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Abstract—Authenticated encryption (AE) is a cryptographic
mechanism that allows communicating parties to protect the
confidentiality and integrity of messages exchanged over a
public channel, provided they share a secret key. In this
work, we present new AE schemes leveraging the SHA-
3 standard functions SHAKE128 and SHAKE256, offering
128 and 256 bits of security strength, respectively, and their
“Turbo” counterparts. They support session-based commu-
nication, where a ciphertext authenticates the sequence of
messages since the start of the session. The chaining in the
session allows decryption in segments, avoiding the need to
buffer the entire deciphered cryptogram between decryption
and validation. And, thanks to the collision resistance of
(Turbo)SHAKE, they provide so-called CMT-4 committing
security, meaning that they provide strong guarantees that
a ciphertext uniquely binds to the key, plaintext and as-
sociated data. The AE schemes we propose have a unique
combination of advantages. The most important are that 1)
their security is based on the security claim of SHAKE, that
has received a large amount of public scrutiny, that 2) they
make use of the standard KECCAK-p permutation that not
only receives more and more dedicated hardware support,
but also allows competitive software-only implementations
thanks to the TurboSHAKE instances, and that 3) they do
not suffer from a 64-bit birthday bound like most AES-based
schemes. Of independent interest, we introduce the deck
cipher as the stateful counterpart of the deck function and
the duplex cipher generalizing keyed duplex and harmonize
their security notions. Finally, we provide an elegant solution
for multi-layer domain separation.

1. Introduction

An authenticated encryption (AE) scheme is a cryp-
tographic primitive that combines encryption with au-
thentication. The operation of encryption is often called
wrapping to avoid confusion, and we will follow this con-
vention. Symmetrically, decryption is called unwrapping.
Wrapping converts a plaintext P into a ciphertext C under
a secret key K and (for almost all schemes also) so-called
associated data AD . Due to the presence of the latter, such
schemes are often called AEAD schemes, but we will stick
to the term AE schemes for brevity. Given the secrecy of
the key, the ciphertext authenticates both plaintext P and
associated data AD : it contains the encrypted plaintext X
and a tag T that is computed over P and AD . The unwrap

function verifies this tag and will return the plaintext
P only if valid, and an error otherwise. The tag length
τ determines the resistance of the AE scheme against
forgery. In some AE schemes, the ciphertext does not
contain a separate tag but has a certain redundancy that
is verified during unwrap. For this reason, the tag length
is sometimes referred to as ciphertext expansion.

Also, AE schemes are usually built as a mode of
operation on top of a simpler primitive (e.g., blockcipher),
and we will follow this terminology for instance when dis-
tinguishing properties that apply generically to the mode
from those that apply to the scheme more specifically.

The main advantages of AE schemes over separate
encryption and MAC computation are efficiency and con-
venience. Combining the two functions in one allows
achieving a given security strength in a more efficient
way, as witnessed by duplex-based AE schemes [1]. And
instead of having to figure out how to combine the two
functions with all its pitfalls as illustrated by [2], protocol
designers can just take a primitive that does both. How-
ever, looking at existing AE schemes, there is room for
improvement in this last department, and that is what we
address in this paper.

First of all, in most AE schemes the wrap and unwrap
functions have an additional input field that is sometimes
called initial value IV , but most often nonce N . In many
cases its length is fixed to 12 bytes or so. For security
reasons, N must be unique for each wrap operation with
the same key, and violation of this nonce property may
result in a breakdown of security. There are different
reasons for this.

Let us first look at the encryption. Many modes and
schemes, including NIST standards GCM [3], CCM [4]
and industry standard ChaCha20-Poly1305 [5], perform
stream encryption where the keystream only depends on
the nonce and key. Clearly, nonce violation leads to
keystream equality, and the ciphertext difference leaks
the plaintext difference. In duplex-based AE modes and
schemes such as SpongeWrap [1] or Ascon [6] the AD is
absorbed before the plaintext, and therefore this leakage
occurs only if the pair (N,AD) is repeated. In modes that
do block encryption, such as OCB [7], in case of nonce
violation ciphertext block equality leaks plaintext block
equality.

The second reason is the way tag is computed. Let
us take a look at the most popular AE schemes. GCM
computes the tag by applying the Wegman-Carter con-



struction [8]: it performs stream encryption to the output
of the polynomial hash function GHASH applied to C
and AD . The former uses a secret subkey L derived from
the AE key K, and nonce reuse allows an adversary to
compute L and so produce a forgery for all nonce values.
ChaCha20-Poly1305 applies the polynomial hash function
Poly1305 to C and AD but derives its subkeys from the
AE key K using the nonce. Also here nonce violation
allows computing the tag subkey, but its knowledge limits
forgeries to the value of the repeated nonce. Also in OCB,
nonce violation allows forgeries for the values of the
repeated nonce.

The third reason is that in some AE schemes the
nonce is required for secure state initialization. Examples
of this are Ascon but also NIST lightweight candidate
Subterranean 2.0 [9]. Massive nonce violation would al-
low the recovery of Ascon’s internal state violating the
confidentiality of all plaintexts encrypted with the given
nonce, and even key recovery in Subterranean 2.0 [10].

Next to all these reasons that make the nonce a critical
input, there are also some other reasons why the presence
of a nonce field is perceived as desirable.

Modern AE schemes are deterministic, so wrapping
equal plaintext under the equal N and AD , yields equal
ciphertext. By imposing uniqueness of the nonce N , this
leakage is prevented. However, if we include the AD in
the encryption context, as is the case in spongeWrap and
Ascon, one may as well impose uniqueness of the AD to
prevent this leakage.

In many use cases one wants protection against replay
attacks: the receiver shall be able to detect whether it
receives a cryptogram for the first time or whether it is
a replay. This can be achieved by a message counter:
the receiver keeps track of this counter and for each
received cryptogram it ensures this counter is larger than
for previous cryptograms. It seems natural to use the
nonce field N for this counter. However, as the tag also
authenticates the AD , one can include this counter in the
AD field. In some other use cases, one wants freshness:
the receiver shall be able to detect whether the cryptogram
has been sent recently. This can be done by including a
receiver-originating unpredictable challenge in the nonce
N but of course this can be included in the AD as well.

The short length of the nonce field is often a problem.
If nonces are generated randomly, the birthday bound
forms a limitation. Alternatively, if uniqueness is obtained
by concatenating multiple data elements (e.g., date and
time, session identifier), it may be too short.

The problem of the short nonce field has been ad-
dressed in so-called Synthetic Initial Value (SIV) AE
schemes where the tag over the plaintext and AD is used
as a diversifier for encryption [11]. A prominent example
of an SIV AE scheme is AES-GCM-SIV [12], [13]. SIV
schemes require two passes over the plaintext during
wrapping, which requires buffering the whole plaintext.

A common limitation often encountered when using
AE schemes is the need to hold the full ciphertext in
memory during unwrap. Releasing the decrypted cipher-
text before the tag verification (a.k.a. release of unverified
plaintext, or RUP) may have serious consequences. This,
and the buffering of plaintext in SIV make the exchange
of long messages difficult to handle, especially on systems
that do not have much memory.

A solution to this last problem is to support interme-
diate tags. The plaintext is split into fragments, and each
is wrapped separately, resulting in a ciphertext and a tag.
In its simplest form, the tag authenticates the fragment
together with a fragment counter and a flag indicating
whether this is the last fragment. Fragments can thus be
unwrapped out of order, but their position in the sequence
is authenticated. Also, the AD has to be sent only once
but is included in the encryption context of all fragments.
In another form, each tag authenticates the sequence of
all the fragments up to the current one, so that the last
tag ensures the authenticity of the whole plaintext. In any
case, this makes the wrapping and unwrapping stateful.

In modern applications, parties do not limit themselves
to exchanging individual messages, but usually have to
wrap sequences of messages, often in bi-directional com-
munications. A simple example is secure messaging appli-
cations, such as Signal, where users exchange messages in
a continuous dialogue. The concept of sessions generalizes
the idea of intermediate tags by allowing fragments to
be individual messages and by supporting a continuous
stream of messages. With the term session, we refer to a
sequence of messages, where a message is authenticated in
the context of those previously sent within the sequence.

A session-supporting AE scheme deals with such se-
quences of messages by having intermediate tags ensuring
that the encryption context and authenticity of the current
ciphertext depends on all previous messages in the session.
The intended behavior of this type of AE schemes can
be formalized, and the jammin cipher provides a good
solution [14]. Note that session-supporting AE covers
the traditional notion of authenticated encryption of a
single message (i.e., a pair (AD , P )) as well, where each
session then contains a single message. Back to the nonce
requirement, sessions help ensuring uniqueness: As soon
as the first message in a session has unique AD, all the
subsequent messages automatically have a unique context.

Yet another common limitation of many AE schemes
is the so-called birthday bound that limits the amount of
data that can be encrypted or authenticated. Many schemes
are built using modes of operation on top of the AES [15],
and for simple such schemes, the security breaks down
when the amount of data encrypted with a given key
approaches 264. There are AES-based AE modes that do
not suffer from this limitation, but they tend to be more
complicated and/or expensive, see for instance the AE
mode specified in [16].

Finally, most common AE schemes do not offer com-
mitting security. When a sender and a receiver hold a
secret key K that was not shared with anyone else, then
the successful unwrap of a ciphertext C authenticates the
origin of the decrypted plaintext, and the receiver knows
that it comes from the legitimate sender. However, as soon
as the key is leaked or under adversarial control, we fall
outside of AE’s usual security model and all bets are
off. In general, AE does not ensure that the key used to
successfully unwrap a ciphertext is the same as the one
that was used when it was wrapped.

As a matter of fact, for AES-GCM and ChaCha20-
Poly1305, one can find pairs (K,P ) that lead to equal
ciphertexts [17]. Schemes that are susceptible to this are
said to not commit to the key. On the contrary, the property
of key commitment implies that a ciphertext can only
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Figure 1. The hierarchy of modes and schemes that we propose.

be successfully unwrapped using the same key that was
used for wrapping it. The strongest committing notion is
called CMT-4, denoting the infeasibility to generate collid-
ing ciphertexts for different (K, [N, ]AD , P ) tuples [18].
Several generic solutions have been presented to turn
existing AE schemes into committing AE schemes. Most
of them rely on the application of a collision-resistant
hash function or a so-called key-robust PRF on top of
the AE scheme, relying on two or more primitives. A
more extended overview on committing AE is given in
Appendix C.

2. Our contribution

The main contributions of this paper are:
1) We introduce the deck cipher, an alternative defini-

tion of a deck function [19] modeling it as a (stateful)
object, and we harmonize the security definition of
the duplex cipher (a generalization of keyed du-
plex) [1] and the deck cipher with an ideal-world
object that we call idaho.

2) We present two session-supporting AE modes, one
that is based on a duplex cipher and the other that
adapts Deck-BO [14] to deck ciphers.

3) We build concrete AE schemes whose security is
equivalent to that of the SHAKE and TurboSHAKE
extendable output functions (XOFs) [20], [21].

We now give more details on the concrete schemes and
their advantages.

2.1. Overview of the AE schemes

We build our schemes in multiple layers, as depicted
in Figure 1:

• At the bottom are the KECCAK-p[1600, nr = 24] and
KECCAK-p[1600, nr = 12] permutations, on top of
which we build everything else. These are the per-
mutations used by the sponge functions SHAKE and
TurboSHAKE, respectively, see Section 5.1.

• Then, we define a new construction, called over-
write duplex or OD, for building a duplex cipher,
combining the advantages of duplex and overwrite
sponge [1]. Each duplex cipher is parameterized by

a permutation f and has a capacity c, and its security
is equivalent to that of the sponge function with the
same f and c, i.e., SHAKE128, SHAKE256, Tur-
boSHAKE128 or TurboSHAKE256, see Section 8.

• Finally, on top of these, we build AE schemes with
two different modes. The first set of schemes, de-
fined in Section 9, use the authenticated encryption
mode DWrap, that is similar to SpongeWrap [1] and
that requires the unicity of the first AD field of
the session. The second set of schemes, defined in
Section 11, build upon the Deck-BO mode [14], a
session-supporting version of the SIV AE mode. This
mode in turn requires a deck cipher that we build
with the UpperDeck mode on top of OD, and this is
presented in Section 10.

2.2. Advantages

Layering is advantageous from the point of view of
analysis, allowing easy security reduction proofs, and yet
implementations remain simple. Thanks to the fact that
TurboSHAKE, OD and UpperDeck accept payload data in
byte string inputs and accumulate domain separation bits
in a separate single-byte trailer, the multiple layers can
be easily merged, as illustrated in Figures 3 and 5. The
schemes can then be expressed in terms of some simple
state operations and calls to the underlying permutation.

The modes we present have robustness and usability
advantages, which may help security by simplifying the
protocols that make use of them:

• They do not constrain the user in having to satisfy
the uniqueness property of a distinct data element N ,
usually of short fixed size, but instead allow one to
use the complete variable-length AD for that purpose.

• The Deck-BO mode has no nonce requirement: it
only leaks equality of (AD , P ) pairs through equal
ciphertexts.

• Both modes support sessions. This, among others,
relieves one from buffering long messages by in-
stead using intermediate tags, reduces AD uniqueness
constraints to the first AD of a session, and limits
potential leakage in Deck-BO to sessions with equal
leading (AD , P ) pairs.

When instantiated with (Turbo)SHAKE, our schemes
have the following security advantages:

• Their security is based on the security claim of
a NIST standard that has received a large amount
of public scrutiny [20]. As long as the underlying
SHAKE and TurboSHAKE functions satisfy their
accompanying security claim, the distinguishing ad-
vantage of resulting AE schemes from an ideal AE
is negligible, even in a multi-user setup. Moreover,
the intermediate schemes are hard to distinguish from
(an object equivalent to) a random oracle.

• Unlike blockcipher-based modes, they do not suffer
from the birthday bound, but instead fully achieve the
security strength implied by that of the underlying
XOF, the chosen key length and the tag length.
E.g., schemes based on SHAKE128 offer a security
strength of 128 bits.

• They offer CMT-4 committing security based on the
collision resistance of (Turbo)SHAKE.



Finally, their implementations are competitive in terms
of performance, both in software and in hardware. In
software, this is mainly thanks to TurboSHAKE instances,
while in pure hardware, KECCAK is famous for being
extremely efficient. Furthermore, (Turbo)SHAKE AE can
benefit from dedicated hardware support (e.g., in the
recent Apple™ processors) and leverage synergies with
implementations of KECCAK inside ML-KEM and ML-
DSA [22], [23]. And, where it matters, its degree-2 round
function lends itself well to protections like masking
against side-channel attacks.

3. Comparison with prior art
In this section, we discuss some other AE schemes

based on widespread standards, in particular based on
long-time NIST standard AES [15], industry standard
ChaCha20-Poly1305 [5] and upcoming lightweight cryp-
tography NIST standard Ascon [6]. We summarize their
properties in Table 1.

There are numerous AE schemes built using modes
of operation on top of AES, and they are very efficient
on platforms with dedicated AES instructions. However,
simple AES-based schemes such as AES-GCM do not
support sessions, have a dedicated short nonce (96 bits
in the case of AES-GCM), can only achieve 64 bits
of security strength due to the birthday bound and leak
authentication keys in case of nonce repetition. Moreover,
achieving committing security requires adding redundancy
or cryptographic processing, see Appendix C.

ChaCha20-Poly1305 is an AE scheme based on a
stream cipher (ChaCha20) and a one-time authenticator
(Poly1305) that has received massive adoption mostly
thanks to its excellent performance. However, it suffers
from a short nonce (96 bits) and key leakage in case
of nonce repetition, too. Moreover, it can only achieve
106 bits of security. Finally, ChaCha20-Poly1305 does not
support sessions, nor it offers committing security [24].

Ascon is the family of algorithms selected by NIST
for lightweight AE and hashing, and at the time of writing
the standard is being drafted. Ascon borrows design ideas
from SHA-3, such as the sponge construction and building
blocks of the underlying permutation, to build a duplex-
based AE scheme with a small memory footprint. Despite
this, it does not support sessions, and its CMT-4 security is
only 64 bits [25]. Ascon has a 128-bit nonce. If the nonce
is repeated, it does not leak key material, but it may lead
to partial or complete loss of confidentiality, depending
on the attack [26] Unlike the other cryptosystems we
discuss here, Ascon is not a general-purpose cipher: It is
optimized to fit in constrained environments, rather than
for performance on mainstream platforms.

4. String processing
In this section, we introduce our conventions related to

string processing, the representations of bit strings as pairs
of byte strings and single-byte trailers and the parsing of
byte strings into sequences of blocks.

4.1. Notation

We denote the empty string by ϵ. The concatenation
of two strings X,Y is denoted as X||Y , and their bitwise

TABLE 1. COMPARISON WITH STANDARD AE

Solution Security Nonce-misuse Session CMT-4
strength resistance support security

(Turbo)SHAKE128-Wrap 128 bits no yes 128 bits
(Turbo)SHAKE256-Wrap 256 bits no yes 256 bits
(Turbo)SHAKE128-BO 128 bits yes yes 128 bits
(Turbo)SHAKE256-BO 256 bits yes yes 256 bits

ChaCha20-Poly1305 106 bits no no no
AES128-GCM 64 bits no no no

AES128-GCM-SIV 64 bits yes no no
Ascon-AEAD128 128 bits no no 64 bits

addition as X+Y . For a byte string X , its length in bytes
is denoted by |X| and the bytes in a string are indexed
from 0 to |X| − 1. If |X| ≠ |Y |, bytes with equal indices
are added, and X + Y has length min(|X|, |Y |).

Bit string values are noted with a typewriter font, such
as 01101. Byte values are noted with two hexadecimal
digits in a typewriter font and preceded by 0x, e.g., 0x1F.
The function enc8(x) denotes the one-byte string with
integer value x, e.g., enc8(31) = 0x1F. The repetition
of a bit is noted in exponent, e.g., 03 = 000. Similarly,
for bytes, e.g., 0x003 = 0x00||0x00||0x00. We denote
sequences of strings as A;B;C . . .. In some cases we need
to provide multiple strings A,B, . . . as input to a function
that takes only a single string as input. Then we write
F (A;B) where A;B denotes a string that is an injective
encoding of strings A and B.

4.2. Byte strings and trailers

In real-world use cases, the inputs, i.e., keys, plain-
texts, tags and associated data, are strings of bytes. Nev-
ertheless, as we go down the stack of our modes and
constructions as depicted in Figure 1, most layers append
domain separation bits, and mandating byte strings at each
level would imply that this extends the input string by
one byte per layer. To avoid this blowup, we accumulate
domain separation bits in a dedicated single-byte data
element called trailer.

A trailer encodes a bit string of length between 0 and 7
that we call trailerstring. Clearly, a bit string of any length
can be unambiguously converted to a pair of byte string
and trailer, and vice-versa. As a convention throughout
this paper, we often give as input such a pair, rather than
a bit string, as it allows to clearly separate payload data
(e.g., a block of plaintext) from domain separation bits.
This split simplifies the implementation when different
layers are merged, using constant values for trailers, as
for instance in Figures 4 and 5.

In our algorithmic descriptions, we represent con-
stant trailers as integer values, similarly to the ap-
proach taken in the definition of TurboSHAKE’s do-
main separation byte D [21]. For a n-bit trailerstring
e = (e0, e1, . . . , en−1), we define the value of its trailer
as E = padint(e), with

padint(e) = 2n +

n−1∑
i=0

2iei . (1)

For instance, padint(ϵ) = 1 and padint(011) = 23+6 =
14.

The inverse function, unpad(E), converts an integer
E ≥ 1 to a bit string e. The trailerstring e is obtained



by taking the representation of the integer E in base 2,
least significant bit first, and removing its last bit (i.e., the
most significant bit that is always 1 since E ≥ 1). By
limiting E to the range [1, 255], we ensure that there is a
one-to-one mapping between a pair of a byte string and
a trailer (B,E) and a bit string X through the relation
X = B||unpad(E).

When merging layers, a typical case consists in ap-
pending a bit p to a trailerstring that comes from the
upper layer with integer value E. The resulting trailer has
integer value E′ = padint(unpad(E)||p). For readability,
we abuse of notation and write the above expression as
E′ = E||p.

4.3. Parsing byte strings into blocks

In several places we need to split byte strings into
a sequence of blocks, each short enough to serve as
input to a duplexing call. We specify how we do this in
Algorithm 1.

Algorithm 1 Definition of parse(X, ℓ1, ℓ2)

Input: Byte string X , length ℓ1, and length ℓ2
Output: sequence x of blocks x1, x2, . . . , x|x| of at
least one block
Split X into a first block of ℓ1 bytes and remaining
blocks of ℓ2 bytes. If |X| ≤ ℓ1, the sequence x has a
single block of length |X|. Otherwise, the last block of
x may be shorter than ℓ2.

5. SHAKE, TurboSHAKE and their security

In this section, we discuss the SHAKE and Tur-
boSHAKE functions, their security claims and the security
properties that follow from there, namely collision resis-
tance and multi-user PRF security.

5.1. SHAKE

XOFs are similar to hash functions but support
arbitrary-length outputs. SHAKE128 and SHAKE256 are
two XOFs standardized by NIST in [20]. They are defined
on top of the KECCAK[c] ≜ KECCAK[1600− c, c] sponge
function. Internally, both use the 1600-bit 24-round per-
mutation KECCAK-p[1600, nr = 24] and are parameter-
ized by the capacity c, a quantity expressed in bits. The
capacity determines the targeted security strength level,
as c/2, as well as the efficiency since the number of
bits a sponge function can absorb or squeeze per call
to the underlying permutation is r = 1600 − c. Here, r
the (bit) rate, and we denote with rB = r/8 the rate in
bytes. In particular, we have c = 256 for SHAKE128 and
c = 512 for SHAKE256, giving byte rates of rB = 168
and rB = 136, respectively.

An instance of SHAKE takes as input a variable-length
bit string M and an output length d and appends four bits
to M before presenting it to KECCAK[c]. In particular,

SHAKE128(M,d) = KECCAK[256](M ||1111, d) and
SHAKE256(M,d) = KECCAK[512](M ||1111, d) .

The SHAKE functions are equal to KECCAK[c], where
the input is padded with some domain separation bits, and
the latter comes with a security claim attached, that we
here repeat:

Claim 1 (Flat sponge claim [27]). The expected success
probability of any attack against KECCAK[c] with a work-
load equivalent to t calls to KECCAK-p[1600, nr = 24] or
its inverse shall be smaller than or equal to that for a
random oracle plus

1− exp
(
−t(t+ 1)2−(c+1)

)
. (2)

We exclude here weaknesses due to the mere fact that
KECCAK-p[1600, nr = 24] can be described compactly
and can be efficiently executed, e.g., the so-called random
oracle implementation impossibility [27, Section “The
impossibility of implementing a random oracle”], as well
as properties that cannot be modeled as a single-stage
game [28].

Informally, this claim says for capacity c, the success
probability of any attack against KECCAK[c] is at most
t2/2c+1 higher than the same attack against a random
oracle, with t the computational complexity expressed as
the number of executions of the permutation or equivalent
computations. In other words, KECCAK[c], and therefore
SHAKE shall offer the same security strength as a random
oracle whenever that offers a strength below c/2 bits, and
a strength of c/2 bits in all other cases.

5.2. TurboSHAKE

TurboSHAKE is a family of XOFs that was originally
introduced for use in KANGAROOTWELVE [29] and later
formally defined in [21]. As SHAKE, it is parameterized
by the capacity c, but it is based on the 12-round per-
mutation KECCAK-p[1600, nr = 12] instead. It was intro-
duced to have a variant that, at the same time, is more
efficient than and relies on all the cryptanalysis done for
KECCAK. We consider two instances: TurboSHAKE128
with c = 256 and TurboSHAKE256 with c = 512.

An instance of TurboSHAKE takes as input a byte
string of arbitrary length M and a trailer D in the
range [1, 127]. TurboSHAKE forms the bit string X
from M and the trailer D as X ← M ||unpad(D)
and then applies the sponge function with permutation
KECCAK-p[1600, nr = 12] and byte rate rB to it. This
is equivalent to the following processing: It appends the
byte D to M and pads the resulting string with the
minimum number (possibly zero) of bytes 0x00 until
M ′ = M ||D||0x00∗ has length a multiple of the rate
rB . Then, it bitwise adds the byte 0x80 to the last byte
of M ′. The resulting string M ′ represents the blocks that
are absorbed by the sponge function.

TurboSHAKE comes with a claim like Claim 2,
but with KECCAK-p[1600, nr = 24] replaced by
KECCAK-p[1600, nr = 12] [21].

5.3. Collision resistance

The security claims for (Turbo)SHAKE imply colli-
sion resistance as a corollary: a (Turbo)SHAKE instance
with capacity c and output length n is claimed to have



min(c/2, n/2) bits of collision resistance. This property
has been challenged by cryptanalysists on reduced-round
versions of (Turbo)SHAKE, as can be seen in the refer-
ences of [21]. Quoting FIPS 202 [20]:

The two SHA-3 XOFs are designed to resist
collision, preimage, and second-preimage at-
tacks, and other attacks that would be resisted
by a random function of the requested output
length, up to the security strength of 128 bits
for SHAKE128, and 256 bits for SHAKE256.

6. General keyed security

It is customary to express security of cryptographic
primitives in the distinguishability framework, where one
bounds the advantage of an adversary D in distinguish-
ing a real-world primitive from an ideal-world primitive
(typically, a random oracle). The adversary is faced with
one of them but does not know which, can query the
primitive and make computations, and must at the end
guess whether she was talking with the real-world or ideal
world primitive.

Definition 1. Let O,P be two collections of oracles
with the same interface, i.e., that support the same set
of functions with the same input and output types. The
advantage of an adversary D in distinguishing O from P
is defined as

∆D(O ∥ P) =
∣∣Pr (DO → 1

)
− Pr

(
DP → 1

)∣∣ .
Here D is an algorithm that returns 0 or 1. Further-
more, if we replace the adversary with maximal resource
specifications R, this means we are maximizing over all
adversaries that use at most these resources,

∆R(O ∥ P) = max
D : resources(D)≤R

∆D(O ∥ P) .

An important tool in security reductions is the triangle
inequality [30]:

Lemma 1. Let O,Q and P be three collections of oracles
with the same interface. The advantage of an adversary
D in distinguishing O from P is upper bound by

∆D(O ∥ P) ≤ ∆D(O ∥ Q) + ∆D(Q ∥ P) .

Furthermore, if we replace the adversary with maximal
resource specifications, this means we are maximizing
over all adversaries that use at most these resources,

∆R(O ∥ P) ≤ ∆R(O ∥ Q) + ∆R(Q ∥ P) .

6.1. Security of a mode

The triangle equality is convenient in expressing the
security of schemes that are obtained as modes from other
primitives. Let M [P ] be a scheme obtained by instanti-
ating the mode M with primitive P , S the ideal-world
counterpart of the scheme and I that of the primitive.
Then, applying the triangle inequality yields:

∆D(M [P ] ∥ S) ≤ ∆D(M [I] ∥ S) + ∆D(M [P ] ∥M [I]) .

We have ∆D(M [P ] ∥M [I]) ≤ ∆D′(P ∥ I) as D queries
to M [P ] can be emulated by an adversary D′ with access
to P , and similar for M [I] and I. It follows that

∆D(M [P ] ∥ S) ≤ ∆D(M [I] ∥ S) + ∆D′(P ∥ I) .
So, we can split up the distance in two terms: that between
the primitive and its ideal counterpart and that between the
mode calling an ideal primitive and its ideal counterpart.

Definition 2. We denote AdvidealSM [·] (R) ≜ ∆D(M [I] ∥ S)
as the advantage of the mode M .

With the advantage formalism, we thus have:

AdvidealSM [P ] (R) ≤ AdvidealSM [·] (R) + AdvidealPP (R) . (3)

6.2. Multi-user security and key distributions

For all primitives and modes we discuss in this paper
we consider multi-user security. We do this by defining
the keying of primitives through a key scheme.

A key scheme is based on a key distribution K and
works similarly to a random oracle. We assume the exis-
tence of a finite set ID of possible identifiers. Users can
query the key scheme for a key by sending it an identifier
ID ∈ ID. If this is the first time the key scheme is queried
with that ID , it generates the key K[ID ] according to
the distribution K(ID), i.e., the distribution may depend
on ID but different draws are independent. Otherwise, it
returns the previously drawn key K[ID ]. We will indicate
a key scheme with its corresponding key distribution K.

Keying a primitive P with a key scheme K results in
a cryptographic scheme that we denote as P [K]. In such
a scheme, a user (or adversary) can create new primitive
instances with a create() operation that takes as argument
an identifier ID : P [K[ID ]] ← create(P , ID). We call
primitive instances with the same ID coupled as they
share the same key: Alice and Bob can each have the
member of a coupled pair of primitive to secure their
communications. When a scheme P [K] is being used, we
denote the number of keys in use by µ and call it the key
multiplicity. It equals the number of different ID values
occurring in queries to the key scheme.

We adopt metrics similar to those defined in [31,
Section 2.1] to characterize the key distribution K and
its impact on our security bounds. First, we define the
multi-target min-entropy of order µ as:

Hmtmin[µ](K) =
− log2 max

K∗
S⊆ID : |S|=µ

Pr (K∗ ∈ {K[ID ] : ID ∈ S}) .

This equals the success probability of guessing one of µ
keys selected according to K by an adversary that can
choose the ID values. Second, we define its collision
entropy as

Hcoll(K) = − log2 max
ID ̸=ID′

Pr(K[ID ] = K[ID ′]) .

We now express the multi-user pseudorandom function
(mPRF) security of a function F as an upper bound of
the advantage of distinguishing F [K] from an ideal-world
counterpart RO[ID]. The latter is a scheme of random
oracles RO(ID ; ·), domain separated with ID between
instances and hence returning independent responses. This



corresponds with a simple zero-entropy key scheme where
K[ID ] = ID that we denote by ID. We say the random
oracle is indexed with ID and denote this as RO[ID].
Definition 3 (multi-user PRF advantage). The multi-user
PRF advantage of a function F keyed with K is defined
as:

AdvmPRF
F [K] (R) = ∆R(F [K] ∥ RO[ID]) ,

with R the adversarial resources.

A key distribution K introduces two terms in the multi-
user PRF advantage of any deterministic primitive that
generates output depending on the used key. To isolate
them, we compare a real-world system with an ideal-
world system that can only be distinguished due to the
application of a key scheme K. The real-world system
has a random oracle RO keyed with K and that same
random oracle RO unkeyed. The ideal-world system has
a random oracle RO′ (different from RO) indexed with
ID and RO unkeyed.

The adversarial resources depend on the primitive at
hand but at this abstraction level we can provide following
definition.

Definition 4. The generic adversarial resources are the
following:

• µ, the key multiplicity.
• q, the computational complexity, counts the number

of queries to RO, the underlying primitive that is
considered a public function.

• σ, the data complexity, counts the number of con-
struction queries to either RO[K] or RO′[ID].

When dealing with more concrete primitives, we may
need to translate q into an equivalent computational com-
plexity t. We now define the security of a key distribution
expressed in these resources.

Definition 5 (multi-key advantage). The multi-key ad-
vantage of a key distribution K is the advantage of
distinguishing real-world scheme (RO[K],RO) from
ideal-world scheme (RO′[ID],RO). We denote this by
AdvmKey

K (µ, q), with the adversarial resources defined in
Definition 4.

Clearly, in the ideal-world scheme, all random oracle
instances return independent responses. In the real-world
scheme, this is not the case, and we can bound the multi-
key advantage.

Theorem 1. The multi-key advantage of a key distribution
K is upper bound by:

AdvmKey
K (µ, q) ≤ q

2Hmtmin[µ](K)
+

(
µ
2

)
2Hcoll(K)

, (4)

with the adversarial resources defined in Definition 4.

Proof. The adversary D has to tell RO(K[ID ];x) and
RO′(ID ;x) apart, with (ID , x) pairs of its choice. We
define two generic bad events and argue that, if they
do not occur, RO(K[ID ];x) and RO′(ID ;x) cannot be
distinguished. The two bad events are as follows.

• The first is key guessing, that is, the event that
the adversary queries RO(K∗;x) through the public
primitive RO, with K∗ one of the µ keys K[ID ]

and some string x. For a given key candidate K∗, the
probability that there exists one key among the µ keys
with this value is upper bounded by 2−Hmtmin[µ](K).
This probability of guessing one of the µ keys cor-
rectly after q attempts is at most q2−Hmtmin[µ](K).

• The second is key collision, that is, the event that two
keys among µ are equal, i.e., K[ID ] = K[ID ′] with
ID ̸= ID ′. The probability of such a collision is at
most

(
µ
2

)
2−Hcoll(K).

On the condition that these bad events do not occur,
there are no colliding inputs, the outputs are all indepen-
dent, and hence the adversary cannot distinguish between
the two worlds. Therefore,

∆D((RO[K],RO) ∥ (RO′[ID],RO)) ≤
q

2Hmtmin[µ](K)
+

(
µ
2

)
2Hcoll(K)

.

6.3. Two special key distributions

We will consider two particular distributions, each
parametrized by a key length k:

• U [k]: keys K[ID ] are drawn uniformly from Zk
2 .

• I[k]: keys K[ID ] are the concatenation of a key
drawn uniformly from Zk

2 and ID as a string.
For U [k], we have that for any arbitrary ID and any

S with |S| = µ:

Pr(K∗ ∈ {K[ID ] : ID ∈ S}) ≤ µPr(K∗ = K[ID ]) ,

and hence Hmtmin[µ](U [k]) ≥ k − log2 µ. This shows
the degradation of the security by log2 µ bits, and the
probability of guessing one of the keys is µt/2k in this
case. Also, the probability of collision between two given
keys is 2−k, hence Hcoll(U [k]) = k, and among µ keys
this becomes

(
µ
2

)
2−k.

Theorem 2. The multi-key advantage of key distribution
U [k] is upper bound by:

AdvmKey
U [k] (µ, q) ≤ µq

2k
+

(
µ
2

)
2k

.

The distribution I[k] avoids this degradation. Here,
for a key candidate K∗ to match a key K[ID ], the last
bits must match the ID, and Pr(K∗ ∈ {K[ID ] : ID ∈
S}) = Pr(K[ID∗] = K∗) = 2−k, with ID∗ the ID that
is encoded in K∗. Hence, Hmtmin[µ](I[k]) = k, and the
probability of guessing one of the keys is q/2k in this
case, regardless of the number of users. Moreover, the
presence of the unique key ID prevents collisions, so the
collision term vanishes.

Theorem 3. The multi-key advantage of key distribution
I[k] is upper bound by:

AdvmKey
I[k] (µ, q) ≤ q

2k
.

6.4. Security of keyed (Turbo)SHAKE

We now discuss the keyed security of the SHAKE and
TurboSHAKE functions. For this, we refine the adversar-
ial resources to the case of sponge functions or stateful
counterparts thereof; this is what the next definition gives.



Definition 6 (adversarial resources for sponge functions
and stateful equivalents). For a function calling a permu-
tation we define the adversarial resources as

• µ: as in Definition 4
• t: computational complexity expressed in the num-

ber of evaluations of the permutations or equivalent
computations,

• σ: data complexity expressed in total number of input
and output blocks in queries to the function or object,
taking into account that common full-block prefixes
with a given key are counted only once.

Note that the q in the expressions for the multi-key
advantage maps to t by t ≥ q in the case of sponge
functions. If K[ID ] can be absorbed in a single block
this simplifies to t = q. We will make that assumption in
the remainder of the paper.

Multi-user PRF security claims for specific functions
such as (Turbo)SHAKE get credibility through public
scrutiny by cryptanalists. As a matter of fact, since its pub-
lication, there has been plenty of cryptanalysis of reduced-
round KECCAK in the keyed setting that provides evi-
dence for the multi-user PRF security of (Turbo)SHAKE,
see [21] for references. Still, we can prove multi-user PRF
security bounds for (Turbo)SHAKE if we assume it stands
by it security claim.

Let F stand for any (Turbo)SHAKE function with
capacity c. We study the security of F [K] and de-
note by FK[ID] the function defined as FK[ID](M) =
F (K[ID ];M).

Theorem 4. On the condition that (Turbo)SHAKE stands
by its claimed security [21], [32], the multi-user PRF
advantage of keyed (Turbo)SHAKE with key distribution
K is upper bounded as

AdvmPRF
F [K] (µ, t, σ) ≤ AdvmKey

K (µ, t) +
(t+ σ)2

2c+1
, (5)

where c is the capacity and µ, t, σ are the adversarial
resources as defined in Definition 6.

Proof. We apply the security claim to the attack of distin-
guishing F [K] from RO′[ID]. The claim then states that
this distinguishing problem shall not have an advantage
greater than the term in (2) plus the distinguishing prob-
lem with F replaced with a random oracle. The latter
is the advantage of distinguishing (RO[K],RO) from
(RO′[ID],RO) that we know as AdvmKey

K . The term
(2) expresses the complexity of queries to F . First, we
upper bound it with t(t+ 1)/2c+1 and approximate it as
t2/2c+1. The complexity t in (2) here translates to queries
to F [K] or to computations expressed in permutation
calls or equivalent. Therefore it maps to the sum of the
computational and data complexity t+ σ.

7. Stateful primitives and their security

In this section, we provide definitions of stateful ob-
jects and schemes together with their security notions.
To this end, we recall the jammin cipher and use it to
define the security of (session-supporting) AE schemes.
Similarly, we define idaho as the stateful counterpart of
the random oracle and use it to define the security of
some stateful objects, in particular, of the deck and duplex
ciphers that share the idaho interface.

7.1. Stateful objects and schemes

Many cryptographic primitives like hash functions,
block ciphers and stream ciphers, are functions in the
sense that they produce an output upon receiving an input,
and their job stops there. There are, however, cases where
one needs to keep state and to have a primitive whose
processing depends on the state and makes it evolve. In
those cases, we speak about objects that have attributes
and support methods: The attributes represent the state,
and the methods are functions that perform processing on
the attributes and may have input and return output. We
can apply the keying specified in Section 6.2 to objects
instead of functions: A scheme is obtained by keying an
object with a key distribution K. In such a scheme, the
object can be instantiated multiple times, and we speak of
(object) instances.

Two objects that are of a different type may have the
same interface, where the interface is the set of methods,
and possibly a parameter, they support. In distinguishing
setups, it is required that the real-world object and the
ideal-world object support the same interface as otherwise,
the objects can be distinguished trivially.

An example is the Duplex construction [1] that defines
an object with which one can hash strings of limited
lengths and get a digest of the sequence of strings received
so far. Here, the state is the object’s attribute and its
methods consist of initialization and duplexing.

Another example is that of session-supporting au-
thentication encryption primitives. The wrap and unwrap
operations are performed by objects that keep track of past
operations in attributes.

Finally we have the doubly-extendable cryptographic
keyed, or deck, function, a keyed primitive that supports
as input a sequence of variable-length strings and can
output a string of arbitrary length [19]. Examples of deck
functions are KRAVATTE and XOOFFF, two instances of
the Farfalle construction based on the KECCAK-p and
XOODOO permutations, respectively [19], [33]. One of the
main properties of deck functions is extendability: the cost
of computing DK(X,Y ) depends only on the processing
of Y if DK(X) was previously computed. This can be
modeled in a natural way by seeing the deck function
as an object that we call deck cipher. A deck cipher is
an object that holds the state necessary to incrementally
evaluate the deck function for each input string. A deck
cipher is functionally equivalent to a deck function but the
object form better reflects its implementation and typical
usage. In short, a deck cipher is to its deck function what
a duplex object is to its sponge function.

For instance, the description of Deck-BO in [14]
makes use of a variable, called history, that starts with the
empty sequence and then accumulates strings. A typical
pattern consists in first updating the history and then
evaluating the deck function with the history as input:

history← history, X

Y ← 0ℓ +DK(history)
(6)

In a concrete implementation, however, the history is not
materialized as an actual sequence of strings. Instead, a
deck cipher keeps state and offers a duplexing method that
replaces (6). In addition, we replace bit strings with pairs



of byte strings and trailers. So, most generally, the deck
function evaluation

Y ← 0ℓ+DK[ID](X1||unpad(E1), . . . , Xn||unpad(En))

becomes the following sequence with a deck cipher:

D ← create(. . . , ID)

D.duplexing(X1, E1)

. . .

Y ← 0ℓ + D.duplexing(Xn, En) .

7.2. AE and the jammin cipher

For the AE modes and schemes of this paper, we
express the security as the difficulty of distinguishing from
the jammin cipher [14]. The jammin cipher is a scheme
obtained by indexing a jammin object by ID resulting
in instances that output random responses to wrap() calls,
correct plaintexts as a response to unwrap() calls for valid
ciphertexts, and errors for invalid ciphertexts. The jammin
cipher is parameterized by a ciphertext expansion function
WrapExpand() that expresses the length of the ciphertext
given the length of the plaintext. For the modes in this
paper, we have |C| = WrapExpand(|P |) = |P | + τ/8.
The jammin cipher has no nonce field.

We chose the jammin cipher for the following reasons.
First, most ideal-world AE schemes return an error upon
any unwrap call, and in the distinguishing experiment
the adversary is not allowed to do unwrap queries with
ciphertext that is the result of wrap queries. This makes
them non-operational. In the world of session-supporting
AE this has led to the simultaneous definition of oper-
ational ideal-world schemes that are hard to work with
and non-operational ideal-world schemes that are used in
distinguishing experiments [34]. Unfortunately, these two
types of ideal-world schemes are not equivalent and leave
a security gap. This issue was resolved by the jammin
cipher [14] as it is operational: it supports all functions
that a real-world scheme does, but with ideal behaviour.
Namely, it achieves the highest possible security: The
probability of forgery is 0 and the ciphertexts it produces
are as random as injectivity allows, while behaving deter-
ministically, meaning equal inputs give equal outputs.

Second, the jammin cipher is inherently multi-user
in that it supports multiple instances that can exchange
encrypted messages on the condition that they are coupled.
Any of such instances is able to process wrap and unwrap
calls in any order.

Third, the jammin cipher supports sessions, and of
course it can also serve as an ideal world scheme for
AE schemes that do not support sessions by limiting each
session to a single message (AD , P ).

In the jammin cipher, the encryption context of a
wrap() query to an instance is the sequence composed of
the (AD , P ) inputs received during the previous wrap()
and unwrap() queries in a session and of the AD value of
the current wrap() query. Also, we say that the encryption
context is a nonce iff all wrap() queries with non-empty
plaintext have a different encryption context.

We define the pseudo-jammin cipher (PJC) advantage
of an AE scheme as the advantage of distinguishing it
from the jammin cipher. If the AE scheme, for its security,

requires the context to be a nonce, we speak of a nonce-
based PJC (nPJC). The jammin cipher and PJC-secure
AE schemes leak information due to the fact that equal
ciphertexts with equal encryption contexts indicate equal
plaintexts. If that is a concern, the user shall guarantee
encryption context uniqueness. One set of the schemes
that we define have nonce-based PJC security, while the
others have plain PJC security.

A full specification of the jammin cipher and more
explanations can be found in Appendix B.

Definition 7 (PJC advantage). Let AE[K] be an AE
scheme keyed with key distribution K and J + the jammin
cipher with the same ciphertext expansion as AE[K]. We
denote the PJC advantage of AE[K] by:

AdvPJC
AE[K](R) = ∆R(AE[K] ∥ J +) .

with R the adversarial resources.

Definition 8 (nPJC advantage). Let AE[K] be an AE
scheme keyed with key distribution K and J + the jammin
cipher with the same ciphertext expansion as AE[K]. We
denote the nPJC advantage of AE[K] by:

AdvnPJC
AE[K](R) = ∆R(AE[K] ∥ J +) .

where all wrap queries with non-empty plaintext have a
different encryption context and with R the adversarial
resources.

For AE schemes with a fixed-length nonce field, one
may need a more restrictive nonce requirement on the
encryption context These can be accommodated by re-
casting N to the first |N | bytes of AD and stipulating
that the first |N | bytes of AD shall be a nonce. Variants
of nPJC security may be defined accordingly, with the
exact requirement specified explicitly.

7.3. Idaho, duplex ciphers and deck ciphers

We introduce the object counterpart of the random
oracle in Algorithm 2 and call it an ideal extendable
hashing object (idaho). It will serve both as our ideal
model for duplex and deck ciphers and as a blueprint of
the interface those objects shall support.

An idaho object simply remembers the sequence of
input strings received so far, called the path, and produces
outputs by calling a random oracle RO with that path as
input. Additionally, it provides output progressively with
strings of user-chosen length. The attributes of the idaho
simply consist of the path and of the offset in the random
oracle’s output.

After creation, an idaho instance does not support
squeezing() call before any duplexing() call. Moreover,
one can use clone() to create a clone of an idaho in-
stance with a copy of its attributes or a variant called
cloneCompact() that does not allow squeezing() before
any duplexing() call.

The two other methods an idaho object supports are
duplexing() and squeezing(). The former takes as input
a byte string B (typically the payload) and a trailer E
and returns a string of ℓ bytes. These two inputs are
appended to the current path, then the output is formed
by calling RO with the path as input. The latter extends
the output of the previous duplexing() call, i.e., calling



Algorithm 2 Definition of IDAHO[ρ]

Parameter:
block length (in bytes) ρ, a positive integer, or ∞ to
denote a practically unrestricted block length

Object attributes:
path, a sequence of bit strings (each encoded as a byte
string and a trailer)
output offset o, an integer

Constructor: I ← create(IDAHO[ρ], ID)
return I: IDAHO object with (path, o) = (ID , ρ)

Method I ← IDAHO.clone()
return I: a clone of IDAHO

Method I ← IDAHO.cloneCompact()
return I: a clone of IDAHO but with o = ρ

Method Z ← IDAHO.duplexing(B,E)[ℓ] with ℓ ≤ ρ
with B a byte string and E a trailer
path← path;B;E
o← ℓ
return the first ℓ bytes of RO(path)

Method Z ← IDAHO.squeezing()[ℓ] with ℓ ≤ ρ− o
return ℓ bytes of RO(path) starting from offset o and
update o← o+ ℓ

duplexing(B,E)[ℓ1] followed by squeezing()[ℓ2] yields
the same result as calling duplexing(B,E)[ℓ1 + ℓ2].

To keep the notation light and avoid using the square
brackets, we assume for both methods that the output
length ℓ is determined from the context. Specifically,
when writing X + duplexing(B,E), it is understood that
ℓ = |X|, and similarly 08ℓ + squeezing() returns ℓ bytes.

A real-world scheme may impose restrictions on
length of input and output strings to its ciphers. To serve
as an ideal-world scheme for such schemes, idaho has
the ρ parameter. When ρ ̸=∞, the idaho object enforces
that |B| ≤ ρ in any duplexing(B,E) call, and the joint
outputs of a duplexing() call and subsequent squeezing()
calls is limited to to a total of ρ bytes. The method
cloneCompact() also originates from a concern in real-
world ciphers: if there is no need for squeezing before
the next duplexing call by the clone, the cloning process
can be made more efficient.

Definition 9 (Idaho interface). The idaho interface refers
to the set of methods and a parameter supported by
an object. It comprises the set of methods clone(),
cloneCompact(), duplexing() and squeezing() and a pa-
rameter called ρ.

We distinguish between two kinds of ciphers that
support the idaho interface:
duplex cipher has ρ ̸= ∞ relatively small. Notably, the

name duplex (object) is used for the (keyed) Duplex
construction defined in [35]. However, in this paper,
we overload the duplex term and consider as such
also objects that would be constructed differently.

deck cipher has ρ = ∞ meaning a value so huge

that in practice it is never reached. Where a deck
function accepts as input a sequence of strings
M1;M2;M3; . . ., a deck cipher absorbs them one by
one in separate duplexing() calls.

Both types of ciphers can be turned into schemes by
keying them with a key distribution.

7.4. Security of keyed objects

When defining the security of an object by the ad-
vantage of distinguishing its corresponding scheme from
an idaho scheme, we call this the idaho advantage. In
Definition 5, we compare a keyed function to an indexed
random oracle. Here, we compare a stateful object to
the idaho object instead. Arguably, this is only a syn-
tactic change since the output of the duplexing() and
squeezing() methods is, in the end, a function of the key
and of the sequence of inputs (in the real world) or a call
to the random oracle (in the ideal world).

In the case of a function F with multi-user PRF secu-
rity, the adversary can query instances FK[ID] with chosen
input and chosen ID values. To give a level of freedom
to the adversary with an object-based scheme that covers
that, we allow the adversary to create instances with
chosen ID , clone them with clone() or cloneCompact()
and query the resulting instances with chosen input.

Definition 10 (idaho advantage). The idaho advantage of
an object O keyed with key distribution K and block length
ρ is defined as the advantage of distinguishing O[K] from
the idaho object indexed by ID with the same block length
ρ, that is,

AdvidahoO[K] (R) = ∆R(O[K] ∥ IDAHO[ρ][ID]) ,
with R the adversarial resources.

8. The overwrite duplex construction

In this section, we define the overwrite duplex (OD)
construction, that can be seen as a (restricted) interface
to a sponge function. In a nutshell, the OD construction
builds a duplex cipher with an idaho interface.

OD combines the ideas of the duplex and overwrite
constructions, both introduced in [1]. We define the OD
construction in terms of the permutation underlying the
corresponding sponge function and prove that the security
strength of OD is at least that of the corresponding sponge
function, both as a keyed function and for its collision
resistance.

8.1. Specification of OD

An OD cipher is parameterized with a permutation f ,
a payload block length ρ and a trailer encoding function
trailenc. An OD cipher acts as a keyed function of all the
inputs received so far, where each duplexing call takes as
input a string B with |B| ≤ ρ and a trailer E ∈ [1, 63],
and returns up to ρ bytes of output. The cipher keeps track
of how many bytes it returned, and the squeezing method
allows returning more output in between duplexing calls.
cloneCompact() needs to copy only the last b−8ρ bits of
the state, with b the width of the permutation. See Figure 2
for an illustration.
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Figure 2. Illustration of the OD construction.

Algorithm 3 Definition of OD[f, ρ, trailenc]

Parameters:
permutation f operating on b-bit strings
block length ρ, an integer
trailer encoding function trailenc() taking an integer in
range [1, 127] and returning a byte string

Object attributes:
state s, a b-bit string
output index o, an integer

Constructor: O ← create(OD[f, ρ, trailenc], ID)
O with (s, o)← (0b, ρ)
O.duplexing(K[ID ], 1)
return O

Method O ← OD.clone()
return O: a clone of OD

Method O ← OD.cloneCompact()
return O: a clone of OD with o = ρ

Method Z ← OD.duplexing(B,E)[ℓ] with |B| ≤ ρ
and E ≤ 63
if |B| = ρ then

Replace the first ρ bytes of s with B
XOR the next bytes of s with trailenc(E||1)

else
Replace the first ρ bytes of s with pad10∗(B)
XOR the next bytes of s with trailenc(E||0)

s← f(s)
o← ℓ
return the first ℓ bytes of s

Method Z ← OD.squeezing()[ℓ] with ℓ ≤ ρ− o
return ℓ bytes of s starting from offset o and update
o← o+ ℓ

Algorithm 3 defines the OD construction and uses the
following conventions. While a duplexing call overwrites
part of the state with the (padded) payload input string,
it (bitwise) adds the input trailer after applying to it an
encoding function trailenc. For an input string B shorter
than ρ bytes, it applies padding such that it results in a
ρ-byte block. We denote the padding rule as pad10∗(B)
and we have pad10∗(B) = B||0x01||0x00∗. OD does
not apply padding to input strings of exactly ρ bytes,

but distinguishes between padded and not-padded blocks
using domain separation by adapting the trailer E before
adding it to the state. Namely, it absorbs trailenc(D) with
D = E||0 or D = E||1 depending if padding occurs or
not, respectively.

The output of an OD cipher to the n-th duplex-
ing call is fully determined by the sequence of inputs
(B1;E1; . . . ;Bn;En) that it received in the n duplexing
calls OD.duplexing(Bi, Ei) since its creation. The output
of any intermediate OD.squeezing() call can be seen as
the delayed output of the most recent duplexing call.
Moreover, the output lengths ℓi ≤ ρ for i < n do not
influence the output of the n-th duplexing call.

8.2. OD applied to (Turbo)SHAKE

For SHAKE and TurboSHAKE, f is KECCAK-p[1600]
with 24 or 12 rounds, respectively. The capacity is c = 256
for 128-bit security strength and c = 512 for 256-
bit security strength. Finally, the block length is ρ =
(1600−c−64)/8. The term 64 in the formula of ρ is given
by the trailer encoding function, that outputs a string of
8 bytes specific for the underlying sponge function. For
TurboSHAKE, we have

trailenc(D) = enc8(D)||0x006||0x80 ,
while for SHAKE, this is slightly different to account for
the suffix 1111 that FIPS 202 appends to the input string:

trailenc(D) = enc8(D)||0x006||0x9F .
The value 0x9F comes from the combination of the suffix
and the 10∗1 padding.

The format of trailenc(D) is chosen so as to match
that of TurboSHAKE’s domain separation byte and
padding as shown in Section 5.1. In this way, the out-
put of the first duplexing call OD.duplexing(B,E)[ℓ]
equals the output of TurboSHAKE[c](B,E||1) or
TurboSHAKE[c](pad10∗(B), E||0) truncated to ℓ bytes.
See Lemma 2 for more details.

We now show that an OD[f, ρ, trailenc] cipher can be
seen as a restricted interface to a (Turbo)SHAKE instance
F with permutation f and capacity c = 1600− 64− 8ρ.
Consequently, it inherits the collision resistance of F , and
its idaho advantage is the same as the multi-user PRF
advantage of F . This is formalized in Lemma 2. Without
loss of generality, we treat the case of full-block outputs,
that is, output blocks of ρ bytes.



Lemma 2. Let F be a (Turbo)SHAKE function and its
underlying permutation f . The full-block output of the n-
th duplexing call to OD[f, ρ, trailenc] is the ρ-byte output
of F applied to an input that is an injective mapping of
(B1, E1, . . . , Bn, En). In addition, the input to F has B1

as a prefix.

Proof. For simplicity, we focus on the case that F is
TurboSHAKE128, but the proofs for TurboSHAKE256,
SHAKE128, SHAKE256 or any sponge function are es-
sentially the same.

We first preprocess the sequence
(B1, E1, . . . , Bn, En) by applying the padding to blocks
Bi shorter than ρ bytes and transforming Ei accordingly,
as the OD object does during duplexing calls. We call the
resulting sequence (β1, D1, . . . , βn, Dn). More precisely,
if |Bi| < ρ, βi ← pad10∗(Bi) and Di = Ei||0. Otherwise
βi ← Bi and Di = Ei||1. As the last bit of unpad(Di)
indicates whether padding was applied and the padding
itself is injective, this mapping is injective.

We denote by TS(M,D) the output of Tur-
boSHAKE128 with byte string M and trailer D
as inputs, truncated to its first ρ bytes, and by
OD(β1, D1, . . . , βn, Dn) the full-block output of OD to
the preprocessed input sequence (β1, D1, . . . , βn, Dn).

We first prove the theorem for n = 1 by expressing
OD(β1, D1) as TurboSHAKE128 applied to an input that
is an injective mapping of (β1, D1), and then proceed
recursively.

Before the first duplexing call the state of the OD
object is all-zero and overwriting equals XORing. We
XOR β1||D1, in total ρ + 1 bytes, that fits in a single
(b − c)-bit block. From the TurboSHAKE128 specifi-
cations, we see that for a single-block OD(β1, D1) =
TS(β1, D1). Clearly, the mapping from (β1, D1) to the
TurboSHAKE128 input is injective, and this shows that
B1 is a prefix of the input.

For the second duplexing call, we need to take into
account a major difference between the OD object and
the plain sponge construction underlying TurboSHAKE:
The former overwrites the input block in the state, while
the latter XORs it. Referring to [1], overwriting the (outer
part of) the state is actually equivalent to first XORing
the block with the previous output and then XORing the
result into the state. This can be expressed as follows:

OD(β1, D1, β2, D2) =

TS(β1||trailenc(D1)||(β2 ⊕OD(β1, D1)), D2) .

We can continue recursively. Let O(β1) = β1 and

O(β1, D1, . . . , βn) = O(β1, D1, . . . , βn−1)

||trailenc(Dn−1)||(βn ⊕OD(β1, . . . , βn−1, Dn−1)).

Then,

OD(β1, D1, . . . , βn, Dn)

= TS(O(β1, D1, . . . , βn), Dn).

We can now finish the proof with the recursion on the
injectivity of the input mapping to the TurboSHAKE128
input and so by proving that if (β1, D1, . . . , βn−1, Dn−1)
→ (O(β1, D1, . . . , βn−1), Dn−1) is injective, then
(β1, D1, . . . , βn, Dn) → (O(β1, D1, . . . , βn), Dn) is

injective too. By assumption, any difference in the first
n − 1 components of the mapping’s input necessarily
leads to a difference in the mapping’s output, so
let us consider the case of two inputs that have the
same first n − 1 components. In this case, the value
OD(β1, D1, . . . , βn−1, Dn−1) is fixed, and XORing βn

with it preserves the injectivity.

8.3. Security of keyed OD

We define the security of OD keyed with K by the
advantage of distinguishing it from an idaho scheme with
the same ρ. Furthermore, we prove that this advantage
is upper bound by the multi-user PRF security of the
corresponding sponge function with the same equivalent
capacity c.

Theorem 5. Let F be a (Turbo)SHAKE function and
f its underlying permutation. The idaho advantage of
OD[f, ρ, trailenc] keyed with key distribution K is upper
bounded as

AdvidahoOD[f,ρ,trailenc][K](µ, t, σ) ≤ AdvmPRF
F [K] (µ, t, σ) .

with resources t, σ and µ defined as in Definition 6.

Proof. Lemma 2 tells us that all the outputs of OD[f, ρ, c]
can be simulated by calls to F with an injective coding.
The OD object is keyed with duplexing(K[ID ], 1) just
after initialization, and hence Lemma 2 also tells us that
K[ID] is a prefix of F ’s input. Hence, the subsequent
outputs of OD[f, ρ, c] can be simulated by calls to FK[ID]

instead. We can therefore view OD[f, ρ, trailenc][K] hy-
bridly as an idaho object where the random oracle RO
has been replaced with F [K], which we will denote
as IDAHO[F [K]]. The adversary then has to distinguish
OD[f, ρ, trailenc] from IDAHO[ρ], which is not easier
than distinguishing F [K] from RO[ID], and this the
multi-user PRF security of F .

8.4. Collision resistance of OD

The following theorem expresses the collision resis-
tance of the OD cipher in terms of the collision resis-
tance of the corresponding sponge function. A collision
for an OD cipher means there exists two different se-
quences of inputs S = (K, 1, B1, E1, . . . , Bn, En) and
S′ = (K ′, 1, B′

1, E
′
1, . . . , B

′
m, E′

m) such that the output
of the n-th duplexing call to OD[f, ρ, trailenc] with S
is the same as the output of the m-th duplexing call to
OD[f, ρ, trailenc] with S′. Here, the keys K and K ′ can
be chosen by the adversary, and (K, 1), (K ′, 1) are the
input of the duplexing call during the creation of the OD
cipher.

Theorem 6. Let F be a (Turbo)SHAKE function with
permutation f and capacity c. If an adversary D outputs
a collision for OD[f, ρ, trailenc], then one can efficiently
transform it into an adversary D′ that outputs a collision
for F .

Proof. Let assume that an adversary A gives two colliding
sequences S ̸= S′. As shown in Lemma 2, there is an
injective mapping from a sequence S to a string X such
that the output of OD[f, ρ, trailenc] and F (X) are the



same. It follows that an adversary A′ can build two strings
X and X ′ using such injective mapping from S and S′,
and such strings give a collision in F .

9. The DWrap mode

In this section, we specify the DWrap mode that
builds nonce-based authenticated encryption object from
a duplex cipher. We name the concrete schemes by adding
“-Wrap” to the underlying (Turbo)SHAKE instance name.
We first specify the mode and then discuss the nPJC dis-
tinguishing advantage and the CMT-4 committing security
of the schemes.

9.1. Specification of DWrap

In Algorithm 4, we specify DWrap. This mode is a
refinement of spongeWrap defined in [1] and is illustrated
in Figure 3.

DWrap objects make use of an underlying duplex
cipher. Upon creation, the underlying duplex cipher is
loaded with a secret key K[ID ]. A wrap call takes as
input associated data AD and plaintext P and returns a
ciphertext C of |P |+ τ/8 bytes. An unwrap call takes as
input associated data AD and ciphertext C with |C| ≥ τ/8
and returns a plaintext P of |C|−τ/8 bytes or an error ⊥
in case the ciphertext is invalid. Before unwrapping, the
DWrap cipher makes a clone of its duplex cipher, allowing
a roll-back in case of an invalid ciphertext. Such clone,
denoted by Dunwrap, is local to the unwrapping method,
i.e., it is deleted when unwrap() returns.

Each ciphertext authenticates all previous messages in
the session since initialization. Both AD and P can be
empty, leading to four cases. If P is empty, the ciphertext
is basically a tag of τ bits.

A wrap call first splits the AD and P in sequences of
blocks of ρ or less bytes and absorbs them in a number
of serial duplexing calls of the underlying duplex cipher,
where the trailer is used to indicate the type of block
and the purpose of the corresponding duplex output. As
a matter of fact, instead of absorbing the blocks of P ,
it first encrypts the block by adding to it the output
of the previous duplexing call and absorbs the resulting
ciphertext blocks instead. After absorbing the complete
ciphertext, the first τ/8 bytes of duplex output serve as
the tag.

If there is no AD in a message, it encrypts the first
block of the plaintext by the output of the last duplexing
call of the previous wrap call (or the init call). As the
first τ/8 bytes of that output were already used for tag
generation, this block will be at most ρ− τ/8 bytes long.

9.2. Security of DWrap

Theorem 7. The nPJC advantage of the DWRAP[·, τ ]
mode (as in Definition 2) is given by

AdvnPJC
DWRAP[·,τ ](qforge) ≤

qforge
2τ

with qforge the number of forgery attempts.

Proof.

AdvnPJC
DWRAP[·,τ ](qforge) =

∆qforge(DWRAP[IDAHO[ρ], τ ] ∥ J +) .

Algorithm 4 Def. of DWRAP[DUPLEX, τ ].
Parameters:
duplex cipher DUPLEX with ρ
tag length τ , an integer that is a multiple of 8

Object attributes:
D instance of DUPLEX

Constructor: W ← create(DWRAP[DUPLEX, τ ], ID)
return W with D ← create(DUPLEX, ID)

Method W ← DWRAP.clone()
return W: a clone of DWRAP

Method C ← DWRAP.wrap(AD , P )
a← parse(AD , ρ, ρ)
for i = 1 to |a| − 1 do D.duplexing(ai, 5)
if |P | > 0 then

if |AD | > 0 then
D.duplexing(a|a|, 5)
p← parse(P, ρ, ρ)

else
p← parse(P, ρ− t/8, ρ)

x1 ← p1 + D.squeezing()
for i = 2 to |p| do

xi ← pi + D.duplexing(xi−1, 4)
T ← 0τ + D.duplexing(x|p|, 6)
X ← x1|| . . . ||x|p|
return C ← X||T

else
T ← 0τ + D.duplexing(a|a|, 7)
return C ← T

Method {P or ⊥} ← DWRAP.unwrap(AD , C)
if (|C| < τ/8) then return ⊥
Dunwrap ← D.clone()
(X||T )← C with |T | = τ/8
a← parse(AD , ρ, ρ)
for i = 1 to |a| − 1 do Dunwrap.duplexing(ai, 5)
if |X| > 0 then

if (|AD | > 0 then
Dunwrap.duplexing(a|a|, 5)
x← parse(X, ρ, ρ)

else
x← parse(X, ρ− τ/8, ρ)

p1 ← x1 +Dunwrap.squeezing()
for i = 2 to |x| do

pi ← xi +Dunwrap.duplexing(xi−1, 4)
T ′ ← 0τ +Dunwrap.duplexing(x|x|, 6)

else
T ′ ← 0τ +Dunwrap.duplexing(a|a|, 7)

if T = T ′ then
D ← Dunwrap

if |X| > 0 then P ← p1|| . . . ||p|p| else P ← ϵ
return P

return ⊥
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Figure 3. Illustration of the DWrap mode merged with the underlying OD construction. This figure shows a first call create(ID) and then
DWRAP.wrap(AD , P ). For the sake of representation, we assume that the last block of each input string has length smaller than ρ and therefore
that pad10∗ is applied. Note that trailer values here are the accumulation of domain separation bits from DWrap and OD.

Each call that the mode makes to the underlying IDAHO
objects to produce keystream has a different path as the
encryption context is a nonce (e.g., the AD of the first
wrap call of a session is a nonce). Therefore all tags
and keystreams and hence ciphertexts X are uniformly
random. The only way to distinguish DWRAP[·, τ ] from
the jammin cipher is by a successful forgery: attempting
to unwrap a ciphertext that was not generated in a call to
wrap. As the tag has τ bits and all tags are uniformly ran-
dom, the success probability for each attempt is 2−τ . After
qforge attempts, this is upper bounded by qforge/2

τ .

9.3. Security of (Turbo)SHAKE-Wrap

The nPJC security of (Turbo)SHAKE-Wrap follows
from the nPJC security of the DWrap mode.

Corollary 1. Let F be a (Turbo)SHAKE instance, with
permutation f and capacity c, that per assumption stands
by its claimed security and let F -Wrap[K] be defined as
F -Wrap[K] = DWRAP[OD[f, ρ, trailenc], τ ][K]. Assum-
ing the encryption context is a nonce, the nPJC advantage
of F -Wrap is upper bounded as

AdvnPJC
F -Wrap[K](µ, t, σ, qforge) ≤

AdvmKey
K (µ, t) +

(t+ σ)2

2c+1
+

qforge
2τ

,

with qforge the number of forgery attempts and µ, t and σ
as in Definition 6.

Proof. Applying (3) yields:

AdvnPJC
DWRAP[OD[f,ρ,trailenc],τ ][K](µ, t, σ, qforge) ≤

AdvnPJC
DWRAP[·,τ ](qforge) + AdvidahoOD[f,ρ,trailenc][K](µ, t, σ) .

Applying Theorem 7 to the first term and Theorem 5 to
the second term finishes the proof.

The committing resistance of (Turbo)SHAKE-Wrap
follows from the collision resistance of (Turbo)SHAKE.
In (Turbo)SHAKE-Wrap the tag is the result of hashing an
injective encoding of the key and all input data received
up to that moment. As long as there are no collisions in
the tag, the output commits to all inputs. The committing
resistance of (Turbo)SHAKE-Wrap is therefore given by
the security strength against collisions, namely τ/2 bits, as
long as τ ≤ c with c the capacity of the underlying sponge
function. Therefore, for tag length τ = 256, the schemes
guarantee a committing security strength of 128 bits. For
(Turbo)SHAKE256-Wrap, a tag length of τ = 512 bits
guarantees committing security strength of 256 bits. If for

a given application less committing security strength is
considered sufficient, a shorter tag length can be chosen,
say τ = 160 for 80 bits of security. This is expressed
more formally in the following theorem.

Theorem 8. Let F be a (Turbo)SHAKE instance with
permutation f and capacity c. If an adversary D outputs
a tag collision for DWRAP[OD[f, ρ, trailenc], τ ], then
one can efficiently transform it into an adversary D′ that
outputs a collision for F .

Proof. The tag is the output of the last duplexing call
to the underlying OD object after processing the key
and the messages. It is therefore sufficient to show
that the mapping from a sequence of key and mes-
sages (K,AD1, P1, . . . ,ADn, Pn) to a sequence of inputs
(B1, E1, . . . , Bm, Em) to the underlying OD object is
injective. The conclusion then follows from Theorem 6.

We start with n = 1. We can injectively map the
tuple (K,AD , P ) to a sequence of the general form
S = (K, 2), (a1, 13), . . . , (a|a|, 9), (c1, 12), . . . , (c|p|, 10)
such that the tag output by DWRAP[OD[f, ρ, trailenc], t]
is equal to the output of OD[f, ρ, trailenc] after the in-
put sequence S. Here, a = parse(AD , ρ, ρ) and p =
parse(P, ρ, ρ) or parse(P, ρ − τ, ρ), while c is obtained
by adding p bitwise to the keystream.

Let (K,AD , P ) ̸= (K ′,AD ′, P ′) be mapped to
OD sequences S and S′, respectively. If (K,AD) ̸=
(K ′,AD ′), then clearly S ̸= S′ because of the injectivity
of AD to a. So, let us assume now that K = K ′ and
AD = AD ′, but P ̸= P ′. If P and P ′ have a different
number of blocks, then S ̸= S′. Otherwise, let i be such
that pj = p′j for all j < i and pi ̸= p′i. Then, the keystream
used to encrypt pi and p′i is obtained from intermediate
duplexing outputs, and it will be identical for pi and p′i
so that ci ̸= c′i and therefore S ̸= S′. This shows that the
mapping is injective when n = 1.

The reasoning can be easily generalized to n > 1, and
a simple inspection of Algorithm 4 shows that the value
of trailers allows one to unambiguously separate (AD , P )
messages in the OD sequence.

10. The UpperDeck mode

In this section, we define a mode to build a deck cipher
on top of a duplex object, called UpperDeck, and discuss
its security.



10.1. Specification of UpperDeck

We specify UpperDeck in Algorithm 5 and illustrate it
in Figure 4. It has two duplex instances as attributes, that
we indicate by D an Dsqueeze. Upon creation, it initializes
D with the key K[ID ]. Then, the user can absorb an
arbitrarily long string X and trailer E and squeeze as
many bits as needed. For this, the UpperDeck cipher splits
the string X into blocks x1, x2, . . . , x|x|. The length of
each block is ρ except for the last block x|x| that can
be shorter. Then the UpperDeck cipher makes duplexing
calls with E′ = padint(0) = 2 for i < |x| and E′ = E||1
for the last block. When the last block is absorbed, the
UpperDeck cipher clones D into Dsqueeze and gets output
via Dsqueeze. If more than ρ bytes are needed, these are
obtained via duplexing calls to Dsqueeze with empty input
blocks and trailer E′ = padint(0) = 2. Using a cloned
duplex cipher for squeezing makes the output of the
UpperDeck cipher independent of the output length ℓ of
past duplexing or squeezing calls.

Algorithm 6 gives a functionally equivalent description
of UpperDeck’s duplexing() and squeezing() methods, yet
bringing two optimizations. First, it uses D instead of
Dsqueeze for the first ρ output bytes, hence avoiding an
unnecessary cloning when at most ρ bytes are needed.
Second, it defers the calls to Dsqueeze.duplexing(ϵ, 2) until
really necessary, hence avoiding extra such calls when the
output length is a multiple of ρ bytes.

UpperDeck supports clone() and cloneCompact()
where in the latter case it applies compact cloning to its
duplex cipher instances.

10.2. Security of UpperDeck

In the following theorem, we express the security of
UpperDeck.

Theorem 9. The idaho advantage of the UpperDeck mode
(as in Definition 2) is 0: AdvidahoUPPERDECK[·] = 0.

Proof.

AdvidahoUPPERDECK[·] =

∆(UPPERDECK[IDAHO[ρ]] ∥ IDAHO[∞]) .

The UPPERDECK cipher converts the input string to each
duplex call injectively to a sequence of input blocks and
trailers it presents to the underlying idaho object. So the
deck mode maps different paths to different paths to its
underlying idaho object and equal paths to equal paths. It
follows that the two worlds are indistinguishable.

11. The Deck-BO mode

In this section, we specify the Deck-BO mode, refor-
mulated in terms of a deck cipher that supports the idaho
interface and remind its PJC advantage. We specify Deck-
BO schemes defined on top of duplex ciphers with security
equivalent to that of (Turbo)SHAKE functions that we
name by adding “-BO” to the underlying (Turbo)SHAKE
instance name. We prove an upper bound on their (plain)
PJC advantage of Deck-BO in terms of the multi-user
PRF advantage of the equivalent (Turbo)SHAKE function.
Finally we prove their committing security.

Algorithm 5 Definition of UPPERDECK[DUPLEX]

Parameters:
duplex cipher DUPLEX with DUPLEX.ρ, that we denote
as ρ here

Object attributes:
D instance of DUPLEX
Dsqueeze instance of DUPLEX, or ⊥ if empty
output offset o, an integer

Constructor: U ← create(UPPERDECK[DUPLEX], ID)

return U with D ← create(DUPLEX, ID), Dsqueeze ←
⊥ and o←∞

Method U ← UPPERDECK.clone()
return U: a clone of UPPERDECK with U.D ←
D.clone() and U.Dsqueeze ← Dsqueeze.clone() (or ⊥ if
Dsqueeze = ⊥)

Method U ← UPPERDECK.cloneCompact()
return U: a clone of UPPERDECK with U.o = ∞,
U.D ← D.cloneCompact() and U.Dsqueeze ← ⊥

Method Z ← UPPERDECK.duplexing(X,E)[ℓ]
x← parse(X, ρ, ρ)
for i = 1 to |x| − 1 do D.duplexing(xi, 2)
D.duplexing(x|x|, E||1)
o← 0
Dsqueeze ← D.clone()
return Z ← 08ℓ + squeezing()

Method Z ← UPPERDECK.squeezing()[ℓ]
Z ← ϵ
while |Z| < ℓ do

x← min(ρ− (o mod ρ), ℓ− |Z|)
Z ← Z||(08x + Dsqueeze.squeezing())
o← o+ x
if o mod ρ = 0 then Dsqueeze.duplexing(ϵ, 2)

return Z

Algorithm 6 Optimization of UPPERDECK[DUPLEX]

Method Z ← UPPERDECK.duplexing(X,E)[ℓ]
[. . . beginning as in Algorithm 5 . . . ]
o← 0
Dsqueeze ← ⊥
return Z ← 08ℓ + squeezing()

Method Z ← UPPERDECK.squeezing()[ℓ]
Z ← ϵ
if o ≤ ρ then

x← min(ρ− o, ℓ)
Z ← Z||(08x + D.squeezing())
if o+ ℓ > ρ then

Dsqueeze ← D.cloneCompact()
o← o+ x

while |Z| < ℓ do
if o mod ρ = 0 then Dsqueeze.duplexing(ϵ, 2)
x← min(ρ− (o mod ρ), ℓ− |Z|)
Z ← Z||(08x + Dsqueeze.squeezing())
o← o+ x

return Z
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Figure 4. Illustration of the UpperDeck mode merged with the underlying OD cipher. This figure shows the call to create(ID), followed by
UPPERDECK.duplexing(X,E) that returns Y . Again, we assume K[ID ] and the last block of X have size smaller than ρ.

11.1. Specification of Deck-BO

Deck-BO is the simplest of the four robust modes
presented in [14]. It is inspired by the SIV approach in
[11] and supports sessions. In Algorithm 7, we rewrite the
Deck-BO mode in terms of a deck cipher with the idaho
interface (see Definition 9). This is illustrated in Figure 5.

The Deck-BO mode builds on a deck cipher DECK
and is parameterized by a tag length τ . It has as attribute
a deck cipher instance D. Upon creation, it creates D with
the key K[ID ]. A wrap call takes as input associated data
AD (possibly empty) and plaintext P . As output, it gives
a ciphertext X , that encrypts P , and an authentication
tag T of τ bits. It generates the tag by absorbing AD ;P
into D and by squeezing the first τ bits from D. The
tag T is thus a pseudorandom function of AD and P
and is also used as a synthetic diversifier to produce the
keystream used to encrypt P . Domain separation bits are
used to distinguish between associated data and plaintext,
as well as between the generation of tag and keystream. To
compute the keystream, it clones its deck cipher instance
D to Dkey with compact cloning after absorbing AD but
before P , then absorbs T in it and then generates the
keystream Z to encipher the plaintext. This Dkey cipher is
local to the wrap() method, i.e., it is deleted when wrap()
returns.

Upon unwrap, it first clones its deck cipher instance
D to Dunwrap to be able to roll back to the original state in
case of failure. Then, to compute the keystream, it in turn
clones Dunwrap to Dkey with compact cloning. The ciphers
Dunwrap and Dkey are local to the unwrap() method. If
unwrap() is successful it updates the state of D with that
of Dunwrap.

11.2. Security of Deck-BO

Theorem 10. [14, Theorem 3] The PJC advantage of the
DECKBO[·, τ ] mode (as in Definition 2) is given by

AdvPJC
DECKBO[·,τ ](qforge, qw) ≤

qforge
2τ

+
∑

context

(
qw(context)

2

)
2τ

,

with qforge the number of forgery attempts, qw(context)
the number of wrap queries with P ̸= ϵ for a given
context and qw the list of the qw(context) values indexed
by context.

Algorithm 7 Definition of DECKBO[DECK, τ ]

Parameters:
deck cipher DECK
tag length τ , an integer divisible by 8

Object attributes:
D instance of DECK

Constructor: create(DECKBO[DECK, τ ], ID)
return DB with D ← create(DECK, ID)

Method DB ← DECKBO.clone()
return DB: a clone of DECKBO

Method C ← DECKBO.wrap(AD , P )
if |P | = 0 then

return C ← 0τ + D.duplexing(AD , 4)
if |AD | ≠ 0 then

D.duplexing(AD , 5)
Dkey ← D.cloneCompact()
T ← 0τ + D.duplexing(P, 14)
X ← P +Dkey.duplexing(T, 13)
return C ← X||T

Method {P or ⊥} ← DECKBO.unwrap(AD , C)
if (|C| < τ/8) then return ⊥
Dunwrap ← D.cloneCompact()
parse C as X||T with |T | = τ/8
if |X| = 0 then

T ′ ← 0τ +Dunwrap.duplexing(AD , 4)
if T ′ ̸= T then return ⊥
P ← ϵ

else
if |AD | ≠ 0 then

Dunwrap.duplexing(AD , 5)
Dkey ← Dunwrap.cloneCompact()
P ← X +Dkey.duplexing(T, 13)
T ′ ← 0τ +Dunwrap.duplexing(P, 14)
if T ′ ̸= T then return ⊥

D ← Dunwrap

return P
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Figure 5. Illustration of the Deck-BO mode merged with the underlying UpperDeck mode and the OD construction. This figure shows the call to
create(ID), followed by DECKBO.wrap(AD , P ) that returns C. For the sake of visualization, we assume that K, T , and the last blocks of AD
and P have length smaller than ρ. Note that trailer values here are the accumulation of domain separation bits from Deck-BO, UpperDeck, and OD.

11.3. PJC security of (Turbo)SHAKE-BO

(Turbo)SHAKE-BO is Deck-BO on top of UpperDeck
on top of OD on top of the corresponding KECCAK-p[]
permutation with corresponding capacity value. The fol-
lowing corollary gives an upper bound on its PJC advan-
tage (see Definition 7).

Corollary 2. Let F be a (Turbo)SHAKE instance with
capacity c, that per assumption stands by its claimed
security and let

F -BO = DECKBO[UPPERDECK[OD[f, ρ, trailenc]], τ ] .

Then the PJC advantage of F -BO[K] is upper bounded
as

AdvPJC
F -BO[K](µ, t, σ, qforge, qw) ≤

AdvmKey
K (µ, t)+

(t+ σ)2

2c+1
+
qforge
2τ

+
∑

context

(
qw(context)

2

)
2τ

,

with qforge and qw as defined in Theorem 10 and µ, t and
σ as in Definition 6.

Proof. Applying (3) two times yields:

AdvPJC
DECKBO[UPPERDECK[OD[f,ρ,trailenc]],τ ][K](µ, t, σ, qforge, qw)

≤ AdvPJC
DECKBO[·,τ ](qforge, qw) + AdvidahoUPPERDECK[·]

+AdvidahoOD[f,ρ,trailenc][K](µ, t, σ)

Applying Theorem 10 to the first term, Theorem 9 to the
second and Theorem 5 to the third term finishes the proof.

11.4. Committing security of (Turbo)SHAKE-BO

The committing strength of (Turbo)SHAKE-BO is
given by the infeasibility of generating tag collisions.
By construction, the tag is computed as the hash of all
input data via (Turbo)SHAKE. Therefore, the committing
security strength is given by the minimum of c/2 and τ/2,
half the tag length in bits τ . In (Turbo)SHAKE, c = 256 or
512, and if we choose τ ≥ c this guarantees a committing
security strength of 128 and 256 bits, respectively.

This is expressed more formally in the following theo-
rem, that can be proved following the same approach used
to prove Theorem 8.

Theorem 11. Let F be a (Turbo)SHAKE instance with
permutation f and capacity c. If an adversary D outputs
a tag collision for (Turbo)SHAKE-BO, then one can effi-
ciently transform it into an adversary D′ that outputs a
collision for F .

12. Performance

In this section, we discuss the performance of the dif-
ferent schemes, {TurboSHAKE,SHAKE} × {128, 256}
× {-Wrap, -BO}, and compare with ChaCha20-Poly1305,
AES128-GCM, AES256-GCM and Ascon-128a.

First off, KECCAK is famous for being very effi-
cient in hardware [36], and this naturally extends to the
(Turbo)SHAKE-based schemes. In addition, when protec-
tions against side-channel attacks are a concern, its degree-
2 round function makes KECCAK particularly well-suited
to the masking countermeasures. We therefore focus on
comparing our schemes to others in pure software.

With this in mind, we first benchmarked these schemes
on a regular PC equipped with an Intel® Core™ i7-
7800X CPU running at 3.50 GHz. With our current
code, TurboSHAKE128-Wrap runs at 4.23 cycles/bytes
and SHAKE256-BO at 18.48 c/b, to take two extreme
cases. This has to be compared with ChaCha20-Poly1305
that runs at 1.33 c/b and AES-128-GCM at 0.66 c/b on
the same platform. These results may not be completely
representative of our schemes and can be explained by
two factors. First, our current code is not yet optimized
for this platform. An optimized implementation of Tur-
boSHAKE128 XOF runs at 2.20 c/b on this platform
and, accounting for the difference in block sizes (see
also Table 3), we expect TurboSHAKE128-Wrap to reach
about 2.31 c/b after optimization. Second, and more im-
portantly, the AES-GCM implementation makes use of a
dedicated cryptographic acceleration, and this falls short
of a comparison in pure software.

We next show the performance on an Raspberry Pi 4
equipped with an ARM™ Cortex-A72 processor running
at 1.5 GHz. This is a popular platform, yet one that does
not have any dedicated cryptographic acceleration, to be
able to compare relevant algorithms on a more equal
footing. We implemented the algorithms on top of the
code provided in XKCP [37]. Table 2 gives the cost,
in nanosecond per byte, of wrapping, unwrapping and
processing the associated data for the different schemes.
We focus on the cost for long messages, i.e., the slope for
increasing sizes of associated data, plaintext or cipher-
text. Table 2 also gives the cost of ChaCha20-Poly1305,
AES128-GCM and AES256-GCM on the same platform
using the implementation in OpenSSL 3.0.2 [38].

On this platform, we can see that all the schemes
defined in this paper outperform AES-based ones.
ChaCha20-Poly1305 is a particularly efficient alterna-
tive that does not rely on hardware acceleration. Yet,
TurboSHAKE128-Wrap outperforms it. We were not able



TABLE 2. PERFORMANCE ON RASPBERRY PI 4 (NS/BYTE).

. . . -Wrap . . . -BO
AD P or C

TurboSHAKE128 3.33 3.04 6.23
TurboSHAKE256 4.06 3.84 7.82

SHAKE128 6.41 6.27 12.58
SHAKE256 8.07 7.80 15.72

ChaCha20-Poly1305 3.72
AES128-GCM 32.32
AES256-GCM 41.69

TABLE 3. PERFORMANCE RELATIVE TO SHAKE128.

. . . -Wrap . . . -BO
AD P or C

TurboSHAKE128 0.525 0.525 1.050
TurboSHAKE256 0.656 0.656 1.313

SHAKE128 1.050 1.050 2.100
SHAKE256 1.313 1.313 2.625

to benchmark Ascon ourselves due to the fact that the stan-
dard is not finalized yet. Still, the Ascon website1 gives a
good idea of its performance: On Cortex-A72, the fastest
variant of Ascon, Ascon-128a, encrypts at 7.0 cycles/byte
or 4.6 ns/byte at 1.5 GHz. This is faster than both SHAKE
variants but slower than the TurboSHAKE ones.

Lastly, we discuss the cost relative to that of hashing
with the standard function SHAKE128. Table 3 evaluates
the cost of the different schemes under the assumption that
the evaluation of the KECCAK-p permutation dominates.

Let us first discuss the relative cost of the OD layer.
SHAKE128 processes input and output blocks of 168
bytes per call to the permutation, whereas ρ = 160 bytes
and ρ = 128 bytes for OD on top of (Turbo)SHAKE128
and (Turbo)SHAKE256, respectively. Due to OD’s smaller
payload block length, this induces a relative cost of
168/160 = 1.05 for OD on top of SHAKE128 and of
168/128 = 1.3125 with SHAKE256. Due to their lower
number of rounds, the ”Turbo” variants benefit from a
factor-2 speed-up.

Next, we discuss the relative cost of (Turbo)SHAKE-
Wrap. This mode requires only one pass of the associated
data, plaintext or ciphertext. Thanks to the duplexing, pro-
ducing keystream blocks does not induce any extra costs.
Associated data, plaintext or ciphertext blocks translate
directly to OD’s payload blocks, so the long-message
performance of (Turbo)SHAKE-Wrap is the same as that
of the OD layer.

Finally, we discuss the relative cost of Deck-BO. This
mode needs one pass of the deck function to process
the associated data. Here again, associated data blocks
from Deck-BO translate directly to OD’s payload blocks.
However, it needs two passes to process the plaintext or
ciphertext, so the cost per plaintext or ciphertext byte is
twice that of the underlying OD.

Table 2 is consistent with Table 3 as the cost of
evaluating SHAKE128 on a Raspberry Pi 4 is about
6.11 ns/byte. There is a small discrepancy between the
processing of plaintext and ciphertext in Wrap and that
of the associated data in BO, e.g., 3.33 vs 3.04 for
TurboSHAKE128-Wrap. Processing associated data is

1. https://ascon.iaik.tugraz.at/implementations.html

faster because there is no keystream to add with the
plaintext or with the ciphertext.

13. Conclusions

In this work we introduce session-supporting authenti-
cated encryption schemes with inherent committing prop-
erties. The committing security of our schemes is based
the fact that the tags are a hash of all inputs. Specifically,
they are based on SHAKE and TurboSHAKE, whose
collision resistance properties guarantee committing se-
curity in a natural way. Besides committing security, our
proposed schemes are user-friendly in the sense that they
do not restrict the size of the input that needs to be a
nonce, they support sessions, which relaxes the need for
nonce management in some cases, and generally they have
strong indistinguishably properties based on the security
claim in the SHA-3 standard.

Our schemes have also some implementation advan-
tages. They require a single primitive in contrast to other
committing solutions which usually require two. The un-
derlying permutation is standard and there is an increas-
ing hardware support for it. Yet, even without hardware
acceleration, our schemes have competitive performance.
Also, the definition of the overwrite duplex cipher allows
smaller state footprint during clone functions, i.e., 40 bytes
instead of 200 for (Turbo)SHAKE128 and 72 instead of
200 for (Turbo)SHAKE256.
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Appendix A.
Data availability

The source code of our schemes will be available at the
XKCP Github repository soon. This will include both the
reference implementation and the optimized implementa-
tion benchmarked in Section 12.

Appendix B.
The jammin cipher, an ideal-world AE
scheme

Algorithm 8 The jammin cipher JWrapExpand(p)

1: Parameters
2: WrapExpand, a τ -expanding function

3: Global variables
4: codebook initially set to ⊥ for all
5: taboo initially set to empty

6: Object attributes:
7: history: a sequence of strings

8: Constructor: inst← create(JWrapExpand(p), ID)
9: return inst of jammin with attribute inst.history =

ID

10: Method inst← jammin.clone()
11: return inst: a clone of jammin

12: Method C ← jammin.wrap(AD , P )
13: context← history;AD
14: if codebook(context;P ) = ⊥ then
15: C = ZWrapExpand(|P |)

2 \
(codebook(context; ∗) ∪ taboo(context))

16: if C = ∅ then return ⊥
17: codebook(context;P )

$← C
18: history← history;AD ;P
19: return codebook(context;P )

20: Method P or⊥ ← jammin.unwrap(AD , C)
21: context← history;AD
22: if ∃!P : codebook(context;P ) = C then
23: history← history;AD ;P
24: return P
25: else
26: taboo(context)← C
27: return ⊥

In Algorithm 8, we recall the definition of the jammin
cipher [14]. We describe it in an object-oriented way,
with object instances (or instances for short) held by the
communicating parties. An instance belongs to a given
party who initializes it with an object identifier ID . Such
an identifier is the counterpart of a secret key in the real
world: Encryption and decryption will work consistently
only between instances initialized with the same identifier.
This setup models independent pairs (or groups) that make
use of the AE scheme simultaneously. For example, Alice
and Bob may secure their communication each using cou-
pled instances that share the same identifier IDAlice and Bob,
while Edward and Emma use coupled instances initialized
with IDEdward and Emma.

The jammin object supports both wrap() and
unwrap(). With the wrap() operation the object computes
a ciphertext C from a message that has a plaintext P and
associated data AD , both arbitrary bit strings. With the
unwrap() operation the object computes the plaintext P
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from the ciphertext C and AD again. The ciphertext C is
the encryption of P for a given AD .

The jammin cipher is parameterized with a func-
tion WrapExpand(p) that specifies the length of the
ciphertext given the length p of the plaintext. Typical
examples observed in AE schemes in the literature are
WrapExpand(p) = p+ τ with τ some fixed length, e.g.,
128 for stream encryption followed by a 128-bit tag. For
use with the jammin cipher, we require WrapExpand to
satisfy this property, defined below.

Definition 11. A function f : Z≥0 → Z≥0 is τ -expanding
iff (i) ∀ℓ > 0: f(ℓ) > f(0) and (ii) ∀ℓ : f(ℓ) ≥ ℓ+ τ .

When two parties communicate, they usually have
more than one message to send to each other. And a mes-
sage is often a response to a previous request, or in general
its meaning is to be understood in the context of the
previous messages. The jammin cipher is stateful, where
the sequence of messages exchanged so far is tracked
in the attribute history. Initialization sets this attribute
to the object identifier and each wrap() and (successful)
unwrap() appends a message (AD , P ). So history is a
sequence with ID followed by zero, one or more messages
(AD , P ).

A session is the process in which the history grows
with the messages exchanged so far. The wrap() and
unwrap() operations make the history act as associated
data, so that a ciphertext authenticates not only the mes-
sage (AD , P ) but also the sequence of messages ex-
changed so far. An important application of this are in-
termediate tags, which authenticate a long message in an
incremental way.

Finally, a jammin cipher object can be cloned. This is
the ideal world’s equivalent of making a copy of the state
of the cipher. This means the user can save the history
and restart from it ad libitum.

B.1. Properties

The jammin cipher enjoys the following properties:
Deterministic wrapping: In a given context, an object

wraps equal messages (AD , P ) to equal ciphertexts
C. It achieves this by tracking the ciphertexts in the
codebook archive.

Injective wrapping: An object wraps messages with
equal context and AD and different P to different
ciphertexts. It achieves this by excluding ciphertext
values that it returned in earlier wrap calls for the
same context and AD .

Random ciphertexts: Except for determinism and injec-
tivity, all ciphertexts C are fully random.

Deterministic unwrapping: In a given context, an ob-
ject unwraps equal ciphertexts to equal responses. It
achieves this by tracking in taboo ciphertext values
that it returns an error to.

Correctness: Thanks to deterministic (un)wrapping and
injective wrapping, one jammin cipher object cor-
rectly unwraps what another wrapped, whenever their
contexts are equal.

Forgery-freeness: In a given context, an object will only
unwrap successfully ciphertexts C resulting from
prior wrap calls in the same context.

The jammin cipher does not enforce the encryption
context to be a nonce, this is left up to the higher level
protocol or use case.

The jammin cipher takes as encryption context the
sequence of messages exchanged so far, including the
associated data in the message containing the plaintext
to be encrypted (in a message without plaintext, there
is no encryption and hence no encryption context). The
advantage of doing authenticated encryption in sessions
is immediate as this reduces the requirement for global
diversifiers of one per session rather than one per message.
Session-level diversifiers may even be omitted unless com-
municating parties wish to start parallel threads or start
afresh from the same shared key.

Definition 12. We say that the encryption context is a
nonce iff all wrap queries with non-empty plaintext have
a different context context.

In case of re-use of encryption context, the jammin
cipher will leak equality of plaintexts given equal cipher-
texts obtained with equal encryption contexts, but nothing
more. In some use cases this may be acceptable. For
such use cases, the jammin cipher can serve as a security
reference for modes or schemes. A proven upper bound
on the distinguishing advantage between such a mode
and the jammin cipher, proves that leakage is limited to
equal plaintexts and encryption contexts, plus the proven
advantage that is typically negligible.

In particular, stream encryption with a keystream that
is generated from the encryption context is perfectly se-
cure if each wrap query has a different encryption context,
but its security completely breaks down when re-using
encryption contexts. Therefore, if we wish security in case
of repeating encryption contexts, we must use a more
elaborate encryption mechanism than stream encryption.

Appendix C.
Committing AE

Certain settings or applications require AE with com-
mitting property, as shown in the following examples.
Dodis et al. [39] and Grubbs et al. [17] showed how to
exploit non-committing AE schemes in old versions of
Facebook’s end-to-end encrypted message service. In [24],
Albertini et al. study weaknesses of key rotation in key
management services, envelope encryption, and “Sub-
scribe with Google” [40], due to the lack of key commit-
ment. They first introduce new theoretical attacks against
commonly used AE schemes, such as AES-GCM [41],
AES-GCM-SIV [12], [13], ChaCha20-Poly1305 [5], and
AES-OCB3 [42], which they turn into practical ones by
creating binary polyglots (i.e., files which are valid in
two different file formats). In [43], Chan and Rogaway
show how in GCM and OCB modes, for any ciphertext C
generated under a “honest” key, the adversary can com-
pute an AD that together with C results in a successful
unwrap under another known key. In [44], Len et al. show
how Shadowsocks proxy servers and the OPAQUE [45]
protocol can be vulnerable to partitioning oracle attacks
due to using non-committing AE.

Farshim et al. ported the notion of key-commitment to
the AE setting in 2017, with the name key-robustness [46].



Later, different definitions have been introduced. Bellare
and Hoang [18] and Chan and Rogaway [43] indepen-
dently and contemporarily gave a number of committing
AE definitions, the strongest requiring that the ciphertext
commits to key, nonce, associated data, and plaintext.

Generic solutions have been presented to turn existing
AE schemes into committing AE schemes. Farshim et
al. [46] propose to apply a collision-resistant pseudoran-
dom function (PRF) (not to be confused with the PRF
security notion) to the entire message or ciphertext, to
achieve key commitment. Grubbs et al. [17] presented
compactly committing AE, requiring a collision-resistant
hash function in HMAC mode and a stream cipher such as
AES-CTR or ChaCha20. In [24], Albertini et al. achieve
key commitment by deriving a new encryption key and
a commitment string from the scheme’s key, by using a
collision resistant hash function like SHA256. Chan and
Rogaway [43] propose a generic construction that makes
a nonce-based AE scheme committing in the strongest
sense, at the cost of a hash call over the tag. Bellare
and Hoang [18] introduce two generic constructions. The
former makes use of a committing PRF, which is a gen-
eralization of a key-robust PRF based on a block cipher.
This construction however does not guarantee resistance
against nonce-misuse. The latter construction preserves
misuse-resistance and makes use of the same key-robust
PRF and a collision resistant PRF. Dodis et al. [39] design
encryptment schemes as a building block to achieve com-
pact committing AE. They give a concrete encryptment
scheme that uses a compression function and a padding
scheme. In the appendix of their work, the authors also
discuss a SpongeWrap-like encryptment scheme, but with-
out discussing the details. None of these generic solutions
achieves the efficiency of AES-GCM, and the majority of
them requires two passes and the use of more than one
primitive.

Alternative solutions exist that aim to achieve commit-
ment for specific schemes. One of such solutions consists
in adding a padding block to the plaintext and verify
the correctness of the key by checking the presence of
such padding block upon decryption [24], [47]. However
the commitment security of such padding solution is not
guaranteed for every AE scheme, but must be verified
on a case-by-case basis, which was done for AES-GCM,
ChaCha20-Poly1305 [24] and Ascon [25]. In [18], Bellare
and Hoang also propose modifications to the GCM and
GCM-SIV modes to make them key-committing. With
the addition of the generic transformation cited above,
they become committing in the strongest sense. However,
these solutions are intrusive, as they require modifications
to GCM and GCM-SIV.
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