
Modeling Stateful Communication

Chen-Da Liu-Zhang1 , Christopher Portmann2, and Guilherme Rito3 ⋆

1 Lucerne University of Applied Sciences and Arts & Web3 Foundation
chendaliu@gmail.com

2 Concordium Zurich, Switzerland
cp@concordium.com

3 Ruhr-Universität Bochum, Germany
guilherme.teixeirarito@rub.de

Abstract. The most basic property one expects (and, often, assumes)
from a group chat is, perhaps arguably, consistency. Suppose Alice, Bob
and Charlie are having a chat, and Alice reads a “Hi” from Charlie.
Alice may naturally expect Bob to see the same “Hi” from Charlie when
he looks at his phone. Indeed, it is natural that group members expect
having the same view of a chat (i.e. messages, set of participants, and
other chat-related information) as any other up-to-date member.
This paper puts forth an abstraction for stateful group communication
of this basic guarantee. Our abstraction, Chat Sessions, is defined in the
Constructive Cryptography (CC) framework (Maurer and Renner, ICS
’11) and captures the consistency guarantees achievable in asynchronous
settings when one makes no party-honesty assumptions: anyone, includ-
ing group members, may be malicious. We construct, extend and use
Chat Sessions:
– Our construction is fully decentralized, does not incur extra inter-

action between chat participants (other than what is inherent from
sending chat messages) and liveness depends solely on chat messages
being delivered.

– We extend Chat Sessions to provide authenticity, confidentiality,
anonymity and off-the-record guarantees, and show our construc-
tion trivially preserves each of these properties from the underlying
communication channels.

– We use Chat Sessions to construct UatChat : a simple but well-
featured messaging application. UatChat also inherits each of Chat
Sessions’ additional properties mentioned above. This means when
it is instantiated with the application semantics given in (Liu-Zhang
et al., ePrint 2025/204) we obtain the first fully Off-The-Record
(group) messaging application.

⋆ Part of work done while author was at ETH Zurich.

https://orcid.org/0000-0002-0349-3838
https://orcid.org/0000-0002-0080-8670
mailto:chendaliu@gmail.com
chendaliu@gmail.com
mailto:cp@concordium.com
cp@concordium.com
mailto:guilherme.teixeirarito@rub.de
guilherme.teixeirarito@rub.de


Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 A note on the messaging literature . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Chat Sessions Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Building on Chat Sessions: UatChat . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 (Simplified) Constructive Cryptography . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Modeling Access Control via Repositories . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Repository Label Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Modeling an Asynchronous Network . . . . . . . . . . . . . . . . . . . . 15

4 Chat Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Helper Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Real World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Ideal Chat Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4.1 Policy Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 UatChat: A Decentralized Messenger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1 The Unanimous Policy U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Defining UatChat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.1 Constructing UatChat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6 The Modularity of ChatSessions[P] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 Application Semantics of Multi-Designated Receiver Signed
Public Key Encryption [34] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.1 Application Semantics for MDRS-PKE [34] . . . . . . . . . . . . . . 26

6.2 Extending ChatSessions[P] to Provide Extra Guarantees . . . . . 28
6.2.1 Authenticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2.2 Off-The-Record. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.3 Confidentiality and Anonymity. . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3 Uatchat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A Definition of UatChatProt (Algorithm 16) . . . . . . . . . . . . . . . . . . . . . . . . . 37
B Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B.1 Proof Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
B.2 Helper Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B.3 Hybrid Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B.4 Proofs of Helper Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B.4.1 Proof of Proposition 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.4.2 Proof of Proposition 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.4.3 Proof of Proposition 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.4.4 Proof of Proposition 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.4.5 Proof of Proposition 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



B.4.6 Proof of Proposition 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.4.7 Proof of Proposition 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.4.8 Proof of Proposition 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.4.9 Proof of Proposition 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.4.10Proof of Proposition 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.4.11Proof of Proposition 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.4.12Proof of Proposition 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.4.13Proof of Proposition 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.4.14Proof of Proposition 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

C “Zoomed-in” version of Figure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3



Note

Some contributions in earlier versions of this paper are in a new paper: [34].

4



1 Introduction

Motivation. Cryptography’s most common use is secure communication—e.g.
Alice can use encryption to hide the contents of emails she sends to Bob (confi-
dentiality) and sign them to assure Bob she is the sender (authenticity). While
one typically considers stateless security guarantees—for example a channel that
Alice can use to send messages securely to Bob—one should also consider stateful
ones—for example to capture the security properties of an interactive conversa-
tion between Alice, Bob and their friends where participation is dynamic: new
parties can join the conversation and existing ones can leave. A natural applica-
tion of such stateful guarantees are messengers.

(Stateless) Consistency. For applications that allow sending messages to mul-
tiple recipients—e.g. emails and group chats—a natural property one desires is
consistency : every recipient should get the same messages. For example, when
Alice receives an email and sees Bob is also a recipient, it is natural for her to
expect Bob also gets the same email. For the case of an honest sender, consis-
tency follows from a scheme’s correctness. If the sender is dishonest, however, it
does not. Surprisingly:

– neither broadcast encryption nor multi-recipient public key encryption prim-
itives provide this guarantee [25,32,15,20]; and

– neither the MLS standard [14] nor email encryption systems (e.g. PGP or
S/MIME) provide this guarantee. (See Section 1.1 for a discussion on MLS.)

A recent line of work initiated by Damg̊ard et al. in [23] has focused on defin-
ing and constructing cryptographic schemes with this (stateless) consistency
property—that all recipients should obtain the same messages [23,37,38,20,34].

Stateful Consistency. Analogously to emails, in the context of group chats it
is also natural for the members of a chat to expect seeing the same messages
as other members. More generally, it is natural for them to expect having the
same view of the conversation as other participants—which includes not only
chat messages, but also any information related to the state of the conversa-
tion.4 Of course, achieving such stateful consistency property is trivial if one
assumes a trusted delivery service5 and builds on communication channels pro-
viding stateless consistency. However, trusting a delivery service to be available
and correctly follow its protocol means that (at least) a chat’s liveness depends
on this server.6 Needless to say, it is desirable that a messenger’s liveness does

4 For messaging applications like Signal [1] and Whatsapp [2] this also includes, for
example, who are the current group administrators.

5 By trusted delivery service, we mean one that is always available and which correctly
follows its protocol.

6 More critically, MLS relies on the delivery service (DS) to enforce chat policy permis-
sions. Quoting [14, Section 16.11, “Additional Policy Enforcement”]: “For example,
MLS enables any participant to add or remove members of a group; a DS could en-
force a policy that only certain members are allowed to perform these operations.”.

5



not rely on such assumption.7 This paper focuses on defining a meaningful and
achievable stateful consistency notion in such a fully decentralized setting.

Our contribution. We introduce Chat Sessions: an idealized abstraction of state-
ful consistency. Very roughly, it guarantees that for each chat there is an effi-
ciently computable function mapping any set S of chat messages/operations and
any party P , to the view that P has of the given chat when the set of messages it
has sent or received is (exactly) S. Crucially, S is a set: a party’s view of a chat
is independent of the order with which it received the chat messages/operations.
This prevents group-splitting attacks because every member of a group chat can
compute the view of any other member who has sent or received the messages
in S.

Chat Sessions is parameterized by (and enforces) a permissions policy P that
defines what operations parties have the right to perform in a given chat state.

In addition to defining Chat Sessions in the Constructive Cryptography (CC)
framework [39,36], we also show how to construct it, extend it and use it:

– Our construction fully decentralized—a group chat’s liveness does not de-
pend on neither a functioning delivery service nor the honesty of any of the
chat’s members; it only depends on chat messages being delivered—and en-
forces a (parameter) access control policy P—guaranteeing chat members
only perform the operations for which they have permissions.8

– Following a modeling technique introduced in [34], we extend Chat Sessions
to provide authenticity, confidentiality, anonymity and off-the-record guar-
antees. We prove our construction inherits each of these properties from the
underlying communication channels.

– We use Chat Sessions to construct Uatchat: a simple but realistic messaging
application that (analogously) inherits additional security properties pro-
vided by our abstraction.

Finally, we note that in recent work [34], Liu-Zhang et al. give the first com-
posable semantics for Multi-Designated Receiver Signed Public Key Encryption
(MDRS-PKE) schemes [38,20], and show that Maurer et al.’s MDRS-PKE con-
struction provides them. The application semantics they define for these schemes
match the repositories upon which Chat Sessions (and Uatchat) are built. Put
together with their results, Uatchat is the first fully off-the-record (group) mes-
saging application.

1.1 A note on the messaging literature

Current works on secure messaging focus on Forward Secrecy (FS) and Post-
Compromise Security (PCS) notions [21,16,5,29,6,8,7,31,10,3,9,17,19,4] which
aim at providing rather strong confidentiality guarantees in settings where users’

7 Indeed recent works have focused on eliminating this assumption [44,45,11,22].
8 Policy enforcement also does not depend on any such assumptions.

6



devices may get compromised. These notions capture the confidentiality of mes-
sages exchanged prior to a compromise (FS), and after group members’ devices
are no longer compromised (PCS). Being confidentiality guarantees, however,
both FS and PCS are only achievable when receivers are honest [35, Theorem
1]. As we now explain, this is the setting considered in the messaging literature—
which, despite significant progress on tolerating stronger and stronger attacks,
still assumes all group members correctly follow the prescribed protocol.

For example, in [8], Alwen et al. study the security of Continuous Group Key
Agreement (CGKA) schemes in the presence of active adversaries—which are
allowed to use information obtained from state exposure of users’ devices to inject
messages on honest users’ behalf (thus impersonating them)—and in follow-up
work [10], Alwen et al. weaken some of the assumptions made in [8] (in particular
it assumes a standard public key infrastructure as opposed to assuming a stronger
Key-Registration with Knowledge) to capture so-called insider security. But yet,
as explained in [10, Section 3.1], their notions (as the ones from [8]) do not
prevent the so-called group-splitting attacks, which consist of partitioning a group
into subgroups in such a way that members of a partition cannot communicate
members of different partitions; this is an attack because group members are
unaware of the split [8,10,11].9

Another common assumption in the messaging literature is that of an addi-
tional external party that is trusted with providing a total ordering on the mes-
sages sent by group-members [21,16,6,8,7,3,9]—the delivery service. While this
additional party is generally untrusted—i.e. confidentiality is guaranteed even
if this party is corrupted—the availability (or liveness) of a chat still depends
on this party’s honesty [21,16,6,8,7,31,10,3,9]. Even worse, a malicious delivery
service can also perform group-split attacks—even in works that consider mali-
cious insiders such as [8,10,11].10 This has naturally motivated the study of fully
decentralized protocols (e.g. [44,45,11,22]) that do not rely on a delivery service,
thus avoiding such group-splitting/fork attacks. However, these protocols still
do not prevent malicious parties from performing group-split attacks [45,11,22].

It should be noted that early work ([16]) has explicitly identified consistency
as a desirable property for MLS [16, Section 5, “Provably Consistent Group Op-
erations”]; in follow up work, Devigne et al. introduce efficient zero-knowledge
protocols aimed at providing consistency [24]. However their work does not pro-
vide a definition of consistency, and proving their protocols prevent such attacks
is an open problem. Unfortunately, since these early works, consistency has re-
ceived very limited attention from the messaging community.

9 MLS leaves the responsibility of handling such attacks to the upper application,
as explicitly mentioned in [14, Section 16.12, “Group Fragmentation by Malicious
Insiders”].

10 These works explicitly allow an adversary to mount such attacks.

7



2 Overview

UatChat

Auth

OTR

Conf + Anon

ChatSessions[P]

Auth

OTR

Conf + Anon

Assumed Communication Channel

Auth

OTR

Conf + Anon ChatSessionsProt[P]

UatChatProt

T
he
or
em

1

C
or
ol
la
ry
1

C
or
ol
la
ry
3

C
or
ol
la
ry
2

Fig. 1. Visualization of modularity-related results. In the figure, “Auth” denotes Au-
thenticity, “OTR” Off-The-Record and “Conf + Anon” Confidentiality and Anonymity.
Each box’s Venn diagram illustrates these additional security guarantees. The
ChatSessionsProt[P] and UatChatProt constructions preserve each of these guarantees:
if the underlying assumed resources provides any of these guarantees, then the con-
structed resource (ChatSessions[P] and UatChat, respectively) provides them too.
The blue circle in the intersection of all the additional properties denotes the guaran-
tees provided by the application semantics for Multi-Designated Receiver Signed Public
Key Encryption schemes, as recently defined and proven in [34]. A “zoomed-in” version
of this illustration is in Appendix, Section C.

2.1 Chat Sessions Abstraction

As already explained, Chat Sessions is a type of stateful consistency notion. We
now overview some aspects of its definition.

8



Message ordering. Achieving a total order on messages is rather expensive, either
in terms of the resources needed to get it (e.g. extra interaction between parties
to reach consensus) or in terms of additionally trusting a third party to provide
this ordering [3,4,22,44,45,11]. Instead, we only rely on the causal consistency
explicitly given by messages: each message m acknowledges a set of prior ones,
and a party can only see m if it already sees all the ancestors m is acknowledging.
Each chat session consists of a directed graph (digraph) G = (V,E), where
each node u ∈ V corresponds to a command (e.g. chat message) issued by a
group member, and each edge (u, v) ∈ E corresponds to an ordering between
commands—in this case meaning that v ∈ V should only become visible after u
is visible.11

Intuition for stateful consistency. For each chat session there is a unique digraph
GGlobal := (V,E)12—where each node v ∈ V defines a sender S, a vector of

receivers V⃗ , a command cmd and a set of acknowledgments Acks (i.e. prior nodes
on which v depends). A bit more formally, the set of nodes V actually defines
GGlobal, as E is simply the union of the edges incoming to each node u ∈ V and
the edges incoming to a node are defined its set of acknowledgments. Consider
two parties Pi and Pj and let Gi := (Vi, Ei) and Gj := (Vj , Ej) be the subgraphs
of GGlobal induced by Pi’s and Pj ’s views, respectively. Consistency means, on
one hand, that for each node in Vi∩Vj , both parties (i.e. Pi and Pj) see the same

sender S, vector of receivers V⃗ , command cmd and set of acknowledgments Acks,
and on the other hand, that Pi knows which nodes—among the currently visible
ones Vi—will become visible to Pj when they are delivered (and vice-versa for
Pj).

Arbitrary management policies. Chat sessions does not fix any particular group
management policy, and instead is parameterized by one which it enforces. A chat
management policy P defines two predicates—IsRoot and IsValid—defining
the commands each party can issue; chat sessions then guarantees that parties
only issue commands they are allowed to (according to P). This is possible due
to the consistency guarantees of chat sessions: every honest party can check the
validity of a command, so disallowed commands can be simply ignored.

Related work: In existing literature it is standard to consider a fixed policy
supporting operations for party addition, removal and key updates13 for which
all parties have permissions [7,3,10,13,43]. While if all of a group’s members are
honest such policy is general enough to implement other arbitrary policies [8],
trusting parties to behave honestly goes against the very nature of a permissions
policy [13,43]. In recent work, Bálbas et al. pave way to the study of group chat
administration in the presence of malicious (but non-administrator) group mem-
bers [13], where they consider a policy that closely matches the ones implemented

11 A seemingly related concept is that of history graphs [7]. However, history graphs
were introduced as a means of simplifying security definitions, while in our case
honest parties actually get to see each chat sessions’ graphs.

12 These are not formally graphs, as we will see.
13 Key update operations are key to PCFS guarantees.

9



in applications like Signal [1] and WhatsApp [2]. While [13] takes a significant
step forward in that group members are not trusted to follow a policy (in partic-
ular by disallowing non-administrators from performing administrator-reserved
operations), it still relies on administrators being honest (e.g. no guarantees are
given when a dishonest administrator has its administration rights revoked).14

Fine-grained modularity. Neither authenticity, confidentiality, anonymity nor
off-the-record are captured by the base chat sessions abstraction. Yet, following
a modeling technique introduced in recent work [34], we show how to extend chat
sessions to provide these extra properties. This has two important advantages:

– it makes our abstraction cleaner and easier to reason about because it can
be understood independently of these extra guarantees; and

– it allows for a cleaner understanding of these additional guarantees because
they can also be understood independently of our abstraction.

Stronger security statements: Another advantage of this modularity is that
it allows for stronger statements with surprisingly trivial proofs. (See, e.g. the
proof of Corollary 3). Our results “lift” the security properties from (stateless)
communication channels to chat sessions (Figure 1 illustrates this); the only
assumptions that seem inherently necessary from the underlying channels are
consistency and replay-protection. However, even an insecure channel provides
these properties. (In other words, our Chat Sessions construction can be instan-
tiated from an insecure channel.)

Post-Compromise Forward Secrecy (PCFS) can be modeled following the
same approach that [34] uses to capture confidentiality and authenticity. Of
course the resulting model will be inherently more involved—due to the added
complexity of the PCFS guarantee—but still our results provide strong evidence
that such guarantee is also lifted by our construction.15

Efficiency Advantages: An important property one expects from a messenger
is efficiency: not only in terms of encryption and decryption times, but also
in terms of ciphertext sizes. (Efficiency and scalability have indeed been an
important focus of the messaging literature [21,8,31,10,9,3,4].) On this regard
we make two points:

1. Our chat sessions construction is very efficient.
2. While the only construction of the communication channels used by our

construction is from [34], and is based on Multi-Designated Receiver Signed
Public Key Encryption schemes [38]—for which ciphertext sizes (and hence
encryption and decryption times) are inherently linear in the number of

14 The only focus of [13] is group administration; their notions do not disallow (nor
capture) group-splits, and their setting still relies on a delivery service for liveness.

15 We only write “strong evidence” because we are unaware of a (Constructive Cryp-
tography) model for PCFS that is compatible with our notions, and therefore cannot
write a formal statement. Nevertheless, in [30], Jost et al. introduce a PCFS model
for the two party case, and we believe a model for the group case could be defined
based on their work. Doing so is an interesting direction for future work.

10



recipients ([23, Theorem 1])—if one is not willing to pay the extra price
required for such strong security guarantees one can alternatively consider
more efficient schemes (providing fewer guarantees). For example, if one
only requires authenticity, then the underlying channels could be constructed
using standard sEUF-CMA secure signatures (which can be made compact
via hash-then-sign).

2.2 Building on Chat Sessions: UatChat

We show how to use the chat sessions abstraction by constructing a messaging
application on top of it. The main principle behind using chat sessions is ensuring
parties see subgraphs of the graphs output by chat sessions’ Read operations
(which are already guaranteed to be consistent). In UatChat parties can 1. cre-
ate chats with a given set of participants; 2. propose adding/removing parties
to/from existing chats; 3. vote on proposals;16 and 4. write messages—which
may include a set of prior commands the message is “replying to”. UatChat
defines permissions policy U, which enforces group modifications must be unan-
imous: a proposal only takes effect if all group members agree. For example, to
add a party P ′ to a chat with set of members S, a party P ∈ S needs to propose
adding P ′ and then all parties in S need to agree with this proposal (by voting).
(For removing a party P , it is not necessary for P to agree to the change, only
the other members in S.)

Note: In messengers it is often necessary for party addition proposals to
include the current state of the group and for each group member to have to
acknowledge this state: these acknowledgments guarantee to the added party
that it is indeed being added to the group. This is needed, for example, in
policies where only certain group members have permissions to add new parties
to the group. To see why, consider a group management policy distinguishing
administrators (admins) from non-administrator members (non-admins), being
that only admins can promote other members to become admins, and make
changes to the set of members of the group (i.e. add/remove members to/from
the group); and consider a group of two parties, Alice and Bob, where Alice is the
sole administrator.17 A dishonest Bob could try deceiving an honest outsider,
say Charlie, into believing that he was added to the group; however, by requiring
an acknowledgment from other group members, Charlie only considers himself
part of the group once Alice would acknowledge it. But since that would not
occur, Bob would not deceive Charlie.

Group versions: unconciliable command orderings. The inexistence of a total or-
der on the commands issued by group members makes it unavoidable that a chat
may have unconciliable versions even when all parties are honest. To illustrate,

16 Voting on a proposal means agreeing to it: if a party does not agree with a proposal
then it simply does not vote.

17 This policy is similar to those implemented in messengers such as WhatsApp [2] and
Signal [1].

11



suppose that a party P1 just created a chat with a set of (all honest) parties
S = {P1, P2, P3, P4}. Then, suppose that, concurrently, P2 and P3 propose to
remove, respectively, P3 and P2 from the chat, and let prop2 and prop3 be P2’s
and P3’s proposals, respectively. Finally, suppose that P1 receives prop2 first, and
immediately votes in its favor, whereas P4 receives prop3 first, and immediately
votes in its favor too. One can then ask, when P1 and P4 later receive prop3 and
prop2, respectively, what should happen? This is a typical problem that shows up
in the theory of parallel computing [42,27,26,12], a topic with a rather vast liter-
ature. There are various ways to handle this (type of) problem; for simplicity, in
our messenger there can be multiple versions of the same group that may evolve
concurrently; applied to this particular case, there would be two new versions
of the group chat: one where the proposal prop2 may take effect, and one where
prop3 may take effect. Whether any of these changes actually takes effect then
depends on parties agreeing with them, but it is possible for the two proposals
to come into effect. We emphasize that our goal here is showing how one can
use the chat sessions abstraction to construct a messaging application, not to
come up with an “intuitive and easy to use” messenger. Nevertheless, it is an
interesting direction for future work to consider other possible constructions of
messaging applications, perhaps by leveraging what is known from communities
working on concurrent/parallel computing.

3 Preliminaries

We use the same notation and adopt the same conventions from [34], which
we now introduce. (Much of this section is taken verbatim from [34] with only
minor modifications.) For a set/alphabet S, we denote the set of non-empty
vectors/strings over S by S+. We denote the arity of a vector x⃗ by |x⃗| and its
i-th element by xi. We write Set(x⃗) to denote the set induced by x⃗: Set(x⃗) :=
{xi | xi ∈ x⃗}. We will denote the set of all parties by P. For any subset of parties

S ⊆ P, we denote by SH and SH the partitions of S corresponding to honest
and dishonest parties, respectively (with S = SH ⊎ SH).

3.1 (Simplified) Constructive Cryptography

Our paper’s statements are phrased in a (variant of the) simplified version of the
Constructive Cryptography (CC) framework [39,36] introduced in [34], which
allows for fine-grained information-theoretic security notions and requires no
familiarity with CC. (As for [34], all construction statements trivially carry to
CC.) We now present the framework our paper uses; much of this (sub-)section
is taken verbatim from [37] and [34], with only minor changes.

CC views cryptography as a resource theory: protocols construct new re-
sources from existing (assumed) ones. The notion of resource construction is
inherently composable: if a protocol π1 constructs S from R and π2 constructs
T from S, then running both protocols (π2 · π1) constructs T from R.

12



Resources are interactive systems akin to functionalities in UC [18]. Similarly
to a function f : X → Y , a resource also has input and output domains; if a
resourceR has input domain X and output (co-)domain Y, we sayR is an (X ,Y)
resource. One interacts with a (X ,Y) resource by providing an input x ∈ X and
receiving an output y ∈ Y. Formally, resources are random systems [40,41];
in turn, a random system is defined as a sequence of conditional probability
distributions [41, Definition 2]. If two (X ,Y)-resources R and S are the same
sequence of conditional probability distributions, we say they are equivalent and
write R ≡ S [41, Definition 3]. We will describe resources by pseudo-code.

We often attach resources together; for (compatible) resources R and S, we
denote by R · S the resource resulting from attaching R and S. (Resources R
and S can only be attached together if their composition results in a well-defined
sequence of conditional probability distributions—see, e.g. [33, Definition 7]; this
is not the case for all pairs of resources.) For n resources {Ri}ni=1, where each Ri

is an (Xi,Yi)-resource, if for all distinct i, j ∈ [n], both Xi and Yi are disjoint from
Yj , then we denote the combined resource—i.e. R1, . . . ,Rn attached together—
by R := [R1, . . . ,Rn], and call R the parallel composition of {Ri}ni=1.

For an (X ,Y)-resource R, an interface I = (IX , IY) is a pair of subsets of
R’s input and output domains, i.e. IX ⊆ X and IY ⊆ Y; we call IX and IY input
and output interfaces of R, respectively. For two interfaces I1 = (I1,X , I1,Y) and
I2 = (I2,X , I2,Y), we say that I1 is a subset of I2—or write I1 ⊆ I2—to mean
I1,X ⊆ I2,X and I1,Y ⊆ I2,Y . Similarly, we say I1 and I2 are disjoint—or write
I1 ∩ I2 = ∅—to mean I1,X ∩ I2,X = ∅ and I1,Y ∩ I2,Y = ∅. We define the union
of interfaces I1 and I2 as I1 ∪ I2 := (I1,X ∪ I2,X , I1,Y ∪ I2,Y).

A set of interfaces I of an (X ,Y)-resource R is one such that any distinct
interfaces I1, I2 ∈ I are disjoint, and the union of all interfaces in I is R’s input
and output domains, i.e. (X ,Y) =

⋃
I∈I I.

When considering (simulator-based) security notions it is often helpful to
have the notion of a party. For a set of n parties P := (P1, . . . , Pn), one considers
a set of interfaces I where for each party P ∈ P there is an interface IP =
(IP,X := ({P} × XP ), IP,Y := ({P} × YP )). We say that IP,X and IP,Y are P ’s
input and output interfaces for R, respectively.

A converter is an (X ,Y)-resource that is executed either locally by a single
party or cooperatively by multiple parties. The inside interface connects to (a
subset of those parties’ interfaces of) the available resources, resulting in a new
resource. For instance, connecting a converter α to Alice’s interface A of a re-
source R results in a new resource denoted αAR; we denote the inside interface
of α by α.in. The outside interface of α, denoted α.out, is the new A-interface
of αAR. This means resource R’s A interface is no longer present in the new
resource αAR: it is covered by converter α. Converters applied at different in-
terfaces commute [28, Proposition 1]: βBαAR ≡ αAβBR.

A protocol is given by a tuple of converters π = (πPi
)Pi∈P , one for each

party Pi ∈ P. Simulators are also given by converters. For a party set S, πSR
denotes (πPi

)Pi∈SR. When clear from context, we omit the interfaces π connects
to, writing simply πR.

13



Definition 1 (Construction). Let R and S be two resources with a free in-
terface IF , and π a protocol for R. We say π constructs S from R if there is a
simulator sim such that πR ≡ simS, i.e. are perfectly indistinguishable and the
interfaces of sim, of π and IF are all pairwise disjoint. We call R the assumed
resource and S the ideal resource.

3.2 Modeling Access Control via Repositories

We use the repository model from [37,34] to capture access control. A repository
contains a set of registers and a corresponding set of register identifiers IdSet;
a register is a pair reg = (id,m), where m is a message and id is the regis-
ter’s identifier, which uniquely identifies it among all repositories. We consider
two types of repository access rights: read access and write access. We denote
by W and R the sets of parties with write and read access to a repository
rep, respectively; to make the access permissions explicit we write repWR , but
otherwise simply write rep. For example, consider a three party setting with a
sender Alice, a receiver Bob and a dishonest third-party Eve—so P = {A,B,E}.
An insecure repository—which allows everyone to read and write—is given by
INSPP ; a (replay-protected) authentic repository from Alice to Bob is given by

AUT
{A}
{B,E}. The semantics of atomic repositories is defined in Algorithm 1.

Algorithm 1 Atomic repository
repWR .
⋄ Initialization: IdSet← ∅

▷ (P ∈ W)-Write(m)
id ← NewRegister(m)
IdSet← IdSet ∪ {id}
Output(id)

▷ (P ∈ R)-Read
list← ∅
for id ∈ IdSet :

list← list ∪ {(id,GetMessage(id))}
Output(list)

Algorithm 2 Repository REP =
[rep1

W1

R1
, . . . , repn

Wn

Rn
].

▷ (P ∈ P)-Write(repi
Wi
Ri

,m)

Require: (P ∈ Wi)
Output(repi-Write(m))

▷ (P ∈ P)-Read
list ← ∅
for repi

Wi
Ri
∈ REP with P ∈ Ri :

for (id,m) ∈ repi-Read :
list← list ∪ (id, (repi,m))

Output(list)

Following [37], to model that parties may have access to multiple repositories—
say rep1

W1

R1
, . . . , repn

Wn

Rn
—we define a new type of repository denoted REP =

[rep1
W1

R1
, . . . , repn

Wn

Rn
], which consists of a parallel composition of atomic repos-

itories equipped with a single read operation that allows parties to (efficiently)
read all their incoming messages at once (instead of having to read from each
atomic repository repi they have access to). The exact semantics of REP is
defined in Algorithm 2.

3.2.1 Repository Label Notation This paper also adopts the repository
label notation from [37,34]: label ⟨S → V⃗ ⟩ denotes an atomic repository with

a (supposed) sender S and (supposed) receiver-vector V⃗ . To be more concrete,

14



let ⟨S → V⃗ ⟩ := ⟨S → V⃗ ⟩
W
R , i.e. W and R are the sets of writers and readers

of ⟨S → V⃗ ⟩. Sender S is always a writer, i.e. S ∈ W, and receiver-vector V⃗ is

always a subset of the readers, i.e. V⃗ ⊆ R. Above we wrote supposed because
W may include other parties (in which case ⟨S → V⃗ ⟩ is not authenticated), and
R may include readers that are not part of the receiver vector V⃗ .

3.2.2 Modeling an Asynchronous Network Following [34], we model an
asynchronous network via converter Net (Algorithm 3), which has a message
delivery interface and ensures honest receivers only read delivered messages.

Algorithm 3 Semantics of Net for a repository REP = [rep1, . . . , repn].

⋄ Initialization
for Pi ∈ P :

Received[Pi]← ∅

▷ (P ∈ PH)-Read
list ← ∅
for (id, (repi,m))∈Read, id∈Received[P ]:

list← list ∪ (id, (repi,m))

Output(list)

▷ (P ∈ P)-Write(repi,m)
Output(Write(repi,m))

▷ (P ∈ PH)-Read
Output(Read)

▷ Deliver(P ∈ PH , id)
Received[P ]← Received[P ] ∪ {id}

4 Chat Sessions

The set of messaging parties is denoted M = {P1, . . . , Pn}; we assume MH and

MH are non-empty. ([34] considers two distinct sets: a set S of senders and a
set R of receivers. Our model is compatible with [34] because we can have each
party Pi ∈ M play the roles of a sender and receiver.) The set of parties P
from [34] also includes a judge J ; for compatibility, we also define the set of
parties as P = M∪ {J}; however, for our abstractions J can be ignored.

4.1 Overview

Interfaces. Both the real and the ideal chat sessions resources (defined ahead
in Sections 4.3 and 4.4, respectively) allow parties to perform Read and Write
operations. When a party P ∈ MH issues a Read operation (which takes no in-
put), these resources output a set of pairs (sid,G+), where sid is a (chat) session
identifier—uniquely identifying the chat session—and G+ (essentially) is a (non-
empty) digraph corresponding to P ’s view of that particular session. Write op-
erations are uniquely identified by an id and have an associated writer/sender

S, vector of receivers V⃗ , and message m := (sid, cmd,Acks)—a triple comprising
an sid, a command cmd and a set Acks of (prior) Write operation identifiers
to acknowledge. These operations take as input an sid, a vector of receivers
V⃗ , a command cmd and a set of acknowledgements Acks, and output their own
identifier id.

15



Policies. Both the real and the ideal chat sessions resources are parameterized by
a policy P which defines two (deterministic) predicates: IsRoot and IsValid.
IsRoot takes as input a session identifier sid, a sender S, a vector of receivers
V⃗ and a command cmd; IsValid’s input includes all of IsRoot’s inputs plus
an extended graph G+ = (V +, E+)—corresponding to a party’s view of that
session’s graph—and a set Acks of Write operation ids to acknowledge.

The Abstraction. ChatSessions[P] embodies a type of stateful consistency no-
tion. For each existing chat session sid, it keeps track of a global directed graph
(digraph) G = (V,E).18 A node v ∈ V of such global graph is the identifier id
of a Write operation, and for any node v ∈ V , we have that (u, v) ∈ E if and
only if the (message) triple m := (sid, cmd,Acks) corresponding to (Write) v is
such that u ∈ Acks. The elements G+ = (V +, E+) output by Read operations
are of a different type than the global digraphs: on one hand, each u ∈ V + is of
the form (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks)))—with id being a Write operation

identifier, ⟨S → V⃗ ⟩ being a label identifying a sender S and the vector of re-

ceivers V⃗ (see Algorithm 2), and with sid, cmd and Acks being, respectively, the
session identifier, the command and the set of Write operations acknowledged;
on the other hand, the elements of E+ (i.e. edges) are pairs (id, id′) of Write
operation identifiers. Since there are no two different tuples u, v ∈ V + with
the same Write operation identifier (i.e. ∀u, v ∈ V +, u ̸= v → u.id ̸= v.id),
one can alternatively think of G+ as a triple G+ = (G′ = (V ′, E′), f) where
G′ is (informally) a subgraph of the global digraph from before and f is a
function—with domain V ′—mapping each Write operation id ∈ V ′ to a tuple
(⟨S → V⃗ ⟩, (sid, cmd,Acks)). We call these the extended (di)graphs. We denote
the extended version of a graph G = (V,E) by G+ = (V +, E+) and call each
u ∈ V + an extended node.

4.2 Helper Functions

The three helper functions described below are key to understanding both our
abstraction and protocol; they are formally defined in Algorithm 4. We note their
descriptions rely on variables that are not defined at this point;19 we explain what
is necessary so one can understand the helper functions. In addition we consider
a policy P (which defines predicates IsRoot and IsValid).

Extended: On input a (chat session) graph G = (V,E), this function outputs
the corresponding extended graph G+ = (V +, E+). In the description, variable
Contents is a mapping from Write operation identifiers to their corresponding
contents, which are pairs (⟨S → V⃗ ⟩, (sid, cmd,Acks)) that include a label and
a message; in our case, messages are triples that consist of an identifier sid, a
command cmd, and a set Acks of Write operation identifiers.

18 Formally, these digraphs are not actual graphs because there may be edges (u, v) ∈ E
for which u /∈ V ; for simplicity we still call these objects digraphs.

19 They are defined by our ChatSessions[P] abstraction and our ChatSessionsProt[P]
protocol.

16



UpdatedGraph: On input a graph G0 and a set ToHandle of potential new nodes,
this function outputs a graph G containing G0 plus all the nodes from ToHandle
that were added (together with their edges), and also outputs a set Handled
which is the subset of ToHandle consisting of the added nodes. Variable Contents
in the description is the same as above.

InducedPartyGraph+: On input a session identifier sid and a party P , this func-
tion outputs an extended graph corresponding to P ’s view of the chat sessions
graph identified by sid. This function is only used for describing our abstraction
ChatSessions[P] (but not our protocol). Variables:

SessionGraphs: maps chat session identifiers to their corresponding graphs—i.e.
the global graphs our abstraction keeps track of for each chat, as explained
in Section 4.1. In particular, SessionGraphs[sid] is the one corresponding to
sid.

AREP-Read ∪ Sent[P ]: the set of messages that were either already delivered
to party P—AREP-Read—or that were sent by P—Sent[P ]; the contents
of this variable have the same structure as the ones in variable Contents.

Algorithm 4 Helper functions.

⋄ Extended(G = (V,E)): return G+ := ({(id,Contents[id]) | id ∈ V }, E)

⋄ UpdatedGraph(G0,ToHandle)
i← 0,Handled← ∅
repeat
Gi+1 ← Gi
for id ∈ ToHandle with id /∈ Handled :

(⟨S → V⃗ ⟩, (sid, cmd,Acks))← Contents[id]

if P[IsValid](sid, Extended(Gi+1), S, V⃗ , cmd,Acks) :
Gi+1 ← (Gi+1.V ∪ {id},Gi+1.E ∪ (Acks× {id}))
Handled← Handled ∪ {id}

i← i + 1
until Gi = Gi−1

return (Gi,Handled)

⋄ InducedPartyGraph+(sid, P )
G := (V,E)← SessionGraphs[sid]
VP := V ∩ {id | (id, (·, (sid, ·, ·))) ∈ AREP-Read ∪ Sent[P ]}
V0 := {id ∈ VP | Contents[id] = (⟨S → V⃗ ⟩, (sid, cmd, ·)) ∧P[IsRoot](sid, S, V⃗ , cmd)}
i← 0
repeat

Vi+1 ← Vi

for id ∈ VP :
(·, (·, ·,Acks))← Contents[id]
if Acks ⊆ Vi : Vi+1 ← Vi+1 ∪ {id}

i← i + 1
until Vi = Vi−1

VE := {id | (id, id′) ∈ E}
return Extended(Gi := (Vi, E ∩ (VE × Vi)))

17



4.3 Real World

We now define the real world resource, i.e. the assumed resource and the protocol
parties run. The assumed resource is an asynchronous repository AREP, which
consists of a repository REP (Algorithm 2) with converter Net (Algorithm 3)
attached, i.e. AREP := Net ·REP with REP being defined as

REP :=
[
⟨P → V⃗ ⟩

{P}∪PH

Set(V⃗ )∪PH

]
P∈M,V⃗ ∈M+

. (4.1)

As for the protocol, honest parties run converter ChatSessionsProt[P] (Algo-
rithm 5), which is parameterized by a policy P. The real world system is

R[P] := ChatSessionsProt[P]M
H

·AREP. (4.2)

Algorithm 5 Converter ChatSessionsProt[P].
⋄ Initialization: SessionGraphs, Contents← ∅

▷ (P ∈ MH)-Read
ProcessReceived
Output({(sid, Extended(G)) | (sid,G) ∈ SessionGraphs ∧ G ≠ (∅, ∅)})

▷ (P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)
ProcessReceived
G := (V,E)← SessionGraphs[sid] // If sid /∈ SessionGraphs then G = (∅, ∅).
Require: P[IsValid](sid, Extended(G), P, V⃗ , cmd,Acks)

id← AREP-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
SessionGraphs[sid]← (V ∪ {id}, E ∪ (Acks× {id}))
Output(id)

⋄ ProcessReceived
ToHandle← ∅
for (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))) ∈ AREP-Read with id /∈ SessionGraphs[sid].V :

Contents[id]← (⟨S → V⃗ ⟩, (sid, cmd,Acks))
ToHandle[sid]← ToHandle[sid] ∪ {id}

for sid ∈ ToHandle :
(SessionGraphs[sid], ·)← UpdatedGraph(SessionGraphs[sid],ToHandle[sid])

4.4 Ideal Chat Sessions

ChatSessions[P] is formally defined in Algorithm 6; to simplify its description
we rely on the asynchronous repository AREP from the real world resource.

Remark 1. We purposefully defineChatSessions[P] so it captures a minimal set
of guarantees (e.g. per se it does not provide authenticity nor confidentiality).
This is not a limitation: in Section 6 we show how to capture authenticity,
Off-The-Record, confidentiality and anonymity guarantees. It is an advantage:
ChatSessions[P] is more general and more abstract; it is independent of such
extra guarantees.

18



Algorithm 6 The ChatSessions[P] abstraction.

⋄ Initialization
AREP-Initialization
SessionGraphs, Contents, ToHandle← ∅
for P ∈ MH : Sent[P ]← ∅

▷ Deliver(P, id): AREP-Deliver(P, id)

▷ (P ∈ PH)-Read: Output(AREP-Read)

▷ (P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)

G+ ← InducedPartyGraph+(sid, P )

Require: P[IsValid](sid,G+, P, V⃗ , cmd,Acks)

id← AREP-Write(⟨P → V⃗ ⟩,m :=(sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
Sent[P ]← Sent[P ] ∪ {id}
AddToGraph(sid, id)
Output(id)

▷ (P ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

id← AREP-Write(⟨S → V⃗ ⟩,m)

Contents[id]← (⟨S → V⃗ ⟩, (sid, cmd,Acks))
AddToGraph(sid, id)
Output(id)

▷ (P ∈ MH)-Read: Output({(sid,G+) | G+ = InducedPartyGraph+(sid, P ) ∧ G+ ̸= (∅, ∅)})

⋄ AddToGraph(sid, id)
ToHandle[sid]← ToHandle[sid] ∪ {id}
(SessionGraphs[sid],Handled)← UpdatedGraph

(
SessionGraphs[sid],ToHandle[sid]

)
ToHandle[sid]← ToHandle[sid] \ Handled

4.4.1 Policy Requirements. We now define three policy requirements we as-
sume in our analysis. Let P be a policy defining predicates IsRoot and IsValid.

For some chat session identifier sid, command cmd, sender S ∈ M and vector
of receivers V⃗ ∈ M+, we call (sid, S, V⃗ , cmd) a root if IsRoot(sid, S, V⃗ , cmd) =
1. We start by defining what it means for a chat session graph to be proper.
(Ahead, we will always assume that the graphs input to IsValid are proper.)

Definition 2 (Proper (Extended) Chat Session Graph). The empty graph
G+
∅ := (∅, ∅) is proper. Let G+ = (V +, E+) be a proper graph. For any label

⟨S → V⃗ ⟩, any triple (sid, cmd,Acks), and any id for a corresponding Write

operation, if IsValid(sid,G+, S, V⃗ , cmd,Acks) = 1, then G+′ = (V +′, E+′) is

proper, where V +′ := V + ∪ {(id, (⟨S → V⃗ ⟩, (sid, cmd,Acks)))}, and E+′ :=
E+ ∪ (Acks× {id}).

The first requirement is that any root node is a valid node:

Requirement 1 (Root validity). For any proper graph G+ = (V +, E+), any

root (sid, S, V⃗ , cmd) and any finite set of Write operation identifiers Acks:

IsValid(sid,G+, S, V⃗ , cmd,Acks) = 1.

Requirement 2 guarantees a non-root node is only valid if its set of acknowl-
edged nodes is contained in the input graph:

Requirement 2 (Non-root acknowledgements). For any proper graph G+ =

(V +, E+), any quadruple (sid, S, V⃗ , cmd) that is not a root, and any finite set

19



of Write operation identifiers Acks, if IsValid(sid,G+, S, V⃗ , cmd,Acks) = 1,
then ∀id ∈ Acks there is a node (id, ·) ∈ V +.

Informally, the third requirement captures that a command’s validity is con-
sistent among any proper (extended) subgraphs of a chat session.

Requirement 3 (Subgraph validity). Let G+ = (V +, E+) be some proper

graph, S be some party S ∈ M, V⃗ be some (non-empty) vector of parties

V⃗ ∈ M+, and (sid, cmd,Acks) be some triple—where Acks is a set of Write
operation identifiers. Then, for every subset V ′

+ ⊆ V +, and letting G′+ be the
(extended) sub-graph of G+ induced by V ′

+
, if G′+ is proper and ∀id ∈ Acks

there is a node (id, ·) ∈ V ′
+
, then

IsValid(sid,G+, S, V⃗ , cmd,Acks) = IsValid(sid,G′+, S, V⃗ , cmd,Acks).

4.5 Security Analysis

Theorem 1. For any policy P satisfying Requirements 1, 2 and 3:

R[P] ≡ ChatSessions[P].

(See Appendix Section B for the proof.)

5 UatChat: A Decentralized Messenger

We introduce UatChat to exemplify how one can construct a messenger on top
of our Chat Sessions abstraction. (We rely on the Chat Sessions abstraction to
describe UatChat.)

In UatChat (Algorithms 9 and 10) there are two main types of operations:
Read and command writing. The first output the graphs of each chat a party
is in, similarly to chat sessions. There are four command writing interfaces:
CreateChat, ProposeChange, Vote and Write. These writing interfaces
take as input a chat session identifier sid and upon a query issue a chat sessions’
Write operation and output the resulting id; concretely:

CreateChat(sid, G⃗): for group member vector G⃗, issues a Write with com-

mand (Create, G⃗) and acknowledgements Acks = ∅;
ProposeChange(sid, vid, change, P ): for a vid specifying the chat version to

which the change is to be made—where change and P ′ specify the actual
change: if change = Add, P ′ is being added; if change = Rm, P ′ is being
removed—issues a Write with command (vid, change, G⃗, P ′), where vector

G⃗ is the current group roster for chat version vid; (Adding G⃗ to the command
allows the joining party to learn the current group roster and each group
member to confirm this roster.)

Vote(sid, vid): for proposed chat version vid, issues a Write with command
(vid,Vote) and acknowledgements Acks = {vid}; and

Write(sid, vid,m, ReplyTo): for chat version vid, message m and set ReplyTo
of prior commands to be explicitly acknowledged, issues a Write with com-
mand (vid,Msg,m, ReplyTo) and a set of acknowledgements that includes
each command in ReplyTo (i.e. ReplyTo ⊆ Acks).

20



5.1 The Unanimous Policy U

The first step in constructing a messenger is defining a policy to parameterize
chat sessions; UatChat’s policy—defined in Algorithm 7—is denoted U.

To define U we rely on a helpful definition:

Definition 3. For digraph G = (V,E) and node v ∈ V , the v-sourced subgraph
of G, denoted Sourced(G, v), is the subgraph of G induced by the set of vertices
u ∈ V that are reachable from v—i.e. to which there is a directed path in G
starting in v—plus node v itself.

UatChat allows for five types of commands: Create, Add, Rm, Vote and Msg.
Only commands of type Create, Add or Rm may be roots; specifically, for chat
identifier sid, sender S, group vector G⃗ and receiver vector V⃗—where S must
be an element of the group, i.e. S ∈ Set(G⃗), and G⃗ has no duplicate parties, i.e.

|G⃗| = |Set(G⃗)|:

– (Create, G⃗) is valid if the receiver vector matches the group vector, i.e. V⃗ = G⃗;

– (·, proposal ∈ {Add,Rm}, G⃗, P ) is valid if P is not in the group and the

receiver vector matches the group vector with P appended, i.e. V⃗ = G⃗ || P .

A Vote command (vid,Vote) is valid if vid is a Write operation identifier for a
root that is either an Add or a Rm proposal—which requires parties to agree on
the proposal—and the set of acknowledgements is just the proposal node itself,
i.e. Acks = {vid}. Finally, a Write command (vid, (Msg, ·, ReplyTo)) is valid if:
1. vid is the identifier of a root; 2. every node in ReplyTo is being acknowledged
(i.e. ReplyTo ⊆ Acks); 3. every node in Acks is in the subgraph sourced by vid;
and 4. if node corresponding to vid is an Add or a Rm proposal, then Acks
includes a vote from each party whose vote is required for the proposal to take
effect. This last condition is what enforces the unanimity policy: a proposal can
only take effect if all parties agree on it. Theorem 2 trivially follows by inspection
of U’s definition (Algorithm 7).

Theorem 2. U satisfies Requirements 1, 2 and 3.

5.2 Defining UatChat

While policy U already gives most of the guarantees we want from our messenger—
by establishing which commands are valid via predicates IsRoot and IsValid—
one may want to require more for a root to be valid: Requirement 1 implies that
for any G+ = (V +, E+) and any set Acks, if a quadruple (sid, S, V⃗ , cmd) is a

root, then U[IsValid](sid,G+, S, V⃗ , cmd,Acks) = 1. To exemplify, we add such
extra requirements to our messenger (see Algorithm 8). On the other hand, one
may want the messenger to hide (to honest parties) certain nodes in a chat’s
graph; we also exemplify this with our messenger.

21



Algorithm 7 Unanimous policy U; Below, Sourced is as in Definition 3.

⋄ IsRoot(sid, S, V⃗ , cmd)

(Voters, ·, G⃗, ·)← RootCmdInfo(cmd)

if (Voters, ·, G⃗, ·) = ⊥ :
return 0

return
(
|G⃗| = |Set(G⃗)|

)
∧

(
S ∈ Voters

)
∧

(
V⃗ = G⃗

)
⋄ IsValid(sid,G+ = (V +, E+), S, V⃗ , cmd,Acks)

if IsRoot(sid, S, V⃗ , cmd) = 1 : // Any root is a valid node.
return 1

if (Acks ⊆ V +) ∧ cmd = (vid, ·) :

if (vid /∈ V +) ∨ (NodeIsRoot(vid, V +) = 0) :
return 0

(Voters,Votable, G⃗pre-vote, G⃗post-vote)← RootCmdInfo(CmdOf(vid, V +))
if cmd = (·,Vote) :

return Votable ∧
(
S ∈ Voters

)
∧

(
V⃗ = G⃗pre-vote

)
∧

(
Acks = {vid}

)
else if cmd = (·, (Msg, ·, ReplyTo)) :

Compute G+
src := (V +

src, E
+
src)← Sourced(G+, vid)

return
(
ReplyTo ⊆ Acks ⊆ V +

src

)
∧

(
Voted(vid,Acks, V +

src) = Voters
)
∧

(
V⃗ = G⃗post-vote

)
return 0

⋄ Voted(vid,Acks, V +)

Voted← {SenderOf(vid, V +)}
for id ∈ Acks with CmdOf(id, V +) =

(vid,Vote) :

Voted← Voted ∪ {SenderOf(id, V +)}
return Voted

⋄ SenderOf(id, V +)

(⟨S → V⃗ ⟩, ·)← V +[id]
return S

⋄ CmdOf(id, V +)

(·, (·, cmd, ·))← V +[id]
return cmd

⋄ NodeIsRoot(id, V +)

(⟨S′ → V⃗ ′⟩, (sid′, cmd′, ·))← V +[id]

return IsRoot(sid′, S′, V⃗ ′, cmd′)

⋄ RootCmdInfo(cmd)

if cmd = (Create, G⃗) :

return (Set(G⃗), 0, G⃗, G⃗)

if cmd = (·,Add, G⃗, P ) :

G⃗′ ← G⃗ || P
return (Set(G⃗), 1, G⃗′, G⃗′)

if cmd = (·,Rm, G⃗, P ) :

G⃗′ ← G⃗ || P
return (Set(G⃗), 1, G⃗′, G⃗)

return ⊥

Additional requirements for the validity of a root. Let G+ := (V +, E+) be a

proper graph; consider some tuple (sid,G+, S, V⃗ , cmd,Acks):

– if cmd = (Create, G⃗), then Acks must be the empty set;

– if cmd = (vid, change ∈ {Add,Rm}, G⃗, P ), then 1. vid must be in V +;
2. vid’s corresponding node (in V +) must be a root (in the sense of U’s
IsRoot predicate); 3. if vid’s corresponding command is either Add or Rm,
then Acks must contain a vote from each of the parties necessary to agreed
on vid’s proposal; and 4. the group vector G⃗vid corresponding to vid must
be consistent with G⃗ (see Algorithm 8).

Hiding unwanted nodes. Generally, a node u is only visible to a party P if all of
u’s acknowledged nodes are already visible to P ; the only case in which a node u
is shown to a party P—despite u’s acknowledged nodes not being visible to P—
is when u’s command is (sid,Add, G⃗, P ): in this case u becomes visible to P as

soon as P receives a corresponding vote from each of the parties in G⃗ needed for

22



Algorithm 8 Additional root requirements. Below, Sourced is as in Definition 3.

⋄ IsRoot-Ext(sid,G+ = (V +, E+), S, V⃗ , cmd,Acks)

if U[IsRoot](sid, S, V⃗ , cmd) = 0 :
return 0

if cmd = (Create, G⃗) :
return Acks = ∅

if (cmd = (vid, change, G⃗, P )) ∧ (change ∈ {Add,Rm}) ∧ (Acks ⊆ V +) :

if (vid /∈ V +) ∨ (NodeIsRoot(vid, V +) = 0) :
return 0

Compute G+
src := (V +

src, E
+
src)← Sourced(G+, vid)

(Voters,Votable, ·, G⃗vid)← RootCmdInfo(CmdOf(vid, V +))

if (Votable = 1) ∧ (Voters ̸= Voted(vid,Acks, V +)) :
return 0

return (change, G⃗) ∈
{
(Add, G⃗vid), (Rm,RemoveFromVector(G⃗vid, P ))

}
return 0

an unanimous agreement (to add P to chat sid). Proposals’ votes only become
visible after all votes that are necessary for an unanimous agreement have been
received. Finally, proposals to add (resp. remove) a party P to (resp. from) a
chat are kept hidden from P until all parties have agreed to the proposal. (This
guarantees that an honest party P only sees that it was added to a chat once
all the chat’s participants agreed to P ’s addition.)

Consistency. Neither hiding unwanted nodes nor making further requirements
for root nodes to be valid affect the consistency of our messenger, because honest
parties only see a subgraph of what is output by the chat sessions abstraction
(and therefore the subgraphs they read are consistent).

5.2.1 Constructing UatChat. Dishonest parties’ capabilities are exactly
the same in ChatSessions[U] and UatChat, and the same holds for interface
Deliver (see Algorithms 6 and 9). This means one can equivalently define the
ideal UatChat resource via a converter UatChatProt run by each honest party
and attaching it to ChatSessions[U]:

UatChatProtM
H

·ChatSessions[U] ≡ UatChat.

(For completeness, we define converter UatChatProt in Appendix, Algorithm 16.)

6 The Modularity of ChatSessions[P]

We now extend ChatSessions[P] to provide various additional security prop-
erties, namely authenticity, Off-The-Record, confidentiality and anonymity. We
focus on these guarantees because they match the ones captured in the model
from [34] in the context of Multi-Designated Receiver Signed Public Key Encryp-
tion (MDRS-PKE) schemes [38,20,34]. In particular this allows us to follow [34]’s
simple and intuitive modeling technique in the context ofChatSessions[P]. Fur-
thermore, [34]’s MDRS-PKE application semantics are an exact match with the

23



Algorithm 9 The ideal UatChat application. The description below relies on
a system ChatSessions[U] (see Algorithm 6). For simpler notation we write
CS[U] instead of ChatSessions[U].

▷ (P ∈ MH)-CreateChat(sid, G⃗ ∈ M+)
Require: sid /∈ UatChat-Read(

V⃗ , cmd,Acks
)
←

(
G⃗, (Create, G⃗), ∅

)
Require: IsRoot-Ext(sid, (∅, ∅), P, V⃗ , cmd,Acks) = 1

Output(CS[U]-Write(sid, cmd, V⃗ ,Acks))

▷ (P ∈ MH)-ProposeChange(sid, vid, change ∈ {Add,Rm}, P ′ ∈ M)
Require: BasicReqs(sid, vid, P )

(·, G⃗,G+
src-vis

:= (V +
src-vis, E

+
src-vis), ·,VoteAcks)← HelperFunction(P, sid, vid)

G⃗′ ← (G⃗ || P ′)

LeafAcks← {id | (∃(id, (·, (·, (vid, ·), ·))) ∈ V +
src-vis) ∧ (∄(id, ·) ∈ E+

src-vis)}(
V⃗ , cmd,Acks

)
←

(
G⃗′, (vid, change, G⃗, P ′),VoteAcks ∪ LeafAcks

)
Require: IsRoot-Ext(sid,G+

src-vis, P, V⃗ , cmd,Acks) = 1

Output(CS[U]-Write(sid, cmd, V⃗ ,Acks))

▷ (P ∈ MH)-Vote(sid, vid)
Require: BasicReqs(sid, vid, P )

(G⃗, ·,G+
src-vis,MissingVotes, ·)← HelperFunction(P, sid, vid)

Require: P ∈ MissingVotes(
V⃗ , cmd,Acks

)
←

(
G⃗, (vid,Vote), {vid}

)
Require: IsValid(sid,G+

src-vis, P, V⃗ , cmd,Acks) = 1

Output(CS[U]-Write(sid, cmd, V⃗ ,Acks))

▷ (P ∈ MH)-Write(sid, vid,m, ReplyTo)
Require: BasicReqs(sid, vid, P )

(·, G⃗,G+
src-vis

:= (V +
src-vis, E

+
src-vis), ·,VoteAcks)← HelperFunction(P, sid, vid)(

V⃗ , cmd,Acks
)
←

(
G⃗, (vid,Msg,m, ReplyTo),VoteAcks ∪ ReplyTo

)
Require: IsValid(sid,G+

src-vis, P, V⃗ , cmd,Acks) = 1

Output(CS[U]-Write(sid, cmd, V⃗ ,Acks))

▷ (P ∈ MH)-Read
ChatGraphs← ∅
for (sid,G+) ∈ CS[U]-Read with VisibleGraph(sid,G+, P ) ̸= (∅, ∅) :

ChatGraphs← ChatGraphs ∪ {(sid,VisibleGraph(sid,G+, P ))}
Output(ChatGraphs)

▷ (P ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks)): Output(CS[U]-Write(⟨S → V⃗ ⟩,m))

▷ (P ∈ PH)-Read: Output(CS[U]-Read)

▷ Deliver(P, id): CS[U]-Deliver(P, id)

⋄ BasicReqs(sid, vid, P )
Require: sid ∈ CS[U]-Read

G+
vis

:= (V +
vis, E

+
vis)← VisibleGraph(sid,CS[U]-Read[sid], P )

Require: (vid ∈ V +
vis) ∧ (NodeIsRoot(vid, V +

vis) = 1)

24



Algorithm 10 Helper functions from UatChat’s description. Below, Sourced
is as in Definition 3. For simpler notation we write CS[U] instead of
ChatSessions[U].

⋄ MissingVotes(vid, V +)

(Voters,Votable, ·, ·)← RootCmdInfo(CmdOf(vid, V +))
if Votable = 1 :

Voted← {SenderOf(vid, V +)} ∪ {S | ∃(·, (⟨S → R⃗⟩, (·, (vid,Vote), ·))) ∈ V +}
else

Voted← Voters
return Voters \ Voted

⋄ HelperFunction(P, sid, vid)

G+ := (V +, E+)← CS[U]-Read[sid]

MissingVotes← MissingVotes(vid, V +)

(·, ·, G⃗pre-vote, G⃗pos-vote)← RootCmdInfo(CmdOf(vid, V +))

G+
src-vis

:= (V +
src-vis, E

+
src-vis)← VisibleGraph(Sourced(G+, vid), P )

VoteNodes← {id | (id, (·, (·, (vid,Vote), ·))) ∈ V +
src-vis}

return (G⃗pre-vote, G⃗pos-vote,G+
src-vis,MissingVotes,VoteNodes)

⋄ AckedNodes(G+ := (V +, E+), P )

V +
acked ← V +

for u := (id, (·, (·, cmd,Acks))) ∈ V + with NodeIsRoot(id, V +) ∧ (Acks ̸⊆ V +) :
if cmd ̸= (·,Add, ·, P ) :

Compute G+
src := (V +

src, ·)← Sourced(G+, id)

V +
acked ← V +

acked \ V
+
src

return V +
acked

⋄ VisibleGraph(sid,G+ := (V +, E+), P )

V +
vis ← AckedNodes(G+, P )

for u := (id, (⟨S → V⃗ ⟩, (·, cmd,Acks))) ∈ V +
vis with NodeIsRoot(id, V +

vis) :

Compute G+
src := (V +

src, ·)← Sourced(G+, id)

if IsRoot-Ext(sid,G+, S, V⃗ , cmd,Acks) = 0 :

V +
vis ← V +

vis \ V
+
src

else if (cmd = (·, change, G⃗, P ′)) ∧ (change ∈ {Add,Rm}) ∧ (MissingVotes(id, V +
vis) ̸= ∅) :

V +
vis ← V +

vis \ V
+
src

if P ′ ̸= P :
V +
vis ← V +

vis ∪ {u}
E+

vis ← E+ ∩ (V +
vis × V +

vis)

return G+
vis

:= (V +
vis, E

+
vis)

25



repositories we assume for the construction of ChatSessions[P], which allows
us to obtain an instantiation of our abstraction with all these extra guarantees.

We begin by defining [34]’s MDRS-PKE application semantics; in doing so we
introduce their modeling technique, which we use to extend ChatSessions[P]’s
guarantees. Next we model each additional guarantee and show our construc-
tion preserves them. Finally, we also explain why UatChat also preserves these
guarantees as well.

6.1 Application Semantics of Multi-Designated Receiver Signed
Public Key Encryption [34]

In the following, we consider a set of senders S = {A1, . . . , Al}, and a set of

receivers R = {B1, . . . , Bn}; we assume RH , RH , SH and SH are all non-empty.
We also consider a set F that includes all senders and receivers, i.e. F := S ∪R.
Finally, we consider a judge J(-udy) who is not a sender nor a receiver. The set
of parties is P = {A1, . . . , Al, B1, . . . , Bn, J}.

The MDRS-PKE model from [34] provides different application semantics
depending on the honesty of the judge J(-udy): if dishonest, their model pro-
vides consistency, Off-The-Record, confidentiality and anonymity; if honest, it
additionally provides authenticity. Their model also provides confidentiality and
anonymity for messages sent by honest senders to vectors of all-honest receivers.

Remark 2 (Authenticity and J ’s honesty). The reason why the model from [34]
only provides authenticity for honest J is that they consider the setting from [20]
where J is given access to the secret keys of honest senders (which in particular
means she can impersonate them). On the other hand, if J is honest then she
is not given access to the secret keys of honest senders; this is the only case in
which authenticity may be possible.

6.1.1 Application Semantics for MDRS-PKE [34] The MDRS-PKE
model from [34] is defined upon the repository model we introduced in Sec-
tion 3.2. Their application semantics include, for each sender Ai ∈ S and vector
of receivers V⃗ ∈ R+, a repository

⟨Ai → V⃗ ⟩
{Ai}∪PH

Set(V⃗ )∪PH

to which Ai and any dishonest party can write to, and from which dishonest
parties and the ones in V⃗ can read. Note that this naturally captures a stateless
consistency guarantee because for each repository ⟨Ai → V⃗ ⟩, either there is a

register with identifier id—in which case each Bj ∈ V⃗ gets the same tuple upon

a Read operation—or there is not—in which case no Bj ∈ V⃗ obtains a tuple
with identifier id.

26



Off-The-Record. Their application semantics captures Off-The-Record by in-
cluding, for each sender Ai and receiver vector V⃗ , an additional repository
⟨[Forge]Ai → V⃗ ⟩ to which parties from F write forged (i.e. “fake”) messages;
the readers of these repositories are only the dishonest parties because hon-
est ones only read real (non-forged) messages; this means ⟨[Forge]Ai → V⃗ ⟩ :=

⟨[Forge]Ai → V⃗ ⟩
F
PH . Put together with the repositories from above and attaching

the network converter Net:20 Net ·
[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

 . (6.1)

Recall from the repository semantics (Algorithm 3) that Read operations out-
put the atomic repository associated with each message output. This means that
when a dishonest party reads from the resource above it still learns which mes-
sages are real ones—i.e. written to a repository ⟨Ai → V⃗ ⟩—and which ones are

“fake”—i.e. written to a repository ⟨[Forge]Ai → V⃗ ⟩. To avoid this, they intro-
duce a converter Otr [34] (Algorithm 11) which connects to the dishonest parties’
Read interfaces of the resource above and hides from them where each message
comes from.

Algorithm 11 Converter Otr from [34].

▷ (P ∈ PH)-Read
list← ∅
for (id, (⟨[Forge]Ai → V⃗ ⟩,m)) ∈ Read : list← list ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
for (id, (⟨Ai → V⃗ ⟩,m)) ∈ Read : list← list ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(list)

Confidentiality and Anonymity. Their approach to capturing confidentiality and
anonymity is similar: they define a converter ConfAnon (Algorithm 12) that limits
dishonest parties reading capabilities [34].

Algorithm 12 Converter ConfAnon from [34].

▷ (P ∈ PH)-Read
list← ∅
for (id, (⟨Ai → V⃗ ⟩,m)) ∈ Read with {Ai} ∪ Set(V⃗ ) ⊆ PH : list← list ∪ {(id, (|V⃗ |, |m|))}
for (id, (⟨Ai → V⃗ ⟩,m)) ∈ Read with {Ai}∪Set(V⃗ ) ̸⊆ PH : list← list∪{(id, (⟨Ai → V⃗ ⟩,m))}
Output(list)

Application Semantics for Dishonest J(-udy). Putting things together, their
MDRS-PKE application semantics for the case of a dishonest judge J are given

20 As noted in [34], Net need not be attached to ⟨[Forge]Ai → V⃗ ⟩ because the readers
are dishonest.

27



by the ideal resource S below [34]:

S :=
(
ConfAnonP

H · OtrP
H
)
·

 Net ·
[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

. (6.2)

Application Semantics for Honest J(-udy). Their application semantics for the
case of an honest judge is similar. They capture authenticity by removing the
Write sub-interfaces that dishonest parties could use to write on behalf of
honest senders [34]. Concretely, denoting these (sub-)interfaces by

Auth-Intf := PH -Write(⟨SH → R+⟩, ·), (6.3)

their application semantics are given by the following ideal resource T:

T :=

(
ConfAnonP

H

·OtrPH

)
·

 Net · ⊥Auth-Intf ·
[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S
V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

 (6.4)

where ⊥ is a dummy converter which provides no output interface; attaching ⊥
to Auth-Intf disables the interface that dishonest parties could use to write on
behalf of honest ones.

6.2 Extending ChatSessions[P] to Provide Extra Guarantees

Having introduce the MDRS-PKE application semantics from [34], we are now
set to extend the guarantees captured by ChatSessions[P]. We will prove that
each of these guarantees is preserved.

6.2.1 Authenticity. We extend ChatSessions[P] to provide authenticity
following the same technique from [34], i.e. by attaching converter ⊥Auth-Intf so
dishonest parties cannot impersonate honest ones. (Auth-Intf are the Write
sub-interfaces defined in Equation 6.3.) The ideal system is then

AuthChatSessions[P] := ⊥Auth-Intf ·ChatSessions[P]. (6.5)

The real world is as in Equation 4.2 with converter ⊥ attached to interfaces
Auth-Intf := PH -Write(⟨SH → R+⟩, ·) of REP:

RAuth[P] := ChatSessionsProt[P]M
H

· (Net · ⊥Auth-Intf ·REP). (6.6)

Corollary 1 follows from Theorem 1.

Corollary 1. For any P satisfying Requirements 1, 2 and 3:

RAuth[P] ≡ AuthChatSessions[P].

28



Proof.

AuthChatSessions[P] = ⊥Auth-Intf ·ChatSessions[P]

≡ ⊥Auth-Intf · (ChatSessionsProt[P]M
H

·AREP) (1)

= ⊥Auth-Intf · (ChatSessionsProt[P]M
H

· (Net ·REP))

≡ ChatSessionsProt[P]M
H

· (⊥Auth-Intf · Net ·REP) (2)

≡ ChatSessionsProt[P]M
H

· (Net · ⊥Auth-Intf ·REP) (3)

= RAuth[P].

(1): From Theorem 1;
(2): Commutativity of converter application at disjoint interfaces;
(3): By Equation 6.7 (see below).

It only remains to prove

⊥Auth-Intf · Net ·REP ≡ Net · ⊥Auth-Intf ·REP. (6.7)

Converter ⊥ disables the interfaces it is attached to. Attaching ⊥Auth-Intf to
Net · REP disallows dishonest parties from issuing Write operations for la-
bels ⟨S → V⃗ ⟩ with S ∈ SH (since Auth-Intf := PH -Write(⟨SH → R+⟩, ·)). The
definition of converter Net depends on the repositories to which it connects (Al-
gorithm 3); in particular it only allows a party P to issue a Write operation for
a repository repi := repi

Wi

Ri
if P ∈ Wi, i.e. if P has write permissions—because

the description of Net specifies that the party’s interface of Net at which the
Write operation was issued matches the one that Net uses to issue the corre-
sponding Write operation to the repository. This then implies Equation 6.7.

⊓⊔

Algorithm 13 The FakeChatSessions system to which fake messages
(i.e. invisible to honest parties) are written. Below, FAKE-REP :=

[⟨[Forge]P → V⃗ ⟩
M
PH ]P∈M,V⃗ ∈M+ .

▷ (P ∈ M)-Write(S, sid, cmd, V⃗ ,Acks)

Output
(
FAKE-REP-Write(⟨[Forge]S → V⃗ ⟩,m := (sid, cmd,Acks))

)
▷ (P ∈ PH)-Read: Output

(
FAKE-REP-Read

)

6.2.2 Off-The-Record. As for authenticity, we follow the same modeling
technique from [34]. Concretely, we extend AuthChatSessions[P] via paral-
lel composition with FakeChatSessions—defined in Algorithm 13—which pro-
vides 1. an interface Write that allows parties to write fake messages, and 2. an
interface Read from which dishonest parties can read these fake messages—and

29



then attach converter Otr (Algorithm 11) to the interfaces of dishonest par-
ties that hides (from dishonest parties) which messages are real—i.e. written to
AuthChatSessions[P]—and which ones are fake—not visible to honest parties,
i.e. written to FakeChatSessions. The ideal world is then

OTR-ChatSessions[P] := OtrP
H ·
[
AuthChatSessions[P]
FakeChatSessions

]
. (6.8)

Algorithm 14 Converter ChatSessionsForgeProt.

▷ (P ∈ M)-Write(S, sid, cmd, V⃗ ,Acks)

Output
((

[⟨[Forge]P → R⃗⟩]P∈M,R⃗∈M+

)
-Write(⟨[Forge]S → V⃗ ⟩,m := (sid, cmd,Acks))

)

The assumed resources are similar to the ones for authenticity (Equation 6.6),

but now also include repositories
[
⟨[Forge]P → V⃗ ⟩

M
PH

]
P∈M,V⃗ ∈M+

to which par-

ties write fake messages, plus converter Otr. Regarding the protocol, honest
parties MH run converter ChatSessionsProt[P], and additionally all (honest and
dishonest) parties in M run converter ChatSessionsForgeProt (Algorithm 14)
which allows writing fake messages. The real world resource is then

ROTR[P] :=

(
ChatSessionsProt[P]M

H

·ChatSessionsForgeProtM
)
·OtrPH ·

 Net · ⊥Auth-Intf · REP[
⟨[Forge]P → V⃗ ⟩

M
PH

]
P∈M
V⃗ ∈M+

 .

(6.9)
Corollary 2 follows from Corollary 1.

Corollary 2. For any P satisfying Requirements 1, 2 and 3:

ROTR[P] ≡ OTR-ChatSessions[P].

Proof. Consider the definitions of FakeChatSessions (Algorithm 13), of proto-

col ChatSessionsForgeProt (Algorithm 14) and of
[
⟨[Forge]P → V⃗ ⟩

M
PH

]
P∈M,V⃗ ∈M+

(Algorithm 2). We have

FakeChatSessions ≡ ChatSessionsForgeProtM ·
[
⟨[Forge]P → V⃗ ⟩

M
PH

]
P∈M,V⃗ ∈M+

.

(P.1)

30



It then follows

OTR-ChatSessions[P] = OtrP
H ·
[
AuthChatSessions[P]
FakeChatSessions

]
.

≡ OtrP
H ·
[

RAuth[P]
FakeChatSessions

]
(1)

≡ OtrP
H ·
[
ChatSessionsProt[P]M

H · (Net · ⊥Auth-Intf ·REP)
FakeChatSessions

]
≡ ChatSessionsProt[P]M

H

· OtrPH ·
[
Net · ⊥Auth-Intf ·REP
FakeChatSessions

]
(2)

≡ ChatSessionsProt[P]M
H

· OtrPH

·

[
Net · ⊥Auth-Intf ·REP

ChatSessionsForgeProtM ·
[
⟨[Forge]P → V⃗ ⟩

M
PH

]
P∈M,V⃗ ∈M+

]
(3)

≡
(
ChatSessionsProt[P]M

H

·ChatSessionsForgeProtM
)
· OtrPH ·

[
Net · ⊥Auth-Intf ·REP[

⟨[Forge]P → V⃗ ⟩
M
PH

]
P∈M,V⃗ ∈M+

]
(4)

= ROTR[P].

(1): Corollary 1;
(2): Commutativity of converter application at disjoint interfaces;
(3): By Equation P.1;
(4): Commutativity of converter application at disjoint interfaces.

⊓⊔

6.2.3 Confidentiality and Anonymity. Finally, we also follow [34] to cap-
ture confidentiality and anonymity, i.e. capture these guarantees via converter
ConfAnon (Algorithm 12); consider any two resources AR[P] and V[P] such
that

V[P] ≡ ChatSessionsProt[P]M
H

·AR[P] (6.10)

which have PH -Read interfaces suitable for converter ConfAnon. (V[P] could be,
e.g. ChatSessions[P], AuthChatSessions[P] or OTR-ChatSessions[P].)
The ideal resource capturing confidentiality and anonymity is

ConfAnonP
H ·V[P]. (6.11)

The real world resource is

RConfAnon[P] := ChatSessionsProt[P]M
H

· (ConfAnonPH ·AR[P]), (6.12)

where (ConfAnonP
H ·AR[P]) is the assumed resource for the construction. The

following then establishes our claim that if the real world resource gives confiden-
tiality and anonymity guarantees, then so does the corresponding ideal world.

31



(We state Corollary 3 abstractly because we want the result to hold for any
suitable real world and ideal world resources.)

Corollary 3. For any P satisfying Requirements 1, 2 and 3 and any resources
AR[P] and V[P] satisfying Equation 6.10 that have PH-Read interfaces suit-
able for converter ConfAnon (Algorithm 12),

RConfAnon[P] ≡ ConfAnonP
H ·V[P].

Proof.

RConfAnon[P] = ChatSessionsProt[P]M
H

· (ConfAnonPH ·AR[P])

≡ ConfAnonP
H · (ChatSessionsProt[P]M

H

·AR[P]) (1)

≡ ConfAnonP
H · (V[P]). (2)

(1): Commutativity of converter application at disjoint interfaces;
(2): Assumption stated in Equation 6.10. ⊓⊔

6.3 Uatchat

One can capture authenticity, confidentiality, anonymity and Off-The-Record
analogously to how we captured these guarantees for ChatSessions[P]; corol-
laries analogous to Corollaries 1, 2 and 3 also hold for UatChat (and also follow
trivially from the commutativity of converter application at disjoint interfaces).
Regarding Off-The-Record, in Algorithm 15 we define FakeUatChat to which
parties write fake commands; as forChatSessions[P], the idealOTR-UatChat
is then the parallel composition of UatChat and FakeUatChat with converter
Otr attached.

Algorithm 15 System FakeUatChat.

▷ (P ∈ M)-FakeCreateChat(S, sid, G⃗ ∈ M+)(
V⃗ , cmd,Acks

)
←

(
G⃗, (Create, G⃗), ∅

)
Output(FakeChatSessions-Write(S, sid, cmd, V⃗ ,Acks))

▷ (P ∈ M)-FakeProposeChange(S, sid, vid, change ∈ {Add,Rm}, P ′ ∈ M)

(·, G⃗,G+
src-vis

:= (V +
src-vis, E

+
src-vis), ·,VoteAcks)← HelperFunction(P, sid, vid)

G⃗′ ← (G⃗ || P ′)

LeafAcks← {id | (∃(id, (·, (·, (vid, ·), ·))) ∈ V +
src-vis) ∧ (∄(id, ·) ∈ E+

src-vis)}(
V⃗ , cmd,Acks

)
←

(
G⃗′, (vid, change, G⃗, P ′),VoteAcks ∪ LeafAcks

)
Output(FakeChatSessions-Write(S, sid, cmd, V⃗ ,Acks))

▷ (P ∈ M)-FakeVote(S, sid, vid)

(G⃗, ·,G+
src-vis,MissingVotes, ·)← HelperFunction(P, sid, vid)(

V⃗ , cmd,Acks
)
←

(
G⃗, (vid,Vote), {vid}

)
Output(FakeChatSessions-Write(S, sid, cmd, V⃗ ,Acks))

▷ (P ∈ M)-FakeWrite(S, sid, vid,m, ReplyTo)

(·, G⃗,G+
src-vis

:= (V +
src-vis, E

+
src-vis), ·,VoteAcks)← HelperFunction(P, sid, vid)(

V⃗ , cmd,Acks
)
←

(
G⃗, (vid,Msg,m, ReplyTo),VoteAcks ∪ ReplyTo

)
Output(FakeChatSessions-Write(S, sid, cmd, V⃗ ,Acks))

32



References

1. Signal Messenger: Speak Freely — signal.org. https://signal.org/, [Accessed 02-10-
2024]

2. WhatsApp — Secure and Reliable Free Private Messaging and Calling — what-
sapp.com. https://www.whatsapp.com/, [Accessed 02-10-2024]

3. Alwen, J., Auerbach, B., Noval, M.C., Klein, K., Pascual-Perez, G., Pietrzak, K.,
Walter, M.: CoCoA: Concurrent continuous group key agreement. In: Dunkelman,
O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp.
815–844. Springer, Cham (May / Jun 2022). https://doi.org/10.1007/978-3-031-
07085-3 28

4. Alwen, J., Auerbach, B., Noval, M.C., Klein, K., Pascual-Perez, G., Pietrzak, K.:
DeCAF: Decentralizable CGKA with fast healing. In: Galdi, C., Phan, D.H. (eds.)
SCN 24, Part II. LNCS, vol. 14974, pp. 294–313. Springer, Cham (Sep 2024).
https://doi.org/10.1007/978-3-031-71073-5 14

5. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: Security notions, proofs, and
modularization for the Signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 129–158. Springer, Cham (May 2019).
https://doi.org/10.1007/978-3-030-17653-2 5

6. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248–277. Springer,
Cham (Aug 2020). https://doi.org/10.1007/978-3-030-56784-2 9

7. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Modular design of se-
cure group messaging protocols and the security of MLS. In: Vigna, G.,
Shi, E. (eds.) ACM CCS 2021. pp. 1463–1483. ACM Press (Nov 2021).
https://doi.org/10.1145/3460120.3484820

8. Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key agreement
with active security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS,
vol. 12551, pp. 261–290. Springer, Cham (Nov 2020). https://doi.org/10.1007/978-
3-030-64378-2 10

9. Alwen, J., Hartmann, D., Kiltz, E., Mularczyk, M.: Server-aided continuous group
key agreement. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022.
pp. 69–82. ACM Press (Nov 2022). https://doi.org/10.1145/3548606.3560632

10. Alwen, J., Jost, D., Mularczyk, M.: On the insider security of MLS. In: Dodis,
Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 34–68.
Springer, Cham (Aug 2022). https://doi.org/10.1007/978-3-031-15979-4 2

11. Alwen, J., Mularczyk, M., Tselekounis, Y.: Fork-resilient continuous group
key agreement. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023,
Part IV. LNCS, vol. 14084, pp. 396–429. Springer, Cham (Aug 2023).
https://doi.org/10.1007/978-3-031-38551-3 13

12. Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P., Michael, M.M.,
Vechev, M.T.: Laws of order: expensive synchronization in concurrent al-
gorithms cannot be eliminated. In: Ball, T., Sagiv, M. (eds.) Proceed-
ings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011. pp. 487–498. ACM (2011). https://doi.org/10.1145/1926385.1926442,
https://doi.org/10.1145/1926385.1926442

13. Balbás, D., Collins, D., Vaudenay, S.: Cryptographic administration for secure
group messaging. In: Calandrino, J.A., Troncoso, C. (eds.) USENIX Security 2023.
pp. 1253–1270. USENIX Association (Aug 2023)

33

https://signal.org/
https://www.whatsapp.com/
https://doi.org/10.1007/978-3-031-07085-3_28
https://doi.org/10.1007/978-3-031-07085-3_28
https://doi.org/10.1007/978-3-031-71073-5_14
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1145/3548606.3560632
https://doi.org/10.1007/978-3-031-15979-4_2
https://doi.org/10.1007/978-3-031-38551-3_13
https://doi.org/10.1145/1926385.1926442
https://doi.org/10.1145/1926385.1926442


14. Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-Gordon,
K.: The Messaging Layer Security (MLS) Protocol. RFC 9420 (Jul 2023).
https://doi.org/10.17487/RFC9420, https://www.rfc-editor.org/info/rfc9420

15. Bellare, M., Boldyreva, A., Staddon, J.: Randomness re-use in multi-recipient en-
cryption schemeas. In: Desmedt, Y. (ed.) PKC 2003. LNCS, vol. 2567, pp. 85–99.
Springer, Berlin, Heidelberg (Jan 2003). https://doi.org/10.1007/3-540-36288-6 7

16. Bhargavan, K., Barnes, R., Rescorla, E.: TreeKEM: Asynchronous Decentral-
ized Key Management for Large Dynamic Groups A protocol proposal for
Messaging Layer Security (MLS). Research report, Inria Paris (May 2018),
https://inria.hal.science/hal-02425247

17. Bienstock, A., Fairoze, J., Garg, S., Mukherjee, P., Raghuraman, S.: A more com-
plete analysis of the Signal double ratchet algorithm. In: Dodis, Y., Shrimpton,
T. (eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 784–813. Springer, Cham
(Aug 2022). https://doi.org/10.1007/978-3-031-15802-5 27

18. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001).
https://doi.org/10.1109/SFCS.2001.959888

19. Canetti, R., Jain, P., Swanberg, M., Varia, M.: Universally composable end-
to-end secure messaging. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022,
Part II. LNCS, vol. 13508, pp. 3–33. Springer, Cham (Aug 2022).
https://doi.org/10.1007/978-3-031-15979-4 1

20. Chakraborty, S., Hofheinz, D., Maurer, U., Rito, G.: Deniable authenti-
cation when signing keys leak. In: Hazay, C., Stam, M. (eds.) EURO-
CRYPT 2023, Part III. LNCS, vol. 14006, pp. 69–100. Springer, Cham (Apr 2023).
https://doi.org/10.1007/978-3-031-30620-4 3

21. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: Asynchronous group messaging with strong security guarantees.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 1802–
1819. ACM Press (Oct 2018). https://doi.org/10.1145/3243734.3243747

22. Cong, K., Eldefrawy, K., Smart, N.P., Terner, B.: The key lattice framework for
concurrent group messaging. In: Pöpper, C., Batina, L. (eds.) ACNS 24Interna-
tional Conference on Applied Cryptography and Network Security, Part II. LNCS,
vol. 14584, pp. 133–162. Springer, Cham (Mar 2024). https://doi.org/10.1007/978-
3-031-54773-7 6

23. Damg̊ard, I., Haagh, H., Mercer, R., Nitulescu, A., Orlandi, C., Yakoubov, S.:
Stronger security and constructions of multi-designated verifier signatures. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 229–260. Springer,
Cham (Nov 2020). https://doi.org/10.1007/978-3-030-64378-2 9

24. Devigne, J., Duguey, C., Fouque, P.A.: MLS group messaging: How zero-knowledge
can secure updates. In: Bertino, E., Shulman, H., Waidner, M. (eds.) ES-
ORICS 2021, Part II. LNCS, vol. 12973, pp. 587–607. Springer, Cham (Oct 2021).
https://doi.org/10.1007/978-3-030-88428-4 29

25. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO’93.
LNCS, vol. 773, pp. 480–491. Springer, Berlin, Heidelberg (Aug 1994).
https://doi.org/10.1007/3-540-48329-2 40

26. Herlihy, M., Shavit, N.: The art of multiprocessor programming. Morgan Kaufmann
(2008)

27. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for con-
current objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990).
https://doi.org/10.1145/78969.78972, https://doi.org/10.1145/78969.78972

34

https://doi.org/10.17487/RFC9420
https://www.rfc-editor.org/info/rfc9420
https://doi.org/10.1007/3-540-36288-6_7
https://inria.hal.science/hal-02425247
https://doi.org/10.1007/978-3-031-15802-5_27
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-031-15979-4_1
https://doi.org/10.1007/978-3-031-30620-4_3
https://doi.org/10.1145/3243734.3243747
https://doi.org/10.1007/978-3-031-54773-7_6
https://doi.org/10.1007/978-3-031-54773-7_6
https://doi.org/10.1007/978-3-030-64378-2_9
https://doi.org/10.1007/978-3-030-88428-4_29
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972


28. Jost, D., Maurer, U.: Overcoming impossibility results in composable secu-
rity using interval-wise guarantees. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 33–62. Springer, Cham (Aug 2020).
https://doi.org/10.1007/978-3-030-56784-2 2

29. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: Almost-optimal
guarantees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 159–188. Springer, Cham (May 2019).
https://doi.org/10.1007/978-3-030-17653-2 6

30. Jost, D., Maurer, U., Mularczyk, M.: A unified and composable take on ratcheting.
In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 180–
210. Springer, Cham (Dec 2019). https://doi.org/10.1007/978-3-030-36033-7 7

31. Klein, K., Pascual-Perez, G., Walter, M., Kamath, C., Capretto, M., Cueto, M.,
Markov, I., Yeo, M., Alwen, J., Pietrzak, K.: Keep the dirt: Tainted TreeKEM,
adaptively and actively secure continuous group key agreement. In: 2021 IEEE
Symposium on Security and Privacy. pp. 268–284. IEEE Computer Society Press
(May 2021). https://doi.org/10.1109/SP40001.2021.00035

32. Kurosawa, K.: Multi-recipient public-key encryption with shortened ciphertext. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer,
Berlin, Heidelberg (Feb 2002). https://doi.org/10.1007/3-540-45664-3 4

33. Liu-Zhang, C.D., Maurer, U.: Synchronous constructive cryptography. In: Pass, R.,
Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 439–472. Springer,
Cham (Nov 2020). https://doi.org/10.1007/978-3-030-64378-2 16

34. Liu-Zhang, C.D., Portmann, C., Rito, G.: Simpler and stronger models for
deniable authentication. Cryptology ePrint Archive, Report 2025/204 (2025),
https://eprint.iacr.org/2025/204

35. Matt, C., Maurer, U.: The one-time pad revisited. In: Proceedings of the 2013
IEEE International Symposium on Information Theory, Istanbul, Turkey, July 7-
12, 2013. pp. 2706–2710. IEEE (2013). https://doi.org/10.1109/ISIT.2013.6620718,
https://doi.org/10.1109/ISIT.2013.6620718

36. Maurer, U.: Constructive cryptography—a new paradigm for security definitions
and proofs. In: Proceedings of Theory of Security and Applications, TOSCA
2011. Lecture Notes in Computer Science, vol. 6993, pp. 33–56. Springer (2012).
https://doi.org/10.1007/978-3-642-27375-9 3

37. Maurer, U., Portmann, C., Rito, G.: Giving an adversary guarantees (or: How to
model designated verifier signatures in a composable framework). In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS, vol. 13092, pp. 189–219.
Springer, Cham (Dec 2021). https://doi.org/10.1007/978-3-030-92078-4 7

38. Maurer, U., Portmann, C., Rito, G.: Multi-designated receiver signed public
key encryption. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022,
Part II. LNCS, vol. 13276, pp. 644–673. Springer, Cham (May / Jun 2022).
https://doi.org/10.1007/978-3-031-07085-3 22

39. Maurer, U., Renner, R.: Abstract cryptography. In: Chazelle, B. (ed.) ICS 2011.
pp. 1–21. Tsinghua University Press (Jan 2011)

40. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Berlin, Heidelberg
(Apr / May 2002). https://doi.org/10.1007/3-540-46035-7 8

41. Maurer, U.M., Pietrzak, K., Renner, R.: Indistinguishability amplification. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Berlin,
Heidelberg (Aug 2007). https://doi.org/10.1007/978-3-540-74143-5 8

35

https://doi.org/10.1007/978-3-030-56784-2_2
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1109/SP40001.2021.00035
https://doi.org/10.1007/3-540-45664-3_4
https://doi.org/10.1007/978-3-030-64378-2_16
https://eprint.iacr.org/2025/204
https://doi.org/10.1109/ISIT.2013.6620718
https://doi.org/10.1109/ISIT.2013.6620718
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-030-92078-4_7
https://doi.org/10.1007/978-3-031-07085-3_22
https://doi.org/10.1007/3-540-46035-7_8
https://doi.org/10.1007/978-3-540-74143-5_8


42. Papadimitriou, C.H.: The serializability of concurrent database updates.
J. ACM 26(4), 631–653 (1979). https://doi.org/10.1145/322154.322158,
https://doi.org/10.1145/322154.322158

43. Wallez, T., Protzenko, J., Beurdouche, B., Bhargavan, K.: TreeSync: Authenticated
group management for messaging layer security. In: Calandrino, J.A., Troncoso, C.
(eds.) USENIX Security 2023. pp. 1217–1233. USENIX Association (Aug 2023)

44. Weidner, M.: Group messaging for secure asynchronous collaboration. Master’s
thesis (2019)

45. Weidner, M., Kleppmann, M., Hugenroth, D., Beresford, A.R.: Key agreement
for decentralized secure group messaging with strong security guarantees. In: Vi-
gna, G., Shi, E. (eds.) ACM CCS 2021. pp. 2024–2045. ACM Press (Nov 2021).
https://doi.org/10.1145/3460120.3484542

36

https://doi.org/10.1145/322154.322158
https://doi.org/10.1145/322154.322158
https://doi.org/10.1145/3460120.3484542


Appendix

A Definition of UatChatProt (Algorithm 16)

Algorithm 16 Description of the UatChatProt converter run by each honest
party P ∈ MH for constructing UatChat (see Algorithm 9). We rely on the
helper functions from Algorithm 10.

CreateChat(sid, G⃗ ∈ M+)
Require: sid /∈ UatChatProt-Read(

V⃗ , cmd,Acks
)
←

(
G⃗, (Create, G⃗), ∅

)
Require: IsRoot-Ext(sid, (∅, ∅), P, V⃗ , cmd,Acks) = 1

Output(ChatSessions[U]-Write(sid, cmd, V⃗ ,Acks))

ProposeChange(sid, vid, change ∈ {Add,Rm}, P ′ ∈ M)
Require: BasicRequirements(sid, vid, P )

(·, G⃗,G+
src-vis

:= (V +
src-vis, E

+
src-vis), ·,VoteAcks)← HelperFunction(P, sid, vid)

G⃗′ ← (G⃗ || P ′)

LeafAcks← {id | (∃(id, (·, (·, (vid, ·), ·))) ∈ V +
src-vis) ∧ (∄(id, ·) ∈ E+

src-vis)}(
V⃗ , cmd,Acks

)
←

(
G⃗′, (vid, change, G⃗, P ′),VoteAcks ∪ LeafAcks

)
Require: IsRoot-Ext(sid,G+

src-vis, P, V⃗ , cmd,Acks) = 1

Output(ChatSessions[U]-Write(sid, cmd, V⃗ ,Acks))

Vote(sid, vid)
Require: BasicRequirements(sid, vid, P )

(G⃗, ·,G+
src-vis,MissingVotes, ·)← HelperFunction(P, sid, vid)

Require: P ∈ MissingVotes(
V⃗ , cmd,Acks

)
←

(
G⃗, (vid,Vote), {vid}

)
Require: IsValid(sid,G+

src-vis, P, V⃗ , cmd,Acks) = 1

Output(ChatSessions[U]-Write(sid, cmd, V⃗ ,Acks))

Write(sid, vid,m, ReplyTo)
Require: BasicRequirements(sid, vid, P )

(·, G⃗,G+
src-vis

:= (V +
src-vis, E

+
src-vis), ·,VoteAcks)← HelperFunction(P, sid, vid)(

V⃗ , cmd,Acks
)
←

(
G⃗, (vid,Msg,m, ReplyTo),VoteAcks ∪ ReplyTo

)
Require: IsValid(sid,G+

src-vis, P, V⃗ , cmd,Acks) = 1

Output(ChatSessions[U]-Write(sid, cmd, V⃗ ,Acks))

Read
ChatGraphs← ∅
for (sid,G+) ∈ ChatSessions[U]-Read with VisibleGraph(sid,G+, P ) ̸= (∅, ∅) :

ChatGraphs← ChatGraphs ∪ {(sid,VisibleGraph(sid,G+, P ))}
Output(ChatGraphs)

B Proof of Theorem 1

B.1 Proof Structure

We will proceed via two sequences of hybrids, one starting from the real world

system R[P] (Equation 4.2), defined R[P] := ChatSessionsProt[P]M
H · (Net ·

REP):

R[P]⇝ HRW
1 ⇝ HRW

2 ⇝ HRW
3 ⇝ HRW

4 ⇝ HRW
5 ⇝ HRW

6 ⇝ HRW
Mid,



and the other from the ideal ChatSessions[P] resource

ChatSessions[P]⇝ HIW
1 ⇝ HIW

2 ⇝ HIW
3 ⇝ HIW

4 ⇝ HIW
Mid.

The last hop of the proof is then HRW
Mid ⇝ HIW

Mid. More concretely, our proof
will establish that all of these are statistically the same, i.e.

R[P] ≡ HRW
1 ≡ HRW

2 ≡ HRW
3 ≡ HRW

4 ≡ HRW
5 ≡ HRW

6 ≡ HRW
Mid

≡ HIW
Mid ≡ HIW

4 ≡ HIW
3 ≡ HIW

2 ≡ HIW
1 ≡ ChatSessions[P].

B.2 Helper Propositions

We now establish some useful propositions.

Proposition 1. Consider any proper graph G+ = (V +, E+). For any (extended)

node u := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))) ∈ V +:

P[IsValid](sid,G+, S, V⃗ , cmd,Acks) = 1.

See Section B.4.1 for the proof of Proposition 1.

Proposition 2. Consider any proper extended graph G+ = (V +, E+). Consider

function f that maps extended nodes u := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))) ∈
V + to sets of edges, defined as f(u) := Acks× {id}. Then,

E+ =
⋃

u∈V +

f(u).

See Section B.4.2 for the proof of Proposition 2.

Proposition 3. Consider any proper extended graph G+
0 = (V +

0 , E+
0 ). If the

corresponding non-extended G0 is input to UpdatedGraph (Algorithm 6), then
the extended version of each intermediate graph Gi computed in UpdatedGraph
is proper, and so is the extended version of the graph that is output.

See Section B.4.3 for the proof of Proposition 3.

Proposition 4. In ChatSessions[P] (Algorithm 6), if the extended version of
graph G = (V,E) on which InducedPartyGraph+ computes is proper, then the
output extended graph is proper.

See Section B.4.4 for the proof of Proposition 4.
The following is a direct consequence of Proposition 4.

Corollary 4. In ChatSessions[P] (Algorithm 6), if the extended version of
every graph stored in SessionGraphs is proper, then for every P ∈ PH and for
any sid, the extended graph output by InducedPartyGraph+ is proper.

Proposition 5. In ChatSessions[P], the extended versions of the graphs in
SessionGraphs are proper.



See Section B.4.5 for the proof of Proposition 5.

Proposition 6. In ChatSessionsProt[P], the extended versions of the graphs in
SessionGraphs are proper.

See Section B.4.6 for the proof of Proposition 6.

Proposition 7. In HRW
4 , for each sid and P ∈ MH , SessionGraphsP [sid] is

proper.

See Section B.4.7 for the proof of Proposition 7.

Proposition 8. Consider some proper graph G and set of nodes S, and let

(G′, S′) := UpdatedGraph(G, S).

Then S′ = G′.V ∩ S.

See Section B.4.8 for the proof of Proposition 8.

Proposition 9. Consider some proper graph G = (V,E) and set of nodes S.
Let

(GS , ·) := UpdatedGraph(G, S)
and for any set VS ⊆ V , let

(GVS
, ·) := UpdatedGraph(G, S ∪ VS).

Then GS = GVS
.

See Section B.4.9 for the proof of Proposition 9.

Proposition 10. Consider any proper extended graph G+ = (V +, E+) and any
set S of nodes such that (S ∪ V ) ⊆ Contents. For any positive n ∈ N, consider
any n sets S1, . . . , Sn such that

S =
⋃

i=1,...,n

Si.

Let

G1 := G,
S′1 := S1,

for i = 1, . . . , n, let

(Gi+1, S
′′
i+1) := UpdatedGraph(Gi, S

′
i),

S′i+1 := Si+1 ∪ (S′i \ S′′i+1),

and let
S′′ :=

⋃
i∈{1,...,n}

S′′i+1.

Then,
(Gn+1, S

′′) = UpdatedGraph(G, S).



See Section B.4.10 for the proof of Proposition 10.

Proposition 11. Consider some proper graph G := (V,E), set of nodes S, and
let (G′, S′) := UpdatedGraph(G, S). Then, for every node

u := (id, (⟨P → R⃗⟩, (sid, cmd,Acks))) ∈ S \ S′

we have
P[IsValid](sid,G+, P, R⃗, cmd,Acks) = 0.

See Section B.4.11 for the proof of Proposition 11.

Proposition 12. Consider some proper graph G := (V,E), set of nodes S′, and
any tuple

u := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks)))

corresponding to a Write operation, such that

P[IsValid](sid,G+, S, V⃗ , cmd,Acks) = 1.

Then, for G′ := (V ∪ {id}, E ∪ (Acks× {id})), and letting

(G1, S
′′
1 ) := UpdatedGraph(G′, S′)

(G2, S
′′
2 ) := UpdatedGraph(G, S′ ∪ {id}),

we have (G1, S
′′
1 ∪ {id}) = (G2, S

′′
2 ).

See Section B.4.12 for the proof of Proposition 12.

Proposition 13. In HIW
Mid, for each sid, SessionGraphsGlobal[sid] is proper.

In HRW
Mid, for each sid and each P ∈ MH , SessionGraphsP [sid] is proper.

See Section B.4.13 for the proof of Proposition 13.

Proposition 14. Consider an execution of InducedPartyGraph+ in HRW
Mid or

HIW
Mid, and let VO be the set of nodes in the graph output by InducedPartyGraph+.

For any non-root u ∈ VO, all nodes in u’s acknowledgment set Acks are in VO.

See Section B.4.14 for the proof of Proposition 14.

B.3 Hybrid Sequence

In the hybrids’ descriptions (Algorithms 18, 19, 20, 21, 22, 23, 24, 25, 26 and 27)
we only show the differences relative to the previous hybrid (or relative to the
ideal world system ChatSessions[P] or real world system R[P]). We will use
blue highlights to emphasize changes to variables that are global (in the sense
of being shared among all parties), yellow highlights to emphasize changes to
variables that are local to each party, and red highlights to emphasize lines that
were erased (from the description of the previous hybrid).



Algorithm 17 Hybrids HRW
Mid and HIW

Mid. Below, non-highlighted lines corre-
spond to parts of description that are common among the two hybrids, whereas
highlighted ones correspond to parts of the description that only concern one of
the hybrids: if green they concern HRW

Mid, and if purple they concern HIW
Mid.

Initialization
(Net ·REP)-Initialization
Contents, SessionGraphsGlobal, ToHandleGlobal ← ∅
for P ∈ MH :

Sent[P ], SessionGraphsP , ToHandleP , UndeliveredP , DeliveredP ← ∅

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)

G+ ← InducedPartyGraph+(sid, P )

Require: P[IsValid](sid,G+, P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
Sent[P ]← Sent[P ] ∪ {id}
AddToGraph(sid, id)

UndeliveredP [sid]← UndeliveredP [sid] ∪ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

UndeliveredP [sid]← UndeliveredP [sid] \ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

DeliveredP [sid]← DeliveredP [sid] ∪ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

ToHandleP [sid]← ToHandleP [sid] ∪ {id}
ProcessReceived(P )

∀P ′ ∈ (Set(V⃗ )
H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}

Output(id)

(P ∈ MH)-Read

Output({(sid,G+) | G+ = InducedPartyGraph+(sid, P ) ∧ G+ ̸= (∅, ∅)})

(P ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

id← (Net ·REP)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

Contents[id]← (⟨S → V⃗ ⟩, (sid, cmd,Acks))
AddToGraph(sid, id)

∀P ′ ∈ Set(V⃗ )
H

: UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}
Output(id)

(P ∈ PH)-Read
Output((Net ·REP)-Read)

Deliver(P, id)
(Net ·REP)-Deliver(P, id)

if ∃sid such that id ∈ UndeliveredP [sid] ∧ P ∈ MH :
UndeliveredP [sid]← UndeliveredP [sid] \ {id}
DeliveredP [sid]← DeliveredP [sid] ∪ {id}
ToHandleP [sid]← ToHandleP [sid] ∪ {id}

ProcessReceived(P )

ProcessReceived(P ) // Not part of interface.
for sid ∈ ToHandleP :

(Gupd,Handled)← UpdatedGraph(SessionGraphsP [sid],ToHandleP [sid])
ToHandleP [sid]← ToHandleP [sid] \ Handled
SessionGraphsP [sid]← Gupd

InducedPartyGraph+(sid, P ) // Not part of interface.

GP := (VP , EP )← SessionGraphsP [sid] // Hybrid H
RW
Mid.

G := (V,E)← SessionGraphsGlobal[sid] // Hybrid H
IW
Mid.

VP ← V ∩ {id | id ∈ DeliveredP [sid] ∪ Sent[P ]} // Hybrid H
IW
Mid.

V0 ← VP ∩ {id | Contents[id] = (⟨S → V⃗ ⟩, (sid, cmd, ·)) ∧P[IsRoot](sid, S, V⃗ , cmd)}
i← 0
repeat

Vi+1 ← Vi

for id ∈ VP :
(·, (·, ·,Acks))← Contents[id]
if Acks ⊆ Vi :

Vi+1 ← Vi+1 ∪ {id}
i← i + 1

until Vi = Vi−1

VEP
:= {id | (id, id′) ∈ EP }

return Extended(Gi := (Vi, EP ∩ (VEP
× Vi)))

AddToGraph(sid, id) // Not part of interface.
ToHandleGlobal[sid]← ToHandleGlobal[sid] ∪ {id}
(SessionGraphsGlobal[sid],Handled)←

UpdatedGraph(SessionGraphsGlobal[sid],ToHandleGlobal[sid])
ToHandleGlobal[sid]← ToHandleGlobal[sid] \ Handled



Algorithm 18 Hybrid HRW
1 . In the description below we only show the differ-

ences relative to the real world R[P].
Initialization
(Net ·REP)-Initialization
Contents← ∅
for P ∈ MH :

SessionGraphsP ← ∅

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)
ProcessReceived(P )
GP := (VP , EP )← SessionGraphsP [sid]

Require: P[IsValid](sid, Extended(GP ), P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
SessionGraphsP [sid]← (VP ∪ {id}, EP ∪ (Acks× {id}))
Output(id)

(P ∈ MH)-Read
ProcessReceived(P )
Output({(sid, Extended(G)) | (sid,G) ∈ SessionGraphsP ∧ G ≠ (∅, ∅)})

(P ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

id← (Net ·REP)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

Contents[id]← (⟨S → V⃗ ⟩, (sid, cmd,Acks))
Output(id)

ProcessReceived(P ) // Not part of interface.
ToHandle← ∅
for (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))) ∈ (Net ·REP)-Read with id /∈ SessionGraphsP [sid].V :

ToHandle[sid]← ToHandle[sid] ∪ {id}
for sid ∈ ToHandle :

(Gupd, ·)← UpdatedGraph(SessionGraphsP [sid],ToHandle[sid])
SessionGraphsP [sid]← Gupd



Algorithm 19 Hybrid HRW
2 . We only show the differences relative to HRW

1 .
Initialization
(Net ·REP)-Initialization
Contents← ∅
for P ∈ MH :

SessionGraphsP , ToHandleP , UndeliveredP , DeliveredP ← ∅

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)
ProcessReceived(P )
GP := (VP , EP )← SessionGraphsP [sid]

Require: P[IsValid](sid, Extended(GP ), P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
SessionGraphsP [sid]← (VP ∪ {id}, EP ∪ (Acks× {id}))
∀P ′ ∈ (Set(V⃗ )

H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}
Output(id)

(P ∈ MH)-Read
ProcessReceived(P )
Output({(sid, Extended(G)) | (sid,G) ∈ SessionGraphsP ∧ G ≠ (∅, ∅)})

(P ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

id← (Net ·REP)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

Contents[id]← (⟨S → V⃗ ⟩, (sid, cmd,Acks))

∀P ′ ∈ Set(V⃗ )
H

: UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}
Output(id)

Deliver(P, id)
(Net ·REP)-Deliver(P, id)

if ∃sid such that id ∈ UndeliveredP [sid] ∧ P ∈ MH
:

UndeliveredP [sid]← UndeliveredP [sid] \ {id}
DeliveredP [sid]← DeliveredP [sid] ∪ {id}
ToHandleP [sid]← ToHandleP [sid] ∪ {id}

ProcessReceived(P ) // Not part of interface.
ToHandle← ∅
for (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))) ∈ (Net ·REP)-Read with id /∈ SessionGraphsP [sid].V :

ToHandle[sid]← ToHandle[sid] ∪ {id} // Unused.

for sid ∈ ToHandleP :
(Gupd,Handled)← UpdatedGraph(SessionGraphsP [sid],ToHandleP [sid])
ToHandleP [sid]← ToHandleP [sid] \ Handled
SessionGraphsP [sid]← Gupd



Algorithm 20 Hybrid HRW
3 . We only show the differences relative to HRW

2 .

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)

GP := (VP , EP )← SessionGraphsP [sid]

Require: P[IsValid](sid, Extended(GP ), P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
SessionGraphsP [sid]← (VP ∪ {id}, EP ∪ (Acks× {id}))
ProcessReceived(P )

∀P ′ ∈ (Set(V⃗ )
H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}

Output(id)

(P ∈ MH)-Read

Output({(sid, Extended(G)) | (sid,G) ∈ SessionGraphsP ∧ G ≠ (∅, ∅)})

Deliver(P, id)
(Net ·REP)-Deliver(P, id)

if ∃sid such that id ∈ UndeliveredP [sid] ∧ P ∈ MH :
UndeliveredP [sid]← UndeliveredP [sid] \ {id}
DeliveredP [sid]← DeliveredP [sid] ∪ {id}
ToHandleP [sid]← ToHandleP [sid] ∪ {id}

ProcessReceived(P )

ProcessReceived(P ) // Not part of interface.

for with :
// Unused.

for sid ∈ ToHandleP :
(Gupd,Handled)← UpdatedGraph(SessionGraphsP [sid],ToHandleP [sid])
ToHandleP [sid]← ToHandleP [sid] \ Handled
SessionGraphsP [sid]← Gupd

Algorithm 21 Hybrid HRW
4 . We only show the differences relative to HRW

3 .

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)
GP := (VP , EP )← SessionGraphsP [sid]

Require: P[IsValid](sid, Extended(GP ), P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))

ToHandleP [sid]← ToHandleP [sid] ∪ {id}
ProcessReceived(P )

∀P ′ ∈ (Set(V⃗ )
H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}

Output(id)



Algorithm 22 Hybrid HRW
5 . We only show the differences relative to HRW

4 .

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)

G+ ← InducedPartyGraph+(sid, P )

Require: P[IsValid](sid,G+
, P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
ToHandleP [sid]← ToHandleP [sid] ∪ {id}
ProcessReceived(P )

∀P ′ ∈ (Set(V⃗ )
H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}

Output(id)

(P ∈ MH)-Read

Output({(sid,G+
) | G+

= InducedPartyGraph+(sid, P ) ∧ G+ ̸= (∅, ∅)})

InducedPartyGraph+(sid, P ) // Not part of interface.
GP := (VP , EP )← SessionGraphsP [sid]

V0 ← VP ∩ {id | Contents[id] = (⟨S → V⃗ ⟩, (sid, cmd, ·)) ∧P[IsRoot](sid, S, V⃗ , cmd)}
i← 0
repeat

Vi+1 ← Vi

for id ∈ VP :
(·, (·, ·,Acks))← Contents[id]
if Acks ⊆ Vi :

Vi+1 ← Vi+1 ∪ {id}
i← i + 1

until Vi = Vi−1

VEP
:= {id | (id, id′) ∈ EP }

return Extended(Gi := (Vi, EP ∩ (VEP
× Vi)))

Algorithm 23 Hybrid HRW
6 . We only show the differences relative to HRW

5 .
Initialization
(Net ·REP)-Initialization
Contents, SessionGraphsGlobal, ToHandleGlobal ← ∅
for P ∈ MH :

Sent[P ], SessionGraphsP , ToHandleP , UndeliveredP , DeliveredP ← ∅

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)

G+ ← InducedPartyGraph+(sid, P )

Require: P[IsValid](sid,G+, P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
Sent[P ]← Sent[P ] ∪ {id}
AddToGraph(sid, id)

UndeliveredP [sid]← UndeliveredP [sid] ∪ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

UndeliveredP [sid]← UndeliveredP [sid] \ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

DeliveredP [sid]← DeliveredP [sid] ∪ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

ToHandleP [sid]← ToHandleP [sid] ∪ {id}
ProcessReceived(P )

∀P ′ ∈ (Set(V⃗ )
H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}

Output(id)

(P ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

id← (Net ·REP)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

Contents[id]← (⟨S → V⃗ ⟩, (sid, cmd,Acks))
AddToGraph(sid, id)

∀P ′ ∈ Set(V⃗ )
H

: UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}
Output(id)



Hybrid Sequence: R[P] ⇝ . . . ⇝ HRW
Mid

R[P] ⇝ HRW
1 : The real world system R[P] := ChatSessionsProt[P]M

H · (Net ·
REP)—defined in Equation 4.2—and HRW

1 —defined in Algorithm 18—are dif-
ferent descriptions of the same system: the only difference is that now there is a
unique variable Contents instead of one per converter ChatSessionsProt[P]; since
by the definition of REP (Algorithms 1 and 2) each id maps to a unique pair
(repi,m), it then follows R[P] ≡ HRW

1 .

HRW
1 ⇝ HRW

2 : The only differences between HRW
1 and HRW

2 (Algorithm 19)
are:

– for each party P ∈ MH ,HRW
2 has additional variables UndeliveredP , DeliveredP

and ToHandleP ; and
– in HRW

2 , ProcessReceived uses set ToHandleP instead of issuing a Read
operation to (Net · REP) and then excluding nodes already added to the
(corresponding) graph.

To prove HRW
1 ≡ HRW

2 it suffices to show that for each sid, in hybrid HRW
2 it

holds that ToHandle[sid] = ToHandleP [sid]; we now establish this.
Fix some sid.

– Let ReadP [sid] be the set of ids output by a Read operation at P ’s interface
of (Net · REP), filtered by the fixed sid. This means ToHandle[sid] =
ReadP [sid] \ SessionGraphsP [sid].V .

– For any id and party P ∈ MH : id ∈ ReadP [sid] if and only if there is a
query Deliver(P, id).

– By the semantics of (Net · REP) (Algorithms 2 and 3), for any id (corre-
sponding to a Write operation for the fixed sid), id was added to variable
set ToHandleP [sid] if and only if there is a query Deliver(P, id).

– For any id, id was removed from variable set ToHandleP [sid] if and only if
there is a query UpdatedGraph(SessionGraphsP [sid],ToHandleP [sid]) where
id ∈ ToHandleP [sid] that output a pair (Gupd,Handled) such that id ∈
Handled. For that query, by the definition of UpdatedGraph, id ∈ Gupd.V .
And by definition ofHRW

2 , id ∈ Gupd.V implies id ∈ SessionGraphsP [sid].V .

This implies the two sets are the same, so HRW
1 ≡ HRW

2 .

HRW
2 ⇝ HRW

3 : The only difference between HRW
2 and HRW

3 (Algorithm 20) is
that, for each party P ∈ MH : in the latter ProcessReceived(P ) is called 1. upon
each Delivery(P, ·) query, and 2. on each Write query at P ’s interface, after
adding the resulting node to SessionGraphsP [sid]; in the former it is called upon
each Read or Write query at P ’s interface, at the beginning of the query.
(Regarding the differences for ProcessReceived, it is easy to see that these are
only syntactical, not semantical, as variable ToHandle is not used.)

Consider the sequence of hybrids R[P] ⇝ HRW
1 ⇝ HRW

2 : for each P ∈
MH and each sid, SessionGraphsP [sid] in HRW

2 is handled (i.e. read/written)



exactly the same way as in R[P], and so it is proper if and only if in R[P] the
graph SessionGraphs[sid] stored in P ’s converter is proper. By Proposition 6,
in R[P], for each party P ∈ MH and each sid, the graph SessionGraphs[sid]
stored in P ’s converter is proper. Therefore, for each party P ∈ MH and for
each sid, SessionGraphsP [sid] in HRW

2 is proper. With this established, we can
now use Proposition 10 to proceed via induction.

In the following, consider some party P ∈ MH and some sid. To begin
note that HRW

2 and HRW
3 may only differ upon either a Write query—with a

matching input sid—or a Read query. To prove they do not differ, it suffices
to show that for both Write and Read queries, graphs SessionGraphsP [sid]
in HRW

2 after ProcessReceived(P ) is called and at the beginning of the query in
HRW

3 are exactly the same. In both HRW
2 and HRW

3 , upon Initialization the
following holds:

– sid /∈ SessionGraphsP , which implies SessionGraphsP [sid] = (G∅ := (∅, ∅));
– sid /∈ ToHandleP , and so ToHandleP [sid] = ∅;21

We now proceed via induction on the state of both SessionGraphsP [sid] and
ToHandleP [sid] since the last query to either Write or Read; if there was no
prior query to either interface, consider instead the state of SessionGraphsP [sid]
and ToHandleP [sid] right after Initialization, i.e. SessionGraphsP [sid] = G∅
and ToHandleP [sid] = ∅, as described above. Let q1, . . . , qn denote, in order, the
Deliver queries with input (P, idi) since the last query to either the Write or
Read interfaces of P , or since the end of Initialization (if there was no prior
Write or Read query). For i = 1, . . . , n, let idi be the identifier input to query
qi, and define set Di as

Di :=

{
{idi}, if idi ∈ UndeliveredP [sid] at the start of qi
∅, otherwise.

Letting

S := S′ ∪

( ⋃
i=1,...,n

Di

)
,

where S′ is defined as the set ToHandleP [sid] at the end of the last Write
or Read query, or as ∅ if there was no such prior query, and letting G′ be the
state of SessionGraphsP [sid] also at the end of such last query (or G∅ if there
was none), note that in HRW

2 , SessionGraphsP [sid] and ToHandleP [sid] are
updated using UpdatedGraph with input graph G′ and input set S, i.e. letting

(Gnew,Handled) := UpdatedGraph(G′, S),
ToHandlenew := S \Handled,

in the new query to P ’s Read or Write interface, SessionGraphsP [sid] and
ToHandleP [sid] are set to, respectively, Gnew and ToHandlenew after ProcessReceived

21 This is by convention that if sid is not currently mapped to a set, then it is the
same as mapping to the empty set.



is called on the Read or Write query. But this means that we can now rely on
Proposition 10 to conclude the proof; concretely:

– if the last query to P ’s interface was a Write query, say qWrite, then
let n′ := n + 1, let S1 be the set of nodes in ToHandleP [sid] right after
ProcessReceived(P ) is called in the beginning of query qWrite—i.e. S1 :=
ToHandleP [sid]—and for i = 2, . . . , n′, let Si := Di−1;

– if the last query to P ’s interface was a Read query, say qRead, then let
n′ := n, let S1 be the set of nodes in ToHandleP [sid] right after the call to
ProcessReceived(P ) in the beginning of query qRead together with D1—i.e.
S1 := ToHandleP [sid] ∪D1—and for i = 2, . . . , n′, let Si := Di;

– if there was no prior query to P ’sRead orWrite interfaces, then let n′ := n,
and for i = 1, . . . , n′, let Si := Di.

Note that in all cases
S =

⋃
i=1,...,n′

Si

and so by Proposition 10 it then follows HRW
2 ≡ HRW

3 .

HRW
3 ⇝ HRW

4 : The only difference between HRW
3 and HRW

4 is that in HRW
4

(Algorithm 21), upon a query (P ∈ MH)-Write(sid, cmd, V⃗ ,Acks), instead of
adding the resulting node directly to graph SessionGraphsP [sid], the node is
instead added to set ToHandleP [sid]. However, it follows from Proposition 12
that in the two cases both SessionGraphsP [sid] and ToHandleP [sid] are still
the same at the end of the (P ∈ MH)-Write query. Therefore, HRW

3 ≡ HRW
4 .

HRW
4 ⇝ HRW

5 : The only difference between HRW
4 and HRW

5 (Algorithm 22) is
that for a party P and some sid, HRW

5 now computes InducedPartyGraph+ on
SessionGraphsP [sid] instead of simply using this graph. To prove HRW

4 ≡ HRW
5

it suffices to show that when, in InducedPartyGraph+, graph GP := (VP , EP ) is
set to SessionGraphsP [sid], the output of function InducedPartyGraph+(sid, P )
is Extended(SessionGraphsP [sid]). To begin, note that from Proposition 7 each
graph SessionGraphsP [sid] in HRW

4 is proper. Furthermore, it is easy to see that
the set of edges E of the graph G := (V,E) output by InducedPartyGraph+ is such
that, for function f defined in Proposition 2—i.e. f(u) := Acks×{id}—we have

E =
⋃
u∈V

f(u).

Therefore we only need to show that the set of vertices V of the graph output
by InducedPartyGraph+ is the set of vertices of SessionGraphsP [sid]. Below we
prove V includes all nodes in SessionGraphsP [sid] (the other direction follows
trivially from inspection of InducedPartyGraph+).

Letting SessionGraphsP [sid] := GP := (VP , EP ), by Definition 2, for n =
|VP |, there is an ordered sequence of nodes u1, . . . , un such that, letting

G0 := (V0, E0) = (∅, ∅),



and letting for i = 0, . . . , n− 1,

Gi+1 := (Vi ∪ {ui+1.id}, Ei ∪ (ui+1.Acks× {ui+1.id})),

it holds that

IsValid(ui+1.sid,G+
i , ui+1.S, ui+1.V⃗ , ui+1.cmd, ui+1.Acks) = 1,

and for i = 0, . . . , n, graph Gi is proper. By definition of InducedPartyGraph+ all
root nodes are in V0 and thus are part of the output graph, so we only need
to prove that all non-root nodes are also added. We proceed by contradiction:
consider the first node uj in the sequence u1, . . . , un that is not added to the
output graph. To begin, we have

IsValid(uj .sid,G+
j−1, uj .S, uj .V⃗ , uj .cmd, uj .Acks) = 1.

Since uj is not a root node, it follows from Requirement 2 that for each id ∈
uj .Acks there is a node (id, ·) ∈ G+

j−1.V
+. By Requirement 3, for a proper

graph G = (V,E) such that Gj−1 = (Vj−1, Ej−1) is a subgraph of G, since
uj .Acks ⊆ Vj−1,

IsValid(uj .sid,G+, uj .S, uj .V⃗ , uj .cmd, uj .Acks)

= IsValid(uj .sid,G+
j−1, uj .S, uj .V⃗ , uj .cmd, uj .Acks),

and so
IsValid(uj .sid,G+, uj .S, uj .V⃗ , uj .cmd, uj .Acks) = 1.

This means it only remains to prove the graph output by InducedPartyGraph+ is
proper to obtain a contradiction; but this follows from Proposition 4, so indeed
HRW

4 ≡ HRW
5 .

HRW
5 ⇝ HRW

6 : The only difference between HRW
5 and HRW

6 (Algorithm 23)
are the three new variables SessionGraphsGlobal, ToHandleGlobal and Sent[P ]
(for each P ∈ MH) in HRW

6 , and that now upon a (P ∈ MH)-Write query
the resulting id is added and removed from set UndeliveredP [sid], and it is
also added to set DeliveredP [sid]. First, note that the behavior of HRW

6 is
independent of the two new variables and of DeliveredP [sid], implying that
adding id to DeliveredP [sid] does not affect H

RW
6 ’s behavior. Regarding adding

and then removing id from set UndeliveredP [sid]:

– if id was not in set UndeliveredP [sid] prior to the query, then adding and
removing it from the set has no side-effects;

– if id was already in UndeliveredP [sid] (prior to the query) then it is re-
moved from the set. However, in this case the only difference is that, be-
cause id is removed, upon a query Deliver(P, id), it is not added to sets
DeliveredP [sid] and ToHandleP [sid]. However, on one hand, as we already
explained HRW

6 is independent of DeliveredP [sid], and on the other hand,
id is added to ToHandleP [sid] and there is a call to ProcessReceived(P ),
so from Proposition 9 even in this case there is no difference in behavior of
hybrid HRW

6 .

It then follows HRW
5 ≡ HRW

6 .



HRW
6 ⇝ HRW

Mid: Note that HRW
6 and HRW

Mid (Algorithm 17) have the same
description, so HRW

5 ≡ HRW
Mid.

Algorithm 24 Hybrid HIW
1 for the proof of Theorem 1. In the description

below we only show what is different relative to ChatSessions[P].
Initialization
(Net ·REP)-Initialization
Contents, SessionGraphsGlobal, ToHandleGlobal ← ∅
for P ∈ MH :

Sent[P ]← ∅

InducedPartyGraph+(sid, P ) // Not part of interface.
G := (V,E)← SessionGraphsGlobal[sid]
VP ← V ∩ {id | (id, (·, (sid, ·, ·))) ∈ (Net ·REP)-Read ∪ Sent[P ]}
V0 ← VP ∩ {id | Contents[id] = (⟨S → V⃗ ⟩, (sid, cmd, ·)) ∧P[IsRoot](sid, S, V⃗ , cmd)}
i← 0
repeat

Vi+1 ← Vi

for id ∈ VP :
(·, (·, ·,Acks))← Contents[id]
if Acks ⊆ Vi :

Vi+1 ← Vi+1 ∪ {id}
i← i + 1

until Vi = Vi−1

VE := {id | (id, id′) ∈ E}
return Extended(Gi := (Vi, E ∩ (VE × Vi)))

⋄ AddToGraph(sid, id) // Not part of interface.
ToHandleGlobal[sid]← ToHandleGlobal[sid] ∪ {id}
(SessionGraphsGlobal[sid],Handled)←

UpdatedGraph(SessionGraphsGlobal[sid],ToHandleGlobal[sid])
ToHandleGlobal[sid]← ToHandleGlobal[sid] \ Handled

Hybrid Sequence: R[P] ⇝ . . . ⇝ HRW
Mid

ChatSessions[P] ⇝ HIW
1 : ChatSessions[P] (Algorithm 6) and HIW

1 (de-
fined in Algorithm 24) only differ in the names of variables SessionGraphs and
ToHandle, and so ChatSessions[P] ≡ HIW

1 .

HIW
1 ⇝ HIW

2 : The only difference between HIW
1 and HIW

2 (Algorithm 25) is
that in HIW

2 there are, for each party P ∈ MH , additional variables ToHandleP ,
UndeliveredP and DeliveredP . However, none of these variables have any effect
in the behavior of HIW

2 , so HIW
1 ≡ HIW

2 .

HIW
2 ⇝ HIW

3 : Hybrid HIW
3 (Algorithm 26) only differs from HIW

2 in what the
variable VP in the InducedPartyGraph+ procedure is set to: for a party P , inHIW

2 ,
VP is set to the union of the ids of the nodes output by P ’s Read operation from
(Net·REP) and Sent[P ], whereas inHIW

3 it is set to the union of DeliveredP [sid]
and Sent[P ]. However, from inspection of HIW

3 and by the definition of (Net ·
REP) (Algorithms 2 and 3), for any party P ∈ MH and any id, we have



Algorithm 25 Hybrid HIW
2 . We only show the differences relative to HIW

1 .
Initialization
(Net ·REP)-Initialization
Contents, SessionGraphsGlobal, ToHandleGlobal ← ∅
for P ∈ MH :

Sent[P ], ToHandleP , UndeliveredP , DeliveredP ← ∅

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)

G+ ← InducedPartyGraph+(sid, P )

Require: P[IsValid](sid,G+, P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩,m := (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
Sent[P ]← Sent[P ] ∪ {id}
AddToGraph(sid, id)

∀P ′ ∈ (Set(V⃗ )
H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}

Output(id)

(P ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

id← (Net ·REP)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

Contents[id]← (⟨S → V⃗ ⟩, (sid, cmd,Acks))
AddToGraph(sid, id)

∀P ′ ∈ Set(V⃗ )
H

: UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}
Output(id)

Deliver(P, id)
(Net ·REP)-Deliver(P, id)

if ∃sid such that id ∈ UndeliveredP [sid] ∧ P ∈ MH
:

UndeliveredP [sid]← UndeliveredP [sid] \ {id}
DeliveredP [sid]← DeliveredP [sid] ∪ {id}
ToHandleP [sid]← ToHandleP [sid] ∪ {id}

Algorithm 26 Hybrid HIW
3 . We only show the differences relative to HIW

2 .

InducedPartyGraph+(sid, P ) // Not part of interface.
G := (V,E)← SessionGraphsGlobal[sid]
VP ← V ∩ {id | id ∈ DeliveredP [sid] ∪ Sent[P ]}
V0 ← VP ∩ {id | Contents[id] = (⟨S → V⃗ ⟩, (sid, cmd, ·)) ∧P[IsRoot](sid, S, V⃗ , cmd)}
i← 0
repeat

Vi+1 ← Vi

for id ∈ VP :
(·, (·, ·,Acks))← Contents[id]
if Acks ⊆ Vi :

Vi+1 ← Vi+1 ∪ {id}
i← i + 1

until Vi = Vi−1

VE := {id | (id, id′) ∈ E}
return Extended(Gi := (Vi, E ∩ (VE × Vi)))



Algorithm 27 Hybrid HIW
4 . We only show the differences relative to HIW

3 .
Initialization
(Net ·REP)-Initialization
Contents, SessionGraphsGlobal, ToHandleGlobal ← ∅
for P ∈ MH :

Sent[P ], SessionGraphsP , ToHandleP , UndeliveredP , DeliveredP ← ∅

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)

G+ ← InducedPartyGraph+(sid, P )

Require: P[IsValid](sid,G+, P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩,m := (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
Sent[P ]← Sent[P ] ∪ {id}
AddToGraph(sid, id)

UndeliveredP [sid]← UndeliveredP [sid] ∪ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

UndeliveredP [sid]← UndeliveredP [sid] \ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

DeliveredP [sid]← DeliveredP [sid] ∪ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

ToHandleP [sid]← ToHandleP [sid] ∪ {id}
ProcessReceived(P )

∀P ′ ∈ (Set(V⃗ )
H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}

Output(id)

Deliver(P, id)
(Net ·REP)-Deliver(P, id)

if ∃sid such that id ∈ UndeliveredP [sid] ∧ P ∈ MH :
UndeliveredP [sid]← UndeliveredP [sid] \ {id}
DeliveredP [sid]← DeliveredP [sid] ∪ {id}
ToHandleP [sid]← ToHandleP [sid] ∪ {id}

ProcessReceived(P )

ProcessReceived(P ) // Not part of interface.
for sid ∈ ToHandleP :

(Gupd,Handled)← UpdatedGraph(SessionGraphsP [sid],ToHandleP [sid])
ToHandleP [sid]← ToHandleP [sid] \ Handled
SessionGraphsP [sid]← Gupd



id ∈ DeliveredP [sid] if and only if there is a node u := (id, (·, (sid, ·, ·))) that
is output by P -(Net ·REP)-Read. This then implies HIW

2 ≡ HIW
3 .

HIW
3 ⇝ HIW

4 : The only difference between HIW
3 and HIW

4 (Algorithm 27) is
the additional variable SessionGraphsP (see Algorithm 27), that upon a (P ∈
MH)-Write query the resulting id is added and removed from set UndeliveredP [sid],
and it is added to sets DeliveredP [sid] and ToHandleP [sid], and that in (P ∈
MH)-Write and Deliver(P, ·) queries, ProcessReceived(P, ·) is called. First,
note that ToHandleP [sid] may only affect SessionGraphsP [sid], and in turn
SessionGraphsP [sid] does not have any effect in the behavior of HIW

4 ; regard-
ing the change in variable UndeliveredP [sid], note that adding and then re-
moving id may only have side effects if id is already in UndeliveredP [sid]
as this may prevent a later Deliver(P, id) query from adding id to variable
DeliveredP [sid]—if id is not in UndeliveredP [sid], then adding and removing
it has no side effects. However, even in case id is in UndeliveredP [sid], noting
that id is added to DeliveredP [sid], it follows that there are no side-effects to
the behavior of HIW

4 . It then follows HIW
3 ≡ HIW

4 .

HIW
4 ⇝ HIW

Mid: Systems HIW
4 and HIW

Mid (Algorithm 17) have the same descrip-
tion, so HIW

4 ≡ HIW
Mid.

(Final Hop) HRW
Mid ⇝ HIW

Mid: As is clear in the description of HRW
Mid and HIW

Mid

(Algorithm 17), the only difference between these systems is the set of nodes VP

on which InducedPartyGraph+ computes. It suffices to show that in both cases
InducedPartyGraph+ outputs the same graph.

To begin, note that Proposition 13 already establishes:

– in HIW
Mid, for each sid, SessionGraphsGlobal[sid] is proper; and

– in HRW
Mid, for each sid and each P ∈ MH , SessionGraphsP [sid] is proper.

We need to show that, for each Write and Read query at the interface
of an honest party P ∈ MH , the output of InducedPartyGraph+ is the same
independently of whether it is computed as in HRW

Mid or as in HIW
Mid. For both

HRW
Mid and HIW

Mid, the graph G+ := (V +, E+) output by InducedPartyGraph+ is
such that

E+ =
⋃

u∈V +

f(u)

where f is the function defined in Proposition 2, i.e.

f(u := (id, (·, (·, ·,Acks)))) := Acks× {id};

therefore showing the set of nodes is the same in both cases is sufficient (as it
implies the graph is also the same).

Fix some sid and some party P ∈ PH . In the following, let

V Global := SessionGraphsGlobal[sid].V,

V Global
P := V Global ∩ (DeliveredP [sid] ∪ Sent[P ]),

V Local
P := SessionGraphsP [sid].V.



Before moving on with the proof, we first establish a few helpful facts re-
garding both HRW

Mid and HIW
Mid.

Helpful Facts.

Fact 1. Any node added to ToHandleP [sid] is in DeliveredP [sid].

Proof (Fact 1). Follows from inspection of Deliver and (P ∈ MH)-Write in
hybrids HRW

Mid and HIW
Mid (Algorithm 17). ⊓⊔

Fact 2. Any node in DeliveredP [sid] was added to ToHandleP [sid].

Proof (Fact 2). Follows from inspection of Deliver and (P ∈ MH)-Write in
hybrids HRW

Mid and HIW
Mid (Algorithm 17). ⊓⊔

Fact 3. Any root that was added to ToHandleP [sid] is added to V Local
P .

Proof (Fact 3). From inspection of both HRW
Mid and HIW

Mid, whenever a node
is added to ToHandleP there is a subsequent call—during the same query—to
ProcessReceived(P ).

Consider any root node

u := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))).

First note that SessionGraphsP [sid] is proper, and that UpdatedGraph con-
structs the output graph following the definition of proper graph (Definition 2);
in particular, note that each intermediate graph Gi is proper. It then follows
from Requirement 1 that for each such intermediate graph Gi we have

P[IsValid](sid,Extended(Gi), S, V⃗ , cmd,Acks) = 1.

By inspection of ProcessReceived and in particular of UpdatedGraph, it follows
that u is added to the output graph, and therefore was added to V Local

P . ⊓⊔

Fact 4. Any node in V Local
P was added to ToHandleP [sid].

Proof (Fact 4). From inspection, the only place where nodes may be added to
V Local
P is in ProcessReceived; in turn, in ProcessReceived only nodes in ToHandleP

may be added to V Local
P (Proposition 8), so the statement holds. ⊓⊔

Fact 5. Any node added to ToHandleP [sid] was previously in UndeliveredP [sid].

Proof (Fact 5). Follows from inspection of Deliver and (P ∈ MH)-Write in
hybrids HRW

Mid and HIW
Mid (Algorithm 17). ⊓⊔

Fact 6. Any node in UndeliveredP [sid] was added to ToHandleGlobal[sid].

Proof (Fact 6). From inspection of hybrids HRW
Mid and HIW

Mid (Algorithm 17),
nodes are only added to UndeliveredP [sid] in Write operations (at both the
interfaces of honest and dishonest parties). However, in both cases they are also
added to ToHandleGlobal[sid], so the statement holds. ⊓⊔



Fact 7. Any node added to ToHandleP [sid] was previously added to ToHandleGlobal[sid].

Proof (Fact 7). Follows from Facts 5 and 6. ⊓⊔

Fact 8. Any root that was added to ToHandleGlobal[sid] is added to V Global.

Proof (Fact 8). From inspection of both HRW
Mid and HIW

Mid, a node is only added
to ToHandleGlobal in AddToGraph calls. Furthermore, in such calls there is always
a subsequent query to UpdatedGraph.

One can establish this fact by following arguments similar to the ones used
in the proof of Fact 3. ⊓⊔

Fact 9. Any node in V Local
P was added to ToHandleGlobal[sid].

Proof (Fact 9). Every node in V Local
P was previously added to ToHandleP [sid].

Fact 7 then implies the result. ⊓⊔

Fact 10. Any node u := (id, (⟨S → R⃗⟩, (sid′, cmd,Acks))) in Sent[P ] is also in
DeliveredP [sid

′].

Proof (Fact 10). From inspection of (P ∈ MH)-Write in Algorithm 17, when-
ever a node with a given sid′ is added to Sent[P ], it is subsequently added to
DeliveredP [sid

′], so the statement holds. ⊓⊔

Fact 11. After any query to any of the interfaces of HRW
Mid or HIW

Mid, every node

u := (id, (⟨S → R⃗⟩, (sid, cmd,Acks))),

in ToHandleP [sid] but not in V Local
P —i.e. u ∈ (ToHandleP [sid] \ V Local

P )—is
such that

P[IsValid](sid,G+
Local, S, R⃗, cmd,Acks) = 0,

where G+
Local is the extended graph corresponding to set of nodes V Local

P (see
Proposition 2).

Proof (Fact 11). By inspection of HRW
Mid and HIW

Mid, for each node added to
ToHandleP [sid] there is a subsequent update of SessionGraphsP [sid] via UpdatedGraph
where the input set ToHandleP [sid] contains the new node. Since every node in
the set output by UpdatedGraph is then removed from ToHandleP [sid], it then
follows from Proposition 11 that the fact holds. ⊓⊔

We start by showing that any root is in V Global
P if and only if it is also in

V Local
P (i.e. V Global

P and V Local
P contain exactly the same set of root nodes). Note

that, by inspection of InducedPartyGraph+ (Algorithm 17), this implies that the
set of root nodes output by InducedPartyGraph+ in both HRW

Mid and HIW
Mid is

exactly the same—because all root nodes are in the initial set V0 for both HRW
Mid

and HIW
Mid. So, once this is established we only need to consider non-roots.



Roots. Take any root node u ∈ V Global
P . By definition of V Global

P we have u ∈
DeliveredP [sid]. From Fact 2 we know u was added to ToHandleP [sid], and from
Fact 3 it then follows that u was added to V Local

P . As for the converse direction,
take any root u ∈ V Local

P . From Fact 4 we know u was added to ToHandleP [sid],
and from Fact 1 we know u ∈ DeliveredP [sid]. From Fact 9 it follows that u was
added to ToHandleGlobal[sid]. From Fact 8 we know u was added to V Global. At
this point we have established that u ∈ DeliveredP [sid] and u ∈ V Global, which
by definition of V Global

P implies u ∈ V Global
P .

Non-root Nodes. We prove that in both HRW
Mid and HIW

Mid it always holds (i.e.
between queries to the interfaces) that:

S.1 V Local
P ⊆ V Global;

S.2 V Local
P ⊆ V Global

P ; and
S.3 (incomplete paths) for every u ∈ V Global

P \ V Local
P , there is a (possibly root)

node
v ∈ V Global \ V Global

P

such that there is a path from v to u

v ⇝ . . .⇝ u

where each node in the path is not a root.

Note that S.2 and S.3 (proven below) imply that the set of nodes output by
function InducedPartyGraph+ is the same in both HRW

Mid and HIW
Mid: S.2 implies

that every node in the graph output by InducedPartyGraph+ in HRW
Mid is also in

the graph output by InducedPartyGraph+ in HIW
Mid; from (a recursive application

of) Proposition 14 we have that S.3 implies that every node in V Global
P \ V Local

P

is not in the graph output by InducedPartyGraph+ in HIW
Mid. So, establishing S.2

and S.3 implies HRW
Mid ≡ HIW

Mid.
We first prove S.3. From definition of V Global

P and Fact 10, we can restate it:

S.3’ for every u ∈ V Global
P \ V Local

P , there is a (possibly root) node v ∈ V Global \
DeliveredP [sid] such that there is a path from v to u (v ⇝ . . .⇝ u) where
each node in the path is not a root.

Since SessionGraphsGlobal[sid] is proper, there is a sequence of nodes

v1, . . . , vn

as in Definition 2. Assume for contradiction there is a node u′ ∈ V Global
P \V Local

P

such that for every (possibly root) node v ∈ V Global \ DeliveredP [sid] there
is no path from v to u′ (v ⇝ . . . ⇝ u′) where each node in the path is not
a root. Note that each node vi in the sequence above is in V Global, and by
definition of V Global

P , so is each node u′. Now take the least j ∈ {1, . . . , n} such
that vj ∈ V Global

P \ V Local
P and for every (possibly root) node v ∈ V Global \

DeliveredP [sid] there is no path from v to vj (v ⇝ . . . ⇝ vj) where each



node in the path is not a root. Say vj := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))). We
already know vj cannot be a root—because we already established the subsets
of V Local

P and V Global
P consisting of root nodes are the same. Since vj ∈ V Global

P ,
it follows from definition of V Global

P and from Fact 10 that vj ∈ V Global and
vj ∈ DeliveredP [sid]. From Fact 2, we have vj was added to ToHandleP [sid].
Since a node is only removed from ToHandleP [sid] when it is added to V Local

P ,
and vj ∈ V Global

P \ V Local
P , it follows vj is currently in ToHandleP [sid]. Since

vj ∈ V Global and nodes are only added to V Global via UpdatedGraph—which
constructs the output graph following Definition 2 (Proposition 3)—and since
vj is not a root node, then Requirement 2 implies every node in the set of vj ’s
acknowledgments was in either the input graph or some intermediate graph on
which UpdatedGraph was computing, say Gi := (Vi, Ei): in other words, the fact
that vj was added implies

IsValid(sid,Extended(Gi), S, V⃗ , cmd,Acks) = 1,

and since vj is not a root, from Requirement 2 we have Acks ⊆ Vi. On the other
hand, the fact that vj ∈ ToHandleP [sid] but vj /∈ V Local

P implies, from Fact 11:

IsValid(sid,Extended(SessionGraphsP [sid]), S, V⃗ , cmd,Acks) = 0.

We have already established SessionGraphsP [sid] is proper; since Gi is also
proper, it follows from Requirement 3 that Acks ̸⊆ V Local

P . By Definition 2,
since vj is not a root and from Requirement 3, every node in x ∈ Acks must
appear before vj in the sequence v1, . . . , vn. Taking any such x ∈ Acks \ V Local

P

(which exists because we already concluded Acks ̸⊆ V Local
P ) we know x = vl for

some l < j. To conclude the proof of S.3’ (and therefore of S.3), consider two
cases:

– vl ∈ ToHandleP [sid], or
– vl /∈ ToHandleP [sid].

We now obtain a contradiction for both of these cases.

vl ∈ ToHandleP [sid] : from Fact 1 we know vl ∈ DeliveredP [sid], and since
vl ∈ V Global, we also know vl ∈ V Global

P . Furthermore, we know vl /∈ V Local
P ,

which implies vl ∈ V Global
P \V Local

P . However, this is now a contradiction with
our assumption vj was the first node in the sequence v1, . . . , vn (because
l < j).

vl /∈ ToHandleP [sid] : from Fact 1 we know vl /∈ DeliveredP [sid], and since vl ∈
V Global, then vl ∈ V Global \DeliveredP [sid]. However this is a contradiction
with our assumption because vj ∈ V Global

P \ V Local
P and yet there is a node

in V Global \DeliveredP [sid], namely vl, for which there is a path from vl to
vj where every node in the path is not a root (this is the case, since there is
an edge from vl to vj , so there are no nodes in the path).

To prove S.1 and S.2 we use induction on the queries made to HRW
Mid and

HIW
Mid.



Base case: Upon Initialization

SessionGraphsGlobal[sid] = SessionGraphsP [sid] = G∅,

so S.1 and S.2 trivially hold.

Induction Step: Suppose S.1 and S.2 hold. We prove that after any query:

– (P ′ ∈ MH)-Write(sid, cmd, V⃗ ,Acks),
– (P ′ ∈ MH)-Read,

– (P ′ ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks)),

– (P ′ ∈ MH)-Read, or
– Deliver(P ′, id)

S.1 and S.2 still hold.

Queries (P ′ ∈ P)-Read. For both honest and dishonest parties, Read queries
have no side-effects (i.e. in the description of HRW

Mid and of HIW
Mid no variable’s

value is modified). Therefore, after any Read query the claim still holds.

Queries (P ′ ∈ MH)-Write(sid, cmd, V⃗ ,Acks), for P ′ ̸= P . Neither V Global
P

or V Local
P change, as the resulting node is not added to either SessionGraphsP [sid],

Sent[P ] nor DeliveredP [sid]. Therefore S.2 holds. Since V Local
P does not change,

S.1 also still holds because no node is removed from V Global.

Queries (P ′ ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks)). Analogous to the

case of queries (P ′ ∈ MH)-Write(sid, cmd, V⃗ ,Acks) where P ′ ̸= P . Therefore
S.1 and S.2 hold.

Queries P -Write(sid, cmd, V⃗ ,Acks). We have already seen S.3 holds; from in-
duction hypothesis, S.2 also holds, and so the graph output by InducedPartyGraph+

is the same for both HRW
Mid and HIW

Mid. This means that for both cases the Write
requirement is exactly the same, so the set of valid inputs for these queries (i.e.
their domains) in HRW

Mid and HIW
Mid are the same.

Now note that the new node resulting from the query, say u, is added to both
V Global
P and V Local

P : u is added to both DeliveredP [sid] and ToHandleP [sid];
by the Write requirement u must be valid; Proposition 12 and the fact that
the graph output by UpdatedGraph contains the input graph imply the new
node is added to SessionGraphsGlobal[sid]—and since u ∈ DeliveredP [sid], to
V Global
P —and to SessionGraphsP [sid]—so, to V Local

P . At this point, to establish
S.1 and S.2 still hold after the query, it remains to argue that for any node
u′ ∈ ToHandleP [sid], if u

′ /∈ V Global
P then u′ is not added to V Local

P . First note,
Fact 1 implies any node in ToHandleP [sid] is also in DeliveredP [sid], and it
therefore suffices to prove that if u′ /∈ V Global then u′ is not added to V Local

P .
Second, we already established that any root node is in V Global

P if and only if it
is also in V Local

P , and so we only need to consider non-root nodes.



By induction hypothesis, S.1 holds prior to the query (this allows us to rely
on Requirement 3). From Fact 7 we know that every node in ToHandleP [sid]
was previously added to ToHandleGlobal[sid]. Noting that in the two hybrids
ToHandleGlobal[sid] is only modified inside AddToGraph, and that after (possi-
bly) new nodes being added to ToHandleGlobal[sid] the global graph is updated
via UpdatedGraph—all nodes in ToHandleGlobal[sid] being input to UpdatedGraph—
and since a node may only be added to V Local

P also via UpdatedGraph, it follows
from Requirement 322 that if any node is added to V Local

P then it is also added
to V Global. This establishes S.1 and S.2 still hold after the query.

Queries Deliver(P ′, id). The only interesting case is when P ′ = P . Upon
such query graph SessionGraphsP [sid] (and so V Local

P ) may only be modified via
UpdatedGraph; the set of nodes input to such UpdatedGraph is ToHandleP [sid];
by Fact 1 all these nodes are in DeliveredP [sid]. It then suffices to prove that
any node added to V Local

P was already in V Global. We proceed by contradic-
tion: take the first node u ∈ ToHandleP [sid] that is added to V Local

P during
this Deliver query but is not in V Global. Here, by first we mean the first
node that is not in V Global but is added by UpdatedGraph. By Fact 7, every
node added to ToHandleP [sid] was previously added to ToHandleGlobal[sid] in
a prior query, since Deliver queries do not modify ToHandleGlobal[sid]. In that
prior query, SessionGraphsGlobal[sid] was updated via UpdatedGraph with set
of nodes ToHandleGlobal[sid]; we therefore know that u ∈ ToHandleGlobal[sid]
during such query, because we assumed u was not added to V Global but have
already concluded that u was added to ToHandleGlobal[sid]. This implies that
in the last iteration of UpdatedGraph, u was not valid according to predicate
P[IsValid] (otherwise u would have been added to V Global. However, this is now
a contradiction: since u is the first node which is not in V Global that is added
to V Local

P , then u was valid according to predicate P[IsValid] for that graph,
say Gj (which is proper, because as already explained all intermediate graphs
computed in UpdatedGraph are proper), and yet u was not valid according that
predicate (P[IsValid]) for SessionGraphsGlobal[sid], which from induction hy-
pothesis S.1 (and the fact that u is the first node added) is a supergraph of Gj .
It follows HRW

Mid ≡ HIW
Mid. ⊓⊔

B.4 Proofs of Helper Propositions

B.4.1 Proof of Proposition 1.

Proof. Consider any u := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))) ∈ V +. Definition 2
implies there is a proper subgraph of G+, say G′+ = (V ′

+
, E′

+
), such that

P[IsValid](sid,G′+, S, V⃗ , cmd,Acks) = 1.

22 Note that graphs SessionGraphsP [sid] and SessionGraphsGlobal[sid] are proper, and
that UpdatedGraph always constructs graphs following the definition of proper graph,
Definition 2.



By Requirement 3 and since both G+ and G′+ are proper,

P[IsValid](sid,G+, S, V⃗ , cmd,Acks) = P[IsValid](sid,G′+, S, V⃗ , cmd,Acks).

⊓⊔

B.4.2 Proof of Proposition 2.

Proof. Follows from the definition of proper graph (Definition 2). ⊓⊔

B.4.3 Proof of Proposition 3.

Proof. We prove this by induction on i; for i = 0, the extended version of Gi

is proper by the assumption on the input graph. For any i ∈ N, assume the
extended version of Gi = (Vi, Ei), i.e. G+

i = (V +
i , E+

i ) is proper. We show G+
i+1 is

also proper. Initially, G+
i+1 is set to G+

i , and therefore by assumption it is proper.
For each extended node

u := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))),

helper function UpdatedGraph only adds u to G+
i+1 if

P[IsValid](sid,Extended(Gi+1), S, V⃗ , cmd,Acks) = 1.

By Definition 2, since Extended(Gi+1) is proper, then the updated extended graph

G+
i+1 := (Gi+1.V

+ ∪ {u},Gi+1.E
+ ∪ (Acks× {id}))

is also proper. ⊓⊔

B.4.4 Proof of Proposition 4.

Proof. First note that from Algorithm 6 the graph output by InducedPartyGraph+

on input (sid, P ) is a subgraph of (the extended version of) SessionGraphs[sid],
which by assumption is proper. It then remains to show that this (extended)
subgraph is proper, which we do via induction by analyzing Algorithm 6. Con-
cretely, we show for each i ∈ N that the extended version of graph Gi := (Vi, Ei :=
E ∩ (VE × Vi)) is proper. Noting that Ei =

⋃
u∈Vi

f(u) for f(u) := Acks× {id}
(defined as in Proposition 2), it then suffices to show that the graph induced by
set of edges Vi is proper, which the rest of this proof will establish. Through-
out the proof, we denote the extended version of graph SessionGraphs[sid] by
G+
sid = (V +

sid, E
+
sid).

To begin, note that VP is a subset of the vertices of graph SessionGraphs[sid],
and V0 is the subset of VP containing only root nodes. By Requirement 1 all
root nodes are valid; by inductively applying Definition 2 to each node in V0 and
noting that E0 =

⋃
u∈V0

f(u) (for f defined as in Proposition 2) it then follows

that G+
0 (the extended version of G0) is proper.



Assume that, for some i ∈ N, G+
i = (V +

i , E+
i ) is proper. We now establish

that G+
i+1 = (V +

i+1, E
+
i+1) is proper. Take any node u ∈ (V +

i+1 \ V
+
i ); say

u := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))).

By Algorithm 6, all of u’s acknowledged nodes (i.e. Acks) are in G+
i . More, G+

i

is a subgraph of G+
sid and both extended graphs are proper. By Requirement 3

it then follows

P[IsValid](sid,G+
sid, S, V⃗ , cmd,Acks) = P[IsValid](sid,G+

i , S, V⃗ , cmd,Acks).

By Proposition 1,

P[IsValid](sid,G+
sid, S, V⃗ , cmd,Acks) = 1,

so
P[IsValid](sid,G+

i , S, V⃗ , cmd,Acks) = 1,

which by Definition 2 implies G+
i

′
= (V +

i ∪{u}, E+
i ∪(Acks×{id})) is proper. Via

an induction argument (using Definition 2) over all remaining nodes in V +
i+1\V

+
i ,

the statement then follows. ⊓⊔

B.4.5 Proof of Proposition 5.

Proof. We proceed by induction. As base case, note that initially SessionGraphs
is the empty set, and in this case all graphs are proper.

Assume that all (extended versions of the) graphs stored in SessionGraphs
are proper. We will show that after any possible interaction with the ideal
ChatSessions[P], all graphs stored in SessionGraphs are still proper. First,
from Algorithm 6 we have that no query to interfaces (P ∈ MH)-Read, (P ∈
MH)-Read and Deliver modifies any graph stored in SessionGraphs. We now
consider the two remaining cases: queries to (P ∈ MH)-Write and queries to

(P ∈ MH)-Write.

Consider any query to (P ∈ MH)-Write, and let (sid, cmd, V⃗ ,Acks) be the
input to the query. By assumption all graphs in SessionGraphs before the query
are proper, and only SessionGraphs[sid] is modified. Concretely, the new value
of SessionGraphs[sid] is the graph output by UpdatedGraph. Since the graph
input to UpdatedGraph is SessionGraphs[sid], which by induction hypothesis
was proper at the beginning of the query, it follows from Proposition 3 that all
graphs in SessionGraphs after such query are still proper.

Now consider any query to (P ∈ MH)-Write, and let (⟨S → V⃗ ⟩,m :=
(sid, cmd,Acks)) be the corresponding input. By Proposition 3 and the assump-
tion that all graphs in SessionGraphs before the query are proper, the output
of UpdatedGraph is proper. Again, by the definition of ChatSessions[P] (Algo-
rithm 6), only SessionGraphs[sid] may be modified; if it is modified, it is set to
the output of UpdatedGraph, which is proper. It follows that after the query all
graphs stored in SessionGraphs are still proper. ⊓⊔



B.4.6 Proof of Proposition 6.

Proof. One can prove this by following arguments similar to the ones from the
proof of Proposition 5. For any party P ∈ PH , we proceed by induction on the
state of SessionGraphs stored in P ’s ChatSessionsProt[P]’ converter. Initially
SessionGraphs is empty and therefore all graphs are proper. Assume that all
(extended versions of the) graphs stored in SessionGraphs are proper. We only
need to show that after any Write or Read queries to P ’s ChatSessionsProt[P]
converter, all graphs stored in SessionGraphs are still proper.

For a query Write(sid, cmd, V⃗ ,Acks), one can follow the same arguments
used in the proof of Proposition 5, and so it follows all graphs in SessionGraphs
after such query are still proper after such query. Regarding Read queries one
can follow the arguments used in the proof of Proposition 5 for the case of
(P ∈ PH)-Write operations (over sid in the set ToHandle). ⊓⊔

B.4.7 Proof of Proposition 7.

Proof. Follows from an argument along the lines of the proof of Proposition 6.
⊓⊔

B.4.8 Proof of Proposition 8.

Proof. We prove the two directions:

S′ ⊆ G′.V ∩ S: From inspection of UpdatedGraph (Algorithm 6), any node u ∈ S′

must be in set G′.V and in set S.
G′.V ∩ S ⊆ S′: Consider an arbitrary node u ∈ G′.V ∩ S; first, if u ∈ G.V then

it follows from Proposition 1 and inspection of UpdatedGraph (Algorithm 6)
that u ∈ S′; second, if u /∈ G.V then, since u ∈ G′.V , u was added to G′.V by
UpdatedGraph and therefore by inspection of UpdatedGraph (Algorithm 6),
u ∈ S′. ⊓⊔

B.4.9 Proof of Proposition 9.

Proof. We prove this by contradiction. Since G = (V,E) is proper, letting n =
|V |, by Definition 2 there is an ordered sequence of nodes u1, . . . , un such that,
letting G0 := (V0, E0) = (∅, ∅), and letting for i = 0, . . . , n− 1,

Gi+1 := (Vi ∪ {ui+1.id}, Ei ∪ (ui+1.Acks× {ui+1.id})),

it holds IsValid(ui+1.sid,Gi
+, ui+1.S, ui+1.V⃗ , ui+1.cmd, ui+1.Acks) = 1. For some

set VS ⊆ V , let (GS , S
′) := UpdatedGraph(G, S), and furthermore let (GVS

, SVS

′) :=
UpdatedGraph(G, S ∪ VS). By inspection of UpdatedGraph (Algorithm 6), graphs
GS and GVS

are constructed according to Definition 2, so there are sequences of
nodes uS

n+1, . . . , u
S
(n+|S′|) and uS∪VS

n+1 , . . . , uS∪VS

(n+|SVS
′|) (where each node uS

j is in



set S and each node uS∪VS

l is in set S∪VS) such that, for j = n, . . . , (n+ |S′|)−1
and for l = n, . . . , (n+ |SVS

′|)− 1, letting

GS
j+1 := (V S

j ∪ {uS
j+1.id}, ES

j ∪ (uS
j+1.Acks× {uS

j+1.id})),
GS∪VS

l+1 := (V S∪VS

l ∪ {uS∪VS

l+1 .id}, ES∪VS

l ∪ (uS∪VS

l+1 .Acks× {uS∪VS

l+1 .id})),

it holds that

IsValid(uS
j+1.sid,

(
GS
j

)+
, uS

j+1.S, u
S
j+1.V⃗ , uS

j+1.cmd, u
S
j+1.Acks) = 1,

IsValid(uS∪VS

l+1 .sid,
(
GS∪VS

l

)+
, uS∪VS

l+1 .S, uS∪VS

l+1 .V⃗ , uS∪VS

l+1 .cmd, uS∪VS

l+1 .Acks) = 1.

For contradiction, assume GS ̸= GVS
; so, either VGS \VGVS

̸= ∅ or VGVS
\VGS ̸= ∅.

We obtain a contradiction for each case.

VGS \ VGVS
̸= ∅: consider the first node uS

j in the sequence uS
n+1, . . . , u

S
(n+|S′|)

that is not in VGVS
; uS

j is not a root because this would contradict the

assumption that P satisfies Requirement 1. Given uS
j is not a root, since

IsValid(uS
j .sid,

(
GS
j−1
)+

, uS
j .S, u

S
j .V⃗ , uS

j .cmd, u
S
j .Acks) = 1,

from Requirement 2 it follows uS
j .Acks ⊆ V S

j−1. By assumption uS
j is the first

node in the sequence, so all prior nodes are in VGVS
, implying V S

j−1 ⊆ VGVS
.

Since both GVS
and GS

j−1 are proper graphs, it then follows from Require-
ment 3

IsValid(uS
j .sid,GVS

+, uS
j .S, u

S
j .V⃗ , uS

j .cmd, u
S
j .Acks)

= IsValid(uS
j .sid,

(
GS
j−1
)+

, uS
j .S, u

S
j .V⃗ , uS

j .cmd, u
S
j .Acks)

and so

IsValid(uS
j .sid,GVS

+, uS
j .S, u

S
j .V⃗ , uS

j .cmd, u
S
j .Acks) = 1.

However, from inspection of UpdatedGraph (Algorithm 6) this is a contra-
diction with the fact that in the last iteration of UpdatedGraph(G, S ∪ VS)
node uS

j was not added to the output graph GVS
. ⊓⊔

VGVS
\ VGS ̸= ∅: Follows from an argument analogous to the one for case above,

noting that the graph input to UpdatedGraph is always a subgraph of the
output graph (so each node u ∈ VS is in the output graph GS). ⊓⊔

⊓⊔

B.4.10 Proof of Proposition 10.

Proof. It is sufficient to prove for the case of 2 sets as a simple induction ar-
gument then implies the case for n > 2. Consider some proper graph G1 :=



(VG1 , EG1), some set S of nodes, and any two sets S1 and S2 such that S = S1∪S2.
Furthermore, let

(G2 := (VG2 , EG2), S2
′) := UpdatedGraph(G1, S1),

(G3 := (VG3 , EG3), S3
′) := UpdatedGraph(G2, S2 ∪ (S1 \ S2

′)),

(G′ := (VG′ , EG′), S′) := UpdatedGraph(G1, S).

We want to show (G3, S2
′ ∪ S3

′) = (G′, S′).
To start we show G′ = G3 implies S′ = S2

′ ∪ S3
′. From Proposition 8

S3
′ = VG3 ∩

(
S2 ∪ (S1 \ S2

′)
)
,

S′ = VG′ ∩ S = VG′ ∩ (S1 ∪ S2).

Noting that 1. from Proposition 8 S2
′ = VG2 ∩ S1, and; 2. since the graph G2

input to UpdatedGraph is proper, then VG2 ⊆ VG3 :

S2
′ ∪ S3

′ = S2
′ ∪
(
VG3 ∩

(
S2 ∪ (S1 \ S2

′)
))

= (VG3 ∩ S2) ∪
(
(S2
′ ∪ VG3) ∩ (S2

′ ∪ (S1 \ S2
′))
)

(2)
= (VG3 ∩ S2) ∪

(
VG3 ∩ (S2

′ ∪ (S1 \ S2
′))
)

(1)
= (VG3 ∩ S2) ∪

(
VG3 ∩ S1

)
= VG′ ∩ (S1 ∪ S2).

At this point we only need to establish VG3 = VG′ , as Proposition 2 then implies
G3 = G′. First note that since S2

′ ⊆ VG2 , for

(G3
′ := (VG3′ , EG3′), S′G3′) := UpdatedGraph(G2, S2 ∪ S1), (B.1)

Proposition 9 implies G3
′ = G3. So, we only need to prove that VG3′ = VG′ .

The argument used in the proof of Proposition 9 can be used here too. Since
G1 is proper, and letting n := |VG1 |, by Definition 2 there is an ordered sequence
of nodes u1, . . . , un such that, letting G0 := (V0, E0) = (∅, ∅), and letting for
i = 0, . . . , n− 1, Gi+1 := (Vi ∪ {ui+1.id}, Ei ∪ (ui+1.Acks×{ui+1.id})), we have

IsValid(ui+1.sid,Gi
+, ui+1.S, ui+1.V⃗ , ui+1.cmd, ui+1.Acks) = 1. By inspection

of UpdatedGraph (Algorithm 6), graphs G′, G2 and G3
′ are constructed according

to Definition 2, meaning there are sequences of nodes

uS′

n+1, . . . , u
S′

(n+|S′|)

uS2
′

n+1, . . . , u
S2

′

(n+|S2
′|)

uG3
′

(n+|S2
′|)+1, . . . , u

G3′

(n+|S2
′|+|S′

G3
′ |)

(S′G3′ is defined in Equation B.1) such that, for i = n, . . . , (n+ |S′|) − 1, for

j = n, . . . , (n+ |S2
′|)− 1, and for l = (n+ |S2

′|), . . . , (n+ |S2
′|+ |S′G3′ |)− 1,

GS′

i+1 := (V S′

i ∪ {uS′

i+1.id}, ES′

i ∪ (uS′

i+1.Acks× {uS′

i+1.id})),

GS2
′

j+1 := (V S2
′

j ∪ {uS2
′

j+1.id}, E
S2

′

j ∪ (uS2
′

j+1.Acks× {uS2
′

j+1.id})),

GG3
′

l+1 := (V G3
′

l ∪ {uG3
′

l+1.id}, E
G3′

l ∪ (uG3
′

l+1.Acks× {uG3
′

l+1.id})),



it holds that

IsValid(uS′

i+1.sid,
(
GS′

i

)+
, uS′

i+1.S, u
S′

i+1.V⃗ , uS′

i+1.cmd, u
S′

i+1.Acks) = 1,

IsValid(uS2
′

j+1.sid,
(
GS2

′

j

)+
, uS2

′

j+1.S, u
S2

′

j+1.V⃗ , uS2
′

j+1.cmd, u
S2

′

j+1.Acks) = 1,

IsValid(uG3
′

l+1.sid,
(
GG3

′

l

)+
, uG3

′

l+1.S, u
G3′

l+1.V⃗ , uG3
′

l+1.cmd, u
G3′

l+1.Acks) = 1.

We now show VG2 \ VG′ = ∅, VG3′ \ VG′ = ∅ and VG′ \ VG3′ = ∅. Note that
VG3′ \ VG′ = ∅ and VG′ \ VG3′ = ∅ together imply VG3 = VG′ . As in the proof
of Proposition 9, we proceed by contradiction:

VG2 \ VG′ = ∅: Suppose this is not the case and consider the first node uS2
′

j in the sequence

uS2
′

n+1, . . . , u
S2

′

(n+|S2
′|) such that uS2

′

j /∈ VG′ . First, uS2
′

j cannot be a root node,

as otherwise this would imply P does not satisfy Requirement 1. Since uS2
′

j

is not a root and noting that

IsValid(uS2
′

j .sid,
(
GS2

′

j−1
)+

, uS2
′

j .S, uS2
′

j .V⃗ , uS2
′

j .cmd, uS2
′

j .Acks) = 1,

it follows from Requirement 2 that uS2
′

j .Acks ⊆ GS2
′

j−1.V . Since by assumption

uS2
′

j is the first node in the sequence, then all nodes in the sequence prior

to uS2
′

j are in VG′ , implying V S2
′

j−1 ⊆ VG′ . Since both G′ and GS2
′

j−1 are proper
graphs, it then follows from Requirement 3

IsValid(uS2
′

j .sid,G′+, uS2
′

j .S, uS2
′

j .V⃗ , uS2
′

j .cmd, uS2
′

j .Acks)

= IsValid(uS2
′

j .sid,
(
GS2

′

j−1
)+

, uS2
′

j .S, uS2
′

j .V⃗ , uS2
′

j .cmd, uS2
′

j .Acks).

and so

IsValid(uS2
′

j .sid,G′+, uS2
′

j .S, uS2
′

j .V⃗ , uS2
′

j .cmd, uS2
′

j .Acks) = 1.

However, from inspection of UpdatedGraph (Algorithm 6) this is a contradic-

tion with the fact that in the last iteration of UpdatedGraph node uS2
′

j was

not added (because uS2
′

j ∈ S1 ⊆ S). ⊓⊔
VG3′ \ VG′ = ∅: One can prove this by noting that VG2 ⊆ VG3′—which follows from inspection

of UpdatedGraph, Algorithm 6—by relying on the fact that VG2 ⊆ VG′ (proven
above)—and following an argument analogous to the one above. ⊓⊔

VG′ \ VG3′ = ∅: Similar to the step above. ⊓⊔
⊓⊔

B.4.11 Proof of Proposition 11.

Proof. Follows from inspection of UpdatedGraph (Algorithm 6): consider any
node

u := (id, (⟨P → R⃗⟩, (sid, cmd,Acks))) ∈ S \ S′.
If it were the case that

P[IsValid](sid,G+, P, R⃗, cmd,Acks) = 1,

u would be added in the last iteration of UpdatedGraph. ⊓⊔



B.4.12 Proof of Proposition 12.

Proof. First, by assumption we know G := (V,E) is proper. In the follow-
ing, let (Gid := (Vid, Eid), Sid) := UpdatedGraph(G, {id}). By inspection of

UpdatedGraph (Algorithm 6), since P[IsValid](sid,G+, S, V⃗ , cmd,Acks) = 1,
id is added to both the output graph—i.e. id ∈ Vid—and the output set Sid.
Since only nodes in the set input to UpdatedGraph may be added to the output
graph, we have Vid = V ∪ {id} and Sid = {id}; by definition of UpdatedGraph
we also have Eid = E ∪ (Acks × {id}), and therefore Gid = G′. By definition
of G1 and S′′1 , we have (G1, S

′′
1 ) := UpdatedGraph(G′, S′). The result then follows

from Proposition 10 by considering sets S1 := {id} and S2 := S′. ⊓⊔

B.4.13 Proof of Proposition 13.

Proof. Regarding HIW
Mid it follows from Proposition 5 and by following the se-

quence of hybrids

ChatSessions[P]⇝ HIW
1 ⇝ HIW

2 ⇝ HIW
3 ⇝ HIW

4 ⇝ HIW
Mid

that for each sid, graph SessionGraphsGlobal[sid] is proper.
Regarding HRW

Mid, we prove by induction on the queries made to HRW
Mid. Upon

Initialization, for each party P ∈ MH , we have SessionGraphsP = ∅, so
trivially all graphs are proper. Consider any query to one of HRW

Mid’s interfaces.
First, note that only (P ∈ MH)-Write and Deliver queries may actually
modify any graph SessionGraphsP [sid]. Note that if any such graph is modified,
then it is set to the graph output by UpdatedGraph; note also that the graph
input to UpdatedGraph is proper (induction hypothesis). It then follows from
Proposition 3 that after any such query, each graph SessionGraphsP [sid] is still
proper. ⊓⊔

B.4.14 Proof of Proposition 14.

Proof. Follows from the definition of InducedPartyGraph+: non-root nodes are
only added to the output set if all their predecessors are already in that set. ⊓⊔

C “Zoomed-in” version of Figure 1



UatChat

Auth

OTR

Conf + Anon

ChatSessions[P]

Auth

OTR

Conf + Anon

Assumed Communication Channel

Auth

OTR

Conf + Anon ChatSessionsProt[P]

UatChatProt

T
he

or
em

1

C
or

ol
la

ry
1

C
or

ol
la

ry
3

C
or

ol
la

ry
2


	Modeling Stateful Communication
	Introduction
	A note on the messaging literature

	Overview
	Chat Sessions Abstraction
	Building on Chat Sessions: UatChat

	Preliminaries
	(Simplified) Constructive Cryptography
	Modeling Access Control via Repositories
	Repository Label Notation
	Modeling an Asynchronous Network


	Chat Sessions
	Overview
	Helper Functions
	Real World
	Ideal Chat Sessions
	Policy Requirements.

	Security Analysis

	UatChat: A Decentralized Messenger
	The Unanimous Policy U
	Defining UatChat
	Constructing UatChat.


	The Modularity of 
	Application Semantics of Multi-Designated Receiver Signed Public Key Encryption EPRINT:LiuPorRit25
	Application Semantics for MDRS-PKE EPRINT:LiuPorRit25

	Extending  to Provide Extra Guarantees
	Authenticity.
	Off-The-Record.
	Confidentiality and Anonymity.

	Uatchat

	Definition of UatChatProt (Algorithm 16)
	Proof of Theorem 1
	Proof Structure
	Helper Propositions
	Hybrid Sequence
	Proofs of Helper Propositions
	Proof of Proposition 1.
	Proof of Proposition 2.
	Proof of Proposition 3.
	Proof of Proposition 4.
	Proof of Proposition 5.
	Proof of Proposition 6.
	Proof of Proposition 7.
	Proof of Proposition 8.
	Proof of Proposition 9.
	Proof of Proposition 10.
	Proof of Proposition 11.
	Proof of Proposition 12.
	Proof of Proposition 13.
	Proof of Proposition 14.


	``Zoomed-in'' version of Figure 1


