
Juggernaut: Efficient Crypto-Agnostic
Byzantine Agreement

Daniel Collins1∗, Yuval Efron2, and Jovan Komatovic3†

1 Texas A&M University
2 Columbia University

3 École Polytechnique Fédérale de Lausanne (EPFL)
danielpatcollins@gmail.com, ye2210@columbia.edu, jovan.komatovic@epfl.ch

Abstract. It is well known that a trusted setup allows one to solve the
Byzantine agreement problem in the presence of t < n/2 corruptions, by-
passing the setup-free t < n/3 barrier. Alas, the overwhelming majority
of protocols in the literature have the caveat that their security crucially
hinges on the security of the cryptography and setup, to the point where
if the cryptography is broken, even a single corrupted party can violate
the security of the protocol. Thus these protocols provide higher corrup-
tion resilience (n/2 instead of n/3) for the price of increased assumptions.
Is this trade-off necessary?

We further the study of crypto-agnostic Byzantine agreement among n
parties that answers this question in the negative. Specifically, let ts and
ti denote two parameters such that (1) 2ti+ts < n, and (2) ti ≤ ts < n/2.
Crypto-agnostic Byzantine agreement ensures agreement among honest
parties if (1) the adversary is computationally bounded and corrupts up
to ts parties, or (2) the adversary is computationally unbounded and
corrupts up to ti parties, and is moreover given all secrets of all parties
established during the setup. We propose a compiler that transforms any
pair of resilience-optimal Byzantine agreement protocols in the authenti-
cated and information-theoretic setting into one that is crypto-agnostic.
Our compiler has several attractive qualities, including using onlyO(λn2)
bits over the two underlying Byzantine agreement protocols, and preserv-
ing round and communication complexity in the authenticated setting.
In particular, our results improve the state-of-the-art in bit complexity
by at least two factors of n and provide either early stopping (determin-
istic) or expected constant round complexity (randomized). We therefore
provide fallback security for authenticated Byzantine agreement for free
for ti ≤ n/4.

1 Introduction

Byzantine agreement (BA), the problem of reaching agreement between n par-
ties, of which at most t are corrupt, and controlled by an adversary, is arguably

∗Daniel worked on this project while at Purdue University and Georgia Institute of
Technology, and was supported in part by AnalytiXIN and Sunday Group, Inc.

†Most of this work was completed while Jovan was at a16z crypto.

2 Daniel Collins, Yuval Efron, and Jovan Komatovic

the core problem in fault-tolerant distributed computing, with research span-
ning more than four decades [PSL80,GK20]. In this paper, we focus on the
synchronous case, in which messages are delivered to parties at most ∆ time
after being sent. Cryptographic tools and assumptions are central in the design
of BA protocols, both for improved efficiency in various regimes and as well
as to circumvent lower bounds [DS83,GK20,GKO+20,BKLZL20]. Perhaps the
most eminent of those cryptographic tools are digital signatures, typically in-
stantiated alongside a public key infrastructure (PKI) assumption, in which it
is assumed that on top of knowing a list of identifiers of all parties participat-
ing in the protocol, each identifier has a corresponding public-secret key pair
(pk, sk) with pk being known to all parties. By leveraging PKI, it is well known
that BA can be solved in the presence of t < n

2 corrupt parties [DS83,KK06],
while setup-free protocols must assume t < n

3 (even assuming cryptography like
signatures) [PSL80,LSP82].

The reliance on PKI mandates two highly crucial assumptions. First, that any
underlying cryptography remains secure.4 Second, that the secrets established
at setup remain secure. The vast majority of literature, and all practical work
on BA that assumes PKI, suffers from the following shortcoming: the security
of the protocol hinges on the security of the employed cryptographic primitives,
to the point where even a single corrupt party can violate security, if the cryp-
tography used turned out to be broken. This precarious state of affairs is not
only a theoretical concern, with perhaps the most notorious example being the
transaction malleability attack in Bitcoin which resulted in losses of hundreds
of millions of dollars [DW14]. Reliance on computational assumptions is more
generally risky as they may, at any time, be publicly (let alone discreetly) bro-
ken, either classically or due to the looming threat of quantum computation. In
some sense, despite the weaker corruption resilience that information-theoretic,
setup-free protocols offer, they have the benefit of having no other potential
weak spots in their security.

Can we get the best of both worlds? That is, a BA protocol that has optimal
resilience given PKI and secure cryptography (the authenticated setting), that
still maintains high security against a computationally unbounded adversary
that can nullify any setup (the sabotaged setting)? Note that the specific setting
in which the protocol executes is chosen by the adversary at the beginning of
the protocol, and in particular honest (i.e., non-corrupt) parties are in general
oblivious to the actual setting in which the protocol executes. Designing such
protocols is precisely the question we address in this paper.

This question was in fact studied two decades ago by Fitzi, Holenstein and
Wullschleger [FHW04] in the broader context of secure multi-party computation
(MPC), in which they design an MPC (and thus a BA) protocol that has what
they call hybrid security. In particular, it can tolerate up ts corrupt parties
against a computationally bounded adversary and secure cryptography, and up

4This does not apply to protocols based on primitives like pseudosignatures [PW96]
that are information theoretically-secure but require setup; these protocols generally
have a high cost and are not deployed at present.

Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement 3

to ti corrupt parties under no computational or setup assumptions, for any
ti ≤ ts <

n
2 such that ts+2ti < n.5 They also prove that this bound is tight, even

for BA. In particular, a protocol can support up to ti ≤ n
4 faults with no loss of

resilience given a computationally-bounded adversary, i.e., with optimal ts <
n
2

fault tolerance! While an impressive feasibility result for general MPC, when
one focuses on BA, existing protocols, namely from [FHW04] and subsequent
work [FR09], suffer from several drawbacks hindering their usability.

Communication Complexity. Fitzi et al. [FHW04] propose a hybrid broadcast
protocol with O(λn4) communication complexity (in bits) that they use as a sub-
routine to solve MPC. Subsequent work [FR09] also builds broadcast with com-
plexity O(λn4) as written and using state-of-the-art sub-routines O(λn3 log n)
or O(λn3 + n3 log2 n) bits [ANS23,CDG+24b,AC24] (ignoring problems with
composition due to non-simultaneous termination [CCGZ19]). Building crypto-
agnostic BA from parallel broadcast generically [CGG+23] would therefore re-
quire at least O(λn4) bits. This leaves a large gap from the classic Ω(n2) lower
bound on the communication complexity of BA [DR85].

Round Complexity. It is well known that any deterministic BA protocol re-
silient against up to at most t Byzantine parties must take at least t + 1
rounds in the worst case [DS83]. This can be circumvented if the protocol is
early stopping, thereby using just O(f) rounds when f < t corruptions actually
occur [PT84,DRS90], or if it is randomized, where expected constant-round pro-
tocols are known [KK06,ADD+19]. Existing hybrid protocols as written however
are deterministic and are not early stopping, requiring O(n) rounds of communi-
cation in all cases, and it is not clear that the protocol of [FR09] can immediately
lead to constant-round BA since parallel composition of expected constant-round
protocols generically results in expected O(log n) round complexity [BOEY03],
let alone the high communication this would incur even if it did work.

General Compiler. Existing hybrid protocols are either directly concrete
[FHW04] or make use of a linear number of instances of underlying build-
ing blocks like broadcast and are thus not amenable to efficient implementa-
tion [FR09]. Ideally, one would want to be able to construct an efficient protocol
Π with hybrid security in a black box manner from given protocols BAAuth,BASab

for the authenticated and sabotaged settings, respectively, without having to
solve BA from scratch.

Our Contributions. Our main contribution is a compiler that enjoys all of the
above properties. Our compiler transforms any two given protocols BAAuth,BASab

in the authenticated and sabotaged settings, respectively, into a protocol
Juggernaut with crypto-agnostic security with optimal resilience ts + 2ti < n,

5The model of [FHW04] (and [FR09]) as stated here does not consider passive
compromise of the setup as we do, and additionally considers inconsistent PKI which
imposes different resilience bounds; we discuss this further later.

4 Daniel Collins, Yuval Efron, and Jovan Komatovic

ti ≤ ts < n
2 . Furthermore, Juggernaut uses BAAuth,BASab in a black-box man-

ner, Juggernaut has an additive factor of just O(λn2) bits of communication
over BAAuth,BASab. Our protocol optimizes for the practical authenticated case:
if BAAuth is early stopping, then so is Juggernaut in the authenticated setting.
Moreover, if BAAuth is a randomized protocol with expected round complexity
R, then Juggernaut has expected round complexity O(R) in the authenticated
setting. Therefore, our protocol effectively provides crypto-agnostic security to
an authenticated protocol for free.

Along the way, we propose two new graded consensus gadgets with O(λn2)
bit complexity and constant (worst-case) round complexity that provide partial
security guarantees in one world (authenticated resp. sabotaged) and full security
in the other (sabotaged resp. authenticated) that may be of independent interest.

Using our compiler, we propose two concrete protocols, one deterministic
and one randomized. Our deterministic protocol has O(λn2) bit complexity in
all cases, has O(f) round complexity for f actual failures in the authenticated
case and uses O(n) rounds in the sabotaged case. Our randomized protocol has
O(λn2) expected bit complexity and constant expected round complexity in the
authenticated case, and uses O(λ2n2) bits and O(λ+f) rounds in the sabotaged
case.

1.1 Technical Overview

We first would like to stress the complexity of the problem by examining state-
of-the-art authenticated BA protocols achieving optimal corruption resilience.
Intuitively, without setup and given t < n

3 , a quorum consisting of at least 2
3

of parties suffices to convince an honest party to adopt a value, as a counting
argument shows that no quorum for a different value can exist. This is no longer
the case when one demands t < n

2 , and the overwhelming majority of protocols
make use of signature based equivocation checks to assert that only one value
will be adopted by honest parties during the protocol. Any attempt to increase
the size of a quorum can be met with silence from corrupt parties, resulting an
unhalting executions due to t < n

2 . On the other hand, any attempt to relax
equivocation checks can be met with agreement violation attacks by corrupt
parties. This forces one to rethink the problem from a first principles approach.

A Strawman Solution: Black Boxes and Graded Consensus. A natural approach
is to use protocols secure in each setting as black boxes. Let BAAuth,BASab be
protocols solving BA in the authenticated setting and sabotaged (i.e., setup-free
and information-theoretic) setting, respectively. Intuitively, we would like to run
BAAuth first, check if agreement was reached, and if not, run BASab. A typical
tool in the literature for detecting pre-existing agreement is the graded consensus
(GC) primitive, which allows parties to output, along with their value, a grade
indicating their level of confidence in the output. The literature luckily contains
efficient implementations of GC in both the authenticated setting [MR21a] and
the sabotaged setting [AW23]. Alas, we are faced with a trickier scenario. Recall
that the specific setting in which the protocol runs is chosen by the adversary at

Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement 5

the beginning of protocol execution, and in particular they can choose a setting
that renders any existing GC useless and provides no guarantees.

Building Our Juggernaut Protocol. An observation we make, inspired by similar
techniques from network-agnostic protocols [BKL19,BZL20] that provide secu-
rity under synchrony or asynchrony, is that we can design GCs that work as
usual in one of the settings and provide partial guarantees in the other setting
in order to build a crypto-agnostic protocol. Designing such GCs with optimal
corruption resilience (ts + 2ti < n, ti ≤ ts < n

2), O(λn2) bit complexity and
constant round complexity, as well as appropriately combining everything to-
gether (which brings up technical challenges, as explained below), are the main
technical contributions of this paper.

Recall that Byzantine agreement provides consistency (all parties output the
same value), termination (all parties output a value and halt), and some validity
property (in this work, namely that if all parties input the same value, that
value is decided). We consider graded consensus with two grades, either 0 or
1: graded validity then requires all honest parties output input v and grade 1,
and graded consistency requires that if any honest party outputs (v, 1), then all
honest parties output (v, 0) or (v, 1).

As sketched above, our high level approach is to run BAAuth, check if agree-
ment was reached, and run BASab if not. However, if we are in the sabotaged
setting, BAAuth can behave arbitrarily, and if we are in the authenticated set-
ting, BASab can behave arbitrarily. We introduce two graded consensus protocols
to deal with this. Our first, GC∗

Auth, provides full security in the authenticated
case for up to ts corruptions, and ensures validity and termination for up to
ti corruptions in the sabotaged case. Our second, GC∗

Sab, provides the opposite
guarantees: full security in the sabotaged case with ti corruptions, and validity
and termination in the authenticated case with ts corruptions.

At a high level, our protocol, which we call Juggernaut, proceeds as follows.
First, each party pi runs GC

∗
Auth using their input vi, which outputs pair (v1, g1).

v1 is then fed to BAAuth, which outputs v2. In the authenticated case, GC∗
Auth and

BAAuth provide full security, and therefore all honest parties output the same v2
from BAAuth. In the sabotaged case, however, we only have validity of GC∗

Auth. To
preserve validity in the sabotaged case, parties then input v1 to GC∗

Sab if g1 = 1,
and otherwise input v2 to GC∗

Sab; let the output of GC
∗
Sab be (v3, g3). Since GC

∗
Sab

provides validity in the authenticated case, all honest parties will output the
same (v2, 1), where v1 = v2 in ‘valid’ runs of Juggernaut (so validity is preserved
from GC∗

Auth up to this point).
At this point we do not yet have consistency in the sabotaged case, only va-

lidity. Therefore, all parties run BASab with input v3, which provides full security
in the sabotaged case. However, BASab provides no security in the authenticated
case. To rectify this, as well as to provide early stopping in the authenticated
case, parties multicast their output value v3 as (decide, v3) only if g3 = 1 and
wait for ∆ time. Then, on receipt of n− ts (decide, v3) messages (which is always
guaranteed in the authenticated case), parties output v3 and can safely halt.
In the sabotaged case, however, some but not all parties may terminate at this

6 Daniel Collins, Yuval Efron, and Jovan Komatovic

stage. Thus, to ensure all other parties terminate, parties terminate if they re-
ceive (decide, v) from n− ts− ti parties after running BASab (if they have not yet
halted). Therefore, if an honest party halts due to receiving n − ts (decide, v3)
messages, all honest parties will receive n− ts− ti (decide, v) messages and halt.
Otherwise, all honest parties will not halt before terminating from BASab. In
this case, if an honest party receives n− ts − ti (decide, v) messages, then since
n − ts − ti > ti, one honest party must have output (v, 1) from GC∗

Sab, and by
graded consistency, all honest parties output v, and by consistency in the sabo-
taged case of BASab, all honest parties will output v from that, and thus agree
on v. Otherwise, consistency of BASab ensures the consistency of BASab.

Dealing with Non-Simultaneous Termination. The above works well if BAAuth is
such that all parties terminate at the same time. However, if BAAuth is early-
stopping or randomized, parties will not in general output from BAAuth at the
same time. For instance, the adversary can force one honest party to produce
an output significantly earlier than any other honest party. To rectify this, we
utilize the synchronizer primitive, which ensures that honest parties “move on”
from BAAuth at roughly the same time. Concretely, the synchronizer guarantees
that honest parties quit executing BAAuth within at most one round of each
other, regardless of whether we are in the authenticated or sabotaged setting.
Furthermore, in the authenticated setting, the synchronizer ensures that honest
parties progress from BAAuth with (asymptotically) no additional round over-
head: (1) if BAAuth is early stopping with complexity O(f), then honest parties
progress in O(f) rounds, and (2) if BAAuth is randomized with expected round
complexity R, then honest parties progress in O(R) rounds. This is essential to
guarantee that, in the authenticated case, Juggernaut introduces no asymptotic
round complexity overhead.

Constructing Crypto-Agnostic Graded Consensus. We provide efficient compil-
ers that use a single instance of graded consensus protocol secure in a given
setting that provide validity and termination in the other setting. Namely, our
two compilers each incur three additional rounds and O(λn2) communication
overhead over the black boxes we use, for example the graded consensus proto-
cols of Momose-Ren [MR21a] and Attiya-Welch [AW23] which themselves have
constant round complexity and quadratic communication complexity.

Our first protocol GC∗
Auth provides full authenticated security and validity

and termination in the sabotaged case. Recall that the underlying authenti-
cated graded consensus protocol, say ΠMR, in general provides no security in the
sabotaged case. Our goal is thus to augment ΠMR with a procedure to ensure
sabotaged ti-validity and termination. The main challenge is ensuring that this
procedure does not interfere with the authenticated security of ΠMR.

The key observation lies in the fact that if the parties aren’t in the validity
case, then parties can change their inputs to ΠMR arbitrarily without violating
security. Therefore, parties in our protocol cast votes in search of a sufficiently
large quorum (of n− ti parties) to output a value with grade 1. If such a quorum
is found, a certificate of the quorum is made and broadcast to the rest of the

Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement 7

parties. Upon receiving a unique certificate of this kind, a party replaces its
input with the received value, and enters ΠMR with the new input. Validity in
the sabotaged case then becomes immediate, and careful analysis is required to
ensure that this added part of the protocol can not violate the ts-security of the
protocol in the authenticated setting.

Our second protocol GC∗
Sab provides the opposite: sabotaged security and

validity and termination in the authenticated case. The main challenge stems
from the fact that honest parties might not initiate the protocol GC∗

Sab in the
same round, due to possibly different exit times from BAAuth. Thanks to the
Synchronizer (see Section 4), which leverages the synchrony assumption of the
network, we know that honest parties commence GC∗

Sab at most 1 round apart
from one another. This allows us to design GC∗

Sab with that in mind, and not
deal with the general case of asynchrony.

Similarly to GC∗
Auth, our augmenting of ΠAW with sabotaged ts-validity relies

on the observation that when not in the validity case, parties may change their
inputs arbitrarily without harming the security of the protocol. A first attempt
at augmenting ΠAW with authenticated ts-validity might look as follows: Echo
the inputs, and look for a quorum of n − ts echos for a value v, broadcast a
certificate C(v) of this quorum (if found) using threshold signatures, and if no
conflicting certificates were received, cast a vote for v, deciding it with grade 1
if a quorum of n − ts of votes was received. Validity in the authenticated case
clearly holds, but alas, in the sabotaged setting, for reasons that become clear
in the analysis, this approach fails.

The key observation here is that in the authenticated setting, we only care
about validity, and so we can impose stricter conditions on deciding a value prior
to running ΠAW. Specifically, our solution stipulates that witnessing a unique
certificate for a value is no longer sufficient for party to decide a value, it must
have also created a certificate itself. This saves us from consistency violations
in the sabotaged setting by making sure that if an honest party decides a value
before ΠAW, then all honest parties have seen a certificate for that value.

1.2 Related Work

Hybrid Security. Two previous works that we are aware of consider fallback secu-
rity w.r.t. an unbounded adversary for an authenticated protocol [FHW04,FR09]
(both cited above), both focused on the feasibility of MPC. These works addition-
ally allow the adversary to completely compromise the PKI, given the adversary
corrupts up to tp parties - they call the resulting model hybrid security. They
show to provide security for tp > 0 that 2ts+ tp < n is necessary and sufficient.6

Thus, to guarantee any security in this case, one must sacrifice resilience in ts.
Our model further differs from previous work in that in the sabotaged case, we
additionally allow the adversary to passively compromise the setup even under

6In [FR09], the authors show for tp = 0 that ts+2ti < n is enough, and so ts ≤ n/2
and ti > 0 (in their model) is possible for functionalities like broadcast and MPC with
(in their case unanimous) abort.

8 Daniel Collins, Yuval Efron, and Jovan Komatovic

ts+2ti < n, whereas the adversary cannot not do so in [FHW04,FR09] unless tp
or less corruptions are made. This is of particular note for information-theoretic
authenticated BA with fallback since one can set ts = n

2 − 1 and still achieve
fallback security for ti ≤ n

4 under passively compromised setup.
As noted above, [FHW04] build hybrid broadcast with O(λn4) bit and O(n)

round complexity. They first build ‘weak broadcast’ which provides security in
their hybrid setting, then generically build graded consensus with O(n) instances
of weak broadcast, followed by O(n) instances of graded consensus (one per
round) for the final broadcast protocol. We do not see how to easily reduce this
complexity without starting from scratch, which we indeed do in this work.

[FR09] also build hybrid broadcast using O(λn4) bits and O(n) rounds as
written; we now consider its most expensive components. First, they run Dolev-
Strong broadcast w.r.t. the sender (or as we note, any t < n broadcast pro-
tocol). Then, they run so-called broadcast with extended validity, which they
build from n instances of perfectly-secure broadcast [BGP+89] with a message-
signature pair as input. Finally, they run parallel broadcast where each hon-
est party may input O(n) signatures on a message. Perfectly secure parallel
broadcast with O(λ)-sized input can be built using O(λn3 log n) bits and O(f)
rounds for f actual corruptions [CDG+24b], and otherwise O(λn2 + n3 log2 n)
bits and constant rounds [AC24]. Authenticated parallel broadcast under honest
majority with O(λ + n)-sized inputs (using multisignatures) can be built using
O(n3 + λn2) bits and O(n) rounds [CDG+24a], and otherwise O(λn3) bits and
constant rounds [ANS23]. Ultimately, we cannot escape using at least O(λn3)
bits using the approach of [FR09] to build constant-round broadcast, let alone
BA with constant round complexity.

Fallback Security. Many works consider providing additional security guaran-
tees to primitives like BA or MPC on top of or in exchange for some security in
the ‘base’ setting (in our work the authenticated setting) going back at least to
Chaum [Cha90] in MPC; we survey some below. [GKKY10] considers a model
where the secrets of tc parties can be exposed to the adversary and ta addi-
tional parties can be corrupted, showing in particular 2ta +min{ta, tc} < n for
(fixed) ta, tc > 0 is sufficient and necessary; observe that their model is incom-
parable to ours. An accountable BA protocol [CGG+22] provides security given
t corruptions, and given t′ > t corruptions, parties can generate a proof that
some parties must have behaved maliciously. This resembles MPC with identifi-
able abort [IOZ14], namely MPC under corrupt majority that ensures a corrupt
party is unanimously detected if the protocol aborts, but is not confined to the
synchronous setting. [LZLM+20] considers synchronous MPC under ts corrup-
tions with responsiveness (like asynchronous protocols) under tr corruptions,
and achieve a comparable bound as us, namely ts + 2tr < n. [LRM10] consid-
ers trade-offs between information-theoretic robustness (preventing adversarial
abortion) and computational privacy assuming broadcast and secure channels.

A line of work initiated in [BKL19] considers network-agnostic security, that
is, providing security for up to ta corruptions if the network is asynchronous
and ts if it is synchronous. Some works consider feasibility results, including

Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement 9

[BKL19] for BA, which is possible if and only if 2ts + ta < n, among oth-
ers [BZL20,BKL21,DLZ23], as well as performance [DHLZ21,BCLZL23]. The
recent work of [DE24] has a similar motivation to ours in that the authors show
that network-agnostic BA can be built ‘for free’ in the synchronous case, namely
with O(λn2) bit and constant round overhead.

Byzantine agreement. There is a rich history of work on the Byzantine agree-
ment problem in each our considered settings (when considered separately). In
the authenticated setting, the state-of-the-art protocol for BA in terms of com-
munication complexity and latency is [CDG+24a] in the deterministic case, in
which they showcase a protocol with resilience t < n

2 with optimal O(f) round
complexity when f ≤ t corruptions actually occur, and O(λn2) bit complexity.
In the randomized case, [ADD+19] presents a protocol with O(1) expected la-
tency, and O(λn2) expected bit complexity, with resilience of t < n

2 . For the
sabotaged setting, the protocol of [MMR15] presents a protocol with optimal
t < n

3 resilience, O(1) expected latency, and O(n2) expected bit complexity. Alas
their protocol assumes the existence of a common coin. [BGP92] and [CW92]
were the first to solve BA with O(n2) bits and linear rounds; later [LS22] built
such a protocol that is additionally early stopping. In a breakthrough result,
Chen [Che21] solved BA with strong unanimity (⊥ can be decided when not all
honest parties propose the same value) with O(nL + n2 log n) for messages of
length L. [CDG+24b] achieve external validity [CKPS01] (decided values satisfy
a given predicate) with O((nL + n2) log n) bit complexity; note Juggernaut can
be modified to support external validity by adding appropriate predicate checks.

2 Preliminaries and Definitions

Throughout the paper, we consider a fully connected network of n parties
p1, . . . , pn that communicate over point-to-point authenticated channels. Some
fraction of these parties are controlled by an adversary and may deviate arbitrar-
ily from the protocol. We call these parties corrupt and the other parties honest.
When we say that a party multicasts a message, we mean that it sends it to all
n parties in the network. We denote the security parameter by λ. Throughout
the paper, we assume a universe of values V .

Public Key Infrastructure. We assume that the parties have established a public
key infrastructure before the protocol execution, which is a bulletin board or
plain PKI. Namely, each party pi has a secret-public key pair (ski, pki) for the use
of cryptography. In this paper, we assume that those keys are used to instantiate
a secure digital signature scheme and all messages in our protocols (but not
necessarily building blocks) are implicitly signed.

Threshold Signatures. On top of a PKI, a trusted setup allows the parties to
map any vector of f valid signatures of the same message m by different parties
(henceforth referred to as an f -certificate of m) into a single message π of length

10 Daniel Collins, Yuval Efron, and Jovan Komatovic

O(λ), called a threshold signature, denoted C(m), with the property that the
signature certification algorithm passes on π iff π is the image of a valid t-
certificate on m.

Communication Model. We assume a synchronous network, where all parties
begin the protocol at the same time, the clocks of the parties progress at the
same rate, and all messages are delivered within some known finite time ∆ > 0
(called the network delay) after being sent. In particular, messages of honest
parties cannot be dropped from the network and are always delivered. Thus,
we can consider protocols that execute in rounds of length ∆ where parties
start executing round r at time (r − 1)∆. We further assume that ∆ is public
information and is known to all parties and the adversary, and any action carried
out by any party can depend on ∆. With that in mind, and to avoid notation
encumbrance, we omit ∆ from the list of inputs to algorithms and protocols in
our definitions.

Adversarial Model. The adversary model we consider in the paper is an amal-
gamation of two common adversaries in the literature. Formally, given two pa-
rameters ti ≤ ts < n/2 such that 2ti + ts < n, the adversary A can be described
as a tuple A = (A0,A1,A2) such that

– A0(Π, r, Trr) = Fr where Fr denotes the set of corrupt parties at round
r. I.e. A0 is an algorithm that chooses for every round the set of cor-
rupt parties, based on the description of the protocol Π, the round r, and
the transcript Trr of the protocol up to round t. We distinguish between
two types of adversaries in this context. A static adversary satisfies that
A0(Π, r, Trr) = A0(Π, 0, T r0) for all rounds r. An adaptive adversary sat-
isfies A0(Π, r, Trr) ⊆ A0(Π, r + 1, T rr+1) for all rounds t. Unless otherwise
stated, we assume an adaptive adversary For a given adversary A, we say
that a party p is forever honest if p ̸∈ Fr for all rounds r.

– A1(Π, r, Trr,Fr) describes the algorithm run by corrupt parties throughout
the execution of the protocol: it may depend on the description of the proto-
col Π, the round r, the transcript Trr of the protocol up to round r, and the
internal state of all corrupt parties at round r. In this context, we distinguish
between two settings, characterized by the capabilities of the adversary.
• Sabotaged. A1 (and A0) are computationally unbounded, and in par-
ticular can break the security of any cryptographic primitive used in the
protocol via the PKI. Furthermore, the adversary has complete access to
all the information, secret and public of any setup protocol carried out
by the parties prior to receiving their inputs. Equivalently, in the ideal
setup world, the adversary receives from the trusted dealer of the setup
all communication sent to any party.

• Authenticated. A1 (and A0) are computationally bounded, and there
is a trusted PKI setup. In this case, we assume in our security proofs that
the cryptographic primitives used in the protocol provide perfect secu-
rity, which, by a standard hybrid argument, does not affect the generality
of our result and serves to simplify the exposition.

Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement 11

– A2(Π) → {0, 1}. The adversary, at round r = 0 can view the protocol
description Π and choose a bit b that indicates the setting of the current
execution of the protocol. This choice is not revealed to honest parties. The
following holds.

• If b = 1, then A chose the sabotaged setting. Furthermore, |Fr| ≤ ti for
all rounds r.

• If b = 0, then A chose the authenticated setting. Furthermore |Fr| ≤ ts
for all rounds r.

We say that the adversary A is t-bounded if |Fr| ≤ t holds for all rounds r
Definitions and properties that we introduce hereafter are only required to hold
with probability 1− negl(λ).

2.1 Distributed Primitives

When relevant, our primitives take input from a value set V with |V | ≥ 2; we
assume that default value ⊥ ̸∈ V . Note that ⊥ is considered as a valid output
in each protocol.

Definition 1 (Byzantine Agreement). Let Π be a protocol executed by par-
ties p1, . . . , pn, where each party pi begins by calling propose with input vi ∈ V .
The BA problem pertains to the following properties.

– Validity: Π is sabotaged (authenticated) t-valid if the following holds in the
sabotaged (authenticated) setting when at most t parties are corrupted: If
every honest party’s input is equal to the same value v, then every honest
party outputs v.

– Consistency: Π is sabotaged (authenticated) t-consistent if the following
holds in the sabotaged (authenticated) setting when at most t parties are
corrupted: Every honest party that outputs a value outputs the same value v.

– Termination: Π is sabotaged (authenticated) t-terminating if the following
holds in the sabotaged (authenticated) setting when at most t parties are
corrupted: Every honest party produces an output and terminates.

If Π is sabotaged (authenticated) t-valid, t-consistent, and t-terminating, we say
it is sabotaged (authenticated) t-secure.

Definition 2 (Graded Consensus). In the graded consensus (GC) prob-
lem, each honest party invokes propose with input vi ∈ V and outputs a tu-
ple (yi, gi) ∈ V × {0, 1}. Let Π be a protocol executed by parties p1, ..., pn. The
relevant properties attributable to Π are as follows.

– Validity: We say that Π is sabotaged (authenticated) t-valid if the following
holds in the sabotaged (authenticated) setting when at most t parties are
corrupted: If every honest party’s input is equal to the same value v, then
every honest party outputs (v, 1).

12 Daniel Collins, Yuval Efron, and Jovan Komatovic

– Consistency: We say that Π is sabotaged (authenticated) t-consistent if
the following holds in the sabotaged (authenticated) setting when at most t
parties are corrupted: If an honest party outputs (v, 1) for some value v, then
all honest parties output either (v, 1) or (v, 0).

– Termination: We say that Π is sabotaged (authenticated) t-terminating
if the following holds in the sabotaged (authenticated) setting when at most
t parties are corrupted: There exists a round r such that all honest parties
produce an output and terminate by round r.

If a protocol Π for GC is sabotaged (authenticated) t-valid, t-consistent, and
t-terminating, we say that Π is sabotaged (authenticated) t-secure.

Definition 3 (Synchronizer). In the Synchronizer problem, we expose the
following interface, that any party can engage with in a round of their choice.

– start synchronization(v ∈ V): a party starts synchronization with a value v ∈
V .

– output synchronization completed(v′ ∈ V): a party completes synchronization
with a value v′ ∈ V .

We make the assumption that each honest party starts synchronization at
most once. Importantly, we do not assume that all honest parties start synchro-
nization, i.e., it could be the case that no honest party starts synchronization.

We consider the following properties w.r.t. to a protocol Π in the context of
the Synchronization primitive.

– Justification: We say that Π has sabotaged (authenticated) t-justification
if the following holds in the sabotaged (authenticated) setting when at most
t parties are corrupted: If the an honest party p completes synchronization
with a value v′ at round r, then there exists an honest party q that started
synchronization with value v′ at a round r′ < r.

– Totality: We say that Π has sabotaged (authenticated) t-totality if the fol-
lowing holds in the sabotaged (authenticated) setting when at most t parties
are corrupted: Let ρ be the first round in which an honest party completes
synchronization for some value v. Then, every honest party pi completes
synchronization at some round ρi ≤ ρ+ 1.

– Liveness: We say that Π has sabotaged (authenticated) t-liveness if the
following holds in the sabotaged (authenticated) setting when at most t parties
are corrupted: Suppose there exists a value v ∈ V and a round ρ such that
all honest parties start synchronization with value v by round ρ. Then, every
honest party pi completes synchronization with value v at some round ρi ≤
ρ+ 1.

Generic Compiler. As mentioned in the introduction, we make use of black-box
access to given protocols solving BA. One in the PKI setting with authenticated
ts-security, and one in the information theoretic setting with ti-security. We
further make the assumption that along with Π, we are also given a parameter
TΠ indication the amount of rounds one must run the protocol to ensure that

Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement 13

all honest nodes have produced an output except for with negligible probability
We here formalize the notion of black-box access to a protocol in the context of
our work.

Definition 4. For a given tuple (Π,TΠ), where Π is a sabotaged (authenticated)
t-secure BA protocol and TΠ is a parameter, black-box access implies the following
guarantees for any adversary A.

– If A chose the sabotaged (authenticated) setting and furthermore there ex-
ists a round r′ s.t. all honest parties initiate Π.propose(v ∈ V) at round r′,
then except for with negl(λ) probability, by round r′ + TΠ , all honest parties
have produced an output from Π, furthermore, these outputs satisfy the BA
conditions so long as |Fr| ≤ t for all rounds r.

For a given protocol Π and an adversary A, we denote its expected communica-
tion (in bits) complexity under A by CCA(Π). Note that this is well defined since
in all protocols discussed in this work, there is a predetermined upper bound on
the number of rounds for which each party is active before halting. We assume
that values in V are of size O(λ) when CC is calculated; this is without loss of
generality (see Section 6).

3 Juggernaut

This section presents Juggernaut, our main protocol. We start by introducing
Juggernaut’s building blocks (Section 3.1). Then, we show how these building
blocks are composed into Juggernaut (Section 3.2). Finally, we prove Juggernaut’s
security and complexity, captured in the following theorem.

Theorem 1. Let ts, ti such 2ti + ts < n, ti ≤ ts < n
2 . Assuming black-box

(Definition 4) access to (BAAuth, TAuth) and (BASab, TSab), where BAAuth is an
authenticated ts-secure protocol for BA, and BASab is a sabotaged ti-secure pro-
tocol. Then, there exists a protocol Juggernaut which is authenticated ts-secure
and sabotaged ti-secure. Furthermore, for any adversary A the following holds:

1. If BAAuth and BASab are secure against an adaptive adversary, then so is
Juggernaut.

2. If A chose the sabotaged setting, and the adversary is ti-bounded, the ex-
pected communication (in bits) complexity of Juggernaut is O(CCA(BAAuth)+
CCA(BASab) + λn2).

3. If A chose the authenticated setting, and the adversary is ts-bounded,
then the expected communication (in bits) complexity of Juggernaut is
O(CCA(BAAuth) + λn2).

4. If A chose the authenticated setting, and the adversary is ts-bounded, then if
r is the the first round such that all parties honest at round r have produced
an output from BAAuth and terminated BAAuth, then all forever honest parties
produce and output from Juggernaut and terminate Juggernaut after r+O(1)
rounds.

14 Daniel Collins, Yuval Efron, and Jovan Komatovic

3.1 Building Blocks: Overview

In this subsection, we summarise the building blocks we use to build Juggernaut
on top of Byzantine agreement.

Authenticated Graded Consensus with Sabotaged Validity. The authen-
ticated graded consensus with fallback validity primitive exposes the following
interface:

– Input propose(v ∈ V): A party proposes a value v ∈ V .
– Output: (v′ ∈ V, g′ ∈ {0, 1}): A party outputs a value v′ with a binary grade

g′. Usually indicated by a left arrow ←.

We assume that all honest parties propose exactly once and they all do that
simultaneously (i.e., in the same round). In this setting, we design a protocol
GC∗

Auth, that satisfies the following properties w.r.t. the graded consensus primi-
tive (See Definition 2) for any ts+2ti < n, ti ≤ ts <

n
2 : Authenticated ts-secure,

sabotaged ti-valid, and sabotaged ti-terminating.

Complexity. Juggernaut utilizes an implementation of the primitive that ex-
changes O(λn2) bits and terminates in T1 = O(1) rounds. We relegate our im-
plementation of the primitive to Section 5.1.

Sabotaged Graded Consensus with Authenticated Validity. The sab-
otaged graded consensus with authenticated validity primitive exposes the fol-
lowing interface:

– Input propose(v ∈ V): A party proposes a value v ∈ V .
– Output (v′ ∈ V, g′ ∈ {0, 1}): A party outputs a value v′ with a binary grade

g′. Usually indicated with a left arrow ←.

All honest parties propose exactly once and they do so within one round of each
other. Therefore, we do not assume that all honest parties propose in the same
round. For this setting, we design a protocol GC∗

Sab with the following properties
w.r.t. to the GC primitive (See Definition 2) for any ts + 2ti < n, ti ≤ ts < n

2 :
Sabotaged ti-secure and authenticated ts-valid and ts-terminating.

Complexity. In Juggernaut, we employ an implementation of the primitive that
exchanges O(λn2) bits and terminates in T2 = O(1) rounds. The implementation
can be found in Section 5.2.

Synchronizer. The primitive exposes the following interface:

– input start synchronization(v ∈ V): A party starts synchronization with a
value v ∈ V .

– output synchronization completed(v′ ∈ V): A party completes synchroniza-
tion with a value v′ ∈ V .

Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement 15

We design a protocol Sync, that has the following properties in the context of
the Synchronizer primitive (See Definition 3) for any ts + 2ti < n, ti ≤ ts <

n
2 .

– Sabotaged ti-totality.
– Authenticated ts-justification, ts-totality, ts-liveness.

Complexity. We implement the synchronizer primitive with O(λn2) exchanged
bits. See Section 4 for more details.

3.2 Juggernaut’s Implementation & Proof

Juggernaut’s implementation is provided in Figure 1, whereas its visual dedica-
tion can be found in Figure 2. For clarity, we proceed with a written exposition
on the stages of the protocol. On a high level, as seen in Figure 2, the protocol
divided into five steps.

First, all parties propose their input into GC∗
Auth – recall that this is authenti-

cated ts-secure and sabotaged ti-valid. The output of GC
∗
Auth is then fed as input

into BAAuth. Note that here is where the synchronizer Sync comes into play, since
in the the sabotaged case, or an early stopping/randomized protocol BAAuth in
the authenticated setting, the adversary can cause significant gaps between the
rounds in which honest parties produce an output and move on from BAAuth.
Sync maintains that honest parties exit BAAuth at most 1 round apart from one
another. The input to GC∗

Sab is then decided depending on whether g1 = 1, as
depicted in the figure.

To maintain early stopping in the authenticated case, each party that has
g2 = 1 participates in an early stopping phase in order to detect pre-existing
agreement in GC∗

Sab. During that phase, parties with g2 = 1 multicast decide(v4)
messages for their output from GC∗

Sab. If a quorum of n− ts decide(v) messages
is received for some value, then a party decides v and halts. Otherwise, after
sufficient time has passed, all honest parties that haven’t halted start executing
the sabotaged BA protocol BASab in the same round. At its conclusion, parties
produce an output based on conditions C2 and C3, as seen in Figure 1.

Proof (of Theorem 1). First, we present a simple proposition showing that all
honest parties propose to GC∗

Sab and they do so within one round of each other.
Recall that GC∗

Sab operates under this assumption.

Proposition 1. All honest parties propose to GC∗
Sab and they do so within one

round of each other.

Proof. In the sabotaged (resp., authenticated) setting, the proposition follows
from (1) the sabotaged ti-termination (resp., authenticated ts-termination) prop-
erty of GC∗

Auth, (2) the sabotaged ti-totality (resp., authenticated ts-totality)
property of Sync, and (3) the fact that all honest parties propose to GC∗

Sab in the
(T1 + TAuth)-th synchronous round at the latest.

Proposition 1 establishes that GC∗
Sab is utilized in an appropriate way in

Juggernaut, which implies that GC∗
Sab indeed satisfies its specification. To keep the

proof uncluttered, we will not explicitly refer to Proposition 1 in its remainder.

16 Daniel Collins, Yuval Efron, and Jovan Komatovic

Juggernaut
(Pseudocode for a party pi)

Constants: Tmax = T1 + TAuth + T2 + 1.
Initialization: vi = pi’s proposal, output1 = output2 = false.

1. Let (v1, g1)← GC∗
Auth.propose(vi). // This step takes exactly T1 rounds.

2. Let v2 ← BAAuth.propose(v1). If BAAuth does not terminate after TAuth rounds,
let v2 ← ⊥. // This step takes at most TAuth rounds. However, if A is compu-
tationally bounded, it might take fewer than TAuth rounds.

3. Invoke Sync.start synchronization(v2).
4. Upon (1) Sync.synchronization completed(v′) is triggered, or (2) TAuth rounds

elapsed, party pi starts step 4. If g1 = 1, let v3 ← v1. Else if
Sync.synchronization completed(v′) is triggered, let v3 ← v′. Else, let v3 ← v1.

5. Let (v4, g4)← GC∗
Sab.propose(v3). // This step takes exactly T2 rounds.

6. Set output1 = true.
7. If g4 = 1, multicast (decide, v4).
8. At round Tmax, let output1 = false and let vSab ← BASab.propose(v4). If BASab

does not terminate after TSab rounds, let vSab ← ⊥.
9. Set output2 = true.

Decision:

C1. If output1 = true and received (decide, v4) from n− ts distinct parties: decide
v4 and halt.

C2. If output2 = true and received for some v (decide, v) from n− ts − ti distinct
parties: decide v and halt.

C3. If output2 = true: decide vSab and halt.

Fig. 1: BA with crypto-agnostic security for 2ti + ts < n given 1) an authenticated
ts-secure BA protocol BAAuth; 2) a sabotaged ti-secure BA protocol BASab; 3) an

authenticated ts-secure and sabotaged ti-valid graded consensus protocol GC∗
Auth; and

4) a sabotaged ti-secure and authenticated ts-valid graded consensus protocol GC∗
Sab.

Juggernaut’s security in the sabotaged setting. We start by proving that Jugger-
naut is ti-valid in the sabotaged setting.

Lemma 1 (ti-validity). Juggernaut (Figure 1) is ti-valid in the sabotaged set-
ting.

Proof. Suppose all honest parties propose the same value v. Due to the validity
property of GC∗

Auth in the sabotaged setting, all honest parties decide (v, 1) from
GC∗

Auth. Hence, all honest parties propose v to GC∗
Sab. The fact that GC

∗
Sab satisfies

validity in the sabotaged setting proves that all honest parties decide (v, 1) from
GC∗

Sab. Thus, all honest parties multicast a (decide, v) message. Hence, all honest
parties receive n− ti such messages. (Note that no honest party receives n− ts
decide message for any value v′ ̸= v since that would imply that an honest party
sends a decide(v′) message, which cannot occur.) As n−ti ≥ n−ts (since ti ≤ ts),
all honest parties decide v according to decision condition C1. ⊓⊔

Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement 17

Fig. 2: Overview of the structure of the main protocol for each party. Beginning with
input insertion at the top left with vi, and ending with output production at the

bottom left. The values next to arrows indicate the outputs and inputs produced and
delivered into procedures.

Next, we prove that Juggernaut is ti-consistent in the sabotaged setting.

Lemma 2 (ti-consistency). Juggernaut (Figure 1) is ti-consistent in the sab-
otaged setting.

Proof. Suppose that at least one honest party outputs due to C1, i.e., receives
(decide, v4) from n− ts distinct parties. Since n− ts− ti > ti, at least one honest
party must have output (v4, 1) from GC∗

Sab, and thus by ti-consistency of GC∗
Sab,

all honest parties output the same value v4, and in particular no honest party
multicasts (decide, v′4) for v

′
4 ̸= v4. In addition, at least n− ts− ti honest parties

must have multicast (decide, v4). Thus all honest parties will receive (decide, v4)
from at least n − ts − ti distinct parties, and not for any other value v′4 ̸= v4
since n − ts − ti > ti. Therefore all honest parties will output v4 either due to
C1 or C2.

Suppose that no honest party outputs due to C1 and at least one outputs
due to C2, i.e., due to receiving (decide, v) for some v from n − ts − ti distinct
parties. Then at least one honest party must have multicast (decide, v), since
n − ts − ti > ti. By the ti-consistency of GC∗

Sab, all honest parties will propose
the same v to BASab. By the ti-validity of BASab, all honest parties will output
the same vSab = v. Thus all honest parties will output either due to C2 or C3
with the same value v.

Finally, supposing no honest party outputs due to C1 or C2, all honest parties
output the same value v from BASab due to the ti-consistency of BASab and then
decide it due to C3. ⊓⊔

Finally, we prove that Juggernaut is ti-terminating in the sabotaged setting.

Lemma 3 (ti-termination). Juggernaut (Figure 1) is ti-terminating in the sab-
otaged setting.

18 Daniel Collins, Yuval Efron, and Jovan Komatovic

Proof. Juggernaut trivially terminates as all honest parties decide in round
Tmax + TSab (at the latest). ⊓⊔

Juggernaut’s security in the authenticated setting. First, we prove that
Juggernaut is ts-valid in the authenticated setting.

Lemma 4 (ts-validity). Juggernaut (Figure 1) is ts-valid in the authenticated
setting. Furthermore, all honest parties output according to C1.

Proof. Let all honest parties propose the same value v. By the ts-security of
GC∗

Auth, all honest parties output (v, 1). Therefore, all honest parties set v3 = v.
By the ts-validity with termination of GC∗

Sab, all parties output (v, 1). Valid-
ity and all parties outputting according to C1 then follows as in the proof
of Lemma 1 ⊓⊔

Next, we prove that Juggernaut is ts-consistent in the authenticated setting.

Lemma 5 (ts-consistency). Juggernaut (Figure 1) is ts-consistent in the au-
thenticated setting. Furthermore, all honest parties output according to C1.

Proof. We first argue that all honest parties input the same value v3 to GC∗
Sab.

– Suppose first that at least one honest party outputs g1 = 1 from GC∗
Auth.

Then by the ts-consistency of GC∗
Auth, all honest parties will output the same

v1. By the ts-validity of BAAuth, all honest parties output v2 = v1 from
BAAuth, and thus no honest party can advance from Sync with any value
v′ ̸= v1 (by ts-justification of Sync). Thus v3 = v1 is the same for all honest
parties.

– Otherwise, no party outputs g1 = 1 from GC∗
Auth. By ts-consistency of BAAuth,

all honest parties output the same v2 (and ts-justification of Sync ensures
that no honest party can advance from Sync with any value v′ ̸= v2), and
by construction all set v3 = v2 (i.e., do not override v3 with v1).

Then, by the ts-validity of GC∗
Sab, all honest parties output (v4, 1) from GC∗

Sab,
multicast (decide, v4), and by the same reasoning as for the proof of Lemma 4, all
honest parties will output due to C1 (and in particular never execute BASab). ⊓⊔

Lastly, we observe that Juggernaut is ts-terminating in the authenticated setting
as all parties terminate without running BASab.

Complexity. We now attend to the complexity analysis of Juggernaut. Lemma 4
and Lemma 5 implies that in the authenticated setting, all honest parties produce
an output and halt after GC∗

Sab, without running BASab. Since T2 = O(1), and
by the Totality and Liveness properties of Sync, we get that if r is first the
round by which all honest parties produced an output from BAAuth, then all
forever honest parties produce an output and halt after at most r+O(1) rounds,
as required. Furthermore, since no honest party executes BASab, the expected
communication (in bits) complexity of Juggernaut is O(CCA(BAAuth) + λn2), as

Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement 19

required. In the sabotaged setting, notice that all communication aside from
BAAuth and BASab is bounded by O(λn2) bits. Thus in the sabotaged setting, the
expected communication (in bits) complexity of Juggernaut is O(CCA(BAAuth)+
CCA(BASab) + λn2), as required.
Lastly, notice that aside from (potentially) BAAuth and BASab, the protocol Jug-
gernaut is deterministic, and thus if BAAuth,BASab are secure against an adaptive
adversary, then so is Juggernaut. This concludes the proof of Theorem 1. ⊓⊔

3.3 Corollaries

Now that we have proven Theorem 1, we can instantiate BAAuth and BASab with
concrete protocols in order to obtain concrete crypto-agnostic protocols. Before
we state those corollaries, one point needs to be addressed.

Bit complexity in the sabotaged setting. In order to maximize the generality of
our results, the only assumption we made about BAAuth,BASab, as explained in
Definition 4, is that we are provided with round complexity bounds for these pro-
tocols. In particular, we are given no such guarantee for bit complexity. As such,
in the sabotaged setting, when the parties run BAAuth, which is an authenticated
ts-secure BA protocol, we have no a-priori upper bound for the amount of bits
sent by honest parties during the execution, hence why we define the bit com-
plexity of a protocol w.r.t. a particular adversary. When considering concrete
protocols, however, each party can infer a bound from the description of the
protocol on the number of messages it has to send, and if is exceeded, an honest
party can simply halt BAAuth and move onto Sync with input ⊥. The corollaries
we state assume that such a modification was made to the final protocol.

Juggernautdet. For a deterministic protocol, we instantiate BAAuth with the pro-
tocol of [MR21b] modified using the techniques of [LS22] to achieve O(f) round
complexity, and BASab with the protocol of [BGP92], to obtain the following.

Corollary 1. Let ts, ti s.t. ts+2ti < n, ti ≤ ts <
n
2 . There exists a deterministic

authenticated ts-secure, sabotaged ti-secure protocol Juggernautdet solving the BA
problem with the following properties.

– In the authenticated setting, Juggernautdet has O(λn2) bit complexity and
O(f) round complexity, where f ≤ ts is number of actual corruptions.

– In the sabotaged setting, Juggernautdet has O(λn2) bit complexity and O(n)
round complexity.

Juggernautran. For a randomized protocol, we instantiate BAAuth with the pro-
tocol of [ADD+19], setting TAuth = O(λ), and BASab with the protocol of [LS22]
(run bit-by-bit in parallel), to obtain the following.

Corollary 2. Let ts, ti s.t. ts + 2ti < n, ti ≤ ts <
n
2 . There exists a randomized

authenticated ts-secure, sabotaged ti-secure protocol Juggernautran solving the BA
problem with the following properties.

20 Daniel Collins, Yuval Efron, and Jovan Komatovic

– In the authenticated setting, Juggernautran has O(λn2) expected bit complexity
and O(1) expected round complexity.

– In the sabotaged setting, Juggernautran has O(λ2n2) bit complexity and
O(λ+ f) round complexity, where f ≤ ti is the number of actual corrup-
tions.

4 Building a Synchronizer

In this section we construct Sync, that fills the role of the synchronizer as dis-
cussed in Section 3. Formally, we prove the following.

Theorem 2. There exists a deterministic protocol Sync that satisfies the fol-
lowing in the context of the Synchronizer primitive (See Definition 3), for any
ts + 2ti < n, ti ≤ ts <

n
2 .

– Sabotaged ti-totality.
– Authenticated ts-totality, ts-justification, and ts-liveness.

Furthermore, Sync has communication (in bits) complexity of O(λn2).

The implementation of Sync can be found in Figure 3. On calling
start synchronization, parties multicast finish(vi). On receiving n − ts finish(v)
for some v, parties form a certificate. Then, at this point or on receipt of such a
certificate, the caller multicasts it and calls synchronization completed(v).

Synchronizer Sync
(Pseudocode for a party pi)

– When start synchronization(vi ∈ V) is invoked, multicast finish(vi).
– If ∃v ∈ V such that at least n− ts finish(v) messages are received, perform the

following steps: (1) use TS to create a certificate C(v), (2) multicast C(v), and
(3) trigger synchronization completed(v).

– If ∃v ∈ V such that a certificate C(v) is received, perform the following steps:
(1) multicast C(v), and (2) trigger synchronization completed(v).

Fig. 3: Synchronizer Sync with authenticated ts-justification, totality and liveness,
and sabotaged ti-totality.

Proof (of Theorem 2).

Sync’s correctness in the authenticated setting. First, prove the justification prop-
erty.

Lemma 6 (ts-justification). Sync (Figure 3) satisfies ts-justification in the
authenticated setting.

Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement 21

Proof. If an honest party completes synchronization with a value v′, there is at
least one honest party that multicasts a finish(v′) message (as n− ts > ts given
ts < n/2). Hence, the lemma holds. ⊓⊔

Next, we prove the totality property.

Lemma 7 (ts-totality). Sync (Figure 3) satisfies ts-totality in the authenti-
cated setting.

Proof. The lemma trivially holds as each honest party disseminates a certificate
once it completes synchronization. ⊓⊔

Finally, we prove the liveness property.

Lemma 8 (ts-liveness). Sync (Figure 3) satisfies ts-liveness in the authenti-
cated setting.

Proof. By the beginning of the round ρ + 1, each honest party receives n − ts
finish(v) messages. Therefore, each honest party completes synchronization with
value v by round ρ+ 1. ⊓⊔

Sync’s correctness in the sabotaged setting. We prove the totality property.

Lemma 9 (ti-totality). Sync (Figure 3) satisfies ti-totality in the sabotaged
setting.

Proof. The lemma trivially holds as each honest party disseminates a certificate
once it completes synchronization (as in the authenticated case). ⊓⊔

Complexity. Finally, we argue that honest parties exchange O(λn2) bits in Sync.
Observe that each honest party multicasts a single finish message, thus sending
O(n) bits (assuming that the values are of constant size). Moreover, each honest
party multicasts one certificate of size O(λ) bits, thus sending O(λn) bits. Hence,
honest parties send n ·O(n+ λn) = O(λn2) bits. ⊓⊔

5 Building Graded Consensus

In this section, we construct our two GC protocols that we use in Juggernaut –
First, our authenticated protocol with sabotaged validity and termination, and
then, our sabotaged protocol with authenticated validity and termination.

5.1 Authenticated Graded Consensus with Sabotaged Validity

We first construct graded consensus for the authenticated setting, augmented
with validity for the sabotaged setting. We denote the protocol by GC∗

Auth. For-
mally, we prove the following.

22 Daniel Collins, Yuval Efron, and Jovan Komatovic

Theorem 3. Let ts, ti such that ts + 2ti < n, ti ≤ ts < n
2 . There exists a T1 =

O(1) round deterministic protocol GC∗
Auth that satisfies the following properties

in the context of the GC primitive (see Definition 2) in a ∆-synchronous network
when all parties commence the protocol in the same round.

– Authenticated ts-secure.

– Sabotaged ti-valid.

– Sabotaged ti-terminating.

Furthermore, given ΠMR has at most O(λn2) bit complexity and constant round
complexity, so too does GC∗

Auth.

Our protocol GC∗
Auth, described in Figure 4, assumes an authenticated graded

consensus protocol (see Definition 2), like the constant-round, authenticated ts-
secure, and sabotaged ti-terminating GC of Momose-Ren [MR21a]. In GC∗

Auth,
parties run three rounds of filtering to additionally ensure sabotaged ti-validity
before executing ΠMR. First, each party multicasts its input (recall all values are
signed by assumption). Then, if n− ti signatures from different parties on some
v are received, a certificate on v is formed, the output of the protocol is locked
to (v, 1), pi’s input to ΠMRis overwritten with v, and the certificate is multicast.
In the third round, parties overwrite their input if they receive non-conflicting
certificates for a single value v. Finally, parties run ΠMR, and output the result
of that if they did not lock their output.

GC∗
Auth(vi)

(Pseudocode for a party pi)
Initialization: yi = vi, gi = 0

– Round 1: Multicast init(v).
– Round 2: If there exists v ∈ V such that at least n − ti init(v) messages

are received, then perform the following steps: (1) use threshold signatures to
create an (n− ti)-certificate C(v) for init(v), (2) multicast C(v), and (3) lock
yi = v, gi = 1.

– Round 3: If (1) there exists v ∈ V such that C(v) is received, and (2) there
does not exist v′ ̸= v such that C(v′) is received, then yi ← v.

– Round 4+: Run (yi, gi)← ΠMR(yi).
– Decision: Output (yi, gi).

Fig. 4: Authenticated ts-secure and sabotaged ti-valid graded consensus protocol
GC∗

Auth given an authenticated ts-scure graded consensus ΠMR.

Proof (of Theorem 3). Termination clearly holds in both settings by the be-
haviour of the protocol. We now move on to the other properties.

Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement 23

Validity in the sabotaged setting. First, we prove that GC∗
Auth satisfies validity in

the sabotaged setting.

Lemma 10. If any honest party receives n − ti init(v) messages, then v is the
proposal of an honest party.

Proof. As n > ts+2ti, we have that n− ti > ti. Therefore, the lemma holds. ⊓⊔

Lemma 11 (ti-validity). GC
∗
Auth satisfies sabotaged ti-validity.

Proof. Suppose all honest parties propose the same value v ∈ V . As there are
at least n − ti honest parties and they all propose value v, every honest party
eventually receives n − ti values for v (and, by Lemma 10, only v). Therefore,
every honest party decides (v, 1), thus concluding the proof. ⊓⊔

Validity in the authenticated setting. We now prove that GC∗
Auth satisfies validity

in the authenticated setting. Throughout the rest of the proof of the validity
property, we suppose that all honest parties propose the same value v.

Lemma 12. If any (n− ti)-certificate C(v′) is formed, then v′ = v.

Proof. As C(v′) is formed and n− ti > ts (given that n > ts + 2ti), there exists
an honest party that sends an init(v′) message for its proposal v′. Given that all
honest parties propose v, v′ = v. ⊓⊔

Lemma 13. If any honest party locks some value v′ in round 2, then v′ = v.

Proof. Let pi denote any honest party that locks some value v′ in round 2.
Therefore, pi receives an init(v′) message for v′ from an honest party as n−ti > ts
(as n > ts+2ti). As all honest parties propose v, v′ = v and the lemma holds. ⊓⊔

Lemma 14 (ts-validity). GC
∗
Auth satisfies authenticated ts-validity.

Proof. Consider any honest party pi that decides; let pi decide (v′, g′). We dis-
tinguish two cases:
– Let party pi lock in round 2. In this case, v′ = v (due to Lemma 13) and

g′ = 1. Therefore, the statement of the theorem holds in this case.
– Let party pi decide in round (i.e., step) 4. Here, every honest party that

proposes to ΠMR does so with value v. Indeed, if any honest party pj updates
its yj variable in round 3, Lemma 12 proves that yj holds value v. Hence,
the validity property of ΠMR ensures that v′ = v and g′ = 1.

Having considered both cases, the proof is concluded. ⊓⊔

Consistency in the authenticated setting.

Lemma 15. No two (n− ti)-certificates C(v) and C(v′ ̸= v) can be formed.

Proof. By contradiction, suppose two certificates C(v) and C(v′ ̸= v) are formed.
Therefore, there are n − ti + n − ti − n = n − 2ti parties that participated in
forming both certificates. As n > ts+2ti, n−2ti > ts, which further implies that
there is at least one honest party that participated in forming both certificates.
As this is impossible, we reach a contradiction. ⊓⊔

24 Daniel Collins, Yuval Efron, and Jovan Komatovic

Lemma 16. If any honest party locks (v, 1) in round 2, then all honest parties
decide (v, 1).

Proof. First, all honest parties that lock in round 2 lock (v, 1) (due to Lemma 15).
Moreover, every other honest party pi sets its yi variable to v in round 3 (due
to Lemma 15 and by protocol construction). Therefore, the validity property of
ΠMR ensures that all honest parties that decide in round 4 decide (v, 1). ⊓⊔

Lemma 17 (ts-consistency). GC
∗
Auth satisfies authenticated ts-consistency.

Proof. To prove the lemma, we consider two possible scenarios:

– There exist an honest party that locks (v, 1) in round 2. In this case, all
honest parties decide (v, 1) (by Lemma 16).

– No honest party decides in round 2. In this case, the consistency property
follows directly from the consistency property of ΠMR.

As the statement of the lemma holds in both cases, the proof is concluded. ⊓⊔

Complexity. The protocol ΠMR (using [MR21a]) has bit complexity of O(λn2)
for inputs of size O(λ), and our addition to the protocol incurs an additive factor
of O(λn2) of bits communicated. Thus in total GC∗

Auth has a bit complexity of
O(λn2). This concludes the proof of Theorem 3. ⊓⊔

5.2 Sabotaged Graded Consensus with Authenticated Validity

We now move on to our second graded consensus protocol, the dual version of
GC∗

Auth for the sabotaged case. Specifically, we aim to design a protocol, GC∗
Sab,

that functions as a standard GC in the sabotaged case, but maintains validity
in the authenticated case. Formally, we prove the following.

Theorem 4. Let ts, ti such that 2ti + ts < n, ti ≤ ts < n
2 . There exists an

T2 = O(1) round deterministic protocol GC∗
Sab that satisfies the following in the

context of the graded consensus primitive (See Definition 2) in a ∆-synchronous
network if the round distance between protocol initiation times of any two honest
parties is at most 1.

– Authenticated ts-validity.
– Authenticated ts-termination.
– Sabotaged ti-security.

Furthermore, given ΠAW has at most O(λn2) bit complexity and constant round
complexity, so too does GC∗

Sab.

Our protocol GC∗
Sab (Figure 5) assumes a sabotaged ti-secure graded consen-

sus protocol, like the constant-round round protocol ΠAW of Attiya and Welch
[AW23] that is sabotaged ti-secure, and authenticated ts-terminating for any
ti ≤ ts < n

2 , ts + 2ti < n, even in asynchrony. As in GC∗
Auth, parties first echo

their signed value. As our goal is authenticated ts-validity, parties form a n− ts

Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement 25

certificate on echo(v) if possible. In the third round, we now require that if par-
ties have both received certificates only for one value v, and additionally received
n−ts echos of v, that they vote for v by multicasting vote(v). In the fourth round,
parties overwrite their input to ΠAW if they receive at least n − ts − ti vote(v)
messages for unique v, lock their output to (v, 1) if they receive n − ts vote(v)
messages, and then execute ΠAW, outputting the result if there is no locked value.

GC∗
Sab(vi)

(Pseudocode for a party pi)
Initialization: yi = vi, gi = 0

– Round 1 (Echo): Multicast echo(vi).
– Round 2 (Forward): If ∃v ∈ V s.t. received at least n− ts echo(v) messages,

use TS to create certificate C(v) and multicast it.
– Round 3 (Vote): If p made a certificate C(v) at Round 2 for value v ∈ V ,

didn’t receive a certificate C(v′) for any other value v′ ∈ V , and received n− ts
echo(v), multicast vote(v).

– Round 4+: If ∃v ∈ V s.t. received at least n− ts vote(v) messages, set vi = v
and lock yi = v, gi = 1. Otherwise if received at least n− ts − ti vote(v) for a
unique value, set vi = v. Run (yi, gi)← ΠAW(vi).

– Decision: Output (yi, gi).

Fig. 5: Sabotaged ti-secure and authenticated ts-valid GC∗
Sab given a sabotaged

ts-secure graded consensus ΠAW.

Proof (of Theorem 4). Termination clearly holds in both settings by the be-
haviour of the protocol. We now move on to the other properties.

Let an honest party pi start executing GC∗
Sab in some global round ρi. Then,

party pi executes Round x ∈ {1, 2, 3, 4} of GC∗
Sab in global rounds ρi + 2(x− 1)

and ρi + 2(x− 1) + 1.

Authenticated ts-validity. We first prove that GC∗
Sab satisfies authenticated ts-

validity.

Lemma 18 (ts-validity). The protocol GC
∗
Sab satisfies authenticated ts-validity.

Proof. Suppose all honest parties propose the same value v. As all honest parties
overlap in each round of GC∗

Sab for (at least) δ time, all honest parties receive
n−ts echo(v) messages at the start of Round 2. Moreover, no certificate C(v′ ̸= v)
can exist as that would imply that there exists a correct party whose proposal
is v′ ̸= v. Hence, every honest party multicast vote(v) in Round 3, which then
implies that every honest party outputs (v, 1). Thus, the validity property is
ensured in the signature world. ⊓⊔

26 Daniel Collins, Yuval Efron, and Jovan Komatovic

Sabotaged ti-validity. Then, we prove that GC∗
Sab satisfies validity in the sabo-

taged setting. We start by proving that if all honest parties propose the same
value v and an honest party creates a certificate C(v′) in Round 2, then v = v′.

Lemma 19. Suppose all honest parties propose the same value v. If an honest
party creates a certificate C(v′) in Round 2, then v = v′.

Proof. If an honest party pi creates a certificate C(v′) in Round 2, party pi has
received an echo(v′) message from an honest party as n − ts > ti (given that
n > ts + 2ti). Therefore, v

′ = v. ⊓⊔

Next, we prove that if all honest parties propose the same value v and an honest
party multicast a vote(v′) message in Round 3, then v′ = v.

Lemma 20. Suppose all honest parties propose the same value v. If an honest
party multicasts a vote(v′) message in Round 3, then v′ = v.

Proof. If an honest party pi multicasts a vote(v′) message in Round 3, party pi
has previously constructed a certificate C(v′) in Round 2. By Lemma 19, v′ = v,
thus concluding the proof. ⊓⊔

Next, we prove that if all honest parties propose v to GC∗
Sab, then all honest

parties propose v to ΠAW in Round 4.

Lemma 21. Suppose all honest parties propose the same value v. Then, all
honest parties propose v to ΠAW in Round 4.

Proof. See the full version for the proof [CEK24]. ⊓⊔

Finally, we prove that GC∗
Sab satisfies validity in the sabotaged setting.

Lemma 22 (ti-validity). The protocol GC∗
Sab satisfies validity in the sabotaged

setting, i.e. GC∗
Sab satisfies sabotaged ti-validity.

Proof. See the full version for the proof [CEK24]. ⊓⊔

Consistency in the sabotaged setting. Next, we prove that GC∗
Sab satisfies consis-

tency in the sabotaged setting. We first show that if one honest party sends a
vote(v) message and another honest party sends a vote(v′) message, then v = v′.

Lemma 23. If an honest party pi sends a vote(v) message and an honest party
pj sends a vote(v′) message, then v = v′.

Proof. See the full version for the proof [CEK24]. ⊓⊔

Finally, we are ready to prove the consistency property of GC∗
Sab.

Lemma 24 (ti-consistency). The protocol GC∗
Sab satisfies consistency in the

sabotaged setting.

Proof. See the full version for the proof [CEK24]. ⊓⊔

Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement 27

Complexity. The protocol ΠAW (using [AW23]) has bit complexity of O(λn2) for
inputs of size O(λ), and our addition to the protocol incurs an additive factor
of O(λn2) of communication bits. Thus in total GC∗

Sab has bit complexity of
O(λn2). This concludes the proof of Theorem 4. ⊓⊔

6 Conclusion

In this work, we have constructed efficient crypto-agnostic Byzantine agreement,
and in particular a protocol with O(λn2) bit complexity and constant round
complexity in the authenticated setting. Natural open problems are as follows:

– Our Juggernaut protocols use O(λn2) bits only when the input message is of
size O(λ), and otherwise O(Ln2) for L = Ω(λ). It is thus natural to consider
efficient crypto-agnostic BA for long messages. The main difficulty here is
keeping complexity low while also providing security in the sabotaged or
information-theoretic setting where it is difficult enough to build efficient
protocols [CDG+24b] let alone in the crypto-agnostic setting.

– As Juggernaut optimises round complexity in the authenticated case, it may
be of interest to instead optimise for the sabotaged case (i.e., not running
the authenticated protocol in ‘good’ executions).

– Finally, extending our results to the model where the public key in-
frastructure may be inconsistent or arbitrarily broken as considered
in [FHW04,FR09] may be of interest.

References

AC24. Gilad Asharov and Anirudh Chandramouli. Perfect (parallel) broadcast
in constant expected rounds via statistical VSS. In Marc Joye and Gregor
Leander, editors, EUROCRYPT 2024, Part V, volume 14655 of LNCS,
pages 310–339. Springer, Cham, May 2024.

ADD+19. Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling
Ren. Synchronous byzantine agreement with expected O(1) rounds, ex-

pected o(n2) communication, and optimal resilience. In Financial Cryptog-
raphy, volume 11598 of Lecture Notes in Computer Science, pages 320–334.
Springer, 2019.

ANS23. Ittai Abraham, Kartik Nayak, and Nibesh Shrestha. Communication and
round efficient parallel broadcast protocols. Cryptology ePrint Archive,
Paper 2023/1172, 2023.

AW23. Hagit Attiya and Jennifer L. Welch. Multi-valued connected consensus:
A new perspective on crusader agreement and adopt-commit. In Alysson
Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, and Yukiko Ya-
mauchi, editors, 27th International Conference on Principles of Distributed
Systems, OPODIS 2023, December 6-8, 2023, Tokyo, Japan, volume 286 of
LIPIcs, pages 6:1–6:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023.

28 Daniel Collins, Yuval Efron, and Jovan Komatovic

BCLZL23. Renas Bacho, Daniel Collins, Chen-Da Liu-Zhang, and Julian Loss.
Network-agnostic security comes (almost) for free in DKG and MPC. In
Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part I,
volume 14081 of LNCS, pages 71–106. Springer, Cham, August 2023.

BGP+89. Piotr Berman, Juan A Garay, Kenneth J Perry, et al. Towards optimal
distributed consensus. In FOCS, volume 89, pages 410–415, 1989.

BGP92. Piotr Berman, Juan A Garay, and Kenneth J Perry. Bit optimal distributed
consensus. In Computer science: research and applications, pages 313–321.
Springer, 1992.

BKL19. Erica Blum, Jonathan Katz, and Julian Loss. Synchronous consensus with
optimal asynchronous fallback guarantees. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS, pages 131–150.
Springer, Cham, December 2019.

BKL21. Erica Blum, Jonathan Katz, and Julian Loss. Tardigrade: An atomic
broadcast protocol for arbitrary network conditions. In Mehdi Tibouchi
and Huaxiong Wang, editors, ASIACRYPT 2021, Part II, volume 13091
of LNCS, pages 547–572. Springer, Cham, December 2021.

BKLZL20. Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asyn-
chronous byzantine agreement with subquadratic communication. In
Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume
12550 of LNCS, pages 353–380. Springer, Cham, November 2020.

BOEY03. Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consis-
tency in constant time. Distributed Computing, 16(4):249–262, 2003.

BZL20. Erica Blum, Chen-Da Liu Zhang, and Julian Loss. Always have a
backup plan: Fully secure synchronous MPC with asynchronous fallback.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 707–731. Springer, Cham, August
2020.

CCGZ19. Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilis-
tic termination and composability of cryptographic protocols. Journal of
Cryptology, 32(3):690–741, July 2019.

CDG+24a. Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui,
Jovan Komatovic, and Manuel Vidigueira. Dare to agree: Byzantine agree-
ment with optimal resilience and adaptive communication. In Proceedings
of the 43rd ACM Symposium on Principles of Distributed Computing, pages
145–156, 2024.

CDG+24b. Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui,
Jovan Komatovic, Manuel Vidigueira, and Igor Zablotchi. Error-free near-
optimal validated agreement. arXiv preprint arXiv:2403.08374, 2024.

CEK24. Daniel Collins, Yuval Efron, and Jovan Komatovic. Juggernaut: Efficient
crypto-agnostic byzantine agreement. Cryptology ePrint Archive, Paper
2024/1601, 2024.

CGG+22. Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, Jovan Ko-
matovic, Zarko Milosevic, and Adi Seredinschi. Crime and Punishment in
Distributed Byzantine Decision Tasks. In 42nd IEEE International Con-
ference on Distributed Computing Systems, ICDCS 2022, Bologna, Italy,
July 10-13, 2022, pages 34–44. IEEE, 2022.

CGG+23. Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and
Manuel Vidigueira. On the validity of consensus. In Proceedings of the 2023
ACM Symposium on Principles of Distributed Computing, pages 332–343,
2023.

Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement 29

Cha90. David Chaum. The spymasters double-agent problem: Multiparty compu-
tations secure unconditionally from minorities and cryptographically from
majorities. In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS,
pages 591–602. Springer, New York, August 1990.

Che21. Jinyuan Chen. Optimal error-free multi-valued byzantine agreement. In
35th International Symposium on Distributed Computing (DISC 2021).
Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2021.

CKPS01. Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Se-
cure and efficient asynchronous broadcast protocols. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 524–541. Springer, Berlin,
Heidelberg, August 2001.

CW92. Brian A Coan and Jennifer L Welch. Modular construction of a byzantine
agreement protocol with optimal message bit complexity. Information and
Computation, 97(1):61–85, 1992.

DE24. Giovanni Deligios and Mose Mizrahi Erbes. Closing the efficiency gap
between synchronous and network-agnostic consensus. In Marc Joye and
Gregor Leander, editors, EUROCRYPT 2024, Part V, volume 14655 of
LNCS, pages 432–461. Springer, Cham, May 2024.

DHLZ21. Giovanni Deligios, Martin Hirt, and Chen-Da Liu-Zhang. Round-efficient
byzantine agreement and multi-party computation with asynchronous fall-
back. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part I,
volume 13042 of LNCS, pages 623–653. Springer, Cham, November 2021.

DLZ23. Giovanni Deligios and Chen-Da Liu-Zhang. Synchronous perfectly secure
message transmission with optimal asynchronous fallback guarantees. In
Foteini Baldimtsi and Christian Cachin, editors, FC 2023, Part I, volume
13950 of LNCS, pages 77–93. Springer, Cham, May 2023.

DR85. Danny Dolev and Rüdiger Reischuk. Bounds on Information Exchange for
Byzantine Agreement. Journal of the ACM (JACM), 32(1):191–204, 1985.

DRS90. Danny Dolev, Ruediger Reischuk, and H Raymond Strong. Early stopping
in byzantine agreement. Journal of the ACM (JACM), 37(4):720–741,
1990.

DS83. Danny Dolev and H. Raymond Strong. Authenticated algorithms for
byzantine agreement. SIAM Journal on Computing, 12(4):656–666, 1983.

DW14. Christian Decker and Roger Wattenhofer. Bitcoin transaction malleability
and MtGox. In Miroslaw Kutylowski and Jaideep Vaidya, editors, ES-
ORICS 2014, Part II, volume 8713 of LNCS, pages 313–326. Springer,
Cham, September 2014.

FHW04. Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger. Multi-party
computation with hybrid security. In Christian Cachin and Jan Ca-
menisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 419–
438. Springer, Berlin, Heidelberg, May 2004.

FR09. Matthias Fitzi and Dominik Raub. Tight bounds for protocols with hybrid
security. Cryptology ePrint Archive, Paper 2009/434, 2009. https://

eprint.iacr.org/2009/434.
GK20. Juan A. Garay and Aggelos Kiayias. SoK: A consensus taxonomy in the

blockchain era. In Stanislaw Jarecki, editor, CT-RSA 2020, volume 12006
of LNCS, pages 284–318. Springer, Cham, February 2020.

GKKY10. S Dov Gordon, Jonathan Katz, Ranjit Kumaresan, and Arkady Yerukhi-
movich. Authenticated broadcast with a partially compromised public-
key infrastructure. In Stabilization, Safety, and Security of Distributed

https://eprint.iacr.org/2009/434
https://eprint.iacr.org/2009/434

30 Daniel Collins, Yuval Efron, and Jovan Komatovic

Systems: 12th International Symposium, SSS 2010, New York, NY, USA,
September 20-22, 2010. Proceedings 12, pages 144–158. Springer, 2010.

GKO+20. Juan A. Garay, Aggelos Kiayias, Rafail M. Ostrovsky, Giorgos Panagio-
takos, and Vassilis Zikas. Resource-restricted cryptography: Revisiting
MPC bounds in the proof-of-work era. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 129–
158. Springer, Cham, May 2020.

IOZ14. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party com-
putation with identifiable abort. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 369–386.
Springer, Berlin, Heidelberg, August 2014.

KK06. Jonathan Katz and Chiu-Yuen Koo. On expected constant-round proto-
cols for byzantine agreement. In Cynthia Dwork, editor, CRYPTO 2006,
volume 4117 of LNCS, pages 445–462. Springer, Berlin, Heidelberg, August
2006.

LRM10. Christoph Lucas, Dominik Raub, and Ueli Maurer. Hybrid-secure mpc:
Trading information-theoretic robustness for computational privacy. In
Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles
of distributed computing, pages 219–228, 2010.

LS22. Christoph Lenzen and Sahar Sheikholeslami. A recursive early-stopping
phase king protocol. In Proceedings of the 2022 ACM Symposium on Prin-
ciples of Distributed Computing, pages 60–69, 2022.

LSP82. Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Gen-
erals Problem. ACM Transactions on Programming Languages and Sys-
tems, 4(3):382–401, 1982.

LZLM+20. Chen-Da Liu-Zhang, Julian Loss, Ueli Maurer, Tal Moran, and Daniel
Tschudi. MPC with synchronous security and asynchronous responsive-
ness. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part III, volume 12493 of LNCS, pages 92–119. Springer, Cham, December
2020.

MMR15. Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-
free asynchronous binary byzantine consensus with t < n/3, o(n2) mes-
sages, and O(1) expected time. J. ACM, 62(4):31:1–31:21, 2015.

MR21a. Atsuki Momose and Ling Ren. Optimal Communication Complexity of
Authenticated Byzantine Agreement. In Seth Gilbert, editor, 35th Inter-
national Symposium on Distributed Computing, DISC 2021, October 4-
8, 2021, Freiburg, Germany (Virtual Conference), volume 209 of LIPIcs,
pages 32:1–32:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

MR21b. Atsuki Momose and Ling Ren. Optimal Communication Complexity of
Authenticated Byzantine Agreement. In Seth Gilbert, editor, 35th Inter-
national Symposium on Distributed Computing (DISC 2021), volume 209
of Leibniz International Proceedings in Informatics (LIPIcs), pages 32:1–
32:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

PSL80. Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching
Agreement in the Presence of Faults. J. ACM, 27(2):228–234, 1980.

PT84. Kenneth J Perry and Sam Toueg. An authenticated byzantine generals
algorithm with early stopping. Technical report, Cornell University, 1984.

PW96. Birgit Pfitzmann and Michael Waidner. Information-theoretic pseudosig-
natures and byzantine agreement for t ≥ n/3. Citeseer, 1996.

	Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement

