieval protocols enable a user to obtain
an item from a database held by two or more servers such that each server does not learn information
on the retrieved item. Specifically, in a k-server PIR protocol, a user holds an index i ∈ [N], and
the servers hold the same database D ∈ {0, 1}N . The goal is for the user to learn Di, using one
round of communication, without revealing any information about i to each server. To achieve this
goal, the user computes queries q1, . . . , qk and sends qj to the j-th server (for 1 ≤ j ≤ k). Each
server computes an answer, based on the query that it got and the database, and sends the answer
to the user, who reconstructs Di from the index, its randomness, and the answers.

Private information retrieval protocols were introduced by Chor, Goldreich, Kushilevitz, and
Sudan [27] in 1995. Since then, the communication complexity of private information retrieval pro-
tocols has been studied in a line of works [2, 43, 46, 17, 51, 67, 68, 36, 48, 26, 35, 41]. Specifically,

2

Efremenko [36] constructed a 3-server PIR protocol with query length 2Õ(√
log N) and 2r-server PIR

protocols with query length 2Õ(r√log N); the answer length in these protocols is O(1). Dvir and
Gopi [35] broke the N1/3 barrier for the communication complexity for 2-server PIR protocols,
showing a construction with communication complexity of 2Õ(√

log N). Very recently, Ghasemi,
Kopparty, and Sudan [41] constructed a 3-server PIR protocol with query and answer length
2Õ(3√log N). The communication complexity of k-server PIR protocols for k ≥ 6 was improved
by Itoh and Suzuki [47, 48], Chee, Feng, Ling, Wang, and Zhang [26], Dvir and Gopi [35], and
Ghasemi et al. [41]. For example, there is a 6-server PIR protocol with communication complexity
2Õ(4√log N) (this is implied by the results of [47, 3, 41] and was overlooked in previous papers). See
Theorem 6.6 for the best-known PIR protocols.

The PIR protocols in these works are based on matching vector families. Beimel, Ishai, Kushile-
vitz, and Orlov [20] generalize the 3-server protocol of Efremenko by using share conversions; specif-
ically, they can use matching vectors over more products of primes m. The best known lower bound
on the total communication complexity of 2-server PIR protocols is 5 log n, proved by Wehner and
de Wolf [66] (improving on [57, 52]).

Let’s discuss an application of the new PIR protocol of Ghasemi et al. [41]. Beimel, Ishai,
Kumaresan, and Kushilevitz [18] presented constructions of secure two-party computation protocols
in the correlated randomness model from PIR protocols. In this model, before the inputs are known
to the parties, during an offline phase, a pair of two correlated random strings (r1, r2) is drawn from
some fixed joint distribution and each party receives one of the strings (e.g., r1, r2 are random bits
such that r1∧ r1 = 1). During the online phase, the parties can use their correlated random strings
to evaluate the function. Beimel et al. [18] constructed a secure two-party computation protocol
for an arbitrary function f : [N]× [N]→ {0, 1} in the correlated randomness model from a 3-server
PIR protocol with a database of size N2; provided that the PIR protocol satisfies some properties,
the communication complexity and the size of the correlated randomness in the secure two-party
computation protocol is polynomial in the communication complexity of the PIR protocol. As the
3-server PIR protocol of Ghasemi et al. [41] satisfies these properties, we get a secure two-party
computation protocol for a function f : [N] × [N] → {0, 1} with communication complexity and
the size of the correlated randomness of 2Õ(3

√
log(N)).

Conditional disclosure of secrets. Conditional disclosure of secrets (CDS) protocols are a
cryptographic primitive, introduced by Gertner, Ishai, Kushilevitz, and Malkin [40]. Their mo-
tivation was to construct symmetric private information retrieval protocols. CDS protocols were
later used in constructions of other cryptographic applications, such as attribute-based encryp-
tion [39, 11, 65] and priced oblivious transfer [1]; they are a central tool in the construction of
secret-sharing schemes for arbitrary access structures [54, 7, 10, 21].

In a CDS protocol, several servers hold the same secret and a common random string, and each
server holds a private input. Additionally, there is a referee who knows the private inputs of all
servers. The referee should learn the secret if and only if the private inputs of the servers satisfy
some condition, specified by a predicate f . To achieve this goal, each server sends a single message
to the referee; the message of each server is a function of the secret, the common random string,
and its private input. The referee can reconstruct the message from the messages if and only if the
inputs satisfy the condition.

Constructions of CDS protocols were given in [40, 18, 39, 55, 56, 22, 5, 4]. The best known
2-server CDS protocol has message length 2Õ(√

log N) [55]. The best known lower bounds for 2-

3

server CDS protocols is Ω(log N), proved by Applebaum, Arkis, Raykov, and Vasudevan [6] (see
also [39, 9]). The best k-server CDS construction is due to Liu et al. [56] and has a message size
of 2Õ(

√
k·log N). Applebaum and Arkis [4] (improving on [5]) constructed a CDS protocol for long

secrets, where the message length is only 4 times the length of the secret.

Secret sharing. Secret-sharing schemes, introduced by Shamir [64] and Blakley [24] for the
threshold case and Ito, Saito, and Nishizeki [45] for the general case, allow a dealer holding a
secret to distribute strings (called shares) to parties, such that only authorized sets of parties
can reconstruct the secret, while unauthorized sets learn nothing about the secret. The collection
of authorized sets is called an access structure. Secret sharing has found many applications in
cryptography, distributed computing, and complexity theory (see [13]). Identifying the necessary
and sufficient share size of secret-sharing schemes for general access structures is a major open
problem. The best-known schemes for n-parties access structure achieve share complexity of 2cn

for a constant c < 1 [54, 7, 8, 10], with Applebaum and Nir [10] constructing the best scheme,
which achieves share size 1.5n < 20.585n. On the negative side, the best lower bound on the total
share size is Ω(n2/ log n) due to Csirmaz [31, 30].

Linear secret sharing. Linear secret-sharing are schemes in which the shares are computed
by applying a linear function (over some finite field) on the secret and some random elements
from the field. Alternatively, these are schemes in which each share is a vector over the field and
every authorized set reconstructs the secret by applying a linear function on its shares. In many
applications of secret-sharing schemes, it is important that the scheme is linear, e.g., they use
the fact that parties can locally add shares of two secrets and obtain shares of the sum of the
secrets. Such applications include the secure multi-party computation protocol secure against an
arbitrary (Q2) adversary structure [29] and the construction of public-key (multi-user) attribute-
based encryption [11, 65]. Prior to our work, the best previous linear scheme of [10] has share size
20.7576n for any n-party access structure. On the other hand, it is known that almost all n-party
access structures cannot be realized by a linear secret-sharing scheme with share size less 20.5n, as
proved by Babbai, Gal, and Wigderson [12].

Until recently, most of the constructions of secret-sharing schemes were linear, e.g., [64, 25, 45,
23, 50]. In particular, linear secret-sharing schemes are equivalent to monotone span programs, a
linear-algebraic model of computation introduced by Karchmer and Wigderson [50]. Linear secret-
sharing schemes have many advantages, e.g., they are homomorphic, the sharing and reconstruction
are efficient, and they are closed under duality. Lower bounds on the share size in linear secret-
sharing schemes and monotone span programs for explicit access structures were proven in [16,
12, 37, 38, 28, 61, 62]; the best result is that there exist explicit access structures for which every
linear secret-sharing scheme realizing the access structures has shares of length at least 2cn for some
constant 0 ≤ c < 0.5, proved by Pitassi and Robere [62]. Lower bounds for share size in linear
secret-sharing schemes for almost all access structures were proven in [12, 63, 14], in particular,
almost all access structures require shares of length at least 20.5n in any linear secret-sharing scheme
realizing them [12].

All the above primitives are closely related, e.g.,

• The 2-server PIR protocol of Dvir and Gopi [35] was transformed to construct the CDS
protocols of Liu et al. [55, 56].

4

• CDS protocols are basically a special case of secret-sharing schemes, i.e., 2-server CDS proto-
cols are equivalent to secret-sharing schemes for forbidden bipartite graph access structures.

• CDS protocols are a central ingredient in constructing the best known secret-sharing schemes
for arbitrary access structures, see [54, 8, 10]. Similarly, the best known linear secret-sharing
schemes for arbitrary access structures are constructed from linear CDS protocols.

Furthermore, in all the above primitives, the optimal communication complexity/share-size is not
known, and there are large gaps between the known lower bounds and upper bounds.

1.2 Our Results
We provide two new techniques addressing the upper bounds for the above primitives.

Abstraction of the DG and GKS PIR protocols and the LVW CDS protocol. Our
first result is an abstraction of the 2-server PIR protocol of Dvir and Gopi [35], the k-server PIR
protocol of Ghasemi, Kopparty, and Sudan [41], and the CDS protocol of Liu et al. [55] and its
generalization by Beimel, Farràs, and Lasri [15], henceforth the DG, GKS, LVW, and BFL protocols,
respectively. Although we do not obtain (asymptotically) better communication, our constructions
have the benefit of being both simpler (e.g., we do not use partial derivatives) and more general.
The generalization could potentially lead to improvements in the future.

In more detail, the DG, LVW, and BFL protocols use matching vectors [42] – a combinatorial
object that was used to construct explicit Ramsey graphs [42], and later found other applications in
computer science such as error-correcting codes [34], PIR protocols [36, 35], and CDS protocols [55,
56]. Roughly speaking, a matching vector family over Zh

m is a collection of vectors ((ui, vi))N
i=1,

each in Zh
m, such that for all i ̸= j it holds that ⟨ui, vi⟩ ∈ S and ⟨ui, vj⟩ = t where S ⊆ Zm \{t},

and the inner products are done mod m.
We present one PIR protocol generalizing both the 2-server PIR protocol of [35] and the k-server

PIR protocol of [41]. This protocol uses share conversion, which is a method that parties holding
shares of a secret s in one secret-sharing scheme transform them without interaction to shares of a
related secret s′ in another secret-sharing scheme. Specifically, we require that shares of the secret
1 are transformed to shares of a non-zero secret s′ and shares of a secret s ∈ Scan,m are transformed
to shares of the secret s′ = 0 (where Scan,m is defined in Section 3).

Theorem 1.1 (Informal, simple k-server PIR protocol). Let m = p1 · . . . · pr be a product of r
distinct primes and m2 = p2 · . . . · pr. Assume there is a family of Scan,m-matching vectors in Zh

m

and a k-party Scan,m2-share conversion from Zm2 to Fpℓ
1

for some ℓ ∈ N. Then, there is a k-server
PIR protocol over Fℓ

p1 with message size h · log(m2 · pℓ
1).

The k-server PIR protocol is constructed by using decoding polynomials of [36] as a share
conversion. The improvement in the communication complexity of the k-server PIR protocol of [41]
and our protocol compared to the protocol of [36] is achieved by using matching vectors for an m
that is a product of r primes and using a share conversion (i.e., decoding polynomials) only for m2
that is a product of r − 1 primes.

2-server PIR protocols and 2-server and multi-server CDS protocols. The DG and LVW
constructions use m = 6 and the BFL construction uses m = p1p2 for any two primes such that
p2 | p1− 1. Our construction of 2-server PIR and CDS protocols, on the other hand, works for any

5

m = p1p2, where p2 ̸= p1 are prime numbers. Furthermore, our construction uses matching vectors
with a bigger set S, which we call Szero,m, of size p1 + p2−1. Therefore, any improved construction
of Szero,m-matching vectors (for some m, such that log m = 2o(

√
log N log log N)) immediately implies

an improved construction of PIR and CDS protocols.

Theorem 1.2 (Informal, simple PIR protocols). Let p2 ̸= p1 be two prime numbers, m = p1p2,
and h ∈ N. Assume there exists a matching vector family ((ui, vi))N

i=1 over Zh
m. Then there exists

a 2-server PIR protocol with message size O(h · log m).

Theorem 1.3 (Informal, simple CDS protocols). Let f : [N]2 → {0, 1}, let p2 ̸= p1 be two prime
numbers, m = p1p2, and h ∈ N. Assume there exists a matching vector family ((ui, vi))N

i=1 over
Zh

m. Then there exists a 2-server CDS protocol for f with message size O(h · log m).

More importantly, our protocols abstract and generalize the previous protocols and are simpler.
We show a similar result for k-server CDS protocols, i.e., if there is a family of decomposable
matching vectors in Zh

m (for m a product of two distinct primes), then there is a k-server CDS
protocol with message length O(k2h log m).

As explained above, our protocols use Szero,m-matching vectors; these matching vectors might
be easier to construct than the Scan,m-matching vectors that were studied previously; yielding more
efficient PIR and CDS protocols. We note that, by a construction of [36], every family of Szero,m-
matching vectors of lengthy h can be transformed to a family of Scan,m-matching vectors of length
hm; thus to construct families of Szero,m-matching vectors with shorter vectors one should consider
using big values of m (that depend on the number of required vectors N).

Improved results for linear secret sharing. We generalize the reduction from secret-sharing
schemes to CDS protocols. This generalization allows us to obtain better linear secret-sharing
schemes, where the sharing and reconstruction algorithms are both linear mappings. Specifically,
while the best previous linear scheme due to [10] has share size 20.7576n for any n-party access
structure, we reduce the exponent down to 0.7563n. Recall that the best-known share size for
general secret-sharing schemes for arbitrary access structures is 20.585n.

Theorem 1.4 (Informal, linear secret-sharing schemes). Every n-party access structure can be
realized by a linear secret-sharing scheme with share size 20.7563n.

2 Our Techniques
2.1 A Simple 2-Server PIR Protocol
Dvir and Gopi [35] presented a 2-server PIR protocol with communication 2O(

√
log N log log N); their

protocol uses matching vectors over Z6. Beimel, Farràs, and Lasri [15] implicitly generalized this
protocol by using matching vectors over Zm, where m is a product of two primes p2, p1 such that
p2|p1 − 1. We simplify and generalize these protocols.

Warm-up. We start with describing an inefficient two server PIR protocol that will provide the
motivation for our protocol. Let (ui)N

i=1 ∈ Fh
p be a set of orthonormal vectors over some finite field

Fq and h ∈ N, that is, ⟨ui, ui⟩ ≡ 1 (mod p) and ⟨ui, uj⟩ ≡ 0 (mod p) for every i ̸= j. The user
with index i chooses a random r ∈ Fh

p and sends qA = r to Alice and qB = r + ui mod p to Bob.
A server with query q and database D computes the answer

∑N
j=1⟨q, uj⟩Dj and sends the answer

6

to the user, which subtracts the answer of Alice from the answer of Bob and obtains Di as we next
explain.

N∑
j=1
⟨r + ui, uj⟩Dj −

N∑
j=1
⟨r, uj⟩Dj ≡

N∑
j=1

(⟨r + ui, uj⟩ − ⟨r, uj⟩)Dj

≡
N∑

j=1
⟨ui, uj⟩Dj ≡ Di (mod p),

where the last equality follows from the orthonormality of the vectors. The obvious problem
with this construction is that the length of N orthonormal vectors is at least N and the protocol
is not efficient. Following [36], we will work with vectors over Zm for a composite m; specifically,
m is a product of two distinct primes p2, p1. As every set of orthonormal vectors over Zm is also
orthonormal over Fp2 , we need to relax the orthonormality requirements.

Matching vectors. We use a matching vector family ((ui, vi))N
i=1 over Zh

m, where m = p1p2 for
primes p2 < p1, such that for all i ̸= j it holds that

⟨ui, vi⟩ mod m = 1 and ⟨ui, vj⟩ mod m ∈ Zm \ Z∗
m.

Observe that this is equivalent to ⟨ui, vi⟩ mod p2 = 1 and ⟨ui, vi⟩ mod p1 = 1 and ⟨ui, vj⟩ mod
p2 = 0 or ⟨ui, vj⟩ mod p1 = 0. Such a matching vector family with h = 2O(

√
log N log log N) can

be constructed from the matching vector families constructed in [42, 53]. Note that this definition
is a modification of the definition of matching vectors in previous papers, where it is required that
⟨ui, vi⟩ mod m = 0 and the requirement for i ̸= j is also different. This modification allows us to
simplify the protocol.

In the following, for a prime p let ⟨u, v⟩p =
∑h

ℓ=1 u[ℓ]v[ℓ] mod p.
. .
Protocol 2.1 (A 2-server PIR protocol).
Public parameters: Matching vectors ((ui, vi))N

i=1 over Zh
m, where m = p1p2 for two primes

p2 < p1.
Alice’s and Bob’s input: D ∈ {0, 1}N .
The user’s input: i ∈ [N].

• The user chooses r ← Zh
p2 with uniform distribution and sends qA = r to Alice and qB =

ui + r mod p2 to Bob.

• Alice and Bob compute aA =
∑N

j=1(⟨qA, vj⟩p2 ·Dj)vj mod p1 and aB =
∑N

j=1(⟨qB, vj⟩p2Dj) ·
vj mod p1 respectively and send the answers to the user (each answer is a vector in Zh

p1).

• The user outputs 1 if
⟨ui, aB − aA⟩ ̸≡ 0 (mod p1), (1)

and 0 otherwise.. .

For comparison, we describe the simplest version of the PIR protocol of [35] in Appendix B. We
next prove that Protocol 2.1 is a PIR protocol. Each query to a server is uniformly distributed in

7

Zh
p2 regardless of i and the privacy clearly holds. We next show that correctness holds; this should

be carefully analyzed as we use inner product over Zp2 and Zp1 . The user computes

⟨ui, aB − aA⟩p1 ≡
〈

ui,
N∑

j=1
⟨ui + r, vj⟩p2 ·Djvj −

N∑
j=1
⟨r, vj⟩p2 ·Djvj

〉
p1

≡
N∑

j=1
(⟨ui + r, vj⟩p2 − ⟨r, vj⟩p2) · ⟨ui, vj⟩p1 ·Dj (mod p1). (2)

We claim that this sum is equal to α ·Di for some α ̸= 0, that is, in the sum in (2) each term for
j ̸= i is zero and the term for j = i is non-zero if and only if Di = 1.

We claim that for i ̸= j

(⟨ui + r, vj⟩p2 − ⟨r, vj⟩p2) · ⟨ui, vj⟩p1 ·Dj ≡ 0 (mod p1).

Clearly, this is true if ⟨ui, vj⟩p1 = 0. Otherwise, ⟨ui, vj⟩p2 = 0; thus,

⟨ui + r, vj⟩p2 ≡ ⟨ui, vj⟩p2 + ⟨r, vj⟩p2 ≡ ⟨r, vj⟩p2 (mod p2).

It follows that ⟨ui + r, vj⟩p2 = ⟨r, vj⟩p2 (since 0 ≤ ⟨ui + r, vj⟩p2 , ⟨r, vj⟩p2 < p2). As p2 < p1, the
equality holds modulo p1.

Therefore,

⟨ui, aB − aA⟩p1 ≡
N∑

j=1
(⟨ui + r, vj⟩p2 − ⟨r, vj⟩p2) · ⟨ui, vj⟩p1 ·Dj

≡ (⟨ui + r, vi⟩p2 − ⟨r, vi⟩p2) · ⟨ui, vi⟩p1 ·Di (mod p1).

Now,
⟨ui + r, vi⟩p2 ≡ (⟨ui, vi⟩p2 + ⟨r, vi⟩p2) mod p2 ≡ 1 + ⟨r, vi⟩p2 (mod p2).

If ⟨r, vi⟩p2 < p2 − 1 then ⟨ui + r, vi⟩p2 = 1 + ⟨r, vi⟩p2 over Fp1 and ⟨ui + r, vi⟩p2 − ⟨r, vi⟩p2 ≡ 1
(mod p1). Otherwise, ⟨r, vi⟩p2 = p2 − 1, and over Fp1

⟨ui + r, vi⟩p2 − ⟨r, vi⟩p2 = 0− ⟨r, vi⟩p2 = 1− p2.

In either case, it follows that
⟨ui, aB − aA⟩p1 = α ·Di, (3)

for some α ̸= 0 and the reconstruction of Di is correct.

2.2 A Simple 3-Server PIR Protocol
In this paper, we present a somewhat simplified version of the recent k-server PIR protocol of
Ghasemi, Kopparty, and Sudan [41]; our proof of the protocol is simpler and does not use partial
derivations. To simplify the notations, we will describe in this section the 3-server PIR protocol with
communication complexity 2Õ(3√log n). Furthermore, we will use specific parameters (in Section 6
these choices are generalized). The protocol is a generalization of the above 2-server PIR protocol,
using decoding polynomials – a tool from the 3-server PIR protocol of Efremenko [36]. As in
the above 2-server PIR protocol, the 3-server PIR protocol uses a family of matching vectors; the

8

matching vectors are over Zm, where m = p1 · p2 · p3 is a product of 3 primes. Furthermore, the
queries of the user on index i are a secret sharing of ui and the answer of the t-th server is of the
form

∑N
j=1 Dj(vj mod p1) ·Cj(⟨qt, vj⟩) for some function Cj , where qt is the query sent to the t-th

server.
We next elaborate. Let m2 = p2 · p3 and assume that m2 + 1 = pℓ

1 for some ℓ. The protocol
uses a family ((ui, vi))N

i=1 of matching vectors over Zh
m having the following properties for every

1 ≤ i ̸= j ≤ N :

• ⟨ui, vi⟩m ≡ 1,

• ⟨ui, vj⟩m ̸≡ 1 and ⟨ui, vj⟩pd
∈ {0, 1} for every 1 ≤ d ≤ 3.

Such a matching vector family is called an Scan-matching vector family; it can be constructed with
vectors of length h = 2Õ(3√log N) [42, 53].

The last ingredient we need is decoding polynomials, introduced in [36]. Consider the field Fpℓ
1
;

its multiplicative group has a generator γ of order pℓ
1 − 1 = m2. A decoding polynomial P (X)

over Fpℓ
1

is a polynomial such that P (γ) ̸= 0 and P (γs) = 0 for every s ∈ Zm2 such that s ̸= 1,
s mod p2 ∈ {0, 1}, and s mod p3 ∈ {0, 1}. For example, if m2 = 7 · 73 = 511, then we can take the
polynomial P (x) = (x − γ0)(x − γ147)(x − γ365); this polynomial has 4 non-zero coefficients. For
the 3-server PIR protocol, we will need a decoding polynomial P (X) = b3xα3 + b2xα2 + b0xα0 with
3 non-zero coefficients; such polynomial is implied by [36].1 We describe the 3-server PIR protocol
in Protocol 2.2.
. .
Protocol 2.2 (A 3-server PIR protocol).
Public parameters: An Scan-matching vector family ((ui, vi))N

i=1 over Zh
m for m = p1 · p2 · p3,

where m2 = p2 · p3 = pℓ
1 − 1 for some ℓ ≥ 1, and a generator γ ∈ F∗

pℓ
1

(of order m2).
A decoding polynomial P (x) =

∑3
t=1 btx

αt over Fpℓ
1

Servers’ Input: D ∈ {0, 1}N .
The user’s input: i ∈ [N].
The user’s randomness: r ∈ Fh

m2

• The user sends qt ← r + αt · ui mod m2 to the t-th server for 1 ≤ t ≤ 3.

• The t-th server sends to the user an answer at ∈ Fh
pℓ

1
where

at ←
N∑

j=1
Dj(vj mod p1) · btγ

⟨qt,vj⟩.

• The user computes
∑k

t=1⟨(ui mod p1), at⟩ over Fpℓ
1

and returns 0 iff the expression equals 0.. .

We next prove that Protocol 2.2 is a PIR protocol. Each query to a server is uniformly dis-
tributed in Zh

m2 regardless of i and the privacy clearly holds. We next show that correctness
holds; this should be carefully analyzed as we use inner product over Zm2 and Zp1 . Observe that

1Take the polynomial P (X) = γ269x499 + γ488x446 + γ342 over F2512 = F[γ]/(γ9 + γ4 + 1).

9

γ(a+b) mod m2 = γa mod m2 · γb mod m2 since the order of γ is m2. The user computes the following
expression in Fpℓ

1
.

3∑
t=1
⟨(ui mod p1), at⟩ = ⟨(ui mod p1),

3∑
t=1

N∑
j=1

Dj(vj mod p1) · btγ
⟨r+αt·ui,vj⟩⟩

=
3∑

t=1

N∑
j=1

Dj⟨(ui mod p1), (vj mod p1)⟩ · btγ
⟨r+αt·ui,vj⟩

=
N∑

j=1
Dj⟨ui, vj⟩p1 · γ⟨r,vj⟩

3∑
t=1

btγ
⟨αt·ui,vj⟩

=
N∑

j=1
Dj⟨ui, vj⟩p1 · γ⟨r,vj⟩

3∑
t=1

bt

(
γ⟨ui,vj⟩

)αt

=
N∑

j=1
Dj⟨ui, vj⟩p1 · γ⟨r,vj⟩P

(
γ⟨ui,vj⟩

)
.

We next analyze the terms in the above expression.

• For i = j, by the properties of matching vectors and the decoding polynomial, ⟨ui, vj⟩m = 1,
therefore, ⟨ui, vj⟩m2 = 1 and ⟨ui, vi⟩p1 = 1, and P (γ⟨ui,vj⟩m2) = P (γ) ̸= 0. Thus, ⟨ui, vj⟩p1 ·
γ⟨r,vj⟩P

(
γ⟨αtui,vj⟩m2

)
̸= 0 over Fpℓ

1
.

• If i ̸= j, then ⟨ui, vj⟩m ̸= 1 and ⟨ui, vj⟩pd
∈ {0, 1} for 1 ≤ d ≤ 3. If ⟨ui, vj⟩p1 = 0 then

⟨ui, vj⟩p1 = 0 over Fpℓ
1

. Otherwise, ⟨ui, vj⟩m2 ̸= 1 and ⟨ui, vj⟩pd
∈ {0, 1} for 2 ≤ d ≤ 3; since

P is an decoding polynomial, P (γ⟨ui,vj⟩m2) = 0 over Fpℓ
1
.

We conclude that
∑3

t=1⟨(ui mod p1), at⟩ is equal to some non-zero term times Di and the recon-
struction is correct.

We instantiate Protocol 2.2 with m = 2 · 7 · 73 = 511, the decoding polynomial implied by [36],
and the Scan-matching vector family implied by [42, 53]; the communication complexity of the
resulting polynomial is h = 2Õ(3√log N).

2.3 A Simple 2-Server CDS Protocol
We construct a CDS protocol for the index function INDEX : {0, 1}N × [N] → {0, 1} defined as
INDEX(D, i) = Di. Note that a CDS for INDEX implies a CDS for any other function f : X×Y →
{0, 1} by letting D = (f(x, y))y∈Y . We make the observation that for all s ∈ {0, 1}, i ∈ [N], and
r ∈ Zh

m,

⟨ui,
N∑

j=1
⟨s · ui + r, vj⟩p2 ·Djvj −

N∑
j=1
⟨r, vj⟩p2 ·Djvj⟩p1 = s · α ·Di, (4)

where α ̸= 0. Indeed, if s = 1 then (4) reduces to (3), and if s = 0 then the two terms cancel out
to the all-zero vector.

We describe the CDS protocol for INDEX in Protocol 2.3.
. .

10

Protocol 2.3 (A 2-server CDS protocol).
Public parameters: Matching vectors ((ui, vi))N

i=1 over Zh
m, where m = p1p2 for two primes

p2 < p1.
Alice’s input: D ∈ {0, 1}N .
Bob’s input: i ∈ [N].
The secret: s ∈ {0, 1}.
Shared randomness: r1 ∈ Fh

p2, r2 ∈ Fh
p1.

• Alice sends mA =
(∑N

j=1⟨r1, vj⟩p2 ·Djvj + r2
)

mod p1.

• Bob sends m1
B = sui + r1 mod p2 , m2

B ← ⟨ui, r2⟩ mod p1

• The referee outputs s = 1 if〈
ui,

 N∑
j=1

(⟨m1
B, vj⟩p2 ·Djvj)

−mA

〉
p1

+ m2
B ̸≡ 0 (mod p1), (5)

and s = 0 otherwise.. .

Correctness follows from (4),

⟨ui,

 N∑
j=1

(⟨m1
B, vj⟩p2 ·Djvj)

−mA⟩p1 + m2
B

≡ ⟨ui,
N∑

j=1
⟨s · ui + r, vj⟩p2 ·Djvj −

N∑
j=1
⟨r, vj⟩p2 ·Djvj⟩p1

≡ s · α ·Di (mod p1).

For the security, notice that by (4) for Di = 0,〈
ui,

 N∑
j=1

(⟨m1
B, vj⟩p2 ·Djvj)

−mA

〉
p1

+ m2
B ≡ 0 (mod p1).

The messages mA and m1
B are uniformly distributed (as they are masked by a one-time pad),

and m2
B can be computed from these messages and the database held by the referee. Thus, the

distribution of the view of the referee is independent of the secret.
In Section 5.1, we show more general PIR and CDS protocols that do not assume p2 < p1. Note

that if p1|p2 − 1, then (4) does not necessarily hold. To resolve this, we abstract the properties
of the operator ⟨q, v⟩p2 that we use in Protocol 2.1 and Protocol 2.3; instead, the servers apply a
“so-called” share conversion C(⟨q, v⟩). There are a few reasons to describe the protocols using a
general share conversion:

• The proofs are somewhat cleaner using this notation.

• This provides a more general protocol; in particular, it captures the BFL protocol (which
generalizes the DG protocol and the LVW protocol).

11

• In some scenarios, we will want the servers in Protocol 2.1 to send answers over a specific
field, e.g., given matching vectors over Z21, we will want to work in F7. We construct share
conversions that enable such property.

Remark 2.4. In [56], they use the notion of PIR encoding to describe their CDS protocol, which
looks similar to our protocol. However, the PIR encoding they construct for 2-servers is actually the
same as in [35, 55] and their construction and proofs are more complicated than our construction
and proofs.

2.4 An Improved Linear Secret Sharing
Our construction of an improved linear secret-sharing scheme follows the ideas of the recent con-
structions of linear secret-sharing schemes [54, 7, 8, 10], specifically, we use the blueprint of Apple-
baum and Nir [10]. This construction uses robust CDS protocols to realize downslice access struc-
tures (see definition below). It then uses covering and bootstrapping techniques to construct better
linear secret-sharing schemes for downslice access structures. As every n-party access structure can
be written as an intersection of n downslice access structures, this implies a linear secret-sharing
scheme for every access structure.

Let 0 < b < n. A b-downslice access structure Γ is an access structure where all maximal
unauthorized sets are of size b, that is there are some sets A1, . . . , Aℓ of size b such that A /∈ Γ if
and only if there is some 1 ≤ i ≤ ℓ such that A ⊆ Ai.

Example 2.5. Consider the access structure with n parties {p2, . . . , pn}, where a set is A au-
thorized if and only if it contains at least one party from

{
p2, . . . , pn/2

}
and at least one party

from
{

pn/2+1, . . . , pn

}
; this is an n/2-downslice in which the maximal unauthorized sets are{

p2, . . . , pn/2
}

and
{

pn/2+1, . . . , pn

}
.

Every access structure Γ can be written as ∩1≤b≤nΓb, where Γb is the b-downslice access structure
whose maximal unauthorized sets are the maximal unauthorized sets of Γ of size b.

Our construction is implied by a better construction of linear secret-sharing schemes for n-party
b-downslice access structures for b > n/2. We next explain the idea of our improvement. We achieve
this goal by a reduction to CDS protocols; specifically to robust CDS protocols (as introduced
in [8]). Previous construction of linear secret-sharing schemes using robust CDS protocols use
either reductions to 2-server protocols [8] or to

√
n-server protocols [8, 10]; our improvement is via

reduction to 2-server CDS protocols.
We first recall the notion of robust CDS protocols. The security requirement of a CDS protocol

for a function f ensures that if Alice sends its message for an input x and Bob sends its message for
an input y such that f(x, y) = 0, then the referee does not learn any information on the secret from
these messages. Assume that Alice also sends a message for an input x′ ̸= x with the same shared
randomness, such that also f(x′, y) = 0; the CDS protocol does not guarantee that the referee does
not learn any information on the secret from the 3 messages. In a (t1, t2)-robust CDS protocol the
security is guaranteed even if Alice sends messages for a set X1 with at most t1 inputs and Bob
sends messages for a set X2 with at most t2 inputs (such that f(x, y) = 0 for every x ∈ X1, y ∈ X2),
then the referee does not learn information on the secret from the t1 + t2 messages.

Warm-up. We show in Scheme 2.6 that, given an access structure Γ, an efficient (N, N)-robust
CDS protocol for a function fΓ defined below implies a good secret-sharing scheme for Γ. Let

12

{p2, . . . , pn} be the parties of Γ, p2 =
{

p2, . . . , pn/2
}

and p1 =
{

pn/2+1, . . . , pn

}
. Define fΓ :

2p2 × 2p1 → {0, 1}, where for A1 ⊆ p2, A2 ⊆ p1

fΓ(A1, A2) = 1 ⇐⇒ A1 ∪A2 ∈ Γ;

the size of the domain of each server is N = 2n/2.
. .
Scheme 2.6 (A simple secret-sharing scheme from a CDS protocol).
Public parameters: An (N, N)-robust CDS protocol P for fΓ.
The secret: s ∈ {0, 1}.

• Choose a random string r for the CDS protocol.

• For every A1 ∈ 2p2, compute mA1 – the message in P of Alice with input A1 and random
string r, share mA1 in a |A1|-out-of-|A1| secret-sharing scheme, and give each share to a party
in A1.

• For every A2 ∈ 2p1, compute mA2 – the message in P of Bob with input A2 and random string
r, share mA2 in a |A2|-out-of-|A2| secret-sharing scheme, and give each share to a party in
A2.. .

For a set A, let A1 = A ∩ p2, A2 = A ∩ p1. If A ∈ Γ, fΓ(A1, A2) = 1, thus the secret can be
reconstructed from mA1 , mA2 . As the parties in A can reconstruct these messages, the correctness
follows. For the security, consider a set A /∈ Γ. The parties in A can reconstruct only the messages
MB1 , MB2 for every B1 ⊆ A1 and B2 ⊆ A2. As Γ is monotone, B1 ∪B2 /∈ Γ for every such B1, B2,
thus, fΓ(B1, B2) = 0. By the (N, N)-robustness of the CDS protocol, the parties in A do not know
any information on the secret.

The problem in the above construction is the share size. The share of each party pi ∈ p2 is a share
of the message of each subset A1 ∈ p2 such that pi ∈ A1, there are 2n/2−1 such sets. The best known
(N, N)-robust CDS protocol for a function f : [N] × [N] → {0, 1} has message size O(N/ log N);
in our case N = 2n/2. Thus, the total share of each party is O(2n/2−1 ·N/ log N) = 2n−o(n). This
share size is too big as our goal is share size 2cn for some constant c < 1.

Linear secret-sharing schemes for somewhat regular access structures. As in previous
papers, to improve the share size we reduce the question of constructing a linear secret-sharing
scheme for an arbitrary access structure Γ to the question of constructing a (t, N2)-robust CDS
protocol for functions f : [N1] × [N2] → {0, 1} for some t = o(N1); the message size of Alice in
the best known linear CDS protocol for such f is Õ(N1/t) and the message size of Bob is Õ(t) (up
to polynomial factors).2 Notice that the message sizes of Alice and Bob are not the same when
t ̸≈
√

N1.
We use a different approach, which results in a better share size. Rather than consider |p2| =

|p1| = n/2 as in the warm-up and [8], we take p2, p1 such that |p2| = µn and |p1| = (1 − µ)n
for some parameter 0 < µ < 1 and define fΓ : {0, 1}µn × {0, 1}(1−µ)n → {0, 1} with respect to
this partition. Following [8], we show in Section 8.3 that to realize b-downslice access structures it
suffices to consider somewhat regular access structures, which are access structures in which every

2To get this message size, we need a more refined notion of robustness called (Z, N)-robustness. See Definition 8.4
for a definition of this notion and Section 8.3 for the details why we can use it.

13

maximal unauthorized set A is “well partitioned”, i.e., |A∩ p2| ≤ µb.3 We execute Scheme 2.6 with
the modified fΓ using a (t, N)-robust CDS protocol for t = 2µb.

The correctness follows as in the warm-up. For the security, consider an unauthorized set A;
recall that |A∩ p2| ≤ µb, thus, the parties in A learn at most t = 2µb messages in the CDS protocol
P (one message for each A′ ⊆ A). The share of each pi ∈ p2 contains 2µn shares of messages of
Alice, each message of size Õ(N1/t) = 2µn/2µb; i.e., the share size is Õ(2µ(2n−b)). Similarly, the
share of each pi ∈ p1 contains 2(1−µ)n shares of messages of Bob, each message of size Õ(t) = 2µb;
i.e., the share size is Õ(2n−µ(n−b)). To minimize the maximum share size, we take µ such that
2µ(2n−b) = 2n−µ(n−b), i.e., µ = n

3n−2b ; this results in share size Õ(2n(2n−b)/(3n−2b)). For b > n/2 our
scheme improves on the scheme of [10].

Example 2.7. Consider b = 0.5412n (this is the value that we will use in our construction). In
this case µ = 1

3−2·0.5412 = 0.5214 and the share size is Õ(20.7607n). Notice that in this case more
parties are in p2, the set of parties attached to Alice.

Consider b = 0.4n. In this case µ = 0.4545 < 0.5 and the share size is Õ(20.7272n). Notice that
in this case less parties are in p2, the set of parties attached to Alice.

Linear secret-sharing schemes for arbitrary access structures. We use the fact that any
access structure Γ is the intersection of n downslices to realize an arbitrary access structure; however
as the share size for b-downslices approaches 2n as b approaches n, we cannot use the above schemes
for downslices as is. We use two techniques from previous papers to reduce the share size. The
first technique is the covering technique [7, 10], which shows that for every a < b, every b-downslice
access structure with n parties can be realized as the intersection of roughly

(n
n−b

)
/
(n−a

n−b

)
access

structures, each one of them is a b − a-downslice access structure with n − a parties. The second
technique is the boosting technique from [10] showing that for linear secret-sharing schemes each
b-downslice with n parties can realized by realizing b-downslice access structures with fewer parties
(and some multislice access structures). This results in a recursive construction that uses a scheme
for b-downslice access structures and results in a scheme for b-downslice access structures with
better share size.

Following [10], our scheme for an arbitrary access structure will have the following structure:
• Write Γ as ∩n

b=1Γb, where Γb is a b-downslice access structure.

• For every b < 0.5n, use the linear scheme of [10] to realize the b-downslice Γb.

• Use the boosting technique to realize 0.5n downslice access structures.

• For every 0.5n ≤ b ≤ 0.554n, use the covering technique to realize the b-downslice Γb using
the scheme for 0.5n downslice access structures.

• Use the covering technique to realize 0.554-downslice access structures using our scheme for
0.5214n-downslice access structures.

• Use the resulting scheme for 0.554n-downslice access structures and the boosting technique
to get a better scheme for 0.554n-downslice access structures.

3Actually, the bounds on the sizes that we get are bigger by a factor of n0.2; we ignore this factor in this section.
Furthermore, following [8], we will also require that minimal authorized sets are well partitioned; we do not use this
property in this paper.

14

• For every 0.554n ≤ b ≤ n, use the covering technique to realize the b-downslice Γb using the
scheme for 0.554n downslice access structures.

The scheme in [10] had different constant instead of 0.554 and 0.5214n. Finding the exact con-
stants that optimize our scheme was done using a computer programs; this program also found the
parameters in the boosting.

Remark 2.8. In [10] and in this paper, we partition the possible values of 1 ≤ b ≤ n to 3 intervals.
It might seem that taking more intervals can reduce the share size; however, this is not true. For
example, the construction for 0.592n-downslice access structures (via covering) results in the highest
share size. For b = 0.592n, using the covering technique with 0.554n downslice access structures
is optimal, i.e., using the covering technique with a different a-downslice will result is bigger share
size. Although for other values 0.554n < b < n covering to a different downslice may improve the
share size for b-downslice access structure, it will not improve the maximum share size for Γ.

3 Preliminaries
3.1 Notations
We start with some notation used in this paper. For strings x, y ∈ {0, 1}n we write x ≤ y if
xi ≤ yi for every i ∈ [n]. We denote the concatenated string as x||y. We let wt(x) denote the
Hamming weight of x. We denote the binary entropy function by h : [0, 1] → [0, 1] and it is
defined as h(x) = −x log x − (1 − x) log(1 − x) for all x ∈ (0, 1), and h(0) = h(1) = 0. For
every p ∈ Z, we denote ⟨·, ·⟩p the inner product modulo p, i.e., for every two vectors x, y ∈ Zh

p ,
⟨x, y⟩p =

∑h
ℓ=1 x[ℓ] ·y[ℓ] mod p. For every m ∈ N, we define the equivalence relation over Z×Z, for

every a, b ∈ Z, we say that a ≡ b (mod m) if a mod m = b mod m. In contrast, a mod m denotes
the operator that outputs the remainder of the division of a by m.

3.2 Secret-Sharing Schemes
We start by defining (perfect) secret-sharing schemes.

Definition 3.1 (Access structures). Let P = {p1, . . . , pn} be a set of parties. A collection Γ ⊆
2{p1,...,pn} is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ. An access structure Γ ⊆ 2{p1,...,pn} is
a monotone collection of non-empty sets. Sets in Γ are called authorized, and sets not in Γ are called
unauthorized. We will also represent an n-party access structure by a function f : {0, 1}n → {0, 1},
where an input (i.e., a string) σ = σ1, σ2, . . . , σn ∈ {0, 1}n represents the set Aσ = {pi : i ∈ [n], σi =
1}, and f(σ) = 1 if and only if A ∈ Γ. We will also call f an access structure.

A secret-sharing scheme defines a way to distribute shares to parties. Such a scheme is said to
realize an access structure Γ if the shares held by any authorized set of parties (i.e., a set in the
access structure) can be used to reconstruct the secret, and the shares held by any unauthorized
set of parties reveal nothing about the secret. The formal definition is given as follows.

Definition 3.2 (Secret-sharing schemes). A secret-sharing scheme Π over a set of parties P =
{p1, . . . , pn} with domain of secrets S and domain of random strings R is a mapping from S × R
to a set of n-tuples S1 × S2 × · · · × Sn (the set Sj is called the domain of shares of pj). A dealer
distributes a secret s ∈ S according to Π by first sampling a random string r ∈ R with uniform
distribution, computing a vector of shares Π(s; r) = (sh1, . . . , shn), and privately communicating

15

each share shj to party pj. For a set A ⊆ {p1, . . . , pn}, we denote ΠA(s; r) as the restriction of
Π(s; r) to its A-entries (i.e., the shares of the parties in A).

A secret-sharing scheme Π with domain of secrets S realizes an access structure Γ if the following
two requirements hold:

Correctness. The secret s can be reconstructed by any authorized set of parties. That is, for
any authorized set B =

{
pi1 , . . . , pi|B|

}
∈ Γ, there exists a reconstruction function ReconB :

Si1 × · · · ×Si|B| → S such that for every secret s ∈ S and every random string r ∈ R, it holds
that ReconB (ΠB(s; r)) = s.

Security. Every unauthorized set cannot learn anything about the secret from its shares. Formally,
for any set T /∈ Γ, every two secrets s1, s2 ∈ S, and for a uniformly distributed r ← R, the
distributions

(
ΠT (s1; r) = ⟨shj⟩pj∈T

)
and

(
ΠT (s2; r) = ⟨shj⟩pj∈T

)
are equivalent.

The size of the share of party pj is defined as log |Sj | and the size of the shares of Π is defined as
max1≤j≤n log |Sj |. The total share size of Π is defined as

∑n
j=1 log |Sj |.

Definition 3.3. A scheme is called linear over a finite field F if S = F, R = Fℓ for some integer
ℓ ≥ 1, the sets S1, . . . , Sn are vector fields over F, and the mapping Π is a linear mapping of the
secret and the coordinates of the random string r = (r1, . . . , rℓ). Finally, for an access structure
Γ, let LSS(Γ) denote the minimum total share size, where the minimum is taken over all linear
secret-sharing schemes realizing Γ (over all finite fields).

3.3 Conditional Disclosure of Secrets
Informally, in a CDS protocol there are k servers S1, . . . , Sk, each holding a private input xi, the
secret s, and a common random string r, and there is a referee holding x1, . . . , xk. Each server Si

sends the message mi = Enc(xi, s; r) to the referee, and the referee can reconstruct s if and only
if f(x1, . . . , xn) = 1.

Definition 3.4 (Conditional disclosure of secrets (CDS) protocols). Let f : X1 × · · · × Xk →
{0, 1} be a k-input function. A k-server CDS protocol P for f , with domain of secrets S, domain
of common random strings R, and finite message domains M1, . . . , Mk, consists of k encoding
functions Enc1, . . . , Enck, where Enci : Xi × S × R → Mi for every i ∈ [k]. For an input
x = (x1, . . . , xk) ∈ X1 × · · · × Xk, secret s ∈ S, and randomness r ∈ R, we let Enc(x, s; r) =
(Enc1(x1, s; r), . . . , Enck(xk, s; r)). We say that P is a CDS protocol for f if it satisfies the following
properties:

Correctness. There is a deterministic reconstruction function Dec : X1 × · · · × Xk × M1 ×
· · · × Mk → S such that for every input x = (x1, . . . , xk) ∈ X1 × · · · × Xk for which
f(x1, . . . , xk) = 1, every secret s ∈ S, and every common random string r ∈ R, it holds
that Dec(x, Enc(x, s; r)) = s.

Security. For every input x = (x1, . . . , xk) ∈ X1×· · ·×Xk satisfying f(x1, . . . , xk) = 0 and every
pair of secrets s, s′ ∈ S, and for a uniformly distributed r ← R, the distributions Enc(x, s; r)
and Enc(x, s′; r) are equivalent.

The message size of a CDS protocol P is defined as the size of the largest message sent by the
servers, i.e., max1≤i≤k log |Mi|.

16

In two-server CDS protocols, we sometimes refer to the servers as Alice and Bob (instead of S1
and S2, respectively) and to the referee as Charlie.

Similarly to secret-sharing schemes, all the CDS protocols presented in this paper are with
domain of secrets S = {0, 1}, unless stated otherwise.

Definition 3.5 (The predicate INDEXk
N). We define the k-input function INDEXk

N : {0, 1}Nk−1 ×
[N]k−1 → {0, 1} where for every D ∈ {0, 1}Nk−1 (a (k − 1) dimensional array called the database)
and every (i2, . . . , ik) ∈ [N]k−1 (called the index), INDEXk

N (D, i2, . . . , ik) = Di2,...,ik
.

Observation 3.6 ([39]). If there is a k-server CDS protocol for INDEXk
N with message size M ,

then for every f : [N]k → {0, 1} there is a k-server CDS protocol with message size M .

We obtain the above CDS protocol for f in the following way: Server S1 with input x1 con-
structs a database Di2,...,ik

= f(x1, i2, . . . , ik) for every i2, . . . , ik ∈ [N] and servers S2, . . . , Sk

treat their inputs (x2, . . . , xk) ∈ [N]k−1 as the index, and execute the CDS protocol for
INDEXk

N (D, x2, . . . , xk) = f(x1, x2, . . . , xk).

3.4 Private Information Retrieval (PIR)
A k-server PIR protocol involves k servers S1, . . . , Sk and a user. Each server holds the same
database D ∈ {0, 1}N ; the user holds an index i ∈ [N] and wants to retrieve the bit Di without
revealing i. We consider a simple model of communication (we do not know of information-theoretic
PIR protocols where interaction improves the communication) where the user sends each server a
query and each server sends the user back an answer, which is computed from the query the server
received and the database D. Given the answers from the servers, the user reconstructs Di. We
next provide a formal definition.

Definition 3.7 (Private information retrieval (PIR) protocols). A k-server PIR protocol P for a
database D ∈ {0, 1}N and an index i ∈ [N] consists of k randomized query functions Q1, . . . ,Qk, k
answer functions A1, . . . ,Ak and a reconstruction function C. The user holds the index i, chooses a
random string r and sends a query to the servers q1 ← Q1(i; r), . . . , qk ← Qk(i; r) respectively. The
servers hold the database D, receive a query from the user, and the servers send an answer a1 ←
A1(q1, D), . . . , ak ← Ak(qk, D) respectively. Finally, the user computes his output by applying the
reconstruction function, C(r, a1, . . . , ak, i). We say that a protocol P = (Q1, . . . ,Qk,A1, . . . ,Ak, C)
is a k-server PIR protocol if it satisfies the following properties.

Correctness: The user outputs the correct value. Formally, for every database D ∈ {0, 1}N , index
i ∈ [N], and a random string r ∈ R,

C(r,A1(Q1(i; r), D), . . . ,Ak(Qk(i; r), D), i) = Di.

Security: Each server learns no information about i from its query. Formally, for every 1 ≤ j ≤ k,
every pair of indexes i1, i2, and for a uniformly distributed r ← R, the distributions Qj(i1; r)
and Qj(i2; r) are equivalent.

The communication complexity of a k-server PIR protocol is the largest message communicated
between the servers and the user, i.e., max {|q1|, . . . , |qk|, |a1|, . . . , |ak|}, where the maximum is over
all D ∈ {0, 1}N , i ∈ [N], r ∈ R.

17

3.5 Matching Vectors
We next define matching vectors (MV). Matching vectors are the key tool for the constructions of
the best-known non-linear CDS protocols in [55, 56, 15] and PIR protocol in [36, 35]. Here, we
present a definition of matching vectors that generalizes the known definition from [55, 56, 36, 35].
In our definition, the matching vector family is defined by two disjoint sets S and T in which the
inner products of the vectors lie, whereas in the former definitions the family is only defined by one
set S and the inner products lie in S ∪ {0}.

Afterwards, we specify the type of matching vector which we are going to use in our PIR and
CDS construction, and show the equivalence to the previous definitions, and henceforth derive an
efficient construction for our definition.

Definition 3.8 (Matching vectors). Let N, m, h > 0 be positive integers, and let S, T ⊆ Zm be
subsets such that S ∩ T = ∅. The vectors family ((ui, vi))N

i=1, where ui, vi ∈ Zh
m, is called (S, T)-

matching vectors if the following hold.

1. ⟨ui, vi⟩m ∈ T for every i ∈ [N].

2. ⟨ui, vj⟩m ∈ S for every i ̸= j ∈ [N].

If T = {1} then we call the vector family S-matching vectors.

We next specify the matching vectors set that we will use in our CDS and PIR protocols in
this paper. Let m = p1 ·m2 and m2 = p2 · . . . · pr where p1, . . . , pr are r distinct primes. In most
previous constructions of CDS and PIR protocols based on matching vector families [36, 35, 55] a
variant of this set is used. For r = 2, Beimel et al. [15] use in their construction of 2-server CDS
protocol an Sone,m-matching vectors where

Sone,m = {a ∈ Zm : a ≡ 1 (mod p2) ∨ a ≡ 1 (mod p1)} .

To simplify the construction of k-server CDS and PIR protocols, we use a slightly different
matching vectors family,

Szero,m = Zm \ Z∗
m =

a ∈ Zm :
∨

i∈[r]
a ≡ 0 (mod pi)

 .

Finally, we define a “combination” of these sets

S∗
can,m = {a ∈ Zm : a ̸= 1, a mod p1 = 0 ∨ a mod m2 ∈ Scan,m2} .

Note that when m is a product of two primes, S∗
can,m = Szero,m.

Example 3.9. Let m = 2 · 7 · 73. In this case,

Scan,m = {0, 147, 365, 511, 512, 658, 876} ,

S∗
can,m = {0, 2, 4, . . . , 1022} ∪ {147, 365, 511} ,

Szero,m = {0, 2, 4, . . . , 1022} ∪ {0, 7, 14, . . . , 1017} ∪ {0, 73, 146, . . . , 951} .

We next prove the length of (Sone,m, 0)-matching vectors and Szero,m-matching vectors are equiv-
alent up to an addition of one entry.

18

Claim 3.10. If there is an (Sone,m, 0)-matching vector family over Zm of length h, then there is
an Szero,m-matching vector family over Zm of length h + 1. If there is an Szero,m-matching vector
family over Zm of length h, then there is an (Sone,m, 0)-matching vector family over Zm of length
h + 1.
Proof. Given ((ui, vi))i∈[N], define u′

i = (1,−ui), v′
i = (1, v1). Then, if ((ui, vi))i∈[N] is an

(Sone,m, 0)-matching vector family over Zm of length h, then, ((u′
i, v′

i))i∈[N] is an Szero,m-matching
vector family over Zm of length h + 1, and if ((ui, vi))i∈[N] is an Szero,m-matching vector family
over Zm of length h, then ((u′

i, v′
i))i∈[N] is an (Sone,m, 0)-matching vector family over Zm of length

h + 1. This follows since for every i, j, ⟨u′
i, v′

j⟩ = 1− ⟨ui, vj⟩, and

⟨ui, vj⟩m = 0⇒ ⟨u′
i, v′

j⟩m = 1,

⟨ui, vj⟩m = 1⇒ ⟨u′
i, v′

j⟩m = 0,

⟨ui, vj⟩m ∈ Sone,m ⇒ ⟨u′
i, v′

j⟩m ∈ Szero,m, and
⟨ui, vj⟩m ∈ Szero,m ⇒ ⟨u′

i, v′
j⟩m ∈ Sone,m.

□

We can similarly show that the length of (Scan,m ∪ {1} \ {0} , 0)-matching vectors and Scan,m-
matching vectors are equivalent up to an addition of one entry.

Since Scan,m ∪ {1} \ {0} ⊂ Sone,m, a family of (Scan,m ∪ {1} \ {0} , 0)-matching vectors is a
family of (Sone,m, 0)-matching vectors; Claim 3.10 and the known results for (Scan,m ∪ {1} \ {0} , 0)
matching vectors [42, 53] imply the following theorem.
Theorem 3.11 ([42, 53]). For every r distinct primes p1, p2, . . . , pr, there is an Scan,m matching
vector family over Zm for m = p1 · . . . · pr, of size N and length 2O(r

√
log N(log log N)r−1).4

Trivially, Scan,m-matching vectors imply S∗
can,m and Szero,m-matching vectors of the same length.

We do not know whether such implication exists in the other direction or there is a better construc-
tion for Szero,m-matching vectors, which would improve the communication complexity of 2-server
PIR and CDS protocols.

4 Simplified k-Server PIR Using Share Conversion
In this section, we will describe Protocol 4.4 – a k-server PIR protocol; this protocol is a simplifica-
tion and generalization of the 2-server PIR protocol of Dvir and Gopi [35] and the recent k-server
PIR protocol of Ghasemi, Kopparty, and Sudan [41]. The PIR protocols presented in Sections 2.1
and 2.2 are instantiations of this protocol.

Our protocol modifies the previous protocols in two ways. First, we use matching vectors such
that ⟨ui, vi⟩ = 1 (in previous papers, ⟨ui, vi⟩ = 0); this modification simplifies the protocol. The
second generalization is the use of a general share conversion from a k-party secret sharing as
defined in Section 4.1. Share conversion was defined in [20] and was used to abstract the PIR
protocol of [36]; we use the same abstraction in this paper. Using various share conversions in
Protocol 4.4, we obtain varios PIR protocols. In Section 5, we show how to use Protocol 4.4 to
construct 2-server PIR protocols and in Section 6 we show how to use it to construct k-server PIR
protocols for k ≥ 3. Furthermore, in Section 7, we show that transformations of the 2-server PIR
protocol ala [55, 56] yield 2-server and k-server CDS protocols.

4The constant in the exponent depends on m.

19

4.1 Share Conversion
Beimel et al. [20] abstracted the PIR protocol of Efremenko [36] by using share conversion.They
described how the notion of share conversion generalizes S-decoding polynomials used in [36] and
demonstrated how to construct k-server PIR protocols with short answers using share conversion.

Next, we present the definition of share conversion from a k-party secret-sharing scheme over
Zm to additive sharing over Fpℓ ; in such conversion, the parties are given shares of a secret s, each
party locally computes a function to produce new shares of a related secret s′.5 For simplicity of
the definition, we assume that each share in the original scheme is one element from Zm.6

Definition 4.1 (S-share conversion [20]). Let Π be a k-party sharing over Zm, and let S ⊆ Zm\{1}.
The functions C1, . . . , Ck : Zm → Fpℓ are a k-party S-share conversion if the following requirements
hold.

• If sh1, . . . , shk = Π(1; r) for some r, then C1(sh1) + · · ·+ Ck(shk) ̸= 0.

• If sh1, . . . , shk = Π(s; r) for some r and s ∈ S, then C1(sh1) + · · ·+ Ck(shk) = 0.

Example 4.2. Let m = 2 and consider the secret-sharing scheme over Z2, where the dealer chooses
a uniformly distributed bit r, sh1 = r, and sh2 = s⊕ r. We describe a 2-party {0}-share conversion
from this scheme to the additive scheme over F3, where C1(a) = a and C2(a) = −a mod 3 for every
a ∈ Z2. This conversion satisfies the requirements of Definition 4.1:

• If sh1, sh2 = Π(1; r) for some r, then either sh1 = 1 and sh2 = 0 and C1(1) + C2(0) ≡ 1− 0 ≡
1 mod 3, or sh1 = 0 and sh2 = 0 and C1(0) + C2(1) ≡ 0 + (−1) ≡ 2 mod 3.

• If sh1, sh2 = Π(0; r) for some r, then sh1 = sh2 and C1(sh1) + C2(sh2) ≡ sh1− sh2 ≡ 0 mod 3.

In our PIR protocols, we will use share conversion from a linear secret-sharing scheme. Recall
that a secret-sharing scheme over Zm is linear if each share is a linear combination of the secret
and uniformly distributed random elements in Zm. For example of a linear scheme, let α1, . . . , αk

be some constants in Zm and consider the scheme where the dealer shares s by choosing r ∈ Zm

with uniform distribution and outputting the shares sh1 = r + α1s, . . . , shk = r + αks.
The following observation follows from the linearity of a secret-sharing scheme.

Observation 4.3. Let Π be a linear secret-sharing scheme over Zm. If sh1, . . . , shk = Π(s; r) and
sh′

1, . . . , sh′
k = Π(s′; r′), then sh1 + sh′

1, . . . , shk + sh′
k are shares of the secret s + s′ mod m (using

the randomness r + r′).

Furthermore, for the security of the PIR protocol we use a scheme that is 1-private, i.e., the
scheme satisfies the security requirement of Definition 3.2 with respect to all singletons. We do not
need that bigger sets can reconstruct the secret.

5Beimel et al. gave a broader definition of a share conversion with respect to a relation R ⊆ Zm × Fpℓ in which
k parties hold shares of a secret s given by a secret-sharing scheme over Zm and each party locally computes a share
of a secret s′ over a field Fpℓ such that (s, s′) ∈ R. We only consider a specific relation.

6The definition can be easily generalized to the case that each share is composed of more than 1 element (e.g.,
CNF sharing).

20

4.2 The PIR Protocol Using Share Conversion
Now, we present the k-server PIR protocol that uses share conversion.
. .
Protocol 4.4 (A k-server PIR protocol).
Public parameters: An S∗

can,m-matching vector family ((ui, vi))N
i=1 over Zh

m for m = p1 · . . . · pr

a product of r distinct primes; let m2 = p2 · . . . · pr.
A k-party 1-private linear secret-sharing scheme Π over Zm2.
A k-party Scan,m2-share conversion C1, . . . , Ck from Π to additive sharing over Fpℓ

1
.

Servers’ Input: D ∈ {0, 1}N .
User’s input: i ∈ [N].

• For every ℓ ∈ [h], the user shares ui[ℓ] using Π, with shares denoted as shℓ
1, . . . , shℓ

k, and sends
qt ← (sh1

t , . . . , shh
t) ∈ Fh

m2 to the t-th server for 1 ≤ t ≤ k.

• The t-th server sends to the user at ∈ Fh
pℓ where

at ←
N∑

j=1
Dj(vj mod p1) · Ct(⟨qt, vj⟩m2).

• The user computes
∑k

t=1⟨(ui mod p1), at⟩ over Fpℓ
1

and return 0 iff the expression equals to
0.. .

Theorem 4.5. Let m = p1 · . . . · pr be a product of r distinct primes and m2 = p2 · . . . · pr. Assume
there is a family of S∗

can,m-matching vectors in Zh
m and a k-party Scan,m2-share conversion from

Zm2 to Fpℓ
1

for some ℓ ∈ N. Then, Protocol 4.4 is a k-server PIR protocol over Fℓ
p1 with message

size h · log(m2 · pℓ
1).

Proof. In order to prove the theorem, we need to show that Protocol 4.4 satisfies correctness and
security.

Correctness. First, note that (ui mod p1) is a vector over Fp1 and therefore also over Fpℓ
1
. Also,∑N

j=1 Dj(vj (mod p1)) · Ct(⟨qt, vj⟩m2) is a linear combination of vectors over Fp1 with coefficients
in Fpℓ

1
. Thus, when applying an inner product over Fpℓ

1
we get

⟨(ui mod p1), at⟩ = ⟨(ui mod p1),
N∑

j=1
Dj(vj mod p1) · Ct(⟨qt, vj⟩m2)⟩

=
N∑

j=1
(Dj · Ct(⟨qt, vj⟩m2)) ⟨ui, vj⟩p1 .

21

The user computes

k∑
t=1
⟨(ui mod p1), at⟩ =

k∑
t=1

N∑
j=1

(Dj · Ct(⟨qt, vj⟩m2)) ⟨ui, vj⟩p1

=
N∑

j=1

k∑
t=1

(Dj · Ct(⟨qt, vj⟩m2)) ⟨ui, vj⟩p1

=
N∑

j=1
Dj · ⟨ui, vj⟩p1

k∑
t=1

Ct(⟨qt, vj⟩m2). (6)

Recall that q1[ℓ], . . . , qk[ℓ] are shares of ui[ℓ], thus, by Observation 4.3, ⟨q1, vj⟩m2 , . . . , ⟨qk, vj⟩m2

are shares of the secret ⟨ui, vj⟩m2 . We next prove that the j-th term in Equation (6), for i ̸= j, is
0, while the i-th term is some non-zero number times Di:

j = i. In this case, ⟨ui, vi⟩p1 = 1 and ⟨q1, vi⟩m2 , . . . , ⟨qk, vj⟩m2 are shares of ⟨ui, vi⟩m2 = 1, thus,
by the definition of share conversion,

∑k
t=1 Ct(⟨qt, vj⟩m2) ̸= 0.

j ̸= i. In this case, ⟨ui, vj⟩m ∈ S∗
can,m. Therefore, either ⟨ui, vj⟩p1 = 0 and the term is zero, or

⟨ui, vj⟩m2 ∈ Scan,m2 . In the latter case, ⟨q1, vi⟩m2 , . . . , ⟨qk, vj⟩m2 are shares of ⟨ui, vj⟩m2 ∈
Scan,m2 , thus, by the definition of Scan,m2-share conversion

∑k
t=1 Ct(⟨qt, vj⟩m2) = 0. We

conclude that for j ̸= i, the value of the j-th term is 0.

Thus,
k∑

t=1
⟨(ui mod p1), at⟩ = α ·Di (7)

for some non-zero α ∈ Fpℓ
1

and the user returns Di.

Security. By the 1 privacy of Π, each query is identically distributed for every for every index
i. □

5 A Simplified 2-Server PIR protocol
We next show how to construct a 2-server PIR protocol using Protocol 4.4, that is, we need to
construct 2-party share conversions and explain which family of matching vectors we use. The 2-
server PIR protocols that we get are simplifications and generalizations of the 2-server PIR protocols
of Dvir and Gopi [35], Liu et al. [56], and Beimel et al. [15]. Our protocols can use Szero,m-matching
vector family over any m that is a product of two distinct primes. The protocols of Dvir and
Gopi [35] and Liu et al. [56] use (Scan,m, 0)-matching vector family over Z6 and the protocol of
Beimel et al. [15] uses (Sone,m, 0)-matching vector family for m = p1p2 s.t. p2|p1 − 1. Thus, our
protocols offer full flexibility in choosing m as a product of two primes.

Let m = p1p2; in this case m2 = p2 and Scan,m2 = {0}. Consider the following 2-party secret-
sharing scheme Π over Fp2 , where for every s ∈ Fp2 the dealer chooses a uniformly distributed
r ∈ Zp2 and computes sh1 = r and sh2 = r + s mod p2. The reconstruction of the secret is
sh2 − sh1 mod p2 = s. We construct several {0}-share conversions from this secret-sharing scheme
to an additive sharing over Fp1 (i.e., ℓ = 1). Let C1, C2 : Fp2 → Fp1 be such share conversion; for
a sharing of s = 0, i.e., sh1 = sh2, we require C2(sh1) + C2(sh1) ≡ 0 mod p1, i.e., ⇒ C1(sh1) ≡

22

−C2(sh1) (mod p1). Therefore, we define 2-party share conversion by one function C that satisfies
that for a sharing of s = 1, i.e., sh2 − sh1 ≡ 1 (mod p2), C(sh2)− C(sh1) ̸≡ 0 (mod p1).

5.1 Constructing 2-Party Share Conversions
We next describe three 2-party {0}-share conversions.

5.1.1 The First Share Conversion

The first share conversion is used in Section 2; it assumes that p1 ∤ p2 − 1, in particular, it can be
applied when p2 < p1.

Claim 5.1. Let p1, p2 be primes such that p1 ∤ p2 − 1, and let C1 : Fp2 → Fp1, where for every
x ∈ Fp2, C1(x) = x mod p1. Then, C1 is a 2-party share conversion.

Proof. We need that for every x ∈ Fp2 , C1(x + 1 mod p2)− C1(x) ̸≡ 0 (mod p1). Let x ∈ Fp2 ,

• If x ̸≡ p2 − 1 (mod p2), then

C1(x + 1 mod p2)− C1(x) ≡ C1(x + 1)− C1(x) ≡ x + 1− x ≡ 1 ̸≡ 0 (mod p1).

• Otherwise, if x = p2 − 1, then, since p1 ∤ p2 − 1

C1(p2 − 1 + 1 mod p2)− C1(p2 − 1) ≡ C1(0)− C1(p2 − 1)
≡ 0− (p2 − 1) ≡ 1− p2 ̸≡ 0 (mod p1).

□

In particular, if p2 < p1 then C1(x) = x is a share conversion. We note that when p1|p2 − 1,
C1(x) = x mod p1 is not a share conversion since

C1(p2 − 1 + 1)− C1(p2 − 1) ≡ 0− p2 + 1 ≡ 0 (mod p1).

5.1.2 The Second Share Conversion

The second share conversion assumes that p2|p1−1. This is the share conversion used in [15] and its
generalization is used in [36, 41] and in our k-server PIR protocol for k ≥ 3. The share conversion
uses an element γ ∈ F∗

p1 whose order is p2, i.e., p2 is the smallest positive integer s.t. γp2 ≡ 1
(mod p2). Such an element exists if and only if p2|p1 − 1.

Claim 5.2. Let p1, p2 primes s.t. p2|p1 − 1, and let γ ∈ F∗
p1 be an element of order p2. Then the

following function, C2(x) = γx mod p1 is a share conversion.

Proof. Since the order of γ is p2, the mapping C2 is indeed from Fp2 to Fp1 . For x ∈ Fp2 ,

C2(x + 1 mod p2)− C2(x) ≡ γx+1 mod p2 − γx ≡ γx+1 − γx ≡ γx(γ − 1) (mod p1).

Since γ ∈ F∗
p1 , we know that γ ̸= 0; since the order of γ is p2 > 1, we know that γ ̸= 1, therefore

C2(x + 1)− C2(x) ̸≡ 0 (mod p1). □

23

5.1.3 The Third Share Conversion

The third share conversion only assumes that p1 ̸= 2. The size of the range of this share conversion
is 3.

Claim 5.3. Let p1, p2 primes, such that p1 > 2 and define C3 as follows:

C3(x) =
{

x mod 2 0 ≤ x < p2 − 1
2 x = p2 − 1

.

Then, C3 is a share conversion.

Proof. Let x ∈ Fp2 ,

• 0 ≤ x < p2 − 1, then C3(x + 1)− C3(x) ∈ {−1, 1}, i.e., the difference is non-zero.

• Otherwise, if x = p2 − 1, then, since p1 > 2,

C3(x + 1 mod p2)− C3(x) ≡ C3(0)− C3(p2 − 1) ≡ 0− 2 ̸≡ 0 (mod p1).
□

5.2 The 2-Server PIR Protocol
We next present the simplified 2-server PIR protocol using share conversion; this is an instantiation
of Protocol 4.4. A concrete implementation of this 2-server PIR protocol is given in Protocol 2.1.
. .
Protocol 5.4 (A 2-server PIR protocol from share conversion).
Public parameters: An Szero,m-matching vector family ((ui, vi))N

i=1 over Zh
m for m = p1p2.

A 2-party {0}-share conversion C : Fp2 → Fp1.
Servers’ Input: D ∈ {0, 1}N .
User’s input: i ∈ [N].
User’s randomness: r ∈ Fh

p2.

• The user sends queries q1 ← r mod p2 and q1 ← r + ui to the first server and second server,
respectively.

• The t-th server (for t ∈ {1, 2}) sends to the user at ∈ Fh
p1, where

at ←
N∑

j=1
Dj(vj mod p1)C(⟨qt, vj⟩p2).

• The user outputs 0 iff ⟨ui, a2 − a1⟩p1 = 0.
. .

By using the 2-party share conversion C1 of Claim 5.1 (taking p to be the bigger factor of m)
and Theorem 4.5 we obtain the following result. Recall that for S∗

can,m = Szero,m when m is a
product of two primes.

Theorem 5.5. Let p1, p2 be two distinct primes and let m = p1p2. Assume there is a family of
Szero,m-matching vectors in Zh

m. Protocol 5.4 is a 2-server PIR protocol with message size h · log m.

Using the matching vector family of [42, 53] over Z6, we get the following theorem.

Corollary 5.6. There is a 2-server PIR protocol with message size 2Õ(
√

log N).

24

6 k-Server PIR Protocols from Sparse S-Decoding Polynomials
In this section, we show how to instantiate Protocol 4.4 to obtain k-server PIR protocols for k > 2.
The protocols we obtain are a simplification of the recent PIR protocol of Ghasemi, Kopparty, and
Sudan [41], obtaining the same communication complexity. To instantiate the protocol, we use the
share conversion via sparse decoding polynomials, introduced by Efremenko [36]. For the sake of
completeness, we describe this share conversion below.

6.1 k-Sparse Decoding Polynomials
As we previously described, Efremenko [36] presented a construction for k-server PIR protocol.
Beimel et al. [20] defined share conversion and observed that Efremenko implicitly constructed
share conversions via sparse decoding polynomials. We present a definition of decoding polynomials
that generalizes the definition from [36], defining them by a subset S and an element t /∈ S, where
the former definition only was defined by S and t = 0.

Definition 6.1 (Decoding Polynomials). Let m > 0, t ∈ Zm, S ⊆ Zm \ {t}, and p be a prime s.t.
m | pℓ − 1 for some ℓ ≥ 1. Let γ ∈ Fpℓ be an element of order m. A polynomial P (X) ∈ Fpℓ [X] is
called an (S, t)-decoding polynomial if:

P (γs) =
{

α ̸= 0 if s = t

0 if s ∈ S.

If t = 1, we call the polynomial an S-decoding polynomial. A polynomial is k-sparse if it consists
of at most k monomials.

In our construction, we will use Scan,m-decoding polynomial for some m = p1 · . . . · pr, where
the known constructions of decoding polynomials in [48, 26] are (Scan,m ∪ {1} \ {0} , 0)-decoding
polynomial. We now show how to construct Scan,m-decoding polynomial from an (Scan,m ∪ {1} \
{0} , 0)-decoding polynomial with the same sparsity.

Lemma 6.2. If there is a k-sparse (Scan,m ∪{1} \ {0} , 0)-decoding polynomial over Fpℓ, then there
is a k-sparse Scan,m-decoding polynomial.

Proof. Let P (X) be an (Scan,m∪{1}\{0} , 0)-decoding polynomial over Fpℓ for the element γ ∈ Fpℓ

of order m. We define P ′(X) = P (γ ·Xm−1). For every s, P ′(γs) = P (γ ·(γs)m−1) = P (γ ·γs(m−1)) =
P (γ(1−s) mod m). Therefore,

1. P ′(γ1) = P (γ0) = 1.

2. If s ∈ Scan,m, then, by the CRT (1− s) mod m ∈ Scan,m ∪ {1} \ {0} ⇒ P ′(γs) = P (γ1−s) = 0.
□

We next show that a k-sparse decoding polynomial implies a k-party share conversion (as
discussed in [20]).

Lemma 6.3. Let m = p1 · . . . · pr be a product of r distinct primes, p be a prime and ℓ ∈ N such
that m | pℓ − 1. If there is a k-sparse Scan,m-decoding polynomial over Fpℓ, then there is a k-party
Scan,m-share conversion from Zm to Fpℓ.

25

Proof. Let P (x) =
∑k

t=1 btx
αt be an explicit representation of a k-sparse Scan,m-decoding polyno-

mial over Fpℓ , and γ ∈ F∗
pℓ be an element of order m in Fpℓ (such γ exists since m divides 2ℓ − 1

– the order of the multiplicative group of Fpℓ). We consider the following linear secret-sharing
scheme over Zm: To share a secret s ∈ Zm, the dealer chooses r ∈ Zm with uniform distribution
and computes the shares sht ← r + αt · s mod m for 1 ≤ t ≤ k. This is a variant of Shamir’s 2-out-
of-k secret-sharing scheme; in this scheme, the evaluation points are determined by the decoding
polynomial P . We define the share conversion Ct : Zm → Fpℓ for 1 ≤ t ≤ k as follows:

Ct(a) = bt · γa.

We next prove that this is a share conversion. Let sh1 = r+α1 ·s mod m, . . . , shk = r+αk ·s mod m
be shares of a secret s. Then,

k∑
t=1

Ct(sht) =
k∑

t=1
bt · γr+αt·s mod m =

k∑
t=1

bt · γr+αt·s = γr
k∑

t=1
bt · (γs)αt = γrP (γs).

On the one hand, P (γ) ̸= 0, thus
∑k

t=1 Ct(sht) ̸= 0 for s = 1. On the other hand, P (γs) ̸= 0 for
every s ∈ Scan,m, thus

∑k
t=1 Ct(sht) = 0 for s ∈ Scan,m. □

Combining Lemma 6.3 with Theorem 4.5, we obtain the following result.

Theorem 6.4. Let m = p1 · . . . · pr be a product of r distinct primes and let m2 = p2 · . . . · pr

such that m2|pℓ
1 − 1 for some ℓ ≥ 1. Assume there is a family of S∗

can,m-matching vectors in Zh
m

and a k-sparse Scan,m2-decoding polynomial. Then, there is a k-server PIR protocol over Fℓ
p1 with

message size O(h log(m2 · pℓ
1)).

The best known decoding polynomials. Efremenko [36] showed that for every m = p1 · . . . ·pr

that is a product of r distinct primes there is some ℓ ∈ N and a 2r-sparse Scan,m1-decoding poly-
nomial over Fpℓ

1
. Efremenko also presented a 3-sparse Scan,7·73-decoding polynomial over F29 (as

opposed to the trivial polynomial that is 4-sparse). Itoh and Suzuki [47, 48] improved on Efre-
menko’s work by giving a recursive method to construct Scan,m-decoding polynomials, by composing
decoding polynomials.

Theorem 6.5 ([47, 48]). Let m1, m2 be products of r1, r2 distinct primes respectively and p be a
prime s.t. m1, m2, p, are co-prime. Furthermore, let ℓ1, ℓ2 ∈ N. Assume there is a k1-sparse Scan,m2-
decoding polynomial P1(x) ∈ Fpℓ1 [x] and a k2-sparse Scan,m1-decoding polynomial let P2(x) ∈ Fpℓ2 [x].
Let m = m1 · m2 and ℓ = lcm(ℓ1, ℓ2). Then, there is a k1k2-sparse Scan,m-decoding polynomial
P (x) ∈ Fpℓ [x].

For example, taking Efremenko [36] 3-sparse Scan,7·73-decoding polynomial over F29 and a trivial
2-sparse Scan,3-decoding polynomial over F22 , namely the polynomial x−1, Itoh and Suzuki [47] got
a 6-sparse Scan,3·7·73 decoding polynomial over F218 . Other 6-sparse Scan,m decoding polynomials,
where m is a product of 3 primes, were discovered by Amran [3] (see Table 1). Using Theorem 6.4
with these polynomials and the matching vector family of [42, 53] results in a 6-server PIR protocol
with communication complexity 2Õ(4√log N) (this decoding polynomial was overlooked in [26, 41]).

To use Theorem 6.5, Itoh and Suzuki [48] and Chee et al. [26] constructed additional 3-sparse de-
coding polynomials. The best-known decoding polynomials are described in the following theorem;
it is slightly better than the result described Chee et al. [26] using the 6-sparse polynomials.

26

m Fpℓ Scan,m-decoding polynomial

3 · 5 · 13 F212 P (X) = γ140X194 + γ145X187 + γ117X156 + γ188X131 + γ115X73 + γ82

3 · 5 · 17 F218 P (X) = X254 + γ45X254 + γ206X228 + γ96X2 + γ88X79 + γ20

3 · 7 · 13 F212 P (X) = γ257X270 + γ91X232 + γ133X181 + γ26X107 + γ183X59 + γ110

3 · 11 · 31 F210 P (x) = γ825X1022 + γ894X1012 + γ600X970 + γ584X914 + γ810X300 + γ775

5 · 7 · 13 F212 P (X) = γ414X454 + γ384X438 + γ169X372 + γ47X362 + γ296X205 + γ434

Table 1: 6-sparse Scan,m-decoding polynomials from [3].

Theorem 6.6. There exist k-sparse Scan,m-decoding polynomials, for some m that is a product of
r distinct primes, for the following values:

• For an even 2 < r < 104 and is even and k ≤ 3r/2,

• For an odd 1 < r < 103 and k = 2 · 3
r−1

2 , and

• For r ≥ 104 and k = (3/4)51 · 2r.

For all such values k, r, there is a k-server PIR protocol with communication complexity 2Õ(r
√

log(N)).

Next, we present a result by Amran and Beimel [3] where they found a 6-sparse Scan,m-decoding
polynomials directly i.e. not by the composition method, using a computer search. We present the
Scan,m-decoding polynomials over Fpℓ in Table 1:

6.2 Szero,m-Decoding Polynomials
When m is a product of r distinct primes and p is co-prime to m, there is a trivial 2r-sparse
Scan,m-decoding polynomial over Fpℓ , namely

∏
s∈Scan,m

(x − γs), where ℓ < m satisfies m | pℓ − 1
(such ℓ exists by Euler’s theorem) and γ is an element of order m in F∗

pℓ . In this section, we show
that there is a 2r-sparse Szero,m-decoding polynomial when m is a product of r distinct primes,
that is, this polynomial is a decoding polynomial for a bigger set than the trivial Scan,m-decoding
polynomial. As a result, if one constructs “short” Szero,m-matching vectors for m that is a product
of r primes (compared to the known Scan,m-matching vectors), then we will get improved 2r-server
PIR protocols.

Claim 6.7. Let m = p1 · . . . · pr be a product of r distinct primes. Then, there is some ℓ ∈ N such
that the polynomial P (x) =

∏r
i=1(x

m
pi − 1) over Fpℓ is a 2r-sparse Szero,m-decoding polynomial.

Proof. Take ℓ < m such that m | pℓ − 1 (such ℓ exists by Euler’s theorem), g a generator of F∗
pℓ ,

and γ = g(2ℓ−1)/m; the order of γ is m. First, it is clear that the number of monomials in P (x)
is at most 2r. Next, we show that it is an Scan,m-decoding polynomial. Since the order of γ is m,
γm/pi ̸= 1 for every 1 ≤ i ≤ r, thus P (γ) ̸= 0. Let s ∈ Szero,m, i.e., there exists j ∈ [r] s.t. s ≡ 0
(mod pj) and s = q · pj for some q > 0. Then,

(γs)
m
pj = γ

(qpj)· m
pj = (γm)q = 1.

Therefore, P (γs) = 0. □

27

We can replace in Theorem 6.4 the S∗
can,m-decoding polynomial with the Szero,m-decoding poly-

nomial of Claim 6.7 and get the following theorem.

Theorem 6.8. Let m = p1 ·m2 and m2 = p2 · . . . · pr. If there is an Szero,m-matching vector family
with vectors of length h, then there is a 2r-server PIR protocol with communication complexity
h · log(m2 · pℓ

1) for some ℓ < m.

We note that Theorem 6.8 does not yield better PIR protocols since we do not know any Szero,m-
matching vector families that are asymptotically shorter than the best known Scan,m-matching
vectors. Theorem 6.8 gives us the motivation to find better Szero,m-matching vectors in order to
improve the communication for PIR protocols.

6.3 Are There Better Share Conversions?
To construct a k-server PIR protocol using Theorem 4.5, we need a k-server Scan,m2 share conversion
to Fpℓ

1
, where m2 is a product of r−1 distinct primes and p1 is co-prime to m2. Efremenko [36] has

(implicitly) shown that such share conversions exist when k-sparse decoding polynomials exist (see
Lemma 6.3). Constructing share conversions that do not use decoding polynomials can improve
the communication complexity of PIR protocols.

Constructions of 3-server Scan,m2 share conversion to Fpℓ
1
, where m2 is a product of 2 distinct

primes were given by Beimel et al. [20] (using a computerized search), Paskin-Cherniavsky and
Schmerler [60], and Paskin-Cherniavsky and Nissenbaum [59]. However, in all these constructions
p1 divides m2; thus, these share conversions cannot be used in Theorem 4.5.

The question of constructing suitable share conversions (for small values of k, r) without using
decoding polynomials is left as an open problem.

7 Simplified CDS protocols
In this section, we present our simplified CDS protocols. In Section 7.1 we present the 2-server
protocol, and in Section 7.2 we present our multi-server protocol.

7.1 The 2-Server CDS Protocol
We next present Protocol 7.1 – our simplified 2-server CDS protocol using 2-server share conversion
as in Section 5. A concrete implementation is given in Protocol 2.3. Protocol 7.1 is obtained, as
in [55], by exchanging the roles of the parties in Protocol 5.4 – our 2-server PIR protocol. In more
details, the randomness of the user is now the shared random string of the servers; Alice computes
the same message as her answer in the PIR protocol and Bob computes the query qB and sends it to
Charlie, and Charlie computes the answer of Bob in the PIR protocol (Charlie holds the database,
while Bob does not hold it). Furthermore, some masking is added to prevent Charlie from learning
information on the common random string.
. .
Protocol 7.1 (A 2-server CDS protocol).
Public parameters: An Szero,m-matching vector family ((ui, vi))N

i=1 over Zh
m for m = p1p2.

Alice’s input: D ∈ {0, 1}N .
Bob’s input: i ∈ [N].
The secret: s ∈ {0, 1}.

28

Shared randomness: r1 ∈ Fh
p2, r2 ∈ Fh

p1.
Notations: Let C : Fp2 → Fp1 be a share conversion.

• Alice sends mA ←
∑N

j=1 C(⟨r1, vj⟩p2) ·Djvj + r2 mod p1.

• Bob sends m1
B ← (sui + r1 mod p2) , m2

B ← ⟨ui, r2⟩p1.

• Charlie outputs 1 if

⟨ui,
N∑

j=1
C(⟨m1

B, vj⟩p2) ·Djvj −mA⟩p1 + m2
B ̸≡ 0 (mod p1), (8)

and 0 otherwise.
. .

Theorem 7.2. Let p1, p2 be two distinct primes and let m = p1p2. Protocol 7.1 is a 2-server CDS
protocol over Fp1 for INDEX2

N with message size h · log m, where h is the length of the matching
vectors used in the protocol.

Proof. First, denote a1 =
∑N

j=1 C(⟨r1, vj⟩p2) ·Djvj , and a2 =
∑N

j=1 C(⟨m1
B, vj⟩p2) ·Djvj . Then,

mA = a1 +r2. Note, that a1 is the same expression as the answer of the first server in Protocol 5.4.
Then, in Protocol 7.1, Charlie outputs 1 iff

⟨ui, a2 − a1 − r2⟩p1 + m2
B ≡ ⟨ui, a2 − a1 − r2⟩p1 + ⟨ui, r2⟩p1

≡ ⟨ui, a2 − a1⟩p1 ̸≡ 0 (mod p1)

Before proving the correctness and security we will show that for some α ̸≡ 0 (mod p1)

⟨ui, a2 − a1⟩p1 = s ·Di · α. (9)

This follows from the following analysis.

• If s = 0, then m1
B = r1, and a2 = a1. In this case ⟨ui, a2 − a1⟩p1 = 0.

• Otherwise, if s = 1, then a2 is equal to the answer of the second server in Protocol 5.4.
Therefore from Equation (7) in the proof of Theorem 4.5

⟨ui, a2 − a1⟩p1 = Di · α

for α ̸≡ 0 (mod p1).

Charlie computes s ·Di · α mod p1 for α ̸≡ 0 (mod p1) and return 1 iff it is not equal to 0.
Now, we can continue to prove the correctness and security.

Correctness. Correctness should hold when Di = 1. In this case by (9), Charlie outputs 1 if
s · α mod p1 is not equal to 0 for some α ̸≡ 0 (mod p1), thus Charlie returns s.

29

Security. We prove that when Di = 0, Charlie learns no information on the secret.

• The joint distribution of mA, m1
B is uniformly distributed since they are masked by r2, r1

respectively.

• By (9),

⟨ui,
N∑

j=1
C(⟨m1

B, vj⟩p2) ·Djvj −mA⟩p1 + m2
B = s ·Di · α = 0.

Therefore, m2
B is independent of s and can be computed from mA, m2

B, i, D.

From the observations, when Di = 0, Charlie can simulate mA, m1
B, m2

B given i, D. □

7.2 The Multi-Server CDS Protocol
In this section, we generalize the 2-server CDS protocol in Protocol 7.1 to a (k + 1)-server CDS
protocol (for k ≥ 2), similarly to the generalization done by Liu et al. in [56]; this is done using
decomposable matching vectors. We start with the definitions of point-wise product of vectors and
decomposable matching vectors.

Definition 7.3 (Pointwise product). Let m, h > 0 be two positive integers and let x, y ∈ Zh
m. The

point-wise product (or Hadamard product) of x, y, denoted by x ⊙ y, is a vector in Zh
m whose ℓ-th

element is the product of the ℓ-th elements of x, y, i.e. (x ⊙ y)[ℓ] = x[ℓ] · y[ℓ] mod m.

Definition 7.4 (k-decomposability [56]). A family of vectors (ui)Nk

i=1 over Zh
m is k-decomposable

if there exist vector families (u1,i)N
i=1, . . . , (uk,i)N

i=1 over Zh
m such that under the natural mapping

i 7→ (i1, . . . , ik) ∈ [N]k
ui = u1,i1 ⊙ · · · ⊙ uk,ik

mod m

for all i ∈ [N]k. That is, ui is the pointwise product of k vectors u1,i1 , . . . , uk,ik
, where each uj,ij

can be computed from ij.

Definition 7.5 (Decomposable matching vector families). For integers N, m, h, k > 0, t ∈ Zm

and S ⊆ Zm \ {t}, a collection of vectors ((ui, vi))Nk

i=1 over Zh
m is a k-decomposable (S, t)-matching

vector family if it is an (S, t)-matching vector family, and (ui)Nk

i=1, (vi)Nk

i=1 are k-decomposable.

Next, we present a claim similar to Claim 3.10 showing the equivalence between the length of k-
decomposable (Sone,m, 0)-matching vectors to the length k-decomposable Szero,m-matching vectors.

Claim 7.6. If there is a k-decomposable (Sone,m, 0)-matching vector family over Zm of length h,
then there is a k-decomposable Szero,m-matching vector family over Zm of length h+1. If there is an
k-decomposable Szero,m-matching vector family over Zm of length h, then there is a k-decomposable
(Sone,m, 0)-matching vector family over Zm of length h + 1.

Proof. Given ((ui, vi))i∈[N]k define u′
i = (1,−ui), v′

i = (1, vi). We have seen in the proof
of Claim 3.10 that if ((ui, vi))i∈[N]k is an (Sone,m, 0)-matching vector family then ((u′

i, v′
i))i∈[N]

is an Szero,m-matching vector family, and if ((ui, vi))i∈[N] is an Szero,m-matching vector family then
((u′

i, v′
i))i∈[N]k is an (Sone,m, 0)-matching vector family. It is left to show that if ((ui, vi))i∈[N]k

is k-decomposable matching vector family then ((u′
i, v′

i))i∈[N]k is a k-decomposable matching vec-
tor family. Let (u1,i)N

i=1, . . . , (uk,i)N
i=1 be the decomposition of (ui)i∈[N]k . For every i1 ∈ [N],

30

define u′
1,i1 = (1,−u1,i1), and for every 2 ≤ t ≤ k, it ∈ [N], define u′

t,it
= (1, ut,ii), then

(u′
1,i)N

i=1, . . . , (u′
k,i)N

i=1 is a decomposition of (u′
i)i∈[N]. Since, for every i ∈ [N]k

u′
i[1] = 1 = Πk

t=1u′
t,it

[1]

and for every 2 ≤ ℓ ≤ h + 1,

u′
i[ℓ] = −ui[ℓ− 1] = −Πk

t=1ut,it [ℓ− 1] = Πk
t=1u′

t,it
[ℓ].

□

Since Scan,m ⊂ Sone,m, a k-decomposable family of (Scan,m, 0)-matching vectors is a k-
decomposable family of (Sone,m, 0)-matching vectors. Since Liu et al. [56] showed that the known
results for Scan,m matching vectors [42] are k-decomposable, combining those results with Claim 7.6
imply the following corollary.

Corollary 7.7. For every distinct primes p1, p2, there is a k-decomposable Szero,m-matching vector
family over Zm for m = p1p2, of size Nk and length 2O(

√
k log N log(k log N)).

The multi-server CDS protocol that we present is a generalization of Protocol 7.1 to k servers.
In the protocol, one server, we call Alice holds the database D ∈ {0, 1}Nk−1 and sends the exact
same message as in Protocol 7.1. The other k − 1 servers will jointly hold an index i ∈ [N]k−1 i.e.
the servers S2, . . . , Sk will hold i2, . . . , ik ∈ [N] respectively. The k − 1 parties will simulate Bob
from Protocol 7.1 using a PSM protocol whose functionality is Bob’s messages in the 2-server CDS
protocol (for a formal definition of PSM see [44]).

In a PSM protocol there are k− 1 parties each holding an input xi and a common randomness.
There is also a referee we call Charlie who wants to learn F (x1, . . . , xk−1) for a fixed functionality F .
Each server sends a message to Charlie based on their private input and the common randomness.
Given these messages Charlie should be able to learn F (x) without learning anything else about
x1, . . . , xk−1.

In the k-server CDS protocol each server S2, . . . , Sk will send a message to Charlie according
to the PSM, and Charlie would be able to reconstruct the messages of Bob from Protocol 7.1 as
if he was holding the full index i, without learning any information about the secret. That special
purpose PSM which is presented by Liu et al. [56] uses the (k− 1)-decomposablity of the matching
vectors.

Next we generalize the special purpose PSM protocol from [56] to any two distinct primes p1, p2.

Theorem 7.8 ([56]). For integers N, h, k ≤ log N and m = p1p2 for distinct primes p1, p2, if
(ui)Nk−1

i=1 is (k − 1)-decomposable, then there is a PSM for the functionality

Faux : [N]× · · · × [N]× {0, 1} × Fp2 × Fp1 → Fh
p2 × Fp1

where Faux(i1, . . . , ik; s, r1, r2) 7→ (sui + r1, ⟨ui, r2⟩p1)

with communication complexity O(h · k2 log m).

Finally, we present our k-server CDS protocol.
. .

31

Protocol 7.9.
Public parameters: A decomposable Szero,m-matching vector family ((ui, vi))Nk−1

i=1 over Zh
m for

m = p1p2 and a PSM protocol (PSM.B2, . . . , PSM.Bk, PSM.C) for Faux.
Input of S1 (Alice): D ∈ {0, 1}Nk−1.
Input of St (2 ≤ t ≤ k): it ∈ [N].
The secret: s ∈ {0, 1}.
Shared randomness: r1 ∈ Fh

p2, r2 ∈ Fh
p1 and randomness rPSM of the PSM.

Notations: Let C : Fp2 → Fp1 be a share conversion, and let V : Fh
p2 → Fh

p1 where V (w) =∑N
j=1 C(⟨w, vj⟩p2) ·Djvj mod p1.

• For 2 ≤ t ≤ k, the t-th party sends mPSM,t ← PSM.Bt(it, s, r1, r2; rPSM)

• Alice sends mA ←
∑N

j=1 C(⟨r1, vj⟩p2) ·Djvj + r2 mod p1.

• Charlie computes (m1
B, m2

B)← PSM.C(mPSM,2, . . . , mPSM,k).

• Charlie outputs 1 if

⟨ui,
N∑

j=1
C(⟨m1

B, vj⟩p2) ·Djvj −mA⟩p1 + m2
B ̸≡ 0 (mod p1), (10)

and 0 otherwise.
. .

Theorem 7.10. Let p1, p2 be two distinct primes and let m = p1p2. Protocol 7.9 is a k-server
CDS protocol over Fp1 for INDEXk

N with message size O(h · k2 log m), where h is the length of the
matching vectors used in the protocol.

Proof. The correctness and security follow from the correctness and security of Protocol 7.1 and
of the PSM protocol for Faux in Theorem 7.8. From the correctness of the PSM for Faux, given
mPSM,2, . . . , mPSM,k, Charlie computes correctly m1

B ← sui + r1, m2
B ← ⟨ui, r2⟩p1 . Thus, from the

proof of Theorem 7.2 the correctness follows. The security follows from the security of Protocol 7.1;
the joint distribution mA, m1

B, m2
B is equally distributed for s = 0 and s = 1. Finally, from the

security of the PSM protocol, the joint distribution of mPSM,1, . . . , mPSM,k can be simulated from
(m1

B, m2
B).

Communication. Alice sends a vector over Fh
p1 (of length h log p1), while all the other k servers

send a PSM message, thus from Theorem 7.8 their message length is O(h · k2 log m). Thus the
message size of the protocol is (h · k2 log m). □

8 Improved Linear Secret-Sharing Schemes for Arbitrary Access
Structures

In this section, we show an improved construction of linear secret-sharing schemes for arbitrary
access structures. We start with some preliminaries, followed by the main result of this section.

32

8.1 Preliminaries
8.1.1 Multislice and Downslice Access Structures

We next introduce the multislice and downslice of an access structure. They have found use in
constructing secret-sharing schemes for general access structures [54, 7, 8, 10]. We first define
multislices. Roughly, the (a : b)-multislice of an access structure Γ agrees with Γ on all sets of size
between a and b, all sets of size less than a are unauthorized, and all sets of size greater than b are
authorized. Formally, it is defined as follows.
Definition 8.1 (Multislices). Let f : {0, 1}n → {0, 1} be an n-party access structure and let
a ≤ b ∈ [n]. The (a : b)-multislice of f is the access structure F : {0, 1}n → {0, 1} defined as

F (x) =

0 if wt(x) < a

f(x) if wt(x) ∈ [a, b]
1 if wt(x) > b

.

An access structure is called an (a : b, n)-multislice access structure if it is the (a : b)-multislice
of some access structure over n parties. For α < β ∈ [0, 1], we denote the linear exponent of
(αn : βn, n)-multislice access structure by

Mℓ (α : β) = lim sup
n→∞

max
F ∈M(α:β,n)

1
n

log LSS(F),

where M(α : β, n) is the set of all (αn : βn, n)-multislice access structures.
We next define a b-downslice of an access structure Γ. It is defined as the access structure

that agrees with Γ on all sets of size b, and whose max-terms are all of size b. That is, a set is
unauthorized if and only if it is contained in an unauthorized set of Γ of size b.
Definition 8.2 (Downslices). Let f : {0, 1}n → {0, 1} be an n-party access structure and let b ∈ [n].
The b-downslice of f is the access structure F : {0, 1}n → {0, 1} defined as

F (x) =
{

0 if ∃x′ : wt(x′) = b, x ≤ x′, f(x′) = 0
1 otherwise

.

An access structure is called a (b, n)-downslice access structure if it is the b-downslice of some
access structure over n parties. For β ∈ [0, 1], we denote the linear exponent of (βn, n)-downslice
access structure by

Dℓ (β) = lim sup
n→∞

max
F ∈D(β,n)

1
n

log LSS(F),

where D(β, n) is the set of all (βn, n)-downslice access structures.

8.1.2 Robust Conditional Disclosure of Secrets

Observe that in the security definition of a CDS protocol, if a server sends several messages for
different inputs with the same randomness, then it is not guaranteed that the referee does not
learn anything about the secret. Toward constructing better secret-sharing schemes, Applebaum et
al. [8] introduced the notion of robust CDS (RCDS) protocol, where the security is guaranteed to
hold even if the servers send several messages for different inputs that do not satisfy the predicate.
Before formally defining RCDS protocols, we first define the notion of a zero set, which is simply
a subset of inputs that are mapped to 0.

33

Definition 8.3 (Zero sets). Let f : X × Y → {0, 1} be a function. We say that a set Z ⊆ X × Y
is a zero set of f if f(x, y) = 0 for all (x, y) ∈ Z.

Definition 8.4 (Z-robust CDS protocols). Let P be a CDS protocol for a function f : X × Y →
{0, 1}, and let Z = Z1 × Z2 ⊆ X × Y be a zero set of f . Let A(Z1, s; r) = (A(x, s; r))x∈Z1 and
B(Z2, s; r) = (B(y, s; r))y∈Z2. We say that P is robust for the set Z if for every pair of secrets
s1, s2 ∈ S and for r ← R it holds that

(A(Z1, s1; r), B(Z2, s1; r)) ≡ (A(Z1, s1; r), B(Z2, s2; r)).

Let Z1 ⊆ 2X ,Z2 ⊆ 2Y . We say that P is (Z1,Z2)-robust if it is robust for every zero set Z = Z1×Z2
such that Z1 ∈ Z1, Z2 ∈ Z2. Furthermore, for an integer t1 we say that P is (Z1, t2)-robust if it is
(Z1,Z2)-robust for Z2 = {A ⊆∈ Y : |A| ≤ t2}; (t1, t2)-robustness is defined similarly. Finally, for
an integer t, we say that P is t-robust if it is (t, t)-robust.

8.2 Statement of Our Result
In this section, we prove new upper bounds on the share size of linear secret-sharing schemes for
all access structures.

Theorem 8.5. Any n-party access structure can be realized with a linear secret-sharing scheme by
share size 20.7563n+o(n).

To simplify notations, if a scheme has share size 2S·n+o(n), we will say that it has exponent S.
As observed in [10], it is enough to prove the bound for all downslices. Recall that a downslice
is an access structure where all maximal authorized sets are of the same size. Applebaum and
Nir [10] constructed a scheme for a downslice by a bootstrapping algorithm, taking a linear secret-
sharing scheme for a downslice and constructing a better scheme. Our improvement is done by
constructing a better scheme for downslices than [10] before applying bootstrapping. The next
result states the share size for our basis scheme. In Section 8.5 we apply the bootstrapping, which
proves Theorem 8.5.

Lemma 8.6. Let α0 > 0.5412 denote the unique solution to the equation (2x− 3)2 log(x) + 2x2 −
8x + 7 = 0 in the interval [0, 1]. Then for all β ∈ (0, 1),

Dℓ (β) ≤

1
2 + β

2 if β ≤ 1/2
2−β
3−2β if 1/2 < β ≤ α0

h(β)− 0.51079 · (1− β) otherwise
.

For example, for β = 0.54 we get Dℓ (0.54) ≤ 146/192 ≈ 0.7604. On the other hand, be-
fore applying the bootstrapping, Applebaum and Nir [10] proved the upper bound of Dℓ (0.54) ≤
h(0.54)− 0.5 · (1− 0.54) ≈ 0.7654.

The bound for β ≤ 1/2 was shown in [10]. The proof for the case where 1/2 < β ≤ α0 is given
in Lemma 8.7, and the proof for the case where α0 < β ≤ 1 is given in Lemma 8.18.

8.3 A Better Linear Secret-Sharing Scheme for Downslices With Low Density
We next show an improved linear secret-sharing scheme for all downslices with low density. That
is, we prove the following.

34

Lemma 8.7 (Low density). Every (b, n)-downslice access structure can be realized by a linear
secret-sharing scheme with share size of at most 2

n(2n−b)
3n−2b

+o(n). Consequently, Dℓ (β) ≤ 2−β
3−2β for

any β ∈ [0, 1].

Towards constructing such a scheme, we first construct a new linear secret-sharing scheme for
all multislices. For this, we use the following 2-server linear CDS for an arbitrary function; this
CDS protocol is already fully robust for Bob.

Theorem 8.8 ([39, 8]). Let f : [N1]× [N2]→ {0, 1}. Then there exists a linear (1, N2)-robust CDS
protocol for f , where the message size of Alice is N1 − 1, and the message of Bob is a single bit.

By the immunization theorem of [8] we obtain the following.

Corollary 8.9. Let f : [N1] × [N2] → {0, 1} and let t ≤ N1 and Z1 ⊆ 2[N1] such that |Z| ≤ t for
every Z ∈ Z1 and Z contains at most u maximal sets. Then there exists a linear (Z1, N2)-robust
CDS protocol for f , where the message size of Alice is O(N1

t log3 t log N1 log u) and the message
size of Bob is O(t log3 t log N2 log u).

Our construction of a linear secret-sharing scheme for multislice access structures follows a
similar approach to previous constructions [8, 10]. That is, we first reduce the construction to
realizing somewhat regular access structures. These are partial access structures where we partition
the parties into two sets and every authorized and every unauthorized set are partitioned “nicely”
between the two sets. Unlike previous constructions, the partition we consider does not split each
set into roughly equal sizes. This uneven partition is the main source for the improved share size
in our construction. We next formally define somewhat regular access structures.

Definition 8.10 ((I, a, b)-somewhat regular access structures). Let 1 ≤ a ≤ b ≤ n and let I ⊂ P of
size |I| = µn. A (partial) access structure Γ = (Γyes, Γno) over n parties is called (I, a, b)-somewhat
regular if for every A ∈ Γyes ∪Γno it holds that µa ≤ |A∩ I| ≤ µb and (1−µ)a ≤ |A∩ (P \ I)| ≤
(1− µ)b.

Note that previous papers considered the case where µ = 1/2. We next construct a linear secret-
sharing scheme for any (I, a, b)-somewhat regular access structure using a robust CDS protocol.

Lemma 8.11. Let Γ = (Γyes, Γno) be an (I, a, b)-somewhat regular access structure and let µ =
|I|/n, t1 =

∑µb
j=µa

(µb
j

)
, and t2 =

∑(1−µ)b
j=(1−µ)a

((1−µ)b
j

)
. Assume that for all functions f : {0, 1}µn ×

{0, 1}(1−µ)n → {0, 1} and every Z1 ⊆ {0, 1}µn,Z2 ⊆ {0, 1}(1−µ)n such that every set in Z1 and Z2
has size at most t1 and t2 respectively and Z1 and Z2 contain at most

(µn
µb

)
and

((1−µ)n
(1−µ)b

)
maximal

sets respectively there exists a 2-server (Z1,Z2)-robust linear CDS protocol, such that the message
sizes of Alice and Bob are sA and sB respectively.

Then there exists a linear secret-sharing scheme realizing Γ such that the share size of every
party pi ∈ I is less than sA ·

∑µb
j=µa

(µn
j

)
and the share size of every party pi ∈ P \ I is less than

sB ·
∑(1−µ)b

j=(1−µ)a
((1−µ)n

j

)
.

Proof. In the following, we let X = {0, 1}µn, let Y = {0, 1}(1−µ)n, and let I =
{
pi1 < · · · < piµn

}
and P \ I =

{
piµn+1 < · · · < pin

}
. For a string x ∈ X we denote A1

x =
{

pij : j ∈ [µn], xj = 1
}

,

and for a string y ∈ Y we denote A2
y =

{
pij+µn : j ∈ [(1− µ)n], yj = 1

}
. We next present the

construction.
. .

35

Scheme 8.12.
Input: The dealer holds a secret s ∈ {0, 1}.

1. Let f : X × Y → {0, 1} be some monotone function that agrees with Γ, that is, for every
x ∈ X and y ∈ Y such that A1

x ∪ A2
y ∈ Γyes ∪ Γno, it holds that f(x, y) = 1 if and only if

A1
x ∪A2

y ∈ Γyes,7 and let

Z1 = {{x∗ ≤ x : wt(x∗) ≥ µa} : wt(x) ≤ µb}

and
Z2 = {{y∗ ≤ y : wt(∗) ≥ (1− µ)a} : wt(y) ≤ (1− µ)b} .

2. Sample a random string r for a 2-server (Z1,Z2)-robust linear CDS protocol P = (A, B) for
f .

3. For every x ∈ X whose Hamming weight w is in the interval [µa, µb], compute shA(x, s) =
A(x, s; r) and share it between the parties in A1

x (i.e., the parties that correspond to the string
x) using a w-out-of-w additive secret-sharing scheme. We denote the share of pi ∈ A1

x by
shA(x, s, i).

4. For every y ∈ Y whose Hamming weight w is in the interval [(1 − µ)a, (1 − µ)b], compute
shB(y, s) = B(y, s; r) and share it between the parties in A2

y using a w-out-of-w additive secret-
sharing scheme. We denote the share of pi ∈ A2

y by shB(y, s, i).

5. The share of pi ∈ I is (shA(x, s, i))x∈X,pi∈A1
x

and the share of pi ∈ P \ I is
(shB(y, s, i))y∈Y,pi∈A2

y
.

. .

We first show that Scheme 8.12 is correct. Fix A ∈ Γyes. Since Γ is (I, a, b)-somewhat regular,
µa ≤ |A ∩ I| ≤ µb and (1 − µ)a ≤ |A ∩ (P \ I)| ≤ (1 − µ)b. Therefore, for the strings x ∈ X and
y ∈ Y such that A1

x = A∩I and A2
y = A∩ (P \I), it holds that f(x, y) = 1 and that their Hamming

weights are in the intervals [µa, µb] and [(1− µ)a, (1− µ)b], respectively. Hence, the parties in A1
x

can reconstruct shA(x, s) and the parties in A2
y can reconstruct shB(y, s). By the correctness of the

(Z1,Z2)-robust CDS protocol, they can reconstruct the secret s.
We next show privacy. Fix A ∈ Γno, let x ∈ X denote the string such that A1

x = A ∩ I, and
let y ∈ Y denote the string such that A2

y = A ∩ (P \ I). Consider two secrets s0 and s1. To
show privacy, we prove that the corresponding shares of the parties in A, denoted D(s0) and D(s1)
respectively, are identically distributed. Since for every x′ ̸≤ x and every y′ ̸≤ y, the parties in
A1

x ∪ A2
y miss at least one share of shA(x′, s) and one share of shB(y′, s), by the security of the

additive secret-sharing scheme, the shares shA(x′, s) and shB(y′, s) held by A1
x ∪ A2

y are uniformly
distributed and independent of the secret and the other shares and can be ignored.

The remaining shares are{
shA(x∗, s, j) : x∗ ≤ x, pj ∈ A1

x∗

}
∪
{

shB(y∗, s, j) : y∗ ≤ y, pj ∈ A2
y∗

}
,

i.e., the shares of the messages corresponding to the inputs

Z1 = {x∗ ≤ x : wt(x∗) ≥ µa} and Z2 = {y∗ ≤ y : wt(y∗) ≥ (1− µ)a} .

7Since Γyes ∪ Γno is a partial access structure, such monotone f exists.

36

Since f is monotone and f(x, y) = 0, the set Z1 × Z2 is a zero set. By the robustness of the
(Z1,Z2)-robust CDS scheme, it follows that D(s0) ≡ D(s1).

Finally, we analyze the share size. The set Z1 contains
(µn

µb

)
maximal sets (one such set for

each string of weight µb) and each Z ∈ Z1 contains at most t1 =
∑µb

j=µa

(µb
j

)
inputs (one input for

every string x∗ ≤ x such that wt(x∗) ≥ µa and wt(x) ≤ µb). Similarly, the set Z2 contains
((1−µ)n

(1−µ)b
)

maximal sets and each Z ∈ Z2 contains at most t2 =
∑(1−µ)b

j=(1−µ)a
((1−µ)b

j

)
inputs. Thus, the message

sizes of Alice and Bob in the (Z1,Z2)-robust CDS protocol are sA and sB respectively. Every party
pi ∈ I receives a share of Alice’s message in the (Z1,Z2)-robust CDS protocol for every x ∈ X

of Hamming weight in [µa, µb], where pi ∈ A1
x. Since there are

∑µb
j=µa

(µn−1
j−1

)
such strings x ∈ X

where pi ∈ A1
x, its share size is less than sA ·

∑µb
j=µa

(µn
j

)
. Similarly, the share size of every party

pi ∈ P \ I is less than sB ·
∑(1−µ)b

j=(1−µ)a
((1−µ)n

j

)
. □

We next construct a linear secret-sharing scheme for a multislice access structure using linear
secret-sharing schemes for somewhat regular access structures. Fix a, b ∈ [n0.8, n− n0.8] such that
a < b (we deal with the general case below) and let ε = n−0.2 be a proximity parameter. Let I ⊆ P
and let µ = |I|/n and let A ⊆ P . We say that A is good for I if

µa− ε ≤ |A ∩ I| ≤ µb + ε and (1− µ)a− ε ≤ |A ∩ (P \ I)| ≤ (1− µ)b + ε.

If A is not good, then we call it bad. We will use the following lemma.

Lemma 8.13. For all a, b ∈ [n0.8, n − n0.8] such that a < b and every constant µ ∈ (0, 1), there
exists a collection of λ = O(n) subsets I1, . . . , Iλ ⊆ P , each of size µn, such that for all A ⊆ P
satisfying a ≤ |A| ≤ b, the set A is good for at least 0.7λ of the subsets.

Proof. We prove the lemma using the probabilistic method. We sample a collection of λ = O(n)
subsets, each of size µn, uniformly at random, and show that with positive probability all inputs
are good for at least 0.7λ of the subsets.

Let us first analyze this probability with respect to a single subset I sampled uniformly at
random from all subsets of P of size µn. Fix A ⊆ P such that a ≤ |A| ≤ b. We next show that

µa− ε ≤ |A ∩ I| ≤ µb + ε and (1− µ)a− ε ≤ |A ∩ (P \ I)| ≤ (1− µ)b + ε

with overwhelming probability. We only prove the former as the latter can be proved using an
analogous argument.

For every i ∈ A let Xi denote the indicator for the event i ∈ A∩I. Then these random variables
are negatively associated (see Claim A.4). We denote by X =

∑
i∈A Xi the random variable that

is equal to |A ∩ I|. By linearity of expectation, E [X] = µ|A|, hence µa ≤ E [X] ≤ µb. Now, since
ε = n−0.2 < µb, by Chernoff’s inequality (see Theorem A.2),

Pr [X > µb + ε] ≤ Pr [X > µ|A|+ ε] = Pr
[
X > µ|A| ·

(
1 + ε · 1

µ|A|

)]
≤ e−ε2· µ|A|

3 ≤ e−n−0.4· µn0.8
3 = e− µn0.4

3 .

Similarly,

Pr [X < µa− ε] ≤ e− µn0.4
3 .

37

Therefore, by the union bound,

µa− ε ≤ |A ∩ I| ≤ µb + ε and (1− µ)a− ε ≤ |A ∩ (P \ I)| ≤ (1− µ)b + ε

except with probability o(1).
Finally, if we independently sample λ subsets, the probability that A is bad for at least 0.3λ of

them is, by a Chernoff bound, at most 2−Ω(λ). By taking λ = Cn for a sufficiently large constant
C, the latter probability is smaller than 2−n. Applying the union bound over all possible subsets A,
the probability that every A is good for at least 0.7λ of the sets is strictly greater than 0. Therefore,
there exists λ subsets such that A is good for at least 0.7λ of them. □

We can now realize (a : b, n)-multislice access structures. We first realize them for all n0.8n ≤
a < b ≤ n− n0.8.

Lemma 8.14. Let n0.8 ≤ a < b ≤ n − n0.8 and let Γ be an (a : b, n)-multislice access structure.
Let c = a− n−0.2, let d = b + n−0.2, and let µ ∈ (0, 1). Assume that for all I ⊂ P , where |I| = µn,
any (I, c, d)-somewhat regular access structure can be realized with a linear secret-sharing scheme
where the share size is at most m. Then Γ can be realized with a linear secret-sharing scheme with
share size at most O(mn log n).

Proof. We start by considering an (a : b, n) partial multislice access structure, namely, the access
structure is defined only over the inputs whose Hamming weight is in the interval [a, b]. The scheme
is as follows.

1. Let I1, . . . , Iλ be the collection of λ = O(n) subsets of P guaranteed by Lemma 8.13.

2. Share the secret s using a λ/2-out-of-λ Shamir’s secret-sharing scheme. Let σ1, . . . , σλ denote
the shares.

3. For every j ∈ [λ], share σj with fresh randomness using the secret-sharing scheme realizing
the (Ij , c, d)-somewhat regular access structure ΓIj ,c,d that agrees with Γ.

We now analyze the construction. We start with showing correctness. Let A ∈ Γyes. By
Lemma 8.13, the set J = {j : A is good for Ij} is of size |J | ≥ 0.7λ. Therefore, at least 0.7λ
of the shares σj can be reconstructed by the parties in A. Thus, they can reconstruct s.

We next show privacy. Let A ∈ Γno. Since A is good for at least 0.7λ of the subsets, by
the privacy of each ΓIj ,c,d, it holds that at least 0.7λ of the shares σj remain perfectly hidden.
Therefore, the secret s remains perfectly hidden.

As for the share size, first, note that each σj is of size O(log λ). Therefore, the share size in the
above scheme is at most O(mλ log λ) = O(mn log n).

We now handle the fully defined access structure, that is, we need to consider the “big” and
“small” sets. Recall that for all A ⊆ P where |A| < a it holds that A /∈ Γ, and for all B ⊆ P where
|B| > b it holds that B ∈ Γ. The scheme is as follows.

1. Share s using a (b + 1)-out-of-n Shamir’s secret-sharing scheme, and give the ith share to pi.

2. Share s into s0 and s1 using a 2-out-of-2 secret-sharing scheme.

3. Share s0 using an a-out-of-n Shamir’s secret-sharing scheme and give the ith share to the pi.

4. Share s1 using the secret-sharing scheme for the partial access structure shown above, and
give the ith share to the pi.

38

For correctness, note that if A ∈ Γ is of size at least b + 1 then the parties can reconstruct s using
the Shamir shares of the first scheme. Otherwise, it must be the case where a ≤ |A| ≤ b, hence the
parties can reconstruct s0 and s1, and thus can reconstruct s.

For privacy, observe that if A /∈ Γ is of size |A| < a, the parties cannot reconstruct s0, hence s
is perfectly hidden. Otherwise, it must be the case where a ≤ |A| ≤ b, hence the Shamir shares of
Step 1 reveal no information to the parties, and they cannot reconstruct s1 due to the privacy of
the underlying scheme.

Finally, note that the share size is only O(log n) additively longer than the share size for the
partial access structure. Thus, the share is at most O(mn log n). □

We can now put everything together and construct a secret-sharing scheme for all multislice
access structures. As a corollary to this theorem, we obtain Lemma 8.7. Note that in the boot-
strapping step, we need to realize multislices (see Lemma 8.19). We note that the result is not
optimal for all parameters, and for some parameters better upper bounds can be obtained by either
using the cover lemma (see Lemma 8.18 below) or the results of [10]. We use the following results
due to Liu and Vaikuntanathan [54], which decomposes an access structure.

Proposition 8.15 ([54]). Let Γ be an access structure and let a < b ∈ [n]. Define three access
structures Γbot(a), Γmid(a, b), and Γtop(b) as follows

Γbot(a) : A ∈ Γbot(a) ⇐⇒ ∃A′ ∈ Γ s.t. A′ ⊆ A and |A′| < a

Γmid(a, b) : A ∈ Γmid(a, b) ⇐⇒ A ∈ Γ and a ≤ |A| ≤ b, or |A| > b

Γtop(b) : A /∈ Γtop(b) ⇐⇒ ∃A′ /∈ Γ s.t. A ⊆ A′ and |A′| > b.

Then Γ = (Γbot(a) ∪ Γmid(a, b)) ∩ Γtop(b). Consequently, if Γbot(a), Γmid(a, b), and Γtop(b) can be
realized with linear secret-sharing schemes with exponent S, then so is Γ.

Theorem 8.16 (Multislice theorem). Let 1 ≤ a < b ≤ n. Then every (a : b, n)-multislice access
structure can be realized by a linear secret-sharing scheme with share size at most 2

n(2n−h(a/b)·b)
3n−2h(a/b)·b +o(n)

if a > b/2, and share size at most 2
n(2n−b)

3n−2b
+o(n) otherwise. Consequently, if a = αn and b = βn,

then the exponent Mℓ (α : β) satisfies.

Mℓ (α : β) ≤

2−h(α/β)·β
3−2h(α/β)·β if α > β/2
2−β
3−2β otherwise.

Proof. Let Γ be an (a : b, n)-multislice access structure. Let a′ = max
{
a, n0.8} and let b′ =

min
{
b, n− n0.8}. Consider the three access structures Γbot(a′), Γmid(a′, b′), and Γtop(b′). Then by

Proposition 8.15 we can write Γ = (Γbot(a′) ∪ Γmid(a′, b′)) ∩ Γtop(b′). We realize Γbot(a′) using a
DNF scheme, and realize Γtop(b′) using a CNF scheme, respectively. The cost of these schemes is
at most n

(n
n0.8
)

= 2o(n).
It is left to realize Γmid(a′, b′). Observe that Γmid(a′, b′) is an (a′ : b′, n)-multislice access

structure where n0.8 ≤ a′ < b′ ≤ n− n0.8. We realize Γmid using the scheme given by Lemma 8.14,
and using the scheme from Lemma 8.11 to realize the somewhat regular access structures. The
total share size is s ·O(n log n), where

s = max

sA ·
µb∑

j=µa

(
µn

j

)
, sB ·

(1−µ)b∑
j=(1−µ)a

(
(1− µ)n

j

) ,

39

where sA and sB are the message sizes of Alice and Bob in the (Z1, 2(1−µ)n)-robust linear
CDS protocol guaranteed by Corollary 8.9, where t =

∑µb
j=µa

(µb
j

)
and u =

(µn
µb

)
. Then sA =

O(2µn

t log3 t · µn · log
(µn

µb

)
), and sB = O(t log3 t · (1 − µ)n · log

(µn
µb

)
). Since

∑µb
j=µa

(µn
j

)
< 2µn and∑(1−µ)b

j=(1−µ)a
((1−µ)n

j

)
< 2(1−µ)n, the share size is

s = max
{

O

(
2µn

t
log3 t · µn · log

(
µn

µb

))
· 2µn,

O

(
t log3 t · (1− µ)n · log

(
µn

µb

))
· 2(1−µ)n

}
,

In order to optimize the share complexity (up to polynomial factors in n), we choose µ such that

22µn

t
= t · 2(1−µ)n. (11)

Observe that

t =
{

O(2h(a/b)·µb) if a > b/2
O(2µb) otherwise.

Therefore, to ensure that (11) holds we take

µ =
{

n
3n−2h(a/b)·b if a > b/2

n
3n−2b otherwise.

Observe that in both cases it holds that µ ∈ (0, 1). Thus, if a > b/2 then, up to polynomial factors,
the share size is 22µn

t = 22µn−h(a/b)·µb = 2
n(2n−h(a/b)·b)

3n−2h(a/b)·b , and if a ≤ b/2 then, up to polynomial factors,
the share size is 22µn

t = 22µn−µb = 2
n(2n−b)

3n−2b . □

As a corollary, we obtain Lemma 8.7.

Proof of Lemma 8.7. Observe that for every b ∈ [n], every (0 : b, n)-multislice access structure is
also a (b, n)-downslice access structure. Therefore, any (b, n)-downslice can be realized with a linear
secret-sharing scheme with share size at most 2

n(2n−b)
3n−2b

+o(n). □

8.4 Constructing a Linear Secret-Sharing for Downslices With High Density
Similarly to [10], for downslices with high density, we reduce this to the case of low density via the
covering lemma.
Lemma 8.17 (Cover reduction lemma [7, 10]). Let a < b ≤ n be positive integers. If (b−a, n−a)-
downslices can be linearly realized with share size z(b−a, n−a) then (b, n)-downslices can be linearly
realized with share size of[(

n

n− b

)
/

(
n− a

n− b

)]
·
[
1 + log

(
n− a

n− b

)]
· z(b− a, n− a).

Consequently, for all constants 0 ≤ α < β ≤ 1 it holds that if (αm, m)-downslices can be linearly
realized with exponent z̃(α), then (βn, n)-downslices can be linearly realized with exponent at most

h(β)− (1− β) · h(α)− z̃(α)
1− α

.

40

Combined with Lemma 8.7, we obtain the following result for downslices with high density. We
note that in [10], the reduction of a downlice with density β was to a downslice with density 1/2.
Since we improve the results for slices with low density, we reduce to a different value.

Lemma 8.18 (High density). Let α0 > 0.5412 denote the unique solution to the equation (2x −
3)2 log(x) + 2x2 − 8x + 7 = 0 in the interval [0, 1]. For every integers n and b ∈ (α0n, n], every
(b, n)-downslice can be linearly realized with share size at most[(

n

n− b

)
/

(
n−b

1−α0

n− b

)]
·
[
1 + log

(
n−b

1−α0

n− b

)]
· 2

2−α0
(3−2α0)(1−α0) ·(n−b)

.

Consequently, for all β ∈ (α0, 1],

Dℓ (β) ≤ h(β)− (1− β) ·
h(α0)− 2−α0

3−2α0

1− α0
< h(β)− 0.51079 · (1− β).

Proof. By Lemmas 8.7 and 8.17, for every a ∈ (0, b), every (b, n)-downslices can be linearly realized
with share size of [(

n

n− b

)
/

(
n− a

n− b

)]
·
[
1 + log

(
n− a

n− b

)]
· 2

2n−b−a
3n−2b−a

·(n−a)+o(n)

≤ 2h(b)·n−h(n−b
n−a)·(n−a)+ 2n−b−a

3n−2b−a
·(n−a)+o(n)

= 2h(b)·n−(h(n−b
n−a)− 2n−b−a

3n−2b−a)·(n−a)+o(n).

Let a′ = b−a
n−a · n ∈ (0, b) and let α′ = a′/n. Then a = b−a′

n−a′ · n and n− a = n−b
n−a′ · n, hence the share

size is at most

2h(b)·n−(h(n−b
n−a)− 2n−b−a

3n−2b−a)·(n−a)+o(n) = 2
h(b)·n−

(
h(α′)−

n−b+ n−b
n−a′ ·n

2(n−b)+ n−b
n−a′ ·n

)
· n−b

n−a′ ·n+o(n)

= 2

(
h(b)−(n−b)·

h(α′)− 2n−a′
3n−2a′

n−a′

)
·n+o(n)

= 2

(
h(b)−(n−b)·

h(α′)− 2−α′
3−2α′

(1−α′)n

)
·n+o(n)

.

The share size is minimized when
h(α′)− 2−α′

3−2α′
1−α′ is maximized. Taking the derivative, we obtain that

the maximum occurs when (2α′ − 3)2 log(α′) + 2(α′)2 − 8α′ + 7 = 0. By definition, this holds for
α′ = α0. Thus, the claim follows. □

8.5 Applying the Bootstrapping of Applebaum and Nir
Applebaum and Nir [10] showed a bootstrapping algorithm for linear secret-sharing schemes by
exploiting duality. They proved the following.

41

Lemma 8.19 (Bootstrapping). Given an integer n and a target slice b ∈ [n] let Dℓ (b, n) [0] denote
the share size given by Lemma 8.6. For every i ≥ 0 define

Dℓ (b, n) [i + 1] = min
a≤b

(max (Mℓ (a : b, n) ,

max
c≤a

(
h(c/n)− (c/n) · h(b/n)−Dℓ (b, n) [i]

1− b/n

)))
Then for every i ≥ 0, every (b, n)-downslice can be realized with a linear secret-sharing scheme with
share size at most Dℓ (b, n) [i].

We next define the function that captures the exponent of the construction. For every i ≥ 0 we
define a sequence of functions di : [0, 1]→ [0, 1] as follows. Let

d1(β) =

1
2 + β

2 if β ≤ 1/2
2−β
3−2β if 1/2 < β ≤ 0.5412
h(β)− 0.51079 · (1− β) otherwise

be the exponent given by Lemma 8.6. Next, for every i ≥ 0 let

di+1(β) = min
α≤β

(
max

(
m(α, β), max

γ≤α
(ui(γ, β))

))
, (12)

where ui, m : [0, 1]2 → [0, 1] are defined as

ui(γ, β) = h(γ)− γ · h(β)− di(β)
1− β

and

m(α, β) =

2−h(α/β)·β
3−2h(α/β)·β if α > β/2
2−β
3−2β otherwise

is the exponent given by Theorem 8.16. By Lemma 8.19, we obtain the following.

Lemma 8.20. For every i ≥ 0 and every β ∈ [0, 1], it holds that Dℓ (β) ≤ di(β).

We next show how to simplify Equation (12). Since

∂ui(γ, β)
∂γ

= log
(1

γ
− 1

)
− h(β)− di(β)

1− β
,

it follows that for every β, the function ui(γ, β) is maximized at

γi :=
(

1 + 2
h(β)−di(β)

1−β

)−1
.

Let ũi : [0, 1]2 → [0, 1] be defined as ũi(α, β) = maxγ≤α (u2(γ, β)). Then

ũi(α, β) =
{

ui(γi, β) if γi ≤ α ≤ β

ui(α, β) otherwise
.

42

Therefore,

di+1(β) = min
α≤β

(max (m(α, β), ũi(α, β))) .

Finally, observe that m(α, β) is a decreasing function of α, while ũi(α, β) is an increasing function
of α. Since both are continuous, they intersect at exactly one value α̃i. This value also minimizes
max (m(α, β), ũi(α, β)). Therefore,

di+1(β) = m(α̃i, β).

8.6 A Linear Secret-Sharing Scheme for All Access Structures
We can now show that every access structure can be realized with a linear secret-sharing scheme with
an exponent at most 0.7563, thus proving Theorem 8.5. The idea for the construction is roughly as
follows. First, as observed by [10] it suffices to consider downslice accesss structures. Similarly to
[10], we realize each (βn, n)-downslice, for β ∈ [0, 1], by partitioning [0, 1] into 3 segments and deal
with each segment using a different scheme. We partition [0, 1] differently than [10]. Specifically, we
consider the segments [0, 1/2], [1/2, 0.554], and [0.554, 1] ([10] used 0.535 instead of 0.554). Now,
for every β < 1/2, we use the scheme of Applebaum and Nir [10] as stated in Lemma 8.6, for every
β ∈ [1/2, 0.554] we reduce it to (n/2, n)-downslice, and for every β ∈ [0.554, 1] we reduce it to
(0.554 · n, n)-downslice. We then apply the bootstrapping construction (Lemma 8.19) for the two
values n/2 and 0.554 · n for 7 iterations. We stress that the choice of our parameters was done
using a computer to approximate the optimal choice.

We now formalize the proof. We use the following claim proved by [10], stating that every
n-party access structure is the conjunction of at most n downslices.

Claim 8.21. Let Γ be an n-party access structure. For every b ∈ [n] let Γb denote the b-downslice
of Γ. Then Γ =

⋂n
b=1 Γb. In particular, if every Γb can be realized with a linear secret-sharing

scheme with exponent S, then so can Γ.

Proof of Theorem 8.5. By Claim 8.21, it suffices to construct a scheme for every downslice. The
proof is done by applying Lemma 8.19 for b1 = n/2 and b2 = 0.554 ·n for 7 iterations, and then use
the cover reduction lemma (Lemma 8.17) to reduce every other downslice to one these two values.
Using a computer to compute the exponents, we get that Dℓ (0.5) < 0.736 and Dℓ (0.554) < 0.752.
Using the cover reduction lemma, we obtain the following bounds on the share size of linear secret-
sharing schemes for downslices, as explained below.

1. If 0 ≤ β < 1/2 then by Lemma 8.6 it holds that Dℓ (β) ≤ 1
2 + β

2 < 0.75.

2. If 1/2 ≤ β < 0.554 then we use the covering lemma with α = 1/2 to obtain

Dℓ (β) < h(β)− (1− β) · h(1/2)−Dℓ (0.5)
1− 0.5 < 0.7561.

3. If 0.554 ≤ β ≤ 1 then we use the covering lemma with α = 0.554 to obtain

Dℓ (β) < h(β)− (1− β) · h(0.554)−Dℓ (0.554)
1− 0.554 < 0.7563.

□

43

Bibliography
[1] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell digital

goods. In EUROCRYPT 2001, volume 2045 of LNCS, pages 118–134, 2001.

[2] Andris Ambainis. Upper bound on the communication complexity of private information
retrieval. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proc. of the 24th
International Colloquium on Automata, Languages and Programming, volume 1256 of LNCS,
pages 401–407, 1997.

[3] Hadar Amran. Constructing multi-servers private information retrieval protocols. Master’s
thesis, Ben-Gurion University, 2016.

[4] Benny Applebaum and Barak Arkis. On the power of amortization in secret sharing: d-
uniform secret sharing and CDS with constant information rate. ACM Trans. Comput. Theory,
12(4):24:1–24:21, 2020.

[5] Benny Applebaum, Barak Arkis, Pavel Raykov, and Prashant Nalini Vasudevan. Conditional
disclosure of secrets: Amplification, closure, amortization, lower-bounds, and separations. In
CRYPTO 2017, volume 10401 of LNCS, pages 727–757, 2017.

[6] Benny Applebaum, Barak Arkis, Pavel Raykov, and Prashant Nalini Vasudevan. Conditional
disclosure of secrets: Amplification, closure, amortization, lower-bounds, and separations.
SIAM J. Comput., 50(1):32–67, 2021.

[7] Benny Applebaum, Amos Beimel, Oriol Farràs, Oded Nir, and Naty Peter. Secret-sharing
schemes for general and uniform access structures. In EUROCRYPT 2019, volume 11478 of
LNCS, pages 441–471, 2019.

[8] Benny Applebaum, Amos Beimel, Oded Nir, and Naty Peter. Better secret sharing via robust
conditional disclosure of secrets. In 52nd STOC, pages 280–293, 2020.

[9] Benny Applebaum, Thomas Holenstein, Manoj Mishra, and Ofer Shayevitz. The communica-
tion complexity of private simultaneous messages, revisited. In EUROCRYPT 2018, volume
10401 of LNCS, pages 261–286, 2018.

[10] Benny Applebaum and Oded Nir. Upslices, downslices, and secret-sharing with complexity of
1.5n. In CRYPTO 2021, volume 12827 of LNCS, pages 627–655, 2021.

[11] Nuttapong Attrapadung. Dual system encryption via doubly selective security: Framework,
fully secure functional encryption for regular languages, and more. In EUROCRYPT 2014,
volume 8441 of LNCS, pages 557–577, 2014.

[12] László Babai, Anna Gál, and Avi Wigderson. Superpolynomial lower bounds for monotone
span programs. Combinatorica, 19(3):301–319, 1999.

[13] Amos Beimel. Secret-sharing schemes: A survey. In Yeow Meng Chee, Zhenbo Guo, San Ling,
Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and Chaoping Xing, editors, Coding and
Cryptology - Third International Workshop, IWCC 2011, Qingdao, China, May 30-June 3,
2011. Proceedings, volume 6639 of Lecture Notes in Computer Science, pages 11–46. Springer,
2011.

44

[14] Amos Beimel and Oriol Farràs. The share size of secret-sharing schemes for almost all access
structures and graphs. In TCC 2020, volume 12552 of LNCS, pages 499–529, 2020.

[15] Amos Beimel, Oriol Farràs, and Or Lasri. Improved polynomial secret-sharing schemes. Cryp-
tology ePrint Archive, Paper 2023/1158, 2023.

[16] Amos Beimel, Anna Gál, and Mike Paterson. Lower bounds for monotone span programs.
Research Series BRICS-RS-94-46, BRICS, Department of Computer Science, University of
Aarhus, December 1994.

[17] Amos Beimel and Yuval Ishai. Information-theoretic private information retrieval: A unified
construction. In ICLAP 2001, volume 2076 of LNCS, pages 912–926, 2001. Journal version
in [19].

[18] Amos Beimel, Yuval Ishai, Ranjit Kumaresan, and Eyal Kushilevitz. On the cryptographic
complexity of the worst functions. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS,
pages 317–342. Springer-Verlag, 2014.

[19] Amos Beimel, Yuval Ishai, and Eyal Kushilevitz. General constructions for information-
theoretic private information retrieval. J. of Computer and System Sciences, 71(2):213–247,
2005.

[20] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Ilan Orlov. Share conversion and private
information retrieval. In Proceedings of the 27th Conference on Computational Complexity,
CCC 2012, pages 258–268, 2012.

[21] Amos Beimel, Hussien Othman, and Naty Peter. Quadratic secret sharing and conditional
disclosure of secrets. In CRYPTO 2021, volume 12827 of LNCS, pages 748–778, 2021.

[22] Amos Beimel and Naty Peter. Optimal linear multiparty conditional disclosure of secrets
protocols. In Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology - ASI-
ACRYPT 2018 - 24th International Conference on the Theory and Application of Cryptology
and Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part
III, volume 11274 of Lecture Notes in Computer Science, pages 332–362. Springer, 2018.

[23] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone functions.
In Advances in Cryptology - CRYPTO ’88, 8th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 21-25, 1988, Proceedings, volume 403 of Lecture Notes
in Computer Science, pages 27–35, 1988.

[24] George Robert Blakley. Safeguarding cryptographic keys. In Managing requirements knowl-
edge, international workshop on, pages 313–313. IEEE Computer Society, 1979.

[25] George Robert Blakley. Safeguarding cryptographic keys. In Proc. of the 1979 AFIPS National
Computer Conference, volume 48, pages 313–317, 1979.

[26] Yeow Meng Chee, Tao Feng, San Ling, Huaxiong Wang, and Liang Feng Zhang. Query-efficient
locally decodable codes of subexponential length. Computational Complexity, 22(1):159–189,
2013.

45

[27] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information re-
trieval. In Proc. of the 36th IEEE Symp. on Foundations of Computer Science, pages 41–51,
1995. Journal version: J. of the ACM, 45:965–981, 1998.

[28] Stephen A. Cook, Toniann Pitassi, Robert Robere, and Benjamin Rossman. Exponential lower
bounds for monotone span programs. In 57th FOCS, pages 406–415, 2016.

[29] Ronald Cramer, Ivan Damgård, and Ueli Maurer. General secure multi-party computation
from any linear secret-sharing scheme. In Bart Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 316–334. Springer-Verlag, 2000.

[30] László Csirmaz. The dealer’s random bits in perfect secret sharing schemes. Studia Sci. Math.
Hungar., 32(3–4):429–437, 1996.

[31] László Csirmaz. The size of a share must be large. J. of Cryptology, 10(4):223–231, 1997.

[32] Devdatt P Dubhashi, Volker Priebe, and Desh Ranjan. Negative dependence through the fkg
inequality. BRICS Report Series, 1996.

[33] Devdatt P Dubhashi and Desh Ranjan. Balls and bins: A study in negative dependence.
BRICS Report Series, 3(25), 1996.

[34] Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. In 51th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010,
Las Vegas, Nevada, USA, pages 705–714. IEEE Computer Society, 2010.

[35] Zeev Dvir and Sivakanth Gopi. 2-server PIR with subpolynomial communication. J. ACM,
63(4):39:1–39:15, 2016.

[36] Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM J. Comput.,
41(6):1694–1703, 2012.

[37] Anna Gál. A characterization of span program size and improved lower bounds for monotone
span programs. Computational Complexity, 10(4):277–296, 2002.

[38] Anna Gál and Pavel Pudlák. Monotone complexity and the rank of matrices. Inform. Process.
Lett., 87:321–326, 2003.

[39] Romain Gay, Iordanis Kerenidis, and Hoeteck Wee. Communication complexity of conditional
disclosure of secrets and attribute-based encryption. In CRYPTO 2015, volume 9216 of LNCS,
pages 485–502, 2015.

[40] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy in private
information retrieval schemes. In Proc. of the 30th ACM Symp. on the Theory of Computing,
pages 151–160, 1998. Journal version: J. of Computer and System Sciences, 60(3):592–629,
2000.

[41] Fatemeh Ghasemi, Swastik Kopparty, and Madhu Sudan. Improved pir schemes using matching
vectors and derivatives. Technical Report 2411.11611, Cryptology ePrint Archive, 2024.

[42] Vince Grolmusz. Superpolynomial size set-systems with restricted intersections mod 6 and
explicit Ramsey graphs. Combinatorica, 20:71–86, 2000.

46

[43] Yuval Ishai and Eyal Kushilevitz. Improved upper bounds on information theoretic private
information retrieval. In Proc. of the 31st ACM Symp. on the Theory of Computing, pages 79
– 88, 1999. Journal version in [19].

[44] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In 41st FOCS, pages 294–304, 2000.

[45] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing schemes realizing general access
structure. In Globecom 87, pages 99–102, 1987. Journal version: Multiple assignment scheme
for sharing secret. J. of Cryptology, 6(1), 15-20, 1993.

[46] Toshiya Itoh. Efficient private information retrieval. IEICE Trans. Fundamentals of Electron-
ics, Communications and Computer Sciences, E82-A(1):11–20, 1999.

[47] Toshiya Itoh and Yasuhiro Suzuki. New constructions for query-efficient locally decodable
codes of subexponential length. CoRR, abs/0810.4576, 2008.

[48] Toshiya Itoh and Yasuhiro Suzuki. Improved constructions for query-efficient locally decod-
able codes of subexponential length. IEICE Transactions on Information and Systems, E93-
D(2):263–270, 2010.

[49] Kumar Joag-Dev and Frank Proschan. Negative association of random variables with appli-
cations. The Annals of Statistics, pages 286–295, 1983.

[50] Mauricio Karchmer and Avi Wigderson. On span programs. In 8th Structure in Complexity
Theory, pages 102–111, 1993.

[51] Kiran S. Kedlaya and Sergey Yekhanin. Locally decodable codes from nice subsets of finite fields
and prime factors of Mersenne numbers. Technical Report TR07-040, Electronic Colloquium
on Computational Complexity, www.eccc.uni-trier.de/eccc/, 2007.

[52] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally decodable
codes via a quantum argument. J. of Computer and System Sciences, 69(3):395–420, 2004.

[53] Samuel Kutin. Constructing large set systems with given intersection sizes modulo composite
numbers. Combinatorics, Probability Computing, Sep 2002.

[54] Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier in secret sharing. In
50th STOC, pages 699–708, 2018.

[55] Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Conditional disclosure of secrets via
non-linear reconstruction. In CRYPTO 2017, volume 10401 of LNCS, pages 758–790, 2017.

[56] Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Towards breaking the exponential
barrier for general secret sharing. In EUROCRYPT 2018, volume 10820 of LNCS, pages
567–596, 2018.

[57] Eran Mann. Private access to distributed information. Master’s thesis, Technion – Israel
Institute of Technology, Haifa, 1998.

[58] Colin McDiarmid. On the method of bounded differences. Surveys in combinatorics,
141(1):148–188, 1989.

47

www.eccc.uni-trier.de/eccc/

[59] Anat Paskin-Cherniavsky and Olga Nissenbaum. New bounds and a generalization for share
conversion for 3-server pir. Entropy, 24(4), 2022. Cited by: 3; All Open Access, Gold Open
Access, Green Open Access.

[60] Anat Paskin-Cherniavsky and Leora Schmerler. On share conversions for private information
retrieval. Entropy, 21(9), 2019.

[61] Toniann Pitassi and Robert Robere. Strongly exponential lower bounds for monotone compu-
tation. In 49th STOC, pages 1246–1255, 2017.

[62] Toniann Pitassi and Robert Robere. Lifting Nullstellensatz to monotone span programs over
any field. In 50th STOC, pages 1207–1219, 2018.

[63] Lajos Rónyai, László Babai, and Murali K. Ganapathy. On the number of zero-patterns of a
sequence of polynomials. Journal of the AMS, 14(3):717–735, 2001.

[64] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[65] Hoeteck Wee. Dual system encryption via predicate encodings. In TCC 2014, volume 8349 of
LNCS, pages 616–637, 2014.

[66] Stephanie Wehner and Ronald de Wolf. Improved lower bounds for locally decodable codes
and private information retrieval. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi,
and M. Yung, editors, Proc. of the 32nd International Colloquium on Automata, Languages
and Programming, volume 3580 of LNCS, pages 1424–1436, 2005.

[67] David Woodruff and Sergey Yekhanin. A geometric approach to information-theoretic private
information retrieval. In Proc. of the 20th IEEE Conf. on Computational Complexity, pages
275–284, 2005.

[68] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. In Proc.
of the 39th ACM Symp. on the Theory of Computing, pages 266–274, 2007.

A Negatively Associated Random Variables
Definition A.1 (Negative association [49]). Let X1, . . . , Xn be random variables. The random
variables are negatively associated if for every two disjoint index sets I, J ⊆ [n],

E [f((Xi)i∈I) · g((Xj)j∈J)] ≤ E [f((Xi)i∈I)] · E [g((Xj)j∈J)] ,

for all functions f : R|I| → R and g : R|J |→R that are both non-decreasing or both non-increasing.

It is known that the Chernoff-Hoeffding bounds are applicable to sums of variables that satisfy
the negative association [58] (see also [33, Proposition 5]).

Theorem A.2 (Chernoff-Hoeffding bounds). Let X1, . . . , Xn be negatively associated random vari-
ables taking values in {0, 1}, let X =

∑n
i=1 Xi, and let µ = E [X]. Then for every for every

δ ∈ (0, 1),
Pr [X > (1 + δ)µ] ≤ e−δ2µ/3 and that Pr [X < (1− δ)µ] ≤ e−δ2µ/3.

48

Finally, it is also known that when sampling a subset of [n] uniformly at random, the random
variables that correspond to the indicator of whether an element is in the sampled set, are negatively
correlated.
Claim A.3 ([32, Theorem 10]). Let X1, . . . , Xn be random variables that take values in {0, 1} and
are distributed uniformly over m-weight vectors where m ≤ n. That is, for every x ∈ {0, 1}n with
Hamming weight m,

Pr [X = x] =
(

n

m

)−1

,

and Pr [X = x] = 0 for any other x ∈ {0, 1}n. Then the random variables in X1, . . . , Xn are
negatively correlated.

Since any subset of negatively associated variables are also negatively associated [49, Property
4] we obtain the following.
Claim A.4. Let I be a random subset of [n] of size µn, sampled uniformly at random, and let
A ⊆ [n]. For every i ∈ A let Xi denote the indicator for the event i ∈ A ∩ I. Then (Xi)i∈A are
negatively correlated.

B The PIR Protocol of Dvir and Gopi [35]
To be able to compare the PIR/CDS protocols that we present in this paper to previous protocols,
we present the PIR protocol of Dvir and Gopi [35]. They use a matching vector family ((ui, vi))N

i=1
over Zh

6 such that for all i ̸= j it holds that

⟨ui, vi⟩ mod m = 0 and ⟨ui, vj⟩ mod 6 ∈ {1, 3, 4} .

(Note that in our construction over Z6, ⟨ui, vi⟩ mod m = 1 and ⟨ui, vj⟩ mod 6 ∈ {0, 2, 3, 4} .) Such
a matching vector family with h = 2O(

√
log N log log N) is constructed in [42, 53]. In the following, for

a prime p let ⟨u, v⟩p =
∑h

ℓ=1 u[ℓ]v[ℓ] mod p.
. .
Protocol B.1.
Public parameters: A matching vector family ((ui, vi))N

i=1 over Zh
6 .

Alice’s and Bob’s input: D ∈ {0, 1}N .
The user’s input: i ∈ [N].

• The user chooses r ← Zh
2 with uniform distribution and sends qa = r to Alice and qb =

ui + r mod 2 to Bob.

• Alice computes

m1
A =

N∑
j=1

(−1)⟨qA,vj⟩2 ·Dj mod 3, m2
A =

N∑
j=1

((−1)⟨qA,vj⟩2 ·Dj)vj mod 3

and Bob computes

m1
B =

N∑
j=1

(−1)⟨qB ,vj⟩2 ·Dj mod 3, m2
B =

N∑
j=1

((−1)⟨qB ,vj⟩2 ·Dj)vj mod 3.

Alice and Bob send m1
A, m2

A and m1
A, m2

A respectively to the user (each answer is a vector in
Zh

3 and an element in Z3).

49

• The user outputs Di = 1 if

⟨ui, m2
B −m2

A⟩ −m1
B + m1

A ̸≡ 0 (mod 3), (13)

and Di = 0 otherwise.
. .

Notice that in Protocol B.1 Alice and Bob need to send an additional element compared to
Protocol 5.4 and the reconstruction and the proof of correctness are more involved. Furthermore,
writing (−1)⟨qA,vj⟩2 instead of ⟨qA, vj⟩2 further complicated the protocol.

50

	Introduction
	PIR, CDS, and Linear Secret Sharing
	Our Results

	Our Techniques
	A Simple 2-Server PIR Protocol
	A Simple 3-Server PIR Protocol
	A Simple 2-Server CDS Protocol
	An Improved Linear Secret Sharing

	Preliminaries
	Notations
	Secret-Sharing Schemes
	Conditional Disclosure of Secrets
	Private Information Retrieval (PIR)
	Matching Vectors

	Simplified k-Server PIR Using Share Conversion
	Share Conversion
	The PIR Protocol Using Share Conversion

	A Simplified 2-Server PIR protocol
	Constructing 2-Party Share Conversions
	The First Share Conversion
	The Second Share Conversion
	The Third Share Conversion

	The 2-Server PIR Protocol

	k-Server PIR Protocols from Sparse S-Decoding Polynomials
	k-Sparse Decoding Polynomials
	Szero-Decoding Polynomials
	Are There Better Share Conversions?

	Simplified CDS protocols
	The 2-Server CDS Protocol
	The Multi-Server CDS Protocol

	Improved Linear Secret-Sharing Schemes for Arbitrary Access Structures
	Preliminaries
	Multislice and Downslice Access Structures
	Robust Conditional Disclosure of Secrets

	Statement of Our Result
	A Better Linear Secret-Sharing Scheme for Downslices With Low Density
	Constructing a Linear Secret-Sharing for Downslices With High Density
	Applying the Bootstrapping of Applebaum and Nir
	A Linear Secret-Sharing Scheme for All Access Structures

	Bibliography
	Negatively Associated Random Variables
	The PIR Protocol of Dvir and Gopi[DG16]

