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Abstract. The Ducas–Micciancio (DM) and Chilotti–Gama–Georgieva–
Izabachène (CGGI) cryptosystems provide a general privacy-preserving
computation capability. These fully homomorphic encryption (FHE) cryp-
tosystems can evaluate an arbitrary function expressed as a general look-
up table (LUT) via the method of functional bootstrapping. The main
limitation of DM/CGGI functional bootstrapping is its efficiency because
this procedure has to bootstrap every encrypted number separately. A
different bootstrapping approach, based on the Cheon–Kim–Kim–Song
(CKKS) FHE scheme, can achieve much smaller amortized time due to
its ability to bootstrap many thousands of numbers at once. However,
CKKS does not currently provide a functional bootstrapping capability
that can evaluate a general LUT. An open research question is whether
such capability can be efficiently constructed. We give a positive answer
to this question by proposing and implementing a general functional
bootstrapping method based on CKKS-style bootstrapping. We devise a
theoretical toolkit for evaluating an arbitrary function using the theory of
trigonometric Hermite interpolations, which provides control over noise
reduction during functional bootstrapping. Our experimental results for
8-bit LUT evaluation show that the proposed method achieves the amor-
tized time of 0.72 milliseconds, which is three orders of magnitude faster
than the DM/CGGI approach and 6.8x faster than (a more restrictive)
amortized functional bootstrapping method based on the Brakerski/Fan-
Vercauteren (BFV) FHE scheme.
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1 Introduction

Homomorphic encryption is a powerful cryptographic primitive enabling compu-
tations over encrypted data without requiring intermediate decryption. Of par-
ticular interest are Somewhat Homomorphic Encryption (SHE) schemes, first
introduced in Gentry’s PhD study [Gen09a, Gen09b], which support homomor-
phic evaluation of addition and multiplication or their equivalents. In all prac-
tically used SHE schemes, some noise is added during encryption for security
reasons. This noise keeps growing as computations are performed, which even-
tually exhausts the computational ability of ciphertexts. To support arbitrarily
deep computations, Gentry proposed a bootstrapping procedure that refreshes
the noise in exhausted ciphertexts to a fixed level so that further computations
can be performed on them [Gen09a]. The main idea behind bootstrapping is to
homomorphically evaluate the decryption circuit for the underlying SHE scheme.
The use of bootstrapping allowed Gentry to introduce the concept of Fully Ho-
momorphic Encryption (FHE) for evaluating arbitrary circuits and formulate a
concrete FHE scheme based on ideal lattices. Although Gentry’s original FHE
scheme was inefficient, dramatically more efficient FHE schemes and bootstrap-
ping methods were subsequently devised [MSM+22, AP23].

A major milestone was the development of Brakerski-Gentry-Vaikuntanathan
(BGV) [BGV14] and Brakerski/Fan-Vercauteren (BFV) [Bra12, FV12] leveled
FHE schemes for finite field arithmetic. These schemes support efficient finite-
arithmetic operations over vectors of bounded integers and include an improved
bootstrapping procedure, which still follows Gentry’s bootstrapping blueprint.
However, the runtime of this bootstrapping procedure (even for its optimized
modern variants) is not yet practical for many applications, and takes on the or-
der of 1 minute (for roughly 1,000 encrypted integers) on a modern CPU [AP23].
Note that many practical applications of BGV and BFV typically do not use
bootstrapping, i.e., run these schemes in the leveled mode.

The next major milestone was the Ducas-Micciancio (DM) FHE cryptosys-
tem [DM15] (also called FHEW), which supports efficient bootstrapping for
Boolean gates (as low as 10 milliseconds per Boolean gate for optimized DM-
like schemes on modern CPUs [Zam22, AAB+22]). The DM cryptosystem de-
viates from Gentry’s blueprint in two ways. First, it switches between multi-
ple schemes, where the input scheme is additively homomorphic, i.e., it does
not support homomorphic multiplication, and the bootstrapping accumulator
scheme is somewhat homomorphic. Second, the DM cryptosystem supports a
special-purpose look-up table (LUT) evaluation (outputting an encrypted bit
using internal modulo 4 arithmetic) as part of bootstrapping [MP21]. For the
additive homomorphic encryption scheme, the DM cryptosystem uses Regev’s
Learning With Errors (LWE)-based scheme [Reg09]3. Chilotti et al. subsequently
proposed an FHE cryptosystem using the DM blueprint but with a different

3 Note that many LWE ciphertexts can be combined into one BFV-compatible Ring
LWE ciphertext; we will refer to input ciphertexts as (R)LWE ciphertexts in the rest
of the paper.
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bootstrapping accumulator–and additional optimizations [MP21]–which is typi-
cally referred to as the Chilotti-Gama-Georgieva-Izabachène (CGGI) [CGGI16]
(also called TFHE).

The special-purpose LUT evaluation capability of DM/CGGI, later extended
to larger plaintext moduli [CJP21], which is called functional bootstrapping [KS23,
LMP22] or programmable bootstrapping [CJP21, CLOT21, Zam22],4 was used
to devise procedures for evaluating arbitrary functions over relatively small
plaintext spaces, typically not higher than 3-8 bits. Recently, three different
methods for arbitrary function evaluation using DM-like schemes were pro-
posed [CLOT21, KS23, LMP22], with the method from [LMP22] having the
smallest complexity and noise growth. Note that all three methods require at
least two DM/CGGI functional bootstrapping operations for evaluating small-
precision arbitrary functions. The evaluation of arbitrary functions over small
plaintext spaces can be used for evaluating multi-precision (large-precision) func-
tions, though this extension is generally computationally expensive (except for
special cases such as sign/comparison) and often requires many functional boot-
strapping operations [GBA21, LMP22].

Another major advance was the introduction of approximate homomorphic
encryption for supporting efficient homomorphic polynomial computations over
real and complex numbers [CKKS17]. The authors also proposed an FHE scheme
referred to as the Cheon-Kim-Kim-Song (CKKS) scheme (also called HEAAN).
The CKKS scheme provides a practical solution for many privacy-preserving
machine learning applications, significantly outperforming both BGV/BFV and
DM/CGGI [MSM+22]. From the throughput perspective, the CKKS scheme
achieves the most efficient bootstrapping operation; its optimized variants re-
quire on the order of 10 seconds for bootstrapping 32,768 encrypted real num-
bers with precision of roughly 15 bits on single-threaded CPU [BCKS24, AP23].
Although the CKKS scheme deviates from prior exact schemes in terms of
correctness requirements, CKKS bootstrapping still conceptually uses Gentry’s
blueprint, i.e., it homomorphically evaluates its own decryption circuit [CHK+18].
However, the CKKS scheme does not provide a robust, efficient solution for eval-
uating discontinuous functions, e.g., sign, as the polynomial approximations of
these functions are complicated by the requirements of knowing the approxi-
mation range and achieving desired precision. For this reason, CKKS may use
other schemes, e.g., DM/CGGI, via scheme switching to evaluate discontinuous
functions [LHH+21, LMP22], which is associated with high performance costs.

In summary, the DM/CGGI method provides the general functionality of
evaluating arbitrary functions, but its efficiency is significantly lower than for
both BGV/BFV and CKKS methods. The primary reason is that in DM/CGGI,
bootstrapping is performed for each number independently while in the case of
BGV/BFV and CKKS, one bootstrapping operation can refresh thousands of
numbers at once using the Single Instruction/Multiple Data (SIMD) packing of
a vector into one ciphertext (CKKS typically outperforms BGV/BFV bootstrap-

4 For consistency, we will use the functional bootstrapping term throughout the paper
(noting that it is equivalent in meaning to programmable bootstrapping).
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ping by more than one order of magnitude [AP23]). As a result, several studies
with a focus on amortized functional bootstrapping or leveled LUT evaluation
in SIMD schemes recently appeared [LW23, LMS24, CKKL24, BCKS24, LW24].

An open research question is whether arbitrary functions can be evaluated us-
ing CKKS-style bootstrapping, i.e., whether CKKS bootstrapping can be used to
construct a general functional bootstrapping capability. The benefits of such an
approach are improved efficiency (as CKKS bootstrapping has the best through-
put among all FHE schemes) and more general functionality in CKKS (to enable
direct support of discontinuous function evaluation). We give a positive answer
to this question by proposing a general method of functional bootstrapping based
on CKKS and provide experimental results to showcase its performance.

Our Contributions. Our main contribution is a general functional bootstrapping
capability based on CKKS for input (R)LWE ciphertexts, which can evaluate
arbitrary functions in Zp for any integer p ≥ 2. The functional bootstrapping
capability uses a trigonometric Hermite interpolation that has the same values
as the interpolated function and zero first derivative at all domain points. Set-
ting the first derivative to zero provides a noise reduction/cleaning ability (to
accommodate the approximate nature of the CKKS scheme). Using trigonomet-
ric interpolation theory, we derive an analytical expression for the general case in
terms of Fourier series. We also devise an efficient “FHE-friendly” algorithm for
evaluating the trigonometric series in CKKS in terms of the complex exponential
function. Moreover, we derive analytical expressions for cases when higher-order
derivatives are also set to zero–if further noise reduction is needed for functional
bootstrapping at the expense of a small increase in computational complexity.

Our second contribution is a multi-precision sign evaluation procedure for
an encrypted message in ZP , where P > p, which uses the step and modular
reduction functions in Zp as subroutines. We also propose a homomorphic digit
extraction algorithm based on the modular reduction function, and show how
a multi-precision arbitrary function evaluation capability can be built using the
LUT evaluation in Zp and the digit extraction procedure.

Our third contribution covers various extensions of the functional bootstrap-
ping capability, including the evaluation of discontinuous functions directly in
CKKS (over CKKS input ciphertexts), multi-value functional bootstrapping,
and evaluation of encrypted LUTs.

Our fourth contribution is a general method for noise reduction in CKKS
using polynomial Hermite interpolation theory. We show that prior limited noise
cleaning capabilities are special cases of this general method.

We also implement our functional bootstrapping method and multi-precision
functional evaluation capabilities in OpenFHE, evaluate their performance, and
compare the complexity/runtime results with other state-of-the-art methods.
Our experimental results suggest that for 8-bit LUT evaluation the proposed
method achieves an amortized time of 0.72 milliseconds, which is three orders of
magnitude faster than for the DM/CGGI method and 6.8x faster than a more
limited functional bootstrapping functionality based on the BFV scheme.
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1.1 Technical Overview

Hybrid FHE scheme with functional bootstrapping. We develop a hybrid FHE
scheme that supports general functional bootstrapping following the DM blueprint.
In the classical DM/CGGI setting, the input ciphertexts are encrypted using
the LWE scheme and bootstrapping is performed with the Ring-Gentry-Sahai-
Waters (RGSW) scheme [DM15]. In other words, the secret key for the LWE
scheme is encrypted using the RGSW scheme. Such a cryptosystem can boot-
strap only one number at a time because all possible values in an LWE ciphertext
get mapped to polynomial coefficients in RGSW [MP21].

We devise a “vectorized” cryptosystem, where many numbers are encrypted
in an RLWE ciphertext and all these numbers are bootstrapped at once using
the CKKS scheme. The RLWE scheme here is equivalent to the BFV scheme
using the coefficient encoding, and the encryption can be written as RLWE(m) =(
[−a · s+ e+ (q/p) ·m]q ,a

)
, where m ∈ Zw

p and w is the number of encrypted
integers (up to the ring dimension N). For simplicity of exposition, we focus on
the symmetric-key encryption case and assume that both q and p are powers
of two. In this work, we specifically choose to work with RLWE because it is a
more compact and practical representation. Nevertheless, an RLWE ciphertext
can also be thought of as w LWE ciphertexts packed into one RLWE ciphertext
(the conversions between LWE and RLWE ciphertexts in both directions are
known procedures discussed and optimized elsewhere [BCK+23, BCKS24]).

The RLWE encryption of q
pm can be interpreted as a CKKS encryption

using the coefficient encoding of ∆m
p , where ∆ is the CKKS scaling factor (for

simplicity, we focus in the description here on CKKS instantiated for a power-
of-two ciphertext modulus). This CKKS ciphertext is “exhausted” and cannot
support any further multiplications.

To perform functional bootstrapping, we first raise the ciphertext to a much
larger modulus Q′

L (supporting L computational levels). This changes the en-
crypted message from ∆m

p to ∆m
p + qI(X), or, equivalently, ∆m(X)

p + qI(X) as
the message m is encoded in polynomial coefficients. Our goal is to obtain an
encryption of fp(m) ∈ Zw

p , for an arbitrary function fp defined as a p-to-p LUT
(in general, the output modulus can be different from the input one). We evalu-
ate the LUT using a properly chosen interpolation. Prior to the LUT evaluation,
we perform homomorphic encoding to place both the message and q-overflows
into CKKS slots to enable CKKS-style polynomial evaluation.

Trigonometric Hermite interpolation. The main challenge is how to choose the
interpolation. This interpolation has to remove the q-overflows, i.e., it has to be
a trigonometric series. As CKKS bootstrapping adds to the noise present in the
RLWE message, we also want to reduce this noise during the evaluation of the
trigonometric series. We observe that the approach satisfying both requirements
is the trigonometric Hermite interpolation. As our main solution, we use the
first-order trigonometric Hermite interpolation, which matches the interpolated
function at all p points of interest and sets first derivatives to zero, to provide
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quadratic noise reduction. We illustrate the first-order interpolation in Figure 1
for the case of µ mod 4, where µ ∈ Z4. One can observe that in addition to
matching the function at the interpolation points, the first-order interpolation
has local extrema at these points, which correspond to noise reduction in the
proximity of the interpolation points.

1st order 2nd order 3rd order

0 1 2 3

0

1

2

3

μ

μ
m
o
d
4

Fig. 1. Plot of f4(µ) ≡ µ mod 4, where µ ∈ Z4, and its first-order, second-order, and
third-order trigonometric Hermite interpolations. The plateau near interpolation points
progressively increases as the interpolation order grows.

We use results from trigonometric interpolation theory to derive an FHE-
friendly analytical expression for evaluating the first-order Hermite interpolation
for arbitrary p. We start with a series of shifted cosines and then transform it
into a power series for the complex exponential function e2πimj/p for j ∈ [w]. The
power series, which is the bottleneck operation for larger p, has degree p−1 and
can be efficiently evaluated using the Paterson-Stockmeyer method, consuming
roughly

√
2p homomorphic multiplications. In other words, the complexity in-

creases by
√
2 every time p is increased by 2. The full evaluation of the power

series includes three steps: 1) the evaluation of the complex exponential function
on a subinterval using a Chebyshev series interpolation, 2) the extension of the
interpolation to the full interval via a recursive application of the double-angle
formula, and 3) the evaluation of the power series of degree p−1 for the complex
exponential function. Note that the first two steps are very similar to the approx-
imate evaluation of the modular reduction function in CKKS bootstrapping.

After evaluating the power series, we perform homomorphic decoding to go
back to the RLWE format. Note the result is still a BFV ciphertext and can be
decrypted exactly without any approximation error. Hence, from the perspec-
tive of IND-CPAD security [LM21, ABMP24], no flooding is needed to achieve
security for shared decryption results (in contrast to the single-scheme CKKS in-
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stantiations). In other words, CKKS is used as a black box in our cryptosystem,
just like RGSW is used in DM/CGGI cryptosystems.

For applications requiring additional noise reduction during functional boot-
strapping (for instance, where a long sequence of LUTs and other computations
in between are evaluated), we derive expressions for second- and third-order
trigonometric Hermite interpolations where the first two and three derivatives,
respectively, are set to zero. The plots of second- and third-order interpolations
for µ mod 4 are illustrated in Figure 1. One can observe that the plateaus near
the interpolation points progressively extend as the order is raised, achieving
cubic and quartic noise reduction for second and third orders, respectively. We
also derive FHE-friendly analytical polynomial expressions for these higher or-
ders in terms of the complex exponential function. The second and third-order
interpolations increase the degree of the power series from p − 1 for the first
order to 3p/2 for second order and 2p − 1 for third order. The computational
complexity increase of raising the interpolation order from first to third order is
equivalent to increasing the precision, i.e., plaintext modulus, of the first-order
interpolation by one bit (along with a potential increase in the scaling factor).

Noise analysis. We perform noise analysis for all three interpolation orders.
The noise after functional bootstrapping is determined by the interplay of noise
reduction due to a trigonometric Hermite interpolation and due to the CKKS
approximation error accumulated as part of the functional bootstrapping (and
other application-specific intermediate computations). The CKKS approxima-
tion error can be reduced by increasing the CKKS scaling factor, which plays a
central role in fine-tuning the efficiency of functional bootstrapping. Our noise
analysis shows that in scenarios where functional bootstrapping is the only com-
putation, the first order will always be more efficient than higher orders. However,
if a series of LUTs is evaluated and/or there are application-specific intermedi-
ate computations, the second order can achieve better efficiency by reducing the
CKKS scaling factor. Our analysis also suggests that the noise reduction benefits
of the third order are expected to be smaller than the computational complexity
increase from the second to third order.

It should be highlighted that the noise reduction capability provided by
trigonometric Hermite interpolations makes functional bootstrapping a “proper”
bootstrapping procedure because in addition to enabling more computations (as
in classical CKKS bootstrapping), this procedure also reduces the noise. Overall,
our hybrid FHE scheme has the same properties (rounding during decryption,
noise reduction during bootstrapping) as other exact FHE schemes, such as
BGV, BFV, and DM/CGGI.

We also show that polynomial Hermite interpolations (not periodic in con-
trast to trigonometric interpolations) can be used to evaluate LUTs in a leveled
setting and/or to reduce noise. These polynomial interpolations generalize prior
results from [CKK20, DMPS24, CKKL24]. Our analysis implies that trigonomet-
ric Hermite interpolations are more efficient for LUT evaluation than polynomial
Hermite interpolations in the settings where bootstrapping is needed.

9



Larger precision. Our method can currently efficiently support LUTs only for
a limited range of p, e.g., we were able to run LUTs up to 14 bits using 64-bit
words. If a larger domain is required or some special functions are to be eval-
uated, such as sign evaluation, one can use a multi-precision approach, where
LUTs for smaller p’s are used to support large plaintext moduli P . Using the
blueprint of [LMP22], we develop multi-precision digit extraction and sign eval-
uation procedures. Both are based on the evaluation of the floor function, for
which we derive convenient analytical expressions. The digit extraction proce-
dure allows evaluating large-precision LUTs by working with smaller-size LUTs
for individual digits. It is worth noting that evaluating the floor function using
our cryptosystem requires a single functional bootstrapping operation, as com-
pared to two bootstrapping operations in the classical DM/CGGI cryptosystems.

In the process, we introduce a number of optimizations and extensions. For in-
stance, our functional bootstrapping method supports efficient multi-value LUT
evaluation, where multiple LUTs for the same ciphertext can be evaluated at
a cost slightly higher than a single LUT evaluation. In the case of multi-value
LUT evaluation, the computation of the complex exponential function used for
building the power series is performed only once for many LUTs. Our method
can also be used for evaluating an encrypted LUT, which is used as a subroutine
in a tree-based evaluation of large LUTs [GBA21]. In this case, the scalar coef-
ficients in the power series are replaced with the ciphertexts resulting from the
LUT evaluation. We also discuss how our method can be adapted for evaluating
discontinuous functions in native CKKS, i.e., in a setting where messages are
encoded using the CKKS inverse canonical embedding.

1.2 Related Works

For the classical DM/CGGI method, we compare our results with the procedures
for LUT evaluation and multi-precision sign evaluation described in [LMP22]
and [TCBS23]. In summary, our method achieves a better throughput than
DM/CGGI functional bootstrapping as soon as the number of evaluated en-
crypted numbers reaches the order of one thousand/one hundred, as our method
scales better with p, both asymptotically and practically. The amortized time for
larger values of p, e.g., 28, is three orders of magnitude smaller in our method
as compared to CGGI functional bootstrapping. We also compare our timing
results for 8- and 12-bit LUTs with another multi-precision method based on
CGGI circuit bootstrapping, and our method has the amortized time two orders
of magnitude smaller. The detailed results of our comparison are presented in
Appendix A.2.

Bae et al. proposed a method for evaluating Boolean gates using a CKKS-like
bootstrapping [BCKS24]. The functionality of this method is the same as the
functionality available in the original DM cryptosystem [DM15]. If our functional
bootstrapping method is instantiated for the modular reduction or step function
at p = 2, our trigonometric series reduces to the same function as for Boolean
CKKS bootstrapping in [BCKS24]. In other words, the Boolean bootstrapping
in [BCKS24] can be viewed as a special case of our method for the modular
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reduction/step function at p = 2. However, our approach supports arbitrary
values of p and arbitrary functions over Zp. We discuss how our implementation
results for 1-bit LUT compare with the implementation results of [BCKS24]
in Appendix A.1. We also compare our method with the multi-precision LUT
evaluation based on 1-bit LUTs in Section 7, demonstrating our method’s speed-
up by two orders of magnitude.

Chung et al. developed an LUT evaluation method in both CKKS and BFV
using a special exponential encoding and multivariate polynomial interpola-
tions [CKKL24]. Their results demonstrate that the method efficiently supports
LUT evaluation up to p = 212. However, this exponential encoding does not
support multiplications between ciphertexts, and additional (costly) procedures
need to be implemented to switch to and from the slot encoding. Moreover,
their method does not refresh the ciphertexts (i.e., it is not based on functional
bootstrapping) and, hence, regular CKKS or BFV bootstrapping would need to
be used for deep computations. We compare their method and implementation
results with ours in Appendix A.3. In summary, the evaluation of an LUT as
part of bootstrapping in our method has a lower complexity than their method
(the polynomial degree is reduced from 2p− 1 to p− 1).

Liu and Wang devised an amortized (somewhat limited) functional boot-
strapping method for DM/CGGI ciphertexts using BFV as the bootstrapping
scheme [LW23, LW24]. Our method has a higher throughput (from 3.4x for 3-
bit LUT to 8.4x for 12-bit LUT) and easily supports multi-precision extensions.
Concrete numerical comparisons are given in Appendix A.2.

Lee et al. proposed a functional bootstrapping for BFV only and BFV-to-
CKKS scenarios [LMS24]. Their method works with the plaintext space Zr

p, i.e.,
builds upon regular BFV/BGV bootstrapping [GV23]. The main limitation of
their method is inherited from regular BFV bootstrapping: only a small number
of slots can be efficiently supported, especially when only power-of-two cyclo-
tomic rings are available for instantiating BFV (the latter is true for all common
open-source software libraries implementing BFV). As a result, the amortized
time of this method is significantly (orders of magnitude) higher than both for
our method and methods in [LW23, LW24].

There have been many studies on large-precision sign/comparison evalua-
tion algorithms, both using leveled computations in SIMD schemes and func-
tional bootstrapping in DM/CGGI schemes (see [LMP22] for a summary of
main methods). A highlight is the CKKS method proposed in [CKK+19], which
achieves optimal complexity using leveled CKKS. The drawback of this method
is that it does not include bootstrapping (hence bootstrapping has to be done
separately), which may require larger lattice parameters than our method and
several bootstrapping operations. Given the large number of studies specifically
on sign evaluation, complexity of fair comparison of our (bootstrapping-based)
method with leveled SIMD solutions, and the fact that the main focus of our
work is arbitrary function evaluation, we leave such comparison for future work.
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1.3 Concurrent Works

Bae et al. [BKSS24] concurrently proposed a method for bootstrapping small in-
tegers using CKKS. Their first method appears to be similar in complexity to our
first-order trigonometric Hermite interpolation. However, there are several major
differences. First, the authors do not consider the idea of trigonometric Hermite
interpolation, which is central to our work (only polynomial Hermite interpola-
tions are mentioned, which have higher complexity as shown in Section 3.4 and
Appendix A.3 of our paper). Instead, they derive their method starting from
a Lagrangian interpolation for complex roots of unity and then apply complex
conjugation to achieve quadratic noise reduction. No closed-form analytical ex-
pression is provided in [BKSS24]. In contrast, our work devises analytical expres-
sions for first-order and higher-order trigonometric Hermite interpolations. Our
higher-order interpolations enable FHE computations invoking a series of LUTs
and/or other intermediate computations. The analytical expressions simplify the
complexity analysis, noise estimation, and implementation of the method. The
experimentally observed throughput of our method is significantly higher (from
2.2x to 4.8x in the range of log p from 2 to 8). We also report runtime results
for up to 14 bits (vs. maximum 10 bits in [BKSS24]). Many other extensions are
also proposed in our work, e.g., we devise multi-precision procedures, allowing
us to support the sign evaluation for 32-bit encrypted numbers.

Another concurrent work [KN24] extends the functional bootstrapping from
[BKSS24] to modular reduction for the multi-precision setting and real num-
bers. The multi-precision extension appears to be similar to our multi-precision
sign evaluation method presented in Section 5. The amortized runtime for 10-bit
decomposition (Table 10 in [KN24]) is about 2 milliseconds, which is roughly
the same as in the first row of Table 2 in our paper. Overall, our work encom-
passes both [BKSS24] and [KN24], while also providing several distinct capabil-
ities/results, such as higher-order trigonometric Hermite interpolations, conve-
nient analytical expressions, and tighter and more comprehensive noise analysis.

1.4 Organization

We provide the necessary background on the DM/CGGI and CKKS schemes
and methods in Section 2. In Section 3, we derive the analytical expressions for
arbitrary function evaluation using CKKS-style bootstrapping and examine their
properties. These expressions are used in Section 4, which presents our algorithm
for general amortized functional bootstrapping of RLWE ciphertexts, along with
noise and complexity analyses. In Section 5, we describe our algorithms for digit
extraction and multi-precision function evaluation. Section 6 summarizes the
approach for the functional bootstrapping of CKKS ciphertexts. In Section 7 we
showcase our implementation results and performance. We provide concluding
remarks in Section 8. The appendices present a detailed comparison of our results
with the state-of-the-art methods, additional preliminaries, detailed derivations,
and auxiliary tables and graphs.
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2 Preliminaries

All logarithms are expressed in base 2 if not indicated otherwise. Vectors and
ring elements are indicated in bold. We choose the ring dimension N as a power
of two for efficiency reasons. We map the group of residue classes modulo p, Zp,
to the representative interval [0, p − 1] ∩ Z. Additional technical background is
provided in Appendix B.

2.1 LWE Encryption Scheme and Its Ring Variant

We recall the definition of LWE ciphertexts [Reg09].
The LWE cryptosystem [Reg09] is parametrized by a plaintext modulus p,

ciphertext modulus q, and secret dimension n. The LWE encryption of a message
m ∈ Zp under (secret) key s ∈ Zn is a vector (a, b) ∈ Zn+1

q such that

b = −⟨a, s⟩+ (q/p) ·m+ e (mod q)

where e is a small error term, |e|< q/(2p). The message m is recovered by first
computing the approximate LWE decryption function

Decs(a, b) = b+ ⟨a, s⟩ (mod q) = (q/p) ·m+ e

and then rounding the result to the closest multiple of (q/p).
The ciphertext modulus of LWE ciphertexts can be changed (at the cost of a

small additional noise proportional to the secret key size) simply by scaling and
rounding its entries, which is called modulus switching.

The BFV-style RLWE encryption (LWE scheme extension to rings) [Bra12,
FV12] can be written as (b,a) ∈ R2

q such that a ← Rq and b = −a · s + e +

(q/p) ·m, where R = Z[X]/
〈
XN + 1

〉
, s ← χkey, e ← χerr, m ∈ Rp, and χkey

and χerr are small distributions over R. Note that m in our case is encoded in
polynomial coefficients, and, hence, we also refer to m as m(X) in the paper.
The decryption in this case is computed as

⌊
p · (b+ a · s) /q

⌉
p
.

The conversion of many LWE ciphertexts to a single RLWE ciphertext is
known as (base) ring packing and requires a (plaintext matrix)-(ciphertext vec-
tor) multiplication; see [BCK+23] for state-of-the-art algorithms. The conversion
from one RLWE to many LWE ciphertexts, known as sample extraction, is much
simpler and faster; it is performed by selecting and reordering polynomial coef-
ficients [CGGI16].

2.2 CKKS Encryption Scheme

The original CKKS scheme is formulated for cyclotomic polynomial rings R =
Z[X]/

〈
XN + 1

〉
, where N is a ring dimension that is a power of two. With

a scaling factor ∆ = 2ρ and a zero-level modulus q′0 = 2ρ0 (usually q′0 is
larger than ∆ for correct decryption), a modulus at the level ℓ is typically
defined as Q′

ℓ = 2ρ0+ℓ·ρ = q′0 · ∆ℓ, i.e., the scheme works with residue rings

13



RQ′
ℓ
= R/Q′

ℓR = ZQ′
ℓ
[X]/

〈
XN + 1

〉
. We denote M = 2N , and by Z∗

M =
{x ∈ ZM : gcd(x,M) = 1} the unit multiplication group in ZM . The canonical
embedding τ : S → CN is defined as τ (a) =

(
a(ζj)

)
j∈Z∗

M

for S = R[X]/
〈
XN + 1

〉
and ζ = exp (2πi/M). Its ℓ∞-norm is called the canonical embedding norm and
is denoted as ∥a∥can = ∥τ (a)∥∞. For a power-of-two n ≤ N/2, we also define
mappings τ ′n : S → Cn used to encode and decode a vector of length n in the
CKKS scheme [CKKS17, CHK+18]. The setup, key generation, encryption, de-
cryption, encoding and decoding algorithms [CKKS17, HK20] are given below,
and the evaluation-related algorithms are described in Appendix B.3:

– Setup(1λ). For an integer L ≥ 0 corresponding to the largest ciphertext
modulus level, given the security parameter λ, output the ring dimension N .
Set the small distributions χkey, χerr, and χenc over R for secret, error, and
encryption, respectively.

– KeyGen. Sample a secret s← χkey, a random a→ RQ′
L
, and error e← χerr.

Set the secret key sk ← (1, s) and public key pk ← (b,a) ∈ R2
Q′

L
, where

b← −a · s+ e (mod Q′
L).

– Encpk(m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output ct ←
v · pk+ (m+ e0, e1) (mod Q′

L).
– Decsk(ct). For ct = (c0, c1) ∈ R2

Q′
ℓ
, output m̃ = c0 + c1 · s (mod Q′

ℓ).

– Encode(x,∆). For x ∈ Cn, output the polynomial m←
⌈
τ

′−1
n (∆ · x)

⌋
∈ R.

– Decode(m, ∆). For plaintext m ∈ R, output the vector x← τ ′n(m/∆) ∈ Cn.

Our CKKS implementation utilizes the Chinese Remainder Theorem (re-
ferred to as integer CRT) representation to break multi-precision integers in ZQ′

into vectors of smaller integers to perform operations efficiently using native (64-
bit) integer types. The integer CRT representation is also often referred to as
the Residue-Number-System (RNS) representation. We use a zero level modulus
q′0 and a chain of same-size prime moduli q′1, q′2, . . . , q′L satisfying q′i ≡ 1 mod 2N

for i = 1, . . . , L. Here, the modulus Q′
ℓ is computed as

∏ℓ
i=0 q

′
i. All polynomial

multiplications are performed on ring elements in the polynomial CRT represen-
tation where all integer components are represented in the integer CRT basis.

2.3 CKKS Bootstrapping

The CKKS bootstrapping procedure typically assumes that the input ciphertext
ct is at level L = 0, i.e., Q′ = q′0. In other words, no more homomorphic multi-
plications are allowed. The goal is to raise the ciphertext to a level L0 so that
depth-L0 computations could be performed on it.

The high-level procedure includes the following steps [CHK+18]:

1. ct1 ← ModRaise(ct, Q′
L): Raise the modulus from q′0 to Q′

L =
∏L

i=0 q
′
i,

where L > L0 as the bootstrapping procedure consumes some levels, namely
Lb = L − L0 levels. The effect of this operation is that the new ciphertext
corresponds to a decryption of t(X) = m(X)+ q′0 · I(X), where |I|< K. The
goal of the next steps is remove the term q′0 · I(X).
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2. ct2 ← CtS(ct1): Encode t(X) in the plaintext slots by homomorphically
running τ

′−1(t). As a result, we get an encryption of a plaintext vector
where each coefficient ti is now stored in a separate slot. This allows one to
apply integer-level modular reductions to all plaintext slots.

3. ct3 ← EvalMod(ct2): Approximate [ti]q′0 ≈
q′0
2π sin

(
2πti
q′0

)
, where q′0 ≫ mi to

achieve an adequate accuracy. The sine wave is then interpolated using a
polynomial, which can be efficiently evaluated using homomorphic encryp-
tion. As a result, we get [ti]q′0 ≈ mi. Denote the result as m̂i.

4. ct4 ← StC(ct3): Decode m̂i back to the coefficient representation to yield
m̂(X) by running τ ′ homomorphically. The goal is to minimize the difference
between m(X) and m̂(X).

The total depth Lb needed for bootstrapping is Lenc + Lmod + Ldec, where
Lenc and Ldec are the levels needed for encoding and decoding, respectively, and
Lmod is the depth needed for approximate modular reduction.

3 Analytical Expressions for Arbitrary Function
Evaluation

In this section we derive all intermediate and final analytical expressions for
single- and multi-precision function evaluation to be used with CKKS.

3.1 Trigonometric Hermite Interpolation

To evaluate an arbitrary function f : Zp → Zp, we aim to construct a mapping
that approximates f at p equidistant points of interest. Specifically, we seek a
polynomial approximation for the mapping m

p + I 7→ f(m), where m ∈ Zp and
I is an integer value.

As our goal is to approximate a periodic function (with period 1), it is natural
to use a trigonometric interpolation in the form of a (truncated) Fourier series

R (x) = a0 +

p−1∑
k=1

(ak cos(2πkx) + bk sin(2πkx)) , (1)

for fractional x = j
p , with j ∈ [p], and where the coefficients {ak}p−1

k=0 and {bk}p−1
k=1

are to be determined.
The messages encrypted in RLWE ciphertexts are not exact and contain

small noise, which gets removed via rounding in normal RLWE decryption. When
we use CKKS to perform homomorphic decryption of the messages, the noise
is not automatically removed and actually increases due to the homomorphic
computations performed as part of CKKS bootstrapping. To reduce the noise,
we require that first derivatives of the trigonometric interpolation be set to zero
at all points of interest, which results in quadratic reduction of the noise. In this
case, the first-order error terms in the Taylor series expansions at all points of
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interest vanish. In [BCKS24], for binary bootstrapping, a quadratic reduction of
noise was also chosen.

Hence, our interpolation problem reduces to finding a trigonometric polyno-
mial R(x) that satisfies the conditions

R

(
k

p

)
= f(k), R′

(
k

p

)
= 0, where k ∈ [p]. (2)

The problem (1) with conditions (2) represents a linear system of equations
that can be numerically solved for coefficients {ak}p−1

k=0 and {bk}p−1
k=1 using a stan-

dard linear solver. However, it is more convenient both for analysis and practical
use to find analytical expressions for the coefficients. A trigonometric polynomial
R(x) satisfying conditions (2) is known in trigonometric interpolation theory as
a special case of the first-order trigonometric Hermite interpolation [SV65].

Theorem 1. The first-order trigonometric Hermite interpolation polynomial
satisfying the constraints (2) exists, is unique and has the following expression:

R (x) = a0 +

p−1∑
k=1

(ak cos(2πkx) + bk sin(2πkx)) ,

a0 =
1

p

p−1∑
l=0

f(l), ak =
2(p− k)

p2

p−1∑
l=0

f(l) · cos
(
2πlk

p

)
,

bk =
2(p− k)

p2

p−1∑
l=0

f(l) · sin
(
2πlk

p

)
.

(3)

Proof. For the general case of a trigonometric Hermite interpolation (0, M),
i.e., where the conditions for the function itself (zeroth derivative) and M -th
derivative are given, Sharma and Varma derived an explicit form of R(x) and
established its uniqueness; see Theorem 1 in [SV65] for the details and proof.

Our case corresponds to M = 1, and the expression for R is written as

R(x) =

p−1∑
l=0

f(l) ·U
(
2π

(
x− l

p

))
with U(x) =

1

p

(
1 +

2

p

p−1∑
k=1

(p− k) cos(kx)

)
.

Substituting U(x) into R(x), the expression for R can be rewritten as

R(x) =
1

p

p−1∑
l=0

f(l) +
2

p2

p−1∑
l=0

p−1∑
k=1

f(l)(p− k) cos

(
2πk

(
x− l

p

))
.

By applying the cosine angle subtraction identity and rearranging the order of
summation, the second term can be rewritten as

p−1∑
k=1

2(p− k)

p2

p−1∑
l=0

f(l)

(
cos(2πkx) cos

(
2πlk

p

)
+ sin(2πkx) sin

(
2πlk

p

))
.

Matching the transformed expression for R(x) with equation (1) yields the sought
expressions for the coefficients written in the theorem statement. ⊓⊔
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3.2 FHE-Friendly Expressions using Complex Exponential Function

The Fourier series given by the expression (3) is not convenient for FHE evalu-
ation as it contains series of both sines and cosines, which have to be separately
evaluated (typically through polynomial approximations). A more FHE-friendly
expression can be derived using the complex exponential function, leading to the
polynomial evaluation over vectors of complex numbers.

The high-level idea is to extend the expression (3.1) from cosines to the corre-
sponding complex exponential functions, perform the evaluation in the complex
domain, and then extract the real part of the result.

Corollary 1. The first-order trigonometric Hermite interpolation polynomial
R(x) satisfying the constraints (2) can be expressed as the real part of complex
polynomial T (x) given by

T (x) = α0+

p−1∑
k=1

αk · e2πikx,

α0 =
1

p

p−1∑
l=0

f(l), αk =
2(p− k)

p2

p−1∑
l=0

f(l) · e−2πkli/p.

(4)

Proof. The complex generalization of (3.1) can be written as

T (x) =

p−1∑
l=0

f(l) ·W
(
2π

(
x− l

p

))
with W (x) =

1

p
+

2

p2

p−1∑
k=1

(p− k)eikx.

Substituting W (x) into T (x) yields

T (x) =
1

p

p−1∑
l=0

f(l) +
2

p2

p−1∑
k=1

p−1∑
l=0

f(l)(p− k) · e−2πkli/p · e2πikx.

By writing T (x) = α0+
∑p−1

k=1 αk ·e2πikx and identifying the coefficients {αk}p−1
k=0,

we obtain the expressions in the theorem statement.
The sought expression R(x) is the real part of T (x), R(x) = Re(T (x)), which

is equivalent to (1), (3). ⊓⊔

Hence, we obtain a power series of degree p− 1 for E(x) := e2πix, which can
be efficiently evaluated using the Paterson-Stockmeyer algorithm [PS73].

To support multi-precision evaluation, we also derived analytical expressions
for modular reduction and step functions (see Appendix C.1 for further insights).
For S =

{
2i+ 1 : i ∈ [p2 ]

}
, it holds that

Rmodp (x) =
p− 1

2
+

1

p

p−1∑
k=1

(p− k)

(
−1 + i cot

(
πk

p

))
E(x)k, (5)

Rstepp (x) =
p

4
+

1

p

∑
k∈S

(p− k)

(
1− i cot

(
πk

p

))
E(x)k. (6)
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3.3 Higher-Order Trigonometric Hermite Interpolations

So far, we have focused on the first-order trigonometric Hermite interpolation
R(x) with constraints (2), achieving a quadratic noise reduction. For additional
noise reduction, a second-order or even third-order trigonometric Hermite inter-
polation can be used. We derive here expressions for the second- and third-order
trigonometric Hermite interpolations, and include the proofs in Appendix C.2.

For the second-order interpolation R2(x), the constraints are written as

R2

(
k

p

)
= f(k), R′

2

(
k

p

)
= 0, R′′

2

(
k

p

)
= 0, where k ∈ [p]. (7)

Theorem 2. The second-order trigonometric Hermite interpolation polynomial
R2(x) satisfying the constraints (7) exists, is unique, and can be expressed as the
real part of complex polynomial T2(x), for E(x) := e2πix:

T2(x) = α0 +

p−1∑
v=1

αv · E(x)v +

⌊p/2⌋∑
k=1

βkE(x)k − δk
2
E(x)p+k − θk

2
E(x)p−k,

(8)

βk = ck ·
p−1∑
l=0

f(l) · ek, δk = ck ·
p−1∑
l=0

f(l) · ep+k, θk = ck ·
p−1∑
l=0

f(l) · ep−k,

where the coefficients are as follows: αv are the same as in the first-order ex-
pression (4) in Theorem 1; ck := (2− γp,k)k(p− k)/p3; ek := e−2πkli/p; γp,k = 1
if p is even and k = p/2, while γp,k = 0 otherwise.

It is easy to see that for the second-order trigonometric Hermite interpolation,
one needs to evaluate a power series of degree 3p

2 for E(x). In other words,
the computational cost of going from quadratic to cubic noise reduction is to
increase the degree of the polynomial evaluated using the Patterson-Stockmeyer
algorithm from p− 1 to 3p

2 .
For the third-order interpolation R3(x), the constraints are written as

R3

(
k

p

)
= f(k), R′

3

(
k

p

)
= 0, R′′

3

(
k

p

)
= 0, R′′′

3

(
k

p

)
= 0, where k ∈ [p]. (9)

Theorem 3. The third-order trigonometric Hermite interpolation polynomial
R3(x) satisfying the constraints (9) exists, is unique, and can be expressed as
the real part of complex polynomial T3(x), for E(x) := e2πix:

T3(x) = α0 +

p−1∑
k=1

(αk + βk) · E(x)k − δk
2
E(x)p+k − θk

2
E(x)p−k, (10)

βk = ck ·
p−1∑
l=0

f(l) · ek, δk = ck ·
p−1∑
l=0

f(l) · ep+k, θk = ck ·
p−1∑
l=0

f(l) · ep−k,

where the coefficients are as follows: αk are the same as in the first-order ex-
pression (4) in Theorem 1; ck := 2k(p− k)(2p− k)/(3p4); ek := e−2πkli/p.

It is easy to check that T3(x) is a power series of degree 2p− 1.
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3.4 Polynomial Hermite Interpolation with Noise Cleaning

When evaluating the function f separately from the bootstrapping process, we
can use polynomial Hermite interpolation to approximate f at points {xk}pk=0.
In this method, we encode the message in CKKS in its value representation
(not in coefficient format and not scaled by p) and apply polynomial Hermite
interpolation to evaluate f homomorphically.

Polynomial Hermite interpolation constructs a polynomial that satisfies func-
tion values at a set of interpolation points. To reduce the noise, we also require
that the first derivatives be set to zero at the set of interpolation points. Specif-
ically, for first-order interpolation, given the conditions:

R̄ (xk) = f (xk) , R̄′ (xk) = 0, k = 0, 1, . . . , p− 1, (11)

Hermite polynomial interpolation generates a polynomial R̄(x) of degree 2p− 1
that passes through the points x = xk with zero-valued first derivatives at these
points. The interpolation polynomial R̄(x) can be expressed as:

R̄(x) =

p−1∑
k=0

[
(1− 2(x− xk)ℓ

′
k (xk)) ℓk(x)

2
]
f(xk), (12)

where ℓk(x) =
∏p−1

j=0,j ̸=k(x− xj)/(xk − xj) is the Lagrange basis polynomial.
Similar to Section 3.3, we can achieve better noise cleaning, by extend-

ing polynomial Hermite interpolation to higher-order derivatives. For instance,
second-order Hermite polynomial interpolation includes constraints on the func-
tion values, first derivatives, and second derivatives:

R̄ (xk) = f (xk) , R̄′ (xk) = 0, R̄′′ (xk) = 0, (13)

where k ∈ [p]. This leads to a polynomial R̄(x) of degree 3p − 1. By choosing
the order of the polynomial Hermite interpolation appropriately, we can balance
between noise reduction and computational efficiency.

Although not explicitly stated, several studies implicitly employ polynomial
Hermite interpolation techniques for noise cleaning. Papers such as [CKK20,
DMPS24] utilize Hermite interpolation R̄ with p = 2 and f(x) = x at the points
−1 and 1 or 0 and 1. These works apply different orders of interpolation to
construct their respective polynomials fi (and hi in [DMPS24]), which are sub-
sequently used to reduce noise in ciphertexts. Similarly, [CKKL24] adopts Her-
mite interpolation R̄ of order one for power-of-two values of p, specifically using
f(x) = x at the roots of unity e2πik/p for k = 0, 1, . . . , p− 1. These applications
demonstrate that Hermite interpolation serves as the underlying mechanism for
noise reduction, even when not explicitly mentioned by the authors, and is a
valuable mechanism in approximate homomorphic computations.

We include a comparison between evaluating an LUT using functional CKKS
bootstrapping via trigonometric Hermite interpolation and evaluating an LUT
using CKKS bootstrapping and leveled computation using polynomial Hermite
interpolation in Appendix A.3.
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4 Amortized Functional Bootstrapping

We use m ∈ Zw to express a vector of input integer messages, m(X) ∈ R for the
polynomial with vector of coefficients m (we will use m and m(X) interchange-
ably), and τ(m) for the slot encoding (canonical embedding) of m. Assume ct is
an RLWE ciphertext encrypting m (ct could also be obtained by packing multi-
ple LWE ciphertexts, each encrypting an element of m). Let f(x) be a function
we want to homomorphically evaluate on a ciphertext encrypting x ∈ Zp, for
an arbitrary p. Our goal is to build an amortized version of the DM/CGGI
functional bootstrapping, for ciphertexts ct satisfying ⟨ct, sk⟩ = ∆m

p + e, where
m ∈ Zw

p , with w being the number of integers bootstrapped at once.
We use the CKKS bootstrapping method as the foundation because it is

currently the most efficient amortized bootstrapping method across all FHE
schemes. The core idea is to remove the overflows by evaluating a polynomial ap-
proximating modular reduction over the encoded raised ciphertext, which keeps
the scaled message as is but removes the scaled overflows. Since in CKKS we
can scale a message m ∈ Z to satisfy m ≈ sin(m), the modular reduction ap-
proximation for modulus q′0 is [m+ q′0I]q′0 = [m]q′0 ≈

q′0
2π sin( 2πmq′0

).
Applying modulus raising creates overflows in the coefficient domain. Mov-

ing to the slots domain allows us to evaluate the polynomial approximating the
trigonometric function (corresponding to mod 1) and remove the overflows. In
the “standard” CKKS bootstrapping case discussed above, the evaluation of the
approximation polynomial leaves the message in place, regardless of its encod-
ing, since the message is scaled down (≪ 1). However, in the functional CKKS
bootstrapping case, we also want to evaluate an interpolation polynomial that
applies to the message. Therefore, when we apply the polynomial evaluation, the
message needs to also be encoded in slots, the same way as the overflows.

Since in our case the input ciphertext is in RLWE form, the message is already
encoded in coefficients. Therefore, the first step in the functional bootstrapping
is to apply ModRaise, so both the message and overflows are coefficient-encoded.
Then, we apply the homomorphic encoding CtS, which brings both the message
and the overflows in the slots domain, ready for the polynomial evaluation as the
next step. Note that for full packing, i.e., to bootstrap N values in the coefficients,
we have to use two CKKS ciphertexts (one representing the real part and one
the imaginary part, obtained from conjugating the result of the CtS transform)
and run the polynomial evaluation on both, then combine them back into one
ciphertext. Finally, to return to the RLWE coefficient encoding, we run the
homomorphic decoding StC. In other words, the same bootstrapping blueprint as
described in Section 2.3 can be used, except for a different polynomial evaluation,
which also does function evaluation in this case.

We outline the algorithm for evaluating the functional bootstrapping over
ct for an LUT in Algorithm 1. Note that we do not require that the input and
output RLWE ciphertexts have the same ciphertext and plaintext moduli. If they
do have the same parameters, then some adjustment operations can be avoided.
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Algorithm 1 Amortized functional bootstrapping for an RLWE ciphertext
Public parameters:
– q: input RLWE ciphertext modulus;
– q′0: CKKS ciphertext modulus, prime, close to q; ▷ q′i>0 can also be used
– Q′

L: raised CKKS ciphertext modulus (used during bootstrapping);
– ∆: CKKS scaling factor;
– Q: output ciphertext modulus;
– P : output plaintext modulus;
– p: input RLWE plaintext modulus;
– Q′: CKKS ciphertext modulus after bootstrapping;
– LUT: coefficients of R(x) for the look-up table evaluation.

1: procedure FuncBTq′0,Q
′
L
,∆(ct ∈ R2

q, LUT)
2: ct1 ← ModSwitch(ct, q′0) ▷ Switch ct from q to q′0. The scaling of the message

becomes q′0
p

.
3: ct2 ← ∆

q′0
ct1 ▷ Adjust the scaling factor such that we obtain a CKKS

ciphertext encoding ∆m(X)
p

mod q′0.
4: ct3 ← ModRaise(ct2, Q

′
L) ▷ Encoded vector becomes ∆m(X)

p
+ q′0I(X) mod Q′

L

5: ct4 ← CtS(ct3) ▷ Homomorphic encoding operation, the encoded vector
becomes ∆ τ(m)

p
+ q′0τ(I) mod Q′′, for Q′′ being the ciphertext modulus after the

levels consumed by CtS.
6: ct5 ← EvalLUT(ct4, LUT). ▷ Homomorphically evaluate the trigonometric

interpolation polynomial LUT. The result will encode ∆τ(m′) mod Q′, where m′

are the coefficients corresponding to f(m).
7: ct6 ← StC(ct5) ▷ Homomorphic decoding operation with an adjusting factor of

Q′/(∆P ), the encoded vector becomes Q′ m′(X)
P

mod Q′

8: ct′ ← ModSwitch(ct6, Q) ▷ Switch ct6 from Q′ to Q. The RLWE ciphertext
encodes Q

P
m′(X).

9: return ct′

Adjusting the scaling factor in line 3 of Algorithm 1 may require another
level. The homomorphic encoding CtS and decoding StC can be implemented
either as linear transforms consuming a single level each, or using a collapsed
FFT-like approach [CCS19], consuming multiple levels each. The latter has the
advantage of a substantial decrease in both computational complexity and mem-
ory requirement (number of evaluation keys and stored plaintexts).

We use the polynomial (4) for the first-order trigonometric Hermite inter-
polation for EvalLUT. For the second-order and third-order interpolations, we
use the polynomials (8) and (10), respectively. In EvalLUT, we first evaluate
E′(x) = e2πxi/2

r

on a subinterval of [−1/2r, 1/2r] using the Chebyshev series
interpolation, then use the double-angle formula to increase the interval up to
[-1,1]. After that, we evaluate the power series in terms of powers of E′(x). Both
the Chebyshev and power series are evaluated using the Paterson-Stockmeyer
algorithm [PS73, CCS19]. Note that these polynomials (in their general form)
have complex coefficients. The last step of EvalLUT, which consists of taking the
real part of the expression (4), is done via a complex conjugation.
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Remark 1. For p = 2, the first-order Hermite trigonometric interpolation can
be written as R(x) = 1

2 (f(0) + f(1)) + 1
2 (f(0)− f(1)) cos(2πx). This allows a

cheaper evaluation of cos(2πx) instead of E(x). Furthermore, using the double-
angle formula, we obtain R(x) = f(1)+(f(0)− f(1)) cos2(πx), i.e., the coefficient
of cos2(πx) is integral, thus saving a level of computation. For higher orders,
cos(6πx) is required and the computation using E(x) is more convenient.

Remark 2. We can achieve multi-value bootstrapping [CIM19], i.e., evaluating
multiple LUTs over the same inputs, at a lower cost than independently evalu-
ating each LUT. The costliest part, computing all e2πjxi for j ∈ [p] in expres-
sion (4), can be done once for many LUTs operating on the same ciphertext.
While the cost of remaining operations, scalar computations in the polynomial
evaluation algorithms and evaluation of StC, is not negligible (on the order of
10% as compared to full bootstrapping), a significant reduction in the amortized
runtime complexity can be achieved via this optimization.

4.1 Correctness and Noise Analysis

The correctness of the procedure depicted in Algorithm 1 follows from the cor-
rectness of the regular CKKS bootstrapping (see Section 2.3) and the correctness
of trigonometric interpolations because we use EvalLUT instead of EvalMod in
our functional bootstrapping algorithm. We focus here only on EvalLUT as the
correctness of other steps has already been studied elsewhere [CHK+18, CCS19].

Theorem 4. For an M -th order trigonometric Hermite interpolation of f(x)
that satisfies the constraints

R

(
k

p

)
= f(k), R′

(
k

p

)
= 0, . . . , R(M)

(
k

p

)
= 0, (14)

where k ∈ [p], and a unique trigonometric Hermite interpolation of order M
exists, the output error ∥ϵout∥∞ after the polynomial evaluation is bounded by

∥ϵout∥∞ = max
k=0,...,p−1

∣∣∣∣R(k

p
+ ϵin

)
− f (k)

∣∣∣∣ ≤ CM · ∥ϵin∥M+1
∞ , (15)

where CM is a positive constant and |ϵin|< 1
2p .

Proof. If a unique interpolation R(x) satisfying the constraints (14) exists, then
we can apply the Taylor’s theorem with the mean-value form of the remainder
(R is infinitely differentiable). Concretely, we have for any k and any small ϵin:∣∣∣∣R(k

p
+ ϵin

)
− f(k)

∣∣∣∣ =
∣∣∣∣∣

∞∑
i=M+1

R(i)(kp )

i!
(ϵin)

i

∣∣∣∣∣ ≤ max
k
p−|ϵin|≤x

x≤ k
p+|ϵin|

∣∣R(M+1)(x)
∣∣

(M + 1)!
|ϵin|M+1.

Then, the constant from the theorem statement can be obtained as

CM := max
0≤k≤p−1

k
p−|ϵin|≤x≤ k

p+|ϵin|

∣∣R(M+1)(x)
∣∣

(M + 1)!
. □
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Corollary 2. For some positive constants B1, B2, B3 = o
(
9
4p
)
, it holds that:

C1 ≤
π2B1

3
(p− 1)p(2p− 1), C2 ≤

π3B2

48
p2(3p+ 2)2

C3 ≤
2π4B3

45
p(2p− 1)(4p− 1)(12p2 − 6p− 1).

(16)

Above, we assumed that f : Zp → Zp. If f has a smaller codomain, the bounds
can be tighter. The proof is given in Appendix C.3.

To further understand the noise growth, we focused on functions with large
jumps at discontinuity points, such as modular reduction and S-box, a highly
discontinuous function used in AES transciphering. We observed experimentally
that the empirical bound for the constants CM is below (2π)M+1pM+1, i.e.,
O(BMpM ). This implies that our theoretical bound O(BMpM+1) may be too
loose even for highly discontinuous functions.

In view of the above observation, we attempted to derive a tighter theoretical
bound for arbitrary functions using known relations from approximation theory.
Our first-order interpolation polynomial R(x) for a given p is known as the
Jackson polynomial of order p [Zyg03] (Vol II, p. 21). A nice property of the
Jackson polynomial is that its values are bounded in interval [0, p − 1] because
the polynomial is expressed as a convolution (either series or integral) over the

Fejer kernel U(x), which can be written in closed form as 1
p2

(
sin nx

2

sin x
2

)2
[Var69]

(Eq. 2.8). As the Fejer kernel is non-negative, a tight bound for the Jackson
polynomial can be derived. However, as soon as we take the second derivative
of the Fejer kernel (necessary for deriving the constant), we get a trigonometric
series with both positive and negative terms. If we replace each term of the series
with its absolute value (so we could then apply e.g., Abel’s inequality), the bound
is increased by O(p), which ultimately leads to the same loose theoretical bounds
as in (16). As a result, in our work we use an empirical approach, and leave the
derivation of a tighter theoretical bound as an interesting research problem for
researchers specializing in approximation theory.

Next, we describe our empirical approach for the case of modular reduction,
both to show how to examine errors in practice and to build an intuition for
choosing the interpolation order for a specific application. Figure 2 illustrates
the noise reduction for different interpolation orders for the modular reduction
function modp at p = 256. Here, we initially ignore the effect of CKKS approx-
imation error (we discuss it later). To find ∥ϵout∥∞, we analytically compute
the first non-zero Taylor series coefficients at each point for each interpolation
order, and then use the infinity norm over all points for a given interpolation
as the value of ∥ϵout∥∞ (note that the effect of higher-order Taylor series terms
is negligible for the selected range of ∥ϵin∥∞). The line ∥ϵout∥∞ /∥ϵin∥∞ = 1 is
of special interest, as it indicates the points at which we start observing noise
reduction. Figure 2 implies that the third-order interpolation starts reducing the
error when the gap between the error and message reaches roughly 6.5 bits (note
that the first 8 bits are used for the message) while the first-order requires the
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Fig. 2. Noise reduction for different interpolation orders when evaluating the modular
reduction function at p = 256. ϵin is the input deviation from the interpolation points
and ϵout is the output error after functional bootstrapping. The maximum error that
can provide correctness is 1

2p
= 2−9. The line ∥ϵout∥∞ /∥ϵin∥∞ = 1 corresponds to zero

noise reduction (anything above this line corresponds to noise increase). The zero noise
reduction points in terms of log ∥ϵin∥∞ are -24.7, -17.1, and -14.5 for the first, second,
and third orders, respectively.

gap to be at least 16.7 bits. We performed the same analysis for the S-box func-
tion. The results summarized in Appendix E are very similar to the case modp,
with points of zero noise reduction being within 1 bit of the values for modp.

In practice, we need to also take into account the CKKS approximation error,
which itself is composed of multiple different approximation errors (see the in-
troduction of [KPP22] for an overview of these errors). These errors also depend
on how the rescaling operation is performed for various RNS variants. The main
parameter that can compensate for the approximation error is the CKKS scaling
factor 2ρ. The larger 2ρ is, the larger is the gap between the message and error
that can be supported by CKKS computations in functional bootstrapping. The
analysis illustrated in Figure 2 assumes that the CKKS scaling factor there is
large enough for the CKKS approximation error to be ignored. When the CKKS
approximation error is significantly large, its effect on noise needs to be consid-
ered. The analysis of Table 7 in [KPP22] implies that the approximation error
in nontrivial polynomial CKKS computations is at least 20 bits (it is even larger
for bootstrapping because of higher polynomial degrees). This suggests that the
minimum CKKS scaling factor that can achieve correctness even for p = 2 should
be of the order of 30 bits (which is supported by our experimental results pre-
sented in Table 1; note that minimum approximation error in Table 7 of [KPP22]
for the CKKS RNS variant we used in our implementation is 25 bits). Another
important consideration is whether a single LUT needs to be computed or we
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deal with a series of LUTs (with potentially other computations in between). In
the case of a series of LUTs, ∥ϵin∥∞ before the second functional bootstrapping
can be much larger than before the first functional bootstrapping as it includes
the CKKS approximation error from the first functional bootstrapping.

Now we come to the main practical question. What interpolation order should
one use for a given application? Theoretically speaking, the first-order interpola-
tion can always work as it achieves noise reduction as long as there is a sufficient
gap between the message and error, i.e., the CKKS scaling factor is large enough.
However, when the CKKS scaling factor needs to be restricted, e.g., in order to
use a lower ring dimension or to fit into a 64-bit machine word size, a higher
interpolation order should be used in scenarios with a series of LUTs or when
some computations are performed before a single LUT.5 There is no benefit in
higher orders if a single LUT over a fresh ciphertext (where ∥ϵin∥∞ is very small)
is performed before decrypting, as only the noise of functional bootstrapping op-
erations determines the minimum CKKS scaling factor (and the noise is higher
for higher orders). Figure 2 implies that the second-order interpolation should be
(practically) sufficient in cases requiring higher-order interpolations as the differ-
ence in bits between the second and third orders is much smaller than between
the first and second orders. A similar observation is expected for higher orders
(which is why we did not consider a fourth-order interpolation in our work).

Note that in our proposed hybrid scheme, the decryption happens in BFV,
i.e., the noise is removed during decryption via rounding. In scenarios where the
IND-CPAD security model needs to be satisfied, the decryption failure probabil-
ity must be made negligible [LM21, ABMP24]. To do so, the parameters have to
be chosen using the accumulated noise from BFV encryption, modulus switching
when switching to CKKS, CKKS approximation errors, the modulus switching
when going back to BFV, and rounding during decryption.

4.2 Complexity Analysis

Similar to the case of regular CKKS bootstrapping, the total depth Lfb needed
for functional bootstrapping is Lenc+LLUT +Ldec + 1 (for extra scaling), where
Lenc and Ldec are the levels needed for encoding and decoding, respectively, and
LLUT is the depth needed for evaluating the trigonometric Hermite interpolation.
For the first-order interpolation, the number of levels consumed by EvalLUT is
levels-for-evaluating(E(x)) + log(p) + 1.6 An extra level is added for the second-
and third-order interpolations.

The bottleneck operation in most cases is EvalLUT as it requires a large num-
ber of homomorphic multiplications. Its complexity depends on the Paterson-
Stockmeyer algorithm evaluation which is used both for Chebyshev and power

5 This discussion is for general LUTs; for LUTs with small output space, first-order
interpolation followed by a cleaning polynomial [DMPS24] can be more efficient.

6 Higher precision requires a better approximation. In practice, for p > 210, we have
to increase the degree (and depth) of the Chebyshev series interpolation for E(x).
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series. The Paterson-Stockmeyer algorithm requires
⌈√

2d+ log d
⌉
+O(1) homo-

morphic multiplications to evaluate a degree-d polynomial [PS73, CCS19]. The
power series evaluation for the first-order trigonometric Hermite interpolation
deals with a degree-(p− 1) polynomial, implying that adding another bit of pre-
cision to plaintext modulus p is expected to increase the power series evaluation
roughly by a

√
2 factor. In a practical setting, the effect is typically smaller as

other operations in EvalLUT and Algorithm 1 have a much smaller increase in
complexity because they do not directly depend on p.

For second- and third-order interpolations, the degree increases to 3p/2 and
2p− 1, respectively, which implies that the complexity increase from first-order
to third-order interpolation should not typically be more than a factor of

√
2.

This also means that the computational cost of reducing the noise via the use
of the third-order interpolation (instead of the first-order one) is comparable in
complexity to the cost of adding an extra bit to the plaintext space.

5 Amortized Multi-Precision Function Evaluation

The polynomial degree needed for amortized functional bootstrapping using
trigonometric Hermite interpolation is proportional to plaintext modulus p. This
implies that higher values of p increase the complexity both due to the increased
cost of Paterson-Stockmeyer polynomial evaluation (proportional to √p) and
raised parameters (every doubling of p adds one more CKKS level and slightly
increases the scaling factor). Hence, for larger values of p a multi-precision ap-
proach based on the blueprint of [GBA21, LMP22] can be more efficient, at least
for some classes of functions. An important building block for multi-precision
function evaluation is the digit extraction procedure, which can be written in
terms of the floor function. In this section, we first describe a procedure for evalu-
ating the floor function, then, show how it can be applied for the multi-precision
sign evaluation of messages in Zw

P , and, finally, we discuss the multi-precision
evaluation of an arbitrary function for messages in Zw

P . Here, we focus on the case
of first-order trigonometric Hermite interpolation, noting that all these results
easily extend to the higher-order interpolations.

5.1 Homomorphic Evaluation of Floor Function

For P and p the multi-precision and single-precision plaintext moduli, and Q and
q are the corresponding ciphertext moduli, the floor function for digit decompo-
sition we want to obtain is f(m) = m − (m mod p), where m ∈ ZP . The floor
function evaluation is based on Algorithm 1 for evaluating modp, where instead
of the general power series (4), one can use a simpler analytic expression (5).

The algorithm for the floor function is outlined in Algorithm 2 (same public
parameters as in Algorithm 1). The correctness of evaluating HomFloor follows
from the correctness of FuncBT. The complexity of evaluating HomFloor is the
same as for FuncBT because the power series (5) for Rmodp (x) has the same
polynomial degree as the general expression (4) for R(x), and the cost of homo-
morphic subtraction is negligible.
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Algorithm 2 Homomorphic floor evaluation for an RLWE ciphertext
1: procedure HomFloorp(ct ∈ R2

Q)
2: ct1 ← ct mod q ▷ Extract the RLWE digit encrypting a digit in Zw

p .
3: ct2 ← FuncBTq′,Q′

L
,∆(ct1, LUT (Rmodp (x))) ▷

Perform the functional bootstrapping corresponding to the modulo p function. The
returned ciphertext ct2 encodes Q

P
(m mod p).

4: return ct− ct2

5.2 Homomorphic Evaluation of Multi-Precision Sign Function

We use the blueprint from [LMP22] (included in Appendix B.2 Algorithm 5,
for DM/CGGI functional bootstrapping). The outline of the multi-precision
sign evaluation algorithm for an input RLWE ciphertext is presented in Al-
gorithm 3 (same public parameters as in Algorithm 1). The algorithm uses our
functional bootstrapping method for the modp function (inside HomFloor) and
step function evaluation. Note that in the last iteration of the sign algorithm,
where we want to extract the sign of the most significant digit, we use the un-
scaled step function 2

pRstepp (x), where Rstepp (x) is given by (6).

Correctness. The correctness of sign evaluation follows from the correctness of
HomFloor and FuncBT.

Complexity. The multi-precision sign evaluation for encrypted messages in Zw
P

requires ⌈logP/log p⌉ functional bootstrapping operations. The complexity of
evaluating the last functional bootstrapping invocation for step is slightly smaller
as the even terms in the series are zero.

Algorithm 3 Multi-precision sign evaluation for an RLWE ciphertext
1: procedure HomSign(ct ∈ R2

Q)
2: while Q > q do
3: ct1 ← HomFloorp(ct)
4: ct← ModSwitch(ct1, Q/p)
5: Q← Q/p, P ← P/p

return FuncBTq′,Q′
L
,∆

(
ct, LUT

(
2
p
Rstepp (x)

))

5.3 Homomorphic Evaluation of Multi-Precision Arbitrary Function

When the cost of directly computing EvalLUT for a large plaintext modulus
is high, one can use the multi-precision LUT evaluation approach proposed
in [GBA21]. The high-level idea is to decompose the RLWE ciphertexts into
digits and then perform (typically different) small-size LUTs against the en-
crypted digits. Two methods for evaluating multi-precision LUT evaluation are
available: tree-based and chain-based [GBA21]. The tree-based approach pro-
vides a general functionality, e.g., it can evaluate a random-looking LUT such as
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S-box [TCBS23], but has an exponential complexity. The chaining-based method
provides a smaller complexity but for special (more structured) LUTs, e.g., an
LUT for a parity function.

To support the multi-precision LUT evaluation using our CKKS-based method,
we devised a digit decomposition procedure. The main idea of homomorphic
digit decomposition is to decompose an RLWE ciphertext with a large plaintext
(ciphertext) modulus into a vector of RLWE ciphertexts with small plaintext
(ciphertext) moduli, corresponding to the digit size(s). The procedure is similar
to the sign evaluation in Algorithm 3, except that all intermediate encrypted
digits are kept and the last iteration (step function evaluation) is not performed.
The digit decomposition procedure is given in Algorithm 6 in Appendix D.

Tree-Based Evaluation of Large LUTs. We will focus here on the tree-
based functionality as it can support the evaluation of an arbitrary large LUT,
although at a higher cost. In the most general case, one needs d−1+d′

∑d−1
k=0 p

k

functional bootstrapping invocations to evaluate a message m in ZP represented
as
∑d−1

k=0 mkp
k [TCBS23], where d′ is the number of output digits in Zp. Here, the

term d− 1 refers to the digit decomposition and the rest accounts for small-size
LUTs. Following [GBA21], the small-size LUTs on the first level of tree (d′pd−1

LUTs) have plaintext coefficients and can be evaluated with our functional boot-
strapping described in Algorithm 1. The small-size LUTs on the following levels
i+ 1 have encrypted coefficients obtained as the result of the LUTs on level i.

Our method can be adapted to evaluating LUTs with encrypted coefficients
as well, by replacing the Paterson-Stockmeyer polynomial evaluation (which re-
quires long division of polynomials, i.e., division by encrypted coefficients) with
a version of the “baby-step-giant-step” polynomial evaluation algorithm (which
recursively evaluates smaller-degree polynomials with the same coefficients as in
the initial polynomial). For plaintext coefficients, the operation complexity of
the two polynomial evaluation algorithms is similar [HK20]; however, evaluat-
ing a degree-p polynomial with encrypted coefficients requires additional p − 1
ciphertext-ciphertext multiplications. Moreover, the recursion depth of the poly-
nomial should be chosen such that the results of LUT evaluation have a sufficient
number of RNS limbs, to support the use of the results as encrypted input coef-
ficients for further recursive evaluation.

In the case of DM/CGGI bootstrapping, the complexity can be decreased to
d−1+d′+d′

∑d−2
k=0 p

k bootstrapping invocations via the use of multi-value boot-
strapping where multiple small-size LUTs for the same ciphertext can be evalu-
ated at the cost of one bootstrapping operation [TCBS23]. Our LUT evaluation
algorithm can also take advantage of multi-value bootstrapping, see Remark 2.

6 Functional Bootstrapping for CKKS Ciphertexts

Here, we consider the input to the functional bootstrapping to be a CKKS
ciphertext, meaning the message is encoded via the inverse canonical embedding
and resides in the slots domain. We assume the input is a vector of integers
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m ∈ Zw
p that is encrypted in a CKKS ciphertext. One can modify the expressions

of R(x) obtained from (4), (8) and (10) to address the lack of p-scaling.

Recall the discussion in Section 4 about requiring both the message and
overflows to be in the slots domain in order to apply the polynomial evaluation
corresponding to the desired function. Therefore, we need to first apply the
homomorphic decoding StC to bring the message to the coefficients domain.
Only then we raise the modulus, creating the overflows. Afterwards, we run
the homomorphic encoding CtS, to prepare the ciphertext for the polynomial
evaluation, which is the next step.

An important optimization in this case is that the costly polynomial evalua-
tion is only performed on a single ciphertext, even in the case of full real CKKS
packing. For p = 2, one can do full complex packing, i.e., m ∈ CN/2, applying
an LUT separately over the real and imaginary parts of the input, but this does
not extend to larger p. For larger values of p, we deal with complex evaluations
which require evaluating the polynomials on two ciphertexts.

Given that the output of the functional bootstrapping remains in the CKKS
“approximate” form and can be subjected to further computations, additional
noise cleaning procedures may be employed. These can either take the form of
a higher-order trigonometric Hermite interpolation in the functional bootstrap-
ping or of a polynomial Hermite interpolation for the modulo p functionality, as
discussed in Section 3.4.

Algorithm 4 Amortized functional bootstrapping for a CKKS ciphertext
Public parameters:
– q′: CKKS ciphertext modulus, prime; ▷ q′ > q′i≥1 can also be used
– Q′

L: raised CKKS ciphertext modulus (used during bootstrapping);
– ∆: CKKS scaling factor;
– Q′: output CKKS ciphertext modulus after bootstrapping;
– LUT: coefficients of R(x) for the look-up table evaluation.

1: procedure FuncBT’q′,Q′
L
,∆(ct ∈ R2

q′ , LUT)
2: ct1 ← StC(ct) ▷ Homomorphic decoding operation and potential modulus

reduction, the encoded vector becomes ∆m(X) mod q′0
3: ct2 ← ModRaise(ct1, Q

′
L) ▷ Encoded vector becomes ∆m(X)+ q′0I(X) mod Q′

L

4: ct3 ← CtS(ct2) ▷ Homomorphic encoding operation, the encoded vector
becomes ∆τ(m) + q′0τ(I) mod Q′′, for Q′′ being the ciphertext modulus after the
levels consumed by CtS.

5: ct′ ← EvalLUT(ct3, LUT). ▷ Homomorphically evaluate the trigonometric
interpolation polynomial LUT. The result will encode ∆τ(m′) mod Q′, where m′

are the coefficients corresponding to f(m).
6: return ct′
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7 Implementation and Performance Evaluation

7.1 Parameter Selection and Implementation Details

For our experiments, we use the ring dimensions N of 215 and 216 to evaluate
LUTs for up to 9 bits. The smaller ring dimension provides a lower latency while
the larger ring dimension often results in better throughput. For larger LUTs, we
use the ring dimension of 217. We use full packing, in the sense that the input
RLWE ciphertext packs N integer inputs, and we make use of both real and
imaginary slots in the CKKS ciphertext.

We use the sparse secret key distribution with the Hamming weight of 192,
making sure the maximum CKKS modulus Q′

LP
′ does not exceed the threshold

for the 128-bit work factor. For N = 215, we use the threshold of 767 bits (using
Table 4 of [CP19] or Table 3 of [BMTH21]); for N = 216, we set the threshold to
1,553 (using Table 3 of [BMTH21]). For N = 217, we used a linear interpolation
fitting all values from Table 4 of [CP19] and 1,553 for N = 216 to estimate the
threshold as 3,104. It is also possible to use smaller sparse secrets before ModRaise
(as in [BCKS24]) or, on the opposite, uniform ternary secrets (as in [BMTH21]).
Note that the difference in throughput would not be significant: the number of
levels could either be reduced (by 1 or 2 in the case of small sparse secrets)
or increased (by up to 4 levels in the case of uniform ternary secrets). The
intermediate extra levels are typically computed using the double-angle formula
(just requiring a squaring for each level) and only the computation before the
expensive evaluation of the power series for e2πxi becomes slower due to a higher
number of RNS limbs. Our ballpark estimates suggest that the use of uniform
ternary secrets (instead of the Hamming weight of 192) should not decrease the
throughput of the FHE evaluation by more than 25% in all practical scenarios
(with this number becoming progressively smaller as p increases).

All reported times are obtained via single-threaded execution on a machine
with Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz and 64 GB of RAM, run-
ning Ubuntu 20.04 LTS, using OpenFHE v1.2.0 compiled with clang++ 12. For
the CKKS implementation in OpenFHE, we use the FIXEDMANUAL scaling
method and the hybrid key switching method.

7.2 Experimental Results

Table 1 shows the latency and amortized time for 1-bit to 4-bit, 8-bit, 9-bit,
12-bit and 14-bit LUT evaluations, which are common LUT sizes in the related
literature. Note there is an almost 2x (1.6x) increase in amortized runtime when
going from 1 to 2 bits. The reason is that 1-bit evaluation requires only the
evaluation of cos 2πx while in the 2-bit case, we need to evaluate e2πxi, which
is equivalent to computing both cos 2πx and sin 2πx. However, as soon as we go
from 2-bit to 3-bit evaluation, the amortized time increase becomes more modest
(1.09x) as the only difference is the degree in the Hermite interpolation polyno-
mial, which increases the complexity by

√
2 with doubling p. For smaller p, this
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Table 1. Experiments for the isolated evaluation of a single LUT (modular reduction)
for an RLWE ciphertext with plaintext modulus p and ciphertext modulus Q. Here,
log(Q) = log(∆) = log(q′0) and p = P . By log(Q′

LP
′) we refer to the number of bits in

the largest CKKS modulus, which includes all RNS limbs for the leveled computation
(multiplicative depth + 1) and all RNS limbs used in hybrid key switching. A single
RNS limb is left after the functional bootstrapping.

Interp. order log p logQ N log(Q′
LP

′) Time (s) Amtz. time (ms)
1 1 33 215 768 6.159 0.188

2, 3 1 33 215 747 10.25 0.315a

1 2 35 216 1035 19.718 0.3
2, 3 2 35 216 1070 21.383 0.326
1 3 37 216 1114 21.464 0.327
2 3 37 216 1114 22.134 0.338
1 4 38 216 1234 24.575 0.375
2 4 38 216 1234 25.447 0.388
1 8 47 216 1535 47.322 0.722
2 8 47 216 1535 55.062 0.84
1 9 48 216 1548 63.958 0.976
2 9 48 216 1548 76.288 1.164
1 12 55 217 2420 599.9 4.577
2 12 55 217 2420 893.78 6.819
1 14 58 217 2692 2130.1 16.25
2 14 58 217 2692 3370.9 25.72

a Using the ring dimension 216, we can get the same runtime as for p = 4 first-order.

increase is smaller than
√
2 because other (p-independent) parts of bootstrap-

ping still play a significant role. But for larger p, the power series evaluation
becomes dominant and the runtime increase with doubling p progressively gets
closer to

√
2, as predicted by the complexity analysis of Section 4. We remark

that the increase from 9 to 12 bits is even higher than 2
√
2 because of secondary

factors, such as increased N and extra RNS limbs. More detailed information
(including runtimes for the third order) is provided in Table A3.

If one would use the Boolean method (as in [BCKS24]) to evaluate larger
LUTs, they would need to use a multi-precison approach, such as the tree-based
method discussed in Section 5.3, which generally incurs exponential complexity.
For example, evaluating an 8-bit S-box (with multi-value functional bootstrap-
ping) using the tree-based approach would require 1,031 1-bit LUT evaluations
(see Section 5.3 for the complexity expression). In our case, the cost of evaluating
an 8-bit LUT for AES S-box is only 3.8x higher than evaluating a 1-bit LUT,
implying a speed-up of about 250x over the tree-based bit-level approach.

For higher orders, we notice the same expected increase in runtime with the
increase of the polynomial degree. For p = 2, going from the first-order to second-
order (and, equivalently, to third-order interpolation, since p + p/2 = 2p − 1)
yields the same increase as between p = 2 and p = 4 for first-order interpola-
tion, requiring the evaluation of e2πix instead of only cos 2πx (see Remark 1).
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Table 2. Experiments for multi-precision sign evaluation on an RLWE ciphertext with
plaintext modulus P and ciphertext modulus Q. The digit plaintext modulus is p and
the digit ciphertext modulus size is q. The ring dimension, equal to the number of
RLWE slots, is N = 216. log(q) = log(∆) = log(q′0). The interpolation order used is 1.

logP logQ log p log q log2(Q
′
LP

′) Time (s) Amtz. time (ms)
12 46 1 35 870 146.97 2.242
12 45 2 35 1035 119.59 1.825
12 46 3 37 1114 86.5 1.32
12 48 4 40 1280 73.869 1.127
12 48 6 42 1470 63.81 0.974
21 56 1 36a 888 268.04 4.09
21 55 3 37 1114 150.16 2.293
21 57 7 43 1538 112.25 1.712
32 71 8 47 1535 191.604 2.924

a As an example of where a higher-order interpolation can achieve correctness with
a smaller scaling factor, here, log q can be 35 if we use order 2. However, for this
particular case, the runtime becomes 1.48x higher, see Remark 1.

Finally, barring runtime increases due to a larger scaling factor, the complexity
of evaluating the third-order interpolation for p is equivalent to the complexity
of evaluating the first-order approximation for 2p (as illustrated in Table A3).

Table 2 presents the timing results for multi-precision sign evaluation for
12-bit, 21-bit, and 32-bit encrypted messages. The amortized runtime improves
as we increase the digit size from 1 to 6 bits for 12-bit messages and from 1
to 7 bits for 21-bit bit messages, which follows from the analysis for Table 1.
This implies our method with p > 2 for digits always outperforms the Boolean
approach of [BCKS24] in both single- and multi-precision scenarios (even for
special-purpose functions such as sign evaluation). We also show the timing re-
sults for evaluating the sign of 32-bit messages with 8-bit digits, which is a useful
practical scenario. As expected from complexity analysis, the amortized runtime
for sign evaluation is roughly the product of the number of digits encrypting
messages in Zw

p by the runtime of the log p-bit LUT in Table 1.
To port our results from RLWE to DM/CGGI inputs, we need to add the ring

packing procedure time (the amortized time is 0.056 ms; see Appendix A.2).

8 Concluding Remarks

Our performance evaluation suggests that the general functional bootstrapping
method developed in this work starts outperforming the conventional DM/CGGI
method when the number of slots reaches thousands or even hundreds for LUTs of
size larger than 8 bits. For many practical scenarios that require the simultaneous
evaluation of hundreds/thousands of slots, our proposed RLWE-based method
can replace the DM/CGGI solution. Moreover, our method based on CKKS-style
bootstrapping achieves significantly better complexity and concrete amortized
time than all prior methods based on BFV-style bootstrapping.
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The main limitation of our method is the high computational complexity of
functional bootstrapping for large p (though this complexity is lower than in
all prior methods) and the increase in the scaling factor. Further optimizations
can be performed over our proof of concept implementation to reduce the over-
head of the polynomial evaluation for a large degree p. In the CGGI setting,
circuit bootstrapping is more efficient for evaluating large-precision LUTs than
the tree-based method discussed in our work [BBB+23]. We expect that a circuit
bootstrapping method can also be developed based on our scheme and leave it
as an interesting problem for future research.

Acknowledgements. The authors would like to thank Zeyu Liu and Yunhao
Wang for helpful discussions on multi-precision sign evaluation.
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A Comparison with Other Methods

This section compares our results (for the first-order interpolation) with prior
work. There are two main directions of obtaining the homomorphic evaluation
of arbitrary LUTs. The first one is performing functional bootstrapping, and the
second one is performing leveled computations and potentially bootstrapping.

A.1 Comparison with the Boolean CKKS method

Our 1-bit LUT evaluation parallels the bit-level CKKS bootstrapping developed
in [BCKS24] for bootstrapping DM/CGGI ciphertexts, although with a cou-
ple of differences. First, their implementation uses smaller sparse secrets when
adding overflows during ModRaise. Second, their implementation uses the base
ring packing in HERMES to transform from LWE to RLWE and the functional
bootstrapping without the initial CtS transform (which seems to be perform-
ing the costly polynomial evaluation on a single ciphertext even when using full
packing, instead of on two ciphertexts as in our case). Their reported time for
their full-slot complex functional bootstrapping (without the ring packing) is
1.54 seconds for 214 gates. The resulting amortized time is 0.094 ms (this only
includes a single linear transform) versus our amortized time of 0.188 ms, which
implies that both implementations have similar efficiency.

A.2 Comparison with Other Methods for Functional Bootstrapping

There are two main methods in the literature for performing functional boot-
strapping: DM/CGGI-based, which bootstraps one number at a time, and BFV-
based, which supports amortized functional bootstrapping.

For the scenarios where we compare our runtimes with the runtimes for the
functional bootstrapping of LWE ciphertexts, we add the amortized base ring
packing time to our amortized time to account for the conversion of N LWE
ciphertexts to an RLWE ciphertext, as the latter was used as an input in our
experiments. Note that the amortized ring packing time is estimated using the
runtimes from [BCK+23], which are more conservative than the ring packing
runtimes in the later work of the authors [BCKS24]. For N = 215, the ring
packing time is 1.85 s, which is computed as the runtime for the ring dimension
of 212 (0.231 s) multiplied by 23. For N = 216, the ring packing time is twice
larger, i.e., 3.7 s. The corresponding amortized time for both is 0.056 ms.

Comparison with DM/CGGI functional bootstrapping. Table A1 com-
pares our experimental results with the CGGI-based results in [LMP22] for
single- and multi-precision LUT evaluation (note that uniform ternary secret
key distribution was used in [LMP22]). For the fairness of comparison, we reran
the experiments from [LMP22] using OpenFHE v1.2.0 and clang++ 12. For
multi-precision sign evaluation, we observe a speed-up of three orders of mag-
nitude for our method due to the SIMD capability of CKKS, enabling it to
bootstrap 216 numbers at once.
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We also include the results from [TCBS23] in Table A1, which evaluate LUTs
using CGGI functional bootstrapping (with uniform binary secret key distribu-
tion) augmented with multi-value bootstrapping. In particular, for LUTs such
as S-box or XOR (for the AES algorithm), they provide runtimes for both a di-
rect 8-to-8 bit LUT evaluation and tree-based multi-precision LUT evaluation.
For the 8-to-8 bit LUT, with the method of Trama et al. it is more efficient to
decompose the LUT into smaller LUTs, while our approach is still very efficient
for a direct evaluation of an 8-to-8 bit LUT. The amortization makes our results
400x times more efficient than the evaluation of S-box in [TCBS23]. Note that
our amortized runtime for 8-bit LUT evaluation is 1,900x smaller than the direct
evaluation of the 8-bit LUT using the CGGI approach. It is worth pointing out
that the runtime for our method increases by roughly a factor of

√
2 when dou-

bling p while the DM/CGGI method scales exponentially (the ring dimension
doubles every time p is doubled).

Finally, Table A1 also shows the comparison with the CPU benchmarks for
single-precision programmable bootstrapping (PBS) with failure probability of
2−40 in TFHE-rs.7 We observe the increase of the speed-up of our method com-
pared to the single-precision PBS in TFHE-rs from two to three orders of mag-
nitude as the LUT size increases from 4 to 8 bits. For the homomorphic sign
evaluation, we include the multi-precision CPU benchmarks for the comparison
between an encrypted and unencrypted input, with failure probability of 2−64.8
The speed-up of our method in this case ranges from 18x to 46x.

Comparison with multi-precision method based on CGGI circuit boot-
strapping. Another multi-precision approach for evaluating large LUTs using
the CGGI/TFHE method is via circuit bootstrapping [BBB+23]. This method is
implemented in the tfhe-rs library [Zam22]. The high-level idea is to (1) decom-
pose a large-precision LWE ciphertext into LWE ciphertexts for each encrypted
bit of the message using homomorphic digit extraction, (2) convert the LWE
ciphertexts into RGSW ciphertexts using circuit bootstrapping to enable leveled
multiplications, and (3) evaluate a CMUX tree involving (many) multiplica-
tions. This approach starts performing better for the CGGI cryptosystem than
the tree-based approach when the precision reaches 10-11 bits [BBB+23]. To the
best of our knowledge, the state-of-the-art results for general LUT evaluation
using the circuit bootstrapping approach are presented in [WHS+24]. In Table
10, the authors report the runtimes of 112.74 and 170.62 ms for 8-bit and 12-bit

7 The CPU benchmarks are taken from https://docs.zama.ai/tfhe-rs/
get-started/benchmarks/cpu/cpu_programmable_bootstrapping. Note that
the machine used for this benchmark is different than ours (AWS hpc7a.96xlarge
instance with a 96-core AMD EPYC 9R14 CPU @ 2.60GHz and 740GB of RAM)
and uses AVX-512 extensions.

8 The CPU benchmarks are taken from https://docs.zama.ai/tfhe-rs/
get-started/benchmarks/cpu/cpu_integer_operations, run on the same machine
as mentioned above.
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Table A1. Comparison of our single- and multi-precision results with DM/CGGI
functional bootstrapping.

Function logP [TCBS23] [LMP22] [Zam22] PBS Our amtz.
runtime (ms) runtime (ms) runtime (ms) runtime (ms)

EvalLUT 2 7 92 6.04 0.356
EvalLUT 3 15 243 – 0.383
EvalLUT 4 29 – 11.3 0.431
EvalLUT 8 1,500/300a – 458 0.778
HomSign 8 – 671 36.4 0.778
HomSign 12 – 1,367 35.2b 1.030
HomSign 21 – 3,451 53.7c 1.768
HomSign 32 – – 53.7 2.98

a Corresponds to using the multi-precision approach with 4-bit LUTs.
b Corresponds to the multi-precision benchmark for 16 bits.
c Corresponds to the multi-precision benchmark for 32 bits.

LUTs, respectively [WHS+24].9 Our amortized runtimes in Table 1 are 0.722 and
4.577 ms, respectively, implying that our method has an amortized time that is
two orders of magnitude smaller.

We also want to highlight that a circuit bootstrapping capability could po-
tentially be built based on our functional bootstrapping method and leveled
computations in CKKS, which in some settings may result in more efficient LUT
evaluation than using functional bootstrapping directly. But we leave the devel-
opment of such circuit bootstrapping capability as a topic for future research,
as it is not directly related to functional bootstrapping.

Comparison with BFV-based functional bootstrapping. Liu and Wang
[LW23] proposed a method of batch evaluating an LUT over a number of LWE
ciphertexts by switching to BFV and evaluating a polynomial of degree q, the
BFV plaintext modulus (or, equivalently, LWE ciphertext modulus). For LWE
plaintext moduli p of up to 9 bits, the corresponding q is 65,537. For p up to 12
bits, the corresponding q is 786,433. Note that the BFV scheme requires special
moduli for q, which complicates its use for multi-precision LUT and sign evalu-
ation (we are not aware of any multi-precision extensions of this method). Our
method via CKKS involves evaluating a polynomial of a much smaller degree:
for LWE plaintext modulus p, the trigonometric Hermite interpolation requires
evaluating a polynomial of degree p − 1 over the approximation of e2πxi, with
the latter achieved by evaluating a polynomial of degree 58 followed by 2 to 4
double-angle-formula iterations. Specifically, in our implementation, for p = 29,
we evaluate a polynomial of degree 58, two squarings, and a polynomial of degree
511, while for p = 212, we evaluate a polynomial of degree 118, two squarings,
and a polynomial of degree 4095.
9 In [WHS+24], the experiments were run on a CPU system with i9-11900K @ 3.50

GHz and 32 GB RAM, with AVX-512 support.
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Liu and Wang [LW24] propose an optimization of [LW23] by relaxing the
correctness notion for the values outside of the points of interest, which reduces
the degree of the polynomial for the values of p smaller than 29, i.e., the maximum
p for a given value of q. The degree in this case becomes roughly p·r, where r is the
error bound, which is equal to 128 for q = 65, 537 for the secret key distribution
choice in [LW24] (sparse secrets with the Hamming weight of 512). Effectively,
this replaces the degree q with p · r and allows one to choose optimal parameters
for a given value of p rather than special modulus q. In terms of complexity, our
method has the same advantage as w.r.t. [LW23], but the concrete benefit of our
method becomes less significant for smaller values of p, when the contribution
of power series evaluation is smaller.

We also mention the work of Lee et al [LMS24], which homomorphically
evaluates an arbitrary LUT over a BFV ciphertext by using a method based on
conventional BFV/BGV bootstrapping working with plaintext space Zs

p, where
p is prime. Their experiments focus on input BFV plaintext moduli of p < 700
(≈ 9.5 bits) and p < 17000 (≈ 14 bits) and output plaintext moduli of 174 (≈ 16
bits) and 175 (≈ 20.5 bits) for the delta or sign functions. Due to the plaintext
algebra restrictions for p = 17, their number of slots for the reported results is
only 16. However, the number of levels remaining for computation in BFV is
11, whereas we leave only 1 level (though we could also add CKKS levels to our
bootstrapping, paying only a modest price, i.e., below 2x, in complexity).

Table A2 compares the online amortized runtimes of our method for general
functional bootstrapping via CKKS with the methods of [LW23] and [LW24] via
BFV. The times reported for [LW23] are from Tables 3 and 4 in their paper. We
note that we implemented their method in OpenFHE to check any differences
in runtime due to the underlying library and we obtained similar results (for
the 9-bit LUT, 6.7 ms in SEAL compared to 5.8 ms in OpenFHE). The times
reported for [LW24] are taken from Figure 4 from [LW24]. The times reported
for [LMS24] are taken from Table 3 in their paper. The relevant comparison is
with [LW23] and [LW24], as the amortization is done over a number of slots of
similar magnitude. Our method exhibits improvements in throughput ranging
from 3.4x to 8.4x, with the speed-up increasing with p (for log p ≥ 3).

Table A2. Comparison of our functional bootstrapping runtimes with BFV-based
methods. For our implementation, we report the base runtimes for BFV-input-
ciphertext functional bootstrapping as well as the runtimes with the ring packing for
DM/CGGI input ciphertexts.

log p [LW23] [LW24] [LMS24] Our amtz.
runtime (ms) runtime (ms) runtime (ms) runtime (ms)

1 4.7 1.3 – 0.188/0.244
3 6.7 1.3 – 0.327/0.383
4 6.7 1.5 – 0.375/0.431
8 6.7 5.3 – 0.722/0.778
9 6.7 6.7 2,960 0.976/1.032
12 39.1 – 10,760 4.577/4.633
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A.3 Discussion on Leveled Methods for LUT Evaluation

We presented the method of using trigonometric Hermite interpolation inte-
grated into the functional bootstrapping process, allowing efficient evaluation
of arbitrary functions with noise reduction. We also mentioned the polynomial
Hermite interpolation approach to evaluate the function f separately from the
bootstrapping process. In this section, we compare these two methods in terms
of computational efficiency and precision, and discuss other leveled methods for
Look-Up Table (LUT) evaluation.

When the function f is evaluated separately from the bootstrapping process,
a polynomial R̄(x) of degree 2p− 1 (for first-order interpolation) is used to ap-
proximate f . This method requires a higher-degree polynomial than R(x) (with
the basis E(x)), which increases computational complexity and noise accumula-
tion. Moreover, it has to invoke regular CKKS bootstrapping for deep compu-
tations, which requires a larger scaling factor than the functional bootstrapping
method (see the discussion in Section 3.4 of [BCKS24] for p = 2; the gap gets
higher as p grows). However, this method is independent of the bootstrapping
process and can be suitable for shallow computations without bootstrapping.

Another approach is presented in [CKKL24], where Chung et al. proposed
a technique for evaluating LUTs using the CKKS scheme with custom encod-
ing. This method uses polynomial Hermite approximations to evaluate functions
directly on encrypted data, leveraging the homomorphic properties of CKKS.
However, the custom encoding complicates the application of multiplications,
making it less straightforward when handling more complex computations. We
mention that the results reported in Table 2 in [CKKL24] are obtained using a
GPU, which is typically faster than a CPU by at least an order of magnitude,
and yet the speed-up they obtain for an 8-to-8 bit S-box evaluation is only five
times faster than our method (0.15 ms versus 0.72 ms). Another drawback is
that large parameters (ring dimension N and ciphertext modulus Q) need to be
used to support both leveled LUT computation and subsequent bootstrapping.

In contrast to both of these methods, integrating trigonometric Hermite in-
terpolation directly into the bootstrapping process allows for functional boot-
strapping, where both noise reduction and function evaluation are performed si-
multaneously (which can lead to potentially smaller parameters). In this method,
we evaluate a polynomial of degree p− 1 on top of evaluating e2πix (which can
be thought of as part of the original bootstrapping process). The polynomial
degree is reduced from 2p− 1 to p− 1, resulting in faster computation and less
noise accumulation.

B More Preliminaries

B.1 LWE Modulus Switching

Lemma 1 (Modulus Switching). Let (a, b) ∈ Zn+1
q be an LWE encryption of

a message m ∈ Zp under secret key s ∈ Zn with ciphertext modulus q and noise
bound |Decs(a, b)−(q/p)m|< β. Then, for any modulus q′, the rounded ciphertext
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(a′, b′) = ⌈(q′/q) · (a, b)⌋ is an encryption of the same message m under s with
ciphertext modulus q′ and noise bound |Decs(a′, b′) − (q′/p)m|< (q′/q)β + β′′,
where β′′ = 1

2 (∥s∥1+1).

In practice, when the input ciphertext is sufficiently random, or when modulus
switching is performed by randomized rounding, it is possible to replace the
additive term β′′ with a smaller probabilistic bound O(∥s∥2). For uniformly
random ternary keys s ∈ {0, 1,−1}n, this is β′′ ≈ O(

√
n). For sparse secret keys

with a hamming weight h, it is β′′ ≈ O(
√
h).

B.2 Functional Bootstrapping and Multi-Precision Sign Evaluation
using DM/CGGI Cryptosystems

A key feature of a DM/CGGI cryptosystem is that it allows to perform certain
homomorphic computations (described by an LUT) on ciphertexts during boot-
strapping at no additional cost. We will use the generalization of the DM/CGGI
bootstrapping procedure presented in [LMP22]. The functional bootstrapping
algorithm is parameterized by

– a dimension n and (input ciphertext) modulus q, where q is a power of 2,
– a secret key s ∈ Zn, which must be a short vector.
– a large ciphertext modulus Q′ used internally to the bootstrapping proce-

dure, and which is not required to be a power of 2,
– an output ciphertext modulus Q, which we set to a power of 2 possibly

different from q, and
– an LUT function f :Zq → Z which must satisfy the negacyclic constraint

f(x+ q/2) = −f(x). (A1)

The bootstrapping procedure also uses a bootstrapping key, which is computed
from s, but can be made public. Since this bootstrapping key is only used inter-
nally by the bootstrapping procedure, we omit it from the notation.

On input an LWE ciphertext (a, b) ∈ Zn+1
q , the DM/CGGI bootstrapping

procedure first computes an LWE ciphertext (c′, d′) ∈ Zn+1
Q′ such that

Decs(c
′, d′) = f ′(Decs(a, b)) + e′ (mod Q′),

where the noise bound |e′|≤ β′ depends only on the computation performed
during bootstrapping (and not the input ciphertext), and f ′(x) =

⌈
Q′

Q · f(x)
⌋

is
a scaled version of f still satisfying the negacyclic condition (A1). Then, modulus
switching is applied to (c′, d′) to obtain a ciphertext (c, d) =

⌈
Q
Q′ (c

′, d′)
⌋
∈ Zn+1

Q

modulo Q such that

Decs(c, d) = f(Decs(a, b)) + e (mod Q)

where |e|< β = (Q/Q′)β + β′′ is the noise bound from Lemma 1.
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Similarly to [LMP22], we express the bootstrapping invocation for a given
function f as Boot[f ](a, b). Liu et al. and similar works show how this func-
tional programming capability for negacyclic functions can be used to build
arbitrary function evaluation in Zp [CLOT21, KS23, LMP22]. The cost is at
least two functional bootstrapping operations (the first one is needed to handle
the negacyclic requirement). Further, a multi-precision approach based on digit
extraction (floor function) and arbitrary function evaluation in Zp was derived to
evaluate large arbitrary functions in ZP , where P is the large plaintext modulus
P required for a given application [GBA21, LMP22].

Of special practical interest is the multi-precision sign evaluation capability
due to its linear increase of complexity with logP [LMP22]. The high-level algo-
rithm for evaluating the multi-precision sign function is depicted in Algorithm 5.
Here, HomFloor is an LUT evaluation for the floor/digit decomposition function
(requires two functional bootstrapping operations) and Boot[fMSB ] is the regu-
lar MSB function evaluation (only one DM/CGGI bootstrapping is needed).

Algorithm 5 Algorithm for Multi-precision Homomorphic Sign Computa-
tion [LMP22]
1: procedure HomSign(Q, (c, d))
2: while Q > q do
3: (c, d)← HomFloor(Q, (c, d))

4: (c, d)←
⌈

α
q
· (c, d)

⌋
▷ α = q/p, for p the plaintext modulus of the digit

5: Q← αQ/q

6: d← d+ β
7: (a, b)← (q/Q) · (c, d)
8: (c, d)← (−Boot[fMSB ](a, b)) (mod Q)
9: return (c, d)

B.3 CKKS Scheme in RNS

We first provide the CKKS algorithms related to evaluation (we will introduce
the details specific to the RNS instantiation later in this section):
– KeySwitchGensk(s′). For a power-of-two P ′ that corresponds to the auxil-

iary modulus, sample a random a′
k ← RP ′Q′

L
and error e′k ← χerr. For a

predefined power-of-two base ω, output the switching key as

swk = (swk0, swk1) =
({

b′k
}dnum−1

k=0
,
{
a′
k

}dnum−1

k=0

)
∈ R2×dnum

P ′Q′
L

,

where b′k ← −a′
k · s + e′k + P ′ · PWL (s′)k (mod P ′Q′

L) and dnum =

⌈logω(Q′
L)⌉. Set evk← KeySwitchGensk(s2). Set rk(κ) ← KeySwitchGensk(s(κ)).

– KeySwitchswk(ct). For ct = (c0, c1) ∈ R2
Q′

ℓ
, swk = (swk0, swk1) 10 output(

c0 +

⌈
⟨WDℓ (c1) , swk0⟩

P ′

⌋
,

⌈
⟨WDℓ (c1) , swk1⟩

P ′

⌋)
(mod Q′

ℓ).

10 We can adapt swk to perform key switching for level ℓ < L.
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To keep the noise from key switching small, we can take P ′ ≈ ω.
– CAdd(ct, x). For ct = (b,a) ∈ R2

Q′
ℓ
with scaling factor ∆ℓ′ and scalar x ∈ Cn,

first encode x with same scaling factor m = Encode(x,∆ℓ′), and output
ctcadd ← (b+m,a) (mod Q′

ℓ).
– Add(ct1, ct2). For ct1, ct2 ∈ R2

Q′
ℓ
, output ctadd ← ct1 + ct2 (mod Q′

ℓ).
– CMult(ct, x). For ct = (c0, c1) ∈ R2

Q′
ℓ

and scalar x ∈ Cn, first encode x,
m = Encode(x,∆) and output ctcmult ← (c0 ·m, c1 ·m) (mod Q′

ℓ).
– Multevk(ct1, ct2). For cti = (bi,ai) ∈ R2

Q′
ℓ
,

let (d0,d1,d2) = (b1 · b2,a1 · b2 + a2 · b1,a1 · a2) (mod Q′
ℓ). Output

ctmult ← (d0,d1) + KeySwitchevk(0,d2) (mod Q′
ℓ).

– Rotrk(5κ)(ct, κ). For ct = (b,a) ∈ R2
Q′

ℓ
and rotation index κ, output

ctrot ← (b(5
κ), 0) + KeySwitchrk(5κ)(0,a

(5κ)) (mod Q′
ℓ).

– Rescale(ct,∆ℓ′). For a ciphertext ct ∈ R2
Q′

ℓ
and a rescaling factor ∆ℓ′ , output

ct′ ←
⌈
∆−ℓ′ · ct

⌋
(mod Q′

ℓ−ℓ′).
Typically rescaling operation is done after multiplication and by one level.

RNS CKKS variants perform all operations in RNS. In other words, the
power-of-two modulus Q′

ℓ = 2ρ0+ℓ·ρ is replaced with
∏ℓ

i=0 q
′
i, where q′i’s are cho-

sen as described above to support efficient number theoretic transforms (NTT)
for converting native-integer polynomials w.r.t. each CRT modulus from coef-
ficient representation to the evaluation one, and vice versa. The primes q′i for
i = 1, . . . , ℓ are chosen to be as close to 2ρ as possible to minimize the error
introduced by rescaling.

The two major changes in the RNS instantiation compared to the CKKS
scheme deal with rescaling and key switching.

Rescaling in RNS. To efficiently perform rescaling in RNS from Q′
ℓ to Q′

ℓ−1, the
scaling down by 2ρ is replaced with scaling down by q′ℓ. For i ∈ [L], q′i are chosen,
such that 2ρ/q′i is in the range (1 − 2−ϵ, 1 + 2−ϵ), where ϵ is kept as small as
possible. The new rescaling operation to scale down by one level is defined as

– Rescale(ct, q′ℓ). For a ciphertext ct ∈ R2
ℓ , output ct′ ←

⌈
q′

−1
ℓ · ct

⌋
(mod Q′

ℓ−1).

The maximum approximation error introduced by rescaling from ℓ to ℓ− 1 is∣∣∣q′−1
ℓ ·m− 2−ρ ·m

∣∣∣ ≤ 2−ϵ ·
∣∣2−ρ ·m

∣∣ .
To minimize the cumulative approximation error growth in deeper computa-

tions, one can also alternate q′i w.r.t. 2ρ. For instance, if q′1 < 2ρ, then q′2 > 2ρ

and q′3 < 2ρ, etc. [KPP22].
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Key Switching in RNS. To take advantage of RNS, we have to modify certain
operations, such as base ω decomposition, to make them RNS-friendly. We use
the hybrid key switching method described in [HK20]. Instead of the base ω
decomposition, RNS digit decomposition is used. First, we use the partial prod-
ucts {Q̃′

j}0≤j<dnum = {
∏(j+1)α−1

i=jα q′i}0≤j<dnum, where α = (L + 1)/dnum for a
pre-fixed parameter dnum. For level ℓ and dnum′ = ⌈(ℓ+ 1)/α⌉ we then have:

WD′
ℓ(a) =

[a Q̃′
0

Q′
ℓ

]
Q̃′

0

, . . . ,

[
a
Q̃′

dnum′−1

Q′
ℓ

]
Q̃′

dnum′−1

 ∈ Rdnum′
,

PW ′
ℓ(a) =

[a Q′
ℓ

Q̃′
0

]
Q′

ℓ

, . . . ,

[
a

Q′
ℓ

Q̃′
dnum′−1

]
Q′

ℓ

 ∈ Rdnum′

Q′
ℓ

.

For any (a, b) ∈ R2
ℓ ,WD

′
ℓ and PW ′

ℓ satisfy the following congruence relation:〈
WD′

ℓ (a) ,PW ′
ℓ (b)

〉
≡ a · b (mod Q′

ℓ).

This key switching procedure is similar to the one used in CKKS with the
only difference in the decomposition method.

– KeySwitchGensk(s′). For auxiliary modulus P ′ =
∏k

i=0 pi, sample a random
a′
k ← RP ′Q′

L
and error e′k ← χerr. For a pre-fixed parameter dnum, output

the switching key as

swk = (swk0, swk1) =
({

b′k
}dnum−1

k=0
,
{
a′
k

}dnum−1

k=0

)
∈ R2×dnum

P ′Q′
L

,

where
b′k ← −a′

k · s+ e′
k + P ′ · PW ′ (s′)

k
(mod P ′Q′

L).

– KeySwitchswk(ct). For ct = (c0, c1) ∈ R2
Q′

ℓ
, swk = (swk0, swk1) 11 output(

c0 +

⌈
⟨WD′

ℓ (c1) , swk0⟩
P ′

⌋
,

⌈
⟨WD′

ℓ (c1) , swk1⟩
P ′

⌋)
(mod Q′

ℓ).

To keep the noise from key switching small, we can take P ′ ≈ maxj(Q̃′
j).

C Derivations and Proofs of Results in Sections 3 and 4

C.1 Analytical Expressions for Modular Reduction and Step
Functions

The modular reduction and step functions are used as subroutines in the multi-
precision sign and LUT evaluation. Here, we provide an interesting relation be-
tween these functions and analytical expressions. For simplicity, we focus on the
case of p being a power of two, which is the main practical scenario for using
these subroutines in multi-precision evaluation.
11 We can adapt swk to perform key switching for level ℓ < L.
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First, we introduce a scaled step (Heaviside) function stepp as the function
with period p such that for k ∈ [p]:

stepp(k) =

{
0, if 0 ≤ k < p/2

p/2 if p/2 ≤ k < p.
(A2)

The modp function can be recursively defined in terms of the stepp function:

modp(k) = mod p
2
(k) + stepp(k), p > 2 (A3)

mod2(k) = step2(k). (A4)

The R-interpolations for the modp and stepp functions can be expressed as

Rmodp (x) = Rmod p
2
(2x) + Rstepp (x) , p > 2 (A5)

Rstepp (x) =
p

4
− 1

p

∑
k∈S

(p− k)

(
cos(2kπx) + cot

(
πk

p

)
sin(2kπx)

)
, (A6)

for x ∈ {0, 1
p , . . . ,

p−1
p } and S =

{
2i+ 1 : i ∈ [p2 ]

}
. The expression (A6) was

derived from (1) and (3) via a number of simplifications.
Note that for p = 2, we have

Rmod2 (x) = Rstep2 (x) =
1

2
− 1

2
cos (2πx), (A7)

which is the same as the trigonometric interpolation in [BCKS24] for binary
CKKS bootstrapping. This is not surprising as the first derivative was also set
to zero in [BCKS24] to achieve noise reduction during binary bootstrapping.

For evaluation with FHE, we also derived analytical expressions in terms of
the complex exponential function (see the proof below for derivation details):

Rmodp (x) =
p− 1

2
+

1

p

p−1∑
k=1

(p− k)

(
−1 + i cot

(
πk

p

))
e2πikx,

Rstepp (x) =
p

4
+

1

p

∑
k∈S

(p− k)

(
1− i cot

(
πk

p

))
e2πikx, (A8)

where S =
{
2i+ 1 : i ∈ [p2 ]

}
.

Proof. For the function Rstepx (p) approximating

stepp(k) =

{
0, if 0 ≤ k < p/2

p/2 if p/2 ≤ k < p.

we can evaluate the closed formulae for αi from (4):

α0 =
1

p

 p−1∑
l=p/2

p

2

 =
p

4
,

αk =
p− k

p

p−1∑
l=p/2

e−2πikl/p =
(p− k)

p
e−πik

(
1− e−πik

1− e−2πik/p

)
= (A9)
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=
p− k

p
e−πik

 1− (−1)k

2i sin
(

πk
p

)
e−iπk/p

 . (A10)

For even k, αk = 0, and for odd k,

αk =
p− k

p

cos
(

πk
p

)
+ i sin

(
πk
p

)
i sin

(
πk
p

)
 =

p− k

p

(
1− i cot

(
πk

p

))
.

For Rmodp (x), the closed expressions can be written as

α0 =
1

p

p−1∑
l=0

l

p
=

p− 1

2
,

αk =
2(p− k)

p2

p−1∑
l=0

le−iπkl/p =
2(p− k)

p2
· (−p)
1− e−2iπk/p

=
p− k

p

(
−1 + i cot

(
πk

p

))
. □

C.2 Second- and Third-Order Trigonometric Hermite Interpolations

Proof of Theorem 2. As the starting point we use Theorem 2.1 of [Var69], which
proves uniqueness and provides a solution in terms of cosine series in explicit
form for the (0,1,M) trigonometric interpolation where M is even. For M = 2
and conditions (7), the expression for R2(x) can be written as12

R2(x) =

p−1∑
l=0

f(l) · U2

(
2π

(
x− l

p

))
, where

U2(x) = U(x) +
1− cos(px)

p3

⌊p/2⌋∑
k=1

(2− γp,k)k(p− k) cos(kx),

(A11)

γp,k = 1 if p is even and k = p/2, while γp,k = 0 otherwise. Here, U(x) is
borrowed from (3.1).

We now derive the complex exponential expression for (A11). We transform
the second summand of U2(x):

U ′
2(x) =

1− cos(px)

p3

⌊p/2⌋∑
k=1

(2− γp,k)k(p− k) cos(kx)

=
1

p3

⌊p/2⌋∑
k=1

(2− γp,k)k(p− k)

(
cos(kx)− 1

2
(cos((p+ k)x) + cos((p− k)x))

) .

(A12)

Next we switch to the complex exponential formulation:
12 We noticed a typo in the expression for U2(x) in [Var69], which is corrected in our

expression; the correction is to have a different term for even p at k = p/2.
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T2(x) =

p−1∑
l=0

f(l) ·W
(
2π

(
x− l

p

))
,

W2(x) = W (x) +
1

p3

⌊p/2⌋∑
k=1

(2− γp,k)k(p− k)

(
eikx − 1

2

(
ei(p+k)x + ei(p−k)x

)) .

We transform the second summand (here, T2(x) = T (x) + T ′
2(x) and T (x) is

the same as for the first-order interpolation):

T ′
2(x) =

1

p3

p−1∑
l=0

⌊p/2⌋∑
k=1

f(l)(2− γp,k)k(p− k)×

(
e−2πkli/pE(x)k − e−2π(p+k)li/p

2
E(x)p+k − e−2π(p−k)li/p

2
E(x)p−k

)

=

⌊p/2⌋∑
k=1

βkE(x)k − δk
2
E(x)p+k − θk

2
E(x)p−k,

where ck := 2k(p− k)(2p− k)/(3p4) and ek := e−2πkli/p:

βk = ck ·
p−1∑
l=0

f(l) · ek, δk = ck ·
p−1∑
l=0

f(l) · ep+k, θk = ck ·
p−1∑
l=0

f(l) · ep−k. □

Proof of Theorem 3. We use Theorem 7 of [Var73], which formulates in explicit
form the (0,1,2,M) trigonometric interpolation. For M = 3 and conditions (9),
the expression for R3(x) can be written as

R3(x) =

p−1∑
l=0

f(l) · U3

(
2π

(
x− l

p

))
, where

U3(x) = U(x) +
2 (1− cos(px))

3p4

p−1∑
k=1

k(p− k)(2p− k) cos(kx).

Here, U(x) is as in (3.1).
The complex exponential expression T3(x) from the theorem’s statement can

be derived similarly to the derivation for T2(x). ⊓⊔

C.3 Bounds on Constants

Proof of Corollary 2. Using Corollary 1, Theorem 2 and 3, we can write the
M -th order trigonometric Hermite Interpolation as

R(x) = Re

(
d∑

k=0

ηk · e2πikx

)
,
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where for all 0 ≤ k ≤ d, |ηk|≤ BM , and

M = 1 : d = p− 1, B1 ≤ 2
(p− 1)2

p

M = 2 : d =
3p

2
, B2 ≤

9

4
(p− 1)

M = 3 : d = 2p− 1, B3 ≤
(p− 1)2(p+ 1)(2p− 1)

p3
.

Note that all bounds on BM are smaller than 9
4p for all p ≥ 2. These bounds

were obtained by taking the maximum over all terms in the corresponding series:

B1 ≤max

{
p− 1, 2

(p− 1)2

p

}
,

B2 ≤
{
max{p− 1, 2

(p− 1)2(p+ 1)

p2
,
9

4
(p− 1),

|p2 − 3p+ 1|(p− 1)

p2

}
, (A13)

B3 ≤max

{
p− 1,

(p− 1)2(p+ 1)(2p− 1)

p3
,
4
√
3

27
(p− 1)

}
. (A14)

Writing the M + 1-th derivative, we obtain:∣∣∣RM+1(x)
∣∣∣ = ∣∣∣∣∣Re

(
(2πi)M+1

d∑
k=0

ηkk
M+1e2πikx

)∣∣∣∣∣ ≤ (2π)M+1BM

M+1∑
k=0

kM+1.

Writing it explicitly for M = 1, 2, 3 and dividing by (M + 1)!, we obtain:

C1 ≤
4π2

2
B1

(p− 1)p(2p− 1)

6
=

π2B1

3
(p− 1)p(2p− 1) ≤ 2π2

3
(p− 1)3(2p− 1).

C2 ≤
8π3

6
B2

(3p/2)2(3p/2 + 1)2

4
=

3π3B2

16
p2(3p− 2)2

≤ 27π3

64
(p− 1)p2(3p− 2)2.

C3 ≤
16π4

24
B3

(2p− 1)2p(4p− 1)(3(2p− 1)2 + 3(2p− 1)− 1)

30

≤ 2π4

45
B3p(2p− 1)(4p− 1)(12p2 − 6p− 1)

≤ 2π4

45

(p− 1)2(p+ 1)(2p+ 1)2(4p− 1)(12p2 − 6p− 1)

p2
.

We thus obtain the bounds in Corollary 2 and replace also the values of BM .
Note that these are very loose bounds. ⊓⊔

D Homomorphic Digit Decomposition

Lines 4 through 6 in Algorithm 6 directly correspond to the homomorphic floor
evaluation algorithm. The correctness of HomDigitDecomp directly follows from
the correctness of HomSign and HomFloor. The complexity is ⌈ logP

log p ⌉ − 1 func-
tional bootstrapping invocations. The digit decomposition algorithm can also be
extended to varying-size digits for different pi, qi via an approach analogous to
the DM/CGGI case [LMP22].
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Algorithm 6 Homomorphic digit decomposition for an RLWE ciphertext
1: procedure HomDigitDecomp(ct ∈ R2

Q)
2: k ← 0
3: while Q > q do
4: ctk ← ct mod q ▷ Extract the RLWE digit encrypting a digit in Zw

p .
5: ctd ← FuncBTq′,Q′

L
,∆(ctk, LUT (Rmodp (x)))

6: ct← ct− ctd
7: ct← ModSwitch(ct, Q/p)
8: Q← Q/p, P ← P/p
9: k ← k + 1

return
(
{ctk}i∈[k], ct

)
E Noise Analysis for S-box

The noise reduction for S-box is illustrated in Fig. A3. For the first-order inter-
polation, the constant C is bounded by 4.31 × 107 < 4π2B1p

2. For the second-
order interpolation, the constant C is bounded by 3.36×1010 < 8π3B2p

3. For the
third-order interpolation, the constant C is bounded by 2.1× 1013 < 16π4B3p

4.

1st order 2nd order 3rd order
∥ ϵo u t ∥∞

∥ ϵi n ∥∞
 1

-30 -25 -20 -15

-30

-20

-10

0

10

log ∥ ϵi n ∥∞
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g

∥
ϵ o
u
t
∥ ∞

∥
ϵ i
n
∥ ∞

Fig.A3. Noise reduction for different interpolation orders when evaluating the S-box
(at p = 256). ϵin is the input error and ϵout is the output error after functional boot-
strapping. The maximum error ϵ that provides correctness is 1

2p
= 2−9. The line

∥ϵout∥∞ /∥ϵin∥∞ = 1 corresponds to zero noise reduction (anything above this line
corresponds to noise increase). The zero-noise reduction points in terms of log ∥ϵin∥∞
are -25.4, -17.5, and -14.7 for the first, second, and third orders, respectively.
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F More Implementation Details and Experimental
Results

An important remark is related to the scaling of the messages when working with
the CKKS scheme, which was observed previously [CHK+18]. In our implemen-
tation, we evaluate the second part of the trigonometric Hermite interpolation
(after computing e2πxi) using the Paterson-Stockmeyer method [PS73] in the
power basis. Although the magnitudes of the coefficients of the Hermite inter-
polation polynomial (and the ratio between the largest and smallest magnitudes
of the coefficients) are not too large even for larger plaintext moduli p, passing
them through the large recursions in the Paterson-Stockmeyer algorithm exac-
erbates the magnitudes and ratios of magnitudes, causing overflows in doubles.
We observed that the problem can be fully resolved by scaling down the initial
coefficients and scaling back up the resulting ciphertext after the power series
evaluation. This intermediate scaling also helps reduce the CKKS scaling factor,
resulting in improved overall efficiency.

Table A3 provides more detailed results on the runtimes presented in Table 1.
For simplicity, in our multi-precision sign evaluation from Table 2, we only

implemented the case when there is a single digit of size p whose bit-size log p
divides the plaintext modulus bit-size logP , but we remark that this is not
necessary, and multi-precision evaluations with different digit sizes (that do not
divide logP ) can be implemented.
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Table A3. Experiments for the isolated evaluation of a single LUT (modular reduction)
for an RLWE ciphertext with plaintext modulus p and ciphertext modulus Q. Here,
log(Q) = log(∆) = log(q′0) and p = P . By log(Q′

LP
′) we refer to the number of bits in

the largest CKKS modulus, which includes all RNS limbs for the leveled computation
(multiplicative depth + 1) and all RNS limbs used in hybrid key switching. A single
RNS limb is left after the functional bootstrapping. Online time refers to the time for
the evaluation of the functional bootstrapping. The offline time refers to the the setup
time (evaluation keys generation), encryption of the messages, and precomputations.

Interp. log p logQ N log(Q′
LP

′) # limbs # limbs Online Amtz. on. Offline
order (enc, dec) HKS time (s) time (ms) time (s)

1 1 33 215 768 16 (3,3) 4 6.159 0.188 24.038
2, 3 1 33 215 747 19 (3,3) 2 10.25 0.315 45.934
1 2 35 216 1035 21 (4,4) 5 19.718 0.3 55.211

2, 3 2 35 216 1070 22 (4,4) 5 21.383 0.326 57.841
1 3 37 216 1114 22 (4,4) 5 21.464 0.327 57.047
2 3 37 216 1114 22 (4,4) 5 22.134 0.338 58.486
3 3 37 216 1151 23 (4,4) 5 23.663 0.363 60.586
1 4 38 216 1234 23 (4,4) 6 24.575 0.375 62.49
2 4 38 216 1234 23 (4,4) 6 25.447 0.388 63.439
3 4 38 216 1272 24 (4,4) 6 27.703 0.422 67.005
1 8 47 216 1535 25 (3,3) 6 47.322 0.722 89.609
2 8 47 216 1535 25 (3,3) 6 55.062 0.84 97.48
3 8 47 216 1522 26 (3,3) 5 63.054 0.962 111.129
1 9 48 216 1548 26 (3,3) 5 63.958 0.976 112.873
2 9 48 216 1548 26 (3,3) 5 76.288 1.164 125.13
3 9 48 216 1536 27 (3,3) 4 97.396 1.486 158.457
1 12 55 217 2420 32 (4,4) 11 599.9 4.577 698.705
2 12 55 217 2420 32 (4,4) 11 893.78 6.819 993.618
3 12 55 217 2475 33 (4,4) 11 1148.61 8.763 1251.85
1 14 58 217 2692 34 (4,4) 12 2130.1 16.25 2242.16
2 14 58 217 2692 34 (4,4) 12 3370.9 25.72 3493.46
3 14 58 217 2750 35 (4,4) 12 4407.3 33.62 4544.8
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