
Mild Asymmetric Message Franking:
Illegal-Messages-Only and Retrospective

Content Moderation

Zhengan Huang1, Junzuo Lai2, Gongxian Zeng1, and Jian Weng2

1 Pengcheng Laboratory, Shenzhen, China
zhahuang.sjtu@gmail.com, gxzeng@cs.hku.hk
2 College of Information Science and Technology,

Jinan University, Guangzhou, China
{laijunzuo, cryptjweng}@gmail.com

Abstract. Many messaging platforms have integrated end-to-end (E2E)
encryption into their services. This widespread adoption of E2E encryp-
tion has triggered a technical tension between user privacy and illegal
content moderation. The existing solutions either support only unframe-
ability or deniability, or they are prone to abuse (the moderator can
perform content moderation for all messages, whether illegal or not), or
they lack mechanisms for retrospective content moderation.

To address the above issues, we introduce a new primitive called mild
asymmetric message franking (MAMF) to establish illegal-messages-only
and retrospective content moderation for messaging systems, supporting
unframeability and deniability simultaneously. We provide a framework
to construct MAMF, leveraging two new building blocks, which might
be of independent interest.

Keywords: Asymmetric message franking; Set pre-constrained encryption; Hash
proof system; Sigma protocol; Deniability and unframeability

1 Introduction

In recent years, there has been a substantial surge in the adoption of messaging
applications deploying end-to-end (E2E) encryption, e.g., Facebook Messenger,
WhatsApp and Signal, ensuring that the transmitted raw information cannot be
obtained by the platforms.

Despite the security advantages, the widespread adoption of E2E encryption
has not been universally welcomed. These encryption services might be misused
for disseminating harmful content such as harassment messages, phishing links,
fake news, and other potentially illegal information. Moreover, these services
conflict with content moderation directly. Law enforcement and national security
communities contend that such encryption hampers their ability to investigate,
prosecute criminals and ensure public safety. In fact, the conflict between privacy

and content moderation has spurred legislative proposals and policy campaigns
about discouraging the deployment of E2E encryption [FBI,Tar18].

On the other hand, technical experts have voiced concerns that these pro-
posals, if implemented, might compromise the security provided by encryption
systems [AAB+15], either by requiring unsafe alterations or prohibiting the use
of E2E encryption altogether.

In recent years, many works have focused on employing cryptographic tech-
niques to strike a balance between ensuring user privacy and effectively moder-
ating illegal content within messaging systems.

One approach to uphold content moderation is through the use of message
franking (MF) [Fac16a,Fac16b,GLR17,TGL+19], seamlessly integrating with end-
to-end (E2E) encryption, as discussed in [TGL+19]. This method empowers the
receiver of a message to report it to a moderator (also referred to as the judge). In
the MF framework, a valid report by the receiver includes the sender’s identity,
along with the message and specially constructed strings (e.g., signatures or hash
values). These elements allow the moderator to verify whether the reported mes-
sage originated from the identified sender. In order to strengthen user privacy,
asymmetric message franking (AMF) [TGL+19] captures deniability. Informally,
this property allows the sender to technically deny sending the message after a
compromise, aiming to avoid potential backlash or embarrassment. AMF consid-
ers different scenarios regarding whose secret key is compromised. One scenario
is judge compromise deniability, where a forger with the moderator’s secret key
can produce a signature indistinguishable from a real one. Unfortunately, exist-
ing works [TGL+19,IAV22,LZH+23] do not support unframeability. Specifically,
it becomes challenging for the moderator to convince law enforcement of the
identity of the content originator, because judge compromise deniability allows
the moderator to forge a message in the name of the sender. More importantly,
current MF solutions do not adequately address a significant concern: the moder-
ator can identify the sender of all reported messages, regardless of the message’s
intent. This extensive power of the moderator has the potential for abuse within
the existing system.

Recently, a different proposal has emerged, suggesting end-to-end secure mes-
saging with content moderation exclusively for some pre-defined illegal contents,
based on set pre-constrained (SPC) group signatures [BGJP23]. However, as
demonstrated in [BGJP23], their techniques are “tailored to obtain the strongest
notion of unframeability and no deniability”. Moreover, it remains unclear how to
execute content moderation for newly identified illegal content that hasn’t been
predefined. This feature is reminiscent of “retrospective” access to encrypted
data as considered in [GKVL21], which is in a somewhat different context and
relies on extractable witness encryption [GKP+13].

In this paper, we aim to establish mild content moderation for a messaging
system.

Firstly, we restrict the moderation capabilities to illegal messages only, while
concurrently providing the capacity for retrospective content moderation. No-
tably, the set of illegal messages may increase over time. To carry out content

2

moderation for the newly added illegal messages, a straightforward approach
might involve system re-initialization; however, such a method impedes the mod-
erator’s ability to retrospectively moderate content. One objective of this paper
is to enable the moderator to retrospectively examine past reports and identify
those that qualify as illegal when new illegal messages are augmented.

Secondly, our content moderation system achieves trade-offs between deni-
ability and unframeability. In [BGJP23], Bartusek et al. discuss the technical
tension between deniability and unframeability, and claim that, while denia-
bility [TGL+19] is a desirable property, it conflicts with unframeability. Upon
meticulous examination, we discern that the primary reason why [TGL+19] can-
not achieve unframeability is due to the fact that the scheme [TGL+19] supports
judge-receiver compromise deniability. To elaborate, when the receiver’s and the
moderator’s keys are compromised, a party possessing these keys can forge a sig-
nature that can be successfully accepted by both the receiver and the moderator.
Our approach to achieve deniability and unframeability simultaneously imposes
an additional constraint on deniability. Roughly, given any forged signature (for
deniability), the receiver and the moderator can not accept it simultaneously.
It then carves out space for unframeability, indicating that when both the re-
ceiver and the moderator identify the sender concurrently, the sender cannot
deny sending the message.

1.1 Main contributions

Our main contributions can be summarized as follows:

1. We introduce a new primitive called mild asymmetric message franking
(MAMF) to establish mild content moderation for a messaging system, and
formalize its security notions.

2. To construct MAMF, we introduce two new building blocks, universal set
pre-constrained encryption (USPCE) and dual hash proof system-based key
encapsulation mechanism supporting Sigma protocols (dual HPS-KEMΣ),
and present their concrete constructions.

3. We offer a generic framework of constructing MAMF from USPCE and dual
HPS-KEMΣ, and demonstrate that it fulfills the required security proper-
ties. By integrating a concrete USPCE scheme and a dual HPS-KEMΣ into
the generic framework, we can obtain a concrete MAMF. We also have some
improvements discussed in Appendix H, enhancing the efficiency of the con-
crete MAMF.

MAMF primitive. In the context of MAMF, four types of participants are in-
volved: the sender, the receiver, the legislative agency, and the moderator (also
referred to as the judge). MAMF comprises eleven algorithms: a setup algorithm
Setup for generating global public parameters, three algorithms (KGAg, KGJ,
KGu) for generating key pairs, three algorithms (Frank, Verify, Judge) for creat-
ing and verifying genuine signatures, a token generation algorithm TKGen for
retrospective content moderation, and three forging algorithms (Forge, RForge,
JForge) for deniability.

3

We offer further explanations here.

Upon receiving the public parameter generated by Setup, the legislative
agency selects a set S (representing illegal messages) and uses KGAg to gen-
erate a key pair for itself and an auxiliary parameter for the moderator. The
moderator, leveraging the auxiliary parameter, invokes KGJ to create a key pair.
The sender and receiver both utilize KGu to generate their private/public keys.

The sender employs the franking algorithm Frank to generate a designated-
verifier signature for a messagem. The receiver utilizes Verify (with its secret key
as input) to validate the received signature. If the received message is deemed
illegal, and the receiver reports it to the moderator, the moderator can confirm
the report using algorithm Judge, determining that the sender indeed sent the
message. When the legislative agency intends to augment the set S with an
additional illegal message for retrospective content moderation, it invokes the
TKGen algorithm to produce a token for the new illegal message. With the
aid of this token, the moderator can retrospectively examine past reports (as
well as new reports). It’s important to note that algorithms Forge, RForge, and
JForge are not intended for execution by legitimate users. Their presence ensures
deniability under specific compromise scenarios.

We address six distinct security requirements for MAMF: unforgeability,
accountability, unframeability, deniability, untraceability, and confidentiality of
sets.

1. Unforgeability. As the fundamental security prerequisite for general signa-
tures, unforgeability in MAMF ensures prevention of successful imperson-
ation, i.e., the receiver cannot be deceived into accepting a message not
genuinely sent by the sender.

2. Accountability. Accountability ensures that the functionality of reporting
illegal messages. In line with the definition in [TGL+19,LZH+23], account-
ability is formalized with two special properties: sender binding and receiver
binding. Sender binding ensures that the sender cannot trick the receiver
into accepting unreportable messages, and receiver binding ensures that the
receiver cannot deceive the judge to frame an innocent sender.

3. Deniability. Deniability is formalized with three special properties: universal
deniability, receiver compromise deniability, and judge compromise deniabil-
ity. Universal deniability guarantees deniability when neither the receiver’s
secret key nor the judge’s secret key is compromised. Receiver compromise
deniability guarantees deniability when the receiver’s secret key is compro-
mised. Judge compromise deniability is formalized to guarantee deniability
when the judge’s secret key is compromised.

4. Unframeability. Unframeability of MAMF requires that no party, even given
a receiver’s secret key and the judge’s secret key, is able to produce a sig-
nature acceptable to both the receiver and the judge. This property implies
that once both the receiver and the judge identify the originator of some ille-
gal message, they can generate an evidence (e.g., a NIZK proof) to convince
the other party of the originator of the message.

4

5. Untraceability. Ensuring untraceability restricts the capabilities of both the
legislative agency and the judge, thereby enhancing sender privacy. This
concept formalizes into two distinct notions: untraceability against legislative
agency and untraceability against judge. Untraceability against legislative
agency guarantees that the agency cannot determine if someone has actually
sent a message, no matter whether it is in the set of illegal message or
not. Untraceability against judge ensures that, without the assistance of the
legislative agency, the moderator cannot ascertain the sender’s identity when
the message is not in the set of illegal messages.

6. Confidentiality of Sets. Confidentiality of sets requires that the legislative
agency’s public key and the judge’s public key will not disclose any informa-
tion about the set of illegal messages (which should not be disclosed to the
public, e.g., child sexual abuse material).

Analogous to AMF [TGL+19], MAMF can be integrated with E2E encryp-
tion, which guarantees the confidentiality of messages. So we do not consider
confidentiality of messages for MAMF. Furthermore, our MAMF could be ex-
tended to accommodate group communications like [LZH+23]. We leave it as a
future work.

Technical overview. For MAMF construction, we introduce two new primi-
tives, USPCE and dual HPS-KEMΣ, and utilize them to show a framework of
constructing MAMF. We provide a technical overview here.

USPCE. In [BGJP23], Bartusek et al. formulate set pre-constrained encryption
(SPCE). Generally, SPCE requires the generation of a public/secret key pair
for a predefined (illegal message) set S. In SPCE, decryption of a ciphertext,
produced by encrypting a message with the public key and an item x, is only
possible when x ∈ S. If x /∈ S, the secret key holder gains no information about
the message.

Note that SPCE is insufficient for constructing MAMF, primarily due to its
inability to handle ciphertexts produced by encrypting messages with respect to
items where x /∈ S, while in the MAMF framework, in order to carry retrospective
content moderation, the moderator should be able to handle the messages not
in the set S, as long as the legislative agency has provided the corresponding
tokens. Henceforth, we introduce a primitive, called universal set pre-constrained
encryption (USPCE), to address these challenges.

A USPCE comprises five key algorithms: (Setup,KG,Enc,TKGen, Dec), where
two kinds of entities, the authority and users, are involved. The setup algorithm
Setup, executed by the authority, takes the security parameter and a pre-defined
set S as input, and outputs public parameters, an auxiliary parameter, and a
master secret key. The users invoke KG with the public and auxiliary parameters
to generate their key pairs. The encryption algorithm Enc takes a public key, an
item x, and a message m as input, producing a ciphertext.

– If the item x belongs to the set S, the user can directly employ the decryption
algorithm Dec (with their secret key as input) to output the message m.

5

– If x ̸∈ S, the authority can execute the token generation algorithm TKGen
(with the master secret key as input) to create a token tk for the item x.
Subsequently, the user can utilize the decryption algorithm Dec, taking their
secret key, the ciphertext and the token tk as input, to recover the message
m.

It is required that there is a Sigma protocol to prove that the ciphertext is
well-formed.

For USPCE, we require the following security properties.

– Confidentiality against authority: It is required that the authority cannot ob-
tain meaningful information about the message from a ciphertext, no matter
whether the item x belongs to the set S or not.

– Confidentiality against users: It is required that, without the token for an
item x ̸∈ S given by the authority, any user cannot obtain meaningful infor-
mation about the message from a ciphertext associated with x.

– Confidentiality of sets: It is required that the public parameters and a user’s
public key will not disclose any information about the pre-defined set S.

A concrete construction of USPCE based on the DBDH assumption is pro-
vided in Sec. 4.

Dual HPS-KEMΣ. We introduce another building block, called dual hash proof
system-based key encapsulation mechanism supporting Sigma protocols (dual
HPS-KEMΣ), which roughly can be seen as a dual version of the HPS-KEMΣ

proposed in [LZH+23].
In essence, in a dual HPS-KEMΣ, ciphertexts are generated in accordance

with the original HPS-KEMΣ approach, while encapsulated keys are created in
two modes: one follows the original HPS-KEMΣ method, and the other adopts
an extended version of HPS-KEMΣ where an additional tag t is included as input
during the computation of the encapsulated key. Moreover, in dual HPS-KEMΣ,
two additional algorithms are required for the uniform sampling of encapsulated
keys: one with a tag as input and the other without using a tag.

Expanding on this, a dual HPS-KEMΣ scheme consists of ten algorithms:
Setup,KG,Encapc,Encapk,Decap,Encap

∗
c , dEncapk, dDecap,SamEncK and dSamEncK.

We start by concentrating on the first six algorithms, which comprise an
ordinary HPS-KEMΣ scheme. Specifically, Setup generates the public parameter,
and KG produces a pair of public/secret user keys. Given the public parameter,
but without user’s public key, Encapc outputs a well-formed ciphertext, and
Encap∗c outputs a ciphertext that could be either well-formed or ill-formed. The
algorithm Encapk, sharing the same randomness space with Encapc, takes the
public parameter and a public key as input, and outputs an encapsulated key.
Utilizing the secret key, the algorithm Decap decapsulates the ciphertexts to
obtain the encapsulated keys. Correctness requires that given a ciphertext output
by Encapc with randomness r, Decap will return an encapsulated key equal to
that created by Encapk with the same randomness r.

The following properties inherited from HPS-KEMΣ are required:

6

1. Universality: Given a public key, it is difficult for any unbounded adversary
without the corresponding secret key to generate an ill-formed ciphertext c,
an encapsulated key k, and randomness r∗c (indicating that c is generated
via Encap∗c with randomness r∗c), such that with the ciphertext c as input,
Decap outputs a key equal to k.

2. Ciphertext unexplainability: It is difficult to generate a ciphertext c and ran-
domness r∗c (indicating that c is generated via Encap∗c with randomness r∗c),
such that c is well-formed.

3. Indistinguishability: The ciphertext output by Encap∗c should be indistin-
guishable from the well-formed ciphertext output by Encapc.

4. SK-second-preimage resistance: Given a pair of public/secret keys, it is dif-
ficult to generate another valid secret key for this public key.

5. Smoothness: For any fixed public key, the algorithm Decap, fed with a ci-
phertext generated via Encap∗c and a secret key randomly sampled from the
set of secret keys corresponding to the public key, will output a key uniformly
distributed over the encapsulated key space.

Now, let’s shift our focus to the last four algorithms of dual HPS-KEMΣ, i.e.,
dEncapk, dDecap,SamEncK and dSamEncK.

The algorithm dEncapk, sharing the same randomness space and the same
encapsulated key space with Encapk, takes the public parameter, a public key
and a tag as input, and outputs an encapsulated key. Utilizing the secret key
and the tag, the algorithm dDecap decapsulates the ciphertexts to obtain the
encapsulated keys. Correctness requires that given a tag t and a ciphertext out-
put by Encapc with randomness r, dDecap will return an encapsulated key equal
to that generated by dEncapk using the same tag t and randomness r.

The algorithms SamEncK and dSamEncK are both used to uniformly sam-
ple encapsulated keys. In particular, SamEncK takes the public parameter as
input, and outputs an encapsulated key, while dSamEncK takes both the public
parameter and a tag as input, and outputs an encapsulated key.

The following properties are also required for dual HPS-KEMΣ:

6. Extended universality: Given a public key, it is difficult for any unbounded
adversary without the corresponding secret key to generate an ill-formed
ciphertext c, an encapsulated key k, a tag t, and randomness r∗c (indicating
that c is generated via Encap∗c with randomness r∗c), such that with the
ciphertext c and the tag t as input, dDecap outputs a key equal to k.

7. Key unexplainability: Given a pair of public/secret keys, it is difficult to
generate (c, r∗c , k, r

∗
k) (where c is a ciphertext generated via Encap∗c using

randomness r∗c , and k is an encapsulated key generated via SamEncK using
randomness r∗k), such that k is the result of decapsulating c by Decap.

8. Extended key unexplainability: Given a pair of public/secret keys, it is diffi-
cult to generate (c, r∗c , k, t, r

∗
k) (where c is a ciphertext generated via Encap∗c

using randomness r∗c , and k is an encapsulated key generated via dSamEncK
using tag t and randomness r∗k), such that k is the result of decapsulating c
by dDecap using tag t.

7

9. Extended smoothness: For any fixed public key, the algorithm dDecap, fed
with a ciphertext generated via Encap∗c , a random tag, and a secret key
randomly sampled from the set of secret keys corresponding to the public
key, will output a key uniformly distributed over the encapsulated key space.

10. Special extended smoothness: For any fixed public/secret key pair, the algo-
rithm dDecap, fed with a ciphertext generated via Encap∗c , a secret random
tag, and the fixed secret key, will output a key uniformly distributed over
the encapsulated key space.

Consistent with [LZH+23], we require that there exist Sigma protocols to
prove that some results are precisely output by KG, Encapc, Encapk, Encap

∗
c ,

dEncapk, SamEncK and dSamEncK.
A concrete construction of dual HPS-KEMΣ based on the DDH assumption

is provided in Sec. 5. Similar to [LZH+23], our dual HPS-KEMΣ construction
can also be extended to be based on the k-linear assumption [HK07,Sha07].

An MAMF Framework. Now, we briefly outline the generic construction of an
MAMF from USPCE and dual HPS-KEMΣ. The main idea is as follows.

Here, Setup algorithm directly invokes the setup algorithm of dHPS-KEMΣ,
KGAg calls the setup algorithm of USPCE, KGJ invokes the key generation al-

gorithms of dHPS-KEMΣ and USPCE (e.g., pkJ = (pk′J, pkUSPCE) where pk′J is

output by the key generation algorithm of dHPS-KEMΣ and pkUSPCE is output
by the key generation algorithm of USPCE), while KGu solely calls the key gen-
eration algorithm of dHPS-KEMΣ.

The algorithm Frank, executed by the sender to generate an MAMF signature
for a message m, proceeds as follows. It utilizes Encapc to generate a well-formed
encapsulated ciphertext c, and then employs Encapk to generate an encapsulated
key kr for the receiver and dEncapk to generate kJ (associated with a randomly
chosen tag t) for the judge, where Encapc, Encapk and dEncapk use the same
randomness r. Following this, it calls the encryption algorithm of USPCE to
encrypt the tag t with randomness rUSPCE, using the message m as the item,
to obtain a ciphertext ct. Finally, it outputs a signature σ = (π, c, kr, kJ, ct),
where π is a NIZK proof (generated with witness (sks, t, r,⊥,⊥, rUSPCE)) for the
relation R in Fig. 1.

In the verification process (i.e., the algorithm Verify), the receiver confirms
the signature’s validity by checking (i) if the NIZK proof is valid, and (ii) if the
decapsulated key, produced by decapsulating c via Decap, matches the key kr
provided in the signature.

In the moderation process (i.e., the algorithm Judge), if m is in the illegal
message set, or the legislative agency have provided a token (by TKGen) for m to
implement retrospective content moderation, the judge first decrypts ct with the
decryption algorithm of USPCE (with item m) to obtain a tag t. Then, he/she
checks (i) if the NIZK proof is valid, and (ii) if the decapsulated key, produced
by decapsulating c with tag t via dDecap, matches the key kJ provided in the
signature.

In the token generation process (i.e., the algorithm TKGen), the legislative
agency directly invokes the token generation algorithm of USPCE.

8

R = {((pp, pks, pkAg, pkJ, c, kr, kJ, ct,m), (sks, t, r, r
∗
c , r

∗
k , rUSPCE)) :

((pks, sks) ∈ Rs

∧ (((c, kJ, pk
′
J), (t , r)) ∈ Rd

c,k ∧eq ((pkUSPCE,m, ct), (t , rUSPCE)) ∈ Rct))
∨ ((c, r∗c) ∈ R∗

c ∧ (kr, r
∗
k) ∈ R∗

k ∧ ((pkUSPCE,m, ct), (t, rUSPCE)) ∈ Rct)
∨((c, r∗c) ∈ R∗

c ∧ ((kJ, (t , r∗k)) ∈ Rd∗
k ∧eq ((pkUSPCE,m, ct), (t , rUSPCE)) ∈ Rct))}

Fig. 1 RelationR for MAMF, whereRs is a relation proving the validity of the sender’s
public/secret keys, Rd

c,k is a relation proving that (c, kJ) is generated via Encapc and
dEncapk with the same randomness r, R∗

c is a relation proving that c is a ciphertext
output by Encap∗c with randomness r∗c , Rct is a relation proving the USPCE cipher-
text is well-formed, R∗

k is to prove the encapsulated key of the receiver is generated
via SamEncK, and Rd∗

k is to prove the encapsulated key of the judge is generated via
dSamEncK. Note that the symbol “∧eq” represents an “EQUAL-ANDl” operation be-
tween two relations, signifying that part (e.g., t) of the sub-witnesses in the relations
are equal. The formal definition and further discussions are presented in Appendix G.

Now, let’s shift our focus to the forging algorithms Forge, RForge and JForge.

The relationR in Fig. 1 plays a pivotal role in the forging algorithms. Observe
that the relation comprises three sub-relations connected by “OR” operations.
The first sub-relation is crafted for the sender, ensuring that the message is
genuinely sent by the sender and convincing the receiver that the judge can
successfully trace the originator once the message is reported. The second and the
third sub-relations are devised for the forging algorithms to ensure deniability.

Specifically, the algorithm Forge first invokes Encap∗c with randomness r∗c to
generate an ill-formed encapsulated ciphertext c, and uniformly samples two
encapsulated keys kr and kJ, where kr is sampled with SamEncK using ran-
domness r∗k . Following this, it uniformly chooses a tag t, and then calls the
encryption algorithm of USPCE to encrypt t with randomness rUSPCE, using
the message m as the item, to obtain a ciphertext ct. Finally, it outputs a sig-
nature σ = (π, c, kr, kJ, ct), where π is a NIZK proof (generated with witness
(⊥, t,⊥, r∗c , r∗k , rUSPCE)) for the relation R.

The algorithm RForge first invokes Encap∗c with randomness r∗c to generate
an ill-formed encapsulated ciphertext c, and computes an encapsulated key kr
by executing Decap to decapsulate c. Then, it chooses a random tag t, and
samples kJ with dSamEncK using t and randomness r∗k . Following this, it calls
the encryption algorithm of USPCE to encrypt t with randomness rUSPCE, using
the message m as the item, to obtain a ciphertext ct. Finally, it outputs a
signature σ = (π, c, kr, kJ, ct), where π is a NIZK proof (generated with witness
(⊥, t,⊥, r∗c , r∗k , rUSPCE)) for the relation R.

The algorithm JForge first invokes Encap∗c with randomness r∗c to generate an
ill-formed encapsulated ciphertext c, and computes an encapsulated key kJ by ex-
ecuting dDecap (with a random tag t) to decapsulate c. Then, it samples kr with
SamEncK using randomness r∗k . Following this, it calls the encryption algorithm
of USPCE to encrypt t with randomness rUSPCE, using the message m as the
item, to obtain a ciphertext ct. Finally, it outputs a signature σ = (π, c, kr, kJ, ct),

9

where π is a NIZK proof (generated with witness (⊥, t,⊥, r∗c , r∗k , rUSPCE)) for the
relation R.

In summary, we have presented a generic construction of MAMF from US-
PCE and dual HPS-KEMΣ. By incorporating a concrete USPCE and a concrete
dual HPS-KEMΣ, we can derive a specific instantiation of MAMF.
Security analysis. We turn to show a high-level intuition that our MAMF frame-
work achieves the required unforgeability, accountability, deniability, unframe-
ability, untraceability, and confidentiality of sets.

Given the similarity in the security analysis of unforgeability and account-
ability, we will focus here on demonstrating how to achieve unforgeability.

Unforgeability requires that any adversary cannot generate a signature such
that an honest receiver accepts it. Supposing that there is an adversary gener-
ating a signature σ = (π, c, kr, kJ, ct) such that an honest receiver accepts it, we
have: (i) π is a valid proof for the relation R, and (ii) kr = Decap(pp, skr, c).
Observe that to generate the valid proof π for R, the adversary needs to know
witness (sks, t, r,⊥,⊥, rUSPCE) or (⊥, t,⊥, r∗c , r∗k , rUSPCE).

– If the adversary knows (sks, t, r,⊥,⊥, rUSPCE), it implies that sks is a valid
secret key of the sender. Since the adversary possesses no information about
the sender’s secret key beyond the knowledge of the sender’s public key, it
is contradictory to SK-second-preimage resistance of dual HPS-KEMΣ.

– If the adversary knows (⊥, t,⊥, r∗c , r∗k , rUSPCE), it implies that c is generated
via Encap∗c . The ciphertext unexplainability of dual HPS-KEMΣ guarantees
that c is not well-formed with overwhelming probability. Thus, according to
(ii), (c, kr, r

∗
c) leads to a successful attack on universality of dual HPS-KEMΣ.

Now, we turn to analyze universal deniability, receiver compromise denia-
bility, and judge compromise deniability within our MAMF framework. Given
the similarity in the security analysis of these deniability aspects, we will focus
solely on demonstrating how judge compromise deniability is achieved.

Judge compromise deniability requires that any adversary with the judge’s
secret key cannot distinguish between the outputs σ = (π, c, kr, kJ, ct) of Frank
and JForge.

– Frank computes (c← Encapc(pp; r), kr ← Encapk(pp, pkr; r), kJ ← dEncapk(pp,
pk′J, t; r)) with the same randomness r, where t is a random tag. On the other
hand, JForge computes c ← Encap∗c(pp; r

∗
c) and kr ← SamEncK(pp; r∗k) with

randomness r∗c and r∗k , respectively, and then decapsulates c by dDecap, using
sk′J and a random tag t, to obtain kJ.
Note that for c← Encapc(pp; r), we obtain kr = Encapk(pp, pkr; r) = Decap(pp,
skr, c) and kJ = dEncapk(pp, pk

′
J, t; r) = dDecap(pp, sk′J, t, c). The indistin-

guishability of dual HPS-KEMΣ guarantees that the tuple (c, kr, kJ) out-

put by Frank is indistinguishable from (ĉ, k̂r, k̂J), where ĉ ← Encap∗c(pp; r
∗
c),

k̂r = Decap(pp, skr, ĉ) and k̂J = dDecap(pp, sk′J, t, ĉ). Due to the smooth-

ness of dual HPS-KEMΣ, it guarantees that the tuple (ĉ, k̂r, k̂J) is indistin-

guishable from (ĉ, k̃r, k̂J), where k̃r is uniformly distributed over the encap-
sulated key space. According to the uniformity of sampled key by algorithm

10

SamEncK of dual HPS-KEMΣ, (ĉ, k̃r, k̂J) is indistinguishable from that out-
put by JForge. Thus, the output tuple (c, kr, kJ) from Frank and that from
JForge are indistinguishable.

– The ciphertext ct output by Frank and that output by JForge are distributed
identically.

– Frank generates a NIZK proof π for relation R with witness (sks, t, r,⊥,⊥,
rUSPCE), while JForge generates π for R with witness (⊥, t,⊥, r∗c , r∗k , rUSPCE).
The zero knowledge property of NIZK guarantees that anyone cannot dis-
tinguish the proof output by Frank from that output by JForge.

Unframeability requires that any adversary (possessing the secret keys of the
receiver, the legislative agency and the judge, but without the sender’s secret
key) cannot generate a signature such that both the receiver and the judge accept
it. Suppose that there is an adversary generating a signature σ = (π, c, kr, kJ, ct)
such that both the receiver and the judge accept it. The fact that the receiver
accepts the signature implies: (i) π is a valid proof for the relationR, and (ii) kr =
Decap(pp, skr, c). Observe that to generate the valid proof π for R, the adversary
needs to know witness (sks, t, r,⊥,⊥, rUSPCE) or (⊥, t,⊥, r∗c , r∗k , rUSPCE).

– If the adversary knows (sks, t, r,⊥,⊥, rUSPCE), it implies that sks is a valid
secret key of the sender. Similar to the previous analysis of unforgeability, it
is contradictory to SK-second-preimage resistance of dual HPS-KEMΣ.

– If the adversary knows (⊥, t,⊥, r∗c , r∗k , rUSPCE), we turn our focus on the last
two sub-relations of relation R.
• If (⊥, t,⊥, r∗c , r∗k , rUSPCE) satisfies

(c, r∗c) ∈ R∗c ∧ (kr, r
∗
k) ∈ R∗k ∧ ((pkUSPCE,m, ct), (t, rUSPCE)) ∈ Rct,

according to (ii), (c, r∗c , kr, r
∗
k) leads to a successful attack on the key

unexplainability of dual HPS-KEMΣ.

• If (⊥, t,⊥, r∗c , r∗k , rUSPCE) satisfies

(c, r∗c) ∈ R∗c ∧ (kJ, (t , r
∗
k)) ∈ Rd∗

k ∧eq ((pkUSPCE,m, ct), (t , rUSPCE)) ∈ Rct,

according to the fact that the judge accepts the signature (which further
suggests kJ = dDecap(pp, sk′J, t, c)), (c, r

∗
c , kJ, t, r

∗
k) leads to a successful

attack on the extended key unexplainability of dual HPS-KEMΣ.

Next, we turn to analyze untraceability against judge and untraceability
against agency within our MAMF framework. Given the similarity in the security
analysis of these untraceability aspects, we will focus solely on demonstrating
how untraceability against judge is achieved.

Untraceability against judge requires the existence of a simulator SimFrank,
such that any adversary with the judge’s secret key cannot distinguish between
the outputs σ = (π, c, kr, kJ, ct) of Frank and SimFrank, given that the message
is not in the set of illegal messages.

11

– The algorithm SimFrank is constructed as follows. It computes c← Encap∗c(pp;
r∗c) and kJ ← dSamEncK(pp, t; r∗k) with randomness r∗c and r∗k , respectively,
where t is a random tag, decapsulates c by Decap using skr to obtain kr, and
then computes ct via encrypting t with the encryption algorithm of USPCE,
using the message m as an item. After that, taking (⊥, t,⊥, r∗c , r∗k , rUSPCE)
as the witness, it calls the proving algorithm of NIZK to generate a proof π.
Finally, it outputs a signature σ = (π, c, kr, kJ, ct).

– Frank computes (c← Encapc(pp; r), kr ← Encapk(pp, pkr; r), kJ ← dEncapk(pp,
pk′J, t; r)) with the same randomness r, where t is a random tag, and com-
putes ct via encrypting t with the encryption algorithm of USPCE, using
the message m as an item.
Note that for c← Encapc(pp; r), we obtain kr = Encapk(pp, pkr; r) = Decap(pp,
skr, c) and kJ = dEncapk(pp, pk

′
J, t; r) = dDecap(pp, sk′J, t, c). The indistin-

guishability of dual HPS-KEMΣ and the confidentiality against users of US-
PCE guarantee that the tuple (c, kr, kJ, ct) output by Frank is indistinguish-

able from (ĉ, k̂r, k̂J, ĉt), where ĉ← Encap∗c(pp; r
∗
c), k̂r = Decap(pp, skr, ĉ), k̂J =

dDecap(pp, sk′J, t, ĉ) and ĉt is the ciphertext created via encrypting another
random tag t′ with the encryption algorithm of USPCE, using the messagem
as an item. Due to the special extended smoothness of dual HPS-KEMΣ, it
guarantees that the tuple (ĉ, k̂r, k̂J, ĉt) is indistinguishable from (ĉ, k̂r, k̃J, ĉt),
where k̃J is uniformly distributed over the encapsulated key space. Ac-
cording to the uniformity of sampled key by algorithm dSamEncK of dual
HPS-KEMΣ, (ĉ, k̂r, k̃J, ĉt) is indistinguishable from that (ĉ, k̂r, kJ, ĉt), where
kJ ← dSamEncK(pp, t; r∗k). The confidentiality against users of USPCE en-

sures that (ĉ, k̂r, kJ, ĉt) is indistinguishable from (ĉ, k̂r, kJ, ct), which is the
tuple output by SimFrank. Thus, the output tuple (c, kr, kJ, ct) from Frank
and that from SimFrank are indistinguishable.

– Frank generates a NIZK proof π for relation R with witness (sks, t, r,⊥,⊥,
rUSPCE), while SimFrank generates π forR with witness (⊥, t,⊥, r∗c , r∗k , rUSPCE).
The zero knowledge property of NIZK guarantees that anyone cannot dis-
tinguish the proof output by Frank from that output by SimFrank.

Roughly, confidentiality of sets requires the legislative agency’s public key and
the judge’s public key will not disclose any information about the set of illegal
messages (except for its size), which is trivially obtained from the confidentiality
of sets of USPCE.

1.2 Discussions

One-time token for specific MAMF signature. In this paper, our focus is
solely on illegal messages. It is worth noting that certain messages, like harass-
ment messages and phishing links, may not universally qualify as illegal messages
for all users. Consequently, these messages might not be encompassed within the
set designated by the legislative agency. Therefore, without the assistance of the
legislative agency, the moderator cannot ascertain the sender’s identity in such
scenarios. On the other hand, if the legislative agency provides tokens for the

12

messages, the moderator possesses the ability to identify all senders of these mes-
sages. To address this, a solution is to empower the legislative agency to generate
a one-time token for a specific MAMF signature and a specific message, which
is not in pre-defined set, such that the moderator can carry out content moder-
ation for that specific signature and specific message. We stress that our scheme
seamlessly accommodates this requirement, leveraging the inherent flexibility of
our USPCE. Further elaboration on this aspect can be found in Appendix I.

MPC for the token generation. In our scheme, the token generation algo-
rithm is invoked by legislative agency, which implicitly means that we assume
that the agency would not augment message to illegal set arbitrarily. To mitigate
trust in the agency, there exist some general methods. Essentially, the secret key
used to generate tokens can be shared among multiple agencies using secret shar-
ing techniques, and then secure multi-party computation (MPC) can be invoked
to generate (one-time) tokens for messages deemed illegal by the majority.

Witness-only Sigma protocols. When building the Sigma protocol for the
aforementioned relation R, partially composed of sub-relations using ∧eq opera-
tions, we introduce a novel property termed “witness-only” for Sigma protocols,
which may have independent interests. Roughly speaking, if the prover in Sigma
protocols can generate the commitment and response solely based on the input
witness, without necessitating the use of the statement, then we characterize
these Sigma protocols as witness-only. It’s noteworthy that numerous Sigma pro-
tocols inherently possess this witness-only property. Subsequently, we illustrate
the construction of a Sigma protocol for a relation composed of sub-relations
using an ∧eq operation, provided that there exists a witness-only Sigma protocol
for each sub-relation. Additional details are available in Appendix G.

Predicate-based primitive. Similar to the construction of [BGJP23], our
MAMF is constructed with polynomial-size sets of illegal messages. One might
prefer to constructing MAMF with sets of illegal messages expressed with predi-
cates, allowing the scheme to be applied to a broader range of scenarios. We leave
it as an open problem to construct a practical MAMF without using cumbersome
cryptographic tools (e.g., witness encryption or indistinguishability obfuscation).

1.3 Roadmap

Other related works are recalled in Appendix A. We recall some preliminaries
in Sec. 2. Then in Sec. 3, we present the primitive of MAMF and formalize its
security notions. Next, in Sec. 4 and in Sec. 5, we introduce primitives of USPCE
and dual HPS-KEMΣ, respectively. Taking USPCE and dual HPS-KEMΣ as
building blocks, we provide a framework of constructing MAMF in Sec. 6.

2 Preliminaries

Throughout this paper, let λ denote the security parameter. For any k ∈ N, let
[k] := {1, 2, · · · , k}. For a finite set S, we denote by |S| the number of elements

13

in S, and denote by a ← S the process of uniformly sampling a from S. For a
distribution X, we denote by a← X the process of sampling a from X. For any
probabilistic polynomial-time (PPT) algorithm Alg, let RS be the randomness
space of Alg. We write Alg(x; r) for the process of Alg on input x with inner
randomness r ∈ RS, and use y ← Alg(x) to denote the process of running Alg
on input x with r ← RS, and assigning y the result. We write negl(λ) to denote
a negligible function in λ and write poly(λ) to denote a polynomial.

For a polynomial-time relation R ⊂ Y × X , where Y is the statement space
and X is the witness space, we say that x is a witness for y if (y, x) ∈ R.

Due to space limitations, we have provided additional preliminaries in the
appendices. Specifically, cryptographic assumptions are reviewed in Appendix
B.1. Definitions of NIZK and Sigma protocols are revisited in Appendix B.2. The
definition of cuckoo hash is outlined in Appendix B.3. Furthermore, a summary
of set pre-constrained encryption is included in Appendix B.4.

3 Mild asymmetric message franking

In this section, we introduce a primitive known as mild asymmetric message
franking (MAMF), to establish mild content moderation for a messaging system,
and formally define its security notions.

3.1 MAMF algorithms

Formally, an MAMF schemeMAMF = (Setup,KGAg,KGJ,KGu,Frank,Verify,TKGen,
Judge,Forge,RForge, JForge) is a tuple of algorithms, encompassing four roles: a
sender, a receiver, a legislative agency, and a judge. The scheme is associated with
three public key spaces (for the legislative agency, the judge, and users, includ-
ing senders and receivers, respectively), three corresponding secret key spaces, a
message spaceM, a token space T K, and a signature space SG. Without loss of
generality, we assume that all public key inputs are in the corresponding public
key space, all secret key inputs are in the corresponding secret key space, all m
inputs are inM, all tk inputs are in T K, and all σ inputs are in SG.

The detailed descriptions of the algorithms are as follows.

• pp← Setup(λ): The setup algorithm takes the security parameter as input,
and outputs a global public parameter pp.

• (pkAg, skAg, apAg) ← KGAg(pp,S): The key generation algorithm KGAg takes
pp and a set S ⊆ M as input, and outputs a key pair (pkAg, skAg) for the
legislative agency and an auxiliary parameter apAg for the judge’s key gen-
eration.

• (pkJ, skJ) ← KGJ(pp, pkAg, apAg): The key generation algorithm KGJ takes
(pp, pkAg, apAg) as input, and outputs a key pair (pkJ, skJ) for the judge. We
assume that the well-formedness of the public key pkJ can be verified with
the assistance of apAg and S.

14

• (pk, sk) ← KGu(pp): The key generation algorithm KGu takes pp as input,
and outputs a key pair (pk, sk) for users. Below we usually use (pks, sks)
(resp., (pkr, skr)) to denote the sender’s (resp., the receiver’s) public/secret
key pair.

• σ ← Frank(pp, sks, pkr, pkAg, pkJ,m): The franking algorithm takes the pub-
lic parameter pp, a sender’s secret key sks, a receiver’s public key pkr, the
agency’s public key pkAg, the judge’s public key pkJ and a message m as
input, and outputs a signature σ.

• b ← Verify(pp, pks, skr, pkAg, pkJ,m, σ): The deterministic algorithm of the
verification of the receiver takes (pp, pks, skr, pkAg, pkJ), a message m and a
signature σ as input, and returns b ∈ {0, 1}, which indicates whether the
receiver accepts the signature or not.

• tk ← TKGen(pp, skAg, pkJ,m): The token generation algorithm, run by the
agency, takes (pp, skAg, pkJ) and a message m as input, and outputs a token
tk.

• b ← Judge(pp, pks, pkr, pkAg, skJ,m, σ, tk): The deterministic algorithm of
verification of the judge takes (pp, pks, pkr, pkAg, skJ), a message m, a sig-
nature σ and a token tk as input, and outputs a bit b ∈ {0, 1}. Note that,
when m ∈ S, the token tk can be ⊥.

• σ ← Forge(pp, pks, pkr, pkAg, pkJ,m): The universal forging algorithm, on in-
put (pp, pks, pkr, pkAg, pkJ) and a message m, returns a “forged” signature
σ.

• σ ← RForge(pp, pks, skr, pkAg, pkJ,m): The receiver compromise forging al-
gorithm takes (pp, pks, skr, pkAg, pkJ) and a message m as input, and returns
a “forged” signature σ.

• σ ← JForge(pp, pks, pkr, pkAg, skJ,m): The judge compromise forging algo-
rithm takes (pp, pks, pkr, pkAg, skJ) and a message m as input, and outputs
a “forged” signature σ.

Correctness. For any normal signature generated by Frank, the correctness
requires that (i) the receiver can call Verify to verify the signature successfully,
and (ii) the judge can invoke Judge to validate a report successfully once they
receive a valid report. The formal requirements are shown as follows.

Given any pp generated by Setup, any key pairs (pks, sks) and (pkr, skr) out-
put by KGu, any key pair (pkAg, skAg, apAg) for a set S ⊆ M output by KGAg

(where S is selected by some authority, e.g., the agency), and any key pair
(pkJ, skJ) output by KGJ (with (pp, pkAg, apAg) as input), we require that for
any message m ∈M and any σ ← Frank(pp, sks, pkr, pkAg, pkJ,m), it holds with
overwhelming probability that:

(1) Verify(pp, pks, skr, pkAg, pkJ,m, σ) = 1;
(2) if m ∈ S, then Judge(pp, pks, pkr, pkAg, skJ,m, σ, tk =⊥) = 1;
(3) if m ̸∈ S, then tk ← TKGen(pp, skAg, pkJ,m), and Judge(pp, pks, pkr, pkAg,

skJ,m, σ, tk) = 1.

Remark 1. For the sake of simplicity, we posit the existence of an additional key
verification algorithms WellFormu and a token verification algorithm WellFormtk.

15

The algorithm WellFormu takes the public parameter and the key pairs of the re-
ceiver (or sender) as input, producing a bit b that signifies the well-formedness of
the key pairs. The algorithm WellFormtk takes the public parameter, the judge’s
public key and the token as input, producing a bit b that signifies the well-
formedness of the token.

3.2 Security notions for MAMF

We now formalize specific security notions for MAMF, including unforgeability,
accountability, deniability, unframeability, untraceability, and confidentiality of
sets.

Unforgeability. One of the paramount security requirements in secure messag-
ing applications is the prevention of malicious impersonation. In essence, MAMF
must guarantee that successful impersonation is thwarted, contingent upon the
non-compromise of the respective individual’s secret key.

Definition 1 (Unforgeability). An MAMF scheme MAMF is unforgeable, if

for any set S ⊆M and any PPT adversary A, Advunforge
MAMF,S,A(λ) := Pr[Gunforge

MAMF,S,A(λ) =

1] ≤ negl(λ), where Gunforge
MAMF,S,A(λ) is shown in Fig. 2.

Accountability. Adhering to the terminology established in AMF [TGL+19],
we systematically formalize the security requirement pertaining to accountability
as receiver binding and sender binding. Concretely, MAMF is to ensure that (i)
no receivers can deceive the judge into accepting a message not genuinely sent by
the sender, and (ii) no sender can produce a signature acceptable to the receiver
while simultaneously rejected by the judge.

Now, we present the formal definitions as below.

Definition 2 (r-BIND). An MAMF scheme MAMF is receiver-binding, if for
any set S ⊆M and any PPT adversary A, Advr-bind

MAMF,S,A(λ) := Pr[Gr-bind
MAMF,S,A(λ) =

1] ≤ negl(λ), where Gr-bind
MAMF,S,A(λ) is shown in Fig. 2.

Definition 3 (s-BIND). An MAMF scheme MAMF is sender-binding, if for
any set S ⊆M and any PPT adversary A, Advs-bind

MAMF,S,A(λ) := Pr[Gs-bind
MAMF,S,A(λ) =

1] ≤ negl(λ), where Gs-bind
MAMF,S,A(λ) is shown in Fig. 2.

Deniability. To uphold deniability, MAMF needs to adhere to the secure prop-
erties of universal deniability, receiver compromise deniability, and judge com-
promise deniability.

Universal deniability indicates that any non-participating entity (i.e., lacking
access to the sender’s secret key, the receiver’s secret key, or the judge’s secret
key) can generate a signature, indistinguishable from honestly-created signatures
to other non-participating entities.

For receiver compromise deniability, the property requires that an entity
with access to the receiver’s secret key can generate a signature. This generated
signature should be indistinguishable from honestly-created signatures to other
entities with access to the corrupted secret key of the receiver.

16

Gunforge
MAMF,S,A(λ):

pp← Setup(λ), Qsig := ∅
(pkAg, skAg, apAg)← KGAg(pp, S)

(pkJ, skJ)← KGJ(pp, pkAg, apAg)

(pks, sks)← KGu(pp), (pkr, skr)← KGu(pp)

(m∗, σ∗)← AO(pp, pks, pkr, skAg, pkJ, skJ)
If (pkr,m

∗) ∈ Qsig: Return 0
Return Verify(pp, pks, skr, pkAg, pkJ,m

∗, σ∗)

OFrank(pk′r ,m
′):

σ′ ← Frank(pp, sks, pk
′
r , pkAg, pkJ,m

′)
Qsig ← Qsig ∪ {(pk′r ,m

′)}
Return σ′

OVerify(pk′s ,m
′, σ′):

Return Verify(pp, pk′s , skr, pkAg, pkJ,m
′, σ′)

Gr-bind
MAMF,S,A(λ):

pp← Setup(λ), Qsig := ∅
(pkAg, skAg, apAg)← KGAg(pp, S)

(pkJ, skJ)← KGJ(pp, pkAg, apAg), (pks, sks)← KGu(pp)

(pk∗r ,m
∗, σ∗, tk∗)← AO(pp, pks, skAg, pkJ)

If (pk∗r ,m
∗) ∈ Qsig: Return 0

Return Judge(pp, pks, pk
∗
r , pkAg, skJ,m

∗, σ∗, tk∗)

OFrank(pk′r ,m
′):

σ′ ← Frank(pp, sks, pk
′
r , pkAg, pkJ,m

′)
Qsig ← Qsig ∪ {(pk′r ,m

′)}
Return σ′

OJudge(pk′s , pk
′
r ,m

′, σ′, tk′):

Return Judge(pp, pk′s , pk
′
r , pkAg, skJ,m

′, σ′, tk′)

Gs-bind
MAMF,S,A(λ):

pp← Setup(λ), (pkAg, skAg, apAg)← KGAg(pp, S)

(pkJ, skJ)← KGJ(pp, pkAg, apAg), (pkr, skr)← KGu(pp)

(pk∗s ,m
∗, σ∗, tk∗)← AO(pp, pkr, skAg, pkJ)

If (m∗ ̸∈ S) ∧ (WellFormtk(pp, pkJ, tk
∗) = 0): Return 0

If (m∗ ∈ S) ∧ (tk∗ ̸= ⊥): Return 0
b1 ← Verify(pp, pk∗s , skr, pkAg, pkJ,m

∗, σ∗)
b2 ← Judge(pp, pk∗s , pkr, pkAg, skJ,m

∗, σ∗, tk∗)
Return b1 ∧ ¬b2

OVerify(pk′s ,m
′, σ′):

Return Verify(pp, pk′s , skr, pkAg, pkJ,m
′, σ′)

OJudge(pk′s , pk
′
r ,m

′, σ′, tk′):

Return Judge(pp, pk′s , pk
′
r , pkAg, skJ,m

′, σ′, tk′)

GUnivDen
MAMF,S,A(λ):

b← {0, 1}, pp← Setup(λ), (pkAg, skAg, apAg)← KGAg(pp, S)

(pkJ, skJ)← KGJ(pp, pkAg, apAg)

(pks, sks)← KGu(pp), (pkr, skr)← KGu(pp)

b′ ← AO(pp, sks, pkr, skAg, pkJ)
Return (b′ = b)

OF-F(m′):

σ0 ← Frank(pp, sks, pkr, pkAg, pkJ,m
′)

σ1 ← Forge(pp, pks, pkr, pkAg, pkJ,m
′)

Return σb

GReComDen
MAMF,S,A (λ):

b← {0, 1}, pp← Setup(λ), (pkAg, skAg, apAg)← KGAg(pp, S)

(pkJ, skJ)← KGJ(pp, pkAg, apAg), (pks, sks)← KGu(pp)

b′ ← AO(pp, sks, skAg, pkJ)
Return (b′ = b)

OF-RF(pk′r , sk
′
r ,m

′):

If WellFormu(pp, pk
′
r , sk

′
r) = 0: Return ⊥

σ0 ← Frank(pp, sks, pk
′
r , pkAg, pkJ,m

′)
σ1 ← RForge(pp, pks, sk

′
r , pkAg, pkJ,m

′)
Return σb

GJuComDen
MAMF,S,A (λ):

b← {0, 1}, pp← Setup(λ), (pkAg, skAg, apAg)← KGAg(pp, S)

(pkJ, skJ)← KGJ(pp, pkAg, apAg)

(pks, sks)← KGu(pp), (pkr, skr)← KGu(pp)

b′ ← AO(pp, sks, pkr, skAg, pkJ, skJ)
Return (b′ = b)

OF-JF(m′):

σ0 ← Frank(pp, sks, pkr, pkAg, pkJ,m
′)

σ1 ← JForge(pp, pks, pkr, pkAg, skJ,m
′)

Return σb

Fig. 2 Games for defining unforgeability, accountability and deniability of MAMF

As for judge compromise deniability, an entity with access to the judge’s
secret key should be capable of creating a signature. This signature should be
indistinguishable from honestly-generated signatures for other entities with ac-
cess to the judge’s secret key.

The formal definitions are presented as follows.

Definition 4 (UnivDen). An MAMF scheme MAMF is universally deniable,
if for any set S ⊆M and any PPT adversary A, AdvUnivDen

MAMF,S,A(λ) := |Pr[GUnivDen
MAMF,S,A(λ) =

1]− 1
2 | ≤ negl(λ), where GUnivDen

MAMF,S,A(λ) is shown in Fig. 2.

17

Definition 5 (ReComDen). An MAMF scheme MAMF is receiver-compromise
deniable, if for any set S ⊆M and any PPT adversary A, AdvReComDen

MAMF,S,A (λ) :=

|Pr[GReComDen
MAMF,S,A (λ) = 1]− 1

2 | ≤ negl(λ), where GReComDen
MAMF,S,A (λ) is shown in Fig. 2.

Definition 6 (JuComDen). An MAMF scheme MAMF is judge-compromise
deniable, if for any set S ⊆M and any PPT adversary A, AdvJuComDen

MAMF,S,A (λ) :=

|Pr[GJuComDen
MAMF,S,A (λ) = 1]− 1

2 | ≤ negl(λ), where GJuComDen
MAMF,S,A (λ) is shown in Fig. 2.

Unframeability. The unframeability of MAMF requires that no party, even
given a receiver’s secret key and the judge’s secret key, is able to produce a
signature acceptable to both the receiver and the judge.

The formal definition is as follows.

Definition 7 (Unframeability). An MAMF scheme MAMF is unframeable, if
for any set S ⊆M and any PPT adversary A, AdvUnframe

MAMF,S,A(λ) := |Pr[G
Unframe
MAMF,S,A(λ) =

1]− 1
2 | ≤ negl(λ), where GUnframe

MAMF,S,A(λ) is shown in Fig. 3.

Untraceability. Ensuring untraceability constrains the capabilities of both the
agency and the judge, thereby enhancing the assurance of sender privacy. Infor-
mally, untraceability implies an inability to discern the exact sender of a message.
This concept is formalized into two distinct notions: untraceability against judge
and untraceability against agency.
Untraceability against judge. When the message is not within the set S, untrace-
ability against judge ensures that an entity possessing the judge’s secret key can-
not identify the sender of the message, without any assistance from the agency.

Definition 8 (Untraceability against judge). An MAMF scheme MAMF
has untraceability against judge, if for any set S ⊆M and any PPT adversary
A, there is a simulator SimFrank, such that AdvUnt-J

MAMF,S,A(λ) := |Pr[G
Unt-J
MAMF,S,A(λ) =

1]− 1
2 | ≤ negl(λ), where GUnt-J

MAMF,S,A(λ) is shown in Fig. 3.

Untraceability against agency. We also articulated untraceability against agency.
In essence, a party with access to the agency’s secret key is unable to discern
the sender of a given message. The formal definition is articulated as follows.

Definition 9 (Untraceability against agency). An MAMF scheme MAMF
has untraceability against agency, if for any set S ⊆M and any PPT adversary
A, there is a simulator SimFrank, such that AdvUnt-Ag

MAMF,S,A(λ) := |Pr[G
Unt-Ag
MAMF,S,A(λ) =

1]− 1
2 | ≤ negl(λ), where GUnt-Ag

MAMF,S,A(λ) is shown in Fig. 3.

Confidentiality of sets. We also consider the confidentiality of sets. It means
the the public parameters and the public keys will not disclose any information
about the pre-defined set S. The formal definition is outlined as follows.

Definition 10 (Confidentiality of sets). An MAMF scheme MAMF supports
confidentiality of sets, if for any PPT adversary A = (A1,A2), Advconf-set

MAMF,A(λ) :=

|Pr[Gconf-set
MAMF,A(λ) = 1]− 1

2 | ≤ negl(λ), where Gconf-set
MAMF,A(λ) is shown in Fig. 3.

18

GUnframe
MAMF,S,A(λ):

pp← Setup(λ), Qsig := ∅, (pkAg, skAg, apAg)← KGAg(pp, S)

(pkJ, skJ)← KGJ(pp, pkAg, apAg)

(pks, sks)← KGu(pp), (pkr, skr)← KGu(pp)

(m∗, σ∗)← AO(pp, pks, skr, skAg, pkJ, skJ)
If m∗ ∈ Qsig: Return 0
tk∗ ← TKGen(pp, skAg, pkJ,m

∗)
b1 ← Verify(pp, pks, skr, pkAg, pkJ,m

∗, σ∗)
b2 ← Judge(pp, pks, pkr, pkAg, skJ,m

∗, σ∗, tk∗)
Return b1 ∧ b2

OFrank(m′):

σ′ ← Frank(pp, sks, pkr, pkAg, pkJ,m
′)

Qsig ← Qsig ∪ {m′}
Return σ′

GUnt-J
MAMF,S,A(λ):

b← {0, 1}, pp← Setup(λ), Qm := ∅
(pkAg, skAg, apAg)← KGAg(pp, S)

(pkJ, skJ)← KGJ(pp, pkAg, apAg), (pks, sks)← KGu(pp)

b′ ← AO(pp, pks, pkAg, pkJ, skJ)
Return (b′ = b)

OTKGen(m′):

If m′ ∈ Qm: Return ⊥
tk← TKGen(pp, skAg, pkJ,m

′), Qm ← Qm ∪ {m′}
Return tk

OCh(pk′r , sk
′
r ,m

′):

If WellFormu(pp, pk
′
r , sk

′
r) = 0: Return ⊥

If m′ ∈ S : Return ⊥
If m′ ∈ Qm: Return ⊥
Qm ← Qm ∪ {m′}
σ0 ← Frank(pp, sks, pk

′
r , pkAg, pkJ,m

′)
σ1 ← SimFrank(pp, pks, sk

′
r , pkAg, pkJ,m

′)
Return σb

GUnt-Ag
MAMF,S,A(λ):

b← {0, 1}, pp← Setup(λ), Qch := ∅
(pkAg, skAg, apAg)← KGAg(pp, S)

(pkJ, skJ)← KGJ(pp, pkAg, apAg), (pks, sks)← KGu(pp)

b′ ← AO(pp, pks, skAg, pkJ)
Return (b′ = b)

OJudge(pk′r ,m
′, σ′, tk′):

If (pk′r ,m
′) ∈ Qch: Return ⊥

Return Judge(pp, pks, pk
′
r , pkAg, skJ,m

′, σ′, tk′)

OCh(pk′r , sk
′
r ,m

′):

If WellFormu(pp, pk
′
r , sk

′
r) = 0: Return ⊥

σ0 ← Frank(pp, sks, pk
′
r , pkAg, pkJ,m

′)
σ1 ← SimFrank(pp, pks, sk

′
r , pkAg, skJ,m

′)
Qch ← Qch ∪ {(pk′r ,m

′)}
Return σb

Gconf-set
MAMF,A(λ):

b← {0, 1}, pp← Setup(λ)
(S0, S1, stA)← A1(pp) s.t (S0 ⊂M) ∧ (S1 ⊂M) ∧ (|S0| = |S1|)
(pkAg, skAg, apAg)← KGAg(pp, Sb), (pkJ, skJ)← KGJ(pp, pkAg, apAg)

b′ ← A2(pp, pkAg, pkJ, stA)
Return (b′ = b)

Fig. 3 Games for defining unframeability, untraceability, and confidentiality of sets of
MAMF

Remark 2. Unlike AMF [TGL+19], where receiver binding and sender binding
imply unforgeability, our notion differs. The unforgeability in [TGL+19] provides
an adversary access to a judge oracle, while ours directly provides the judge’s
secret key. The unforgeability in [TGL+19] cannot prevent the receiver from ac-
cepting a signature forged by the judge (as discussed in [TGL+19, Appendix B],
where signatures output by its JForge algorithm can be accepted by the receiver).
Our unforgeability ensures that the receiver will not accept a signature forged
by anyone else, including the agency and the judge, thus preventing deception.

In [TGL+19], the adversary in the judge compromise deniability game can
access to all secret keys (including the sender’s, the receiver’s and the judge’s). It
means that the signature output by JForge can be accept by the receiver, which
is unreasonable. In our model, the adversary only has access to the sender’s and
the judge’s secret keys but not to the receiver’s secret key. More importantly,

19

the definition of judge compromise deniability in [TGL+19] is contradictory to
unframeability. Our deniability model makes space for unframeability.

Our notions have some areas to be strengthened, e.g., strong unforgeability.
We believe the current definitions have grasped the key security requirements of
MAMF. Some enhancement definitions can be considered for future work.

4 Universal set pre-constrained encryption

In this section, we introduce a new primitive, universal set pre-constrained en-
cryption (USPCE).

Definition. Let U denote a universe of elements, andM denote a message space.
The universal set pre-constrained encryption USPCE contains five algorithms
(Setup,KG,Enc,TKGen,Dec) and the details are as follows.

• (pp, ap,msk)← Setup(λ, S): The setup algorithm, run by the authority, takes
as input a security parameter λ and a set S ⊆ U of size at most n, and
outputs a public parameter pp, a auxiliary parameter ap and a master secret
key msk.

• (pk, sk)← KG(pp, ap): The key generation algorithm is run by the users. It
takes (pp, ap) as input, and outputs a public key pk and a secret key sk. We
assume that the well-formedness of pk can be verified with the assistance of
ap and S.

• ct ← Enc(pp, pk, x,m): The encryption algorithm takes (pp, pk), an item
x ∈ U and a message m ∈M as input, and outputs a ciphertext ct.

• tk← TKGen(pp,msk, x): The token generation algorithm takes (pp,msk, x)
as input, and outputs a token tk for x.

• m/Sm ← Dec(pp, sk, ct, tk): The decryption algorithm takes (pp, sk, ct, tk)
as input, and outputs either a message m or a polynomial-size set Sm ⊂M.

Given a set S ⊆ U , for any pp and msk generated by Setup(λ, S), we define
a relation as follows:

Rct = {((pk, x, ct), (m, r)) : ct = Enc(pp, pk, x,m; r)}. (1)

We require that there is a witness-only Sigma protocol (please refer to the
definition of witness-only in Appendix G) for the relation Rct in Eq. (1).

It also satisfies the following properties.

Definition 11 (Correctness). An USPCE scheme USPCE is correct, if for
any λ ∈ N, any set S ⊂ U , and any m ∈M, it holds that

– when x ∈ S:

Pr

 (pp, ap,msk)← Setup(λ,S)
(pk, sk)← KG(pp, ap)
ct← Enc(pp, pk, x,m)

: m ∈ Sm = Dec(pp, sk, ct,⊥)

 = 1−negl(λ);

20

Gconf-au
USPCE,A,S(λ):

b← {0, 1}, (pp, ap,msk)← Setup(λ, S), (pk, sk)← KG(pp, ap)
(m0,m1, x

∗, stA)← A1(pp,msk, pk), ct← Enc(pp, pk, x∗,mb), b
′ ← A2(ct, stA)

Return (b′ = b)

Gconf-u
USPCE,A,S(λ):

b← {0, 1}, (pp, ap,msk)← Setup(λ, S), Qx := ∅, Ux := ∅
(pk, sk)← KG(pp, ap), (m0,m1, x

∗, stA)← AO
1 (pp, pk, sk)

If (x∗ ̸∈ U) ∨ (x∗ ∈ S) ∨ (x∗ ∈ Qx): Return ⊥
Ux ← Ux ∪ {x∗}, ct← Enc(pp, pk, x∗,mb), b

′ ← AO
2 (ct, stA)

Return (b′ = b)

OTKGen(x′):

If x′ ∈ Ux: Return ⊥
Qx ← Qx ∪ {x′}
Return TKGen(pp,msk, x′)

Gconf-set
USPCE,A(λ):

b← {0, 1}, (S0, S1, stA)← A1(λ) s.t (S0 ⊂ U) ∧ (S1 ⊂ U) ∧ (|S0| = |S1|)
(pp, ap,msk)← Setup(λ, Sb), (pk, sk)← KG(pp, ap), b′ ← A2(pp, pk, stA)
Return (b′ = b)

Fig. 4 Games Gconf-au
USPCE,A,S(λ), G

conf-u
USPCE,A,S(λ) and Gconf-set

USPCE,A(λ) for USPCE

– when x /∈ S:

Pr


(pp, ap,msk)← Setup(λ, S)
(pk, sk)← KG(pp, ap)
ct← Enc(pp, pk, x,m)
tk← TKGen(pp,msk, x)

: m = Dec(pp, sk, ct, tk)

 = 1− negl(λ).

Confidentiality against authority. Here, we address the matter of confidentiality
against the authority. In a nutshell, the authority cannot obtain meaningful
information about the message from a ciphertext.

Definition 12 (Confidentiality against authority). An USPCE scheme USPCE
has confidentiality against authority, if for any set S ⊆ U and any PPT adver-
sary A = (A1,A2), Advconf-au

USPCE,A,S(λ) := |Pr[G
conf-au
USPCE,A,S(λ) = 1]− 1

2 | ≤ negl(λ),

where Gconf-au
USPCE,A,S(λ) is shown in Fig. 4.

Confidentiality against users. We extend our considerations to confidentiality
against users. Informally, It is required that, without the token for an item
x ̸∈ S given by the authority, any user cannot obtain meaningful information
about the message from a ciphertext associated with x.

Definition 13 (Confidentiality against users). An USPCE scheme USPCE
has confidentiality against users, if for any set S ⊆ U and any PPT adversary
A = (A1,A2), Advconf-u

USPCE,A,S(λ) := |Pr[G
conf-u
USPCE,A,S(λ) = 1]− 1

2 | ≤ negl(λ), where

Gconf-u
USPCE,A,S(λ) is shown in Fig. 4.

Confidentiality of sets. Then, we delve into the concept of confidentiality of sets.
It is required that the public parameters and a user’s public key will not disclose
any information about the pre-defined set S.

Definition 14 (Confidentiality of sets). A USPCE scheme USPCE supports
confidentiality of sets, if for any PPT adversary A = (A1,A2), Advconf-set

USPCE,A(λ) :=

|Pr[Gconf-set
USPCE,A(λ) = 1]− 1

2 | ≤ negl(λ), where Gconf-set
USPCE,A(λ) is shown in Fig. 4.

21

Setup(λ, S):

(e,G,GT , g, p)← GenG(λ) �g is the generator of G with order p.

Choose hash functions H̃, H : U → G∗.

(ppCH, Tinit, ST)← CH
(rob)
λ .Setup(λ, n) �n = poly(λ) and |Tinit| = n′ = poly(n) = poly(λ).

�ppCH contains k random hash functions (Hj : U → [n′])j∈[k], Tinit is the hash table, ST is the stash.

(TS, ST)← CH
(rob)
λ .Insert(ppCH, Tinit, ST, S), α

′ ← Z∗
p, A

′ := gα
′
, s← Z∗

p, Y
′ := gs

Initialize two empty tables T̃ , T ′ with length n′.
For each i ∈ [n′]:

If TS[i] =⊥: T̃ [i]← G, T ′[i] := (T̃ [i])α
′

Else T̃ [i] := H̃(TS[i]), T
′[i] := (T̃ [i])α

′

Return (pp = (e,G,GT , g, p, H̃,H, Y
′, A′, ppCH), ap = T ′,msk = (T̃ , S, s))

KG(pp, ap): �n′ = |T |
α← Z∗

p, β ← Z∗
p, X := gβ , Y := (Y ′)β

For each i ∈ [n′]: T [i] := e(g, T ′[i])α

Return (pk = (T,X, Y), sk = (α, β))

Enc(pp, pk, x,m):

For each j ∈ [k]:

γj ← Z∗
p, Qj := e(A′, H̃(x))γj

Sj := (T [Hj(x)])
γj ·m

If e(X,Y ′) ̸= e(g, Y): Return ⊥
r ← Z∗

p, c := (gr, e(H(x), Y)r ·m)

Return ct = ((Qj , Sj)j∈[k], c)

TKGen(pp,msk, x):

(T̃ , S, s)← msk

Return tk := (H(x))s

Dec(pp, sk, ct, tk):

((Qj , Sj)j∈[k], c, x)← ct, (α, β)← sk
If tk ∈ G:

(U, V)← c

Return m := V/e(tkβ , U)
Else

For j ∈ [k]: mj := Sj ·Q−α
j

Return {m1, · · · ,mk}

Rct = {((pp, pk, x, (Qj , Sj)j∈[k], c = (U, V)), ((γj)j∈[k], r,m)) :

∧j∈[k] (Qj = e(A′, H̃(x))γj ∧ Sj = (T [Hj(x)])
γj ·m) ∧ (U = gr ∧ V = e(H(x), Y)r ·m)}

Fig. 5 A concrete USPCE scheme USPCE (M⊆ GT .)

Construction. Let CH
(rob)
λ = (Setup, Insert, Lookup) be an ϵ-robust cuckoo hash-

ing scheme outlined in Appendix B.3, of which the negligibility of ϵ is ensured.
More exactly, given the security parameter λ, the setup algorithm chooses k = λ
hash functions, the size of the hash table is n′ = 2 ·λ ·n, and the size of the stash
is 0. Let GenG be a group generation algorithm for bilinear maps, which takes the
security parameter as input and outputs the group description (e,G,GT , g, p).
Then, we provide a concrete USPCE scheme USPCE as shown in Fig. 5.

We show how to prove the relation Rct, and the concrete relation Rct is
presented in Fig. 5. We can prove the well-formedness of Sj and V using the
Sigma protocols in Appendix F, while proving the well-formedness of Qj and
U using Schnorr’s Sigma protocol [Sch89]. Furthermore, applying the “AND-
EQUALl” operations in Appendix G over these sigma protocols, we can obtain
a Sigma protocol for Rct.

Remark 3. We can construct the algorithm WellFormtk mentioned in Remark 1
in this way: if e(tk, g) ̸= e(H(x), Y ′), then return 0, otherwise return 1.

We analyze the correctness of USPCE as follows.
For any S ⊂ U , any (pp, ap,msk) ← Setup(λ,S), any (pk, sk) ← KG(pp, ap),

and any ct← Enc(pp, pk, x,m),

– when x ∈ S, the properties of cuckoo hashing guarantee that x is inserted
in one of locations (e.g., H1(x), . . . ,Hk(x)) in TS. Assuming x is located at

22

Hj(x) in the table, we obtain H̃(x) = T̃ [Hj(x)]. Hence,

Sj ·Q−αj = (T [Hj(x)])
γj ·m · e(A′, H̃(x))−αγj = (T [Hj(x)])

γj ·m · e(gα
′
, H̃(x))−αγj

= (T [Hj(x)])
γj ·m · e(g, (H̃(x))α

′
)−αγj = (T [Hj(x)])

γj ·m · e(g, (T̃ [Hj(x)])α
′
)−αγj

= (T [Hj(x)])
γj ·m · e(g, T ′[Hj(x)])−αγj = (T [Hj(x)])

γj ·m · (T [Hj(x)])−γj = m

Hence, it is affirmed that m ∈ Sm = {m1, · · · ,mk}, where k = λ is a
polynomial, indicating that the set Sm is polynomial.

– when x ̸∈ S, for tk← TKGen(pp,msk, x), we obtain

V/e(tkβ , U) = e(H(x), Y)r ·m/e((H(x))sβ , gr) = e(H(x), Y)r ·m/e(H(x), (gs)β)r

= e(H(x), Y)r ·m/e(H(x), (Y ′)β)r = e(H(x), Y)r ·m/e(H(x), Y)r = m

Security analysis. Now, we show that the USPCE in Fig. 5 satisfies the afore-
mentioned security requirements. Formally, we have the following theorem, the
proof of which is given in Appendix C.

Theorem 1. USPCE achieves confidentiality against authority, confidentiality
against users, and confidentiality of sets.

5 Dual HPS-KEMΣ

In this section, we introduce a new primitive called dual HPS-based KEM sup-
porting Sigma protocols (dual HPS-KEMΣ). We present a dual HPS-KEMΣ

scheme based on the DDH assumption. Similar to [LZH+23], our scheme can
also be extended to be based on the k-linear assumption [HK07,Sha07].

Definition.A dual HPS-KEMΣ scheme dHPS-KEMΣ = (KEMSetup,KG,CheckKey,
Encapc,Encap

∗
c ,Encapk,Decap, dEncapk, dDecap,SamEncK, dSamEncK,CheckCwel)

is a tuple of algorithms associated with a secret key space SK, an encapsulated
key space K, and a tag space T , where Encapc, Encapk and dEncapk have the
same randomness space RS. We use RS∗ to denote the randomness space of
Encap∗c .

• pp ← KEMSetup(λ): On input a security parameter λ, it outputs a public
parameter pp.

• (pk, sk) ← KG(pp): On input the public parameter pp, it outputs a pair of
public/secret keys (pk, sk).

• b ← CheckKey(pp, sk, pk): On input the public parameter pp, a secret key
sk and a public key pk, it outputs a bit b. Let SKpp,pk := {sk ∈ SK |
CheckKey(pp, sk, pk) = 1}.

• c ← Encapc(pp; r): On input the public parameter pp with inner random-
ness r ∈ RS, it outputs a well-formed ciphertext c. Let Cwell-f

pp := {c =
Encapc(pp; r) | r ∈ RS}.

• c← Encap∗c(pp; r
∗
c): On input the public parameter pp with inner randomness

r∗c ∈ RS
∗, it outputs a ciphertext c. Let C∗pp := {Encap

∗
c(pp; r

∗
c) | r∗c ∈ RS

∗}.
We require Cwell-f

pp ⊂ C∗pp.

23

• k ← Encapk(pp, pk; r): On input the public parameter pp and a public key
pk with inner randomness r ∈ RS, it outputs an encapsulated key k ∈ K.

• k′ ← Decap(pp, sk, c): On input the public parameter pp, a secret key sk and
a ciphertext c, and it outputs an encapsulated key k′ ∈ K.

• kd ← dEncapk(pp, pk, t; r): On input the public parameter pp, a public key
pk, and a tag t ∈ T with inner randomness r ∈ RS, it outputs an encapsu-
lated key k ∈ K.

• k′d ← dDecap(pp, sk, t, c): On input the public parameter pp, a secret key sk,
a tag t ∈ T and a ciphertext c, it outputs an encapsulated key k′d ∈ K.

• k ← SamEncK(pp; r∗k): On input the public parameter pp with inner ran-
domness r∗k ∈ RS

∗, it outputs an encapsulated key k ∈ K.
• kd ← dSamEncK(pp, t; r∗k): On input the public parameter pp and a tag t ∈ T
with inner randomness r∗k ∈ RS

∗, it outputs an encapsulated key kd ∈ K.
• b ← CheckCwel(pp, c, r∗c): On input the public parameter pp, a ciphertext c
and a random number r∗c ∈ RS

∗, it outputs a bit b.

Correctness requirements are as follows.

(1) For any pp generated by KEMSetup(λ), and any (pk, sk) output by KG(pp),
CheckKey(pp, sk, pk) = 1.

(2) For any pp generated by KEMSetup(λ), any (pk, sk) satisfying CheckKey(pp,
sk, pk) = 1, any t ∈ T , any randomness r ∈ RS and c = Encapc(pp; r), it
holds that Encapk(pp, sk; r) = Decap(pp, sk, c), and dEncapk(pp, pk, t; r) =
dDecap(pp, sk, t, c).

(3) For any pp generated by KEMSetup(λ), and any c generated with Encap∗c(pp; r
∗
c),

CheckCwel(pp, c, r∗c) = 1 if and only if c ∈ Cwell-f
pp .

For any pp generated by KEMSetup(λ), we define some relations as follows:

Rs = {(pk, sk) : CheckKey(pp, sk, pk) = 1},R∗
c = {(c, r∗c) : c = Encap∗c(pp; r

∗
c)}

Rc,k = {((c, k, pk), r) : (c = Encapc(pp; r)) ∧ (k = Encapk(pp, pk; r))}

Rd
c,k = {((c, kd, pk), (t, r)) : (c = Encapc(pp; r)) ∧ (kd = dEncapk(pp, pk, t; r))}
R∗

k = {(k, r∗k) : k = SamEncK(pp; r∗k)}

Rd∗
k = {(kd, (t, r∗k)) : kd = dSamEncK(pp, t; r∗k)}

(2)

We require that for each relation in Eq. (2), there is a Sigma protocol. Note
that for Rd

c,k and Rd∗
k , we further require a witness-only Sigma protocol (please

refer to the definition of witness-only in Appendix G).
We also require that dHPS-KEMΣ should satisfy the following properties.

Definition 15 (Universality). dHPS-KEMΣ is universal, if for any computa-
tionally unbounded adversary A, Advuniv

dHPS-KEMΣ,A(λ) := Pr[Guniv
dHPS-KEMΣ,A(λ) =

1] ≤ negl(λ), where Guniv
dHPS-KEMΣ,A(λ) is defined in Fig. 6.

Definition 16 (Extended universality). dHPS-KEMΣ is extended univer-
sal, if for any computationally unbounded adversary A, Advex-univ

dHPS-KEMΣ,A(λ) :=

Pr[Gex-univ
dHPS-KEMΣ,A(λ) = 1] ≤ negl(λ), where Gex-univ

dHPS-KEMΣ,A(λ) is defined in Fig. 6.

24

Guniv
dHPS-KEMΣ,A(λ):

pp← KEMSetup(λ), (pk, sk)← KG(pp)
(c, k, r∗c)← A(pp, pk)
s.t. ((c, r∗c) ∈ R

∗
c)∧(CheckCwel(pp, c, r

∗
c) = 0)

If k = Decap(pp, sk, c): Return 1
Else Return 0

GC-unexpl

dHPS-KEMΣ,A
(λ):

pp← KEMSetup(λ),
(c, r∗c)← A(pp) s.t. (c, r∗c) ∈ R

∗
c

If CheckCwel(pp, c, r∗c) = 1: Return 1
Else Return 0

Gex-K-unexpl

dHPS-KEMΣ,A
(λ):

pp← KEMSetup(λ), (pk, sk)← KG(pp)
(c, r∗c , kd, t, r

∗
k)← A(pp, pk, sk)

s.t. ((c, r∗c) ∈ R
∗
c) ∧ ((kd, (t, r

∗
k)) ∈ R

d∗
k)

If dDecap(pp, sk, t, c) = kd: Return 1
Else Return 0

Gex-univ
dHPS-KEMΣ,A(λ):

pp← KEMSetup(λ), (pk, sk)← KG(pp)
(c, k, r∗c , t)← A(pp, pk)

s.t. ((c, r∗c) ∈ R
∗
c)∧(CheckCwel(pp, c, r

∗
c) = 0)

If k = dDecap(pp, sk, t, c): Return 1
Else Return 0

GK-unexpl

dHPS-KEMΣ,A
(λ):

pp← KEMSetup(λ), (pk, sk)← KG(pp)
(c, r∗c , k, r

∗
k)← A(pp, pk, sk)

s.t. ((c, r∗c) ∈ R
∗
c) ∧ ((k, r∗k) ∈ R

∗
k)

If Decap(pp, sk, c) = k: Return 1
Else Return 0

Gsk-2pr

dHPS-KEMΣ,A
(λ):

pp← KEMSetup(λ), (pk, sk)← KG(pp)
sk′ ← A(pp, pk, sk)
If (sk′ ̸= sk) ∧ (CheckKey(pp, sk′, pk) = 1):

Return 1
Return 0

Gind
dHPS-KEMΣ,A(λ):

b← {0, 1}, pp← KEMSetup(λ), c0 ← Encapc(pp), c1 ← Encap∗c (pp), b
′ ← A(pp, cb)

Return (b′ = b)

Fig. 6 Games for dHPS-KEMΣ

Definition 17 (Ciphertext unexplainability). dHPS-KEMΣ is ciphertext-

unexplainable, if for any PPT adversary A, AdvC-unexpl
dHPS-KEMΣ,A(λ) := Pr[GC-unexpl

dHPS-KEMΣ,A(λ) =

1] ≤ negl(λ), where GC-unexpl
dHPS-KEMΣ,A(λ) is defined in Fig. 6.

Definition 18 (Key unexplainability). dHPS-KEMΣ is key-unexplainable, if

for any PPT adversary A, AdvK-unexpl
dHPS-KEMΣ,A(λ) := Pr[GK-unexpl

dHPS-KEMΣ,A(λ) = 1] ≤
negl(λ), where GK-unexpl

dHPS-KEMΣ,A(λ) is defined in Fig. 6.

Definition 19 (Extended key unexplainability). dHPS-KEMΣ is extended

key-unexplainable, if for any PPT adversary A, Advex-K-unexpl
dHPS-KEMΣ,A(λ) := Pr[Gex-K-unexpl

dHPS-KEMΣ,A(λ) =

1] ≤ negl(λ), where Gex-K-unexpl
dHPS-KEMΣ,A(λ) is defined in Fig. 6.

Definition 20 (Indistinguishability). dHPS-KEMΣ is indistinguishable, if
for any PPT adversary A, Advind

dHPS-KEMΣ,A(λ) := |Pr[Gind
dHPS-KEMΣ,A(λ) = 1] −

1
2 | ≤ negl(λ), where Gind

dHPS-KEMΣ,A(λ) is defined in Fig. 6.

Definition 21 (SK-2PR). dHPS-KEMΣ is SK-second-preimage resistant, if

for any PPT adversary A, Advsk-2pr
dHPS-KEMΣ,A(λ) := Pr[Gsk-2pr

dHPS-KEMΣ,A(λ) = 1] ≤
negl(λ), where Gsk-2pr

dHPS-KEMΣ,A(λ) is defined in Fig. 6.

Definition 22 (Smoothness). dHPS-KEMΣ is smooth, if for any fixed pp
generated by KEMSetup and any fixed pk generated by KG, ∆((c, k), (c, k′)) ≤
negl(λ), where c← Encap∗c(pp), k ← K, sk ← SKpp,pk and k′ = Decap(pp, sk, c).

25

KEMSetup(λ):

pp := (G, p, g1, g2)← G(λ)
Return pp

KG(pp):

(x1, x2)← (Z∗
p)

2, h := g
x1
1 g

x2
2

Return (pk = h, sk = (x1, x2))

CheckKey(pp, sk = (x1, x2), pk = h):

If (g
x1
1 g

x2
2 = h): Return 1

Else Return 0

Encapc(pp):

r ← Z∗
p

Return c := (u1 = gr1 , u2 = gr2)

Encap∗c (pp):

r∗c := (r, r′)← (Z∗
p)

2

Return c := (u1 = gr1 , u2 = gr
′

1)

Encapk(pp, pk = h):

r ← Z∗
p

Return k := hr

SamEncK(pp):

r∗k := (r, r′)← (Z∗
p)

2

Return k := gr1g
r′
2

dSamEncK(pp, t ∈ G):

r∗k := (r, r′)← (Z∗
p)

2

Return kd := gr1g
r′
2 · t

Decap(pp, sk = (x1, x2), c = (u1, u2)):

Return k′ := u
x1
1 u

x2
2

dEncapk(pp, pk = h, t ∈ G):

r ← Z∗
p

Return kd := hr · t

dDecap(pp, sk = (x1, x2), t, c = (u1, u2)):

Return k′d := u
x1
1 u

x2
2 · t

CheckCwel(pp, c = (u1, u2), r
∗
c = (r, r′)):

If (gr1 = u1) ∧ (gr2 = u2): Return 1
Return 0

Rs = {(pk, (x1, x2)) : pk = g
x1
1 g

x2
2 }

R∗
k = {(k, (r, r′)) : k = gr1g

r′
2 }

Rd∗
k = {(kd, (t, (r, r′))) : kd = gr1g

r′
2 · t}

Rc,k = {(((u1, u2), k, pk), r) : u1 = gr1 ∧ u2 = gr2 ∧ k = pkr}
R∗

c = {((u1, u2), (r, r
′)) : u1 = gr1 ∧ u2 = gr

′
1 }

Rd
c,k = {(((u1, u2), kd, pk), (t, r)) : u1 = gr1 ∧ u2 = gr2 ∧ kd = pkr · t}

Fig. 7 Algorithm descriptions of a concrete dHPS-KEMΣ. There are Sigma protocols for
relationsRs,Rc,k,R∗

c ,Rd
c,k,R∗

k andRd∗
k : Okamoto’s Sigma protocol [Oka95] forRs and

R∗
k, the Chaum-Pedersen protocol [CP92] for Rc,k, Schnorr’s Sigma protocol [Sch89]

forR∗
c , the Chaum-Pedersen protocol [CP92] and the Sigma protocol in Appendix F for

Rd
c,k (requiring “AND-EQUALl” operations proposed in Appendix G), and Okamoto’s

Sigma protocol [Oka95] and the Sigma protocol in Appendix F for Rd∗
k (the obtained

Sigma protocol is witness-only as discussed in Appendix G).

Definition 23 (Extended smoothness). dHPS-KEMΣ is extended smooth,
if for any fixed pp generated by KEMSetup and any fixed pk generated by KG,
∆((c, k, t), (c, k′, t)) ≤ negl(λ), where c ← Encap∗c(pp), k ← K, t ← T , sk ←
SKpp,pk and k′ = dDecap(pp, sk, t, c).

Definition 24 (Special extended smoothness). dHPS-KEMΣ is special ex-
tended smooth, if for any fixed pp generated by KEMSetup and any fixed (pk, sk)
generated by KG, ∆((c, k), (c, k′)) ≤ negl(λ), where c ← Encap∗c(pp), k ← K,
t← T and k′ = dDecap(pp, sk, t, c).

Definition 25 (Uniformity of sampled keys). dHPS-KEMΣ has uniformity
of sampled keys, if for any pp generated by KEMSetup and any t ∈ T , it holds
that ∆(k, k′) = 0 and ∆(k, k′′) = 0, where k ← K, k′ ← SamEncK(pp) and
k′′ ← dSamEncK(pp, t).

Construction. Here, we present a concrete construction of dual HPS-KEMΣ,
which satisfies all the aforementioned security properties. Let G be a group gen-
eration algorithm, taking λ as input and outputting (G, p, g1, g2), where G is a
prime-order group, p is the order of G, and g1, g2 are two random generators of
G. Our construction dHPS-KEMΣ is shown in Fig. 7.

It is clear that the construction in Fig. 7 satisfies correctness. The relations
Rs, Rc,k, R∗c , Rd

c,k, R∗k and Rd∗
k are presented in Fig. 7.

26

Remark 4. The algorithm WellFormu mentioned in Remark 1 can be built in this
way: given sk = (x1, x2), if pk ̸= gx1

1 gx2
2 , then return 0, otherwise return 1.

For security properties, we present the following theorem, the proof of which
is given in Appendix D.

Theorem 2. The above scheme dHPS-KEMΣ achieves universality, extended
universality, smoothness, extended smoothness, special extended smoothness, and
uniformity of sampled keys. Furthermore,
– dHPS-KEMΣ is ciphertext-unexplainable, key-unexplainable and extended key-

unexplainable under the DL assumption.
– dHPS-KEMΣ is indistinguishable under the DDH assumption.
– dHPS-KEMΣ is SK-second-preimage resistant under the DL assumption.

6 General construction of MAMF

In this section, we present a framework for constructing MAMF using USPCE
and dual HPS-KEMΣ.

Let dHPS-KEMΣ = (KEMSetup,KG,CheckKey,Encapc,Encap
∗
c ,Encapk,Decap,

dEncapk, dDecap,SamEncK, dSamEncK,CheckCwel) be a dual HPS-KEMΣ scheme,
where RS denotes the randomness space of Encapc, Encapk and dEncapk, RS∗
denotes the randomness space of Encap∗c , SamEncK and dSamEncK, T denotes
the tag space, and K denotes the encapsulated key space.

Let USPCE = (Setup,KG,Enc,TKGen,Dec) be a USPEC scheme with a uni-
verse of elements U , a token space T K and a message spaceM.

Our generic MAMF schemeMAMF = (Setup,KGAg,KGJ,KGu,Frank,Verify,TKGen,
Judge,Forge,RForge, JForge) is presented in Fig. 8. It’s worth noting that the
message space of MAMFM = USPCE.U and USPCE.M = dHPS-KEMΣ.T .

We mainly introduce the algorithm Frank. It calls Encapc, Encapk, and dEncapk
of dHPS-KEMΣ to generate a well-formed ciphertext and encapsulated keys, re-
spectively. Subsequently, it invokes Enc of USPCE to encrypt the tag used for the
generation of the encapsulated key of the judge. Afterward, it utilizes a NIZK
proof algorithm NIZKR.Prove to create a NIZK proof. The relation R is defined
as follows (which is also introduced in Fig. 1):

R = {((pp, pks, pkAg, pkJ, c, kr, kJ, ct,m), (sks, t, r, r
∗
c , r

∗
k , rUSPCE)) :

((pks, sks) ∈ Rs ∧ (((c, kJ, pkJ), (t , r)) ∈ Rd
c,k ∧eq ((pkUSPCE,m, ct), (t , rUSPCE)) ∈ Rct))

∨((c, r∗c) ∈ R∗
c ∧ (kr, r

∗
k) ∈ R∗

k ∧ ((pkUSPCE,m, ct), (t, rUSPCE)) ∈ Rct)

∨((c, r∗c) ∈ R∗
c ∧ ((kJ, (t , r∗k)) ∈ Rd∗

k ∧eq ((pkUSPCE,m, ct), (t , rUSPCE)) ∈ Rct))},

For the NIZK proof system NIZKR = (Prove,Verify) utilized in Fig. 8, we con-
struct it as follows. It’s noteworthy that for every sub-relation (i.e., Rs, Rd

c,k,

R∗c , R∗k, Rd∗
k and Rct), the dual HPS-KEMΣ scheme and USPCE ensure the ex-

istence of a Sigma protocol. Utilizing the technique of trivially combining Sigma
protocols for “AND/OR” operations [BS20, Sec. 19.7] and the “AND-EQUALl”
operations (introduced in Appendix G), a new Sigma protocol for the relation

27

Setup(λ): Return pp := ppKEM ← dHPS-KEMΣ.KEMSetup(λ)

KGAg(pp, S): Return (pkAg, apAg, skAg) := (ppUSPCE, apUSPCE,mskUSPCE)← USPCE.Setup(λ, S)

KGJ(pp, pkAg, apAg):

(pk′J, sk
′
J)← dHPS-KEMΣ.KG(ppKEM), (pkUSPCE, skUSPCE)← USPCE.KG(ppUSPCE, apUSPCE)

Return (pkJ = (pkUSPCE, pk
′
J), skJ = (skUSPCE, sk

′
J))

KGu(pp): Return (pk, sk)← dHPS-KEMΣ.KG(ppKEM)

Frank(pp, sks, pkr, pkAg, pkJ,m):

(pkUSPCE, pk
′
J)← pkJ, r ← dHPS-KEMΣ.RS, c← dHPS-KEMΣ.Encapc(ppKEM; r), kr ← dHPS-KEMΣ.Encapk(ppKEM, pkr; r)

t← dHPS-KEMΣ.T , kJ ← dHPS-KEMΣ.dEncapk(ppKEM, pk
′
J, t; r), rUSPCE ← USPCE.RS, ct ← USPCE.Enc(pkUSPCE,m, t; rUSPCE)

x← (sks, t, r,⊥,⊥, rUSPCE), y ← (pp, pks, pkAg, pkJ, c, kr, kJ, ct,m), π ← NIZKR.Prove(pkr, y, x)
Return σ ← (π, c, kr, kJ, ct)

Verify(pp, pks, skr, pkAg, pkJ,m, σ):

(π, c, kr, kJ, ct)← σ
y ← (pp, pks, pkAg, pkJ, c, kr, kJ, ct,m)

If NIZKR.Verify(pkr, π, y) = 0:
Return 0

If dHPS-KEMΣ.Decap(ppKEM, skr, c) = kr:
Return 1

Return 0

TKGen(pp, skAg, pkJ,m):

tk← USPCE.TKGen(ppUSPCE,mskUSPCE,m)
Return tk

Judge(pp, pks, pkr, pkAg, skJ,m, σ, tk):

(skUSPCE, sk
′
J)← skJ, (π, c, kr, kJ, ct)← σ, y ← (pp, pks, pkAg, pkJ, c, kr, kJ, ct,m)

If NIZKR.Verify(pkr, π, y) = 0: Return 0
If tk ̸= ⊥:
t′ ← USPCE.Dec(ppUSPCE, skUSPCE, ct, tk)

If dHPS-KEMΣ.dDecap(ppKEM, sk
′
J, t

′, c) = kJ: Return 1
Return 0

If tk = ⊥:
St ← USPCE.Dec(ppUSPCE, skUSPCE, ct,⊥)
For t′ ∈ St:

If dHPS-KEMΣ.dDecap(ppKEM, sk
′
J, t

′, c) = kJ: Return 1
Return 0

Forge(pp, pks, pkr, pkAg, pkJ,m):

(pkUSPCE, pk
′
J)← pkJ, r

∗
c ← dHPS-KEMΣ.RS∗, c← dHPS-KEMΣ.Encap∗c (ppKEM; r∗c), r

∗
k ← dHPS-KEMΣ.RS∗

kr ← dHPS-KEMΣ.SamEncK(pp; r∗k), t← dHPS-KEMΣ.T , kJ ← dHPS-KEMΣ.K
rUSPCE ← USPCE.RS, ct ← USPCE.Enc(pkUSPCE,m, t; rUSPCE)

x← (⊥, t,⊥, r∗c , r
∗
k , rUSPCE), y ← (pp, pks, pkAg, pkJ, c, kr, kJ, ct,m), π ← NIZKR.Prove(pkr, y, x)

Return σ ← (π, c, kr, kJ, ct)

RForge(pp, pks, skr, pkAg, pkJ,m):

(pkUSPCE, pk
′
J)← pkJ, r

∗
c ← dHPS-KEMΣ.RS∗, c← dHPS-KEMΣ.Encap∗c (ppKEM; r∗c), kr ← dHPS-KEMΣ.Decap(ppKEM, skr, c)

t← dHPS-KEMΣ.T , r∗k ← dHPS-KEMΣ.RS∗, kJ ← dHPS-KEMΣ.dSamEncK(pp, t; r∗k)
rUSPCE ← USPCE.RS, ct ← USPCE.Enc(pkUSPCE,m, t; rUSPCE)

x← (⊥, t,⊥, r∗c , r
∗
k , rUSPCE), y ← (pp, pks, pkAg, pkJ, c, kr, kJ, ct,m), π ← NIZKR.Prove(pkr, y, x)

Return σ ← (π, c, kr, kJ, ct)

JForge(pp, pks, pkr, pkAg, skJ,m):

(pkUSPCE, pk
′
J)← pkJ, (skUSPCE, sk

′
J)← skJ, r

∗
c ← dHPS-KEMΣ.RS∗, c← dHPS-KEMΣ.Encap∗c (ppKEM; r∗c)

r∗k ← dHPS-KEMΣ.RS∗, kr ← dHPS-KEMΣ.SamEncK(pp; r∗k), t← dHPS-KEMΣ.T , kJ ← dHPS-KEMΣ.dDecap(ppKEM, sk
′
J, t, c)

rUSPCE ← USPCE.RS, ct ← USPCE.Enc(pkUSPCE,m, t; rUSPCE)

x← (⊥, t,⊥, r∗c , r
∗
k , rUSPCE), y ← (pp, pks, pkAg, pkJ, c, kr, kJ, ct,m), π ← NIZKR.Prove(pkr, y, x)

Return σ ← (π, c, kr, kJ, ct)

Fig. 8 Algorithms of MAMF

R is obtained (implied by [BS20, Sec. 19.7] and Theorem 6 in Appendix G).
Subsequently, employing the Fiat-Shamir transform, we derive a NIZK proof
system NIZKR = (Prove,Verify) for R in the random oracle model.

Correctness analysis. For any signature σ ← Frank(pp, sks, pkr, pkAg, pkJ,m),
we parse σ = (π, c, kr, kJ, ct), and let y := (pp, pks, pkAg, pkJ, c, kr, kJ, ct,m).

28

We first analyze the output of Verify as follows: (i) the correctness of NIZKR

guarantees that NIZKR.Verify(kr, π, y) = 1; (ii) the correctness of dHPS-KEMΣ

guarantees that Decap(pp, skr, c) = kr. So, Verify will return 1.

Next, we analyze the output of Judge as follows: (i) the correctness of NIZKR

guarantees that NIZKR.Verify(kr, π, y) = 1; (ii) the correctness of USPCE guaran-
tees that t = USPCE.Dec(ppUSPCE, skUSPCE, ct, tk), where ct ← USPCE.Enc(pkUSPCE,
m, t; rUSPCE); (iii) the correctness of dHPS-KEM

Σ guarantees that Decap(pp, sk′J, t,
c) = kJ. Therefore, Judge will also return 1.

In fact, the second point (ii) of the correctness of Judge should be divided into
two cases as the definition of correctness in Sec. 3. It can be trivially guaranteed
by the correctness of USPCE, so we omit the details here.

Security analysis. We have the following theorem, the proof of which is placed
in Appendix E due to space limitations.

Theorem 3. If the USPCE scheme USPCE satisfies the properties defined in
Sec. 4, the dual HPS-KEMΣ scheme dHPS-KEMΣ satisfies the properties defined
in Sec. 5, and NIZKR = (Prove,Verify) is a Fiat-Shamir NIZK proof system for
R, then our scheme MAMF achieves the properties defined in Sec. 3.2.

Concrete construction and improvements. Plugging the concrete USPCE
in Sec. 4 and the concrete dual HPS-KEMΣ in Sec. 5 into our framework, we
obtain a concrete MAMF scheme. Notably, our concrete USPCE is based on the
DBDH assumption, featuring a bilinear map e : G×G→ GT , and our concrete
dual HPS-KEMΣ is based on the DDH assumption. To integrate them into our
framework, we require that the concrete dual HPS-KEMΣ is built over GT .

In Appendix H, we present some improvements on the concrete MAMF. Be-
cause of the algebraic structure of our USPCE and dual HPS-KEMΣ, there exist
Sigma protocols proving the well-formedness of the USPCE ciphertext and of
the encapsulated key for the judge simultaneously. Therefore, we let the frank-
ing algorithm directly call the encryption algorithm of USPCE to encrypt the
encapsulated key for the judge, instead of the tag t, and then change the rela-
tion R accordingly. Furthermore, by proving the same statements in different
sub-relations simultaneously, we propose an enhancement to the Sigma protocol
for the relation R. As a result, it reduces about 2/3 of the space overhead for
the response of the Sigma protocol, which implies a smaller signature size. More
exact comparison can be found in Table 1 in Appendix H.

In our MAMF scheme, if the legislative agency has provided tokens for some
messages, then the judge possesses the ability to identify all senders of these
messages. However, it may not be suitable for all scenarios, as discussed in In-
troduction. We propose a solution in Appendix I, empowering the legislative
agency to generate a one-time token for a specific MAMF signature and a spe-
cific message, such that the judge can carry out content moderation for that
specific signature and specific message.

29

References

AAB+15. Harold Abelson, Ross J. Anderson, Steven M. Bellovin, Josh Benaloh,
Matt Blaze, Whitfield Diffie, John Gilmore, Matthew Green, Susan Lan-
dau, Peter G. Neumann, Ronald L. Rivest, Jeffrey I. Schiller, Bruce
Schneier, Michael A. Specter, and Daniel J. Weitzner. Keys under door-
mats: mandating insecurity by requiring government access to all data
and communications. J. Cybersecur., 1(1):69–79, 2015.

AC20. Thomas Attema and Ronald Cramer. Compressed-protocol theory and
practical application to plug & play secure algorithmics. In CRYPTO
2020, pages 513–543. Springer, 2020.

AJJM22. Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Mala-
volta. Pre-constrained encryption. In ITCS 2022. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2022.

BBM+21. Abhishek Bhowmick, Dan Boneh, Steve Myers, Kunal Talwar, and Karl
Tarbe. The apple psi system. Apple, Inc., Tech. Rep, 2021.

BBS+15. Adam Bates, Kevin RB Butler, Micah Sherr, Clay Shields, Patrick
Traynor, and Dan Wallach. Accountable wiretapping–or–i know they can
hear you now. J. Comput. Secur., 23(2):167–195, 2015.

BGJP23. James Bartusek, Sanjam Garg, Abhishek Jain, and Guru-Vamsi
Policharla. End-to-end secure messaging with traceability only for ille-
gal content. In EUROCRYPT 2023, pages 35–66. Springer, 2023.

BS20. Dan Boneh and Victor Shoup. A graduate course in applied cryptography.
Draft 0.5, 2020.

CD98. Ronald Cramer and Ivan Damg̊ard. Zero-knowledge proofs for finite field
arithmetic, or: Can zero-knowledge be for free? In CRYPTO 1998, pages
424–441. Springer, 1998.

CL06. Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In
CRYPTO 2006, pages 78–96. Springer, 2006.

CP92. David Chaum and Torben Pryds Pedersen. Wallet databases with ob-
servers. In CRYPTO 1992, pages 89–105. Springer, 1992.

CS97. Jan Camenisch and Markus Stadler. Efficient group signature schemes for
large groups. In CRYPTO 1997, pages 410–424. Springer, 1997.

CT18. Long Chen and Qiang Tang. People who live in glass houses should not
throw stones: Targeted opening message franking schemes. Cryptology
ePrint Archive, Report 2018/994, 2018.

DB96. Dorothy E Denning and Dennis K Branstad. A taxonomy for key escrow
encryption systems. Commun. ACM, 39(3):34–40, 1996.

DGRW18. Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage.
Fast message franking: From invisible salamanders to encryptment. In
CRYPTO 2018, pages 155–186. Springer, 2018.

Fac16a. Facebook. Facebook messenger app. 2016. https://www.messenger.com/.
Fac16b. Facebook. Messenger secret conversations technical whitepaper.

2016. https://fbnewsroomus.files.wordpress.com/2016/07/secret_

conversations_whitepaper-1.pdf.
FBI. FBI. Going dark. https://www.fbi.gov/services/

operational-technology/going-dark, accessed in January 2024.
FKMQ+23. Valerie Fetzer, Michael Klooß, Jörn Müller-Quade, Markus Raiber, and

Andy Rupp. Universally composable auditable surveillance. In ASI-
ACRYPT 2023, pages 453–487. Springer, 2023.

30

https://www.messenger.com/
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://www.fbi.gov/services/operational-technology/going-dark
https://www.fbi.gov/services/operational-technology/going-dark

FKP23. Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo commit-
ments: registration-based encryption and key-value map commitments for
large spaces. In ASIACRYPT 2023, pages 166–200. Springer, 2023.

FPS+18. Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Goldwasser, and
Daniel Weitzner. Practical accountability of secret processes. In USENIX
Security 2018, pages 657–674, 2018.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO 1986, pages 186–194.
Springer, 1986.

GGHAK22. Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and Gabriel
Kaptchuk. Stacking Sigmas: A Framework to Compose Σ-Protocols for
Disjunctions. In EUROCRYPT 2022, pages 458–487. Springer, 2022.

GKP+13. Shafi Goldwasser, Yael Tauman Kalai, Raluca Ada Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. How to run turing machines on en-
crypted data. In CRYPTO 2013, pages 536–553. Springer, 2013.

GKVL21. Matthew Green, Gabriel Kaptchuk, and Gijs Van Laer. Abuse resistant
law enforcement access systems. In EUROCRYPT 2021, pages 553–583.
Springer, 2021.

GLR17. Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via
committing authenticated encryption. In CRYPTO 2017, pages 66–97.
Springer, 2017.

GP17. Shafi Goldwasser and Sunoo Park. Public accountability vs. secret laws:
Can they coexist? A cryptographic proposal. In Proceedings of the 2017
on Workshop on Privacy in the Electronic Society, pages 99–110, 2017.

GQ88. Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-
based signature scheme resulting from zero-knowledge. In CRYPTO 1988,
pages 216–231. Springer, 1988.

HK07. Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened
key encapsulation. In CRYPTO 2007, pages 553–571. Springer, 2007.

IAV22. Rawane Issa, Nicolas Alhaddad, and Mayank Varia. Hecate: Abuse re-
porting in secure messengers with sealed sender. In USENIX Security
2022, pages 2335–2352, 2022.

KFB14. Joshua Kroll, Edward Felten, and Dan Boneh. Secure protocols for
accountable warrant execution. See http: // www. cs. princeton. edu/

felten/ warrant-paper. pdf , 2014.
Kho13. Megha Khosla. Balls into bins made faster. In ESA 2013, pages 601–612,

2013.
KL95. Joe Kilian and Tom Leighton. Fair cryptosystems, revisited: A rigorous

approach to key-escrow. In CRYPTO 1995, pages 208–221. Springer, 1995.
KMW09. Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust hash-

ing: Cuckoo hashing with a stash. SIAM J. Comput., 39(4):1543–1561,
2009.

KZW+18. Joshua A Kroll, Joe Zimmerman, David J Wu, Valeria Nikolaenko, Ed-
ward W Felten, and Dan Boneh. Accountable cryptographic access con-
trol. In Workshop, CRYPTO, 2018.

LRC14. Jia Liu, Mark D Ryan, and Liqun Chen. Balancing societal security and
individual privacy: Accountable escrow system. In CSF 2014, pages 427–
440. IEEE, 2014.

LV18. Iraklis Leontiadis and Serge Vaudenay. Private message franking with
after opening privacy. Cryptology ePrint Archive, Report 2018/938, 2018.
https://eprint.iacr.org/2018/938.

31

http://www.cs.princeton.edu/felten/warrant-paper.pdf
http://www.cs.princeton.edu/felten/warrant-paper.pdf
https://eprint.iacr.org/2018/938

LZH+23. Junzuo Lai, Gongxian Zeng, Zhengan Huang, Siu Ming Yiu, Xin Mu,
and Jian Weng. Asymmetric group message franking: Definitions and
constructions. In EUROCRYPT 2023, pages 67–97. Springer, 2023.

Oka95. Tatsuaki Okamoto. An efficient divisible electronic cash scheme. In
CRYPTO 1995, pages 438–451. Springer, 1995.

PEB21. Charlotte Peale, Saba Eskandarian, and Dan Boneh. Secure complaint-
enabled source-tracking for encrypted messaging. In CCS 2021, page
1484–1506, 2021.

PR04. Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algo-
rithms, 51(2):122–144, 2004.

PVMB19. Gaurav Panwar, Roopa Vishwanathan, Satyajayant Misra, and Austin
Bos. Sampl: Scalable auditability of monitoring processes using public
ledgers. In CCS 2019, pages 2249–2266, 2019.

Sav18. Stefan Savage. Lawful device access without mass surveillance risk: A
technical design discussion. In CCS 2018, pages 1761–1774, 2018.

Sca19. Alessandra Scafuro. Break-glass encryption. In PKC 2019, pages 34–62.
Springer, 2019.

Sch89. Claus-Peter Schnorr. Efficient identification and signatures for smart
cards. In CRYPTO 1989, pages 239–252. Springer, 1989.

Sha07. Hovav Shacham. A Cramer-Shoup Encryption Scheme from the Linear
Assumption and from Progressively Weaker Linear Variants. Cryptology
ePrint Archive, Report 2007/074, 2007.

SSW19. Sacha Servan-Schreiber and Archer Wheeler. Judge, jury & encryp-
tioner: Exceptional access with a fixed social cost. arXiv preprint
arXiv:1912.05620, 2019.

Tar18. Jamie Tarabay. Australian government passes contentious encryption law.
The New York Times, 2018.

TGL+19. Nirvan Tyagi, Paul Grubbs, Julia Len, Ian Miers, and Thomas Ristenpart.
Asymmetric message franking: Content moderation for metadata-private
end-to-end encryption. In CRYPTO 2019, pages 222–250. Springer, 2019.

TMR19. Nirvan Tyagi, Ian Miers, and Thomas Ristenpart. Traceback for end-to-
end encrypted messaging. In CCS 2019, pages 413–430, 2019.

Wal22. Stefan Walzer. Insertion time of random walk cuckoo hashing below the
peeling threshold. In ESA 2022, pages 87:1–87:11, 2022.

WV18. Charles Wright and Mayank Varia. Crypto crumple zones: Enabling lim-
ited access without mass surveillance. In EuroS&P 2018, pages 288–306.
IEEE, 2018.

Yeo23. Kevin Yeo. Cuckoo hashing in cryptography: Optimal parameters, robust-
ness and applications. In CRYPTO 2023, pages 197–230, 2023.

YY98. Adam Young and Moti Yung. Auto-recoverable auto-certifiable cryptosys-
tems. In EUROCRYPT 1998, pages 17–31. Springer, 1998.

Appendix

A Other related works

Here, we revisit some other related works.

32

Message franking. The concept of message franking was initially introduced by
Facebook [Fac16a,Fac16b]. They are two kinds of message franking. One is sym-
metric message franking (SMF) [GLR17,DGRW18,LV18,CT18], using symmetric-
key encryption. As a result, the moderator is the platform. Another one is
asymmetric message franking (AMF) [TGL+19], which is firstly formalized in
[TGL+19] for the E2E scenarios. Then Lai et al. proposed a definition and con-
struction of asymmetric group message franking (AGMF) [LZH+23] based on
HPS-KEMΣ. However, these schemes predominantly emphasize source tracing
and do not explicitly consider abuse resistance and retrospective content mod-
eration.
Traceback Systems. There are some works [TMR19,PEB21,IAV22], extending
the reach of message franking, focusing on “traceback” mechanisms. For exam-
ple, the work [TMR19] allows to reveal a chain of forwarded messages (path
traceback) or the entire forwarding tree (tree traceback).
Set pre-constrained encryption. In [AJJM22], Ananth et al. introduce the con-
cept of pre-constrained encryption (PCE), where the owner of the master se-
cret key does not possess “full” decryption power. Instead, its decryption ca-
pabilities are constrained in a pre-specified manner during the system setup.
In [BGJP23], Bartusek et al. aim to constrain the decryption power with re-
spect to a set, thereby defining and constructing set pre-constrained encryption
(SPCE) schemes. Their construction builds upon the recent Apple PSI protocol
[BBM+21]. However, as discussed earlier, their SPCE definition cannot meet the
requirements of our MAMF.
Key escrow and accountable access. Since the 1990s, various papers [KL95,YY98,DB96],
have explored different forms of key escrow mechanisms in diverse domains.
However, such schemes are vulnerable to potential abuse and mass surveil-
lance. In 2018, [Sav18] addressed lawful device access while safeguarding against
mass surveillance through physical means. Yet, extending these countermeasures
to messaging or telephony software presents notable challenges. Over the last
decade, academic attention also focuses on accountability or auditable logs for
surveillance actions [LRC14,BBS+15,KFB14,KZW+18,GP17,FPS+18,WV18,SSW19,PVMB19,FKMQ+23].
For example, Frankle et al. [FPS+18] employed ledgers for accountability in
search procedures, though the method cannot be applied to E2E setting. There
are also some unconventional proposals [WV18,Sca19]. Wright and Varia [WV18]
proposed a construction utilizing cryptographic puzzles for limited access, but
with a high monetary cost.

B Preliminaries: Cryptographic assumptions, NIZK,
Sigma protocols, cuckoo hashing and SPCE

B.1 Cryptographic assumptions

Let G be a cyclic group of prime order p and g be the generator of G. Let
(G1,GT) be a bilinear groups of prime order p with an efficiently computable
pairing e : G1 × G1 → GT , and let h be a generator of G1. Let GenG1 be a

33

group generation algorithm for common cyclic groups, which takes the security
parameter as input and outputs the group description (G, g, p). Let GenG2 be a
group generation algorithm for bilinear maps, which takes the security parameter
as input and outputs the group description (e,G1,GT , g, p).

Definition 26. (The DL assumption). We say that the discrete logarithm
(DL) assumption holds for G, if for any PPT adversary A, Advdl

G,A(λ) :=

Pr[Gdl
G,A(λ) = 1] is negligible, where Gdl

G,A(λ) is shown in Fig. 9.

Definition 27. (The DDH assumption). We say that the decisional Diffie-
Hellman (DDH) assumption holds for G, if for any PPT adversary D, Advddh

G,D(λ) :=

|Pr[Gddh
G,D(λ) = 1]− 1

2 | is negligible, where Gddh
G,D(λ) is in Fig. 9.

Definition 28. (The DBDH assumption). We say that the decisional Bi-
linear Diffie-Hellman (DBDH) assumption holds for (G1,GT), if for any PPT
adversary D, Advdbdh

G1,GT
(D) := |Pr[Gdbdh

G1,GT ,D(λ) = 1] − 1
2 | is negligible, where

Gdbdh
G1,GT ,D(λ) is in Fig. 9.

Gdl
G,A(λ):

(G, g, p)← GenG1(λ)
x← Z∗

p

x′ ← A(G, p, g, gx)
Return (x = x′)

Gddh
G,D(λ):

(G, g, p)← GenG1(λ)
c← {0, 1}
(a, b)← (Z∗

p)
2

If c = 1: Z = gab

Else: Z ← G
c′ ← D(G, p, g, ga, gb, Z)
Return (c = c′)

Gdbdh
G1,GT ,D(λ):

(e,G,GT , g, p)← GenG2(λ)
d← {0, 1}
(a, b, c)← (Z∗

p)
3

If d = 1: r = e(h, h)abc

Else: r ← GT

d′ ← D(e,G1,GT , p, h, h
a, hb, hc, r)

Return (d = d′)

Fig. 9 Games for the DL, DDH and DBDH assumptions

B.2 NIZK and Sigma protocols

Now we recall the definitions of non-interactive zero knowledge (NIZK) proof
system in the random oracle model, Sigma protocol, and the Fiat-Shamir heuris-
tic [FS86] as follows. For convenience, the recalled NIZK is a variant integrating
the notion of signature of knowledge in [CS97,CL06,TGL+19] and the notion of
NIZK in [BS20].

NIZK proof system. LetM be a message space. For a witness space X and
a statement space Y, let R ⊆ Y × X be a relation. A NIZK proof scheme
NIZKR = (Prove,Verify) for witness-statement relation R ⊆ Y × X is a pair of
PPT algorithms associated with a message spaceM and a proof space Π.

• π ← NIZKR.Prove(m, y, x): The prove algorithm takes (m, y, x) ∈M×Y×X
as input, and outputs a proof π ∈ Π.

• b← NIZKR.Verify(m,π, y): The verification algorithm takes (m,π, y) ∈M×
Π × Y as input, and outputs a bit b ∈ {0, 1}.

34

It is required to satisfies completeness, existential soundness, and zero-knowledge
in the random oracle model. The formal definitions are recalled as follows.

- Completeness. For allm ∈M and all (y, x) ∈ R, we always have NIZKR.Verify
(m,NIZKR.Prove(m, y, x), y) = 1.

- Existential soundness. For any PPT adversary A, Advsound
NIZK,A(λ) is negli-

gible, where Advsound
NIZK,A(λ) is the probability that A outputs (m, y) ∈M×Y

and π ∈ Π, such that NIZKR.Verify(m,π, y) = 1 and (x′, y) /∈ R for all
x′ ∈ X .

- Zero-knowledge. There is a PPT simulator S = (SProve,Sro), such that for
any PPT adversary A, the advantage

Advzk
NIZK,A(λ) :=

∣∣∣Pr[Greal
NIZK,A(λ) = 1]− Pr[Gideal

NIZK,A,S(λ) = 1]
∣∣∣

is negligible, where Greal
NIZK,A and Gideal

NIZK,A,S are both in Fig. 10. Suppose that

NIZKR makes use of a hash function Hash, and the hash function Hash with
output length len in Fig. 10 is modeled as a random oracle (a local array H
is employed).

Greal
NIZK,A(λ):

b← AO(λ)
Return b

OProve(m, y, x):
If (y, x) /∈ R: Return ⊥
π ← Prove(m, y, x)
Return π

Oro(str):
If H[str] = ⊥:

r ← {0, 1}len; H[str] := r
Return H[str]

Gideal
NIZK,A,S(λ):

b← AO(λ)
Return b

OProve(m, y, x):
If (y, x) /∈ R: Return ⊥
(st, π)← SProve(st,m, y)
Return π

Oro(str):
(st, r)← Sro(st, str)
Return r

Fig. 10 Games for defining zero knowledge of NIZKR

Sigma protocol. A Sigma protocol for R ⊆ Y × X consists of two efficient
interactive protocol algorithms (P, V), where P = (P1, P2) is the prover and
V = (V1, V2) is the verifier, associated with a challenge space CL. Specifically,
for any (y, x) ∈ R, the input of the prover (resp., verifier) is (y, x) (resp., y).
The prover first computes (cm, aux) ← P1(y, x) and sends the commitment cm
to the verifier. The verifier (i.e., V1) returns a challenge cl ← CL. Then the
prover replies with z ← P2(cm, cl, y, x, aux). Receiving z, the verifier (i.e., V2)
outputs b ∈ {0, 1}. The tuple (cm, cl, z) is called a conversation. We require that
V does not make any random choices other than the selection of cl. For any

35

fixed (cm, cl, z), if the final output of V (y) is 1, (cm, cl, z) is called an accepting
conversation for y. Correctness requires for all (y, x) ∈ R, when P (y, x) and
V (y) interact with each other, the final output of V (y) is always 1.

The corresponding security notions are as follows.

Definition 29. (Knowledge soundness). We say that a Sigma protocol (P, V)
for R ⊆ Y ×X provides knowledge soundness, if there is an efficient determin-
istic algorithm Ext such that on input y ∈ Y and two accepting conversations
(cm, cl, z), (cm, cl′, z′) where cl ̸= cl′, Ext always outputs an x ∈ X satisfying
(y, x) ∈ R.

Definition 30. (Special HVZK). We say that a Sigma protocol (P, V) for
R ⊆ Y × X with challenge space CL is special honest verifier zero knowledge
(special HVZK), if there is a PPT simulator S which takes (y, cl) ∈ Y × CL as
input and satisfies the following properties:

(i) for all (y, cl) ∈ Y × CL, S always outputs a pair (cm, z) such that (cm, cl, z)
is an accepting conversation for y;

(ii) for all (y, x) ∈ R, the tuple (cm, cl, z), generated via cl← CL and (cm, z)←
S(y, cl), has the same distribution as that of a transcript of a conversation
between P (y, x) and V (y).

The Fiat-Shamir heuristic. LetM be a message space, and (P, V) = ((P1, P2),
(V1, V2)) be a Sigma protocol for a relation R ⊆ Y ×X , where its conversations
(cm, cl, z) belong to some space CM × CL ×Z. Let Hash : M × CM → CL
be a hash function. The Fiat-Shamir non-interactive proof system NIZKFS =
(ProveFS,VerifyFS), with proof space Π = CM×Z, is as follows:

• ProveFS(m, y, x): On input (m, y, x) ∈ M × Y × X , this algorithm firstly
generates (cm, aux)← P1(y, x) and cl = Hash(m, cm, y), and then computes
z← P2(cm, cl, y, x, aux). Finally, it outputs π = (cm, z).

• VerifyFS(m, (cm, z), y): On input (m, (cm, z), y) ∈ M ×(CM× Z) × Y, this
algorithm firstly computes cl = Hash(m, cm, y), and then runs V2(y) to check
whether (cm, cl, z) is a valid conversation for y. If so, VerifyFS returns 1;
otherwise, it returns 0.

According to [FS86,BS20], NIZKFS is an NIZK proof system if Hash is mod-
eled as a random oracle. To be noted, in order to reduce the size of π, we replace
cm with cl (i.e., we have π = (z, cl)), following [BS20].

B.3 A definition of cuckoo hashing [FKP23]

Cuckoo hashing (CH) [PR04] is a technique to store a set of m elements from
a large universe X into a linear-size data structure that allows efficient mem-
ory accesses. Here, we define the notion of cuckoo hashing schemes, following
[FKP23], which is also a variant of the one recently offered by Yeo [Yeo23]. The
difference is that we use deterministic insert algorithm Insert instead.

36

In a nutshell, a cuckoo hashing scheme inserts n elements x1, . . . , xn ∈ X in
a vector T (with size n′ = poly(n)) so that each element xi can be found exactly
once in T , or in a stash set S. The efficient memory access comes from the fact
that for a given x one can efficiently compute the k indices i1, . . . , ik such that
x ∈ {T [i1], . . . , T [ik]}∪S. The idea of cuckoo hashing constructions is to sample
k random hash functions H1, . . . ,Hk : X → [n′] and use them to allocate x in
one of the k indices H1(x), . . . ,Hk(x) (if the k positions are not available, then
allocate x in the stash S). Each construction uses a specific algorithm to search
the index allocated to x, requiring to move existing elements whenever a position
is going to be allocated to another element. The most efficient algorithms are
local search allocation [Kho13] and random walks [Wal22,Yeo23].

A cuckoo hashing scheme is defined as follows.

Definition 31. (Cuckoo hashing schemes). A cuckoo hashing scheme CH =
(Setup, Insert, Lookup) for a value space X consists of the following algorithms:

– Setup(λ, n) → (pp, T, S): It is a probabilistic algorithm that on input the
security parameter λ and a bound n on the number of insertions, outputs a
public parameter pp (indicating k ≥ 2 hash functions), an empty vector T
with n′ entries (with n′ a multiple of k), along with an empty stash set S,
(denoting s ≥ 0 its size, at this point, s = 0);

– Insert(pp, T, S,X = (x1, . . . , xm))→ (T ′, S′): It is a deterministic algorithm
that on input vector T where each non-empty component contains an element
in X ∈ pp, inserts each x1, . . . , xm ∈ X in the vector exactly once and returns
the updated vector with moved elements, T ′, S′.

– Lookup(pp, x) → (i1, . . . , ik): It is a deterministic algorithm that on input
public parameter pp and x ∈ X , returns (i1, . . . , ik), the candidate indices
where x could be stored.

Following the definition in [FKP23], here we also define the correctness of a
cuckoo hashing scheme in a combined way. More exactly, we define the correct-
ness of cuckoo hashing by looking at the probability that

– either the insertion algorithm Insert fails (i.e., the construction error proba-
bility in [Yeo23]),

– or if it does not fail, an inserted element is not stored in the appropriate
indices returned by Lookup (i.e., the query error probability in [Yeo23]).

Definition 32. (Correctness). A cuckoo hashing scheme CH is ϵ-correct if for
any n, any set of m ≤ n items x1, . . . , xm ∈ X such that xi ̸= xj for all i ̸= j
and any l ∈ [m]:

Pr

 (pp, T, S)← Setup(λ, n)
(T ′, S′)← Insert(pp, T, S,X = (x1, . . . , xm))
(i1, . . . , ik)← Lookup(pp, xl)

:
T ′ = ⊥

∨(T ′ ̸= ⊥ ∧
xl ̸∈ {T ′[i1], . . . , T ′[ik]} ∪ S′)

 ≤ ϵ.
Robust cuckoo hashing. We also consider robust cuckoo hashing, which was in-
troduced by Yeo [Yeo23]. In a nutshell, a PPT adversary is given the public

37

parameter pp (i.e., given the sampled hash functions) and aims to produce a set
X that will fail to allocate. This models the scenario where an adversary has
explicit access to the hash functions before choosing the set of elements.

Definition 33. (Robustness). A cuckoo hashing scheme CH is ϵ-robust if for
any n, any PPT adversary A:

Pr


(pp, T, S)← Setup(λ, n)
(X = (x1, . . . , xm), l)← A(pp)

s.t. ∀i ̸= j ∈ [m] : xi ̸= xj
(T ′, S′)← Insert(pp, T, S,X)
(i1, . . . , ik)← Lookup(pp, xl)

:
T ′ = ⊥

∨(T ′ ̸= ⊥ ∧
xl ̸∈ {T ′[i1], . . . , T ′[ik]} ∪ S′)

 ≤ ϵ.
Efficiency parameters of cuckoo hashing. For our applications, the following pa-
rameters will dictate the efficiency of a cuckoo hashing scheme:

– k, the number of possible indices (and of hash functions);
– n′, the size of the table T ; s, the size of the stash S;
– d, the number of changes in the table (i.e., number of evictions) after a single

insertion.

While in most constructions, the parameters k and n′ are fixed at Setup time,
in some cuckoo hashing schemes the values of s and d may depend on the ran-
domness and the choice of inputs. As in the case of correctness vs. robustness,
we define s and d in the average case (i.e., for any set of inputs and for random
and independent execution of Setup) or in the worst case (i..e, for adversarial
choice of inputs after seeing pp).

Remark 5. As stated in [FKP23], the cuckoo hashing schemes defined here are,
overall, probabilistic with the probability taken over the choice of pp. Once pp is
fixed, everything is deterministic; Insert and Lookup, that take pp as input, are
deterministic algorithms. The definition above differs from the one in [Yeo23]
in the following aspects. Firstly, one can keep inserting elements, while [Yeo23]
considers the static case in which the set is hashed all at once. Second, each
entry of T here can store a single element, whereas in [Yeo23], they consider
a more general case where it can store l ≥ 1 elements, which occurs in some
constructions.

Existing cuckoo hashing schemes. The following theorem encompasses a few ex-
isting cuckoo hashing schemes.

Theorem 4. For a security parameter λ and an upper bound n, there exist the
following cuckoo hashing schemes:

– CH2 [KMW09] where k = 2, n′ = 2kn, that achieves negl(λ)-correctness,
and average case s = log n, d = O(1) .

– CH(rob) [KMW09,Yeo23] where k = 2, n′ = 2kn, that achieves negl(λ)-
robustness, and worst case s = n, d = O(1) in the random oracle model.

– CH
(rob)
λ [Yeo23] where k = λ, n′ = 2λn, that achieves negl(λ)-robustness,

and worst case s = 0, d = λ in the random oracle model.

38

B.4 Set pre-constrained encryption

Let’s recall the primitive of set pre-constrained encryption (SPCE), following the
definition in [BGJP23].

Let U denote a universe of elements, M denote a message space. The set
pre-constrained encryption USPCE contains three algorithms (Gen,Enc,Dec) and
details are as follows.

1. (pk, sk) ← Gen(λ, S): the parameter generation algorithm takes as input a
security parameter λ and a set S ∈ U of size at most n, and outputs a public
key pk and a secret key sk.

2. ct← Enc(pk, x,m): the encryption algorithm takes as input a public key pk,
an item x ∈ U and a message m ∈M, and outputs a ciphertext ct.

3. m/ ⊥← Dec(sk, ct): the decryption algorithm takes as input a secret key sk
and a ciphertext ct, and outputs either a message m or a bot symbol ⊥.

It also satisfies the following properties.

Definition 34. (Correctness). An set pre-constrained encryption scheme (Gen,
Enc,Dec) is correct, if for any λ ∈ N and S ⊂ U , it holds that with overwhelming
probability, for any x ∈ S and m ∈M:

Pr
[
(pk, sk)← Gen(λ,S) : Dec(sk,Enc(pk, x,m)) = m

]
= 1− negl(λ).

We say the scheme is perfectly correct, if for any λ ∈ N, S ⊂ U , and for any
m ∈M, it hold that

– for every x ∈ S,

Pr
[
(pk, sk)← Gen(λ,S) : Dec(sk,Enc(pk, x,m)) = m

]
= 1.

– for every x ̸∈ S,

Pr
[
(pk, sk)← Gen(λ,S) : Dec(sk,Enc(pk, x,m)) ∈ {m,⊥}

]
= 1.

For other security properties, please refer to [BGJP23].

C Proof of Theorem 1

C.1 Proof of confidentiality against authority

Proof. We use a sequence of games to show that USPCE satisfies confidentiality
against authority.

Game G0: This is the original game Gconf-au
USPCE,A,S(λ).

Game Gϱ(1 ≤ ϱ ≤ k): This game is the same as G0 except that the challenge
ciphertext ct is generated as follows.

– Pick b ∈ {0, 1} randomly.

39

– For 1 ≤ j ≤ ϱ, choose Qj , Sj ← GT randomly.

– For ϱ < j ≤ k, choose γj ← Z∗p randomly, and compute Qj := e(A′, H̃(x∗))γj ,
Sj := (T [Hj(x

∗)])γj ·mb.

– Choose r ← Z∗p randomly, and compute c := (gr, e(H(x∗), Y)r ·mb).

– Return ct = ((Qj , Sj)j∈[k], c).

Game Gk+1: This game is the same as G0 except that the challenge ciphertext
ct is generated as follows.

– For each j ∈ [k], choose Qj , Sj ← GT randomly.

– Choose c1 ← G, c2 ← GT randomly, and set c := (c1, c2).

– Return ct = ((Qj , Sj)j∈[k], c).

We prove these games are indistinguishable in the following lemmas. It is clear
that the adversary has no advantage in Game Gk+1. Therefore, we conclude
that the advantage of the adversary in Gconf-au

USPCE,A,S(λ) is negligible.

Lemma 1. If the hash function H̃ is a random oracle and the DBDH assumption
holds, then for 1 ≤ ϱ ≤ k, Game Gϱ−1 and Game Gϱ are computationally
indistinguishable.

Proof. Suppose there exists a PPT algorithm A that distinguishes Game Gϱ−1
and Game Gϱ with non-negligible advantage. Then we build a PPT algorithm
B breaking the DBDH assumption with non-negligible advantage. B is given
e,G,GT , p, g, gz1 , gz2 , gz3 , Z and going to tell whether Z = e(g, g)z1z2z3 or Z is
a random element in GT . B runs A as a subroutine to simulate Game Gϱ−1 or
Game Gϱ as follows.

B first chooses a hash function H : U → G∗, and runs (ppCH, Tinit, ST) ←
CH

(rob)
λ .Setup(λ, n), (TS, ST)← CH

(rob)
λ .Insert(ppCH, Tinit, ST,S), where ppCH con-

tains k hash functions (Hj : U → [n′])j∈[k]. B also maintains a list LH̃, where

the list is empty initially. Then, B computes A′ = gα
′
and Y ′ = gs, where

α′, s ← Z∗p. For each i ∈ [n′], B chooses ti ← Z∗p and computes T̃ [i] = (gz2)ti .

Note that, if TS[i] ̸=⊥, B sets H̃(TS[i]) = (gz2)ti implicitly and adds the record
(TS[i], ti, (g

z2)ti) to the list LH̃ for answering A’s random oracle queries on

H̃. Next, B sets α = z1 implicitly, and computes X = gβ , Y = (Y ′)β , where
β ← Z∗p. For each i ∈ [n′], it computes T [i] = e(gz1 , (gz2)ti)α

′
. B sends pp =

(e,G,GT , g, p,H, Y ′, A′, ppCH), msk = (T̃ ,S, s), pk = (T,X, Y) to the adversary
A.

When A issues a random oracle H̃ query on x, B answers as follows. If there
is some (x, t ∈ Z∗p, h ∈ G) ∈ LH̃, B returns h; otherwise, B samples tx ← Z∗p,
adds (x, tx, g

tx) to LH̃, and returns gtx .

At some point, A submits two messages m0, m1 and an item x∗. B picks
b ∈ {0, 1} randomly and proceeds as follows.

– For 1 ≤ j ≤ ϱ− 1, choose Qj , Sj ← GT randomly.

40

– For j = ϱ, find some (x∗, tx∗ , hx∗) in LH̃, and set γj = z3 implicitly. Then, let

i = Hj(x
∗) and compute Qj = e(gz3 , hx∗)α

′
= e(A′, H̃(x∗))γj , Sj = Zα

′ti ·mb.
Note that, if Z = e(g, g)z1z2z3 , then Sj = (T [Hj(x

∗)])γj ·mb; otherwise Z is
a random element of GT , then Sj also is a random element of GT .

– For ϱ < j ≤ k, choose γj ← Z∗p randomly, and compute Qj := e(A′, H̃(x∗))γj ,
Sj := (T [Hj(x

∗)])γj ·mb.
– Choose r ← Z∗p randomly, and compute c := (gr, e(H(x∗), Y)r ·mb).
– Return ct = ((Qj , Sj)j∈[k], c).

Observe that, if Z = e(g, g)z1z2z3 , then B has properly simulated Game Gϱ−1;
If Z is a random element of GT , then B has properly simulated Game Gϱ.
Hence, B can use the output of A to distinguish whether Z = e(g, g)z1z2z3 or Z
is a random element of GT . Any non-negligible advantage of A is converted to
a non-negligible advantage of B.

Lemma 2. If the hash function H is a random oracle and the DBDH assumption
holds, then Game Gk and Game Gk+1 are computationally indistinguishable.

Proof. Suppose there exists a PPT algorithm A that distinguishes Game Gϱ−1
and Game Gϱ with non-negligible advantage. Then we build a PPT algorithm
B breaking the DBDH assumption with non-negligible advantage. B is given
e,G,GT , p, g, gz1 , gz2 , gz3 , Z and going to tell whether Z = e(g, g)z1z2z3 or Z is
a random element in GT . B runs A as a subroutine to simulate Game Gk or
Game Gk+1 as follows.

B first chooses a hash function H̃ : U → G∗, and runs (ppCH, Tinit, ST) ←
CH

(rob)
λ .Setup(λ, n), (TS, ST)← CH

(rob)
λ .Insert(ppCH, Tinit, ST,S), where ppCH con-

tains k hash functions (Hj : U → [n′])j∈[k]. Then, B computes A′ = gα
′
and

Y ′ = gs, where α′, s ← Z∗p. For each i ∈ [n′], if TS[i] =⊥, B chooses T̃ [i] ← G;

else B sets T̃ [i] := H̃(TS[i]). B also maintains a list LH for answering A’s random
oracle queries on H, where the list is empty initially. Next, B choose α← Z∗p and
computes X = gz1 , Y = (gz1)s, where it sets β = z1 implicitly. For each i ∈ [n′],

it computes T [i] = e(A′, T̃ [i])α. B sends pp = (e,G,GT , g, p, H̃, Y ′, A′, ppCH),
msk = (T̃ ,S, s), pk = (T,X, Y) to the adversary A.

When A issues a random oracle H query on x, B answers as follows. If there
is some (x, tx ∈ Z∗p, hx ∈ G) ∈ LH, B returns hx; otherwise, B samples tx ← Z∗p,
adds (x, tx, hx = (gz2)tx) to LH, and returns hx.

At some point, A submits two messages m0, m1 and an item x∗. B searches
LH for a record (x∗, tx∗ , hx∗ = gz2)tx∗ , coin). Then, B picks b ∈ {0, 1} randomly
and proceeds as follows.

– For each j ∈ [k], choose Qj , Sj ← GT randomly.
– Compute c = (c1 = gz3 , c2 = Ztx∗ ·mb). Note that, if Z = e(g, g)z1z2z3 , then
c2 = e(H(x∗), Y)z3 ·mb; otherwise Z is a random element of GT , then c2 also
is a random element of GT .

– Return ct = ((Qj , Sj)j∈[k], c).

41

Observe that, if Z = e(g, g)z1z2z3 , then B has properly simulated Game Gk;
If Z is a random element of GT , then B has properly simulated Game Gk+1.
Hence, B can use the output of A to distinguish whether Z = e(g, g)z1z2z3 or Z
is a random element of GT .

C.2 Proof of confidentiality against users

Proof. We use a sequence of games to show that USPCE satisfies confidentiality
against users.

Game G0: This is the original game Gconf-u
USPCE,A,S(λ).

Game Gϱ(1 ≤ ϱ ≤ k): This game is the same as G0 except that the challenge
ciphertext ct is generated as follows.

– Pick b ∈ {0, 1} randomly.
– For 1 ≤ j ≤ ϱ, choose Qj , Sj ← GT randomly.

– For ϱ < j ≤ k, choose γj ← Z∗p randomly, and compute Qj := e(A′, H̃(x∗))γj ,
Sj := (T [Hj(x

∗)])γj ·mb.
– Choose r ← Z∗p randomly, and compute c := (gr, e(H(x∗), Y)r ·mb).
– Return ct = ((Qj , Sj)j∈[k], c).

Game Gk+1: This game is the same as G0 except that the challenge ciphertext
ct is generated as follows.

– For each j ∈ [k], choose Qj , Sj ← GT randomly.
– Choose c1 ← G, c2 ← GT randomly, and set c := (c1, c2).
– Return ct = ((Qj , Sj)j∈[k], c).

We prove these games are indistinguishable in the following lemmas. It is clear
that the adversary has no advantage in Game Gk+1. Therefore, we conclude
that the advantage of the adversary in Gconf-u

USPCE,A,S(λ) is negligible.

Lemma 3. If the hash function H̃ is a random oracle and the DBDH assumption
holds, then for 1 ≤ ϱ ≤ k, Game Gϱ−1 and Game Gϱ are computationally
indistinguishable.

Proof. Suppose there exists a PPT algorithm A that distinguishes Game Gϱ−1
and Game Gϱ with non-negligible advantage. Then we build a PPT algorithm
B breaking the DBDH assumption with non-negligible advantage. B is given
e,G,GT , p, g, gz1 , gz2 , gz3 , Z and going to tell whether Z = e(g, g)z1z2z3 or Z is
a random element in GT . B runs A as a subroutine to simulate Game Gϱ−1 or
Game Gϱ as follows.
B first chooses a hash function H : U → G∗, and runs (ppCH, Tinit, ST) ←

CH
(rob)
λ .Setup(λ, n), (TS, ST)← CH

(rob)
λ .Insert(ppCH, Tinit, ST,S), where ppCH con-

tains k hash functions (Hj : U → [n′])j∈[k]. B also maintains a list LH̃, where
the list is empty initially. Then, B sets A′ = gz1 and computes Y ′ = gs, where
s ← Z∗p. For each i ∈ [n′], B chooses ti ← Z∗p and computes T̃ [i] = (gz2)ti .

Note that, if TS[i] ̸=⊥, B sets H̃(TS[i]) = (gz2)ti implicitly and adds the record

42

(TS[i], ti, (g
z2)ti) to the list LH̃ for answering A’s random oracle queries on H̃.

Next, B choose α, β ← Z∗p and computes X = gβ , Y = (Y ′)β . For each i ∈ [n′],

it computes T [i] = e(A′, (gz2)ti)α. B sends pp = (e,G,GT , g, p,H, Y ′, A′, ppCH),
pk = (T,X, Y), sk = (α, β) to the adversary A.
B answers A’s oracle queries as follows:

– H̃ query on x: If there is some (x, t ∈ Z∗p, h ∈ G) ∈ LH̃, B returns h; otherwise,
B samples tx ← Z∗p, adds (x, tx, gtx) to LH̃, and returns gtx .

– TKGen query on x: B returns (H(x))s.

At some point, A submits two messages m0, m1 and an item x∗ such that
x∗ /∈ S. B picks b ∈ {0, 1} randomly and proceeds as follows.

– For 1 ≤ j ≤ ϱ− 1, choose Qj , Sj ← GT randomly.
– For j = ϱ, find some (x∗, tx∗ , gtx∗) in LH̃, and set γj = z3 implicitly. Then, let

i = Hj(x
∗) and compute Qj = e(A′, gz3)tx∗ = e(A′, H̃(x∗))γj , Sj = Zαti ·mb.

Note that, if Z = e(g, g)z1z2z3 , then Sj = (T [Hj(x
∗)])γj ·mb; otherwise Z is

a random element of GT , then Sj also is a random element of GT .
– For ϱ < j ≤ k, choose γj ← Z∗p randomly, and compute Qj := e(A′, H̃(x∗))γj ,
Sj := (T [Hj(x

∗)])γj ·mb.
– Choose r ← Z∗p randomly, and compute c := (gr, e(H(x∗), Y)r ·mb).
– Return ct = ((Qj , Sj)j∈[k], c).

Observe that, if Z = e(g, g)z1z2z3 , then B has properly simulated Game Gϱ−1;
If Z is a random element of GT , then B has properly simulated Game Gϱ.
Hence, B can use the output of A to distinguish whether Z = e(g, g)z1z2z3 or Z
is a random element of GT . Any non-negligible advantage of A is converted to
a non-negligible advantage of B.

Lemma 4. If the hash function H is a random oracle and the DBDH assumption
holds, then Game Gk and Game Gk+1 are computationally indistinguishable.

Proof. Suppose there exists a PPT algorithm A that distinguishes Game Gϱ−1
and Game Gϱ with non-negligible advantage. Then we build a PPT algorithm
B breaking the DBDH assumption with non-negligible advantage. B is given
e,G,GT , p, g, gz1 , gz2 , gz3 , Z and going to tell whether Z = e(g, g)z1z2z3 or Z is
a random element in GT . B runs A as a subroutine to simulate Game Gk or
Game Gk+1 as follows.

B first chooses a hash function H̃ : U → G∗, and runs (ppCH, Tinit, ST) ←
CH

(rob)
λ .Setup(λ, n), (TS, ST)← CH

(rob)
λ .Insert(ppCH, Tinit, ST,S), where ppCH con-

tains k hash functions (Hj : U → [n′])j∈[k]. Then, B computes A′ = gα
′
and sets

Y ′ = gz1 , where α′ ← Z∗p. For each i ∈ [n′], if TS[i] =⊥, B chooses T̃ [i]← G; else

B sets T̃ [i] := H̃(TS[i]). B also maintains a list LH for answering A’s random ora-

cle queries on H, where the list is empty initially. Next, B choose α, β ← Z∗p and

computes X = gβ , Y = (Y ′)β . For each i ∈ [n′], it computes T [i] = e(A′, T̃ [i])α.

B sends pp = (e,G,GT , g, p, H̃, Y ′, A′, ppCH), pk = (T,X, Y), sk = (α, β) to the
adversary A.
B answers A’s oracle queries as follows:

43

– H query on x: If there is some (x, tx, hx, coin) ∈ LH, B returns hx; otherwise,
B picks coin ∈ {0, 1} at random such that Pr[coin = 0] = ρ. (ρ will be
determined later.) Then, randomly chooses tx ← Z∗p. The record (x, tx, hx =

(gz2)coin · gtx , coin) is added to LH and hx is sent to A.
– TKGen query on x: B searches LH for a record (x, tx, hx, coin). If coin = 1,

it aborts and terminates; otherwise B returns (gz1)tx .

At some point, A submits two messages m0, m1 and an item x∗ such that
x∗ /∈ S. B searches LH for a record (x∗, tx∗ , hx∗ , coin). If coin = 0, it aborts and
terminates; otherwise B picks b ∈ {0, 1} randomly and proceeds as follows.

– For each j ∈ [k], choose Qj , Sj ← GT randomly.
– Compute c = (c1 = gz3 , c2 = Z · e(gz3 , gz1)βtx∗ · mb). Note that, if Z =
e(g, g)z1z2z3 , then c2 = e(H(x∗), Y)z3 ·mb; otherwise Z is a random element
of GT , then c2 also is a random element of GT .

– Return ct = ((Qj , Sj)j∈[k], c).

The probability that B does not abort during the simulation is given by ρqtken(1−
ρ) which is maximized at ρ = 1− 1/(qtken+1), where qtken denotes the number
of TKGen queries by the adversary A. Now, if Z = e(g, g)z1z2z3 , then B has
properly simulated Game Gk; If Z is a random element of GT , then B has
properly simulatedGame Gk+1. Hence, B can use the output of A to distinguish
whether Z = e(g, g)z1z2z3 or Z is a random element of GT .

C.3 Proof of confidentiality of sets

Proof. We use a sequence of games to show that USPCE supports confidentiality
of sets.

Game G0: This is the original game Gconf-set
USPCE,A(λ). Specifically, when the ad-

versary submits two sets S0,S1, the challenger picks b ∈ {0, 1} randomly and
proceeds as follows.

– Run (e,G,GT , g, p)← GenG(λ).

– Choose hash functions H̃, H : U → G∗.
– Run (ppCH, Tinit, ST)← CH

(rob)
λ .Setup(λ, n), (TS, ST)← CH

(rob)
λ .Insert(ppCH, Tinit, ST,Sb),

where ppCH contains k hash functions (Hj : U → [n′])j∈[k].

– Choose α′, s← Z∗p and compute A′ = gα
′
, Y ′ = gs.

– For each i ∈ [n′], if TS[i] =⊥, choose T̃ [i]← G; else set T̃ [i] = H̃(TS[i]).
– Choose α, β ← Z∗p and compute X = gβ , Y = (Y ′)β .

– For each i ∈ [n′], set T [i] = e(g, T̃ [i])α
′α.

– Send pp = (e,G,GT , g, p, H̃,H, Y ′, A′, ppCH), pk = (T,X, Y) to the adversary.

Game Gϱ(1 ≤ ϱ ≤ n′): This game is the same as G0 except that the parameter
T in the public key pk is generated as follows.

– For 1 ≤ j ≤ ϱ, choose T [j]← GT randomly.

44

– For ϱ < j ≤ n′, set T [j] = e(g, T̃ [i])α
′α.

We prove these games are indistinguishable in the following lemma. It is clear
that the adversary has no advantage in Game Gn′ . Therefore, we conclude that
the advantage of the adversary in Gconf-set

USPCE,A(λ) is negligible.

Lemma 5. If the hash function H̃ is a random oracle and the DBDH assumption
holds, then for 1 ≤ ϱ ≤ n′, Game Gϱ−1 and Game Gϱ are computationally
indistinguishable.

Proof. Suppose there exists a PPT algorithm A that distinguishes Game Gϱ−1
and Game Gϱ with non-negligible advantage. Then we build a PPT algorithm
B breaking the DBDH assumption with non-negligible advantage. B is given
e,G,GT , p, g, gz1 , gz2 , gz3 , Z and going to tell whether Z = e(g, g)z1z2z3 or Z is
a random element in GT . B runs A as a subroutine to simulate Game Gϱ−1 or
Game Gϱ as follows.
B first chooses a hash function H : U → G∗, and runs (ppCH, Tinit, ST) ←

CH
(rob)
λ .Setup(λ, n), (TS, ST)← CH

(rob)
λ .Insert(ppCH, Tinit, ST,Sb), where b ∈ {0, 1}

is chosen randomly, and ppCH contains k hash functions (Hj : U → [n′])j∈[k]. B
also maintains a list LH̃, where the list is empty initially. Then, B proceeds as
follows.

– Set A′ = gz1 and compute Y ′ = gs, where s← Z∗p. Note that, it sets α′ = z1
implicitly.

– Set α = z2 implicitly.
– Choose β ← Z∗p and compute X = gβ , Y = (Y ′)β .
– For 1 ≤ j ≤ ϱ− 1, choose T [j]← GT randomly.
– For j = ϱ, if TS[j] =⊥, choose T [j]← G; else set T [j] = Ztj , where tj ← Z∗p.

Note that, if TS[j] ̸=⊥, set H̃(TS[j]) = (gz3)tj implicitly and add the record
(TS[j], tj , (g

z3)tj) to the list LH̃ for answering A’s random oracle queries on

H̃. Observe that, if Z = e(g, g)z1z2z3 , then Tj = e(g, T̃ [i])α
′α; otherwise Z is

a random element of GT , then Tj also is a random element of GT .
– For ϱ < j ≤ k, if TS[j] =⊥, choose T [j] ← G; else set T [j] = e(gz1 , gz2)tj ,

where tj ← Z∗p. Note that, if TS[j] ̸=⊥, set H̃(TS[j]) = gtj implicitly and
add the record (TS[j], tj , g

tj) to the list LH̃ for answering A’s random oracle

queries on H̃.
– Send pp = (e,G,GT , g, p,H, Y ′, A′, ppCH), pk = (T,X, Y) to the adversary
A.

When A issues a random oracle H̃ query on x, B answers as follows. If there
is some (x, t ∈ Z∗p, h ∈ G) ∈ LH̃, B returns h; otherwise, B samples tx ← Z∗p,
adds (x, tx, g

tx) to LH̃, and returns gtx .
Observe that, if Z = e(g, g)z1z2z3 , then B has properly simulated Game

Gϱ−1; If Z is a random element of GT , then B has properly simulated Game
Gϱ. Hence, B can use the output of A to distinguish whether Z = e(g, g)z1z2z3

or Z is a random element of GT . Any non-negligible advantage of A is converted
to a non-negligible advantage of B.

45

D Proof of Theorem 2

D.1 Proof of universality

Proof. For any computationally unbounded adversary A attacking universal-
ity of dual HPS-KEMΣ, let (pp = (G, p, g1, g2), pk = gx1

1 gx2
2) be A’s input,

where (pk, sk = (x1, x2)) are generated by KG(pp). Denote by a := logg1 g2.
Let (c = (u1, u2), k, r

∗ = (r, r′)) be A’s final output satisfying ((c, r∗) ∈ R∗c) ∧
(CheckCwel(pp, c, r∗) = 0).

Note that (c, r∗) ∈ R∗c implies that u1 = gr1 and u2 = gr
′

1 . On the other hand,
since Cwell-f

pp = {(gr̃1, gr̃2) | r̃ ∈ Z∗p} = {(gr̃1, gar̃1) | r̃ ∈ Z∗p}, we derive that r′ ̸= ar.

As a result,

Decap(pp, sk, c) = ux1
1 u

x2
2 = grx1

1 gr
′x2

1 = g
r(x1+ax2)+r

′x2−rax2

1

= (gx1
1 gx2

2)r · g(r
′−ra)x2

1 = pkr · g(r
′−ra)x2

1 .

Notice that sk = (x1, x2) is uniformly sampled from (Z∗p)2, and the only in-
formation that A has about sk is logg1 pk = x1 + ax2. Thus, from A’s point
of view, given (pp, pk), x2 is still uniformly distributed, which implies that

Decap(pp, sk, c) = pkr · g(r
′−ra)x2

1 is also uniformly distributed.

Hence, Advuniv
dHPS-KEMΣ,A(λ) = Pr[k = Decap(pp, sk, c)] is negligible, conclud-

ing the proof of this theorem. ⊓⊔

D.2 Proof of extended universality

Proof. For any computationally unbounded adversary A attacking extended uni-
versality of dual HPS-KEMΣ, let (pp = (G, p, g1, g2), pk = gx1

1 gx2
2) be A’s input,

where (pk, sk = (x1, x2)) are generated by KG(pp). Denote by a := logg1 g2.
Let (c = (u1, u2), k, r

∗ = (r, r′), t) be A’s final output satisfying ((c, r∗) ∈
R∗c) ∧ (CheckCwel(pp, c, r∗) = 0).

Note that (c, r∗) ∈ R∗c implies that u1 = gr1 and u2 = gr
′

1 . On the other hand,
since Cwell-f

pp = {(gr̃1, gr̃2) | r̃ ∈ Z∗p} = {(gr̃1, gar̃1) | r̃ ∈ Z∗p}, we derive that r′ ̸= ar.

As a result,

dDecap(pp, sk, t, c) = ux1
1 u

x2
2 · t = grx1

1 gr
′x2

1 · t = g
r(x1+ax2)+r

′x2−rax2

1 · t

= (gx1
1 gx2

2)rg
(r′−ra)x2

1 · t = pkr · g(r
′−ra)x2

1 · t.

Notice that sk = (x1, x2) is uniformly sampled from (Z∗p)2, and the only in-
formation that A has about sk is logg1 pk = x1 + ax2. Thus, from A’s point
of view, given (pp, pk), x2 is still uniformly distributed, which implies that

dDecap(pp, sk, t, c) = pkr · g(r
′−ra)x2

1 · t is also uniformly distributed.

Hence, Advex-univ
dHPS-KEMΣ,A(λ) = Pr[k = dDecap(pp, sk, t, c)] is negligible, con-

cluding the proof of this theorem. ⊓⊔

46

D.3 Proof of smoothness

Proof. For any fixed pp = (G, p, g1, g2) and any fixed pk = h generated by KG,
let a := logg1 g2, b := logg1 h. Then, SKpp,pk = {(x1, x2) ∈ (Z∗p)2 | x1+ax2 = b}.

Note that the ciphertext space of Encap∗c is C∗ = (G \ {1G})2, where 1G
is the identity element of G, and the encapsulated key space K = G. For all
ĉ ∈ (G \ {1G})2, we parse ĉ = (û1, û2), and write S1 := {(û1, û2) ∈ (G \ {1G})2 |
logg1 û2 ̸= a logg1 û1} and S2 := {(û1, û2) ∈ (G \ {1G})2 | logg1 û2 = a logg1 û1}.
So,

∆((c, k), (c, k′)) =
1

2

∑
(ĉ,k̂)∈C∗×K

|Pr[(c, k) = (ĉ, k̂)]− Pr[(c, k′) = (ĉ, k̂)]|

=
1

2

∑
ĉ∈S1

∑
k̂∈K

|Pr[(c, k) = (ĉ, k̂)]− Pr[(c, k′) = (ĉ, k̂)]|

+
1

2

∑
ĉ∈S2

∑
k̂∈K

|Pr[(c, k) = (ĉ, k̂)]− Pr[(c, k′) = (ĉ, k̂)]|. (3)

We present the following two lemmas with postponed proofs.

Lemma 6.
∑
ĉ∈S1

∑
k̂∈K |Pr[(c, k) = (ĉ, k̂)]− Pr[(c, k′) = (ĉ, k̂)]| = 0.

Lemma 7.
∑
ĉ∈S2

∑
k̂∈K |Pr[(c, k) = (ĉ, k̂)]− Pr[(c, k′) = (ĉ, k̂)]| = 2

p .

Combining Eq. (3), Lemma 6 and Lemma 7, we obtain ∆((c, k), (c, k′)) = 1
p ,

concluding the proof of this theorem.
So what remains is to prove the above two lemmas.

Proof (of Lemma 6). For any ĉ = (û1, û2) ∈ S1 and any k̂ ∈ K = G, we have

Pr[(c, k) = (ĉ, k̂)] = 1
(p−1)2p , and Pr[(c, k′) = (ĉ, k̂)] = 1

(p−1)2 Pr[k
′ = k̂ | c = ĉ].

Note that c = (gr1, g
r′

1) = ĉ implies r = logg1 û1 and r′ = logg1 û2. Since
ĉ ∈ S1, we obtain r

′ ̸= ar. We also notice that sk = (x1, x2) is uniformly sampled
from SKpp,pk, so the distribution of sk can be seen as “uniformly sampling x2
from Z∗p, and letting x1 = b−ax2”. As a result, given a fixed c = ĉ (i.e., given fixed
r = logg1 û1 and r′ = logg1 û2), when sk ← SKpp,pk, k′ = Decap(pp, sk, c) =

grx1
1 gr

′x2
1 = g

r(b−ax2)+r
′x2

1 = hrg
(r′−ar)x2

1 is uniformly distributed over K. Hence,

Pr[k′ = k̂ | c = ĉ] = 1
p .

So we conclude that for any ĉ ∈ S1 and any k̂ ∈ K, Pr[(c, k′) = (ĉ, k̂)] =
1

(p−1)2p = Pr[(c, k) = (ĉ, k̂)]. ⊓⊔

Proof (of Lemma 7). For any ĉ = (û1, û2) ∈ S2 and any k̂ ∈ K = G, we have

Pr[(c, k) = (ĉ, k̂)] = 1
(p−1)2p , and Pr[(c, k′) = (ĉ, k̂)] = 1

(p−1)2 Pr[k
′ = k̂ | c = ĉ].

Note that c = (gr1, g
r′

1) = ĉ implies r = logg1 û1 and r′ = logg1 û2. Since
ĉ ∈ S2, we obtain r′ = ar. Thus, given a fixed c = ĉ (i.e., given fixed r =

logg1 û1 and r′ = logg1 û2), we derive that k′ = Decap(pp, sk, c) = grx1
1 gr

′x2
1 =

47

g
r(b−ax2)+r

′x2

1 = hrg
(r′−ar)x2

1 = hr = hlogg1
û1 , which is also fixed (since pk = h

and û1 are both fixed values).
Hence, ∑

ĉ∈S2

∑
k̂∈K

|Pr[(c, k) = (ĉ, k̂)]− Pr[(c, k′) = (ĉ, k̂)]|

=
∑
ĉ∈S2

∑
k̂∈K

| 1

(p− 1)2p
− 1

(p− 1)2
Pr[k′ = k̂ | c = ĉ]|

=
∑
ĉ∈S2

(
∑

k̂ ̸=hlogg1
û1

| 1

(p− 1)2p
− 0|+ | 1

(p− 1)2p
− 1

(p− 1)2
· 1|)

=
∑
ĉ∈S2

((p− 1)
1

(p− 1)2p
+

1

(p− 1)p
) =

∑
ĉ∈S2

2

(p− 1)p
=

2

p
.

⊓⊔

Thus, we complete the proof. ⊓⊔

D.4 Proof of extended smoothness

Proof. For any fixed pp = (G, p, g1, g2) and any fixed pk = h generated by KG,
let a := logg1 g2, b := logg1 h. Then, SKpp,pk = {(x1, x2) ∈ (Z∗p)2 | x1+ax2 = b}.

Note that the ciphertext space of Encap∗c is C∗ = (G \ {1G})2, where 1G is
the identity element of G, the encapsulated key space K = G, and the tag space
T = G. For all ĉ ∈ (G\{1G})2, we parse ĉ = (û1, û2), and write S1 := {(û1, û2) ∈
(G\{1G})2 | logg1 û2 ̸= a logg1 û1} and S2 := {(û1, û2) ∈ (G\{1G})2 | logg1 û2 =
a logg1 û1}. So,

∆((c, k, t), (c, k′, t))

=
1

2

∑
(ĉ,k̂,t̂)∈C∗×K×T

|Pr[(c, k, t) = (ĉ, k̂, t̂)]− Pr[(c, k′, t) = (ĉ, k̂, t̂)]|

=
1

2

∑
t̂∈T

∑
ĉ∈S1

∑
k̂∈K

|Pr[(c, k, t) = (ĉ, k̂, t̂)]− Pr[(c, k′, t) = (ĉ, k̂, t̂)]|

+
1

2

∑
t̂∈T

∑
ĉ∈S2

∑
k̂∈K

|Pr[(c, k, t) = (ĉ, k̂, t̂)]− Pr[(c, k′, t) = (ĉ, k̂, t̂)]|. (4)

We present the following two lemmas with postponed proofs.

Lemma 8.
∑
t̂∈T

∑
ĉ∈S1

∑
k̂∈K |Pr[(c, k, t) = (ĉ, k̂, t̂)]−Pr[(c, k′, t) = (ĉ, k̂, t̂)]| =

0.

Lemma 9.
∑
t̂∈T

∑
ĉ∈S2

∑
k̂∈K |Pr[(c, k, t) = (ĉ, k̂, t̂)]−Pr[(c, k′, t) = (ĉ, k̂, t̂)]| =

2
p .

48

Combining Eq. (4), Lemma 8 and Lemma 9, we obtain ∆((c, k, t), (c, k′, t)) =
1
p , concluding the proof of this theorem.

So what remains is to prove the above two lemmas.

Proof (of Lemma 8). For any ĉ = (û1, û2) ∈ S1, any k̂ ∈ K = G and any t̂ ∈
T = G, we have Pr[(c, k, t) = (ĉ, k̂, t̂)] = 1

(p−1)2p2 , and Pr[(c, k′, t) = (ĉ, k̂, t̂)] =
1

(p−1)2p Pr[k
′ = k̂ | (c = ĉ) ∧ (t = t̂)].

Note that c = (gr1, g
r′

1) = ĉ implies r = logg1 û1 and r′ = logg1 û2. Since
ĉ ∈ S1, we obtain r

′ ̸= ar. We also notice that sk = (x1, x2) is uniformly sampled
from SKpp,pk, so the distribution of sk can be seen as “uniformly sampling x2
from Z∗p, and letting x1 = b − ax2”. As a result, given a fixed c = ĉ (i.e., given

fixed r = logg1 û1 and r′ = logg1 û2) and a fixed t = t̂, when sk ← SKpp,pk,
k′ = dDecap(pp, sk, t, c) = grx1

1 gr
′x2

1 · t̂ = g
r(b−ax2)+r

′x2

1 · t̂ = hrg
(r′−ar)x2

1 · t̂ is
uniformly distributed over K. Hence, Pr[k′ = k̂ | (c = ĉ) ∧ (t = t̂)] = 1

p .

So we conclude that for any ĉ ∈ S1, any k̂ ∈ K and any t̂ ∈ T , Pr[(c, k′, t) =
(ĉ, k̂, t̂)] = 1

(p−1)2p2 = Pr[(c, k, t) = (ĉ, k̂, t̂)]. ⊓⊔

Proof (of Lemma 9). For any ĉ = (û1, û2) ∈ S2, any k̂ ∈ K = G and any t̂ ∈
T = G, we have Pr[(c, k, t) = (ĉ, k̂, t̂)] = 1

(p−1)2p2 , and Pr[(c, k′, t) = (ĉ, k̂, t̂)] =
1

(p−1)2p Pr[k
′ = k̂ | (c = ĉ) ∧ (t = t̂)].

Note that c = (gr1, g
r′

1) = ĉ implies r = logg1 û1 and r′ = logg1 û2. Since
ĉ ∈ S2, we obtain r

′ = ar. Thus, given a fixed c = ĉ (i.e., given fixed r = logg1 û1
and r′ = logg1 û2) and a fixed t = t̂, we derive that k′ = dDecap(pp, sk, t, c) =

grx1
1 gr

′x2
1 · t̂ = g

r(b−ax2)+r
′x2

1 · t̂ = hrg
(r′−ar)x2

1 · t̂ = hr · t̂ = hlogg1
û1 · t̂, which is

also fixed (since pk = h, û1 and t̂ are all fixed values).

Hence,∑
t̂∈T

∑
ĉ∈S2

∑
k̂∈K

|Pr[(c, k, t) = (ĉ, k̂, t̂)]− Pr[(c, k′, t) = (ĉ, k̂, t̂)]|

=
∑
t̂∈T

∑
ĉ∈S2

∑
k̂∈K

| 1

(p− 1)2p2
− 1

(p− 1)2p
Pr[k′ = k̂ | (c = ĉ) ∧ (t = t̂)]|

=
∑
t̂∈T

∑
ĉ∈S2

(
∑

k̂ ̸=hlogg1
û1 ·t̂

| 1

(p− 1)2p2
− 0|+ | 1

(p− 1)2p2
− 1

(p− 1)2p
· 1|)

=
∑
t̂∈T

∑
ĉ∈S2

((p− 1)
1

(p− 1)2p2
+

1

(p− 1)p2
) =

∑
t̂∈T

∑
ĉ∈S2

2

(p− 1)p2
=

2

p
.

⊓⊔

Thus, we complete the proof. ⊓⊔

49

D.5 Proof of special extended smoothness

Proof. Note that the ciphertext space of Encap∗c is C∗ = (G\{1G})2, where 1G is
the identity element of G, the encapsulated key space K = G, and the tag space
T = G.

For any fixed ĉ ∈ (G\{1G})2, we can parse ĉ = (û1, û2) for some fixed values
û1, û2. Thus, for uniformly sampled t ← T , we obtain dDecap(pp, sk, t, ĉ) =
ûx1
1 û

x2
2 · t. In other words, when t ← T , k′ = dDecap(pp, sk, t, ĉ) is uniformly

distributed over G.
So we trivially obtain ∆((c, k), (c, k′)) = 0, where c ← Encap∗c(pp), k ← K,

t← T and k′ = dDecap(pp, sk, t, c). ⊓⊔

D.6 Proof of ciphertext unexplainability

Proof. Assume that there is a PPT adversary A winning the game of ciphertext
unexplainability with non-negligible probability. We show a PPT algorithm B,
making use of A to solve the DL problem with non-negligible probability, as
follows.

Given (G, p, g, ga), B first sets g1 = g and g2 = ga, and sends the public
parameter pp = (G, p, g1, g2) to A. Receiving A’s output (c, r∗c) ∈ R∗c , B parses
c = (u1, u2) and r∗c = (r, r′). Note that (c, r∗) ∈ R∗c guarantees that u1 = gr1
and u2 = gr

′

1 . When A wins the game of ciphertext unexplainability, c ∈ Cwell-f
pp ,

which implies u1 = gr1 and u2 = gr2. In this case, we obtain u2 = gr2 = gr
′

1 .

Therefore, B can output a = r′

r as the solution of the DL problem. ⊓⊔

D.7 Proof of key unexplainability

Proof. Assume that there is a PPT adversary A winning the game of key unex-
plainability with non-negligible probability. We show a PPT algorithm B, making
use of A to solve the DL problem with non-negligible probability, as follows.

Given (G, p, g, ga), B firstly sets g1 = g and g2 = ga, samples (x1, x2)← Z∗p,
and sets pp = (G, p, g1, g2), pk = gx1

1 gx2
2 and sk = (x1, x2). Then, B sends

(pp, pk, sk) to A. Receiving A’s output (c, r∗c , k, r∗k), B parses c = (u1, u2), r
∗
c =

(r, r′) and r∗k = (r̃, r̃′). Note that (c, r∗c) ∈ R∗c guarantees that u1 = gr1 and

u2 = gr
′

1 , and (k, r∗k) ∈ R∗k guarantees that k = gr̃1g
r̃′

2 = gr̃+ar̃
′

1 . When A wins the
game of key unexplainability, Decap(pp, sk, c) = k, which implies k = ux1

1 u
x2
2 =

grx1+r
′x2

1 . Hence, gr̃+ar̃
′

1 = grx1+r
′x2

1 . B can output a = rx1+r
′x2−r̃
r̃′ as the solution

of the DL problem. ⊓⊔

D.8 Proof of extended key unexplainability

Proof. Assume that there is a PPT adversary A winning the game of extended
key unexplainability with non-negligible probability. We show a PPT algorithm
B, making use of A to solve the DL problem with non-negligible probability, as
follows.

50

Given (G, p, g, ga), B firstly sets g1 = g and g2 = ga, samples (x1, x2)← Z∗p,
and sets pp = (G, p, g1, g2), pk = gx1

1 gx2
2 and sk = (x1, x2). Then, B sends

(pp, pk, sk) to A. Receiving A’s output (c, r∗c , kd, t, r
∗
k), B parses c = (u1, u2),

r∗c = (r, r′) and r∗k = (r̃, r̃′). Note that (c, r∗c) ∈ R∗c guarantees that u1 = gr1 and

u2 = gr
′

1 , and (kd, (t, r
∗
k)) ∈ Rd∗

k guarantees that kd = gr̃1g
r̃′

2 · t = gr̃+ar̃
′

1 · t. When
A wins the game of extended key unexplainability, dDecap(pp, sk, t, c) = kd,

which implies kd = ux1
1 u

x2
2 · t = grx1+r

′x2
1 · t. Hence, gr̃+ar̃

′

1 = grx1+r
′x2

1 . B can

output a = rx1+r
′x2−r̃
r̃′ as the solution of the DL problem. ⊓⊔

D.9 Proof of indistinguishability

Proof. Suppose that there exists a PPT adversary A winning the game of indis-
tinguishability with non-negligible probability. It is easy to construct a PPT algo-
rithm B that makes use of A to solve the DDH problem with non-negligible prob-
ability. Algorithm B is given a random tuple (G, p, g, ga, gb, Z), where Z = gab

or Z is uniformly and independently sampled in G. B runs A as follows.

B first sets g1 = g, g2 = ga, u1 = gb, u2 = Z. Then, it sends the public
parameter pp = (G, p, g1, g2) and the encapsulated ciphertext c = (u1, u2) to the
adversary A. Finally, A outputs a bit and B also outputs the bit.

Observe that, if Z = gab, then u1 = gb1, u2 = gb2, and from the perspective of
the adversary the distribution of the ciphertext c = (u1, u2) is identical to the
distribution of the well-formed encapsulated ciphertext generated by Encapc. If
Z is a random element in G, then u1, u2 are random elements in G, and from
the perspective of the adversary the distribution of the ciphertext c = (u1, u2) is
identical to the distribution of the ciphertext generated by Encap∗c . Therefore, if
A can win the game of indistinguishability with non-negligible probability, B can
make use of A to solve the DDH problem with non-negligible probability. ⊓⊔

D.10 Proof of SK-second-preimage resistance

Proof. Suppose that there exists a PPT adversary A winning the game of SK-
second-preimage resistance with non-negligible probability. It is easy to construct
a PPT algorithm B that makes use of A to solve the DL problem with non-
negligible probability. Algorithm B is given a random tuple (G, p, g, ga), and
runs A as follows.

B first sets g1 = g and g2 = ga. Next, it chooses x1, x2 ∈ Z∗p uniformly at
random, and generates a pair of public/secret keys (pk = gx1

1 gx2
2 , sk = (x1, x2)).

Then, B sends the public parameter pp = (G, p, g1, g2) and the pair of pub-
lic/secret keys (pk, sk) toA. The adversaryA outputs a secret key sk′ = (x′1, x

′
2).

If A wins the game of SK-second-preimage resistance, we have sk′ ̸= sk and

CheckKey(pp, sk′, pk) = 1. That is to say, g
x′
1

1 g
x′
2

2 = gx1
1 gx2

2 and x′1 ̸= x1, x
′
2 ̸= x2.

Therefore, B can output a = (x1−x′1)/(x′2−x2) as the solution of the DL prob-
lem. ⊓⊔

51

D.11 Proof of uniformity of sampled keys

Proof. It is evident that for any pp generated by KEMSetup and any t ∈ T , both
k′ ← SamEncK(pp) and k′′ ← dSamEncK(pp, t) are uniformly distributed over
K. So ∆(k, k′) = 0 and ∆(k, k′′) = 0 where k ← K. ⊓⊔

E Proof for Theorem 3

E.1 Proof of unforgeability

Proof. For any PPT adversary A attacking the unforgeability of MAMF, we
denote A’s input as (pp, pks, pkr, skAg, pkJ, skJ), and A’s final output as (m∗, σ∗).
Then, we parse σ∗ = (π̂, ĉ, k̂r, k̂J, ĉt). Let ŷ = (pp, pks, pkAg, pkJ, ĉ, k̂r, k̂J, ĉt,m

∗).

Let Qsig denote the messages that A has submitted to OFrank. Since NIZKR =
(Prove,Verify) is a NIZK proof obtained via applying the Fiat-Shamir transform
to Sigma protocols, we can further parse π̂ = (ĉm, ẑ). Note that A can query the
random oracle in the NIZK scheme NIZKR.

We present the following claim.

Claim. If A wins the game Gunforge
MAMF,S,A(λ), the challenger does not program the

random oracle on (pkr, ĉm, ŷ) during the generation of the responses to A’s
OFrank-oracle queries in Gunforge

MAMF,S,A(λ).

Proof (of Claim). Assume that A wins the game Gunforge
MAMF,S,A(λ), and A’s final

output satisfies (pkr, ĉm, ŷ) = (pk′r, cm
′, y′), where (pk′r, cm

′, y′) is extracted from
some signature σ′ = (π′, c′, k′r, k

′
J, c
′
t) output by the OFrank oracle (on some query

(pk′r,m
′) from A).

Then, we have pkr = pk′r and

(pp, pks, pkAg, pkJ, ĉ, k̂r, k̂J, ĉt,m
∗) = ŷ = y′ = (pp, pks, pkAg, pkJ, c

′, k′r, k
′
J, c
′
t,m

′),

which implies
(pkr,m

∗) = (pk′r,m
′) ∈ Qsig.

So in this case A cannot win the game Gunforge
MAMF,S,A(λ), contradicting the assump-

tion. ⊓⊔

Without loss of generality, we assume that (i) A has queried the random
oracle on (pkr, ĉm, ŷ) before returning its final output (m∗, σ∗); and (ii) for each
of A’s verification query (pk′s,m

′, σ′ = (π′, c′, k′r, k
′
J, c
′
t)) (parsing π′ = (cm′, z′)

and letting y′ = (pp, pk′s, pkAg, pkJ, c
′, k′r, k

′
J, c
′
t,m

′)), A has queried the random
oracle on (pkr, cm

′, y′) before submitting (pk′s,m
′, σ′) to OVerify. This assumption

holds without loss of generality, because if A does not make these queries, we
can easily construct another adversary, based on A, that makes these types of
random-oracle queries.

Hence, in this case, if A wins the game Gunforge
MAMF,S,A(λ), the challenger does

not program the random oracle on (pkr, ĉm, ŷ) until A queries the random oracle
on it.

52

Let evt denote the event that Verify(pp, pks, skr, pkAg, pkJ,m
∗, σ∗) = 1 where

(pkr,m
∗) /∈ Qsig. Then, we obtain

Advunforge
MAMF,S,A(λ) = Pr[Gunforge

MAMF,S,A(λ) = 1] = Pr[evt].

If we can show that Pr[evt] is negligible, then we finish this proof.
Assume that Pr[evt] is non-negligible.
Note that Verify(pp, pks, skr, pkAg, pkJ,m

∗, σ∗) = 1 implies that NIZKR.Verify

(pkr, π̂, ŷ) = 1. Since NIZKR is a NIZK proof system obtained via the Fiat-
Shamir transform from a Sigma protocol, according to a rewinding lemma [BS20,
Lemma 19.2] and knowledge soundness of the Sigma protocol, a witness x̂ for

ŷ (satisfying x̂ = (ŝks, t̂, r̂,⊥,⊥, r̂USPCE) or x̂ = (⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE)) can be
extracted with non-negligible probability. The reason is as follows.

Let qro denote the total number of random oracle queries (in the NIZK scheme
NIZKR) made by A. Since we assume that A has queried the random oracle on
(pkr, ĉm, ŷ) before returning its final output (m∗, σ∗), for j ∈ [qro], let evt

(j) de-
note the event that evt occurs and (pkr, ĉm, ŷ) is A’s j-th random oracle query.
Obviously, Pr[evt] =

∑qro
j=1 Pr[evt

(j)]. So the fact that Pr[evt] is non-negligible

implies that there must be some j∗ ∈ [qro], such that Pr[evt(j
∗)] is non-negligible.

On the other hand, when evt(j
∗) occurs, we can rewind back to the moment when

A made its j∗-th random oracle query, and respond with a fresh and uniformly
sampled value for this query (since the challenger does not program the random
oracle on (pkr, ĉm, ŷ) until A makes its j∗-th random oracle query). If evt(j

∗) oc-
curs again, we can use the knowledge soundness of the Sigma protocol to extract
a valid witness x̂ for ŷ. Since Pr[evt(j

∗)] is non-negligible, the rewinding lemma
[BS20, Lemma 19.2] guarantees that the witness can be extracted successfully
with non-negligible probability.

Hence, let evt
(ŝks,t̂,r̂,⊥,⊥,r̂USPCE) (resp., evt

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
) denote the event

that evt occurs and a witness x̂ = (ŝks, t̂, r̂,⊥,⊥, r̂USPCE) (resp., x̂ = (⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE))
for ŷ is successfully extracted.

Since Pr[evt] is non-negligible, we derive that at least one of Pr[evt
(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)]

and Pr[evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

] is non-negligible.

Case 1: If Pr[evt
(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)

] is non-negligible:

We show a PPT adversary B attacking the SK-second-preimage resistance of
dHPS-KEMΣ as follows.

Upon receiving (p̃p, p̃k, s̃k), B initializes a setQsig := ∅, runs (pkAg, skAg, apAg) :=
(ppUSPCE,mskUSPCE, apUSPCE) ← USPCE.Setup(λ,S) for some set S ⊆ U , runs
(pkUSPCE, skUSPCE)← USPCE.KG(ppUSPCE, apUSPCE), and runs (pk′J, sk

′
J)← dHPS-KEMΣKG(p̃p)

and (pkr, skr)← dHPS-KEMΣKG(p̃p). Then, B sets pp := p̃p, pkJ := (pkUSPCE, pk
′
J),

skJ := (skUSPCE, sk
′
J), and (pks, sks) := (p̃k, s̃k). Then, with these parameters, B

simulates Gunforge
MAMF,S,A(λ) for A. Note that B can answer A’s oracle queries by it-

self. Receiving A’s final output (m∗, σ∗), if evt
(ŝks,t̂,r̂,⊥,⊥,r̂USPCE) occurs, B returns

ŝks; otherwise, B returns a random secret key.

53

That is the construction of B. Now we analyze B’s advantage.
We note that B wins if and only if evt

(ŝks,t̂,r̂,⊥,⊥,r̂USPCE) occurs and ŝks ̸= sks,

i.e.,

Advsk-2pr
dHPS-KEMΣ,B(λ) = Pr[evt

(ŝks,t̂,r̂,⊥,⊥,r̂USPCE) ∧ (ŝks ̸= sks)]

= Pr[evt
(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)]− Pr[evt

(ŝks,t̂,r̂,⊥,⊥,r̂USPCE) ∧ (ŝks = sks)]

≥ Pr[evt
(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)]− Pr[ŝks = sks | evt(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)].

Next, we turn to analyze Pr[ŝks = sks | evt(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)]. From A’s point
of view, the information on sks beyond pks is released only in the responses
returned by OFrank. OFrank will not provide any information on sks beyond pks
except with negligible probability, because of the zero-knowledge property of
NIZKR (note that in Frank, sks is only used as a component of the witness to
generate the NIZK proof). Hence,

Pr[ŝks = sks | evt(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)] ≤ negl(λ).

SoAdvsk-2pr
dHPS-KEMΣ,B(λ) is non-negligible, contradicting the SK-second-preimage

resistance of dHPS-KEMΣ.

Case 2: If Pr[evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

] is non-negligible:

We show the proof with a sequence of games.

Game G0: This is the original game Gunforge
MAMF,S,A(λ). Specifically, the challenger

generates pp, (pkAg, skAg, apAg), (pkJ, skJ), (pks, sks) and (pkr, skr), and initializes
a set Qsig := ∅. It maintains a local array Lro to keep track of A’s random oracle
queries (we use CL to denote the range of the hash function modelled as a
random oracle in the NIZK scheme NIZKR). Subsequently, the challenger sends
(pp, pks, pkr, skAg, pkJ, skJ) to A, and answers A’s oracle queries as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, the challenger returns cl to A;
otherwise, it samples cl← CL, adds (str, cl) to Lro, and returns cl to A.

– OFrank(pk′r,m
′): The challenger generates σ′ ← Frank(pp, sks, pk

′
r, pkAg, pkJ,m

′),

sets Qsig := Qsig ∪ {(pk′r,m′)}, and returns σ′ to A.
– OVerify(pk′s,m

′, σ′): The challenger returns Verify(pp, pk′s, skr, pkAg, pkJ,m
′, σ′)

to A.

ReceivingA’s final output (m∗, σ∗), the challenger checks whether evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

occurs. If so, the challenger outputs 1; otherwise, it outputs 0. In the following,
we use Gi ⇒ 1 to denote that the challenger finally outputs 1 in game Gi

(i ∈ {0, 1, 2}).
Parse σ∗ = (π̂, ĉ, k̂r, k̂J, ĉt). Note that when evt

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
occurs, ĉ =

dHPS-KEMΣ.Encap∗c(ppKEM; r̂
∗
c).

Since G0 = Gunforge
MAMF,S,A(λ), we derive

Pr[G0 ⇒ 1] = Pr[evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

]. (5)

54

Game G1: This game is the same as G0, except that when evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

occurs, the challenger returns 0 if ĉ ∈ Cwell-f
pp . Note that the challenger can use

algorithm CheckCwel to check whether ĉ ∈ Cwell-f
pp (with the help of r̂∗c) efficiently.

The ciphertext unexplainability of dHPS-KEMΣ guarantees that

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ negl(λ). (6)

Game G2: This game is the same as G1, except that when A queries OVerify on
(pk′s,m

′, σ′), the challenger generates the response as follows:

(i) Parse σ′ = (π′, c′, k′r, k
′
J, c
′
t). Let y

′ = (pp, pk′s, pkAg, pkJ, c
′, k′r, k

′
J, c
′
t,m

′).

(ii) If NIZKR.Verify(pkr, π
′, y′) = 0, return 0 to A.

(iii) Check whether c′ ∈ Cwell-f
pp or not (with the help of some unbounded algo-

rithm):
- If c′ /∈ Cwell-f

pp , return 0 to A directly.

- If c′ ∈ Cwell-f
pp , find r′ ∈ dHPS-KEMΣ.RS (with the help of some un-

bounded algorithm) satisfying dHPS-KEMΣ.Encapc(pp; r
′) = c′. Then,

the challenger checks whether dHPS-KEMΣ.Encapk(pp, pkr; r
′) = k′r or

not. If so, it returns 1 to A; otherwise, it returns 0 to A.

We stress that G2 is an inefficient game.
Let bad denote the event that “A submits a verification query (pk′s,m

′, σ′ =
(π′, c′, k′r, k

′
J, c
′
t)) satisfying that (i) NIZKR.Verify(pkr, π

′, y′) = 1 (where y′ =

(pp, pk′s, pkAg, pkJ, c
′, k′r, k

′
J, c
′
t,m

′)), (ii) c′ ∈ C∗pp\Cwell-f
pp , and (iii) dHPS-KEMΣ.Decap(pp,

skr, c
′) = k′r.” Note that from A’s point of view, G2 and G1 are identical except

that bad occurs. The universality of dHPS-KEMΣ guarantees that the probability
that bad occurs is negligible (note that when c′ ∈ C∗pp \ Cwell-f

pp , an unbounded al-

gorithm can trivially find r′ satisfying c′ = dHPS-KEMΣ.Encap∗c(pp; r
′)). Hence,

|Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ Pr[bad] ≤ negl(λ). (7)

Next, we show an unbounded adversary B′, which simulates G2 for A, at-
tacking the universality of dHPS-KEMΣ as follows.

Receiving (p̃p, p̃k), B′ initializes a set Qsig := ∅, runs (pkAg, skAg, apAg) :=
(ppUSPCE,mskUSPCE, apUSPCE) ← USPCE.Setup(λ,S) for some set S ⊆ U , runs
(pkUSPCE, skUSPCE)← USPCE.KG(ppUSPCE, apUSPCE), and runs (pk′J, sk

′
J)← dHPS-KEMΣ.KG(p̃p)

and (pks, sks)← dHPS-KEMΣ.KG(p̃p). Then, B′ sets pp := p̃p, pkJ := (pkUSPCE, pk
′
J),

skJ := (skUSPCE, sk
′
J) and pkr := p̃k. B′ maintains a local array Lro to keep track

of A’s random oracle queries (here we use CL to denote the range of the hash
function modelled as a random oracle in the NIZK scheme NIZKR). With these
parameters, B′ simulates G2 for A, answering A’s oracle queries as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, B′ returns cl; otherwise, B′ samples
cl← CL, adds (str, cl) to Lro, and returns cl.

– OFrank(pk′r,m
′): B′ generates σ′ ← Frank(pp, sks, pk

′
r, pkAg, pkJ,m

′), setsQsig :=

Qsig ∪ {(pk′r,m′)}, and returns σ′ to A.

55

– OVerify(pk′s,m
′, σ′): B′ generates the response as follows:

(i) Parse σ′ = (π′, c′, k′r, k
′
J, c
′
t). Let y

′ = (pp, pk′s, pkAg, pkJ, c
′, k′r, k

′
J, c
′
t,m

′).

(ii) If NIZKR.Verify(pkr, π
′, y′) = 0, B′ returns 0 to A.

(iii) B′ checks whether c′ ∈ Cwell-f
pp or not (with the help of some unbounded

algorithm):
- If c′ /∈ Cwell-f

pp , B′ returns 0 to A directly.

- If c′ ∈ Cwell-f
pp , B′ finds r′ ∈ dHPS-KEMΣ.RS (with the help of some

unbounded algorithm) satisfying dHPS-KEMΣ.Encapc(pp; r
′) = c′.

Then, B′ checks whether dHPS-KEMΣ.Encapk(pp, pkr; r
′) = k′r or not.

If so, it returns 1 to A; otherwise, it returns 0 to A.

Receiving A’s final output (m∗, σ∗), since B′ cannot check whether evt occurs
by itself (because it does not have skr), it proceeds as follows.

(1) If (pkr,m
∗) ∈ Qsig, then B′ aborts the simulation and returns a random tuple

(cran, kran, r
∗
ran) as its final output.

(2) Parse σ∗ = (π̂, ĉ, k̂r, k̂J, ĉt). Let ŷ = (pp, pks, pkAg, pkJ, ĉ, k̂r, k̂J, ĉt,m
∗).

(3) If NIZKR.Verify(pkr, ŷ, π̂) = 0, B′ aborts the simulation and returns a random
tuple (cran, kran, r

∗
ran) as its final output.

(4) If NIZKR.Verify(pkr, ŷ, π̂) = 1, extract a witness x̂ for ŷ (via the rewinding

technique) such that x̂ = (ŝks, t̂, r̂,⊥,⊥, r̂USPCE) or x̂ = (⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE):
- If x̂ = (ŝks, t̂, r̂,⊥,⊥, r̂USPCE), B′ aborts the simulation and returns a
random tuple (cran, kran, r

∗
ran) as its final output.

- If x̂ = (⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE), B′ firstly checks whether ĉ ∈ Cwell-f
pp or not.

If so, B′ aborts the simulation and returns a random tuple (cran, kran, r
∗
ran)

as its final output. Otherwise, B′ returns (ĉ, k̂r, r̂∗c) as its final output.

That is the construction of B′.
It is evident that B′ perfectly simulates G2 for A. Note that evt occurs if and

only if Verify(pp, pks, skr, pkAg, pkJ,m
∗, σ∗) = 1 (where (pkr,m

∗) /∈ Qsig), which

implies that dHPS-KEMΣ.Decap(pp, skr, ĉ) = k̂r.
So we obtain

Advuniv
dHPS-KEMΣ,B′(λ) ≥ Pr[G2 ⇒ 1]. (8)

Combining equations (5)-(8), we obtain that

Advuniv
dHPS-KEMΣ,B′(λ) ≥ Pr[evt

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,ÛSPCE)
]− negl(λ),

which is also non-negligible, contradicting the universality of dHPS-KEMΣ. ⊓⊔

E.2 Proof of receiver binding

Proof. For any PPT adversary A attacking the receiver-binding property of
MAMF, we denote A’s input as (pp, pks, skAg, pkJ), and A’s final output as

(pk∗r ,m
∗, σ∗, tk∗). Then, we parse σ∗ = (π̂, ĉ, k̂r, k̂J, ĉt). Let ŷ = (pp, pks, pkAg, pkJ, ĉ, k̂r, k̂J,

56

ĉt,m
∗). LetQsig denote the tuples thatA has submitted toOFrank. Since NIZKR =

(Prove,Verify) is a NIZK proof obtained applying the Fiat-Shamir transform to
Sigma protocols, we can further parse π̂ = (ĉm, ẑ). Note that A can query the
random oracle in the NIZK scheme NIZKR.

We present the following claim, the proof of which is almost the same as that
of the claim in Appendix E.1. So we omit it here.

Claim. If A wins the game Gr-bind
MAMF,S,A(λ), the challenger does not program the

random oracle on (pk∗r , ĉm, ŷ) during the generation of the responses to A’s
OFrank-oracle queries in Gr-bind

MAMF,S,A(λ).

Without loss of generality, we assume that (i) A has queried the random
oracle on (pk∗r , ĉm, ŷ) before returning its final output (pk∗r ,m

∗, σ∗); and (ii) for
each of A’s judge query (pk′s, pk

′
r,m

′, σ′ = (π′, c′, k′r, k
′
J, c
′
t), tk

′) (parsing π′ =
(cm′, z′) and letting y′ = (pp, pk′s, pkAg, pkJ, c

′, k′r, k
′
J, c
′
t,m

′)), A has queried the
random oracle on (pk′r, cm

′, y′) before submitting (pk′s, pk
′
r,m

′, σ′, tk′) to OJudge.
This assumption holds without loss of generality, because if A does not make
these queries, we can easily construct another adversary, based on A, that makes
these types of random-oracle queries.

Hence, in this case, if A wins the game Gr-bind
MAMF,S,A(λ), the challenger does

not program the random oracle on (pk∗r , ĉm, ŷ) until A queries the random oracle
on it.

Let evt denote the event that Judge(pp, pks, pk
∗
r , pkAg, skJ,m

∗, σ∗, tk∗) = 1
where (pk∗r ,m

∗) ̸∈ Qsig.
Obviously, we have

Advr-bind
MAMF,S,A(λ) = Pr[Gr-bind

MAMF,S,A(λ) = 1] = Pr[evt].

If we can show that Pr[evt] is negligible, then we finish this proof.
Assume that Pr[evt] is non-negligible.
Note that Judge(pp, pks, pk

∗
r , pkAg, skJ,m

∗, σ∗, tk∗) = 1 implies that NIZKR.Verify

(pk∗r , π̂, ŷ) = 1. Since NIZKR is a NIZK proof system obtained via the Fiat-
Shamir transform from a Sigma protocol, according to a rewinding lemma [BS20,
Lemma 19.2] and knowledge soundness of the Sigma protocol, a witness x̂ for

ŷ (satisfying x̂ = (ŝks, t̂, r̂,⊥,⊥, r̂USPCE) or x̂ = (⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE)) can be
extracted with non-negligible probability. The reason is as follows.

Let qro denote the total number of random oracle queries (in the NIZK scheme
NIZKR) made by A. Since we assume that A has queried the random oracle
on (pk∗r , ĉm, ŷ) before returning its final output (pk∗r ,m

∗, σ∗, tk∗), for j ∈ [qro],
let evt(j) denote the event that evt occurs and (pk∗r , ĉm, ŷ) is A’s j-th random
oracle query. Obviously, Pr[evt] =

∑qro
j=1 Pr[evt

(j)]. So the fact that Pr[evt] is

non-negligible implies that there must be some j∗ ∈ [qro], such that Pr[evt(j
∗)]

is non-negligible. On the other hand, when evt(j
∗) occurs, we can rewind back

to the moment when A made its j∗-th random oracle query, and respond with a
fresh and uniformly sampled value for this query (since the challenger does not
program the random oracle on (pk∗r , ĉm, ŷ) until A makes its j∗-th random oracle
query). If evt(j

∗) occurs again, we can use the knowledge soundness of the Sigma

57

protocol to extract a valid witness x̂ for ŷ. Since Pr[evt(j
∗)] is non-negligible,

the rewinding lemma [BS20, Lemma 19.2] guarantees that the witness can be
extracted successfully with non-negligible probability.

Hence, let evt
(ŝks,t̂,r̂,⊥,⊥,r̂USPCE) (resp., evt

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
) denote the event

that evt occurs and a witness x̂ = (ŝks, t̂, r̂,⊥,⊥, r̂USPCE) (resp., x̂ = (⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE))
for ŷ is successfully extracted. Since Pr[evt] is non-negligible, we derive that at
least one of Pr[evt

(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)] and Pr[evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

] is non-negligible.

Case 1: If Pr[evt
(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)

] is non-negligible:

We show a PPT adversary B attacking the SK-second-preimage resistance of
dHPS-KEMΣ as follows.

Upon receiving (p̃p, p̃k, s̃k), B initializes a setQsig := ∅, runs (pkAg, skAg, apAg) :=
(ppUSPCE,mskUSPCE, apUSPCE) ← USPCE.Setup(λ,S) for some set S ⊆ U , runs
(pkUSPCE, skUSPCE)← USPCE.KG(ppUSPCE, apUSPCE), and runs (pk′J, sk

′
J)← dHPS-KEMΣ.KG(p̃p).

B sets pp := p̃p, pkJ := (pkUSPCE, pk
′
J), skJ := (skUSPCE, sk

′
J), and (pks, sks) :=

(p̃k, s̃k). Then, with these parameters, B simulates Gr-bind
MAMF,S,A(λ) for A. Note

that B can answerA’s oracle queries by itself. ReceivingA’s final output (pk∗r ,m∗, σ∗,
tk∗), if evt

(ŝks,t̂,r̂,⊥,⊥,r̂USPCE) occurs, B returns ŝks; otherwise, B returns a random

secret key.

That is the construction of B. Now we analyze B’s advantage.
We note that B wins if and only if evt

(ŝks,t̂,r̂,⊥,⊥,r̂USPCE) occurs and ŝks ̸= sks,

i.e.,

Advsk-2pr
dHPS-KEMΣ,B(λ) = Pr[evt

(ŝks,t̂,r̂,⊥,⊥,r̂USPCE) ∧ (ŝks ̸= sks)]

= Pr[evt
(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)]− Pr[evt

(ŝks,t̂,r̂,⊥,⊥,r̂USPCE) ∧ (ŝks = sks)]

≥ Pr[evt
(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)]− Pr[ŝks = sks | evt(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)].

Next, we turn to analyze Pr[ŝks = sks | evt(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)]. From A’s point
of view, the information on sks beyond pks is released only in the responses
returned by OFrank. OFrank will not provide any information on sks beyond pks
except with negligible probability, because of the zero-knowledge property of
NIZKR (note that during the execution of Frank, the secret key is only used as
a component of the witness to generate the NIZK proof). Hence,

Pr[ŝks = sks | evt(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)] ≤ negl(λ).

SoAdvsk-2pr
dHPS-KEMΣ,B(λ) is non-negligible, contradicting the SK-second-preimage

resistance of dHPS-KEMΣ.

Case 2: If Pr[evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

] is non-negligible:

We show the proof with a sequence of games.

Game G0: This is the original game Gr-bind
MAMF,S,A(λ). Specifically, the challenger

generates pp, (pkAg, skAg, apAg), (pkJ, skJ) and (pks, sks), and initializes a set
Qsig := ∅. It maintains a local array Lro to keep track of A’s random oracle
queries (we use CL to denote the range of the hash function modelled as a

58

random oracle in the NIZK scheme NIZKR). Subsequently, the challenger sends
(pp, pks, skAg, pkJ) to A, and answers A’s oracle queries as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, the challenger returns cl to A;
otherwise, it samples cl← CL, adds (str, cl) to Lro, and returns cl to A.

– OFrank(pk′r,m
′): The challenger generates σ′ ← Frank(pp, sks, pk

′
r, pkAg, pkJ,m

′),

sets Qsig := Qsig ∪ {(pk′r,m′)}, and returns σ′ to A.
– OJudge(pk′s, pk

′
r,m

′, σ′, tk′): The challenger returns Judge(pp, pk′s, pk
′
r, pkAg, skJ,

m′, σ′, tk′) to A.

Receiving A’s final output (pk∗r ,m
∗, σ∗, tk∗), the challenger checks whether

evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

occurs. If so, the challenger outputs 1; otherwise, it outputs

0. In the following, we use Gi ⇒ 1 to denote that the challenger finally outputs
1 in game Gi (i ∈ {0, 1, 2}).

Parse σ∗ = (π̂, ĉ, k̂r, k̂J, ĉt). Note that when evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

occurs, ĉ =

dHPS-KEMΣ.Encap∗c(pp; r̂
∗
c).

Since G0 = Gr-bind
MAMF,S,A(λ), we derive

Pr[G0 ⇒ 1] = Pr[evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

]. (9)

Game G1: This game is the same as G0, except that when evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

occurs, the challenger returns 0 if ĉ ∈ Cwell-f
pp . Note that the challenger can use

algorithm CheckCwel to check whether ĉ ∈ Cwell-f
pp (with the help of r̂∗c) efficiently.

The ciphertext unexplainability of dHPS-KEMΣ guarantees that

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ negl(λ). (10)

Game G2: This game is the same as G1, except that when A queries OJudge on
(pk′s, pk

′
r,m

′, σ′, tk′), the challenger generates the response as follows:

(i) Parse σ′ = (π′, c′, k′r, k
′
J, c
′
t). Let y

′ = (pp, pk′s, pkAg, pkJ, c
′, k′r, k

′
J, c
′
t,m

′).

(ii) If NIZKR.Verify(pk′r, π
′, y′) = 0, return 0 to A.

(iii) Check whether c′ ∈ Cwell-f
pp or not (with the help of some unbounded algo-

rithm):
- If c′ /∈ Cwell-f

pp , return 0 to A directly.

- If c′ ∈ Cwell-f
pp , find r′ ∈ dHPS-KEMΣ.RS (with the help of some un-

bounded algorithm) satisfying dHPS-KEMΣ.Encapc(pp; r
′) = c′. Then,

the challenger proceeds as follows:
• If tk′ ̸= ⊥, it computes t′ ← USPCE.Dec(ppUSPCE, skUSPCE, c

′
t, tk

′),
where ppUSPCE = pkAg and skUSPCE is from skJ. It checks whether

dHPS-KEMΣ.dEncapk(pp, pk
′
J, t
′; r′) = k′J or not. If so, it returns 1 to

A; otherwise, it returns 0 to A.
• If tk′ = ⊥, it computes St ← USPCE.Dec(ppUSPCE, skUSPCE, c

′
t,⊥). If

there is some t′ ∈ St satisfying dHPS-KEM
Σ.dEncapk(pp, pk

′
J, t
′; r′) =

k′J, it returns 1 to A; otherwise, it returns 0 to A.

59

We stress that G2 is an inefficient game.
Let bad denote the event that “A submits a judge query (pk′s, pk

′
r,m

′, σ′ =
(π′, c′, k′r, k

′
J, c
′
t), tk

′) satisfying that (i) NIZKR.Verify(pk′r, π
′, y′) = 1 (where y′ =

(pp, pk′s, pkAg, pkJ, c
′, k′r, k

′
J, c
′
t,m

′)), (ii) c′ ∈ C∗pp\Cwell-f
pp , and (iii) dHPS-KEMΣ.dDecap

(pp, sk′J, t
′, c′) = k′J, where t

′ ← USPCE.Dec(ppUSPCE, skUSPCE, c
′
t, tk

′) when tk′ ̸=
⊥, or t′ ∈ St ← USPCE.Dec(ppUSPCE, skUSPCE, c

′
t,⊥) when tk′ = ⊥.” Note that

from A’s point of view, G2 and G1 are identical except that bad occurs. The
extended universality of dHPS-KEMΣ guarantees that the probability that bad
occurs is negligible (note that when c′ ∈ C∗pp \ Cwell-f

pp , an unbounded algorithm

can trivially find r′ satisfying c′ = dHPS-KEMΣ.Encap∗c(pp; r
′)). Hence

|Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ Pr[bad] ≤ negl(λ). (11)

Next, we show an unbounded adversary B′, which simulates G2 for A, at-
tacking the extended universality of dHPS-KEMΣ as follows.

Receiving (p̃p, p̃k), B′ initializes a set Qsig := ∅, runs (pkAg, skAg, apAg) :=
(ppUSPCE,mskUSPCE, apUSPCE) ← USPCE.Setup(λ,S) for some set S ⊆ U and
runs (pkUSPCE, skUSPCE) ← USPCE.KG(ppUSPCE, apUSPCE). Subsequently, B′ sets
pp := p̃p and pkJ := (pkUSPCE, p̃k), and runs (pks, sks) ← dHPS-KEMΣ.KG(p̃p).
B′ maintains a local array Lro to keep track of A’s random oracle queries (here
we use CL to denote the range of the hash function modelled as a random oracle
in the NIZK scheme NIZKR). Then, with these parameters, B′ simulates G2 for
A, answering A’s oracle queries as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, B′ returns cl; otherwise, B′ samples
cl← CL, adds (str, cl) to Lro, and returns cl.

– OFrank(pk′r,m
′): B′ generates σ′ ← Frank(pp, sks, pk

′
r, pkAg, pkJ,m

′), setsQsig :=

Qsig ∪ {(pk′r,m′)}, and returns σ′ to A.
– OJudge(pk′s, pk

′
r,m

′, σ′, tk′): B′ generates the response as follows.

(i) Parse σ′ = (π′, c′, k′r, k
′
J, c
′
t). Let y

′ = (pp, pk′s, pkAg, pkJ, c
′, k′r, k

′
J, c
′
t,m

′).

(ii) If NIZKR.Verify(pk′r, π
′, y′) = 0, return 0 to A.

(iii) B′ checks whether c′ ∈ Cwell-f
pp or not:

- If c′ /∈ Cwell-f
pp , B′ returns 0 to A directly.

- If c′ ∈ Cwell-f
pp , B′ find r′ ∈ dHPS-KEMΣ.RS (with the help of some

unbounded algorithm) satisfying dHPS-KEMΣ.Encapc(pp; r
′) = c′.

Then, B′ proceeds as follows:
• If tk′ ̸= ⊥, it computes t′ ← USPCE.Dec(ppUSPCE, skUSPCE, c

′
t, tk

′),
where ppUSPCE = pkAg and skUSPCE is from skJ. It checks whether

dHPS-KEMΣ.dEncapk(pp, pk
′
J, t
′; r′) = k′J or not. If so, it returns

1 to A; otherwise, it returns 0 to A.
• If tk′ = ⊥, it computes St ← USPCE.Dec(ppUSPCE, skUSPCE, c

′
t,⊥).

If there is some t′ ∈ St satisfying dHPS-KEM
Σ.dEncapk(pp, pk

′
J, t
′;

r′) = k′J, it returns 1 to A; otherwise, it returns 0 to A.

Receiving A’s final output (pk∗r ,m∗, σ∗, tk
∗), since B′ cannot check whether

evt occurs by itself (because it does not have sk′J), it proceeds as follows.

60

(1) If (pk∗r ,m
∗) ∈ Qsig, then B′ aborts the simulation and returns a random

tuple (cran, kran, r
∗
ran, tran) as its final output.

(2) Parse σ∗ = (π̂, ĉ, k̂r, k̂J, ĉt). Let ŷ = (pp, pks, pkAg, pkJ, ĉ, k̂r, k̂J, ĉt,m
∗).

(3) If NIZKR.Verify(pk∗r , ŷ, π̂) = 0, then B′ aborts the simulation and returns a
random tuple (cran, kran, r

∗
ran, tran) as its final output.

(4) If NIZKR.Verify(pk∗r , ŷ, π̂) = 1, extract a witness x̂ for ŷ (via the rewinding

technique) such that x̂ = (ŝks, t̂, r̂,⊥,⊥, r̂USPCE) or x̂ = (⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE):
- If x̂ = (ŝks, t̂, r̂,⊥,⊥, r̂USPCE), B′ aborts the simulation and returns a
random tuple (cran, kran, r

∗
ran, tran) as its final output.

- If x̂ = (⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE), B′ firstly checks whether ĉ ∈ Cwell-f
pp . If so,

B′ aborts the simulation and returns a random tuple (cran, kran, r
∗
ran, tran)

as its final output. Otherwise, B′ proceeds as follows:
• If tk∗ ̸= ⊥, it computes t̂′ = USPCE.Dec(ppUSPCE, skUSPCE, ĉt, tk

∗),

and returns (ĉ, k̂J, r̂∗c , t̂
′) as its final output.

• If tk′ = ⊥, it computes St ← USPCE.Dec(ppUSPCE, skUSPCE, c
′
t,⊥),

uniformly samples t̂′ ← St, and returns (ĉ, k̂J, r̂∗c , t̂
′) as its final out-

put.

That is the construction of B′.
It is evident that B′ perfectly simulates G2 for A. Note that evt occurs

if and only if Judge(pp, pks, pk
∗
r , pkAg, skJ,m

∗, σ∗, tk∗) = 1 (where (pk∗r ,m
∗) ̸∈

Qsig), which implies that dHPS-KEMΣ.dDecap(pp, skJ, t̂′, ĉ) = k̂J (where t̂′ =

USPCE.Dec(ppUSPCE, skUSPCE, ĉt, tk
∗) when tk∗ ̸= ⊥, or t̂′ ∈ USPCE.Dec(ppUSPCE,

skUSPCE, c
′
t,⊥) when tk∗ = ⊥).

Considering that |St| ≤ poly(λ) for some polynomial poly(λ), we obtain

Advex-univ
dHPS-KEMΣ,B′(λ) ≥

1

poly(λ)
Pr[G2 ⇒ 1]. (12)

Combining equations (9)-(12), we obtain that

Advex-univ
dHPS-KEMΣ,B′(λ) ≥

1

poly(λ)
Pr[evt

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,ÛSPCE)
]− negl(λ),

which is also non-negligible, contradicting the extended universality of dHPS-KEMΣ.
⊓⊔

E.3 Proof of sender binding

Proof. For any PPT adversaryA attacking the sender-binding property ofMAMF,
we denoteA’s input as (pp, pkr, skAg, pkJ), andA’s final output as (pk∗s ,m∗, σ∗, tk

∗).

Then, we parse σ∗ = (π̂, ĉ, k̂r, k̂J, ĉt). Let ŷ = (pp, pks, pkAg, pkJ, ĉ, k̂r, k̂J, ĉt,m
∗).

Since NIZKR = (Prove,Verify) is a NIZK proof obtained applying the Fiat-
Shamir transform to Sigma protocols, we can further parse π̂ = (ĉm, ẑ). Note
that A can query the random oracle in the NIZK scheme NIZKR.

61

Without loss of generality, we assume that (i) A has queried the random or-
acle on (pkr, ĉm, ŷ) before returning its final output (pk∗s ,m

∗, σ∗); (ii) for each of
A’s verification query (pk′s,m

′, σ′ = (π′, c′, k′r, k
′
J, c
′
t)) (parsing π

′ = (cm′, z′) and
letting y′ = (pp, pk′s, pkAg, pkJ, c

′, k′r, k
′
J, c
′
t,m

′)), A has queried the random oracle
on (pkr, cm

′, y′) before submitting (pk′s,m
′, σ′) to OVerify; and (iii) for each of A’s

judge query (pk′s, pk
′
r,m

′, σ′ = (π′, c′, k′r, k
′
J, c
′
t), tk

′) (parsing π′ = (cm′, z′) and
letting y′ = (pp, pk′s, pkAg, pkJ, c

′, k′r, k
′
J, c
′
t,m

′)), A has queried the random oracle
on (pk′r, cm

′, y′) before submitting (pk′s, pk
′
r,m

′, σ′, tk′) to OJudge. This assump-
tion holds without loss of generality, because if A does not make these queries,
we can easily construct another adversary, based on A, that makes these types
of random-oracle queries.

Hence, in this case, the challenger in game Gs-bind
MAMF,S,A(λ) does not program

the random oracle on (pkr, ĉm, ŷ) until A queries the random oracle on it.

Let evt denote the event that (Verify(pp, pk∗s , skr, pkAg, pkJ,m
∗, σ∗) = 1) ∧

(Judge(pp, pk∗s , pkr, pkAg, skJ,m
∗, σ∗, tk∗) = 0), where tk∗ satisfiesWellFormtk(pp,

pkJ, tk
∗) = 1 when m∗ ̸∈ S, and tk∗ = ⊥ when m∗ ∈ S.

We derive

Advs-bind
MAMF,S,A(λ) = Pr[evt].

Thus, what remains is to prove that Pr[evt] is negligible.

Assume that Pr[evt] is non-negligible.

Note that when evt occurs, we have Verify(pp, pk∗s , skr, pkAg, pkJ,m
∗, σ∗) = 1,

which implies that NIZKR.Verify(pkr, π̂, ŷ) = 1. Since NIZKR is a NIZK proof
system obtained via the Fiat-Shamir transform from a Sigma protocol, according
to a rewinding lemma [BS20, Lemma 19.2] and knowledge soundness of the

Sigma protocol, a witness x̂ for ŷ (satisfying x̂ = (ŝks, t̂, r̂,⊥,⊥, r̂USPCE) or x̂ =

(⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE)) can be extracted with non-negligible probability. The
reason is as follows.

Let qro denote the total number of random oracle queries (in the NIZK scheme
NIZKR) made by A. Since A has queried the random oracle on (pkr, ĉm, ŷ) before
returning its final output (pk∗s ,m

∗, σ∗, tk∗), for j ∈ [qro], let evt(j) denote the
event that evt occurs and (pkr, ĉm, ŷ) is A’s j-th random oracle query. Obviously,
Pr[evt] =

∑qro
j=1 Pr[evt

(j)]. So the fact that Pr[evt] is non-negligible implies that

there must be some j∗ ∈ [qro], such that Pr[evt(j
∗)] is non-negligible. On the other

hand, when evt(j
∗) occurs, we can rewind back to the moment when A made its

j∗-th random oracle query, and respond with a fresh and uniformly sampled
value for this query (since the challenger does not program the random oracle
on (pkr, ĉm, ŷ) until A makes its j∗-th random oracle query). If evt(j

∗) occurs
again, we can use the knowledge soundness of the Sigma protocol to extract a
valid witness x̂ for ŷ. Since Pr[evt(j

∗)] is non-negligible, the rewinding lemma
[BS20, Lemma 19.2] guarantees that the witness can be extracted successfully
with non-negligible probability.

Note that when Verify(pp, pk∗s , skr, pkAg, pkJ,m
∗, σ∗) = 1, if the extracted wit-

ness x̂ for ŷ is (ŝks, t̂, r̂,⊥,⊥, r̂USPCE) , then Judge(pp, pk∗s , pkr, pkAg, skJ,m
∗, σ∗,

tk∗) = 1 for the aforementioned tk∗. In this case, evt does not occur.

62

Hence, when evt occurs, the extracted witness for ŷ must be x̂ = (⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE).
Let evt

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
denote the event that evt occurs and a witness x̂ =

(⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE) for ŷ is successfully extracted. Since Pr[evt] is non-negligible,
we derive that Pr[evt

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
] is also non-negligible.

Now, we consider a sequence of games.
Game G0: This is the original game Gs-bind

MAMF,S,A(λ). Specifically, the challenger
generates pp, (pkAg, skAg, apAg), (pkJ, skJ) and (pkr, skr), and maintains a local
array Lro to keep track of A’s random oracle queries (here we use CL to denote
the range of the hash function modeled as a random oracle in the NIZK scheme
NIZKR). Subsequently, the challenger sends (pp, pkr, skAg, pkJ) to A, and answers
A’s oracle queries as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, the challenger returns cl to A;
otherwise, it uniformly samples cl← CL, adds (str, cl) to Lro, and returns cl
to A.

– OVerify(pk′s,m
′, σ′): The challenger returns Verify(pp, pk′s, skr, pkAg, pkJ,m

′, σ′)
to A.

– OJudge(pk′s, pk
′
r,m

′, σ′, tk′): The challenger returns Judge(pp, pk′s, pk
′
r, pkAg, skJ,

m′, σ′, tk′) to A.

Receiving A’s final output (pk∗s ,m
∗, σ∗, tk∗), the challenger checks whether

evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

occurs. If so, the challenger outputs 1; otherwise, it outputs

0. In the following, we use Gi ⇒ 1 to denote that the challenger finally outputs
1 in game Gi (i ∈ {0, 1, 2}).

Parse σ∗ = (π̂, ĉ, k̂r, k̂J, ĉt). Note that when evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

occurs, ĉ =

dHPS-KEMΣ.Encap∗c(ppKEM; r̂
∗
c).

Since G0 = Gs-bind
MAMF,S,A(λ), we derive

Pr[G0 ⇒ 1] = Pr[evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

]. (13)

Game G1: This game is the same as G0, except that when evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

occurs, the challenger returns 0 if ĉ ∈ Cwell-f
pp . Note that the challenger can use

algorithm CheckCwel to check whether ĉ ∈ Cwell-f
pp (with the help of r̂∗c) efficiently.

The ciphertext unexplainability of dHPS-KEMΣ guarantees that

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ negl(λ). (14)

Game G2: This game is the same as G1, except that when A queries OVerify on
(pk′s,m

′, σ′), the challenger generates the response as follows:

(i) Parse σ′ = (π′, c′, k′r, k
′
J, c
′
t). Let y

′ = (pp, pk′s, pkAg, pkJ, c
′, k′r, k

′
J, c
′
t,m

′).

(ii) If NIZKR.Verify(pkr, π
′, y′) = 0, return 0 to A.

(iii) Check whether c′ ∈ Cwell-f
pp or not (with the help of some unbounded algo-

rithm):
- If c′ /∈ Cwell-f

pp , return 0 to A directly.

63

- If c′ ∈ Cwell-f
pp , find r′ ∈ dHPS-KEMΣ.RS (with the help of some un-

bounded algorithm) satisfying dHPS-KEMΣ.Encapc(pp; r
′) = c′. Then,

the challenger checks whether dHPS-KEMΣ.Encapk(pp, pkr; r
′) = k′r or

not. If so, it returns 1 to A; otherwise, it returns 0 to A.

We stress that G2 is an inefficient game.
Let bad denote the event that “A submits a verification query (pk′s,m

′, σ′ =
(π′, c′, k′r, k

′
J, c
′
t)) satisfying that (i) NIZKR.Verify(pkr, π

′, y′) = 1 (where y′ =

(pp, pk′s, pkAg, pkJ, c
′, k′r, k

′
J, c
′
t,m

′)), (ii) c′ ∈ C∗pp\Cwell-f
pp , and (iii) dHPS-KEMΣ.Decap(pp,

skr, c
′) = k′r”. Note that from A’s point of view, G2 and G1 are identical except

that bad occurs. The universality of dHPS-KEMΣ guarantees that the probability
that bad occurs is negligible (note that when c′ ∈ C∗pp \ Cwell-f

pp , an unbounded al-

gorithm can trivially find r′ satisfying c′ = dHPS-KEMΣ.Encap∗c(pp; r
′)). Hence,

|Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ Pr[bad] ≤ negl(λ). (15)

Next, we show an unbounded adversary B, which simulates G2 for A, at-
tacking the universality of dHPS-KEMΣ as follows.

Upon receiving (p̃p, p̃k), B runs (pkAg, skAg, apAg) := (ppUSPCE,mskUSPCE, apUSPCE)←
USPCE.Setup(λ,S) for some set S ⊆ U , (pk′J, sk′J) ← dHPS-KEMΣ.KG(p̃p), and
(pkUSPCE, skUSPCE) ← USPCE.KG(ppUSPCE, apUSPCE). B sets pp := p̃p, pkJ =
(pkUSPCE, pk

′
J), skJ = (skUSPCE, sk

′
J), and pkr := p̃k. B maintains a local ar-

ray Lro to keep track of A’s random oracle queries (here we use CL to denote
the range of the hash function modelled as a random oracle in the NIZK scheme
NIZKR). Then, with these parameters, B simulates G2 for A, answering A’s
oracle queries as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, B returns cl; otherwise, B uniformly
samples cl← CL, adds (str, cl) to Lro, and returns cl.

– OVerify(pk′s,m
′, σ′): B proceeds as follows:

(i) Parse σ′ = (π′, c′, k′r, k
′
J, c
′
t). Let y

′ = (pp, pk′s, pkAg, pkJ, c
′, k′r, k

′
J, c
′
t,m

′).

(ii) If NIZKR.Verify(pkr, π
′, y′) = 0, return 0 to A.

(iii) Check whether c′ ∈ Cwell-f
pp or not:

- If c′ /∈ Cwell-f
pp , return 0 to A directly.

- If c′ ∈ Cwell-f
pp , find r′ ∈ dHPS-KEMΣ.RS (with the help of some

unbounded algorithm) satisfying dHPS-KEMΣ.Encapc(pp; r
′) = c′.

Then, B checks whether dHPS-KEMΣ.Encapk(pp, pkr; r
′) = k′r or not.

If so, it returns 1 to A; otherwise, it returns 0 to A.
– OJudge(pk′s, pk

′
r,m

′, σ′, tk′): B returns Judge(pp, pk′s, pk
′
r, pkAg, skJ,m

′, σ′, tk′)
to A.

Receiving A’s final output (pk∗s ,m
∗, σ∗, tk∗), since B cannot check whether

evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

occurs by itself (because it does not have skr), it proceeds

as follows.

(1) Parse σ∗ = (π̂, ĉ, k̂r, k̂J, ĉt). Let ŷ = (pp, pks, pkAg, pkJ, ĉ, k̂r, k̂J, ĉt,m
∗).

64

(2) If NIZKR.Verify(pkr, ŷ, π̂) = 0, then B aborts the simulation and returns a
random tuple (cran, kran, r

∗
ran) as its final output.

(3) If NIZKR.Verify(pkr, ŷ, π̂) = 1, extract a witness x̂ for ŷ (via the rewinding

technique) such that x̂ = (ŝks, t̂, r̂,⊥,⊥, r̂USPCE) or x̂ = (⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE):
- If x̂ = (ŝks, t̂, r̂,⊥,⊥, r̂USPCE), B aborts the simulation and returns a
random tuple (cran, kran, r

∗
ran) as its final output.

- If x̂ = (⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE), B firstly checks whether ĉ ∈ Cwell-f
pp . If so,

B aborts the simulation and returns a random tuple (cran, kran, r
∗
ran) as

its final output. Otherwise, B returns (ĉ, k̂r, r̂∗c) as its final output.

That is the construction of B.
It is evident that B perfectly simulates G2 for A. So we obtain

Advuniv
dHPS-KEMΣ,B(λ) ≥ Pr[G2 ⇒ 1]. (16)

Combining equations (13)-(16), we obtain that

Advuniv
dHPS-KEMΣ,B(λ) ≥ Pr[evt

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,ÛSPCE)
]− negl(λ),

which is also non-negligible, contradicting the universality of dHPS-KEMΣ. ⊓⊔

E.4 Proof of universal deniability

Proof. We use a sequence of games to show that MAMF satisfies the universal
deniability. Without loss of generality, assume that A makes qch queries to OF-F

in game GUnivDen
MAMF,S,A(λ).

Game G0: This is the original game GUnivDen
MAMF,S,A(λ) when b = 0, except that

the final output of the challenger in G0 is the adversary A’s final output b′.
Specifically, given the security parameter λ and a set S ⊆ U , the challenger gen-
erates pp, (pkAg, skAg, apAg), (pkJ, skJ), (pks, sks) and (pkr, skr). The challenger
maintains a local array Lro to keep track of A’s random oracle queries (we use
CL to denote the range of the hash function modelled as a random oracle in the
NIZK scheme NIZKR). Then, the challenger sends (pp, sks, pkr, skAg, pkJ) to A,
and answers A’s oracle queries as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, the challenger returns cl to A;
otherwise, it samples cl← CL, adds (str, cl) to Lro, and returns cl to A.

– OF-F(m′): The challenger generates σ0 ← Frank(pp, sks, pkr, pkAg, pkJ,m
′),

and returns σ0 to A.

Finally, receiving A’s final output b′, the challenger returns b′ as its own final
output.

In the following, we use Gi ⇒ 1 (resp., G
(j)
2.i ⇒ 1) to denote that the chal-

lenger finally outputs 1 in game Gi for i ∈ {0, 1, 3} (resp., in game G
(j)
2.i for

i ∈ [qch] and j ∈ {0, 1, 2, 3}).

65

Game G1: This game is the same as G0, except that when generating the NIZK
proof in the OF-F, the challenger calls the simulator S of the Fiat-Shamir NIZK
proof system for R.

By the zero knowledge property of NIZK, we have that

|Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ negl(λ).

Game G
(0)
2.1: This game is totally the same as G1.

Game G
(0)
2.i+1 (i ∈ [qch − 1]): This game is totally the same as G

(3)
2.i .

Game G
(1)
2.i (i ∈ [qch]): This game is identical to G

(0)
2.i , except that in the gen-

eration of the response to A’s ith query to OF-F, k′r and k′J are generated by

dHPS-KEMΣ.Decap and dHPS-KEMΣ.dDecap, respectively.
Due to the correctness property of the dHPS-KEMΣ scheme, when c′ ←

dHPS-KEMΣ.Encapc(pp; r
′), we have

dHPS-KEMΣ.Encapk(pp, pkr; r
′) = dHPS-KEMΣ.Decap(pp, skr, c

′),

dHPS-KEMΣ.dEncapk(pp, pk
′
J, t
′; r′) = dHPS-KEMΣ.dDecap(pp, sk′J, t

′, c′).

Therefore, G
(1)
2.i is identical to G

(0)
2.1 from A’s point of view.

Game G
(2)
2.i (i ∈ [qch]): This game is identical to G

(1)
2.i , except that in the genera-

tion of the response toA’s ith query toOF-F, c′ is generated by dHPS-KEMΣ.Encap∗c .
That is to say, the challenger samples r∗c ← dHPS-KEMΣ.RS∗, and computes
c′ = dHPS-KEMΣ.Encap∗c(pp; r

∗
c).

Due to the indistinguishability property of the dHPS-KEMΣ scheme, any

PPT adversary cannot distinguish between G
(2)
2.i and G

(1)
2.i with non-negligible

probability.

Game G
(3)
2.i (i ∈ [qch]): This game is identical to G

(2)
2.i , except that in the

generation of the response to A’s ith query to OF-F, r∗k ← dHPS-KEMΣ.RS∗,
k′r = dHPS-KEMΣ.SamEncK(pp; r∗k), and k

′
J ← dHPS-KEMΣ.K.

Note that the uniformity of sampled keys of dHPS-KEMΣ guarantees that k′r
is uniformly distributed over dHPS-KEMΣ.K. Thus, according to the smoothness

and the extended smoothness of dHPS-KEMΣ, we obtain that |Pr[G(3)
2.i ⇒ 1] −

Pr[G
(2)
2.i ⇒ 1]| ≤ negl(λ).

We stress that in game G
(3)
2.qch

, in the generation of the response to each of A’s
queries toOF-F, c′ = dHPS-KEMΣ.Encap∗c(pp; r

∗
c), k

′
r = dHPS-KEMΣ.SamEncK(pp; r∗k)

and k′J ← dHPS-KEMΣ.K, where r∗c and r∗k are both uniformly and independently

sampled from dHPS-KEMΣ.RS∗.
Game G3: This game is the same as G

(3)
2.qch

, except that when generating the

NIZK proof in the OF-F, the challenger calls the NIZK generation algorithm
NIZKR.Prove and the witness x′ is set to be (⊥, t′,⊥, r∗c , r∗k , rUSPCE). The case is

similar to that from G0 to G1. Thus, we have |Pr[G3 ⇒ 1]− Pr[G
(3)
2.qch

⇒ 1]| ≤
negl(λ).

66

In fact, G3 corresponds to the game GUnivDen
MAMF,S,A(λ) when b = 1, except that

the challenger in G3 returns A’s final output b′ as its own final output. In other
words, when the adversary A issues OF-F(m′) queries, the challenger calls Forge
to generates the signatures.

Hence, we conclude that

AdvUnivDen
MAMF,S,A(λ) =

1

2
|Pr[G0 ⇒ 1]− Pr[G3 ⇒ 1]| ≤ negl(λ).

⊓⊔

E.5 Proof of receiver compromise deniability

Proof. We use a sequence of games to show that MAMF satisfies the receiver
compromise deniability. Without loss of generality, assume that A makes qch
queries to OF-RF in game GReComDen

MAMF,S,A (λ).

Game G0: This is the original game GReComDen
MAMF,S,A (λ) when b = 0, except that

the final output of the challenger in G0 is the adversary A’s final output b′.
Specifically, given the security parameter λ and a set S ⊆ U , the challenger
generates pp, (pkAg, skAg), (pkJ, skJ) and (pks, sks). It maintains a local array Lro

to keep track of A’s random oracle queries (we use CL to denote the range of the
hash function modelled as a random oracle in the NIZK scheme NIZKR). Then,
the challenger sends (pp, sks, skAg, pkJ) to A, and answers A’s oracle queries as
follows:

– ORO(str): If there is some (str, cl) ∈ Lro, the challenger returns cl; otherwise,
the challenger samples cl← CL, adds (str, cl) to Lro, and returns cl.

– OF-RF(pk′r, sk
′
r,m

′): If WellFormu(pp, pk
′
r, sk

′
r) = 0, the challenger returns ⊥;

otherwise, the challenger generates σ0 ← Frank(pp, sks, pk
′
r, pkAg, pkJ,m

′),
and returns σ0 to A.

Finally, receiving A’s final output b′, the challenger returns b′ as its own final
output.

In the following, we use Gi ⇒ 1 (resp., G
(j)
2.i ⇒ 1) to denote that the chal-

lenger finally outputs 1 in game Gi for i ∈ {0, 1, 3} (resp., in game G
(j)
2.i for

i ∈ [qch] and j ∈ {0, 1, 2, 3}).
Game G1: This game is the same as G0, except that when generating the NIZK
proof in the OF-RF, the challenger calls the simulator S of the Fiat-Shamir NIZK
proof system for R.

By the zero knowledge property of NIZK, we have that

|Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ negl(λ).

Game G
(0)
2.1: This game is totally the same as G1.

Game G
(0)
2.i+1 (i ∈ [qch − 1]): This game is totally the same as G

(3)
2.i .

67

Game G
(1)
2.i (i ∈ [qch]): This game is identical to G

(0)
2.i , except that in the gener-

ation of the response to A’s ith query to OF-RF (denoted as (pk′r, sk
′
r,m

′)), k′r and
k′J are generated by dHPS-KEMΣ.Decap and dHPS-KEMΣ.dDecap, respectively.

That is to say, the challenger computes k′r ← dHPS-KEMΣ.Decap(pp, sk′r, c
′) and

k′J ← dHPS-KEMΣ.dDecap(pp, sk′J, t
′, c′), where t′ ← dHPS-KEMΣ.T .

Due to the correctness property of the dHPS-KEMΣ scheme, when c′ ←
dHPS-KEMΣ.Encapc(pp; r

′), we have

dHPS-KEMΣ.Encapk(pp, pk
′
r; r
′) = dHPS-KEMΣ.Decap(pp, sk′r, c

′),

dHPS-KEMΣ.dEncapk(pp, pk
′
J, t
′; r′) = dHPS-KEMΣ.dDecap(pp, sk′J, t

′, c′).

Therefore, G
(1)
2.i is identical to G

(0)
2.1 from A’s point of view.

Game G
(2)
2.i (i ∈ [qch]): This game is identical to G

(1)
2.i , except that in the genera-

tion of the response toA’s ith query toOF-RF, c′ is generated by dHPS-KEMΣ.Encap∗c .
That is to say, the challenger samples r∗c ← dHPS-KEMΣ.RS∗, and computes
c′ = dHPS-KEMΣ.Encap∗c(pp; r

∗
c).

Due to the indistinguishability property of the dHPS-KEMΣ scheme, any

PPT adversary cannot distinguish between G
(2)
2.i and G

(1)
2.i with non-negligible

probability.

Game G
(3)
2.i (i ∈ [qch]): This game is identical to G

(2)
2.i , except that in the gen-

eration of the response to A’s ith query to OF-RF, k′J is computed as follows:

r∗k ← dHPS-KEMΣ.RS∗, k′J = dHPS-KEMΣ.dSamEncK(pp, t′; r∗k).

Note that the uniformity of sampled keys of dHPS-KEMΣ guarantees that k′J
is uniformly distributed over dHPS-KEMΣ.K. Thus, according to the extended

smoothness of dHPS-KEMΣ, we obtain |Pr[G(3)
2.i ⇒ 1]−Pr[G

(2)
2.i ⇒ 1]| ≤ negl(λ).

We stress that in game G
(3)
2.qch

, in the generation of the response to each of

A’s queries toOF-RF (denoted as (pk′r, sk
′
r,m

′)), c′ = dHPS-KEMΣ.Encap∗c(pp; r
∗
c),

k′r = dHPS-KEMΣ.Decap(pp, sk′r, c
′) and k′J = dHPS-KEMΣ.dSamEncK(pp, t′; r∗k),

where r∗c and r
∗
k are both uniformly and independently sampled from dHPS-KEMΣ.RS∗.

Game G3: This game is the same as G
(3)
2.qch

, except that when generating the

NIZK proof in the OF-RF, the challenger calls the NIZK generation algorithm
NIZKR.Prove and the witness x′ is set to be (⊥, t′,⊥, r∗c , r∗k , rUSPCE). The case is

similar to that from G0 to G1. Thus, we have |Pr[G3 ⇒ 1]− Pr[G
(3)
2.qch

⇒ 1]| ≤
negl(λ).

In fact, G3 corresponds to the game GReComDen
MAMF,S,A (λ) when b = 1, except

that the challenger in G3 returns A’s final output b′ as its own final output. In
other words, when the adversary A issues OF-RF(pk′r, sk

′
r,m

′) queries in G3, the
challenger calls RForge to generates the signatures.

Hence, we conclude that

AdvReComDen
MAMF,S,A (λ) =

1

2
|Pr[G0 ⇒ 1]− Pr[G3 ⇒ 1]| ≤ negl(λ).

⊓⊔

68

E.6 Proof of judge compromise deniability

Proof. We use a sequence of games to show that MAMF satisfies the judge com-
promise deniability. Without loss of generality, assume that A makes qch queries
to OF-JF in game GJuComDen

MAMF,S,A (λ) .

Game G0: This is the original game GJuComDen
MAMF,S,A (λ) when b = 0, except that

the final output of the challenger in G0 is the adversary A’s final output b′.
Specifically, given the security parameter λ and a set S ⊆ U , the challenger
generates pp, (pkAg, skAg), (pkJ, skJ), (pks, sks) and (pkr, skr). It maintains a
local array Lro to keep track of A’s random oracle queries (here we use CL to
denote the range of the hash function modelled as a random oracle in the NIZK
scheme NIZKR). Then, the challenger sends (pp, sks, pkr, skAg, pkJ, skJ) to A, and
answers A’s oracle queries as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, the challenger returns cl; otherwise,
the challenger samples cl← CL, adds (str, cl) to Lro, and returns cl.

– OF-JF(m′): The challenger generates σ0 ← Frank(pp, sks, pkr, pkAg, pkJ,m
′),

and returns σ0 to A.

Finally, receiving A’s final output b′, the challenger returns b′ as its own final
output.

In the following, we use Gi ⇒ 1 (resp., G
(j)
2.i ⇒ 1) to denote that the chal-

lenger finally outputs 1 in game Gi for i ∈ {0, 1, 3} (resp., in game G
(j)
2.i for

i ∈ [qch] and j ∈ {0, 1, 2, 3}).
Game G1: This game is the same as G0, except that when generating the NIZK
proof in the OF-JF, the challenger calls the simulator S of the Fiat-Shamir NIZK
proof system for R.

By the zero knowledge property of NIZK, we have that

|Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ negl(λ).

Game G
(0)
2.1: This game is totally the same as G1.

Game G
(0)
2.i+1 (i ∈ [qch − 1]): This game is totally the same as G

(3)
2.i .

Game G
(1)
2.i (i ∈ [qch]): This game is identical to G

(0)
2.i , except that in the

generation of the response to A’s ith query to OF-JF, k′r and k′J are gener-

ated by dHPS-KEMΣ.Decap and dHPS-KEMΣ.dDecap, respectively. That is to
say, the challenger computes k′r ← dHPS-KEMΣ.Decap(pp, skr, c

′) and k′J ←
dHPS-KEMΣ.dDecap(pp, sk′J, t

′, c′), where t′ ← dHPS-KEMΣ.T .
Due to the correctness property of the dHPS-KEMΣ scheme, when c′ ←

dHPS-KEMΣ.Encapc(pp; r
′), we have

dHPS-KEMΣ.Encapk(pp, pkr; r
′) = dHPS-KEMΣ.Decap(pp, skr, c

′),

dHPS-KEMΣ.dEncapk(pp, pk
′
J, t
′; r′) = dHPS-KEMΣ.dDecap(pp, sk′J, t

′, c′).

Therefore, G
(1)
2.i is identical to G

(0)
2.1 from A’s point of view.

69

Game G
(2)
2.i (i ∈ [qch]): This game is identical to G

(1)
2.i , except that in the genera-

tion of the response toA’s ith query toOF-JF, c′ is generated by dHPS-KEMΣ.Encap∗c .
That is to say, the challenger samples r∗c ← dHPS-KEMΣ.RS∗, and computes
c′ = dHPS-KEMΣ.Encap∗c(pp; r

∗
c).

Due to the indistinguishability property of the dHPS-KEMΣ scheme, any

PPT adversary cannot distinguish between G
(2)
2.i and G

(1)
2.i with non-negligible

probability.

Game G
(3)
2.i (i ∈ [qch]): This game is identical to G

(2)
2.i , except that in the gen-

eration of the response to A’s ith query to OF-JF, k′r is computed as follows:
r∗k ← dHPS-KEMΣ.RS∗, k′r = dHPS-KEMΣ.SamEncK(pp; r∗k).

Note that the uniformity of sampled keys of dHPS-KEMΣ guarantees that k′r
is uniformly distributed over dHPS-KEMΣ.K. Thus, according to the smoothness

of dHPS-KEMΣ, we have |Pr[G(3)
2.i ⇒ 1]− Pr[G

(2)
2.i ⇒ 1]| ≤ negl(λ).

We stress that in game G
(3)
2.qch

, in the generation of the response to each of A’s
queries toOF-JF, c′ = dHPS-KEMΣ.Encap∗c(pp; r

∗
c), k

′
r = dHPS-KEMΣ.SamEncK(pp; r∗k)

and k′J = dHPS-KEMΣ.dDecap(pp, sk′J, t
′, c′), where r∗c and r∗k are both uniformly

and independently sampled from dHPS-KEMΣ.RS∗.
Game G3: This game is the same as G

(3)
2.qch

, except that when generating the

NIZK proof in the OF-JF, the challenger calls the NIZK generation algorithm
NIZKR.Prove and the witness x′ is set to be (⊥, t′,⊥, r∗c , r∗k , rUSPCE). The case is

similar to that from G0 to G1. Thus, we have |Pr[G3 ⇒ 1]− Pr[G
(3)
2.qch

⇒ 1]| ≤
negl(λ).

In fact, G3 corresponds to the game GJuComDen
MAMF,S,A (λ) when b = 1, except that

the challenger in G3 returns A’s final output b′ as its own final output. In other
words, when the adversary A issues OF-JF(m′) queries in G3, the challenger calls
JForge to generates the signatures.

Hence, we conclude that

AdvJuComDen
MAMF,S,A (λ) =

1

2
|Pr[G0 ⇒ 1]− Pr[G3 ⇒ 1]| ≤ negl(λ).

⊓⊔

E.7 Proof of unframeability

Proof. For any PPT adversary A attacking the unframeability of MAMF, we de-
note A’s input as (pp, pks, skr, skAg, pkJ, skJ), and A’s final output as (m∗, σ∗).

Then, we parse σ∗ = (π̂, ĉ, k̂r, k̂J, ĉt). Let ŷ = (pp, pks, pkAg, pkJ, ĉ, k̂r, k̂J, ĉt,m
∗).

Let Qsig denote the set of messages that A has submitted to OFrank. Since

NIZKR = (Prove,Verify) is a NIZK proof obtained applying the Fiat-Shamir
transform to Sigma protocols, we can further parse π̂ = (ĉm, ẑ). Note that A can
query the random oracle in the NIZK scheme NIZKR.

We present the following claim, the proof of which is almost the same as that
of the claim in Appendix E.1. So we omit it here.

70

Claim. If A wins the game GUnframe
MAMF,S,A(λ), the challenger does not program the

random oracle on (pkr, ĉm, ŷ) during the generation of the responses to A’s
OFrank-oracle queries in GUnframe

MAMF,S,A(λ).

Without loss of generality, we assume that A has queried the random oracle
on (pkr, ĉm, ŷ) before returning its final output (m∗, σ∗). This assumption holds
without loss of generality, because if A does not make these queries, we can easily
construct another adversary, based on A, that makes these types of random-
oracle queries.

Hence, in this case, if A wins the game GUnframe
MAMF,S,A(λ), the challenger does

not program the random oracle on (pkr, ĉm, ŷ) until A queries the random oracle
on it.

Let evt denote the event that (Verify(pp, pks, skr, pkAg, pkJ,m
∗, σ∗) = 1) ∧

(Judge(pp, pks, pkr, pkAg, skJ,m
∗, σ∗, tk∗) = 1), where m∗ /∈ Qsig and tk∗ ←

TKGen(pp, skAg, pkJ,m
∗).

We derive

AdvUnframe
MAMF,S,A(λ) = Pr[evt].

Thus, what remains is to prove that Pr[evt] is negligible.
Assume that Pr[evt] is non-negligible.
Note that when evt occurs, we have Verify(pp, pks, skr, pkAg, pkJ,m

∗, σ∗) = 1,

which implies that NIZKR.Verify(pkr, π̂, ŷ) = 1. Since NIZKR is a NIZK proof
system obtained via the Fiat-Shamir transform from a Sigma protocol, according
to a rewinding lemma [BS20, Lemma 19.2] and knowledge soundness of the

Sigma protocol, a witness x̂ for ŷ (satisfying x̂ = (ŝks, t̂, r̂,⊥,⊥, r̂USPCE) or x̂ =

(⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE)) can be extracted with non-negligible probability. The
reason is as follows.

Let qro denote the total number of random oracle queries (in the NIZK scheme
NIZKR) made by A. Since A has queried the random oracle on (pkr, ĉm, ŷ) before
returning its final output (m∗, σ∗), for j ∈ [qro], let evt

(j) denote the event that
evt occurs and (pkr, ĉm, ŷ) is A’s j-th random oracle query. Obviously, Pr[evt]
=

∑qro
j=1 Pr[evt

(j)]. So the fact that Pr[evt] is non-negligible implies that there

must be some j∗ ∈ [qro], such that Pr[evt(j
∗)] is non-negligible. On the other

hand, when evt(j
∗) occurs, we can rewind back to the moment when A made

its j∗-th random oracle query, and respond with a fresh and uniformly sampled
value for this query (since the challenger does not program the random oracle
on (pkr, ĉm, ŷ) until A makes its j∗-th random oracle query). If evt(j

∗) occurs
again, we can use the knowledge soundness of the Sigma protocol to extract a
valid witness x̂ for ŷ. Since Pr[evt(j

∗)] is non-negligible, the rewinding lemma
[BS20, Lemma 19.2] guarantees that the witness can be extracted successfully
with non-negligible probability.

Hence, let evt
(ŝks,t̂,r̂,⊥,⊥,r̂USPCE) (resp., evt

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
) denote the event

that evt occurs and a witness x̂ = (ŝks, t̂, r̂,⊥,⊥, r̂USPCE) (resp., x̂ = (⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE))
for ŷ is successfully extracted. Since Pr[evt] is non-negligible, we derive that at
least one of Pr[evt

(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)] and Pr[evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

] is non-negligible.

71

Case 1: If Pr[evt
(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)

] is non-negligible:

We show a PPT adversary B attacking the SK-second-preimage resistance of
dHPS-KEMΣ as follows.

Upon receiving (p̃p, p̃k, s̃k), B initializes a setQsig := ∅, runs (pkAg, skAg, apAg) :=
(ppUSPCE,mskUSPCE, apUSPCE) ← USPCE.Setup(λ,S) for some set S ⊆ U , runs
(pkUSPCE, skUSPCE)← USPCE.KG(ppUSPCE, apUSPCE), and runs (pk′J, sk

′
J)← dHPS-KEMΣ.KG(p̃p)

and (pkr, skr) ← dHPS-KEMΣ.KG(p̃p). B sets pp := p̃p, pkJ := (pkUSPCE, pk
′
J),

skJ := (skUSPCE, sk
′
J), and (pks, sks) := (p̃k, s̃k). Then, with these parameters, B

simulates GUnframe
MAMF,S,A(λ) for A. Note that B can answer A’s oracle queries by it-

self. Receiving A’s final output (m∗, σ∗), if evt
(ŝks,t̂,r̂,⊥,⊥,r̂USPCE) occurs, B returns

ŝks; otherwise, B returns a random secret key.

That is the construction of B. Now we analyze B’s advantage.
Note that B wins if and only if evt

(ŝks,t̂,r̂,⊥,⊥,r̂USPCE) occurs and ŝks ̸= sks, i.e.,

Advsk-2pr
dHPS-KEMΣ,B(λ) = Pr[evt

(ŝks,t̂,r̂,⊥,⊥,r̂USPCE) ∧ (ŝks ̸= sks)]

= Pr[evt
(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)]− Pr[evt

(ŝks,t̂,r̂,⊥,⊥,r̂USPCE) ∧ (ŝks = sks)]

≥ Pr[evt
(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)]− Pr[ŝks = sks | evt(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)].

Next, we turn to analyze Pr[ŝks = sks | evt(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)]. From A’s point
of view, the information on sks beyond pks is released only in the responses
returned by OFrank. OFrank will not provide any information on sks beyond pks
except with negligible probability, because of the zero-knowledge property of
NIZKR (note that during the execution of Frank, the secret key is only used as
a component of the witness to generate the NIZK proof). Hence,

Pr[ŝks = sks | evt(ŝks,t̂,r̂,⊥,⊥,r̂USPCE)] ≤ negl(λ).

SoAdvsk-2pr
dHPS-KEMΣ,B(λ) is non-negligible, contradicting the SK-second-preimage

resistance of dHPS-KEMΣ.

Case 2: If Pr[evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

] is non-negligible:

Recall that evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

denote the event that evt occurs and a witness

x̂ = (⊥, t̂,⊥, r̂∗c , r̂∗k , r̂USPCE) for ŷ = (pp, pks, pkAg, pkJ, ĉ, k̂r, k̂J, ĉt,m
∗) is success-

fully extracted.

Let evt
(1)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
denote the event that evt

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
occurs and

the extracted witness x̂ satisfies

(ĉ, r̂∗c) ∈ R∗c ∧ (k̂r, r̂∗k) ∈ R
∗
k ∧ ((pkUSPCE,m

∗, ĉt), (t̂, r̂USPCE)) ∈ Rct,

and evt
(2)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
denote the event that evt

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
occurs and

the extracted witness x̂ satisfies

(ĉ, r̂∗c) ∈ R∗c ∧ ((k̂J, (t̂ , r̂∗k)) ∈ R
d∗
k ∧eq ((pkUSPCE,m

∗, ĉt), (t̂ , r̂USPCE)) ∈ Rct).

72

It is evident that

Pr[evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

] ≤ Pr[evt
(1)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
] + Pr[evt

(2)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
]. (17)

We present the following two lemmas with postponed proofs.

Lemma 10. Pr[evt
(1)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
] ≤ negl(λ).

Lemma 11. Pr[evt
(2)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
] ≤ negl(λ).

Combining these two lemmas and Eq. (17), we derive that Pr[evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

]

is negligible, contradicting the assumption that Pr[evt
(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)

] is non-

negligible.
So what remains is to prove the above two lemmas.

Proof (of Lemma 10). Assume that Pr[evt
(1)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
] is non-negligible.

We show a PPT adversary B′ attacking the key unexplainability of dHPS-KEMΣ

as follows.
Upon receiving (p̃p, p̃k, s̃k), B′ initializes a setQsig := ∅, runs (pkAg, skAg, apAg) :=

(ppUSPCE,mskUSPCE, apUSPCE) ← USPCE.Setup(λ, S) for some set S ⊆ U , runs
(pkUSPCE, skUSPCE)← USPCE.KG(ppUSPCE, apUSPCE), and runs (pk′J, sk

′
J)← dHPS-KEMΣ.KG(p̃p)

and (pks, sks) ← dHPS-KEMΣ.KG(p̃p). B′ sets pp := p̃p, pkJ := (pkUSPCE, pk
′
J),

skJ := (skUSPCE, sk
′
J), and (pkr, skr) := (p̃k, s̃k). Then, with these parameters,

B′ simulates GUnframe
MAMF,S,A(λ) for A. Note that B′ can answer A’s oracle queries by

itself. Receiving A’s final output (m∗, σ∗), B′ parses σ∗ = (π̂, ĉ, k̂r, k̂J, ĉt), and

checks whether evt
(1)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
occurs or not. If evt

(1)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
occurs,

B′ returns (ĉ, r̂∗c , k̂r, r̂∗k) as its final output; otherwise, it returns a random tuple

(c(ran), r
∗(ran)
c , k(ran), r

∗(ran)
k) satisfying ((c(ran), r

∗(ran)
c) ∈ R∗c) ∧ ((k(ran), r

∗(ran)
k) ∈

R∗k) as its final output.
That is the construction of B′. It is evident that B′ perfectly simulates game

GUnframe
MAMF,S,A(λ) for A.
Note that when evt

(1)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
occurs, we obtain that evt occurs and

((ĉ, r̂∗c) ∈ R∗c) ∧ ((k̂r, r̂∗k) ∈ R∗k). Recall that when evt occurs, Verify(pp, pks, skr,

pkAg, pkJ,m
∗, σ∗) = 1, which implies dHPS-KEMΣ.Decap(pp, skr, ĉ) = k̂r. Hence,

AdvK-unexpl
dHPS-KEMΣ,B′(λ) ≥ Pr[evt

(1)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
],

which is non-negligible. ⊓⊔

Proof (of Lemma 11). Assume that Pr[evt
(2)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
] is non-negligible.

We show a PPT adversary B′′ attacking the extended key unexplainability
of dHPS-KEMΣ as follows.

73

Upon receiving (p̃p, p̃k, s̃k), B′′ initializes a setQsig := ∅, runs (pkAg, skAg, apAg) :=
(ppUSPCE,mskUSPCE, apUSPCE) ← USPCE.Setup(λ,S) for some set S ⊆ U , runs
(pkUSPCE, skUSPCE)← USPCE.KG(ppUSPCE, apUSPCE), and runs (pks, sks)← dHPS-KEMΣ.KG(p̃p)
and (pkr, skr) ← dHPS-KEMΣ.KG(p̃p). B′′ sets pp := p̃p, pk′J := p̃k, sk′J := s̃k,
pkJ := (pkUSPCE, pk

′
J) and skJ := (skUSPCE, sk

′
J). Then, with these parameters,

B′′ simulates GUnframe
MAMF,S,A(λ) for A. Note that B′′ can answer A’s oracle queries

by itself. Receiving A’s final output (m∗, σ∗), B′′ parses σ∗ = (π̂, ĉ, k̂r, k̂J, ĉt),

and checks whether evt
(2)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
occurs or not. If evt

(2)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
oc-

curs, B′′ returns (ĉ, r̂∗c , k̂J, t̂, r̂
∗
k) as its final output; otherwise, it returns a ran-

dom tuple (c(ran), r
∗(ran)
c , k(ran), t(ran), r

∗(ran)
k) satisfying ((c(ran), r

∗(ran)
c) ∈ R∗c) ∧

((k(ran), (t(ran), r
∗(ran)
k)) ∈ Rd∗

k) as its final output.
That is the construction of B′′. It is evident that B′′ perfectly simulates game

GUnframe
MAMF,S,A(λ) for A.
Note that when evt

(2)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
occurs, we obtain that evt occurs and

(ĉ, r̂∗c) ∈ R∗c ∧ ((k̂J, (t̂ , r̂∗k)) ∈ R
d∗
k ∧eq ((pkUSPCE,m

∗, ĉt), (t̂ , r̂USPCE)) ∈ Rct).

Recall that when evt occurs, Judge(pp, pks, pkr, pkAg, skJ,m
∗, σ∗, tk∗) = 1) (where

tk∗ ← TKGen(pp, skAg, pkJ,m
∗)),which implies dHPS-KEMΣ.dDecap(pp, sk′J, t̂, ĉ)

= k̂J. Hence,

Advex-K-unexpl
dHPS-KEMΣ,B′′(λ) ≥ Pr[evt

(2)

(⊥,t̂,⊥,r̂∗c ,r̂∗k ,r̂USPCE)
],

which is non-negligible. ⊓⊔
⊓⊔

E.8 Proof of untraceability against judge

SimFrank(pp, pks, skr, pkAg, skJ,m):

(pkUSPCE, pk
′
J)← pkJ, r

∗
c ← dHPS-KEMΣ.RS∗, c← dHPS-KEMΣ.Encap∗c(ppKEM; r

∗
c)

kr ← dHPS-KEMΣ.Decap(ppKEM, skr, c)
t← dHPS-KEMΣ.T , r∗k ← dHPS-KEMΣ.RS∗, kJ ← dHPS-KEMΣ.dSamEncK(pp, t; r∗k)
rUSPCE ← USPCE.RS, ct ← USPCE.Enc(pkUSPCE,m, t; rUSPCE)
x← (⊥, t,⊥, r∗c , r∗k , rUSPCE), y ← (pp, pks, pkAg, pkJ, c, kr, kJ, ct,m)
π ← NIZKR.Prove(pkr, y, x)
Return σ ← (π, c, kr, kJ, ct)

Fig. 11 Simulator SimFrank in the game GUnt-J
MAMF,S,A(λ)

Proof. We construct a simulator SimFrank in Fig. 11 and then we use a sequence
of games to show that MAMF satisfies the untraceability against judge. Note
that here we construct SimFrank by calling RForge.

74

Game G0: This is the original game GUnt-J
MAMF,S,A(λ) when b = 0, except that the

final output of the challenger in G0 is the adversary A’s final output b′. Specif-
ically, given the security parameter λ and a set S ⊆ U , the challenger generates
pp, (pkAg, skAg), (pkJ = (pkUSPCE, pk

′
J), skJ = (skUSPCE, sk

′
J)) and (pks, sks), and

initializes a set Qm := ∅. It maintains a local array Lro to keep track of A’s
random oracle queries (we use CL to denote the range of the hash function mod-
elled as a random oracle in the NIZK scheme NIZKR). Then, the challenger sends
(pp, pks, pkAg, pkJ, skJ) to A, and answers A’s oracle queries as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, the challenger returns cl; otherwise,
the challenger samples cl← CL, adds (str, cl) to Lro, and returns cl.

– OCh(pk′r, sk
′
r,m

′): If (WellFormu(pp, pk
′
r, sk

′
r) = 0)∨(m′ ∈ S)∨(m′ ∈ Qm), the

challenger returns ⊥ to A. Otherwise, it sets Qm ← Qm ∪ {m′}, generates
σ0 ← Frank(pp, sks, pk

′
r, pkAg, pkJ,m

′), and returns σ0 to A.
– OTKGen(m′): If m′ ∈ Qm, the challenger returns ⊥; otherwise, it computes

tk′ ← TKGen(pp, skAg, pkJ,m
′), sets Qm ← Qm ∪ {m′} and returns tk′ to A.

Finally, receiving A’s final output b′, the challenger returns b′ as its own final
output.

In the following, we use Gi ⇒ 1 to denote that the challenger finally outputs
1 in game Gi (i ∈ {0, 1, · · · , 7}).
Game G1: This game is the same as G0, except for the generation of the NIZK
proof in the response of the A’s OCh queries. Specifically, in this game, for each
of A’s OCh queries, the challenger calls the simulator S of the Fiat-Shamir NIZK
proof system for R (during running the algorithm Frank) to generate the NIZK
proof, instead of generating the proof with NIZKR.Prove as in G0.

By the zero knowledge property of NIZK, we have |Pr[G0 ⇒ 1] − Pr[G1 ⇒
1]| ≤ negl(λ).

Game G2: This game is the same asG1 except that in the response of the adver-
sary’s OCh(pk′r, sk

′
r,m

′) queries, c′t is generated as follows: sampling another t̃′ ←
dHPS-KEMΣ.T and then computing c′t = USPCE.Enc(ppUSPCE,m

′, t̃′; rUSPCE),
where rUSPCE ← USPCE.RS as in G1. In other words, t′ and t̃′ are independently
sampled inG2, where t

′ is used to compute k′J = dHPS-KEMΣ.dEncapk(ppKEM, pk
′
J,

t′; r′), and t̃′ is used to compute c′t = USPCE.Enc(ppUSPCE,m
′, t̃′; rUSPCE).

We present the following lemma.

Lemma 12. |Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ negl(λ).

Proof (of Lemma 12). Assume that |Pr[G2 ⇒ 1]−Pr[G1 ⇒ 1]| is non-negligible,
where the adversary A makes at most qch OCh-oracle queries.

We show a PPT adversary B = (B1,B2) attacking the confidentiality against
user of USPCE as follows.

On receiving (ppUSPCE, pkUSPCE, skUSPCE), B1 firstly uniformly samples j∗ ←
[qch], initializes a set Qm := ∅, runs ppKEM ← dHPS-KEMΣ.KEMSetup(λ), and
runs (pk′J, sk

′
J)← dHPS-KEMΣ.KG(ppKEM) and (pks, sks)← dHPS-KEMΣ.KG(ppKEM).

B1 sets pp := ppKEM, pkJ = (pkUSPCE, pk
′
J) and skJ = (skUSPCE, sk

′
J). It also main-

tains a local array Lro to keep track of A’s random oracle queries. Then, B1 sends
(pp, pks, pkJ, skJ) to A, and answers A’s queries to ORO and OTKGen as follows:

75

– ORO(str): If there is some (str, cl) ∈ Lro, B1 returns cl; otherwise, B1 samples
cl← CL, adds (str, cl) to Lro, and returns cl.

– OTKGen(m′): If m′ ∈ Qm, B1 returns ⊥; otherwise, it queries its own OTKGen

oracle in game Gconf-u
USPCE,B,S(λ) to obtain token tk′, sets Qm ← Qm∪{m′} and

returns tk′ to A.

For A’s j-th query (pk′r, sk
′
r,m

′) to Och, when j < j∗, B1 answers the query as
the challenger in game G2 does (i.e., during running the algorithm Frank, it sam-
ples t′, t̃′ ← dHPS-KEMΣ.T and then computes k′J ← dHPS-KEMΣ.dEncapk(ppKEM,
pk′J, t

′; r) and c′t = USPCE.Enc(ppUSPCE,m
′, t̃′; rUSPCE), where r and rUSPCE are

the corresponding randomness); when j = j∗, B answers the query as follows:

1. B1 generates the ciphertext and encapsulated keys as they are generated in
Frank algorithm. In other words, r ← dHPS-KEMΣ.RS, c′ ← dHPS-KEMΣ.Encapc(ppKEM;
r), k′r ← dHPS-KEMΣ.Encapk(ppKEM, pk

′
r; r), t

′ ← dHPS-KEMΣ.T , k′J ←
dHPS-KEMΣ.dEncapk(ppKEM, pkJ, t

′; r).
2. B1 uniformly samples t̃′ ← dHPS-KEMΣ.T , sets m0 = t′, m1 = t̃′ and
x∗ = m′, and sends (m0,m1, x

∗) to the challenger of game Gconf-u
USPCE,B,S(λ).

3. Receiving the ciphertext ct, B2 sets c′t = ct. And then, B2 calls the simulator
S of the Fiat-Shamir NIZK proof system for R to generate the NIZK proof
π′, and returns σ′ := (π′, c′, k′r, k

′
J, c
′
t) to A.

Subsequently, B2 answers A’s queries to ORO and OTKGen as B1 does.
For A’s j-th query (pk′r, sk

′
r,m

′) to Och (note that j > j∗ now), B2 answers
the query as the challenger in game G1 does (i.e., during running the algorithm
Frank, it samples t′ ← dHPS-KEMΣ.T and computes k′J ← dHPS-KEMΣ.dEncapk(ppKEM,
pk′J, t

′; r) and c′t = USPCE.Enc(ppUSPCE,m
′, t′; rUSPCE), where r and rUSPCE are

the corresponding randomness).
Finally, B2 returns A’s final output as its own final output.
That is the construction of the adversary B.
A simple hybrid argument shows that

Advconf-u
USPCE,B,S(λ) =

1

qch
|Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]|,

which is non-negligible. ⊓⊔

Game G3: This game is the same as G2, except that in the generation of
the responses to A’s queries to OCh (denoted as (pk′r, sk

′
r,m

′)), k′r and k′J are

generated by dHPS-KEMΣ.Decap and dHPS-KEMΣ.dDecap, respectively. That is
to say, the challenger computes k′r ← dHPS-KEMΣ.Decap(pp, sk′r, c

′) and k′J ←
dHPS-KEMΣ.dDecap(pp, sk′J, t

′, c′), where t′ ← dHPS-KEMΣ.T .
Due to the correctness property of the dHPS-KEMΣ scheme, when c′ ←

dHPS-KEMΣ.Encapc(pp; r
′), we have

dHPS-KEMΣ.Encapk(pp, pk
′
r; r
′) = dHPS-KEMΣ.Decap(pp, sk′r, c

′),

dHPS-KEMΣ.dEncapk(pp, pk
′
J, t
′; r′) = dHPS-KEMΣ.dDecap(pp, sk′J, t

′, c′).

76

Therefore, G3 is identical to G2 from A’s point of view.
Game G4: This game is the same as G3, except that in the generation of
the responses to A’s queries to OCh, c′ is generated by dHPS-KEMΣ.Encap∗c .
That is to say, the challenger chooses r∗c ← dHPS-KEMΣ.RS∗, and computes
c′ ← dHPS-KEMΣ.Encap∗c(pp; r

∗
c), instead of sampling r′ ← dHPS-KEMΣ.RS

and computing c′ ← dHPS-KEMΣ.Encapc(pp; r
′).

Due to the indistinguishability property of the dHPS-KEMΣ scheme, a simple
hybrid argument shows that any PPT adversary cannot distinguish between G3

and G4 with non-negligible probability.

Game G5: This game is the same as G4, except that in the generation of the re-
sponses toA’s queries toOCh, k′J is computed as follows: r∗k ← dHPS-KEMΣ.RS∗,
k′J = dHPS-KEMΣ.dSamEncK(pp, t′; r∗k).

Note that the uniformity of sampled keys of dHPS-KEMΣ guarantees that
k′J is uniformly distributed over dHPS-KEMΣ.K. We stress that t′ is uniformly

and independently sampled from dHPS-KEMΣ.T . Thus, according to the special
extended smoothness of dHPS-KEMΣ, we obtain |Pr[G5 ⇒ 1] − Pr[G4 ⇒ 1]| ≤
negl(λ).

Game G6: This game is the same as G5, except that in the generation of
the responses to A’s queries to OCh (denoted as (pk′r, sk

′
r,m

′)), c′t is gener-
ated as c′t = USPCE.Enc(ppUSPCE,m

′, t′; rUSPCE), where t′ is the tag used to
compute k′J = dHPS-KEMΣ.dSamEncK(pp, t′; r∗k). In other words, in G5, c

′
t =

USPCE.Enc(ppUSPCE,m
′, t̃′; rUSPCE) where t̃

′ is uniformly and independently sam-
pled; in G6, c

′
t = USPCE.Enc(ppUSPCE,m

′, t′; rUSPCE) where t
′ is the tag used to

compute k′J = dHPS-KEMΣ.dSamEncK(pp, t′; r∗k).
We present the following lemma, the proof of which is almost the same as

that of Lemma 12, so we omit it here.

Lemma 13. |Pr[G6 ⇒ 1]− Pr[G5 ⇒ 1]| ≤ negl(λ).

Game G7: This game is the same as G6, except for the generation of the NIZK
proof in the response of the A’s OCh queries. Specifically, in this game, for
each of A’s OCh queries, the challenger calls the NIZK generation algorithm
NIZKR.Prove (with witness x′ = (⊥, t′,⊥, r∗c , r∗k , rUSPCE)) to generate the NIZK
proof.

By the zero knowledge property of NIZK, |Pr[G7 ⇒ 1] − Pr[G6 ⇒ 1]| ≤
negl(λ).

It is evident that G7 corresponds to the game GUnt-J
MAMF,S,A(λ) when b = 1, ex-

cept that the challenger in G7 returns A’s final output b′ as its own final output.
In other words, in G7, when A issues OCh(pk′r, sk

′
r,m

′) queries, the challenger
calls SimFrank in Fig. 11 to generates the signatures.

Therefore,

AdvUnt-J
MAMF,S,A(λ) =

1

2
|Pr[G0 ⇒ 1]− Pr[G7 ⇒ 1]| ≤ negl(λ),

concluding the proof.
⊓⊔

77

E.9 Proof of untraceability against agency

SimFrank(pp, pks, skr, pkAg, skJ,m):

(pkUSPCE, pk
′
J)← pkJ, r

∗
c ← dHPS-KEMΣ.RS∗, c← dHPS-KEMΣ.Encap∗c(ppKEM; r

∗
c)

kr ← dHPS-KEMΣ.Decap(ppKEM, skr, c)
t← dHPS-KEMΣ.T , r∗k ← dHPS-KEMΣ.RS∗, kJ ← dHPS-KEMΣ.dSamEncK(pp, t; r∗k)
rUSPCE ← USPCE.RS, ct ← USPCE.Enc(pkUSPCE,m, t; rUSPCE)
x← (⊥, t,⊥, r∗c , r∗k , rUSPCE), y ← (pp, pks, pkAg, pkJ, c, kr, kJ, ct,m)
π ← NIZKR.Prove(pkr, y, x)
Return σ ← (π, c, kr, kJ, ct)

Fig. 12 Simulator SimFrank in the game GUnt-Ag
MAMF,S,A(λ)

Proof. We construct a simulator SimFrank in Fig. 12 and then we use a sequence
of games to show that MAMF satisfies the untraceability against agency. Note
that here we construct SimFrank by calling RForge.

Game G0: This is the original game GUnt-Ag
MAMF,S,A(λ) when b = 0, except that the

final output of the challenger in G0 is the adversary A’s final output b′. Specif-
ically, given the security parameter λ and a set S ∈ U , the challenger generates
pp, (pkAg, skAg), (pkJ = (pkUSPCE, pk

′
J), skJ = (skUSPCE, sk

′
J)) and (pks, sks), and

initiates a set Qch := ∅. It maintains a local array Lro to keep track of A’s
random oracle queries (here we use CL to denote the range of the hash function
modelled as a random oracle in the NIZK scheme NIZKR). Then, the challenger
sends (pp, pks, skAg, pkJ) to A, and answers A’s oracle queries as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, the challenger returns cl; otherwise,
the challenger samples cl← CL, adds (str, cl) to Lro, and returns cl.

– OJudge(pk′r,m
′, σ′, tk′): If (pk′r,m

′) ̸∈ Qch, the challenger returns Judge(pp,

pks, pk
′
r, pkAg, skJ,m

′, σ′, tk′) to A; otherwise, it returns ⊥.
– OCh(pk′r, sk

′
r,m

′): If WellFormu(pp, pk
′
r, sk

′
r) = 0, the challenger returns ⊥;

otherwise, it generates σ0 ← Frank(pp, sks, pk
′
r, pkAg, pkJ,m

′), and returns σ0
to A. It also sets Qch ← Qch ∪ {(pk′r,m′)}.

Finally, receiving A’s final output b′, the challenger returns b′ as its own final
output.

In the following, we use Gi ⇒ 1 (resp., G
(j)
3.i ⇒ 1) to denote that the chal-

lenger finally outputs 1 in game Gi for i ∈ {0, 1, 2, 4} (resp., in game G
(j)
3.i for

i ∈ [qch] and j ∈ {0, 1, 2, 3}).
Game G1: This game is the same as G0, except that when A queries OJudge on
(pk′r,m

′, σ′, tk′) satisfying (pk′r,m
′) /∈ Qch, the challenger returns 0 as a response

to A directly.
According to the receiver-binding property of MAMF, we obtain |Pr[G1 ⇒

1]− Pr[G0 ⇒ 1]| ≤ negl(λ).

78

Game G2: This game is the same as G1, except for the generation of the NIZK
proof in the response of the A’s OCh queries. Specifically, in this game, for each
of A’s OCh queries, the challenger calls the simulator S of the Fiat-Shamir NIZK
proof system for R (during running the algorithm Frank) to generate the NIZK
proof, instead of generating the proof with NIZKR.Prove as in G0.

By the zero knowledge property of NIZK, we have |Pr[G2 ⇒ 1] − Pr[G1 ⇒
1]| ≤ negl(λ).

Game G
(0)
3.1: This game is totally the same as G2.

Game G
(0)
3.i+1 (i ∈ [qch − 1]): This game is totally the same as G

(3)
3.i .

Game G
(1)
3.i (i ∈ [qch]): This game is identical to G

(0)
3.i , except that in the gener-

ation of the response to A’s ith query to Och (denoted as (pk′r, sk
′
r,m

′)), k′r and
k′J are generated by dHPS-KEMΣ.Decap and dHPS-KEMΣ.dDecap, respectively.

That is to say, the challenger computes k′r ← dHPS-KEMΣ.Decap(pp, sk′r, c
′) and

k′J ← dHPS-KEMΣ.dDecap(pp, sk′J, t
′, c′), where t′ ← dHPS-KEMΣ.T .

Due to the correctness property of the dHPS-KEMΣ scheme, when c′ ←
dHPS-KEMΣ.Encapc(pp; r

′), we have

dHPS-KEMΣ.Encapk(pp, pk
′
r; r
′) = dHPS-KEMΣ.Decap(pp, sk′r, c

′),

dHPS-KEMΣ.dEncapk(pp, pk
′
J, t
′; r′) = dHPS-KEMΣ.dDecap(pp, sk′J, t

′, c′).

Therefore, G
(1)
3.i is identical to G

(0)
3.i from A’s point of view. ,

Game G
(2)
3.i (i ∈ [qch]): This game is identical to G

(1)
3.i , except that in the genera-

tion of the response toA’s ith query toOch, c′ is generated by dHPS-KEMΣ.Encap∗c .
That is to say, the challenger samples r∗c ← dHPS-KEMΣ.RS∗, and computes
c′ = dHPS-KEMΣ.Encap∗c(pp; r

∗
c).

Due to the indistinguishability property of the dHPS-KEMΣ scheme, any

PPT adversary cannot distinguish between G
(2)
3.i and G

(1)
3.i with non-negligible

probability.

Game G
(3)
3.i (i ∈ [qch]): This game is identical to G

(2)
3.i , except that in the gen-

eration of the response to A’s ith query to Och, k′J is computed as follows:

r∗k ← dHPS-KEMΣ.RS∗, k′J = dHPS-KEMΣ.dSamEncK(pp, t′; r∗k).

Note that the uniformity of sampled keys of dHPS-KEMΣ guarantees that k′J
is uniformly distributed over dHPS-KEMΣ.K. Thus, according to the extended

smoothness of dHPS-KEMΣ, we obtain |Pr[G(3)
3.i ⇒ 1]−Pr[G

(2)
3.i ⇒ 1]| ≤ negl(λ).

We stress that in game G
(3)
3.qch

, in the generation of the response to each of

A’s queries to Och (denoted as (pk′r, sk
′
r,m

′)), c′ = dHPS-KEMΣ.Encap∗c(pp; r
∗
c),

k′r = dHPS-KEMΣ.Decap(pp, sk′r, c
′) and k′J = dHPS-KEMΣ.dSamEncK(pp, t′; r∗k),

where r∗c and r
∗
k are both uniformly and independently sampled from dHPS-KEMΣ.RS∗.

Game G4: This game is the same as G
(3)
3.qch

, except for the generation of the

NIZK proof in the response of the A’s OCh queries. Specifically, in this game,
for each of A’s OCh queries, the challenger calls the NIZK generation algorithm
NIZKR.Prove (with witness x′ = (⊥, t′,⊥, r∗c , r∗k , rUSPCE)) to generate the NIZK
proof.

79

By the zero knowledge property of NIZK, |Pr[G4 ⇒ 1] − Pr[G
(3)
3.qch

⇒ 1]| ≤
negl(λ).

It is evident that G4 corresponds to the game GUnt-Ag
MAMF,S,A(λ) when b = 1,

except that the challenger in G4 returns A’s final output b′ as its own final
output. In other words, when the adversary A issues OCh(pk′r, sk

′
r,m

′) queries in
G4, the challenger calls SimFrank in Fig. 12 to generates the signatures.

Therefore, we have

AdvUnt-Ag
MAMF,S,A(λ) =

1

2
|Pr[G0 ⇒ 1]− Pr[G4 ⇒ 1]| ≤ negl(λ),

concluding the proof. ⊓⊔

E.10 Proof of confidentiality of sets

Proof. Supposing that there exists an adversary A breaking the confidentiality
of sets of MAMF with non-negligible probability, we construct an adversary B
to breaking the confidentiality of sets of USPCE as follows.

Upon receiving λ, B runs pp := ppKEM ← dHPS-KEMΣ.Setup(λ), and for-
wards pp to the adversary A.

After receiving the replies (S0,S1) from A, B sends (S0,S1) to the challenger
of the game of the confidentiality of sets of USPCE.

Receiving (ppUSPCE, pk) from the challenger of the game of the confidentiality
of sets of USPCE, B sets pkAg := ppUSPCE, runs (pk

′
J, sk

′
J)← dHPS-KEMΣ.KG(ppKEM),

and sets pkJ := (pk, pk′J). Then, B sends (pkAg, pkJ) to A.
Finally, B returns A’s final output b′ as its own final output.
That’s the construction of B.
It is evident that B perfectly simulates Gconf-set

MAMF,A(λ) for A, and

Gconf-set
USPCE,B(λ) ≥ Gconf-set

MAMF,A(λ),

which is non-negligible. ⊓⊔

F Sigma protocols for plaintext knowledge

F.1 A simple case

In this section, we provide a Sigma protocol for plaintext knowledge. More de-
tails, we provide a sigma protocol for the following relation:

Rp = {(c, (r,m)) : c = gr ·m}, (18)

where g is a generator of an additional group G with prime order p, r ∈ Z∗p is
a randomness and m ∈ G is the plaintext. Here, we provide a sigma protocol
ΣRp to prove that the prover knows the randomness r and the plaintext m. The
protocol is shown in Fig. 13.

80

P1(c, (r,m)):
w1 ← Z∗

p, w2 ← G, cm := gw1 · w2

Send cm to the verifier.

V1(cm): Send cl← Z∗
p to the prover.

P2(cm, cl, c, (m, r), aux = (w1, w2)):

z1 := w1 − cl · r, z2 := w2/m
cl

Send z = (z1, z2) to the verifier.

V2(c, cm, cl, z): (z1, z2)← z

cm′ := ccl · gz1 · z2
If cm = cm′: Return 1
Else Return 0

Fig. 13 Sigma protocol ΣRp for relation Rp

Security analysis. Here, we analysis the correctness, knowledge soundness and
special HVZK.
Correctness. We have that

cm′ = ccl · gz1 · z2
= (gr ·m)cl · gw1−cl·r · (w2/m

cl)

= gw1 · w2

= cm.

Thus, we have cm = cm′, which implies correctness.
Knowledge soundness. Given two accepting transcripts (cm, cl, z) and (cm, cl′, z′),

where cl ̸= cl′, we compute

r = (z1 − z′1) · (cl
′ − cl)−1 mod p,

and
m = (z2/z

′
2)

(cl′−cl)−1 mod p.

Since cl ̸= cl′ and p is a prime, it is guaranteed that (cl′ − cl)−1 exists. Thus,
we can extract (r,m) successfully, which implies that ΣRp supports knowledge
soundness.
Special HVZK. The simulator Sim is shown in Fig. 14. It is easy to check that
the transcript generated by Sim can be accepted by the honest verifier V2. So we
just prove that the distribution of the transcript generated by Sim is the same
as that of the transcript between P and V .

For the transcript (cm, cl, z) generated in ΣRp , we claim that cl and z are
independent, with cl uniformly distributed over Z∗p, z1 uniformly distributed
over Z∗p and z2 uniformly distributed over G. Note that cl is randomly picked by
V1. Since z1 = w1 − cl · r and w1 is randomly sampled from Z∗p, it is easy to get

81

Sim(c, cl):

z1 ← Z∗
p, z2 ← G, cm := ccl · gz1 · z2

Return (cm, z = (z1, z2))

Fig. 14 Simulator Sim for Sigma protocol ΣRp

that z1 is uniformly distributed over Z∗p. In addition, the fact that z2 = w2/m
cl

and w2 is randomly chosen from G, implies that z2 is uniformly distributed over
G. Therefore, our claim holds.

Then, given cl and z, cm is uniquely determined by cm = cm′ = ccl · gz1 · z2
(the correctness guarantees that cm = cm′).

For the transcript (cm, cl, z) generated in the simulation, cl is randomly cho-
sen over Z∗p, z1 is randomly picked over Z∗p, and z2 is randomly picked over G.

On the other hand, cm = ccl · gz1 · z2.
Thus, the distribution of the transcript generated by Sim is the same as that

of the transcript between P and V . So the Sigma protocol ΣRp is special HVZK.
In all, ΣRp is correct and special HVZK, and supports knowledge soundness

F.2 A more general case

In this part, we provide a more general case, as shown in Eq. (19):

R∗p = {(y = (ci, gi,j)i∈[l],j∈[k], x = ((rj)j∈[k],m)) : ci = (
∏
j∈[k]

g
rj
i,j) ·m}, (19)

where gi,j is a generator of an additional group G with prime order p, ri,j ∈ Z∗p
is a randomness and m ∈ G is the plaintext.

Here, we provide the Sigma protocol ΣR
∗
p in Fig. 15 for relation R∗p in Eq.

(19).
The security analysis of the Sigma protocol ΣR

∗
p for relation R∗p in Eq. (19),

is similar to the security analysis of the simple case in Appendix F.1. Therefore,
we omit it here.

G Sigma protocols for “AND-EQUAL” operations

First of all, we introduce a new property for Sigma protocols and we call it
witness-only. Informally, if the prover in the Sigma protocols can generate the
commitment and response with input witness only and without using the state-
ment, then we say that the Sigma protocols are witness-only.

Definition 35. (Witness-only). Given a relation R and a Sigma protocol ΣR

for R, we say the Sigma protocol ΣR is witness-only, if for any statement-
witness pair (y, x) ∈ R, we can decompose the witness into k sub-witnesses
x = (x1, . . . , xk), and if the prover P = (P1, P2) in the Sigma protocol runs

82

P1(y = (ci, gi,j)i∈[l],j∈[k], x = ((rj)j∈[k],m)):

For j ∈ [k]: wj ← Z∗
p

w′ ← G
For i ∈ [l]: cmi := (

∏
j∈[k] g

wj

i,j) · w
′

Send cm = (cmi)i∈[l] to the verifier.

V1(cm): Send cl← Z∗
p to the prover.

P2(cm, cl, y, x, aux = ((wj)j∈[k], w)):

For j ∈ [k]: zj := wj − cl · rj
z′ := w′/mcl

Send z = ((zj)j∈[k], z
′) to the verifier.

V2(y, cm, cl, z):

((zj)j∈[k], z
′)← z

For i ∈ [l]: cm′
i := ccli · (

∏
j∈[k] g

zj
i,j) · z

′

If ∀i ∈ [l], cmi = cm′
i: Return 1

Else Return 0

Fig. 15 Sigma protocol for relation Rp in Eq. (19)

P ′ = (P ′1, P
′
2 = (P ′2,1, . . . , P

′
2,k)) and V = (V1, V2) runs V ′ = (V1, V

′
2), as shown

in Fig. 16, where AUX is the auxiliary space and also consists of k sub-spaces,
AUX = AUX 1× · · · ×AUX k (AUX j corresponds to xj), and the responses z is
uniformly distributed over Z = Z1 × · · · × Zk (zj is uniformly distributed over
Zj for each j ∈ [k]).

In our definition of witness-only, we refer to the property of challenge-independent
extended honest-verifier zero-knowledge (CIEHVZK) proposed in [GGHAK22],
which guarantees the existence of algorithm V ′2 along with the method of verifi-
cation (i.e., recomputation of the commitment and then compare the equality)
and it brings in some convenience in analysis in the HVZK.

We can examine that many Sigma protocols are witness-only. Here, we mainly
focus on Sigma protocols for ψ-preimages.

Theorem 5. (Sigma protocol for ψ-preimages is witness-only). Let G1

and G2 be groups with group operations ∗1 and ∗2 respectively, and let ψ : G1 →
G2 be a one-way group-homomorphism. Recall the simple Σ-protocol (denoted as
Σψ) of Cramer and Damg̊ard [CD98] for the relation of preimages Rψ ((y, x) ∈
Rψ if and only if it holds that y = ψ(x), where y ∈ G2 and x ∈ G1). The protocol
Σψ works as follows:

1. P1(y, x; r): The prover samples r ← G1 and sends the image cm = ψ(r) ∈ G2

to the verifier.

2. V1(cm): On receiving cm from the prover, the verifier samples a challenge cl
and sends it to the prover.

83

P1(y, x): �(y, x = (x1, . . . , xk)) ∈ R
aux = (aux1, . . . , auxk)← AUX , cm← P ′

1(aux)
Send cm to the verifier

V1(cm): Send cl← CL to the prover

P2(cm, cl, y, x, aux):

For j ∈ [k]: zj ← P ′
2,j(cl, auxj , xj)

Send z = (zj)j∈[k] to the verifier

V2(y, cm, cl, z):

cm′ ← V ′
2 (y, cl, z)

If cm = cm′: Return 1
Else Return 0

Fig. 16 Sigma protocol ΣR for relation R

3. P2(cm, cl, y, x; r): The prover interprets cl as an integer from a subset CL ⊆
Z and replies with z = xcl ∗1 r.

4. V2(y, cm, cl, z): The verifier checks ψ(z)
?
= ycl ∗2 cm.

Completeness follows since ψ is a homomorphism: ψ(z) = ψ(xcl ∗1 r) =
ψ(x)cl ∗2 ψ(r) = ycl ∗2 cm. The knowledge soundness error is 1/|CL|. For
any homomorphism ψ, Σψ is witness-only.

Proof. From the description in Theorem 5, we can know that in P1 and P2, the
statement is not used to compute the commitment or the response. More exactly,
we can define cm ← P ′1(aux = r) = ψ(r), z ← P ′2(cl, aux = r, x) = xcl ∗1 r,
cm← V ′2(y, cl, z) = (ycl)−1 ∗2 ψ(z). Here, AUX = Z = G1. Since z = xcl ∗1 r
and r is uniformly sampled over G1, it implies that z is uniformly distributed
over Z = G1.

Therefore, for any homomorphism ψ, Σψ is witness-only. ⊓⊔

Remark 6. The following variants of ψ (with different choices of G1, G1, ψ) are
captured in this generalization (along with other similar Sigma protocols):

– Guillou-Quisquater Sigma protocol [GQ88] (e-roots in an RSA group) for
which G1 = G2 = Z∗n for a semi-prime n = pq, CL = (0, e) and ψ(x) := xe

for some prime e ∈ N.
– Schnorr’s Sigma protocol [Sch89] (knowledge of discrete logarithm): for which

G1 = Z∗|G|,G2 = G whereG is a cyclic group of prime order |G|, CL = (0, |G|)
and ψ(x) := gx for some g ∈ G.

– Okamoto’s Sigma protocol [Oka95] (knowledge of multiple discrete loga-
rithms): similar to Schnorr’s Sigma protocol, here we omit the detailed dis-
cussion.

– Chaum-Pedersen protocol [CP92] (equality of discrete logarithm): for which
G1 = Z∗|G|, G2 = G × G where G is a cyclic group of prime order |G|,
CL = (0, |G|) and ψ : Z|G| → G×G, ψ(x) := (gx1 , g

x
2) for some g1, g2 ∈ G.

84

– Attema-Cramer [AC20] (opening of linear forms): for which G1 = Zl|G|×Z|G|,
G2 = (Z|G|,G), CL = (0, |G|) and ψ((x, γ)) := (L(x),gxhγ) for some linear

form L(x) = ⟨x, s⟩, s ∈ Zl|G|.
– Sigma protocol ΣR

∗
in Fig. 15 in Appendix F.2: for which G1 = Zkp × G,

G2 = Gl where G is a cyclic group of prime order |G| = p, CL = Z∗p and

ψ(x = ((rj)j∈[k],m)) := (ci = (
∏
j∈[k] g

rj
i,j) ·m)i∈[l], where gi,j is a generator

of G with order p.

We can have the following corollary. Here, we omit the proof for simplicity,
since the corollary is a trivially implied by definition of witness-only.

Corollary 1. Given two relations R1 and R2, and given two witness-only Sigma
protocols ΣR1 and ΣR2 respectively, if the relation R3 consists R1 and R2 with
an “AND” operation or an “OR” operation, then following [BS20], we can obtain
a Sigma protocol ΣR3 from ΣR1 and ΣR2 , and ΣR3 is also witness-only.

Then, we shown how to combine two relations with an “AND-EQUAL” op-
eration and show how to combine two Sigma protocols with an “AND-EQUAL”
operation. Before that, let’s define the “AND-EQUAL” operations as follows.

Definition 36. (Combining relations with “AND-EQUAL” operations).
We define an “AND-EQUAL” operation as ∧eq over the relations. Given two
relations R1 and R2, if R3 := (R1 ∧eq R2), then it means that

R3 := {((y1, y2), x) : (y1, x) ∈ R1 ∧ (y2, x) ∈ R2}. (20)

where the box in light gray x denotes the same witness.
Further, we present a more relaxed definition for “AND-EQUAL” operations.

In a nutshell, we allow that only part sub-witnesses are equal and we call it an
“AND-EQUALl” operation.

Definition 37. (Combining relations with “AND-EQUALl” operations).
We define an “AND-EQUALl” operation as ∧eq over the relations. Given two
relations R1 and R2, if R3 := (R1 ∧eq R2), then it means that

R3 := {((y1, y2),x = (x′1, . . . , x
′
l, x

′
l+1, . . . , x

′
k1 , x

′
k1+1, . . . , x

′
k1+k2−l)) :

(y1, x1 = (x′1, . . . , x
′
l , x

′
l+1, . . . , x

′
k1)) ∈ R1

∧(y2, x2 = (x′1, . . . , x
′
l , x

′
k1+1, . . . , x

′
k1+k2−l)) ∈ R2}.

(21)

where the box in light gray x′1, . . . , x
′
l denotes the equal part of sub-witnesses.

Now, we are ready to present how to construct a Sigma protocol for the
relation combined with an “AND-EQUALl” operation. We have the following
theorem.

Theorem 6. Given ΣR1 for the relation R1 with k1 sub-witnesses and ΣR2 for
the relation R2 with k2 sub-witnesses, then we can construct a sigma protocol
ΣR3 for R3 := (R1 ∧eq R2) (as defined in Eq. (21), x1 and x2 share l same
sub-witnesses), and ΣR3 is also witness-only, if

85

– ΣR1 and ΣR2 are witness-only;
– For each j ∈ [l], it holds ΣR1 .AUX j and ΣR2 .AUX j are the same;
– For each j ∈ [l], ΣR1 .P ′2,j and ΣR2 .P ′2,j are the same;

– For each j ∈ [l], ΣR1 .Zj and ΣR2 .Zj are the same;

Proof. The construction is shown in Fig. 17.

P1(y = (y1, y2), x = (x1, . . . , xk1+k2−l)):

aux← AUX �AUX = ΣR1 .AUX 1×· · ·×ΣR1 .AUX k1 ×ΣR2 .AUX l+1×· · ·×ΣR2 .AUX k2

auxR1 = (aux1, . . . , auxk1), auxR2 = (aux1, . . . , auxl, auxk1+1, . . . , auxk1+k2−l)
cmR1 ← ΣR1 .P ′

1(auxR1), cmR2 ← ΣR2 .P ′
1(auxR2)

Send cm = (cmR1 , cmR2) to the verifier

V1(cm): Send cl← CL to the prover

P2(cm, cl, y, x, aux):

For each j ∈ [k1]: zj ← ΣR1 .P ′
2,j(cl, auxj , xj) �ΣR1 .P ′

2,j = ΣR2 .P ′
2,j , when j ∈ [l]

For each i ∈ (k1, k1 + k2 − l]: zi ← ΣR2 .P ′
2,i−k1+l(cl, auxi, xi)

Send z = (z1, . . . , zk1+k2−l) to the verifier

V2(y, cm, cl, z)
zR1 = (z1, . . . , zk1), zR2 = (z1, . . . , zl, zk1+1, . . . , zk1+k2−l)
If (ΣR1 .V2(y1, cmR1 , cl, zR1) = 1) ∧ (ΣR2 .V2(y2, cmR2 , cl, zR2) = 1):

Return 1
Else Return 0

Fig. 17 Sigma protocol ΣR3 for relation R3 from ΣR1 and ΣR2

Security analysis. Here, we analysis the correctness, knowledge soundness and
special HVZK.
Correctness. Correctness is trivially implied by the correctness of ΣR1 and ΣR2 .
Knowledge soundness. Note that given two accepting transcripts (cm, cl, z) and

(cm, cl′, z′), where cl ̸= cl′, the knowledge soundness of ΣR1 guarantees that we
can extract (x1, . . . , xk1). Similarly, the knowledge soundness of ΣR2 guaran-
tees that we can extract (xk1+1, . . . , xk1+k2−l). Thus, Σ

R3 supports knowledge
soundness.
Special HVZK. The simulator Sim is shown in Fig. 18. It is easy to check that
the transcript generated by Sim can be accepted by the honest verifier V2. So we
just prove that the distribution of the transcript generated by Sim is the same
as that of the transcript between P and V .

For the transcript (cm, cl, z) generated in ΣR3 , we claim that cl and z are
independent, with cl uniformly distributed over CL and z uniformly distributed
over Z. Note that cl is randomly picked over CL by V1. The witness-only property
of ΣR1 and ΣR2 implies that z uniformly distributed over Z. Therefore, our claim
holds.

86

Sim(y = (y1, y2), cl):

z← Z �Z = ΣR1 .Z1 × · · · × ΣR1 .Zk1 × ΣR2 .Zl+1 × · · · × ΣR2 .Zk2

zR1 = (z1, . . . , zk1), zR2 = (z1, . . . , zl, zk1+1, . . . , zk1+k2−l)
cmR1 ← ΣR1 .V ′

2 (y1, cl, zR1), cmR2 ← ΣR2 .V ′
2 (y2, cl, zR2)

Return (cm = (cmR1 , cmR1), z)

Fig. 18 Simulator Sim for Sigma protocol ΣR3

Then, given cl and z, cm is uniquely determined by cmR1 = cm′R1
= ΣR1 .V ′2(y1,

cl, zR1
) and cmR2

= cm′R2
= ΣR2 .V ′2(y2, cl, zR2

) (which is guaranteed by the cor-

rectness of ΣR1 and ΣR2).
For the transcript (cm, cl, z) generated in the simulation, cl is randomly cho-

sen over CL and z is randomly picked over Z. On the other hand, it holds that
cmR1

← ΣR1 .V ′2(y1, cl, zR1
), and cmR2

← ΣR2 .V ′2(y2, cl, zR2
).

Thus, the distribution of the transcript generated by Sim is the same as that
of the transcript between P and V . So the Sigma protocol ΣR3 is special HVZK.

It is trivial to know that ΣR3 constructed in Fig. 18 is also witness-only, since
ΣR1 and ΣR2 are witness-only.

Therefore, a sigma protocol ΣR3 for R3 := (R1 ∧eq R2) constructed from
ΣR1 and ΣR2 is correct and special HVZK and supports knowledge soundness,
and ΣR3 is also witness-only. ⊓⊔

H Improvements on the concrete construction of MAMF

As introduced in Sec. 6, we can construct an MAMF from USPCE and dual
HPS-KEMΣ. Plugging with a concrete USPCE scheme in Sec. 4 and a concrete
dual HPS-KEMΣ in Sec. 5, we can obtain a concrete construction of the MAMF.
In this section, we show some improvements on the concrete construction.

The detailed description is as follows.
The setup algorithm Setup and key generation algorithms (i..e, KGAg, KGJ

and KGu) are shown in Fig. 19 and are essentially the same as those in the general
construction, except that here we adopt the concrete USPCE and HPS-KEMΣ

as presented in Sec. 4 and Sec. 5. A mirror difference is that USPCE and dual
HPS-KEMΣ can share the same group generation. Thus, pkAg does not contains
the description about the group for the USPCE.

Note that in our setup algorithm, we initialize a bilinear map e : G×G→ GT
with order p and the dual HPS-KEMΣ is constructed over GT .

The main body of the improved MAMF scheme is shown in Fig. 20.
There are some changes in the franking algorithm Frank.

– dEncapk ⇒ Encapk for kJ. It directly invokes Encapk to generate the kJ for
the judge, instead of invoking dEncapk with input another tag t. Therefore,
in fact, we do not require the second approach to generate encapsulated key
in dual HPS-KEMΣ any more.

87

Setup(λ):
(e,G,GT , g, p)← GenG(λ) �g is the generator of G.
Choose two generators of GT with order p: h1 and h2.
Return pp = (G,GT , e, g, h1, h2, p)

KGAg(pp, S): �(pkAg, apAg, skAg) := (ppUSPCE, apUSPCE,mskUSPCE)← USPCE.Setup(λ, S)

Choose hash functions H̃, H :M→ G∗.
(ppCH, Tinit, ST)← CH

(rob)
λ .Setup(λ, n) �n = poly(λ) and |Tinit| = n′ = poly(n) = poly(λ).

�ppCH contains k random hash functions Hk :M→ [n′], Tinit is the hash table, ST is the stash.

(TS, ST)← CH
(rob)
λ .Insert(ppCH, Tinit, ST,S), α

′ ← Z∗
p, A

′ := gα
′
, s← Z∗

p, Y
′ := gs

Initialize two empty tables T̃ , T ′ with length n′.
For each i ∈ [n′]:

If TS[i] =⊥: T̃ [i]← G, T ′[i] := (T̃ [i])α
′

Else T̃ [i] := H̃(TS[i]), T
′[i] := (T̃ [i])α

′

Return (pkAg = (H̃, Y ′, A′, ppCH), apAg = T ′, skAg = (T̃ ,S, s))

KGJ(pp, pkAg, apAg):

α← Z∗
p, β ← Z∗

p, X := gβ , Y := (Y ′)β �USPCE.KG
For each i ∈ [n′]: T [i] := (T ′[i])α

(s1, s2)← (Z∗
p)

2, pk′
J := hs1

1 hs2
2 �dHPS-KEMΣ.KG

Return (pkJ = (T,X, Y, pk′
J), skJ = (α, β, s1, s2))

KGu(pp): �dHPS-KEMΣ.KG

(s1, s2)← (Z∗
p)

2, pk := hs1
1 hs2

2 , Return (pk, sk = (s1, s2))

Fig. 19 Algorithm descriptions of Setup, KGAg, KGJ and KGu

– USPCE.Enc for t ⇒ USPCE.Enc for kJ. For the encryption part of USPCE,
Frank here directly encrypt the encapsulation key of the judge, i.e., kJ.

– Changes in the relation R. In Frank algorithm, it also utilizes a NIZK proof

algorithm NIZKR.Prove to create a NIZK proof. The relation R is defined
in Eq. (22), which is instantiation of the relation shown in Sec. 6 and Fig. 1
with some modification. The detailed discussion is placed in the later section.

– Removing kJ in the signature σ. The encapsulation key of the judge kJ is
not included in the signature σ any more.

The verification algorithm Verify follows the step in the general construction.
So as the algorithm TKGen. Thus, we omit the description of them.

The moderation algorithm Judge follows the main framework of the verifica-
tion step in general construction. The difference is that:

– dDecap⇒ Decap. Here, it calls the decapsulation algorithm Decap, instead
of dDecap to obtain the decapsulated key.

– USPCE.Dec to obtain t ⇒ USPCE.Dec to obtain kJ. The decryption of USPCE
is to obtain kJ, instead of the tag t. If the token is empty, then the moder-
ation algorithm Judge in the improved construction calls the decryption of

88

Frank(pp, sks, pkr, pkAg, pkJ,m):

r ← Z∗
p, u1 := hr

1, u2 := hr
2, kr := pkr

r , kJ := (pk′
J)

r �dHPS-KEMΣ.Encap
For each j ∈ [k]: �USPCE.Enc

γj ← Z∗
p, Qj := e(A′, H̃(m))γj , Sj := e(g, T [Hj(m)])γj · kJ

If e(X,Y ′) ̸= e(g, Y): Return ⊥
r′′ ← Z∗

p, c := (gr
′′
, e(H(m), Y)r

′′
· kJ)

x← (s1, s2, r,⊥, r′′,⊥,⊥, (γj)j∈[k]) �NIZKR.Prove
y ← (pp,m, pks, pkAg, pkJ, kr, u1, u2, (Qj , Sj)j∈[k], T, c)
π ← NIZKR.Prove(pkr, y, x)
Return σ ← (π, u1, u2, (Qj , Sj)j∈[k], c, kr)

Verify(pp, pks, skr, pkAg, pkJ,m, σ):
(π, u1, u2, (Qj , Sj)j∈[k], c, kr)← σ
y ← (pp,m, pks, pkAg, pkJ, kr, u1, u2, (Qj , Sj)j∈[k], T, c) �NIZKR.Verify
If NIZKR.Verify(pkr, π, y) = 0: Return 0
(s1, s2)← skr
If us1

1 us2
2 ̸= kr: Return 0 �dHPS-KEMΣ.Decap

Return 1

TKGen(pp, skAg, pkJ,m): �USPCE.TKGen
(T̃ ,S, s)← skAg
Return tk := (H(m))s

Judge(pp, pks, pkr, pkAg, skJ,m, σ, tk):
(π, u1, u2, (Qj , Sj)j∈[k], c, kr)← σ
y ← (pp,m, pks, pkAg, pkJ, kr, u1, u2, (Qj , Sj)j∈[k], T, c) �NIZKR.Verify
If NIZKR.Verify(pkr, π, y) = 0: Return 0
(α, β, s1, s2)← skJ
k′
J = us1

1 us2
2 �dHPS-KEMΣ.Decap

If tk ∈ G: �USPCE.Dec
(U, V)← c, k′′

J := V/e(tkβ , U)
If k′

J = k′′
J : Return 1

Else
For j ∈ [k]:

k′′
J := Sj ·Q−α

j

If k′
J = k′′

J : Return 1
Return 0

Fig. 20 Algorithm descriptions of Frank, Verify, TKGen, and Judge

USPCE is to obtain a set of kJ’s, and see if one of them matches the decapsu-
lated key output by Decap. If the token is not empty, then the decryption of
USPCE is to obtain a kJ, and see if it matches the decapsulated key output
by Decap.

Three forging algorithms are shown in Fig. 21. It similar to the Frank algo-
rithm, except that

89

– The ciphertext of HPS-KEMΣ is generated via Encap∗.

– If the key (of the receiver of the judge) is corrupted, then it calls the Decap
algorithm to generate the corresponding key.

– If the key (of the receiver of the judge) is not corrupted, then it samples a
random key from the key space or calls SamEncK to generate a key, which
is depending on the exact case.

– It also needs to generate a NIZK proof. Due to the construction of the
relation R, it is guaranteed that the forger can also generate a valid proof,
but using a different witness compared with the sender.

Forge(pp, pks, pkr, pkAg, pkJ,m):

r, r′ ← Z∗
p, u1 := hr

1, u2 := hr′
1 , kr ← GT , t1, t2 ← Z∗

p, kJ ← ht1
1 ht2

2

For each j ∈ [k]: �USPCE.Enc
γj ← Z∗

p, Qj := e(A′, H̃(m))γj , Sj := e(g, T [Hj(m)])γj · kJ
If e(X,Y ′) ̸= e(g, Y): Return ⊥
r ← Z∗

p, c := (gr, e(H(m), Y)r · kJ)
x← (⊥,⊥, r, r′, r′′, t1, t2, (γj)j∈[k])
y ← (pp,m, pks, pkAg, pkJ, kr, u1, u2, (Qj , Sj)j∈[k], T, c)
π ← NIZKR.Prove(pkr, y, x)
Return σ ← (π, u1, u2, (Qj , Sj)j∈[k], c, kr)

RForge(pp, pks, skr, pkAg, pkJ,m):

r, r′ ← Z∗
p, u1 := hr

1, u2 := hr′
1 , kr ← us1

1 us2
2 , t1, t2 ← Z∗

p, kJ ← ht1
1 ht2

2 , (s1, s2)← skr
For each j ∈ [k]: �USPCE.Enc

γj ← Z∗
p, Qj := e(A′, H̃(m))γj , Sj := e(g, T [Hj(m)])γj · kJ

If e(X,Y ′) ̸= e(g, Y): Return ⊥
r ← Z∗

p, c := (gr, e(H(m), Y)r · kJ)
x← (⊥,⊥, r, r′, r′′, t1, t2, (γj)j∈[k])
y ← (pp,m, pks, pkAg, pkJ, kr, u1, u2, (Qj , Sj)j∈[k], T, c)
π ← NIZKR.Prove(pkr, y, x)
Return σ ← (π, u1, u2, (Qj , Sj)j∈[k], c, kr)

JForge(pp, pks, pkr, pkAg, skJ,m):

r, r′ ← Z∗
p, u1 := hr

1, u2 := hr′
1 , t1, t2 ← Z∗

p, kr ← ht1
1 ht2

2 , (α, s1, s2)← skJ, kJ ← us1
1 us2

2

For each j ∈ [k]: �USPCE.Enc
γj ← Z∗

p, Qj := e(A′, H̃(m))γj , Sj := e(g, T [Hj(m)])γj · kJ
If e(X,Y ′) ̸= e(g, Y): Return ⊥
r ← Z∗

p, c := (gr, e(H(m), Y)r · kJ)
x← (s1, s2, r, r

′, r′′, t1, t2, (γj)j∈[k])
y ← (pp,m, pks, pkAg, pkJ, kr, u1, u2, (Qj , Sj)j∈[k], T, c)
π ← NIZKR.Prove(pkr, y, x)
Return σ ← (π, u1, u2, (Qj , Sj)j∈[k], c, kr)

Fig. 21 Algorithm descriptions of Forge, RForge and JForge

90

Changes of relation. The relation R is turned into Eq. (22).

R = {((pp,m, pks, pkAg, pkJ, kr, u1, u2, (Qj , Sj)j∈[k], T, c = (U, V)),

(s1, s2, r, r
′, r′′, t1, t2, (γj)j∈[k])) :

(pks = hs11 h
s2
2 ∧ u1 = hr1 ∧ u2 = hr2

∧j∈[k] (Qj = e(A′, H̃(m))γj ∧ Sj = e(g, T [Hj(m)])γj · (pk′J)r)

∧ (U = gr
′′
∧ V = e(H(m), Y)r

′′
· (pk′J)r))

∨ (u1 = hr1 ∧ u2 = hr
′

1 ∧ kr = ht11 h
t2
2 ∧ pk′J = hs11 h

s2
2

∧j∈[k] (Qj = e(A′, H̃(m))γj ∧ Sj = e(g, T [Hj(m)])γj · us11 u
s2
2)

∧ (U = gr
′′
∧ V = e(H(m), Y)r

′′
· us11 u

s2
2))

∨ (u1 = hr1 ∧ u2 = hr
′

1

∧j∈[k] (Qj = e(A′, H̃(m))γj ∧ Sj = e(g, T [Hj(m)])γj · ht11 h
t2
2)

∧ (U = gr
′′
∧ V = e(H(m), Y)r

′′
· ht11 h

t2
2)) }

(22)

It is clear that we can prove R via Sigma protocols, including Okamoto’s
Sigma protocol [Oka95], the Chaum-Pedersen protocol [CP92], Schnorr’s Sigma
protocol [Sch89] and its extension.

Here, we provide some explanation about it.

The relation comprises three sub-relations combined via the “OR” operation.

– The first part of the expression of R is similar to that in the general con-
struction. If the first part is true, then it guarantees that:

(i) the proof generator knowing the secret key of the senders (i.e., ensuring
accountability);

(ii) the ciphertext is well-formed;

(iii) different from the relation in the general construction, the well-formedness
of the encapsulated key for the judge (i.e., kJ) is integrated into the well-
formedness of the USPCE ciphertext. Then (ii) and (iii) further assures
the receiver that both c and kJ can be successfully verified by the judge.
In essence, when the receiver reports to the judge, the judge will readily
accept the report.

– The second part of the expression of R, is tailored for JForge.

• Firstly, the forgers can generate an ill-formed ciphertext, knowing the
discrete logarithm of u1 and u2 with base h1.

• Then, it proves that the proof generator knows the discrete logarithms
of the encapsulated key kr with two bases h1 and h2. Then given an
ill-formed ciphertext, it is with negligible probability that the result of
decapsulation, i.e., running Decap, equals to kr. Otherwise logh1

h2 can
be computed.

• Thirdly, it proves that the proof generator knows the secret key of the
judge, i.e., knowing s1 and s2.

91

• Finally, it proves that the UPSCE ciphertext is well-formed. Note that,
here the message is us11 u

s2
2 (in fact, it is the decapsulated key for the

judge via Decap), which means that given the ill-formed ciphertext, the
decapsulated key of the judge equals to decryption result of USPCE
ciphertext.

In all, it guarantees that the forger who can access to the judge’s secret key,
can generate proof for such sub-relation. In addition, it implies that the judge
would accept the corresponding signature. It also guarantees that receiver
would reject the signature (which is required for the unframeability).

– The third part of the expression of R, is tailored for Forge and RForge.
• Firstly, the forgers can generate an ill-formed ciphertext, knowing the
discrete logarithm of u1 and u2 with base h1.

• Then, it proves that the UPSCE ciphertext is well-formed. Note that,
here the message is ht11 h

t2
2 . Thus, it guarantees that when decrypting the

USPCE ciphertext, the judge can obtain ht11 h
t2
2 as the encapsulated key

kJ. However, given an ill-formed ciphertext, it is with negligible proba-
bility that the result of decapsulation for the judge, i.e., running Decap,
equals to kJ. Otherwise logh1

h2 can be computed.
In all, it guarantees that the forger who can or cannot access to the re-
ceiver’s secret key, can generate proof for such sub-relation. In addition, it
implies that the judge would not accept the corresponding signature, which
is required for the unframeability.

Therefore, the relation R ensures that forgers can consistently generate a
valid NIZK proof, thereby preserving deniability.
A discussion on the security analysis From the above description, we can
summary the changes as follows

– The generation for the encapsulated key of the judge kJ is invoked by the
Encapk, instead of dEncapk. In fact, Encapk offers universality, key unex-
plainability ans smoothness, while dEncapk offers the extended version of
these properties. When invoking Encapk, then we can replaced the extended
version of these properties with the original version.

– The USPCE is to encrypt kJ not t. The encryption does not affect the secu-
rity of the system. Since without knowing t, we cannot check if the judge’s
encapsulated key is correct via dDecap. Now it turns that without knowing
kJ, we cannot check if the decapsulated key via Decap is correct.

– There are some changes in the relation R. However, it achieves all the re-
quirements as the relation in the general construction does.

Thus, our security proof for the general construction is still valid for the improved
scheme. Here, we omit the detailed security proof.
Signature size. In this part, we conduct a comparison of the signature size
between the improved scheme and the specific scheme derived from the general
construction using concrete USPCE and dual HPS-KEMΣ.

As shown in Table 1, following the general composition of Sigma protocols
[BS20], the signature in the the scheme in Sec. 6 (a concrete scheme derived

92

Table 1: A comparison of signature size

Scheme Signature size

Scheme in Sec. 6 ⋆ (2k + 8)× |GT |+ 1× |G|+ (3k + 14)× |Z∗
p|

Scheme in Appendix H ⋆⋆ (2k + 4)× |GT |+ 1× |G|+ (3k + 16)× |Z∗
p|

Scheme in Appendix H using ΣR′ † (2k + 4)× |GT |+ 1× |G|+ (k + 14)× |Z∗
p|

⋆ The scheme in Sec. 6 is derived from the general construction in Sec. 6, plugging with the
concrete USPCE and dual HPS-KEMΣ

⋆⋆ Scheme in Appendix H is the concrete scheme shown in Fig. 19 to Fig. 21.
† Scheme in Appendix H using ΣR′

is the concrete construction obtained by applying ΣR′

in Fig. 22 and Fig. 23 to scheme in Appendix H.

from the general construction using concrete USPCE and dual HPS-KEMΣ)
comprises (2k+8) elements in GT , 1 element in G, and (3k+14) elements in Z∗p,
where k is the parameter for cuckoo hashing. On the other hand, the signature
in the scheme in Appendix H (shown in Fig. 19 to Fig. 21, also following the
general composition of Sigma protocols [BS20]) consists of (2k + 4) elements in
GT , 1 element in G, and (3k + 16) elements in Z∗p. Consequently, the signature
of the scheme in Appendix H has 4 fewer elements in GT but 2 more elements
in Z∗p.

Here, we provide a more efficient Sigma protocol ΣR
′
for R′ (an equivalent

relation of R), such that the proof size is much smaller. Then, the signature
in the scheme in Appendix H using ΣR

′
consists of (2k + 4) elements in GT , 1

element in G, and (k + 14) elements in Z∗p. Compared with the scheme in Sec.

6, the signature of the scheme in Appendix H using ΣR
′
has 4 fewer elements in

GT and 2k fewer elements in Z∗p.
In the following, we describe the details of ΣR

′
. Firstly, we re-write R in Eq.

(22) to the relation R′ in Eq. (23). It is trivial to know that they are equivalent.
Then, the protocols are shown in Fig. 22 and Fig. 23.

R′ = {((pp,m, pks, pkAg, pkJ, kr, u1, u2, (Qj , Sj)j∈[k], T, c = (U, V)),

(s1, s2, s3, s4, r, r
∗, r′, r′′, t1, t2, t3, t4, (γj)j∈[k])) :

(pks = hs11 h
s2
2 ∧ u1 = hr1 ∧ u2 = hr2

∧j∈[k] (Qj = e(A′, H̃(m))γj ∧ Sj = e(g, T [Hj(m)])γj · (pk′J)r)

∧ (U = gr
′′
∧ V = e(H(m), Y)r

′′
· (pk′J)r))

∨ (u1 = hr
∗

1 ∧ u2 = hr
′

1 ∧ kr = ht11 h
t2
2 ∧ pk′J = hs31 h

s4
2

∧j∈[k] (Qj = e(A′, H̃(m))γj ∧ Sj = e(g, T [Hj(m)])γj · us31 u
s4
2)

∧ (U = gr
′′
∧ V = e(H(m), Y)r

′′
· us31 u

s4
2))

∨ (u1 = hr
∗

1 ∧ u2 = hr
′

1

∧j∈[k] (Qj = e(A′, H̃(m))γj ∧ Sj = e(g, T [Hj(m)])γj · ht31 h
t4
2)

∧ (U = gr
′′
∧ V = e(H(m), Y)r

′′
· ht31 h

t4
2)) }

(23)

93

P1(y, x = (s1, s2,⊥,⊥, r,⊥,⊥, r′′,⊥,⊥,⊥,⊥, (γj)j∈[k])):

If x = (s1, s2,⊥,⊥, r,⊥,⊥, r′′,⊥,⊥,⊥,⊥, (γj)j∈[k]):
w′ := (ws1 , ws2 , wr, wr′′ , (wγj)j∈[k])← (Z∗

p)
k+4, z′ := (zs3 , zs4 , zr∗ , zr′ , zt1 , zt2 , zt3 , zt4)← (Z∗

p)
8

(cl2, cl3)← (Z∗
p)

2, cmpks = h
ws1
1 h

ws2
2 , cmu1,1 = hwr

1 , cmu2,1 = hwr
2

For j ∈ [k]:

cmQj = e(A′, H̃(m))
wγj

cmSj = e(g, T [Hj(m)])
wγj · (pk′

J)
wr+r(cl2+cl3) · uzs3

1 u
zs4
2 · hzt3

1 h
zt4
2

cmU = gwr′′ , cmV = e(H(m), Y)wr′′ · (pk′
J)

wr+r(cl2+cl3) · uzs3
1 u

zs4
2 · hzt3

1 h
zt4
2

cmu1,23 = ucl2+cl3
1 h

zr∗
1 , cmu2,23 = ucl2+cl3

2 h
zr′
2 , cmkr = kcl2

r h
zt1
1 h

zt2
2 , cmpk′

J
= (pk′

J)
cl2h

zs3
1 h

zs4
2

cm← (cmpks , cmu1,1, cmu2,1, (cmQj , cmSj)j∈[k], cmU , cmV , cmu1,23, cmu2,23, cmkr , cmpk′
J
)

If x = (⊥,⊥, s3, s4,⊥, r∗, r′, r′′, t1, t2,⊥,⊥, (γj)j∈[k]):
w′ := (ws3 , ws4 , wr∗ , wr′ , wr′′ , wt1 , wt2 , (wγj)j∈[k])← (Z∗

p)
k+7, z′ := (zs1 , zs2 , zr, zt3 , zt4)← (Z∗

p)
5

(cl1, cl3)← (Z∗
p)

2, cm′
pks

= pkcl1
s h

zs1
1 h

zs2
2 , cm′

u1,1 = ucl1
1 hzr

1 , cm′
u2,1 = ucl1

2 hzr
2

For j ∈ [k]:

cmQj = e(A′, H̃(m))
wγj

cmSj = e(g, T [Hj(m)])
wγj · (pk′

J)
zr · (uws3+s3(cl1+cl3)

1 u
ws4+s4(cl1+cl3)

2) · hzt3
1 h

zt4
2

cmU = gwr′′ , cmV = e(H(m), Y)wr′′ · (pk′
J)

zr · (uws3+s3(cl1+cl3)

1 u
ws4+s4(cl1+cl3)

2) · hzt3
1 h

zt4
2

cmu1,23 = h
wr∗
1 , cmu2,23 = h

wr′
2 , cmkr = h

wt1
1 h

wt2
2 , cmpk′

J
= h

ws3
1 h

ws4
2

cm← (cmpks , cmu1,1, cmu2,1, (cmQj , cmSj)j∈[k], cmU , cmV , cmu1,23, cmu2,23, cmkr , cmpk′
J
)

If x = (⊥,⊥,⊥,⊥,⊥, r∗, r′, r′′,⊥,⊥, t3, t4, (γj)j∈[k]):
w′ := (wr∗ , wr′ , wr′′ , wt3 , wt4 , (wγj)j∈[k])← (Z∗

p)
k+5, z′ := (zs1 , zs2 , zs3 , zs4 , zr, zt1 , zt2)← (Z∗

p)
7

(cl1, cl2)← (Z∗
p)

2, cm′
pks

= pkcl1
s h

zs1
1 h

zs2
2 , cm′

u1,1 = ucl1
1 hzr

1 , cm′
u2,1 = ucl1

2 hzr
2

For j ∈ [k]:

cmQj = e(A′, H̃(m))
wγj

cmSj = e(g, T [Hj(m)])
wγj · (pk′

J)
zr · uzs3

1 u
zs4
2 · (hwt3

+t3(cl1+cl2)

1 h
wt4

+t4(cl1+cl2)

2)

cmU = gwr′′ , cmV = e(H(m), Y)wr′′ · (pk′
J)

zr · uzs3
1 u

zs4
2 · (hwt3

+t3(cl1+cl2)

1 h
wt4

+t4(cl1+cl2)

2)
cmu1,23 = h

wr∗
1 , cmu2,23 = h

wr′
2 , cmkr = kcl2

r h
zt1
1 h

zt2
2 , cmpk′

J
= (pk′

J)
cl2h

zs3
1 h

zs4
2

cm← (cmpks , cmu1,1, cmu2,1, (cmQj , cmSj)j∈[k], cmU , cmV , cmu1,23, cmu2,23, cmkr , cmpk′
J
)

Send cm to the verifier.

V1(cm): Send cl← Z∗
p to the prover.

Fig. 22 P1 and V1 of Sigma protocol ΣR′
for relation R′

Security analysis of ΣR
′
. The verification of the verifier, i.e., V2 would output 1,

when all commitments for all statements equal to those sent by the prover P1.
Here, we pick cmSj

for example. When x = (s1, s2,⊥,⊥, r,⊥,⊥, r′′,⊥,⊥,⊥,⊥
, (γj)j∈[k]),

cm′Sj
= Scl

j · e(g, T [Hj(m)])zγj · (pk′J)zr · u
zs3
1 u

zs4
2 · hzt31 h

zt4
2

= (e(g, T [Hj(m)])γj · (pk′J)r)cl · e(g, T [Hj(m)])zγj

· (pk′J)zr · u
zs3
1 u

zs4
2 · hzt31 h

zt4
2

= e(g, T [Hj(m)])γj ·cl+zγj · (pk′J)r·cl+zr · uzs31 u
zs4
2 · hzt31 h

zt4
2

94

P2(cm, cl, y, x, aux):

If x = (s1, s2,⊥,⊥, r,⊥,⊥, r′′,⊥,⊥,⊥,⊥, (γj)j∈[k]):
(w′, cl2, cl3, z

′)← aux
cl1 = cl− cl1 − cl2, zs1 = ws1 − cl1 · s1, zs2 = ws2 − cl1 · s2, zr = wr − cl1 · r, zr′′ = wr′′ − cl · r′′
For j ∈ [k]: zγj := wγj − cl · γj
z← (cl1, cl2, zs1 , zs2 , zr, zr′′ , (zγj)j∈[k], z

′)
If x = (⊥,⊥, s3, s4,⊥, r∗, r′, r′′, t1, t2,⊥,⊥, (γj)j∈[k]):

(w′, cl1, cl3, z
′)← aux

cl2 = cl− cl1 − cl3, zs3 = ws3 − cl2 · s3, zs4 = ws4 − cl2 · s4, zr∗ = wr∗ − (cl2 + cl3) · r∗
zr′ = wr′ − (cl2 + cl3) · r′, zr′′ = wr′′ − cl · r′′, zt1 = wt1 − cl2 · t1, zt2 = wt2 − cl2 · t2
For j ∈ [k]: zγj := wγj − cl · γj
z← (cl1, cl2, zs3 , zs4 , zr∗ , zr′ , zr′′ , zt1 , zt2 , (zγj)j∈[k], z

′)
If x = (⊥,⊥,⊥,⊥,⊥, r∗, r′, r′′,⊥,⊥, t3, t4, (γj)j∈[k]):

(w′, cl1, cl2, z
′)← aux

cl3 = cl− cl1 − cl2, zr∗ = wr∗ − (cl2 + cl3) · r∗
zr′ = wr′ − (cl2 + cl3) · r′, zr′′ = wr′′ − cl · r′′, zt3 = wt3 − cl3 · t3, zt4 = wt4 − cl3 · t4
For j ∈ [k]: zγj := wγj − cl · γj
z← (cl1, cl2, zr∗ , zr′ , zr′′ , zt3 , zt4 , (zγj)j∈[k], z

′)
Send z to the verifier.

V2(y, cm, cl, z):

(cl1, cl2, zs1 , zs2 , zr, zr′′ , (zγj)j∈[k], z
′)← z, cl3 = cl− cl1 − cl2

cm′
pks

= pkcl1
s h

zs1
1 h

zs2
2 , cm′

u1,1 = ucl1
1 hzr

1 , cm′
u2,1 = ucl1

2 hzr
2

For j ∈ [k]: cm′
Qj

= Qcl
j e(A

′, H̃(m))
zγj , cm′

Sj
= Scl

j · e(g, T [Hj(m)])
zγj · (pk′

J)
zr · uzs3

1 u
zs4
2 · hzt3

1 h
zt4
2

cm′
U = U clgzr′′ , cm′

V = V cl · e(H(m), Y)zr′′ · (pk′
J)

zr · uzs3
1 u

zs4
2 · hzt3

1 h
zt4
2

cm′
u1,23 = ucl2+cl3

1 h
zr∗
1 , cm′

u2,23 = ucl2+cl3
2 h

zr′
2 , cm′

kr
= kcl2

r h
zt1
1 h

zt2
2 , cm′

pk′
J
= (pk′

J)
cl2h

zs3
1 h

zs4
2

cm′ ← (cmpks , cmu1,1, cmu2,1, (cmQj , cmSj)j∈[k], cmU , cmV , cmu1,23, cmu2,23, cmkr , cmpk′
J
)

Return (cm = cm′)

Fig. 23 P2 and V2 of Sigma protocol ΣR′
for relation R′

= e(g, T [Hj(m)])wγj · (pk′J)r·cl1+zr+r(cl2+cl3) · uzs31 u
zs4
2 · hzt31 h

zt4
2 � zγj = wγj − cl · γj

= e(g, T [Hj(m)])wγj · (pk′J)wr+r(cl2+cl3) · uzs31 u
zs4
2 · hzt31 h

zt4
2 � zr = wr − cl · r

= cmSj

Similar computation can be applied to other cases (i.e., when x = (⊥,⊥
, s3, s4,⊥, r∗, r′, r′′, t1, t2,⊥,⊥, (γj)j∈[k]) and when x = (⊥,⊥,⊥,⊥,⊥, r∗, r′, r′′,⊥
,⊥, t3, t4, (γj)j∈[k])) and other commitments for other statements.

Thus, we can conclude that the Sigma protocol ΣR
′
is correct.

It can be trivially to check that the Sigma protocol ΣR
′
satisfies knowledge

soundness and special HVZK, since it is similar to many classic Sigma protocols,
e.g., Schnorr’s Sigma protocol [Sch89]. Here, we omit the detailed analysis.

95

I Discussions on one-time token generation

In this paper, our primary focus is dedicated to the moderation of illegal mes-
sages. It is crucial to acknowledge that certain messages, such as those involving
harassment or containing phishing links, may not universally fall under the cate-
gory of illegal messages for all users. Consequently, these messages might not be
encompassed within the predefined set designated by the agency. This presents a
challenge for the moderator as determining the sender’s identity becomes prob-
lematic in such scenarios.

To address this challenge, one potential approach is to empower the agency to
generate a one-time token tailored for a specific MAMF signature and message,
especially for those not included in the predefined set. This capability allows the
moderator to conduct content moderation for that particular signature and mes-
sage. In the following, we present some ideas, leveraging the inherent flexibility
of our USPCE.

I.1 A new USPCE

Changes in definitions. It is clear that one more algorithm for one-time token
generation in USPCE is required.

• tk← TKGenone(pp,msk, ct, x): The token algorithm takes as input the public
parameter pp, the master secret key msk, a ciphertext ct and an element x,
and outputs a token tk for ct and x.

The correctness of USPCE would be re-defined as follows.

Definition 38. (Correctness). A universal set pre-constrained encryption scheme
(Setup, KG,Enc,TKGenone,TKGen,Dec) is correct, if for any λ ∈ N, for any set
S ⊂ U , and for all m ∈M, it holds that,

– when x ∈ S:

Pr

 (pp, ap,msk)← Setup(λ,S)
(pk, sk)← KG(pp, ap)
ct← Enc(pp, pk, x,m)

: m ∈ Sm = Dec(pp, sk, ct,⊥)

 = 1−negl(λ);

– when x ̸∈ S:

Pr


(pp, ap,msk)← Setup(λ, S)
(pk, sk)← KG(pp, ap)
ct← Enc(pp, pk, x,m)
tk← TKGen(pp,msk, x)

: m = Dec(pp, sk, ct, tk)

 = 1− negl(λ).

and

Pr


(pp, ap,msk)← Setup(λ,S)
(pk, sk)← KG(pp, ap)
ct← Enc(pp, pk, x,m)
tk← TKGenone(pp,msk, ct, x)

: m = Dec(pp, sk, ct, tk)

 = 1−negl(λ),

96

For other security properties, there are changes only in confidentiality against
user.

Definition 39. (Confidentiality against users). An USPCE scheme USPCE
has confidentiality against users, if for any set S ⊆ U and any PPT adversary
A = (A1,A2), its advantage

Advconf-u
USPCE,A,S(λ) := |Pr[G

conf-u
USPCE,A,S(λ) = 1]− 1

2
|

is negligible, where Gconf-u
USPCE,A,S(λ) is defined in Fig. 24.

Gconf-u
USPCE,A,S(λ):

b← {0, 1}, (pp, ap,msk)← Setup(λ, S), Qx := ∅
Ux := ∅, Uct,x := ∅
(pk, sk)← KG(pp, ap), (m0,m1, x

∗, stA)← AO
1 (pp, pk, sk)

If (x∗ ̸∈ U) ∨ (x∗ ∈ S) ∨ (x∗ ∈ Qx): Return ⊥
Ux ← Ux ∪ {x∗}, ct← Enc(pp, pk, x∗,mb), b

′ ← AO
2 (ct, stA)

Uct,x ← Uct,x ∪ {(ct, x∗)}
Return (b′ = b)

OTKGen(x′):

If x′ ∈ Ux: Return ⊥
Qx ← Qx ∪ {x′}
Return TKGen(pp,msk, x′)

OTKGenone (ct′, x′):

If (ct′, x′) ∈ Uct,x: Return ⊥
Return TKGenone(pp,msk, ct

′, x′)

Fig. 24 Games for defining confidentiality against users of USPCE

Changes in the concrete USPCE construction. In Fig. 25, we modify the
USPCE to support one-time token generation.

The main idea is as follows. Similar to the ciphertext for some item x, we
take the ciphertext (i.e., (Qj , Sj)j∈[k] and c) as a new token x′, then adopt a
similar method to prepare the ciphertext c′ for x′. After that, similar to the
token generation for x, we can generate the token for x′, i.e., for (Qj , Sj)j∈[k],
c etc. Note that, in order to check the integrity of (Qj , Sj)j∈[k], c and c′, we
also prepare another ciphertext c′′, which takes the hash value of (Qj , Sj)j∈[k], c
and c′′ as the exponent. Then we can check if c′′ is correct by two bilinear map
computations.

The concrete relationRct is also shown in Fig. 25. It is clear that we can prove
the relation Rct by combining Schnorr’s Sigma protocol [Sch89], the Chaum-
Pedersen protocol [CP92] and the Sigma protocol in Appendix F, with the
“AND” operation in [BS20] and “AND-EQUALl” operation proposed in Ap-
pendix G.

The correctness analysis is as follows.
For any S ⊂ U , any (pp, ap,msk) ← Setup(λ,S), any (pk, sk) ← KG(pp, ap),

and any ct← Enc(pp, pk, x,m),

– when x ∈ S, the properties of cuckoo hashing guarantee that x is inserted
in one of locations (e.g., H1(x), . . . ,Hk(x)) in TS. Assuming x is located at

Hj(x) in the table, we obtain H̃(x) = T̃ [Hj(x)]. Hence,

Sj ·Q−αj = (T [Hj(x)])
γj ·m · (e(A′, H̃(x))γj)−α

97

Setup(λ,S):
(e,G,GT , g, p)← GenG(λ) �g is the generator of G with order p.
Choose another two generators of G with order p: g1 and h.
Choose hash functions H̃, H : U → G∗, Ĥ : {0, 1}∗ → G∗, and Ȟ : {0, 1}∗ → Z∗

p.

(ppCH, Tinit, ST)← CH
(rob)
λ .Setup(λ, n) �n = poly(λ) and |Tinit| = n′ = poly(n) = poly(λ).

�ppCH contains k random hash functions (Hj : U → [n′])j∈[k], Tinit is the hash table, ST is the stash.

(TS, ST)← CH
(rob)
λ .Insert(ppCH, Tinit, ST,S), α

′ ← Z∗
p, A

′ := gα
′
, s← Z∗

p, Y
′ := gs, s1 ← Z∗

p, Y
′
1 := gs1

Initialize two empty tables T̃ , T ′ with length n′.
For each i ∈ [n′]:

If TS[i] =⊥: T̃ [i]← G, T ′[i] := (T̃ [i])α
′

Else T̃ [i] := H̃(TS[i]), T
′[i] := (T̃ [i])α

′

Return (pp = (e,G,GT , g, g1, h, p, H̃,H, Ĥ, Ȟ, Y
′, Y ′

1 , A
′, ppCH), ap = T ′,msk = (T̃ ,S, s, s1))

KG(pp, ap): �n′ = |T |
α← Z∗

p, β ← Z∗
p, X := gβ , Y := (Y ′)β

β1 ← Z∗
p, X1 := gβ1 , Y1 := (Y ′

1)
β1

For each i ∈ [n′]: T [i] := e(g, T ′[i])α

Return (pk = (T,X, Y,X1, Y1), sk = (α, β, β1))

TKGen(pp,msk, x):

(T̃ ,S, s, s1)← msk
Return tk := (H(x))s

Enc(pp, pk, x,m):
For each j ∈ [k]:

γj ← Z∗
p, Qj := e(A′, H̃(x))γj , Sj := (T [Hj(x)])

γj ·m
If e(X,Y ′) ̸= e(g, Y): Return ⊥
If e(X1, Y

′
1) ̸= e(g, Y1): Return ⊥

r ← Z∗
p, c := (U = gr, V = e(H(x), Y)r ·m)

r′ ← Z∗
p, U

′ = gr
′
, x′ ← (x ∥ (Qj , Sj)j∈[k] ∥ c ∥ U ′)

V ′ := e(Ĥ(x′), Y1)
r′ ·m

u← Ȟ(x ∥ (Qj , Sj)j∈[k] ∥ c ∥ c′ = (U ′, V ′)), c′′ = (gu1 · h)r
′

Return ct = ((Qj , Sj)j∈[k], c, c
′, c′′, x)

TKGenone(pp,msk, ct, x):

((Qj , Sj)j∈[k], c = (U, V), c′ = (U ′, V ′), c′′, x)← ct
x′ ← (x ∥ (Qj , Sj)j∈[k] ∥ c ∥ U ′)
u← Ȟ(x ∥ (Qj , Sj)j∈[k] ∥ c ∥ c′)
If e(g, c′′) ̸= e(U ′, gu1 · h): Return ⊥
(T̃ ,S, s, s1)← msk
Return tk := (Ĥ(x′))s1

Dec(pp, sk, ct, tk):

((Qj , Sj)j∈[k], c, c
′, c′′, x)← ct, (α, β, β1)← sk

If tk ∈ G:
(U, V)← c, (U ′, V ′)← c′

x′ ← (x ∥ (Qj , Sj)j∈[k] ∥ c ∥ U ′)

If e(tk, g) = e(H(x), Y ′):
Return m := V/e(tkβ , U)

If e(tk, g) = e(Ĥ(x′), Y ′
1):

Return m := V ′/e(tkβ1 , U ′)
Else Return ⊥

Else
For j ∈ [k]: mj := Sj ·Q−α

j

Return {m1, · · · ,mk}

Rct = {((pp, pk, x, (Qj , Sj)j∈[k], c = (U, V), c′ = (U ′, V ′), c′′), ((γj)j∈[k], r, r
′,m)) :

∧j∈[k] (Qj = e(A′, H̃(x))γj ∧ Sj = (T [Hj(x)])
γj ·m) ∧ (U = gr ∧ V = e(H(x), Y)r ·m)

∧ (U ′ = gr
′
∧ V ′ = e(Ĥ(x′), Y ′)r

′
·m) ∧ c′′ = (gu1 · h)r

′
}

Fig. 25 A concrete construction of USPCE with one-time token (Here, we assume
that theM⊆ GT .)

= (T [Hj(x)])
γj ·m · e(gα

′
, H̃(x))−αγj

98

= (T [Hj(x)])
γj ·m · e(g, (H̃(x))α

′
)−αγj

= (T [Hj(x)])
γj ·m · e(g, (T̃ [Hj(x)])α

′
)−αγj

= (T [Hj(x)])
γj ·m · e(g, T ′[Hj(x)])−αγj

= (T [Hj(x)])
γj ·m · ((T [Hj(x)])γj)−1

= m

Thus, it holds that m ∈ Sm = {m1, · · · ,mk}.
– when x ̸∈ S, for tk← TKGen(pp,msk, x), we obtain

V/e(tkβ , U) = e(H(x), Y)r ·m/e((H(x))sβ , gr)
= e(H(x), Y)r ·m/e(H(x), (gs)β)r

= e(H(x), Y)r ·m/e(H(x), (Y ′)β)r

= e(H(x), Y)r ·m/e(H(x), Y)r

= m

Thus, we can obtain m.
– When x ̸∈ S, (pp, ap,msk) ← Setup(λ,S), (pk, sk) ← KG(pp, ap), ct ←

Enc(pp, pk, x,m), tk← TKGenone(pp,msk, ct, x). Then it holds that,

V ′/e(tkβ1 , U ′) = e(Ĥ(x′), Y1)
r′ ·m/e((Ĥ(x′))s1·β1 , gr

′
)

= e(Ĥ(x′), Y1)
r′ ·m/e(Ĥ(x′), (gs1)β1)r

′

= e(Ĥ(x′), Y1)
r′ ·m/e(Ĥ(x′), (Y ′1)β1)r

′

= e(Ĥ(x′), Y1)
r′ ·m/e(Ĥ(x′), Y1)r

′

= m

Thus, we can obtain m.

Therefore, the USPCE in Fig. 25 is correct.
As shown in Fig. 4, confidentiality against authority and confidentiality of

sets do not have token generation oracles. Thus, the security proof of the USPCE
in Fig. 25 for confidentiality against authority and confidentiality of sets remains
the same.

Here, we only provide the proof for confidentiality against user.

Theorem 7. USPCE in Fig. 25 achieves confidentiality against users.

Proof. We use a sequence of games to show that USPCE in Fig. 25 satisfies
confidentiality against users.

Game G0: This is the game Gconf-u
USPCE,A,S(λ) defined in Fig. 24.

Game Gϱ(1 ≤ ϱ ≤ k): This game is the same as G0 except that the challenge
ciphertext ct is generated as follows.

– Pick b ∈ {0, 1} randomly.

99

– For 1 ≤ j ≤ ϱ, choose Qj , Sj ← GT randomly.

– For ϱ < j ≤ k, choose γj ← Z∗p randomly, and compute Qj = e(A′, H̃(x∗))γj ,
Sj = (T [Hj(x

∗)])γj ·mb.
– Choose r ← Z∗p randomly, and compute c = (U = gr, V = e(H(x∗), Y)r ·mb).

– Choose r′ ← Z∗p randomly, and compute U ′ = gr
′
, V ′ = e(Ĥ(x′), Y1)

r′ ·mb,

c′′ = (gu1 · h)r
′
, where x′ = (x∗ ∥ (Qj , Sj)j∈[k] ∥ c ∥ U ′), u = Ȟ(x∗ ∥

(Qj , Sj)j∈[k] ∥ c ∥ c′ = (U ′, V ′)).
– Return ct = ((Qj , Sj)j∈[k], c, c

′, c′′).

Game Gk+1: This game is the same as G0 except that the challenge ciphertext
ct is generated as follows.

– For each j ∈ [k], choose Qj , Sj ← GT randomly.
– Choose U ← G, V ← GT randomly, and set c = (U, V).

– Choose r′ ← Z∗p randomly, and compute U ′ = gr
′
, V ′ = e(Ĥ(x′), Y1)

r′ ·mb,

c′′ = (gu1 · h)r
′
, where x′ = (x∗ ∥ (Qj , Sj)j∈[k] ∥ c ∥ U ′), u = Ȟ(x∗ ∥

(Qj , Sj)j∈[k] ∥ c ∥ c′ = (U ′, V ′)).
– Return ct = ((Qj , Sj)j∈[k], c, c

′, c′′).

Game Gk+2: This game is the same as G0 except that the challenge ciphertext
ct is generated as follows.

– For each j ∈ [k], choose Qj , Sj ← GT randomly.
– Choose U ← G, V ← GT randomly, and set c = (U, V).
– Choose r′ ← Z∗p, V ′ ← GT randomly, and compute U ′ = gr

′
, c′′ = (gu1 ·h)r

′
,

where x′ = (x∗ ∥ (Qj , Sj)j∈[k] ∥ c ∥ U ′), u = Ȟ(x∗ ∥ (Qj , Sj)j∈[k] ∥ c ∥ c′ =
(U ′, V ′)).

– Return ct = ((Qj , Sj)j∈[k], c, c
′, c′′).

We prove these games are indistinguishable in the following lemmas. It is clear
that the adversary has no advantage inGameGk+2. Therefore, we conclude that
the advantage of the adversary in Gconf-u

USPCE,A,S(λ) defined in Fig. 24 is negligible.

Lemma 14. If the hash function H̃ is a random oracle and the DBDH assump-
tion holds, then for 1 ≤ ϱ ≤ k, Game Gϱ−1 and Game Gϱ are computationally
indistinguishable.

Proof. Suppose there exists a PPT algorithm A that distinguishes Game Gϱ−1
and Game Gϱ with non-negligible advantage. Then we build a PPT algorithm
B breaking the DBDH assumption with non-negligible advantage. B is given
e,G,GT , p, g, gz1 , gz2 , gz3 , Z and going to tell whether Z = e(g, g)z1z2z3 or Z is
a random element in GT . B runs A as a subroutine to simulate Game Gϱ−1 or
Game Gϱ as follows.

B first chooses hash functions H : U → G∗, Ĥ : {0, 1}∗ → G∗, Ȟ : {0, 1}∗ →
Z∗p, and runs (ppCH, Tinit, ST)← CH

(rob)
λ .Setup(λ, n), (TS, ST)← CH

(rob)
λ .Insert(ppCH, Tinit, ST,S),

where ppCH contains k hash functions (Hj : U → [n′])j∈[k]. B also maintains a
list LH̃, where the list is empty initially. Then, B sets A′ = gz1 and computes

100

Y ′ = gs, Y ′1 = gs1 , where s, s1 ← Z∗p. For each i ∈ [n′], B chooses ti ← Z∗p
and computes T̃ [i] = (gz2)ti . Note that, if TS[i] ̸=⊥, B sets H̃(TS[i]) = (gz2)ti

implicitly and adds the record (TS[i], ti, (g
z2)ti) to the list LH̃ for answering

A’s random oracle queries on H̃. Next, B choose α, β, β1 ← Z∗p and computes

X = gβ , Y = (Y ′)β , X1 = gβ1 , Y1 = (Y ′1)
β1 . For each i ∈ [n′], it computes T [i] =

e(A′, (gz2)ti)α. B sends pp = (e,G,GT , g, g1, h, p,H, Ĥ, Ȟ, Y ′, Y ′1 , A′, ppCH), pk =
(T,X, Y,X1, Y1), sk = (α, β, β1) to the adversary A, where g1, h← G.
B answers A’s oracle queries as follows:

– H̃ query on x: If there is some (x, tx ∈ Z∗p, hx ∈ G) ∈ LH̃, B returns h;
otherwise, B samples tx ← Z∗p, adds (x, tx, gtx) to LH̃, and returns gtx .

– TKGen query on x: B returns (H(x))s.
– TKGenone query on (ct = ((Qj , Sj)j∈[k], c = (U, V), c′ = (U ′, V ′), c′′), x): B

sets x′ = (x ∥ (Qj , Sj)j∈[k] ∥ c ∥ U ′), u = Ȟ(x ∥ (Qj , Sj)j∈[k] ∥ c ∥ c′). If
e(g, c′′) ̸= e(U ′, gu1 · h), return ⊥; else return tk = (Ĥ(x′))s1

At some point, A submits two messages m0, m1 and an item x∗ such that
x∗ /∈ S. B picks b ∈ {0, 1} randomly and proceeds as follows.

– For 1 ≤ j ≤ ϱ− 1, choose Qj , Sj ← GT randomly.
– For j = ϱ, find some (x∗, tx∗ , gtx∗) in LH̃, and set γj = z3 implicitly. Then, let

i = Hj(x
∗) and compute Qj = e(A′, gz3)tx∗ = e(A′, H̃(x∗))γj , Sj = Zαti ·mb.

Note that, if Z = e(g, g)z1z2z3 , then Sj = (T [Hj(x
∗)])γj ·mb; otherwise Z is

a random element of GT , then Sj also is a random element of GT .
– For ϱ < j ≤ k, choose γj ← Z∗p randomly, and compute Qj := e(A′, H̃(x∗))γj ,
Sj := (T [Hj(x

∗)])γj ·mb.
– Choose r ← Z∗p randomly, and compute c := (gr, e(H(x∗), Y)r ·mb).

– Choose r′ ← Z∗p randomly, and compute U ′ = gr
′
, V ′ = e(Ĥ(x′), Y1)

r′ ·mb,

c′′ = (gu1 · h)r
′
, where x′ = (x∗ ∥ (Qj , Sj)j∈[k] ∥ c ∥ U ′), u = Ȟ(x∗ ∥

(Qj , Sj)j∈[k] ∥ c ∥ c′ = (U ′, V ′)).
– Return ct = ((Qj , Sj)j∈[k], c, c

′, c′′).

Observe that, if Z = e(g, g)z1z2z3 , then B has properly simulated Game Gϱ−1;
If Z is a random element of GT , then B has properly simulated Game Gϱ.
Hence, B can use the output of A to distinguish whether Z = e(g, g)z1z2z3 or Z
is a random element of GT . Any non-negligible advantage of A is converted to
a non-negligible advantage of B.

Lemma 15. If the hash function H is a random oracle and the DBDH assump-
tion holds, then Game Gk and Game Gk+1 are computationally indistinguish-
able.

Proof. Suppose there exists a PPT algorithm A that distinguishes Game Gϱ−1
and Game Gϱ with non-negligible advantage. Then we build a PPT algorithm
B breaking the DBDH assumption with non-negligible advantage. B is given
e,G,GT , p, g, gz1 , gz2 , gz3 , Z and going to tell whether Z = e(g, g)z1z2z3 or Z is

101

a random element in GT . B runs A as a subroutine to simulate Game Gk or
Game Gk+1 as follows.

B first chooses hash functions H̃ : U → G∗, Ĥ : {0, 1}∗ → G∗, Ȟ : {0, 1}∗ →
Z∗p, and runs (ppCH, Tinit, ST)← CH

(rob)
λ .Setup(λ, n), (TS, ST)← CH

(rob)
λ .Insert(ppCH, Tinit, ST,S),

where ppCH contains k hash functions (Hj : U → [n′])j∈[k]. Then, B computes

A′ = gα
′
and sets Y ′ = gz1 , Y ′1 = gs1 , where α′, s1 ← Z∗p. For each i ∈ [n′], if

TS[i] =⊥, B chooses T̃ [i] ← G; else B sets T̃ [i] := H̃(TS[i]). B also maintains a
list LH for answering A’s random oracle queries on H, where the list is empty
initially. Next, B choose α, β, β1 ← Z∗p and computes X = gβ , Y = (Y ′)β , X1 =

gβ1 , Y1 = (Y ′1)
β1 . For each i ∈ [n′], it computes T [i] = e(A′, T̃ [i])α. B sends

pp = (e,G,GT , g, g1, h, p, H̃, Ĥ, Ȟ, Y ′, Y ′1 , A′, ppCH), pk = (T,X, Y,X1, Y1), sk =
(α, β, β1) to the adversary A, where g1, h← G.
B answers A’s oracle queries as follows:

– H query on x: If there is some (x, tx, hx, coin) ∈ LH, B returns hx; otherwise,
B picks coin ∈ {0, 1} at random such that Pr[coin = 0] = ρ. (ρ will be
determined later.) Then, randomly chooses tx ← Z∗p. The record (x, tx, hx =

(gz2)coin · gtx , coin) is added to LH and hx is sent to A.
– TKGen query on x: B searches LH for a record (x, tx, hx, coin). If coin = 1,

it aborts and terminates; otherwise B returns (gz1)tx .
– TKGenone query on (ct = ((Qj , Sj)j∈[k], c = (U, V), c′ = (U ′, V ′), c′′), x): B

sets x′ = (x ∥ (Qj , Sj)j∈[k] ∥ c ∥ U ′), u = Ȟ(x ∥ (Qj , Sj)j∈[k] ∥ c ∥ c′). If
e(g, c′′) ̸= e(U ′, gu1 · h), return ⊥; else return tk = (Ĥ(x′))s1 .

At some point, A submits two messages m0, m1 and an item x∗ such that
x∗ /∈ S. B searches LH for a record (x∗, tx∗ , hx∗ , coin). If coin = 0, it aborts and
terminates; otherwise B picks b ∈ {0, 1} randomly and proceeds as follows.

– For each j ∈ [k], choose Qj , Sj ← GT randomly.
– Compute c = (U = gz3 , V = Z · e(gz3 , gz1)βtx∗ · mb). Note that, if Z =
e(g, g)z1z2z3 , then V = e(H(x∗), Y)z3 ·mb; otherwise Z is a random element
of GT , then V also is a random element of GT .

– Choose r′ ← Z∗p randomly, and compute U ′ = gr
′
, V ′ = e(Ĥ(x′), Y1)

r′ ·mb,

c′′ = (gu1 · h)r
′
, where x′ = (x∗ ∥ (Qj , Sj)j∈[k] ∥ c ∥ U ′), u = Ȟ(x∗ ∥

(Qj , Sj)j∈[k] ∥ c ∥ c′ = (U ′, V ′)).
– Return ct = ((Qj , Sj)j∈[k], c, c

′, c′′).

The probability that B does not abort during the simulation is given by ρqtken(1−
ρ) which is maximized at ρ = 1− 1/(qtken+1), where qtken denotes the number
of TKGen queries by the adversary A. Now, if Z = e(g, g)z1z2z3 , then B has
properly simulated Game Gk; If Z is a random element of GT , then B has
properly simulatedGame Gk+1. Hence, B can use the output of A to distinguish
whether Z = e(g, g)z1z2z3 or Z is a random element of GT .

Lemma 16. If the hash function Ĥ is a random oracle, the hash function Ȟ
is collision-resistant and the DBDH assumption holds, then Game Gk+1 and
Game Gk+2 are computationally indistinguishable.

102

Proof. Suppose there exists a PPT algorithm A that distinguishes Game Gϱ−1
and Game Gϱ with non-negligible advantage. Then we build a PPT algorithm
B breaking the DBDH assumption with non-negligible advantage. B is given
e,G,GT , p, g, gz1 , gz2 , gz3 , Z and going to tell whether Z = e(g, g)z1z2z3 or Z is
a random element in GT . B runs A as a subroutine to simulate Game Gk or
Game Gk+1 as follows.

B first chooses hash functions H̃,H : U → G∗, Ȟ : {0, 1}∗ → Z∗p, and runs

(ppCH, Tinit, ST)← CH
(rob)
λ .Setup(λ, n), (TS, ST)← CH

(rob)
λ .Insert(ppCH, Tinit, ST,S),

where ppCH contains k hash functions (Hj : U → [n′])j∈[k]. Then, B computes

A′ = gα
′
and sets Y ′ = gs, Y ′1 = gz1 , where α′, s ← Z∗p. For each i ∈ [n′],

if TS[i] =⊥, B chooses T̃ [i] ← G; else B sets T̃ [i] := H̃(TS[i]). B also main-

tains a list LĤ for answering A’s random oracle queries on Ĥ, where the list is
empty initially. Next, B choose α, β, β1, δ, δ

′ ← Z∗p and computes X = gβ , Y =

(Y ′)β , X1 = gβ1 , Y1 = (Y ′1)
β1 , g1 = gδ, h = gδ

′
. For each i ∈ [n′], it computes

T [i] = e(A′, T̃ [i])α. B sends pp = (e,G,GT , g, g1, h, p, H̃, Ĥ, Ȟ, Y ′, Y ′1 , A′, ppCH),
pk = (T,X, Y,X1, Y1), sk = (α, β, β1) to the adversary A.
B answers A’s oracle queries as follows:

– Ĥ query on x: If there is some (x, tx ∈ Z∗p, hx ∈ G) ∈ LĤ, B returns hx;
otherwise, B randomly chooses tx ← Z∗p. The record (x, tx, hx = gtx) is
added to LĤ and hx is sent to A.

– TKGen query on x: B returns (H(x))s.
– TKGenone query on (ct = ((Qj , Sj)j∈[k], c = (U, V), c′ = (U ′, V ′), c′′), x): B

sets x′ = (x ∥ (Qj , Sj)j∈[k] ∥ c ∥ U ′), u = Ȟ(x ∥ (Qj , Sj)j∈[k] ∥ c ∥ c′). If
e(g, c′′) ̸= e(U ′, gu1 · h), return ⊥; else find some (x′, tx′ , hx′ = gtx′) in LĤ,

and return tk = (gz1)tx′ = (Ĥ(x′))z1 .
Note that, if e(g, c′′) = e(U ′, gu1 · h), with overwhelming probability, x′ is
not equal to x′∗ (computed in the challenge phase) because ct ̸= ct∗ and Ȟ
is a collision-resistant hash function, where ct∗ is the challenge ciphertext.
Hence, there exists some (x′, tx′ , hx′ = gtx′) in LĤ.

At some point, A submits two messages m0, m1 and an item x∗ such that
x∗ /∈ S. B picks b ∈ {0, 1} randomly and proceeds as follows.

– For each j ∈ [k], choose Q∗j , S
∗
j ← GT randomly.

– Choose U∗ ← G, V ∗ ← GT randomly, and set c∗ = (U∗, V ∗).
– Set U ′∗ = gz3 , x′∗ = (x∗ ∥ (Q∗j , S

∗
j)j∈[k] ∥ c∗ ∥ U ′∗), randomly choose

tx′∗ ← Z∗p, and the record (x′∗, tx′∗ , hx′∗ = (gz2)tx′∗) is added to LĤ.

– Compute V ′∗ = T β1tx′∗ · mb, c
′′∗ = (gz3)u

∗δ+δ′ = (gu
∗

1 · h)z3 , where u∗ =
Ȟ(x∗ ∥ (Q∗j , S∗j)j∈[k] ∥ c∗ ∥ c′∗ = (U ′∗, V ′∗)). Note that, if Z = e(g, g)z1z2z3 ,

then V ′∗ = e(Ĥ(x′∗), Y1)
z3 ·mb; otherwise Z is a random element of GT , then

V ′∗ also is a random element of GT .
– Return ct∗ = ((Q∗j , S

∗
j)j∈[k], c

∗, c′∗, c′′∗).

Observe that, if Z = e(g, g)z1z2z3 , then B has properly simulated Game Gk+1;
If Z is a random element of GT , then B has properly simulated Game Gk+2.

103

Hence, B can use the output of A to distinguish whether Z = e(g, g)z1z2z3 or Z
is a random element of GT .

I.2 Changes in MAMF

Changes in definitions. Firstly, we present the algorithm description for one-
time token generation in MAMF as follows.

• tk← TKGenone(pp, pks, pkr, skAg, pkJ,m, σ): The token generation algorithm
for a pair of message and signature is run by the agency. It takes the public
parameter pp, a sender’s public key pks, a receiver’s public key pkr, the
agency’s secret key skAg, the judge’s public key pkJ, a message m and a
signature σ as input, and outputs a token tk.

Thus, the correctness of MAMF additional requires that

– ifm ̸∈ S, then tk← TKGenone(pp, pks, pkr, skAg, pkJ,m, σ), and Judge(pp, pks,
pkr, pkAg, skJ,m, σ, tk) = 1.

Changes in MAMF construction. After that, we can construct the algorithm
for the one-time token generation in MAMF as shown in Fig. 26.

TKGenone(pp, pks, pkr, skAg, pkJ,m, σ):
(π, c, kr, kJ, ct)← σ
y ← (pp, pks, pkAg, pkJ, c, kr, kJ, ct,m)
If NIZKR.Verify(pkr, π, y) = 0: Return ⊥
ppUSPCE ← pkAg, mskUSPCE ← skAg
Return tk← USPCE.TKGenone(ppUSPCE,mskUSPCE, ct,m)

Fig. 26 Algorithm descriptions of TKGenone in MAMF

The correctness of MAMF is guaranteed by the correctness of the underlying
USPCE. For other security properties of MAMF, we omit the rigorous security
proof here. On the one hand, most of the proof for Theorem 3 can be applied
here, except for the proof for the untraceability against judge, of which the game
provides a one-time token generation oracle. On the other hand, similar to the
tokens for illegal messages in the pre-defined set S, one-time token for messages
not in S would not leak meaningful information either, which is guaranteed by
the confidentiality against user. So the queries on one-time token oracle cannot
help the adversary to gain additional advantages. Therefore, the MAMF with
one-time token generation is also secure.

104

	Mild Asymmetric Message Franking: Illegal-Messages-Only and Retrospective Content Moderation
	Introduction
	Main contributions
	Discussions
	Roadmap

	Preliminaries
	Mild asymmetric message franking
	MAMF algorithms
	Security notions for MAMF

	Universal set pre-constrained encryption
	Dual HPS-KEM
	General construction of MAMF
	Other related works
	Preliminaries: Cryptographic assumptions, NIZK, Sigma protocols, cuckoo hashing and SPCE
	Cryptographic assumptions
	NIZK and Sigma protocols
	A definition of cuckoo hashing fioreKP2023cuckoo
	Set pre-constrained encryption

	Proof of Theorem 1
	Proof of confidentiality against authority
	Proof of confidentiality against users
	Proof of confidentiality of sets

	Proof of Theorem 2
	Proof of universality
	Proof of extended universality
	Proof of smoothness
	Proof of extended smoothness
	Proof of special extended smoothness
	Proof of ciphertext unexplainability
	Proof of key unexplainability
	Proof of extended key unexplainability
	Proof of indistinguishability
	Proof of SK-second-preimage resistance
	Proof of uniformity of sampled keys

	Proof for Theorem 3
	Proof of unforgeability
	Proof of receiver binding
	Proof of sender binding
	Proof of universal deniability
	Proof of receiver compromise deniability
	Proof of judge compromise deniability
	Proof of unframeability
	Proof of untraceability against judge
	Proof of untraceability against agency
	Proof of confidentiality of sets

	Sigma protocols for plaintext knowledge
	A simple case
	A more general case

	Sigma protocols for ``AND-EQUAL'' operations
	Improvements on the concrete construction of MAMF
	Discussions on one-time token generation
	A new USPCE
	Changes in MAMF

