
Proteus: A Fully Homomorphic Authenticated
Transciphering Protocol

Lars Wolfgang Folkerts and Nektarios Georgios Tsoutsos

University of Delaware, Newark, DE 19716, USA
{folkerts,tsoutsos}@udel.edu

Abstract. Fully Homomorphic Encryption (FHE) is a powerful tech-
nology that allows a cloud server to perform computations directly on
ciphertexts. To overcome the overhead of sending and storing large FHE
ciphertexts, the concept of FHE transciphering was introduced, allow-
ing symmetric key encrypted ciphertexts to be transformed into FHE
ciphertexts by deploying symmetric key decryption homomorphically.
However, existing FHE transciphering schemes remain unauthenticated
and malleable, allowing attackers to manipulate data and remain unde-
tected. This work introduces Proteus, a new methodology for authenti-
cated transciphering, which enables oblivious access control, preventing
users from downloading unauthenticated or malicious data. Our proto-
col implementation adopts ASCON, NIST’s new standard for lightweight
cryptography, to enable homomorphic hashing and authenticated tran-
sciphering. Our ASCON transcipher is paired with the TFHE encryption
scheme, which is well suited to perform encrypted rotation and bitwise
operations. We evaluate our approach with a variety of real-life privacy-
preserving applications, including URL phishing detection, private con-
tent moderation of hate speech, and biometric authentication.

Keywords: Fully Homomorphic Encryption · Transciphering · Hybrid
Homomorphic Encryption.

1 Introduction

In the digital smartphone world, users are required to trust cloud entities with
personally identifiable information such as biometric data, financial information,
and government identification numbers. Even conversations between individuals
require trust that the host service is not compromised. This trust, however, is
often violated by data breaches [21,4]. Likewise, recent examples of government
infiltration highlights vulnerabilities in private communication, including the En-
crochat messaging app [27], PhantomSecure phones [11] and Anom phones [12].
After such devastating breaches, technology companies are pressured to adopt
new privacy solutions and protocols to protect user data and communications.
For example, Meta recently announced that they will roll out end-to-end en-
cryption as default on their messenger application in 2024 [13]. Their publicly
released whitepapers detail a new Messenger protocol that prevents Meta from
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accessing the messaging data, even in the case of a compromised server or a
government subpoena [22,23].

While these are welcome improvements, existing protocols are only designed
to protect data at rest and do not readily support applications that require the
cloud server to perform computations on user data. In addition, existing private
data backup methods cannot prevent bad actors from storing and disseminating
illegal or malicious data via the service (e.g., copyrighted materials). By relying
on symmetric key encryption alone, the only way to support these applications
would be to allow the cloud server access to the decryption key, contradicting
the privacy requirements of these schemes.

A promising solution to these challenges is Fully Homomorphic Encryption
(FHE), which allows remote servers to perform outsourced computations on
encrypted data. By using FHE ciphertexts instead of symmetric key encryption,
a server can perform the aforementioned content moderation, as well as biometric
authentication algorithms, without learning any information about the user.
Several powerful FHE-based frameworks have already been developed, including
convolutional neural network image classification [16,34] and sentiment analysis
classification [25].

Fig. 1: Basic Transciphering: Compressed TFHE ciphertexts are about 400
times larger than their plaintext counterparts, making storage less practical.
Transciphering allows a reduced communication overhead by transmitting of
symmetric ciphertexts, and converting them to FHE ciphertexts on the server
for further processing. Our work (see Figure 6) proposes a new protocol, Proteus,
intended for long-term data storage and oblivious data verification.

One optimization that has recently garnered attention is FHE transciphering
[10,2,19], also known as hybrid homomorphic encryption, which focuses on reduc-
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ing communication overheads caused by the substantial bitsize of FHE cipher-
texts. FHE ciphertexts can grow by two or three orders of magnitude compared
to their plaintext counterparts. This ciphertext inflation creates excess commu-
nication overheads when sending FHE data to a remote server [10,2]. FHE tran-
sciphering addresses this problem by allowing a server to transform symmetric
ciphertexts into FHE ciphertexts by performing symmetric key decryption homo-
morphically. In the basic blueprint, illustrated in Figure 1, a client encrypts their
plaintext data with a symmetric key cipher and sends the encrypted data to the
server. The client also homomorphically encrypts the symmetric key and sends
it to the server, along with the FHE public key; the server uses this FHE public
key to apply an outer FHE-encryption layer to the symmetric ciphertexts, before
homomorphically decrypting the ciphertext with the FHE-encrypted symmetric
key of the user. In effect, this step removes the inner layer of symmetric key
encryption altogether, leaving the server with a pure FHE ciphertext of the user
data. Finally, the FHE data can be processed and the homomorphic results are
returned to the user.

In this work, we propose Proteus, a new FHE-transciphering methodology
with support for authenticated data storage and oblivious data verification. Pro-
teus relies on three main primitives:

– an efficient FHE transciphering method for authenticated encryption,
– feasible private computation algorithms for data verification, and
– the server’s ability to obliviously manipulate the encrypted result.

Proteus’ first primitive requires authenticated FHE transciphering on stored
data. This deviates from previous works [10,2,20], which focus on protecting data
in transit, with many works relying on unauthenticated stream ciphers. Unau-
thenticated stream ciphers are malleable using simple XOR operations. This
allows attackers who can guess the underlying plaintext data to manipulate it
in meaningful ways. Thus, transciphering based on stream ciphers alone lacks
integrity protections, and requires a separate homomorphic message authenti-
cation code (MAC) solution to verify the integrity of the data. Toward this
end, we leverage the versatile TFHE homomorphic encryption scheme [9] and
evaluate the ASCON symmetric key encryption algorithm [14,28] to perform au-
thenticated encryption and hashing homomorphically. Our choice of ASCON is
further aligned with NIST’s standard for lightweight cryptography [32]. In par-
ticular, ASCON’s efficient use of bitwise operations makes it ideal for Boolean
homomorphic evaluation using TFHE; likewise, since its design does not con-
tain any complex mathematical operations, it allows the use of simpler FHE
encryption parameters, yielding more efficient transciphering and hashing.

For the second Proteus primitive, the private computation algorithms de-
pend on the context of the problem to be solved. In our work, we demonstrate
real-life applications of private content moderation, targeting URL phishing de-
tection and hate speech moderation datasets, as well as biometric authentication.
The private content moderation application relies on token comparisons of data,
whereas the biometric authentication relies on the L2 distance between biometric
feature vectors.
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Finally, Proteus’ third primitive allows the server to take action against in-
authentic or malicious data, as flagged by the first two primitives. This is done
by locking the data through a second encryption layer, and homomorphically
destroying the decryption key if the data was flagged.

Overall, our contributions can be summarized as follows:

– We analyze the benefits and address the challenges of the ASCON authen-
ticated cipher and hash family to enable homomorphic transciphering using
TFHE, and define a set of efficient FHE parameters tailored to efficient
transciphering;

– We propose Proteus, a novel zero-trust protocol for data access control, which
enables a remote server to homomorphically verify encrypted data and block
downloads of malicious data or unauthorized data accesses;

– We evaluate the effectiveness and practicality of our methodology using real-
life applications, including private content moderation, URL phishing detec-
tion, and privacy-preserving biometric authentication.

Roadmap: The rest of the paper is organised as follows: Section 2 discusses re-
quired preliminaries of ASCON and FHE encryption, while Section 3 defines the
security considerations. Section 4 provides an overview of the Proteus protocol,
followed by detailed implementation details in Section 5, while in Section 6 we
discuss and evaluate three real-life applications. Finally, Section 7 compares our
approach to related work, followed by our concluding remarks in Section 8.

2 Preliminaries

2.1 The ASCON Cipher Family

ASCON [14,15] is an authenticated cipher for lightweight encryption on con-
strained devices like embedded systems. In February 2023, NIST selected AS-
CON as the future standard for lightweight cryptography [28]. Here, we provide
an overview of ASCON for FHE transciphering and hashing, and refer readers
to the specification for full details [14,15].

ASCON uses a sponge construction with an internal state of five 64-bit in-
tegers, x0 to x4. ASCON’s core comprises 4 steps: state initialization that con-
sumes a key, a nonce and an IV, processing of associated data, data digest
(encryption/decryption), and finally tag generation for authentication. During
decryption (Figure 3), each ASCON block uses the internal state and the pre-
vious block’s ciphertext for several permutation rounds, resulting in a modified
internal state and a pseudorandom block to XOR with the next ciphertext.

Permutation Rounds. Each round has three steps: addition of a constant,
substitution operations and linear diffusion.

– Addition of a Constant: ASCON XORs the least significant bits of state
x2 with a plaintext constant: x2 = x2 ⊕ const.
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– S-box: ASCON transposes the state’s five 64-bit integers into sixty-four 5-
bit slices for a 5-bit S-box. This S-box can be computed using logic gates
(11 XOR gates, 5 AND gates and 6 NOT gates), allowing parallel bitwise
operations on the 64-bit integers. Such a small substitution table makes
ASCON ideal for Boolean FHE evaluation.

Fig. 2: The ASCON S-box: Circuit representation of ASCON S-box (v1.2),
based on the CEASER competition submission [14].

– Linear Diffusion Layer: This step uses bitwise rotation and XOR opera-
tions to update all five 64-bit integers.

x0 = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

(1)

The total number of rounds depends on the ASCON variant, typically 12
rounds (pa) for the initialization and finalization permutations, and 6-8 rounds
(pb) for processing the associated and plaintext data.

ASCON Hashes. The ASCON family includes variants ASCON-Hash and
ASCON-HashA, differing by the number of permutations pb (12 vs. 8) for each
block. Initialization uses a constant IV loaded into ASCON’s state buffer {x0, ...,
x4}, with specific constants for each hash variant [28]. During each digest step
(Figure 3), 64-bit message blocks are XORed with state x0 and undergo pb per-
mutations. Hash generation (squeezing) involves pa permutations for the first
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64-bit partial hash, followed by pb permutations for the remaining three, form-
ing a 256-bit digest. Input padding uses a bit pattern of 1 followed by 0s, and
at least one padding byte is required. Finally, both ASCON-Hash and ASCON-
HashA can be turned into eXtendable Output Functions (called ASCON-XOF
and ASCON-XOFA) to create arbitrary-size hashes. In this case, the initializa-
tion state differs for the two XOF variants, compared to the original hashes that
yield 256-bit fixed-size digests.

Fig. 3: ASCON Cipher Operations: ASCON supports both sponge-based
hashing and decryption, using permutation boxes of pa and pb rounds. For FHE
transciphering, we are primarily concerned with performing the ASCON decryp-
tion homomorphically.

ASCON ciphers. The ASCON family includes ASCON128, ASCON128a, and
ASCON80pq for authenticated encryption with associated data (AEAD). AS-
CON128 and ASCON128a differ in block size (64 vs. 128 bits) and permutations
pb (6 vs. 8), while ASCON80pq uses a 160-bit key and 64-bit block size. The
initialization concatenates the IV, the key, and the nonce, followed by pa per-
mutations and XORing the state with the key. Any associated data blocks are
digested via XORs and pb permutations, and this step is always finalized by
XORing x4 with 1. For encryption, input blocks are XORed to produce cipher-
texts, while decryption places ciphertexts into x0 (for ASCON-128) or {x0, x1}
(for ASCON128a) and the state undergoes pb permutations before XORing each
ciphertext with the previous block. Finally, authentication tags are generated by
XORing the state with the key, applying pa permutations, and XORing {x3, x4}
with the key once again. Padding is similar to the ASCON-hash, except no
padding is needed if associated data is not used.
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2.2 Fully Homomorphic Encryption

The LWE Problem. The security of TFHE is based on the learning with
errors (LWE) problem and its variants (e.g., Ring LWE and General LWE). We
focus on the Torus LWE (TLWE) representation to discuss basic FHE concepts.
More details on LWE ciphertexts can be found in [9].

The real torus Z = R/Z mod 1 is the set of real numbers modulo 1. Here, we
denote an inner product as ⟨·, ·⟩. In TLWE, a message m is encoded into plaintext
p by shifting m by ∆ and adding Gaussian noise e, so that p = ∆ · m + e, as
illustrated in Figure 4 (left). This is encrypted with a secret key s and a random
mask a, computing the body b = ⟨a, s⟩ + p, resulting in the ciphertext (a, b).
Decryption uses s to recover p = b− ⟨a, s⟩ = ∆ ·m+ e. Multiple values can be
encrypted under the same s with different a and e.

Fig. 4: (left) TFHE Shortint Ciphertext of 2-bit message: This is a visualization
of a TFHE ciphertext, where each square represents one bit. The illustration
shows that the TFHE message bits are encoded in the upper bits, with noise
added to the lower bits; (right) Addition of Two Ciphertexts: This figure shows
an sample operation. Both the message size and noise grows; note that if too
many operations are performed, the noise will start overwriting the message bits
and corrupt the output. Noise can be reset with a bootstrapping operation.

Fig. 5: TFHE Integer Ciphertext: This figure shows a TFHE integer representa-
tion, which is an array of shortints.

Alternative ciphertexts formats can also increase the number of dimensions
in a message; for example, Torus Ring LWE encrypt data over a polynomial
torus TN [X] = R[X] mod (XN + 1) mod 1, where N is a power of 2. Notably,
use of linear equations allows an evaluation server to perform addition and mul-
tiplication on m, but this increases the noise e; if e becomes too large, m is
unrecoverable.

TFHE Bootstrapping and Keys. Bootstrapping resets the noise in a TFHE
ciphertext [8], allowing continued computations, but can incur high latency that
depends on TFHE parameters. Functional bootstrapping reduces noise, while
programmable bootstrapping (PBS) further allows lookup table (LUT) evalua-
tions during bootstrapping, requiring more complex ciphertexts. Bootstrapping
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also includes a key switching step that allows switching between ciphertext types,
but can also enable switching encryption parameters between secret keys. Here,
the client must provide a key switching key to the evaluation server. Overall, we
use four main FHE keys: the client key for encryption/decryption, the public key
for server encryption of constants, the server key for functional bootstrapping,
and an optional key switching key for FHE parameter switching.

TFHE-rs Encoding Types. TFHE-rs offers three ciphertext encodings: Bool-
ean, Shortint, and Integer [8,35]. Booleans encode messages as bits (m ∈ {0, 1}),
while Shortints encode messages up to 8 bits with a carry buffer (allowing over-
flow) that requires periodic clearing; the default is 2-bit integers and 2-bit carry.
Integer ciphertexts are arrays of shortints (either signed or unsigned), and are
abstracted to types like FheUint8 to FheUint256. These use either a Chinese re-
mainder theorem or a radix encoding, with radix allowing rotations while being
slower.

In terms of computational complexity using FheUInt64 [35], bitwise opera-
tions (shift, rotate, AND, XOR) are most efficient (<20ms), while comparison op-
erations (with encrypted boolean output) are slightly more complex (50-100ms).
Addition and min/max functions incur higher cost (100-150ms), while multipli-
cation and division (with PBS if the divisor is known) have the highest cost
(200+ms). Notably, division by another ciphertext requires a slower bivariate
PBS or repeated subtractions [36]. Table 1 shows the cost of TFHE FheUint64
operations based on TFHE-rs benchmarks [35].

Table 1: TFHE benchmark time: We report the cost of various TFHE operations
on 64-bit integer ciphertexts. For certain operations, the latency is dependent on
whether both arguments are ciphertexts, or if one is a ciphertext and the other
a plaintext constant. The bold values are the operations used in ASCON, all of
which are low latency.

Operation f(ctxt, const) f(ctxt, ctxt)

Shift {≫,≪} 17.9 ms 160 ms
Rotate {≫,≪, } 18.4 ms 158 ms
Bitwise {&,∨,⊕} 18.2 ms 17.8 ms

Equality {=, ̸=} 49.1 ms 50.9 ms
Comparisons {≥, >,≤, <} 89.2 ms 102 ms

Additions {+,−} 117 ms 128 ms
Min/Max 130 ms 133 ms

Multiplication 227 ms 366 ms
Division 391 ms 8.83 s

Homomorphic Applications. To provide better context for the possible ap-
plications of our Proteus protocol, we briefly discuss common homomorphic
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applications. Notably, many complex algorithms have been implemented with
TFHE, especially in machine learning. Basic statistics applications include lin-
ear regression, logistic regression, matrix multiplication, Manhattan distance,
Euclidean distance, and Hamming distance, which are efficient benchmarks in
TFHE [18,26]. Likewise, VGG-style convolutional neural networks (CNNs) us-
ing TFHE have been proposed: REDsec [16] classifies ImageNet-sized images
in TFHE, while recent works focus on CIFAR10 [34] and MNIST classification
(using a multilayer perceptron network) [29,5]. Here, the challenge is discretiz-
ing weights from floating point to n-bit integers, balancing weight size and FHE
latency. REDsec uses 1-bit and 2-bit weights, while ConcreteML recommends
2-bit to 4-bit weights.

Recurrent neural networks (RNNs) for text processing remain an open re-
search area. Trama et al. [31] developed long-term short memory (LTSM) blocks
using TFHE, but without concrete applications. Zama built an attention module
in ConcreteML [24] for a single layer in a larger GPT model. Random Forest and
XGB-boost algorithms are efficient, and can run on the scale of seconds when
precision is limited to 4 bits; sentiment analysis applications can use XGB-boost
on a transformer-based output for text classification [25]. Likewise, Zuber et al.
[37] developed a K-Nearest Neighbor algorithm, based on ConcreteML [34].

3 Threat Model Considerations

Our application assumes two parties: a client who aims to safeguard their data,
and a server protecting their algorithm’s intellectual property. While many FHE
works only consider an honest-but-curious (i.e., semi-honest) model, our work
will also consider scenarios with malicious clients and servers that can deviate
from the protocol. In particular, a semi-honest server is incentivized to learn
their clients’ data (e.g., for advertising purposes), but will always execute the al-
gorithm faithfully. Conversely, we assume that a malicious server is incentivized
to extract the clients’ data and is not guaranteed to faithfully execute the agreed-
upon protocol (e.g., a hacked or coerced server). Similarly, semi-honest clients
may attempt to download malicious or unauthenticated data, while still follow-
ing the agreed protocol. Finally, we assume that malicious clients are motivated
to bypass the server’s security checks and are not guaranteed to follow the agreed
protocol (for example, they can attempt to store malicious data on the server
and attempt to bypass detection, or drop out of the protocol altogether).

Key Management Considerations. For our Proteus protocol, we assume
the following: The client encrypts their data with the symmetric key and sends
the ciphertext to the server. The client also generates four FHE keys: client,
server, public, and key-switching. The client encrypts the symmetric key with
their client FHE key and sends the FHE-encrypted symmetric key to the server.
The client also sends the server, public, and key-switching FHE keys so the server
can transcipher the symmetric ciphertext. Notably, the server never accesses the
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unencrypted symmetric key or the client’s FHE key, and cannot recover the
plaintext.

In our implementation, we inherit the security of the ASCON variants, which
operate at 128 bits of security, for data storage. We also rely on TFHE operating
at 128 bits of security for Proteus’ transciphering and data processing.

4 The Proteus Protocol

4.1 Motivation for Private Content Moderation

To provide context for the Proteus protocol, let us first motivate our private
content moderation applications.

As we adapt to a digital world, private chat rooms have become a cornerstone
for trusted communications. By offering secure channels, we foster individual
autonomy, empower marginalized voices to be their genuine selves, protect wit-
nesses and whistleblowers, and facilitate activism in oppressive regimes. While
the right to privacy needs to be guaranteed to allow for protections and societal
advancement, many nefarious actors often abuse this technology. Many private
messaging communities are rife with objectively horrible things such as the trad-
ing of dangerous substances, disseminating hate speech, and sexual abuse and
extortion. The presence of malicious behavior within these chat rooms can draw
unwanted political and reputational scrutiny, posing a risk of potential bans or
shutdowns for the platform. It is crucial to address and mitigate such behavior
to safeguard the longevity and integrity of these integral web services. For exam-
ple, after violent attacks, Telegram was forced to close public extremist channels
after facing political and corporate pressure. However, no good solution has been
available for monitoring closed private groups.

In our proposed approach, we allow a user post encrypted messages to a
server. When computational resources are available, the server can use FHE
transciphering to verify the data homomorphically. If the data is classified as
malicious, the server will prevent the user (or any party holding the ASCON
and FHE client keys) from downloading the data.

4.2 Overview of our Protocol

To introduce Proteus, we first assume the baseline case comprising a semi-honest
user and a semi-honest server (malicious cases are discussed in section 5). In
addition to the key ownership defined in Section 3, we will also use a second
symmetric key, denoted SK2, owned by the server. Our protocol is presented in
Figure 6, and the corresponding steps are summarized as follows:

1. User Symmetric Encryption: The user encrypts their private data M
with a symmetric encryption key SK1 and sends the encrypted data E1(M)
to the server. They never share the symmetric encryption key with the server.
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Fig. 6: FHE Data Verification Overview: Here we show an overview of our
Proteus protocol. A server can store encrypted user inputs; when computational
resources become available, the server can convert the ciphertext to FHE and
homomorphically test if the data is valid and not malicious. Then, when the user
wants to download the data, the server adds a second encryption layer and only
reveals the outer key SK2 to the user if the data is not labeled as malicious.
By blocking downloads of malicious data, users are discouraged from storing
malicious data on the server.

2. Server Transciphering: When the server is ready to process the data, they
will need to ask the user to share a homomorphically encrypted symmetric
key FHE(SK1). The server uses this key to “decrypt” the ciphertext homo-
morphically and retrieve the homomorphically encrypted message FHE(M).

3. Server Data Verification: The server can verify the ASCON tag and per-
form any data verification algorithm f(X). Convolutional neural networks
and string comparisons are two such algorithms utilized in our work.

4. Server Symmetric Encryption: The server will generate a new secret key
SK2 and use a second symmetric encryption scheme to double-encrypt the
original user data E2(E1(M)). This data can be sent to anyone that knows
the user’s symmetric key SK1 and the user’s FHE decryption key.

5. Server Symmetric Key Destruction: The server can homomorphically
destroy its symmetric key if the data verification result fails by multiplying
with FHE(0); otherwise, the symmetric key remains intact FHE(SK2).
In practice, this is possible using a homomorphic bitwise AND with the
verification result (i.e., homomorphic 0 or 1). This yields an FHE encryption
of a secret key, which we denote FHE(SK2 · result), and is sent to the user.

6. User Download/Decrypt: The user now has E2(E1(M)), SK1, KFHE ,
and either FHE(SK2) or FHE(0). If the data passes the verification step,
the user can (a) FHE decrypt FHE(SK2 · result) to retrieve SK2, (b) de-
crypt E2(E1(M)) with SK2 to remove the server’s encryption layer E1(M),
and (c) use their SK1 to retrieve the message M .



12 L. Folkerts et al.

5 Proteus Implementation

5.1 User Symmetric Encryption

In the first step, the user encrypts their data using a symmetric key cipher.
As emphasized by our discussion, the choice of cipher is very important, as the
server must decrypt the ciphertext homomorphically. The user then sends the
encrypted message and message authentication tag to the server. A message au-
thentication method is also required since this data will be stored in an online
database and is a potential target for malicious parties; an attacker on a com-
promised server can modify user data without detection, violating data integrity.
Therefore, Proteus utilizes ASCON for our authenticated symmetric key cipher,
which we homomorphically evaluate in TFHE-rs.

As discussed in Section 2.1, ASCON’s internal state is represented by an
state array of five 64-bit integers. Using the TFHE-rs integer abstraction, this
state can be represented with the FheUint64 data type. The default TFHE-rs
parameterization of FheUint64 contains an array of 32 radix-encoded shortint
ciphertext with 2 carry bits and 2 message bits. This option, which we call
parameter set A, is useful for downstream operations, such as neural network
evaluations. However, since ASCON’s core uses bitwise operators and rotations
operations exclusively, this allows for an even simpler parameter set for cipher-
texts with 1 message bit and 1 carry bit (which we call parameter set B).

Still, the default parameters will also need to support multiplications and
comparisons, which are essential for evaluating downstream algorithms on the
FHE data, such as our private content moderation and biometric authentication.
In this case, we can perform a key switching operation on FHE ciphertexts to
switch between parameter sets. Key switching is possible during bootstrapping
using the client’s key switching key.

Table 2: TFHE Parameters for ASCON Evaluation.
ParamsA ParamsB ParamsC

Integer Integer Boolean

LWE Dimension 761 702 811
GLWE Dimension 1 3 3
Polynomial Size 2048 512 512
LWE Noise 6.37E-06 19E-05 5.28E-06
GLWE Noise 3.15E-16 3.97E-12 9.38E-10
PBS Base 23 18 10
PBS Level 1 1 2
KS Base 2 4 3
KS Level 5 3 5
Message Bits 2 1 N/A
Carry Bits 2 1 N/A
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5.2 Server Transciphering

For the transciphering step, the server requires FHE(SK1), along with the FHE
server and public keys. The server key is 26MB, which can limit long term
storage. Thus, the server would only need to receive this key if the user asks to
access/download the data. Luckily, once the user data is verified, the server can
discard the keys and keep only the FHE(SK2) value, which is around 6kB for
a 128-bit key.

In TFHE-rs, the output ciphertext can be encoded as an FheUint64 variable
with limited carry padding or as a stream of bits. It is likely that a key switch
should be performed to convert the ciphertext back into the default integer
parameter set for future processing. The data can also be cast from FheUint64
to the appropriate data type, such as FheUint8 or FheUint16.

5.3 Server Data Verification

To tolerate malicious users, this step requires three distinct checks: tag verifica-
tion, bounds verification, and malicious data detection. Each check returns an
encrypted bit, which can be combined together with a homomorphic OR opera-
tion for a single verification bit. If any of the tests fail, the decryption key SK2

will be locked, preventing the user from accessing the data.
The tag verification check will confirm the integrity of the data. This check

will fail if the server received an incorrect tag, or an incorrect FHE-protected de-
cryption key, or if an attacker compromised the server’s database. This check can
be implemented as a homomorphic comparison between the server-computed de-
cryption tag (from transciphering) and the user-provided tag (after being FHE-
encrypted). Overall, this comparison takes 198ms using a single thread.

The second check (bounds verification) is required to prevent certain attacks
from malicious users, which are incentivized to provide false information in order
to store malicious data on the server. For example, they can give a fake symmetric
key, FHE(SKforged

1 ), and forge a corresponding fake tag, so the tag verification
test will pass. The goal of giving a fake key and tag is to confuse the malicious
data detection algorithm and convince the server to release FHE(SK2). Then,
the user will be able to decrypt with the valid SK2 and their own SK1.

The exact nature of the bounds verification test will depend on the nature of
the data. If a fake key is given, the output ciphertext will be a pseudo-random
stream of bits, which is straightforward to compare against patterned data. In
our private content-moderation examples, we encode 15-bit tokens as 16-bit inte-
gers, so the verification is a simple homomorphic OR of randomly sampled most
significant bits. Using 16 random bits gives a 2−16 chance of a false negative and
takes only 312ms to compute. As an additional example, patterns of colors in
picture data can be utilized to detect randomness (e.g., by sampling adjacent
pixels and calculating their difference); if many adjacent pixels exhibit major
differences in color, the test fails.

The third step focuses on malicious data verification. This test would require
one the FHE-friendly applications mentioned at the end of section 2.2. For our
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case study on text data, we employ string comparisons, while image data can
rely on FHE convolutional neural networks. Notably, this computation will take
up the bulk of the verification time.

Finally, the server must account for false positives for most implementations
and applications. This needs to be implemented into a public security policy that
will be application-dependent and is outside the scope of our Proteus protocol.
However, we discuss two mitigating recommendations that can be adopted to
prevent an unwarranted data lockout. In a nutshell, the server can use a threshold
and block a user’s data only if multiple violations are detected. Alternatively,
the server can periodically send the original user a copy of their (encrypted) data
verification results, which gives them a short grace period to download the data
before locking it for everyone.

5.4 Server Symmetric Key Encryption

The server can double encrypt the data with SK2 (allowing users to download the
nested ciphertext at any time) and store both E2(E1(M))) and SK2. Contrary to
the constraints for selecting the transciphering algorithm E1, the server can select
any secure symmetric key algorithm E2, as the user will run the E2 decryption
in the clear (i.e., not homomorphically). When the user is ready to download
the data, the server can send the double encrypted message back to them.

For private content moderation applications, the data verified and the data
downloaded are the exactly same. However, we remark that this does not need
to be the general case in the Proteus protocol, as we showcase in Figure 8.
Specifically, Proteus can be used to verify one set of data to provide access to
another. One example would be biometric verification, where a server stores
both encrypted biometric information and sensitive data. The user can send in
an encrypted biometric scan and request a homomorphic biometric comparison
for data verification. Then, the server can double-lock sensitive information only
if the user biometrics are verified.

5.5 Server Symmetric Key Destruction

When the server computes the result of a homomorphic data verification, user
privacy is preserved since the server is unable to read the FHE encrypted result,
and only the user would be able to decrypt this information. As a case study,
consider a server that asks the user to decrypt the boolean result and send it
back to the server. There are two major issues here: First, a malicious user can lie
to the server. To mitigate this, the server could obfuscate the result (e.g., XOR
the result with a random bit) and homomorphically sign the boolean result.

A second and bigger issue would be the case of a malicious server. In our
threat model, the server should not learn any information about user data, in-
cluding whether the data is malicious or not, because this power can be abused
to correlate/leak other private information. In this case, a malicious server could
simply ask for the user to decrypt a bit of the ASCON key instead of the actual
result, weakening the ASCON cipher security and allowing for a full key recovery
after repeated queries.
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Our proposed double encryption method allows the server to obliviously lock
sensitive information when the data verification test fails. In more details, we
homomorphically expand the verification check results (single FHE bit) into a
vector of encrypted 1s for data that passed the test, or a vector of encrypted
0s for data that failed the test. We then use an AND operation to destroy the
FHE-encrypted SK2 key when data verification fails. This operation takes only
50ms on a single core. The server has the option to compress and store the
homomorphically ANDed key, which is 6kB in size, to send to the user later.
Doing so allows the server to delete the large 25MB TFHE-rs server and public
keys.

5.6 User Download Decrypt

The server can now send the double-encrypted data and homomorphically en-
crypted SK2 key to the user when the user is ready. The user needs to maintain a
copy of the FHE client key and the symmetric ASCON key to be able to recover
their plaintext data (unless they are destroyed).

6 Applications and Experimental Evaluation

In this section we evaluate several target applications, as well as the ASCON
cipher family. We use a 24-core Intel i9 desktop for our experiments.

6.1 Application: Private Content Moderation

We demonstrate our Proteus protocol on two content moderation tasks on video
game chat from the game “Dota 2”. We target two forms of content moderation,
focusing on english language chat messages. The first task is URL detection,
to prevent phishing and spamming of the chat logs. Here, we aim to block 5
common URL words (HTTP, HTTPS, WWW, COM, TWITCH) to discourage
users from spamming the chats. The second task expands this to a dataset of
211 hate speech and swear words from Surge AI [1] (which is compressed to
169 words during pre-processing). The goal is to employ the Proteus protocol to
enable private chatrooms, while discouraging rooms that promote hate speech
to continue to operate on the chat server.

Data Encoding. For data encoding, we use the BERT tokenizer API to convert
our data into 15-bit tokens. Each token represents a series of letters; for exam-
ple “Proteus” gets decomposed into 15-bit tokens {4013,2618,2271} representing
{“Pro”, “te”, “us”}. This encoding leads to a compression of 23.1% compared to
ASCII storage of our video game dataset, which contains lots of misspellings
and leet-speak. More conventional text is expected to achieve higher compres-
sion, with BERT reaching 51.8% on Charles Dickens’ “A Tale of Two Cities.”

The blocked words are encoded as BERT tokens in the same way. For the URL
detection example, all of the 5 sample words were encoded as a single token. For
hate speech, we first filtered out 35 words that contained BERT token substrings
that were also in the list. The resulting list contained 169 words comprising of
{11, 84, 43, 21, 5, 0, 1} token strings of length {1,2,3,4,5,6,7} respectively.
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Fig. 7: Homomorphic String Comparison: This figure illustrates homomor-
phic string comparison with the tokens {“Pro”, “te”, “us”}.

Homomorphic Data Verification. After transciphering, the server utilizes a
private set intersection algorithm on the tokens, using a sliding window. For the
URL detection dataset, we employ a vectorized comparison of each token in the
user message with the blocked tokens. Then, the server ORs this list together,
for an inverted result, before applying the NOT-operation to get the expected
encoding of 0 being malicious.

For hate speech, the blocked words span t tokens, which increases computa-
tional complexity. In this case, the server performs four overlapping steps. First,
the server applies a vectorized comparison of the input string for each unique
token, resulting in t output vectors. Then the server shifts the vectors by the
offset, so t0 remains the same, t1 shifts by one space left, t2 shifts two places
left, and so on. These steps are shown in Figure 7. Next, the server ANDs the
shifted vectors together to get a positive result at indexes where swear words are
located. A homomorphic OR is finally performed operation across the vectors,
followed by the NOT inversion.

Evaluation. Using the techniques proposed above, along with the ASCON128a
protocol for E1 and AES128 for E2, we performed private content moderation on
the Dota 2 video game dataset. For ASCON, we assumed the user sent the FHE-
encrypted key and the full warmup period was calculated. We used message sizes
of 1024 tokens for our ASCON decryption. For the URL detection, we were able
to perform ASCON decryption and blocked word detection every 1.87 seconds
per token, corresponding to about 1.44 seconds per character. For hate speech
detection, we were able to achieve 10.00 seconds per token or about 7.68 seconds
per character.

6.2 Application: Private Biometric Authentication

We also demonstrate how to leverage our protocol to protect biometric data in
the cloud, which requires minor changes to the base Proteus scheme. Hosting
biometric data on the cloud requires high privacy guarantees, as biometric fea-
tures are permanently tied to an individual and data leaks may cause irreparable
harm. Using Proteus, a user’s biometric data can be protected using ASCON en-
cryption, without the need to ever share the ASCON key with the cloud server,
which guarantees user privacy. Later, the user can provide a current biometric
scan to authenticate themselves. In this application, we assume the user has
some private data encrypted on the server E3(M), and the user is the only one
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possessing the symmetric encryption key SK3. For example, the private data
can be a secure token to activate other devices of the user, or document stored
by the user, such as a password file.

Fig. 8: Biometrics with Proteus: This is a variant of the base protocol, where
we assume the server stores one set of encrypted data to verify and one set of
encrypted data to download. Using the Proteus protocol, the user will only be
able to open the data if they have been verified.

Data Encoding and Registration. For our dataset, the user scans their face
and utilizes a neural network to extract a vector of 256 facial features. Our target
neural network model is the nn4.small2.v1.t7, provided by the open computer
vision library. For secure registrations, the user simply sends their biometric data
E1(Bioreg) to the cloud, encrypted with the user’s ASCON key (registration
steps not visible in Figure 8). Notably, this approach avoids long-term storage
of FHE data on the server to minimize storage requirements.

Homomorphic Biometric Authentication. For secure and private biometric
authentication, the user will start the facial scan and extract the a new feature
vector Bioauth. As discussed, the goal is to authenticate the user and provide
them with E3(M), if the verification check passes. The protocol steps are as
follows:

1. Client FHE Encryption: The user will FHE-encrypt the new feature vec-
tor FHE(Bioauth) and their original ASCON key FHE(SK1).

2. Transciphering: The server applies the Proteus protocol to transcipher the
ASCON biometric feature vector (from registration) into FHE(Bioreg).
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Table 3: ASCON family variants: Parameters bit-length and number of rounds;
pa denotes initialization rounds, while pb denotes digesting rounds.

Ciphers Key IV/Tag Block pa pb

ASCON128 128 128 64 12 6
ASCON128a 128 128 128 12 8
ASCON80pq 160 128 64 12 6

Hashes Hash Block pa pb

ASCON-Hash 256 64 12 12
ASCON-Hasha 256 64 12 8

3. FHE Authentication: The server will first verify the authentication tag to
ensure the underlying data was not modified. The server can then homomor-
phically compute the squared Euclidean distance between the registration
and authentication vectors and compare it to a static threshold.

4. Server Double Encryption: The server will then double-encrypt the pro-
tected user data with SK2 to compute E2(E3(M)) to be sent to the user.

5. Homomorphic Key Destruction: If both the tag verification and facial
recognition tests pass (i.e., result is FHE(1), the server can obliviously re-
lease user data using the Proteus double-encryption scheme; that is, the user
gets either the decryption key or a zero vector depending on the homomor-
phic test result FHE(SK2 · result).

6. User Decryption: If the biometric authentication passes, the user now has
both SK2 and SK3 and can decrypt E2(E3(M)) to retrieve M .

Evaluation. We evaluated this case study using ASCON128a for encryption
E1, and AES128 for encryption E2 and E3. For ASCON, the user sent the FHE-
encrypted key and the full warmup period was calculated. The private biometric
authentication took 600.3 seconds, including 128.7 seconds for ASCON decryp-
tion of the 512-byte feature vector and 471.6 seconds for evaluating Euclidean
distance on a vector of 256 16-bit integers. We remark that the user has the
option to upload E1(Bioauth) and transciphering to obtain FHE(Bioauth) (in-
stead of uploading FHE(Bioauth) directly). While this saves about 28kB in
communication overhead, it incurs an additional 128 seconds of computation.

6.3 Performance Evaluation of ASCON under FHE

In our analysis, we evaluated four algorithms from the ASCON family: AS-
CON128, ASCON128A, ASCON-Hash and ASCON-HashA. Each algorithm was
evaluated on message sizes from 1 block (64 or 128 bits) up to 2 kilobits. Since
we aligned our messages with the block size, each message had 1 additional block
of padding. We measured the warmup, throughput, padding, and cooling times
across all message sizes, and the digest time for 1 kilobit was determined through
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Fig. 9: Digest Times for 1 kilobit of FHE transciphering.

linear regression across all sample sizes. Our parameters are summarized in Table
4 and our evaluation results in Figure 9.

Ciphertext Parameterization: Our analysis shows that the simpler FHE ci-
phertexts achieved a significant speedup. Compared to the default (parameter
set A), simpler parameter sets (i.e., B and C) offer a 8.3% to 12% speedup for
decryption and 27.1% speedup for hashing.

Choice of Cipher: We further observe that ASCON-128a has a significantly
lower latency than ASCON-128 by requiring fewer permutation rounds (i.e., 8
permutations on one 128-bit block, instead of 6+6 across two 64-bit blocks). A
possible drawback of using ASCON128a is the potential for longer padding; our
results show that messages aligned to 256 bytes were still faster for ASCON-128a.
Regarding the warmup time, the state can be pre-initialized by the user, who
would then share an FHE-encrypted 320-bit ASCON state instead of an FHE-
encrypted 128-bit key. This incurs an extra 2.5x memory overhead, increasing
the data size from 6 kilobytes to 18 kilobytes. This is negligible, however, if the
FHE-encrypted ASCON keys are not stored on the server and is beneficial for
smaller messages.

Choice of Hash: Lastly, we report that the ASCON-HashA is 33.1% faster
than ASCON-Hash, since it requires fewer permutation rounds (i.e., 8 instead
of 12) for a 64-bit digest. We also note that the hash times are longer than
the authenticated cipher, since the ASCON hash algorithm requires more per-
mutations to meet stronger security bounds compared to authentication tags.
Notably, ASCON hashes do not require a warm-up phase since the initial state
is constant and does not depend on a key or nonce.
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7 Related Works

7.1 FHE Block Ciphers

AES is a common FHE benchmark and recent work has focused on optimiz-
ing FHE transciphering with AES [33,30]. One of the major challenges with
FHE-AES implementations is the large 8-bit S-box. In plaintext, this can be
implemented as a lookup table (LUT), since small LUTs are computationally
feasible in TFHE. In FHE, however, even small LUTs require large polynomials,
resulting in performance slowdowns.

Recent work entitled “At Last” [30] builds an AES implementation by packing
each of the 8 output bits into a single lookup table, then further packing sets
of input bits into a large polynomial. The authors experimentally determined
that their 8-bit LUT can best be replaced by smaller 4-bit LUTs put into a tree
structure. This method uses 16 LUTs per S-box lookup. The authors also use 32
smaller-sized LUTs for multiplications along with XORs in the MixColumns step,
and XORs in the add round key step. In terms of performance, our results (Table
4 show that “At Last” requires 240 seconds per kilobit (without key expansion),
while ASCON128a (params B) only requires 168.6 seconds.

In Fregata [33], the authors built an AES implementation by packing each of
the 8 output bits into a single lookup table, then further packing sets of input
bits into a large polynomial. This translates to 8 LUTs per S-box lookup. The
drawback of this approach is that the ciphertexts are much bigger, making com-
putations on them significantly slower. Fregata attempts to mitigate this by key
switching to a less complex polynomial for the add round key and mix columns
steps of AES, which are both implemented as XOR and rotate. In terms of run-
time, Fregata requires 86 seconds for AES (we remark that since Fregata is not
open source, was not possible to verify their results on the same hardware config-
uration as our work). Moreover, the runtime result do not include homomorphic
key expansion or a mode of operation so the ciphertexts are unauthenticated
and prone to tampering.

7.2 FHE Stream Ciphers

Stream ciphers are generally less computationally expensive than block ciphers,
as they generate a stream of random bits to be XORed with a plaintext. Despite
their efficiency, unauthenticated stream ciphers are not recommended as it is
trivial for an adversary to change a bit without detection via XOR. In this case, a
separate algorithm would be needed to generate a secure message authentication
code (MAC). Despite these limitation, recent works in the FHE community have
focused on developing FHE-friendly stream ciphers.

One major class of stream ciphers are nonlinear feedback shift registers
(NFSR) based ciphers, which include Trivium and Kreyvium. Trivium is an
ISO-standardized stream cipher that was selected in 2005 as part of European
eStream low hardware-footprint cipher. It was designed to have 80 bits of se-
curity, and later, a 128-bit variant, Kreyvium, was created for homomorphic
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Table 4: Evaluation and timimg comparisons to other ciphers. ASCON is the
fastest block cipher and hash function, and is the only cipher that is authenti-
cated. All times are in seconds per kilobit.

Type Warmup Digest Padding Tag Note

Trivium [2] Stream 12.9 7.8 - - 80-bits security
Kreyvium [6] Stream 17.1 9.7 - -

Elisabeth Stream - 32.8 - -

AES [30] Block N/A 240.0 N/A N/A
ASCON 128 Params A Block 22.1 230.6 14.4 22.1 Authenticated
ASCON128 Params B Block 19.3 202.8 12.7 19.3 Authenticated
ASCON128a Params A Block 20.6 183.9 23.0 20.7 Authenticated
ASCON128a Params B Block 18.1 168.6 21.1 18.1 Authenticated
ASCON80pq Params A Block 22.4 230.4 14.2 22.1 Authenticated
ASCON80pq Params B Block 19.9 203.0 12.7 19.1 Authenticated

SHA256 Hash - 176.5 88.3 -
ASCON-Hash Params A Hash - 281.8 17.6 86.9
ASCON-Hash Params B Hash - 205.7 12.9 75.7
ASCON-Hash Params C Hash - 213.3 13.5 89.7

ASCON-HashA Params A Hash - 188.5 11.8 74.9
ASCON-HashA Params B Hash - 137.4 8.6 67.2
ASCON-HashA Params C Hash - 139.2 8.4 69.3

encryption applications. Both ciphers use a 288-bit state to generate an output
bit. Trivium and Kreyvium are designed such that only state bits older than
the previous 66 operations are used, allowing 64-bit streams can be computed in
parallel. NFSRs are vulnerable to cube attacks after reducing the initialization
from 1152 rounds down to 820 or fewer rounds [7,17]. These ciphers are still
considered secure with the full number of rounds [2].

Another class of homomorphic-friendly stream ciphers is group filter permu-
tators. These ciphers use a pseudo-random number generator (PRNG), seeded
with a public initialization vector, to sample and permutate FHE-key bits be-
fore sending them to a filter function. Here, only the filter function needs to be
implemented homomorphically. The first group filter permutator is FiLIP [20],
which adds a whitening step in between the permutation and the filter function,
where the permutated bits are XORed the PRNG-generated bits. A threshold
function to produce a final output bit.

A second cipher, named Elisabeth-4 [10], was implemented with TFHE in
mind, where data was packed efficiently in the polynomial fields of the cipher-
text. This allows for an efficient 4-bit S-box based filter function. Gilbert et al.
published a cryptanalysis of Elisabeth-4 a year after its release, and reduced
its security from 128-bits to 88-bits. The concern was a known-IV linearization
attack due to a vulnerability in Elizabeth’s S-boxes.
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7.3 Hash Functions

There is still limited work on TFHE-friendly hash functions. The authors of
the TFHE library provide code for SHA-256 evaluation as one of their examples.
Moreover, Bendoukha [3] proposes using off the shelf block ciphers such as Prince,
SIMON, Speck, and LowMC for hashing. However, their results can only hash
128-bits in the scale of minutes, compared to ASCON and SHA256 which we
achieve a kilobits in the same time (Table 4).

8 Conclusion

In this work, we present the Proteus methodology to allow for private but veri-
fiable data access control on remotely stored data. The methodology guarantees
the user privacy, even in the case of a malicious server that attempts to de-
viate from the protocol. Our implementation relies on the security guarantees
on the state-of-the-art TFHE cryptosystem for homomorphic computation. Pro-
teus also leverages the new ASCON cipher suite to protect the integrity of the
data stored on the server. We demonstrated Proteus’ capabilities with three case
studies, successfully allowing a server to obliviously lock data for malicious or
unauthenticated users.
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