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Abstract. This work conducts a comprehensive investigation on deter-
mining the entropic hardness of (R/M)LWR under polynomial modulus.
Particularly, we establish the hardness of (M)LWR for general entropic
secret distributions from (Module) LWE assumptions based on a new
conceptually simple framework called rounding lossiness. By combining
this hardness result and a trapdoor inversion algorithm with asymptoti-
cally the most compact parameters, we obtain a compact lossy trapdoor
function (LTF) with improved efficiency. Extending our LTF with other
techniques, we can derive a compact all-but-many LTF and PKE scheme
against selective opening and chosen ciphertext attacks, solely based on
(Module) LWE assumptions within a polynomial modulus. Additionally,
we show a search-to-decision reduction for RLWR with Gaussian secrets
from a new Rényi Divergence-based analysis.

1 Introduction

Lattice-based cryptography has attracted significant attention in recent years
– first it stands out as one of very few promising candidates against quantum
algorithms [55], and moreover, it provides as a robust foundation upon which
a wide array of (advanced) crypto systems can be built, e.g., [47]. Particularly,
many lattice-based crypto systems are directly based on the learning with error
(LWE) problem [52], which enjoys search-to-decision reductions [40, 41, 44, 52]
and as well as worst-case hardness from some lattice problems, under quantum
or classical reductions [16,44,52]. These results instill confidence in the hardness
of LWE, encompassing both its decision and search forms, and consequently, in
the security of cryptographic systems derived from LWE.

However the LWE problem requires to sampling random errors, leading to
efficiency losses and complications in designing some cryptographic primitives
that are deterministic in its nature of computation, e.g., pseudorandom func-
tions (PRFs). To tackle these challenges, the work [5] introduced the Learning
with Rounding (LWR) problem as a derandomized version of the LWE. Then
the research community identified that many crypto systems can be naturally
derived from LWR, such as PRFs [5] , lossy trapdoor functions (LTFs), reusable
extractors, and deterministic encryption [1]. As these systems do not require



Gaussian samplings, they are in general easier to implement and more efficient.
To further improve efficiency, we can employ additional algebraic structures,
such as Ring-LWR or Module-LWR, similar to the Ring/Module-LWE problem.

Robustness of LWR. Goldwasser et al. [27] initiated a study on the robustness
of LWE, aiming to achieve an entropic notion of security that guarantees LWE
hardness even if the secret only contains certain entropy. This notion has nat-
ural connection with leakage resilient cryptography and has many applications
(see e.g., [30] for a survey). In the research of (Ring-Module) LWE, significant
progress has been made [1,2,12,14,15,27,35,39]. Particularly, [14] (and [15]) con-
firmed the hardness of entropic LWE (RLWE) for general entropic distribution,
i.e. the secret has sufficient entropy.

However, for the case of (Ring/Module) LWR, current research remains un-
satisfactory for the following reason:

– While it is possible to derive the hardness result of entropic LWR for general
entropic distribution by combining the hardness result of [14] with the simple
reduction from LWE to LWR in [5], this approach requires the moduli to
be super-polynomial. Unfortunately, this parameter setting leads to worse
efficiency and requires stronger assumptions on the underlying LWE problem
(with super-polynomial modulus).

– To address these drawbacks, [1] (and [36]) showed the hardness of entropic
LWR (Module LWR) with polynomial modulus, but their reductions only
hold for bounded secret distributions, meaning that the secret must come
from some small-norm distributions.

– For Ring-LWR with polynomial modulus, our understanding is limited – it
remains unknown whether the output is pseudorandom if the secret comes
from a norm-bounded distribution, particularly the Gaussian distribution.

These shortcomings hinder the applicability of current hardness results in
analyzing the security of the crypto schemes in [1], which requires an entropic
(Module) LWR for general secret distributions. Additionally, leakage resilience
of some RLWR (or MLWR)-based PKE schemes is affected, as seen in early
round submissions to the NIST’s post-quantum cryptography call (e.g., [3, 21]).

The above discussions highlight a gap between our comprehension in entropic
(Ring/Module) LWE and that in entropic (Ring/Module) LWR. On one hand,
the most effective attacks to LWR appear to be those designed for LWE. On the
other hand, there are apparent technical barriers to establishing the hardness
of LWR based on LWE within a polynomial modulus, as indicated in [43]. In
an effort to advance the state of the art, this work is motivated to undertake a
more refined exploration of entropic (Ring/Module) LWR, with a specific focus
on the following objectives.

(Main Goal 1:) Under polynomial modulus, determine the hardness of
entropic (Module) LWR for general secret distributions, and the hardness
of (decision) RLWR for Gaussian secrets.
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Compact LTFs from Lattices. Lossy trapdoor functions (LTFs) are pow-
erful crypto tools that can be used to construct many applications, such as
trapdoor one-way functions, collision-resistant hash functions, lossy encryption,
CCA2 secure PKE, etc, [50]. They can be extended to design the more advanced
all-but-many lossy trapdoor functions (ABM-LTFs) [13, 34], which can be used
to realize PKE with a stronger notion of security, namely, selective opening
chosen-ciphertext-security (SO-CCA security). For lattice-based constructions,
there are several prior works [1, 7, 22, 50], among which, the construction in [1]
is conceptually very simple, based on entropic LWR.

However, all the prior schemes have some drawbacks across various aspects,
including information rate4, lossiness5, and the public parameter size. For exam-
ple, the constructions in [1, 50] suffer from super-constant information rate, the
work [7] achieves small lossiness parameter, and the work [22] requires very large
public parameters and involves much complicated parallel repetition, leading to
poor efficiency.

Recently, the work [29] designed a compact LTF (O(1) information rate)
based on lattice, and further extended the basic result to compact all-but-many-
LTFs (ABM-LTFs) and selective opening-CCA (SO-CCA) secure PKE based.
Despite the theoretical advancements, the designs in [29] are rather intricate,
involving heavy Gaussian sampling, harsh restriction for achieving strong lossi-
ness, and large public parameters compared to the very simple (though non-
compact) [1]. Additionally, their ABM-LTF construction assumes the existence
of a PRF computable in NC1 (taking the PRF key as input). While such a
PRF can be instantiated from lattice [11], the construction requires a super-
polynomial modulus. Consequently, it remains unclear whether the results of [29]
can be derived from lattices under a polynomial modulus, which is a weaker as-
sumption. These considerations motivates our second goal.

(Main Goal 2:) Improve the state of the art of LTF constructions in [29]
with a more conceptually straightforward and efficient design. Then de-
termine whether we can eliminate the requirement of PRF in NC1 to
achieve ABM-LTF and SO-CCA PKE under a polynomial modulus.

1.1 Our Contributions

This work aims at the two main goals and makes three major contributions.

Contribution 1. We establish hardness results for the general entropic LWR
problem from the standard lattice-based assumption. In particular, we show a
reduction from LWE to entropic LWR with general entropic secret distributions
(i.e., which only require sufficient entropy over the secret). To achieve this, we
4 Information rate is defined as the input-to-output ratio, with a higher value being preferable. A

design is compact if the rate is O(1).
5 Lossiness is the parameter that quantifies the average number of bits lost when evaluating the

function in the lossy mode. In our applications, a higher lossiness is desirable.
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propose a new measure called “rounding lossiness”, and show that high min-
entropy of a secret distribution implies (some level of) rounding lossiness. More-
over, we show that high rounding lossiness implies entropic hardness of LWR.
Informally, our new hardness results can be summarized by the folloing theorem:

Theorem 1.1 Assume that decision LWE is hard under poly-modulus q (and
for other appropriate parameters). Let S be a distribution over Znq with sufficient
min-entropy, then Entropic LWR with secret distribution S is hard.

This result generalizes the hardness results of entropic LWR in [1] from
bounded secret distributions to general entropic distributions, and thus improves
its applicability to other crypto designs as presented in [1]. In our second con-
tribution, we present an important application to compact LTFs and generaliza-
tions. It is worth noting that this new reduction approach can also be adapted
to the MLWR setting, deriving the hardness of entropic MLWR with any secret
distribution that has sufficient min-entropy (rounding lossiness), from the hard-
ness of MLWE (or RLWE). To the best of our knowledge, our reduction is the
first result of the hardness of general entropic (M/L)LWR.

Contribution 2. We achieve our Main Goal 2 for designing lattice-based LTFs,
ABM-LTFs and SO-CCA secure PKE with a polynomial modulus, simultane-
ously achieving good compactness, lossiness and efficiency. This improves the
state-of-the-art constructions of [29] as we elaborate below.

– Our basic LTFs follow the framework of [1], and enjoy the extremely sim-
ple construction: the public key is a matrix A, and the function defined
as fA(s) = bA · sep is just the evaluation algorithms of LWR. Based on
our hardness result of entropic LWR in Contribution 1, we further enlarge
the bounded input domain of LTFs construction in [1] to general entropic
distribution over Znq , resulting in more compactness and lossiness we can
achieve.

– We further reduce the information rate of LTFs in [1] to constant (can fur-
ther approach 1 asymptotically), by designing a compact trapdoor inversion
algorithm for LWR, which is compatible with the lossy mode6. The main
technique contribution is a reduction from (HNF)LWE to a special decision
knapsack problem under arbitrary modulus with asymptotically the most
compact parameters (we further show its tightness via some novel number
theory analyses). The crux of our reduction is a fine-grained analysis of the
probability that random matrix over Zn×m′

q has an invertible sub-matrix for
arbitrary modulus q, which has several other applications and should be of
interest.

– We further derive constructions of compact ABM-LTFs and compact SO-
CCA secure PKE with all building blocks that can be initiated with poly
modulus.

6 The lossy mode is a necessary technique for designing LTFs from LWR in [1], and
will be described in the part of technique overview latter.
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Compared with the constructions in [29], our constructions have several sig-
nificant advantages. Firstly, our basic LTF scheme is much simpler, due to the
extremely simple evaluation algorithms of LWR. Secondly, the amount of “lossi-
ness” in our LTF construction is more flexible. Particularly, we can achieve the
relative lossiness7 arbitrarily close to 1 with poly modulus rather than super-poly
modulus in [29]. Next, our LTF is with smaller evaluation key, i.e., O(n2 log q)
for ours vs O(n2 log4 q) for [29]. Finally, our constructions of compact ABM-
LTFs and compact SO-CCA secure PKE are with polynomial modulus without
relying on the additional assumption of PRFs mentioned in [29].

Contribution 3. We prove pseudorandomness of RLWR with Gaussian secret
from the standard assumptions over ideal lattices. Particularly, we first show
a reduction from search RLWR with certain entropic secret distributions (with
sufficient entropy) to decision RLWR with Gaussian secret distributions. To the
best of our knowledge, this is the first hardness result that captures RLWR with
bounded secret distributions. The crux is a Rényi Divergence (RD)-based noise
flooding technique for matrix-vector multiplication (or multiplication of ring
elements). As previous analyses mainly focus on the vector addition (or ring ele-
ments addition), our new analysis would be of independent interest. Informally,
this hardness result can be summarized as follows:

Theorem 1.2 Assume one-way hardness of RLWR with certain entropic secret
distribution holds under poly-modulus (and for other appropriate parameters),
then the decision RLWR with Gaussian secret distributions (defined according to
coefficient embeddings) also holds.

We next generalize the search RLWE to search RLWR reduction in [36] to
the case of entropic secrets, and thus establish the hardness of our special search
entropic RLWR. Combining with the hardness results of entropic RLWE in [15],
the hardness of our special search entropic RLWR can be further established
from the standard assumptions (e.g. RLWE and NTRU). Informally, we have
the following corollary:

Corollary 1.3 Assume the pseudorandomness of RLWE and NTRU holds under
poly-modulus (and for other appropriate parameters), then the decision RLWR
with Gaussian secret distributions (defined according to coefficient embeddings)
is 1

poly(λ) -secure.

It needs to point out that we cannot bridge the (strong) pseudorandomness
(i.e. negl(λ)-security) of RLWR with Gaussian secret distributions to the stan-
dard assumptions under poly-modulus. The main technique barrier is that there
exists a lower bound for showing a sample-preserving reduction from RLWE to
RLWR with polynomial modulus by a recent work [43]. Nevertheless, as men-
tioned in [36], this barrier for applications can be overcome via the hardness
amplification technique of [58].
7 The measure of relative lossiness in [29] is to denote the ratio of the remaining

entropy of the input and the original entropy of the input.
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1.2 Technical Overview

In this section, we present an overview of our techniques. Referring to the de-
scription of our main contributions, we highlight three interesting techniques in
Contributions 1, 2 and 3, respectively.

Rounding Lossiness Approach to Entropic LWR

To start with, we need to propose a framework to handle the LWR with general
entropic secrets, i.e., relate the hardness of Entropic LWR for general distribu-
tions to a basic property of the distribution. To this end, we propose a measure
called rounding lossiness. Specifically, let S be some distribution over secrets in
Znq , and the rounding lossiness of S is defined as Rq,p∗(S) = H∞ (s|bseq,p∗) ,
where s is sampled from S and bseq,p∗ =

⌊
p∗

q · s
⌉

denotes the deterministic
rounding of s with parameters q, p∗. It’s easy to lower bound this conditional
min-entropy by

H∞(s|⌊s⌉q,p∗) ≥ H∞(s)− log
(∣∣∣⌊s⌉q,p∗ ∣∣∣) ,

where | · | denotes the size of a space here. The term log
(∣∣∣bseq,p∗ ∣∣∣) can be upper

bounded by n log p∗ for general secrets or n log(p
∗·γ
q ) for γ bounded (under ℓ∞

norm) secrets. This naturally bridges the entropy requirement of distribution
and the rounding lossiness of distribution.

The following target is to deduce the hardness of Entropic LWR to the round-
ing lossiness approach. Our approach consults the reduction approach in [1]. We
show a minor yet crucial modification of their approach that allows to relate the
hardness of Entropic LWE to the rounding lossiness of the secret distribution.
To explain more clearly, we first take a look at the proof framework in [1].

1. We first break A = (A′,a) where A′ is the first ℓ− 1 rows.
2. We switch A′ into some lossy matrix Ã′ = B · C + F, where B,C are

uniformly at random, and F is an error matrix with bounded norm.
3. Then we show that the conditional entropy H(s|Ã′, bÃ′ · seq,p) is still high.
4. Thus, from a leftover hash lemma we have (Ã′, bÃ′ · seq,p,a, ba · seq,p) ≈

(Ã′, bÃ′ · seq,p,a, bueq,p), as a acts as a fresh random seed.
5. We switch back Ã′ to A′.

We follow the same steps 1, 2, 4, 5 as [1], and modify the step 3 as follows:

– Artificially parse Ã′ · s = B ·Cs+Fs = B ·Cs+ q
p∗F · bseq,p∗ +

q
p∗F(

p∗

q s−
bseq,p∗);

– Based on step (1), bÃ′·seq,p can be reconstructed given B,C,F,Cs, bseq,p∗ , Z,
where Z is the border space such that bÃ′·seq,p 6=

⌊
B ·Cs+ q

p∗F · bseq,p∗
⌉
q,p

.

Now determiningH∞(s|bÃ′·seq,p) can be deduced to determiningH∞(s|bseq,p∗);
– Bound the size of Z with overwhelming probability and determine the con-

strains of parameters.
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The main difference between our approach and that in [1] is that instead of
directly relating F · s to the border space, we relate q

p∗F(
p∗

q s − bseq,p∗) to the
border space. The infinite norm of p

∗

q s−bseq,p∗ (or s in [1]) determines the lower
bound of modulus. It’s clear that the upper bound of p∗

q s − bseq,p∗ ’s ℓ∞ norm
is exactly 1/2. This is the main technical reason why our approach can achieve
the hardness of Entropic LWR with general secret distributions.

It should be noted that the noise lossiness approach in [14] can be implicitly
used to analyze the hardness of general entropic LWR (need some subtle ad-
justments). Compared with the noise lossiness approach, our approach is con-
ceptually simpler and enjoys better parameters. Therefore, for Entropic LWR,
it’s more advantageous to work with our rounding lossiness approach. For more
detailed analysis of two lossiness model, we refer to section 4 and section D.

Compact Trapdoor Inversion Algorithm

Next, we explain our design of compact trapdoor inversion algorithm for LWR.
Our design follows the framework of [1,41], but with some modifications. We start
to recap this framework and explain the motivation to achieve compactness:

– The trapdoor generating algorithm takes integers n,m = m1+m2, q as input,
then uniformly samples Ā

$← Zn×m1
q ,R

$← {−1, 1}m1×m2 and outputs the
public matrix A =

(
Ā ĀR+G

)
and the corresponding trapdoor TA =(

−R
I

)
, where G ∈ Zn×m2

q is the gadget matrix with a public and short
trapdoor.

– The trapdoor inversion algorithm for LWR inputs A,TA and some vector
c = bs⊤ ·Aep for some p ∈ Zq, and outputs s.

Intuitively, the LWR instance bs⊤ · Aep can be treated as a special LWE
instance, i.e., bs⊤ · Aep = p

q (s
⊤ · A) + r. Then one can apply the inversion

algorithm for LWE ( [41]) to find the secret s of LWR under certain parameters.
In an LWR-based LTFs ( [1]), the input is the secret s, the output is the vector

bs⊤ · Aep, and the trapdoor inversion algorithm for LWR is the the inversion
algorithm of LTFs. In this case, the ratio of mn highly determines the compactness
of the construction, and smaller ratio (preferably constant) is desired. Thus, our
target is to minimize this ratio. To achieve this, we need set some additional
requirements of the trapdoor design as follows:

1. The distribution (Ā, ĀR) should be indistinguishable from uniformly ran-
dom distribution;

2. the column numbers satisfy m1 ≤ c1n and m2 ≤ c2n for constants c1, c2.

The first requirement is to ensure that we can switch A to the lossy model, and
the second requirement provides the constant ratio.

Now we attempt to improve the trapdoor design of [41] to meet these re-
quirements. As a first attempt, we can achieve m2 = c2n by setting the base b of

7



G as q
1
c2 . Then it remains to show that ĀR is uniformly at random under the

parameter constraint of m1 = c1n. As a possible way, one may consider to prove
that ĀR is random by leftover hash lemma provided R has sufficient entropy.
This approach, however, leads to a large norm of R. This is very disadvanta-
geous for the efficiency of our construction, especially, affects the homomorphic
evaluation in the subsequent applications. A more suitable approach seems to be
achieving the pseudorandomness of ĀR, i,e., establish the randomness of ĀR
from standard assumptions from lattices such as LWE (or a variant of LWE).

Distinguishing the distribution (Ā, ĀR) from the uniform distribution is
called Knapsack Problem [40, 42]. Micciancio and Suhl [42] presented a map-
ping from the LWE instances ([A | Im], [A | Im] · r) ∈ Zm×(n+m)

q × Zmq to the
knapsack instances (Ā, Ār′) ∈ Zm×(n+m)

q × Zmq where A and Ā follow uniform
distributions, and r and r′ follows the same distribution over Zmq . Thus with
such transformation, we can build the hardness of decision knapsack problem
over the hardness of LWE in Hermite normal form [2].

However, there is a gap in their proof [42, Lemma 20, Lemma 21]: they stated
that the probability that for a uniformly random matrix from Zm×(m+n)

q , there
exists m columns that form an invertible matrix in Zm×mq , is at least 1− 2−n+1.
We notice that they confused the conception of existence of an invertible sub-
matrix from Ā’s columns with the conception of non-singularity (the columns of
Ā generate Zq) for general modulus q. Furthermore, to the best of our knowledge,
the best estimation of such probability is from Brakerski, et al. [16, Claim 2.13],
which requires n ≥ 4m to guarantee the existence of a sub-invertible matrix
from Zm×(m+n)

q overwhelmingly. This requirement will significantly affect the
compactness of our LTF, ABM, and SO-CCAPKE scheme. Besides, the bound n ≥
4m will also set constraints on the efficiency and compactness of the threshold
public-key encryption (ThPKE) scheme [42], since the number of samples m
cannot exceed a quarter of the secret dimension n in the LWE setting, which
cannot support the security of their ThPKE scheme requirement m = n.

We give a more fine-grained and asymptotically tightest analysis of the fol-
lowing probability:

Pm,n,q = Pr
Ā

$←Zm×(m+n)
q

[∃m columns in Ā that form an invertible matrix in Zm×mq ]

In Theorem 5.2, we show that for n = t1 + t2 ln ln q and any modulus q, the
probability is at least 1− 2−(t1+1) − e−t2/4, which will be 1− negl(λ) if t1, t2 =
ω(log λ) asymptotically. The estimation of the probability Pm,n,q is divided into
two steps. We seperate m + t1 + t2 ln ln q vectors into two sets, where one is
comprised of m + t1 vectors and the other one contains t2 ln ln q vectors. We
first use some novel combinatorial methods to prove that there exists m − 1
linearly independent vectors in the former m+t1 vectors with probability at least
Pm−1,m+t1,2 ≥ 1 − 2−(t1+1). Next, we use a theorem from number theory [53]
to obtain an estimation of the probability of successfully picking a final uniform
vector from Znq conditioned on the existence ofm−1 linearly independent vectors,
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and then apply the probability amplification strategy to show that there exists
a valid vector in the second set except with probability e−t2/4.

It is worth mentioning that: (1) We also show that the constraint n =
ω(log λ) · ln ln q achieves the asymptotic tightness for general modulus q (refer to
Remark 5.5 for details), and we can further improve the bound to n ≥ ω(log λ)
for certain q with constant number of prime factors; (2) Pm,n,q is a very com-
mon and useful probability applied in many previous works [2, 14, 16, 42]. Our
new fine-grained analysis can reduce their security loss and improve the modu-
lus and dimension parameters of their reductions and applications (refer more
details to Remark 5.6 and 5.7); (3) there is a brief analysis of invertibility of ran-
dom matrices in [14], which also considers the case of composite modulus q and
claims to achieve better compactness. However, their analysis is not accurate.
The main flaw of their analysis is misusing CRT and union bound to calculate
the probability of invertibility of a random matrix (refer more details to Remark
5.8). (4) Our technique can also be adapted to the ring-case, i.e. computing the
probability of the existence of an invertible matrix in the columns of Rk×(k+ℓ)p

since Rp is not a field but a module and behaves more like Zq when q is not a
prime (refers to Remark 5.9).

In a word, our new analysis achieve almost compact parameters, and should
have more applications of compactness.

RD-based Noise Flooding for Matrix-Vector Multiplication

Unlike the reduction from (M)LWE to Entropic (M)LWR, we cannot apply the
information theory method to analyse the security of decision Entropic RLWR,
since the entropic secret has insufficient entropy for randomness extraction. Al-
ternatively, our reduction follows the search-to-decision reduction framework of
RLWR [36]. To start with, we recap the search-to-decision reduction route in [36].
Specifically, our reduction path can be summarized as follow.

ent-S-RLWE
(1)−→ ent-S-RLWR

(2)−→ (W)-pi-RLWR
(3)−→ (W)-D-RLWRi

(4)−→ (A)-D-RLWRi (5)−→ ent-D-RLWR.

We note that (1),(2),(3),(5) can be derived by similar techniques used in the
work [36]. Thus in this part, we just overview the most interesting part (4).

Step (4) can be treated as the re-randomization of a fixed secret s in the
support of initial secret domain. For the case of RLWR with polynomial modulus,
one can not achieve this process by directly adding random (or Gaussian) secrets
to the target sample ba ·se, due to the fact that homomorphic addition property
does not hold for the rounding function. The only approach [8,36] is to multiply
the fixed secret by a random invertible element r: transform the instance (a, ba ·
se) to (a · r, bar · r−1se). Hence, the target here is to determine an independent
distribution that somehow polynomially relates to the distribution of r−1 · s.
Motivated by this, we hope to use the Renyi divergence (RD) to bound these
two distributions. However, there exists a technical shortcoming that almost all
RD-based analyses are used to deal with the addition case.
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To circumvent the this obstacle, we show a new bound of RD between an-
other Gaussian and the product of a bounded ring element and a Gaussian.
In light of that the multiplication of ring elements can be regarded as a spe-
cial type of matrix-vector multiplication. Our new bound can also be served
as a technique improvement of RD-based noise flooding for matrix-vector mul-
tiplication. Technically, our goal is to bound the RD of Dn

β and Rot(s) · Dn
α

for a fixed s ∈ Rq. Since the distribution Rot(s) · Dn
α is exactly the same as

DαRot(s), we first do a more general computation for two continuous multivariate
n-dimensional Gaussian distributions DS1 and DS2 with parameter matrix S1

and S2. We find that if 2S2S
⊤
2 − S1S

⊤
1 is positive definite, RD2(DS1 ,DS2) =

det2(S2)/| detS1| ·
√

det(2S2S⊤2 − S1S⊤1 ). In our case, S1 = βIn and S2 =
αRot(s), so det(S1) = βn, then our target is an appropriate lower bound for

det2(αRot(s))

det(2α2Rot(s)Rot(s)⊤ − β2In)
.

For the case that K = Q[X]/(Xn + 1) is a cyclotomic field with n a power of
2, we can enjoy a nice structure of the rotation matrix Rot(s) which is exactly
an anti-circulant matrix. Let si be the i-th coefficient of s under the basis B
for i = 0, · · · , n − 1 and {λi ∈ C}i be n eigenvalues of Rot(s) (may exist same
values). Denote S = Rot(s). We notice the following several interesting points:

– For anti-circulant matrix S, every Gershgorin circle becomes the disk with
center s0 and radius

∑
i ̸=0 |si|, so we can bound every eigenvalue with the

same inequality |s0| −
∑
i ̸=0 |si| ≤ |λi| ≤

∑
i |si|.

– Anti-circulant matrix S is also a normal matrix, indicating that the eigen-
values of 2α2SS⊤− β2In are exactly 2α2|λi|2− β2. We can compute the RD
as:

RD2(D
n
β∥DαS) =

αn

βn
·
n−1∏
i=0

|λi|2√
2|λi|2 − (β/α)2

.

Based on these points, we can finally obtain an upper bound of this product
by our first observation.

2 Preliminaries
Notations Let λ denote the security parameter. For an integer n, let [n] denote
the set {1, ..., n}. We use bold lowercase letters (e.g. a) to denote vectors and
bold capital letters (e.g. A) to denote matrices. For a positive integer q ≥ 2,
let Zq be the ring of integers modulo q. For a distribution on a set X, we
write x

$←− X to denote the operation of sampling a random x according to
X. For distributions X,Y , we let SD(X,Y ) denote their statistical distance.
We write X s

≈ Y or X c
≈ Y to denote statistical closeness or computational

indistinguishability, respectively. We use negl(λ) to denote the set of all negligible
functions µ(λ) = λ−ω(1). We define a distribution χ over Z to be β-bounded if
Supp(χ) ⊆ [−β, β].
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We use
(
Znq
)∗ to denote the set of vectors in Znq which are not zero-divisors,

i.e.,
(
Znq
)∗

= {x ∈ Znq : gcd(x1, . . . , xn, q) = 1}. The ratio of |(Znq )∗| in |Znq | has
the lower bound |(Z

n
q )

∗|
|Zn

q |
≥ 1− 2−n+1.

For more definitions of rounding functions, Gaussian distributions, Renyi
Divergence, LWE/LWR assumptions and algebraic number theory, please refer
to Appendix A in our Supplementary Materials.

3 Entropic Learning with Rounding

In this section, we present a new definition capturing the LWR problem with
entropic secret.

Definition 3.1 (Entropic GLWR) Let R be a sub-ring of a number field K,
q = q(λ) ≥ p = p(λ) ≥ 2, k = k(λ) ≥ 1 and m = m(λ) > 1 be positive integers,
and B be a basis of R. Let S be a distribution on (Rq)

k. We say that the search
problem ent-sGLWR(q, p,B, k,m,S) is hard, if it holds for every ppt adversary
A we have that

Advk,m,q,p,B,Sent-sGLWR,D(λ) := Pr[A(1λ,A, bA · seB,p) = s] ≤ negl(λ),

where A
$←− (Rq)

m×k, s
$←− S. Similarly, the decisional problem ent-dGLWR(q, p,B, k,m,S)

is hard, if it holds for every ppt distinguisher D we have that

Advk,m,q,p,B,Sent-dGLWR,D(λ) :=
∣∣Pr[D(1λ,A, bA · seB,p) = 1]− Pr[D(1λ,A,u) = 1]

∣∣ ≤ negl(λ),

where A
$←− (Rq)

m×k, s
$←− S and u

$←− (Rp)
m.

3.1 Rounding Lossiness

In order to analyse the hardness of Entropic LWR, we introduce a new measure
called rounding lossiness, that describes the remaining entropy of the distribution
conditioned on the deterministic rounding of this distribution. We also provide
some useful lower bounds of these measures in various cases.

Definition 3.2 (Rounding Lossiness over Zk
q) Let q ≥ p∗ ≥ 2 be integers

and let S ⊆ Zkq be a distribution of secrets. We define the rounding-lossiness
Rq,p∗(S) by

Rq,p∗(S) = H∞ (s | bseq,p∗) , where s
$←− S

Similarly, for any integer p′ < q, Rq,p∗(S mod p′) is defined by

Rq,p∗(S mod p′) = H∞ (s mod p′ | bseq,p∗) , where s
$←− S.

In the case of the ring, we similarly define the rounding lossiness with respect
to specific basis.
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Definition 3.3 (Rounding Lossiness over (OK)kq) Let R = OK be the ring
of integers of a number field K, B be a basis of R, q ≥ p∗ ≥ 2 and k ≥ 1 be
integers. Let S ⊆ (Rq)

k be a distribution of secrets. We define the rounding-
lossiness RB,q,p∗(S) by

RB,q,p∗(S) = H∞ (s | bseB,q,p∗) , where s
$← S

Similarly, for any prime ideal factor q of qR, Rq,p∗(S mod q) is defined by

Rq,p∗(S mod q) = H∞ (s mod q | bseB,q,p∗) , where s
$←− S.

It can easily obtain the following useful lemmas lower bound the rounding
lossiness in various cases. To start, we consider the case of Znq for arbitrary
entropic distribution.

Lemma 3.4 (Rounding-Lossiness for General Entropic Distributions)
Let q ≥ p∗ ≥ 2 be integers, and let S be any distribution on Zkq . Then we have

Rq,p∗(S) ≥ H∞(S)− k log p∗.

Similarly, for any integer p′ < q, it holds that

Rq,p∗(S mod p′) ≥ H∞(S mod p′)− k log p∗.

For the case of (OK)kq , we have the following analogous lemma.

Lemma 3.5 Let R = OK be the ring of integers of a number field K with degree
n, B be a basis of R, q ≥ p∗ ≥ 2 and k ≥ 1 be integers. Let S be any distribution
on (Rq)

k. Then it holds that

Rq,p∗(S) ≥ H∞(S)− nk log p∗.

Similarly, for any prime ideal factor q of qR, it holds that

Rq,p∗(S mod q) ≥ H∞(S mod q)− nk log p∗.

When considering the bounded entropic distribution, we have the following
lemma for the case of Znq .

Lemma 3.6 (Rounding-Lossiness for Bounded Distributions) Let q ≥ p∗ ≥
2 be integers, and let S be a γ-bounded distribution on Zkq . Then it holds that

Rq,p∗(S) ≥ H∞(S)− k log

(
2

⌊
γp∗

q

⌉
+ 1

)
.

Similarly, for any integer p′ < q, it holds that

Rq,p∗(S mod p′) ≥ H∞(S mod p′)− k log

(
2

⌊
γp∗

q

⌉
+ 1

)
.

Similarly, we can also obtain the lower bound of rounding lossiness for bounded
entropic distribution over ring. Before stating the lemma, we should define the
bounded distribution over the rings.
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Definition 3.7 (Bounded Distributions over (OK)kq Relative to Basis)
Let R = OK be the ring of integers of a number field K with degree n, B be
a basis of R, k ≥ 1 be a integer. We call a distribution S ⊆ (Rq)

k γ-bounded
relative to basis B, if for any s = (s1, · · · , sk)← S, each coefficient si[j] of each
si relative to B has range in [−γ, γ] for i ∈ [k], j ∈ [n].

Then the following lemma can be similarly obtained by dropping the infor-
mation bits of leakage.
Lemma 3.8 Let R = OK be the ring of integers of a number field K with degree
n, B be a basis of L∨, q ≥ p∗ ≥ 2 be integers. Let S be a γ-bounded distribution
over (Rq)

k relative to basis B. Then it holds that

Rq,p∗(S) ≥ H∞(S)− nk log

(
2

⌊
γp∗

q

⌉
+ 1

)
.

Similarly, for any prime ideal factor q of qR, it holds that

Rq,p∗(S mod q) ≥ H∞(S mod q)− nk log

(
2

⌊
γp∗

q

⌉
+ 1

)
.

4 New Hardness Results of Entropic LWR
In this section, we present our new hardness results of Entropic LWR. First we
show a core lemma that relates the hardness of Entroic LWR to the the rounding
lossiness proposed in Section 3. Then we establish the hardness of Entropic LWR
from LWE by assuming the rounding lossiness is sufficient. Finally, we provide
a comparison between our rounding lossiness approach and the noise lossiness
approach in [14]. Our reduction can also be generalized to the Entropic MLWR
case, and we put this part to Appendix E.

Before presenting the core lemma, we first recall a useful tool in our analysis
and provide the security of it.
Definition 4.1 (Lossy Sampler, Definition 3.1 in [1]) Let λ be the secu-
rity parameter, n,m, ℓ, q be integers (functions of λ), and χ = χ(λ) be a distri-
bution over Zq. We define the lossy sampler Ã← Lossy(1n, 1m, 1ℓ, q, χ) as:
Lossy(1n, 1m, 1ℓ, q, χ) : Sample B

$←− Zm×ℓq , C
$←− Zℓ×nq , F ← χm×n and output

Ã = B ·C+ F.

Lemma 4.2 Let A
$←− Zm×nq , and let Ã

$←− Lossy(1n, 1m, 1ℓ, q, χ). Then, under
the LWEℓ,m,q,χ assumption, we have: A c

≈ Ã.

Lemma 4.3 Let n,m, ℓ, p, p∗, q, β be positive integers such that q > p∗ ≥ nmpβ,
and χ be a β-bounded distribution over Zq. Let (s, aux) be a pair of correlated
random variables with s distributed according to some distribution S ⊆ Znq and
Prs

[
s /∈

(
Znq
)∗ ]

< δ, and let Ã be a matrix independently output by the algo-
rithm Lossy(1n, 1m, 1ℓ, q, χ). Then for ε = 2−λ + δ + 2−ℓ+1, any ε′ > 0 and any
every function f taken input over S, we have:

Hε′+ε
∞ (f(s) | Ã, ⌊Ã · s⌉p, aux) ≥ Hε′

∞(f(s) | ⌊s⌉q,p∗ , aux)− (ℓ+ λ) log q.
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The proof of Lemma 4.3 will appear in Appendix C.1.
Now we can formally present the hardness results of entropic LWR according

to the following theorem.
Theorem 4.4 Let n,m, ℓ, p, p∗, q, β be positive integers such that q > p∗ ≥
βnmp, χ be a β-bounded distribution over Zq and S be a distribution on Znq .
Then we have the following:

– There exists a poly-time reductions from LWEℓ,m,q,χ to ent-dLWR(q, p, k,m,S),
for which q is a prime and Rq,p∗(S) ≥ (ℓ+ λ+ 1) · log(q) + ω(log(λ)).

– There exists a poly-time reductions from LWEℓ,m,q,χ to ent-dLWR(q, p, k,m,S),
for which q is a composite number and Rq,p∗(S mod pi) ≥ (ℓ+λ+2)·log(q)+
ω(log(λ)) for any factor pi of q.

The proof of this Theorem follows roughly the same idea of the work [1]. We put
the proof in Section C.2.

Remark on Parameters. Note that the parameter p∗ in Theorem 4.4 provides
a lower bound of the modulus q, and at the same time, p∗ also determines the
lower bound of the secret’s rounding losssiness by Lemma 3.4 and Lemma 3.6.
Therefore, for a bigger p∗ we need a bigger modulus q to satisfy the constraint
in Theorem 4.4, and need more entropy of the secret to meet the requirement
of randomness extraction (Lemma A.34). On the other hand, for a fixed p∗, the
entropy requirement of the secret offers a tradeoff between the size of modulus
q and the vector length n. When considering the case that S is the uniformly
random distribution, the following corollary presents two extreme cases of small
modulus q and small n, which is consistent with the results showed in [1].
Corollary 4.5 Let n,m, ℓ, p, q, β be positive integers, χ be a β-bounded distri-
bution over Zq. Then we have the following:

– There exists a poly-time reductions from LWEℓ,m,q,χ to dLWR(q, p, k,m), for
which q ≥ 2βnmp is a prime (or q is a composite), and n ≥ (ℓ + λ + 1) ·
log(q) + ω(log(λ)) (or n ≥ (ℓ+ λ+ 2) · log(q) + ω(log(λ)). We can obtain a
modulus-to-error ratio as small as q/β = O(m · n) if further set p = O(1).

– There exists a poly-time reductions from LWEℓ,m,q,χ to dLWR(q, p, k,m), for
which q ≥ (βnmp)2 is a prime (or q is a composite), and n ≥ 2ℓ + 4λ + 2
(or n ≥ 2ℓ+4λ+4). The LWR assumption can achieve similar efficiency as
LWE (i.e., n = O(ℓ) and log(p) = O(log q)) if we further set p = βnm.

Proof. It follows directly from Theorem 4.4. For case (1), we set p∗ = βnmp,
then q ≥ 2p∗, and thus Rq,p∗(S) ≥ n. For case (2), we set p∗ = √q = p2, then
Rq,p∗(S) ≥ n

2 · log q. ut

5 Compact Lattice Trapdoor and its Applications to
Lossy Trapdoor Functions

In this section, we propose our construction of compact lattice trapdoor, and
further present compact lossy trapdoor functions by combining the trapdoor
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construction and our previous entropic LWR reduction. As a crux analysis in
our compact trapdoor design, we first show a theorem about the requirements
of a random matrix having an invertible sub-matrix.

5.1 Probability of Matrix with Generalized Invertibility

First of all, we define what it means for a matrix from Zn×mq (m ≥ n) to
be invertible for any modulus q. This notion is a generalization of the square
matrix’s invertibility to a more general case of matrix from Zn×mq (m ≥ n), and
also appeared in several previous works [2, 14].

Definition 5.1 Let m′ ≥ n ≥ 1 be dimension parameters and q ≥ 2 be any
modulus. For a matrix A = (ai)i∈[m′] ∈ Zn×m′

q , we define that a matrix A ∈
Zn×m′

q is invertible if there exists n positive indexes i1 < i2 < · · · < in ≤ m′

such that H = (ai1 |ai2 | · · · |ain) ∈ Zn×nq is invertible. We define εn,m
′,q

non-inv to be
the probability of a uniformly random matrix in Zn×m′

q to be not invertible, i.e.,
εn,m

′,q
non-inv = Pr

A
$←Zn×m′

q

[A is not invertible].

Afterwards, we prove that if m′ is slightly larger than n, then the probability
εn,m

′,q
non-inv is negligible for arbitrary polynomial-size modulus q.

Theorem 5.2 For any modulus q ≥ 25, n ≥ 1 and t1, t2 ≥ 1, for m′ = n+ t1 +

t2 ln ln q, we have εn,m
′,q

non-inv ≤ 2−(t1+1) + e−t2/4.

Proof. The general idea of this proof is to separate m′ uniform and independent
vectors from Znq into former (n+ t1) vectors and latter t2 ln ln q vectors. We then
illustrate that 1. there exists n− 1 linearly independent vectors {u1, · · · ,un−1}
in the first n + t1 vectors except with probability 2−t1 ; 2. given n − 1 existing
linearly independent vectors, there exists a vector un in the last t2 ln ln q vectors
such that un is linearly independent from {u1, · · · ,un−1} except with probability
e−t2/4.

Let q = q1q2 · · · qk represents the prime factorization of the modulus q where
each qj = p

dj
j is a power of prime. Let {ui}1≤i≤n be vectors from Znq . For

1 ≤ i ≤ n, denote Ei as the event that u1,u2, · · · ,ui ∈ (Znq )∗ and u1,u2, · · · ,ui
are linearly independent in Znq . We define Eji (respectively Dji ) as the event
that u1,u2, · · · ,ui ∈ (Znqj )

∗ (respectively (Znpj )
∗) and these vectors are linearly

independent in Znqj (respectively Znpj ) for 1 ≤ i ≤ n and 1 ≤ j ≤ k. Our next
goal is to compute Prui

[Ei | Ei−1] for all i where the probability is taken from
ui

$← Znq . We have the following claim and its proof is put to Appendix C.3.

Claim 5.3 We have

– If 1 ≤ i ≤ n− 1, Prui
[Ei | Ei−1] ≥ 1− 2−n+i.

– Prun
[En | En−1] = φ(q)/q, where φ is the Euler totient function.
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We define the following probabilities

P1 = Pr
A1

$←Zn×(n+t1)
q

[∃ n− 1 linearly independent column vectors in A1],

P2 = Pr
u′
i

$←Zn
q ,i∈[t2 ln ln q]

[∃ u′i s.t. u
′
i ∪ {u1, · · · ,un−1} is linearly independent | En−1]

We see that the probability of an matrix from U(Zn×mq ) to be invertible has
a lower bound 1− εn,m

′,q
non-inv(λ) ≥ P1P2.

Our next target is to prove that P1 and P2 are both 1−negl(λ). In claim 5.3,
we already present a lower bound of probability for each event Ei conditioned
on Ei−1 under the choice ui

$← Znq . In order to utilize these lower bounds to
compute P1, we construct an event with same combinatorial meaning.

Let {vi}i∈[n−1] be vectors from Zn−12 . For 1 ≤ i ≤ n − 1, we denote Fi as
the event that v1,v2, · · · ,vi are linearly independent in Zn−12 , and we find that
Pr

vi
$←Zn−1

2

[Fi | Fi−1] exactly matches the lower bound of Pr
ui

$←Zn
q

[Ei | Ei−1] in
claim 5.3:

Pr
vi

$←Zn−1
2

[Fi | Fi−1] = 1− 2i−1

2n−1
= 1− 2−(n−i) ≤ Pr

ui
$←Zn

q

[Ei | Ei−1]. (1)

Let A1
$← Zn×m

′
1

q (respectively F1
$← Z(n−1)×m′

1
2 ), which contains m′1 inde-

pendent samples. We can view the process of picking n− 1 linearly independent
column vectors of A1 (respectively F1) as tossing irregular coins, where each
sample (column vector) represents a toss round and head denotes that a sam-
ple vector meets the criteria based on chosen samples. To be detailed, during
the process of picking linearly independent vectors from A1 (respectively F1),
the probability of flipping a coin with a head outcome based on i − 1 heads is
Pr

ui
$←Zn

q

[Ei | Ei−1] (respectively Pr
vi

$←Zn−1
2

[Fi | Fi−1]). It should be noted that,
these two scenes have the same number of samples (both m1), same target num-
ber (both n− 1), and same tossing coins settings (probability of a head is based
on the number of existing heads). From the inequality (1), the probability of
tossing a coin with a head outcome conditioned on (i− 1) existing heads in case
of A1 is greater than or equal to probability in case F1 for all i ≤ n− 1. There-
fore, we can obtain that the probability of n− 1 heads in A1 is greater than or
equal to the probability in F1, i.e. P1 can be lower bounded by the probability
of U(Z(n−1)×(n+t1)

2 ) to be invertible:

P1 ≥ Pr
F1

$←Z(n−1)×(n+t1)
2

[F1 is invertible].

Since Z2 is a field, F1 is invertible iff F1 has column rank n − 1 iff F1 has
full row rank, we have

P1 ≥ Pr
F1

$←Z(n−1)×(n+t1)
2

[F1 is invertible]

=
(
1− 2−(n+t1)

)(
1− 2−(n+t1−1)

)
· · ·
(
1− 2−(t1+2)

)
> 1− 2−(t1+1).
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Lemma 5.4 (Theorem 15 in [54]) For all integer q ≥ 3,

φ(q)

q
≥ 1

eγ · ln ln q + 3
ln ln q

,

where γ = 0.577 · · · is the Euler-Mascheroni constant.

The lower bound of P2 is just a success probability amplification by paralleled
sampling:

P2 = 1−

1− Pr
un

$←Zn
q

[En | En−1]

t2 ln ln q

= 1−
(
1− φ(q)

q

)t2 ln ln q

≥ 1− exp

(
−φ(q)

q
· t2 ln ln q

)
.

For q ≥ 25,
φ(q)

q
· t2 ln ln q ≥ t2 ·

ln ln q

eλ · ln ln q + 3
ln ln q

>
t2
4

Therefore, P2 > 1− et2/4, yielding that

εn,m
′,q

non-inv ≤ 1− P1P2 ≤ 2−(t1+1) + e−t2/4,

which completes the proof. ut

Remark 5.5 In Theorem 5.2, if we require the probability εn,m
′,q

non-inv to be negligible
in λ, we need at least m′ ≥ n+ω(log λ · ln ln q) asymptotically. In fact, the bound
m′ ≥ n+ ω(log λ · ln ln q) is asymptotically tightest for general modulus q, since
the probability Prun

[En | En−1] is exactly φ(q)/q, then if we already have n − 1
linearly independent vectors from Znq , we must sample another ω(log λ) · q

φ(q)

vectors to overwhelmingly obtain a valid un. Also, [53, Chapter 4] shows that
there exists infinite number of integer q such that φ(q)/q < e−γ ·1/ log log q, i.e.,
these q satisfy that

1

eγ · ln ln q + 3
ln ln q

≤ φ(q)

q
≤ 1

eγ · ln ln q
.

On the other hand, the term 3
ln ln q is with o(1) order. This means that,

for these q, O( 1
ln ln q ) is the asymptotically tightest lower bound of φ(q)/q. Fur-

thermore, it needs at least ω(log λ · ln ln q) independent samples to complete
sampling the last vector un for these q. This shows that tightness of the bound
m′ ≥ n+ ω(log λ · ln ln q) for general modulus q.

Remark 5.6 Theorem 5.2 provides a tighter analysis of the probability of uni-
formly random matrices over Zn×mq having full-rank invertible submatrices (com-
pared to previous analysis in [2, 16]), thus it can improve the reduction from
HNFLWE to LWE in [2] and [16, Lemma 2.12]. In [2], Applebaum et al. gives
a reduction from LWEn,n2+k,q,χ to HNFLWEn,k,q,χ for q = pe as a power of
prime and any k, since they need n2 uniformly random samples from Znq to
create a invertible matrix in Zn×nq . Our new results stated in Theorem 5.2 make
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improvements on (1) generalizing their reduction to arbitrary modulus q, (2) re-
quiring less samples (from n2 to n+ω(log λ · ln ln q)), resulting a reduction from
LWEn,m′+k,q,χ to HNFLWEn,k,q,χ for m′ = n + ω(log λ · ln ln q) with arbitrary
modulus q.

Remark 5.7 In [40, 42], Micciancio et al. proposed a reduction from search-
HNFLWEn,m,q,χ assumption to the known-norm decision-HNFLWEn,m,q,χ, which
is the decision version of HNFLWEn,m,q,χ with leakage ‖s‖2 + ‖e‖2. Theorem
5.2 mends a gap in their reduction [42, Lemma 20, 21]. Their reduction requires
εm,m+n,q
non-inv to be 1 − negl(λ). To the best of our knowledge, the previous tightest

estimation of εm,m+n,q
non−inv is from Brakerski et al. [16, Claim 2.13], which requires

n ≥ 4m + ω(log λ) · ln ln q. Thus the previous techniques set an unsatisfactory
constraint on the number of samples in the LWE setting and this requirement can-
not support the parameter choices of the threshold public key encryption scheme
in [42] which suggests m = n and general modulus q. Our Theorem 5.2 mends
this gap, and make their scheme safe and sound. Furthermore, combined the
reduction framework from [40, 42] with Theorem 5.2, we can obtain a reduc-
tion from the search-HNFLWE to the decision-HNFLWE with a polynomial-sized
leakage on the secret and error.

Remark 5.8 In [14], authors give an upper bound for the probability of non-
existance of an invertible column-submatrix from a uniform matrix A

$← Zn×m′

q

with arbitrary modulus q, which is 2n−m′
log q. However, we find that their analy-

sis has a minor technical flaw, which is that the statement ”a matrix A ∈ Zn×mq

has an invertible column-submatrix modulo q iff it has an invertible column-
submatrix modulo all prime factors pi of q” [14] is not correct. Take q = 6 and

A =

(
1 0 0
0 2 3

)
as an example. The column-submatrix

(
1 0
0 2

)
is invertible mod-

ulo 3 and
(
1 0
0 3

)
is invertible modulo 2, while there does not exist an invertible

column-submatrix in A. We do not claim any new results for the case when q is
a power of a prime, but this example illustrates that distinguishing invertibility
from non-singularity for matrix A and general modulus q is essential.

Remark 5.9 Our analysis for the invertibility of Zn×m′

q in Theorem 5.2 is tar-
geted at coprime q, in which Zq is not a field any more. This technique can
be adapted to the ring case, which is to estimate the probability of invertibil-
ity of uniform matrix over R

k×(k+ℓ)
p , since Rp is mostly not a field and has

factor decomposition into many prime ideals like Zq. Take p prime and com-
pletely splitting Rp as an example, similarly to Theorem 5.2, the ideal factor
decomposition of Rp is Rp = p1p2 · · · pn where n is the dimension of ring
R, and the event Ei for i ∈ [k] is defined similarly. We can also prove that
Pr

ui
$←Rk

p

[Ei | Ei−1] =
(
1− p−(k+1−i))n ≥ 1− np−(k+1−i) for i ∈ [k]. As long as

p ≥ n ·λ, we can obtain Pr[Ei | Ei−1] ≥ 1−λ−(k+1−i), then we can use our event
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transformation technique to prove that

Pr
A

$←Rk×(k+ℓ)
p

[A is invertible] ≥ (1− λ−(k+ℓ)) · · · (1− λ−(ℓ+1)) ≥ 1− λ−ℓ.

5.2 Construction of Compact Lattice Trapdoor

In this part, we show our modifications to the lattice trapdoor algorithm pro-
posed by Micciancio and Peikert [41]. Particularly, we similarly set A = [Ā|ĀR+
G] ∈ Zn×mq where Ā ∈ Zn×m′

q is uniformly random and R follows discrete Gaus-
sian, and show the pseudorandomness of ĀR based on the hardness of LWE with
Hermite Normal Form under arbitrary modulus q with almost optimal ratio
m′

n = O(1) and m
n = O(1).

Before presenting the reduction, we first introduce an polynomial-time algo-
rithm ExInvMat involved in it, which takes an input as a matrix A in Zn×m′

q ,
and outputs n linearly independent column vectors in A ∈ Zn×m′

q (which forms
a corresponding invertible matrix H ∈ Zn×nq in definition 5.1) for invertible A
and aborts for non-invertible A. Specifically, the algorithm is as follows:

ExInvMat(A) : On input a matrix A ∈ Zn×m′

q , this algorithm runs in steps:

1. Split A as m′ column vectors {ai}1≤i≤m′ from Znq .
2. Initialize a vector list H = ∅ and a register r = 1.
3. Check whether ar ∈ (Znq )∗, and vectors from H∪ {ar} are linearly indepen-

dent. If so, add ar to H.
4. Let r ← r + 1. Abort if r > m′.

If |H| = n, return H; Otherwise, go to step 3.

This algorithm is a PPT algorithm, as the most complex steps 3 can be done
within probabilistic polynomial time. On the other hand, if the input matrix A
is uniformly at random and m′ ≥ n+ω(log λ · ln ln q), this algorithm will finally
return a matrix H with overwhelming probability.

Based on this and the reduction from [42, Lemma 20], we have the following
reduction.

Lemma 5.10 Let λ be a security parameter and let m,n, q be lattice parameters
such that q is any integer modulus and n ≥ ω(log λ · ln ln q). Let χ be β-bounded
distribution over Zq. Sample A

$← Zm×(m+n)
q , r ← χm+n and a

$← Zmq . Un-
der the hardness of HNFLWEn,m,q,χ, the distribution (A,Ar) is computationally
indistinguishable from the distribution (A,a), i.e.

AdvINDpse,A(λ) :=
∣∣Pr[A(1λ,A,Ar) = 1]− Pr[A(1λ,A,a) = 1]

∣∣
is negligible for all PPT A.

Proof. This reduction follows similar steps as Lemma 20 [42] except that our
new analysis in Theorem 5.2 makes the proof strategy sound.

Let (A, b) ∈ Zm×nq × Zmq be the input from HNFLWEn,m,q,χ challenger. Let
U be a uniform invertible matrix from Zm×mq and P be a random permutation
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matrix from Z(m+n)×(m+n). We set B = U[A | Im]P ∈ Zm×(m+n)
q and b′ = Ub,

then output (B, b′).
Since A is uniform at random and U is invertible, then UA is marginally

uniform at random regardless the choice of U. Then U[A | Im] is uniform at
random given the last m columns forming an invertible matrix. Therefore, by
randomly permuting the columns of U[A | Im], B follows a uniform distribution
conditioned on that there exist m column vectors to be an invertible matrix.
From our new analysis in Theorem 5.2 and n ≥ ω(log λ · ln ln q), such B is
uniform at random over Zm×(m+n)

q .
If the input (A, b = A · s + e) are LWE samples in Hermite Normal Form

where
(
s
e

)
← χm+n, then the output can be written as (B, b′ = Br) where

B is statistically closed to uniform distribution and r = P−1
(
s
e

)
follows χm+n

marginally. If the input (A, b) are uniform samples, then the output (B, b′ = Ub)
are statistically closed to uniform samples due to the invertibility of U. This
completes the proof.

ut

Next, we describe our compact lattice trapdoor based on the pseudoran-
domness of HNFLWE samples. We will use the definition of gadget matrix and
trapdoor introduced by [23,41].

Gadget Matrix. Let m,n, b, q, k be positive integers such that k = dlogb qe
andm = O(nk). Define the gadget vector based on b be g = (1, b, b2, · · · , bk−1)⊤ ∈
Zkq and the corresponding gadget matrix G = In ⊗ g ∈ Znk×nq .

Lattice Trapdoors. Let m,n, b, q, k be positive integers with same relation-
ship above. A gadget trapdoor for a matrix A ∈ Zm×nq is a matrix TA ∈ Zkn×mq

such that TA ·A = G. We define a gadget trapdoor is compact if k is constant
and m = O(n).

Theorem 5.11 (Compact Lattice Trapdoor) Let m,n, b, q, k be positive in-
teger parameters, χ be a β-bounded distribution over Zq. Under the hardness
assumption of HNFLWEn,n,q,χ, then there exist efficient algorithms with the fol-
lowing syntax:

– TrapGen(1n, q, b): Given a dimension n, a modulus q and a gadget base b, the
trapdoor generation algorithm returns a compact matrix A ∈ Zm×nq with a
gadget trapdoor TA ∈ Zkn×mq where k = dlogb qe is a constant and m = O(n).
We require that the trapdoor TA is small and the marginal distribution of A
is computationally indistinguishable from U(Zm×nq ).

– LWEInvert(A, c,TA): Given m LWE samples (A, c) ∈ Zm×nq × Zmq and the
gadget trapdoor TA, the LWE inversion algorithm returns the secret s ∈ Znq
such that c = A ·s+e for some error e ∈ Zmq . If ‖e‖∞ ≤ q

2(b+1)∥TA∥∞ , then
this algorithm recovers the secret s successfully.

– LWRInvert(A, c,TA): Given m LWR samples (A, c) ∈ Zm×nq × Zmp and the
gadget trapdoor TA, the LWR inversion algorithm returns the secret s ∈ Znq
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such that c = bA · sep. If p ≥ 2(b+ 1)‖TA‖∞, then the algorithm returns s
successfully.

In order to let our LWEInvert algorithm work and compute optimal parame-
ters relationship, we need the following LWE gadget decoding algorithm [23].

Lemma 5.12 ( [23]) For any modulus q and gadget base b, there exists a poly-
time algorithm DecodeG(c) which takes c ∈ Zknq as an input and returns the secret
s ∈ Znq such that c = G · s+ e for some error vector e ∈ Zknq if ‖e‖∞ ≤ q

2(b+1) .

Next we instantiate algorithms of our lattice trapdoor in theorem 5.11.

– TrapGen(1n, q, b): Let m′ = 2n. Sample A0
$← Zm′×n

q , and R ← χkn×m
′

and compute A1 ← R · A0 −G. Output the public compact matrix A =(
A⊤0 A⊤1

)⊤ and its trapdoor TA =
(
R −Ikn

)
.

– LWEInvert(A, c,TA): Output DecodeG(TA · c).
– LWRInvert(A, c,TA) [1]: First we transform the LWR sample A, c = bA ·sep

to LWE sample (A, c′ = A·s+e) ∈ Zm×nq ×Zmq for some error e by c′ =
⌊
q
pc
⌉
.

Then output DecodeG(TA · c′).

Lemma 5.13 Let m = (k + 2)n. Assuming the hardness of HNFLWEn,n,q,χ,
TrapGen generates a valid lattice trapdoor pair (A,TA) satisfying TA ·A = G,
‖TA‖∞ ≤ 2nβ+1 overwhelmingly, and the distribution of A is computationally
indistinguishable from U(Zm×nq ).

The proof of lemma 5.13 and theorem 5.11 will appear in Appendix C.4.

5.3 Construction of Compact Lossy Trapdoor Functions

Then, we apply our compact gadget trapdoor to the construction of lossy trap-
door functions. We adopt the LTF construction from [1] while we make modifica-
tions to parameters. First, based on our security reduction for pseudorandomness
of entropic LWR, if the secret s is taken from some entropic distributions, we re-
move the limitations on the bound of this entropic domain. Second, for the case
S covers Znq , we apply the compact trapdoor algorithm to achieve the constant
expansion property.

Construction 5.14 Let λ be a security parameter, n,m, q, p = poly(λ) be inte-
ger parameters. Let b be a gadget base and χ be a β-bounded distribution over
Zq. Let S be a entropic distribution over Znq and define the range set as Y = Zmp .

– LTF.IGen(1λ): Sample (A,TA) ← TrapGen(1n, q, b). Output ek = A and
ik = TA.

– LTF.LGen(1λ): Sample A← Lossy(1n, 1m, 1ℓ, q, χ). Output ek′ = A.
– LTF.Eval(ek, s): Input ek = A ∈ Zm×nq and a s ∈ Znq , output bAsep.
– LTF.Invert(ik,y): Input the LWR samples (A,y = bAsep) and the gadget

trapdoor TA, use LWR inversion algorithm to output LWRInvert(TA,A,y).
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Then we state that our LTF is a valid and secure lossy trapdoor function, and
we put the proof to Appendix B.1.
Theorem 5.15 Let λ be the security parameter. Let q > p∗ ≥ nmpβ, p ≥
2(b + 1)(2nβ + 1), k = dlogb qe = O(1) be a constant and m = (k + 2)n. The
consturction LTF = (LTF.IGen, LTF.LGen, LTF.Eval, LTF.Invert) is an l-lossy and
constant-expansion LTF under the hardness of LWEℓ,m,p,χ and HNFLWEn,n,q,χ
for l = (ℓ+ λ) log q + n log p∗.

6 Hardness of Entropic Ring-LWR

In this section, we consider the hardness of entropic RLWR problem. We first
establish the one-way hardness of entropic RLWE, i.e., the entropic search RLWR
is hard under appropriate parameters. Next we show that RLWR is also pseudo-
random for certain entropic secrets (with small coefficients with respect to some
basis).

6.1 One-wayness of Entropic RLWR

The main result in this part is adopted from the reduction of search RLWE to
search RLWR in [36], i.e., we can show a reduction from search entropic RLWE
to search entropic RLWR by making use of RD tool. Then, combine with the
existing hardness result of search entropic RLWE in Section A.11, we obtain the
one-way hardness of entropic RLWR from the hardness of DSPR and RLWE.

We use Uβ(B) to denote the distribution over Rq that each coefficient with
respect to the basis B over R is sampled uniformly at random in the interval
[−β, β], and we have the following theorem. The proof of the following theorem
will appear in Appendix C.5.
Theorem 6.1 (ent-RLWEℓ,q,χ,S to ent-sRLWRq,p,B,ℓ,S) Let q ≥ p ≥ 2, n, ℓ, B
be positive integers such that q ≥ 18pBℓn, R be a ring of integers of a number
field K with degree n, B be a basis of R. Let χ be a B-bounded distribution
over R with respect to basis B, S be a distribution over R∗q . Then there exists a
poly-time reduction from ent-RLWEℓ,q,χ,S to ent-sRLWRq,p,B,ℓ,S

We note that the reduction in Theorem 6.1 is not affected by the entropy
requirement of distribution S, i.e., it only requires the samples from S is invert-
ible over Rq. On the other hand, this reduction is entropy preserving for secret.
This nice property enables us to obtain a reduction from DSPR and RLWE to
ent-sRLWR by combining the reduction of ent-RLWE in Corollary A.33.
Corollary 6.2 Let q ≥ p ≥ 2, n, ℓ, B be positive integers, σ, σ0, γ be positive
real numbers such that n is a power of 2, ℓ ≥ 2n log q + ω(log(λ)), σ0 ≥
O(σn log2(n)

√
ℓB) and q ≥ 18pσ0ℓn log(n), R be a cyclotomic ring with degree n,

B be a basis of R. Let χ be a B-bounded distribution over R with respect to basis
B, S be a distribution over R∗q such that νσ(S) ≥ n log(γ ·

√
n log(n))+ω(log(λ)).

Assume that DSPR with parameter γ and RLWE with noise distribution χ holds,
then ent-sRLWRq,p,B,ℓ,S is hard.
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6.2 Pseudorandomness of Entropic RLWR

In this part, we proceed to prove that entropic decision RLWR problem is hard
for certain entropic secrets. Different from the module case (with module rank
greater than 1), one can not apply the randomness extraction procedure to the
ring case. Alternatively, we will show a reduction from entropic search RLWR for
special entropic secrets to entropic decision RLWR. Combine with the one-way
hardness of entropic RLWR in Section 6.1, the pseudorandomness of entropic
RLWR is obtained. To be consistent with Corollary 6.2, we consider the cyclo-
tomic ring with power-of-two degree. We use UB1,B2

(B) to denote the distribu-
tion over Rq that with respect to the basis B, the constant coefficient is sampled
uniformly at random and independently in the interval [B2 − B1, B2 + B1] and
other coefficients are sampled uniformly at random in the interval [−B1, B1],
where 0 < B1 < B2 and B1 + B2 < q, and use DCoeff(B)

R,σ to denote the distribu-
tion over R that each coefficient with respect to the basis B over R is sampled
according to discrete Gaussian with parameter σ. Then our main theorem of this
part is as follow.

Theorem 6.3 Let R = Z[X]/(Xn + 1) with n ≥ 8 a power of 2, q ≥ p ≥
B1+B2 ≥ 2 be integers such that p > n is a prime, pR = p1 · · · pg where g = n/c
for a constant c ∈ Z, and q = pt is a constant power of p. Let τ = poly(n)
be a polynomial. Let B = {1, X,X2, · · · , Xn−1} be the power basis of R. Then
there exists a reduction from ent-sRLWRq,p,B,ℓ,S to ent-dRLWRq,p,B,ℓ′,S′ , where
S denotes UB1,B2

(B) for B1 = τ
n

√
c lnn
n and B2 = τ , S ′ denotes DCoeff(B)

R,σ for
σ = O(τ2

√
n log np

1
g ), ℓ′ = gpcℓ · poly(1/ε), and ε is the advantage of ent-

dRLWRq,p,B,ℓ′,S′ oracle.

The proof of Theorem 6.3 consists of three reductions following the approach
of [36]. We summarize the reduction route as follows, and explain the parameters
later:

ent-sRLWRq,p,B,ℓ′,S
6.5−−→ (W)-pi-RLWRq,p,B,ℓ′′,S

6.8−−→ (W)-D-RLWRi
q,p,B,ℓ,S

6.10−−→ (A)-D-RLWRi
q,p,B,ℓ,S′

6.15−−→ ent-dRLWRq,p,B,ℓ,S′ .

ent-sRLWRq,p,B,ℓ′,S to (W)-pi-RLWRq,p,B,ℓ′′,S

Definition 6.4 ((W)-pi-RLWRq,p,B,ℓ′′,S) The worst-case (W)-pi-RLWRB,q,p,ℓ′′,S
problem is: given ℓ′′ samples from Ls,q,p(R,B) for some arbitrary s ∈ Supp(S),
find s mod piR

∨.

Then we give our lemma for reduction from ent-sRLWRq,p,B,ℓ′,S to (W)-
pi-RLWRq,p,B,ℓ′′,S and the proof will appear in the Appendix C.6.

Lemma 6.5 (ent-sRLWRq,p,B,ℓ′,S to (W)-pi-RLWRq,p,B,ℓ′′,S) For every i ∈
{1, · · · , g}, there exists a deterministic poly-time reduction from ent-sRLWRq,p,B,ℓ′,S
to (W)-pi-RLWRq,p,B,ℓ′′,S , where ℓ′ = gℓ′′.
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(W)-pi-RLWRq,p,B,ℓ′′,S to (W)-D-RLWRi
q,p,B,ℓ,S

Definition 6.6 (Hybrid RLWR distribution) For i ∈ {1, · · · , g}, s ∈ Rp, we
define the distribution Lis,q,p(R,B) over Rq×Rp as: sample (a, b)← Ls,q,p(R,B)
and output (a, b + h) where h ∈ Rp is uniformly random over mod pjR for all
j ≤ i, and 0 over mod all the other ideals, i.e., pjR’s for j > i.

We note that L0
s,q,p(R,B) is the same as Ls,q,p(R,B), Lgs,q,p(R,B) is the

uniformly random distribution over Rq × Rp, and the other Lis,q,p(R,B)’s are
intermediate hybrids, which will be used via a hybrid argument later.

Definition 6.7 ((W)-D-RLWRi
q,p,B,ℓ,S) The worst-case D-RLWRiq,p,B,ℓ,S prob-

lem is defined as follows: given ℓ samples from Ljs,q,p(R,B) for arbitrary s ∈
Supp(S) and j ∈ {i− 1, i}, determine j.

Next we present our lemma for reduction from pi-RLWRq,p,B,ℓ′′,S to (W)-
D-RLWRiq,p,B,ℓ,S and the proof is put to Appendix C.7.

Lemma 6.8 ((W)-pi-RLWRq,p,B,ℓ′′,S to (W)-D-RLWRi
q,p,B,ℓ,S) Let p | q.

For any i ∈ {1, · · · , g}, and ideal pi with N(pi) = pn/g = pc where c ≥ 1 is
a constant integer, there exists a probabilistic polynomial time reduction from
(W)-pi-RLWRq,p,B,ℓ′′,S to (W)-D-RLWRiq,p,B,ℓ,S where S can be any distribution
over Rq, ℓ′′ = pcℓ ·poly(1/ε), and ε is the advantage of the (W)-D-RLWRiq,p,B,ℓ,S
oracle.

(W)-D-RLWRi
q,p,B,ℓ,S to (A)-D-RLWRq,p,B,ℓ,S′

Definition 6.9 ((A)-D-RLWRi
q,p,B,ℓ,S′) The average-case D-RLWRiq,p,B,ℓ,S′ prob-

lem is defined as follows: given ℓ samples from Ljs,q,p(R,B) for s ← S ′ and
j ∈ {i− 1, i}, determine j.

For any element a ∈ Rq and a basis B of R, we denote CoeffB(a) as the
coefficient vector of a with respect to B, i.e., CoeffB(a) = (a0, a1, ·, an−1) ∈ Zn−1q

for a =
∑n
i=1 ai−1bi, where B = (b1, · · · , bn). Similarly, we denote RotB(a) as

rotation matrix of a with respect to B, i.e.,

RotB(a) =


CoeffB(a · b1 mod qR)⊤

CoeffB(a · b2 mod qR)⊤

...
CoeffB(a · bn mod qR)⊤

 .

It’s easy to verify CoeffB(sr) = CoeffB(s) · RotB(r) = CoeffB(rs) = CoeffB(r) ·
RotB(s) for any s, r ∈ Rq.

The following lemma shows a worst-case to average case reduction from the
RLWR with secrete distribution S to the RLWR with S2, and the measurement
RD in the statement denoted as the “Rényi divergence” is defined in Section A.4.
The proof of the lemma will appear in Appendix C.8.
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Lemma 6.10 (Worst-case to average-case) Let S,S1,S2 be distributions over
Rq. For every i ∈ {1, · · · , g}, if r ← S1 is invertible with non-negligible probabil-
ity, and RD2 (CoeffB(S2)‖RotB(s) · CoeffB(S1)) ≤ poly(λ) for any s ∈ Supp(S).
Then there exists a randomized poly-time reduction from worst-case (W)-D-RLWRiq,p,B,ℓ,S
to average-case D-RLWRiq,p,B,ℓ,S2 .

According to this lemma, we need to instantiate the distributions S,S1,S2
satisfied the constraints above. The following theorem shows the concrete in-
stantiations that can be applied to our reduction.

Theorem 6.11 Let K = Q(ζ) be m-th cyclotomic number field with m power of
2 and degree n = m/2. Let Dn

α and Dn
β be two Gaussian distributions on Rn with

parameters α, β > 0 satisfying β = τα where τ = τ(n) is a polynomial. For all

non-zero s =
∑n−1
i=0 si·ζi with fixed coefficient s0 ∈

[
τ

(
1− 1

n

√
c lnn
n

)
, τ

(
1 + 1

n

√
c lnn
n

)]
and si ∈

[
− τ
n

√
c lnn
n , τn

√
c lnn
n

]
for i ∈ {1, 2, · · · , n−1}, we have RD2(D

n
β ,Rot(s)·

Dn
α) ≤ n2c+ε for any constant ε > 0.

Proof. For fixed s, it is obvious that Rot(s) · Dn
α is exactly DαRot(s). In order

to compute the RD between two multivariate Gaussian distributions, we first
need the following lemma, which gives the RD between two elliptical Gaussian
distributions over Rn with Gaussian parameters S1,S2 ∈ Rn×n from [26], and
the proof is put to Appendix C.9.

Lemma 6.12 (Case for Multivariate Gaussian, [26]) For invertible square
matrices S1,S2 ∈ Rn×n, let DS1

and DS2
be two continuous multivariate Gaus-

sian distributions on Rn with covariance matrix S1S
⊤
1 and S2S

⊤
2 . If 2S2S

⊤
2 −

S1S
⊤
1 is positive definite, we have

RD2(DS1
, DS2

) =
(detS2)

2

| detS1| ·
√

det(2S2S⊤2 − S1S⊤1 )
.

With lemma 6.12, our next goal is to bound the determinant. Since deter-
minant of each square matrix is equal to the multiplication of n eigenvalues, we
need the Gershgorin Circle lemma to bound each eigenvalue.

Lemma 6.13 (Gershgorin Circle [25]) Let A = (aij)i,j∈[n] ∈ Cn×n and
ri =

∑
j ̸=i |aij | be the sum of the absolute values of the non-diagonal parts

of i-th row for i ∈ [n]. Let Disk(aii, ri) ⊂ C be the i-th closed disc with center aii
and radius ri. Then for every eigenvalue λ ∈ C of A, their exists i ∈ [n] such
that λ ∈ Disk(aii, ri).

We notice that for s ∈ Rq where R is a cyclotomic ring with power of 2, then
Rot(s) becomes an anti-circulant matrix, indicating that every Gershgorin cir-
cle of Rot(s) is the same which gives a more convenient way to bound each
eigenvector:
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Corollary 6.14 Let s =
n−1∑
i=0

si · ζi ∈ KR and S = Rot(s) be the anti-circulant

matrix of the polynomial s. For every eigenvalue λ ∈ C of S, we have

|s0| −
n−1∑
i=1

|si| ≤ |λ| ≤
n−1∑
i=0

|si|.

With the foundations above, we give the proof of Theorem 6.11. Denote S =
Rot(s) as the anti-circulant matrix. We can verify that SS∗ = S∗S, hence S
is a normal matrix. Then S has n eigenvalues {λi}i∈[n] and we obtain the
unitary diagonalisation S = UDU∗ where U is a unitary matrix and D =
diag(λ0, λ1, · · · , λn−1). Applyling the corollary 6.14, we can restrict the length

of each eigenvalue λi, τ
(
1−

√
c lnn
n

)
≤ |λi| ≤ τ

(
1 +

√
c lnn
n

)
. We also no-

tice that 2α2SS⊤ − β2I = U(2α2DD∗ − β2I)U∗ where I refers to the n-
dimensional identity matrix, so that n eigenvalues of 2α2SS⊤ − β2I are exactly
{2α2|λi|2 − β2}i∈[n].

We are also able to verify that S is invertible and the distribution S ·Dn
α is

exactly DαS. Apply the lemma 6.12 to βIn and αS, we have

RD2(D
n
β∥DαS) =

α2n| detS|2

βn ·
√

det(2α2SS⊤ − β2In)
=

α2n
n−1∏
i=0

|λi|2

βn ·

√
n−1∏
i=0

(2α2|λi|2 − β2)

=

n−1∏
i=0

|λi|2

τn ·

√
n−1∏
i=0

(2|λi|2 − τ2)

≤

(
max

{
λ2
max

τ
√
2λ2

max − τ2
,

λ2
min

τ
√

2λ2
min − τ2

})n

(2)

where λmax = τ

(
1 +

√
c lnn
n

)
and λmin = τ

(
1−

√
c lnn
n

)
, and the last equal-

ity (2) follows from the fact that |λ|2√
2|λ|2−τ2

=
(

2
|λ|2 −

τ2

|λ|4

)−1/2
reaches its max-

imum either |λ| is set to either upper bound λmax or lower bound λmin. In the
following, we prove that each term in the max bracket (2) is no more than
t = 1 + (2c+ε) lnn

n . For the former part λ2
max

τ
√

2λ2
max−τ2

≤ t, this inequality is equiv-
alent to

t ·
√

1−
√

1− t−2 ≤ λmax

τ
≤ t ·

√
1 +

√
1− t−2. (3)

The lower bound in (3) is obvious and for the upper bound, we have

t ·
√

1 +
√

1− t−2 = 1 +

√
(c+ ε/2) lnn

n
+ o

(√
lnn

n

)
≥ 1 +

√
c lnn

n
=

λmax

τ
.
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For the latter part λ2
min

τ
√

2λ2
min−τ2

≤ t, this inequality is equivalent to

t ·
√

1−
√

1− t−2 ≤ λmin

τ
≤ t ·

√
1 +

√
1− t−2. (4)

The upper bound of (4) is obvious, and for the lower bound, we have

t ·
√

1−
√

1− t−2 = 1−
√

(c+ ε/2) lnn

n
+ o

(√
lnn

n

)
≤ 1−

√
c lnn

n
=

λmin

τ
.

Therefore, we can obtain (1 + (2c + ε) · lnn
n )n as an upper bound for our

RD2(D
n
β‖DαS). At last, applying the inequality

(
1 + 1

x

)x
< e for all x > 0

completes the proof of theorem 6.11. ut

Instantiation. As Theorem 6.3 stated, the distributions S,S1,S2 can be set
as UB1,B2

(B), D
Coeff(B)
R,σ′ , D

Coeff(B)
R,σ respectively. By Lemma A.12 in Section A.5,

r ← D
Coeff(B)
R,σ′ should be invertible with non-negligible probability, and

RD
(
CoeffB

(
D

Coeff(B)
R,σ

)
∥RotB(s) · CoeffB

(
D

Coeff(B)

R,σ′

))
≤ poly(λ).

According to Theorem 6.11, we can set σ′ = O(
√
n log n · p

1
g ), σ = τσ′ =

O(τ
√
n log n · p

1
g ), B1 = τ

n

√
c lnn
n , B2 = τ , where τ = poly(n) is a flexible poly-

nomial that we will determine later.

Lemma 6.15 ((A)-D-RLWRi
q,p,B,ℓ,S′ to ent-dRLWRq,p,B,ℓ,S′) For any ora-

cle solving the ent-dRLWRq,p,B,ℓ,S′ problem with advantage ε, there exists an
i ∈ {1, · · · , g} and an efficient algorithm that solves (A)-D-RLWRiq,p,B,ℓ,S′ with
advantage ε/g using this oracle.

Proof (Sketch). This lemma can be proved by a simple hybrid argument. As
the hybrid argument is standard, we just sketch the main idea: suppose there
exists an algorithm that solves ent-dRLWRq,p,B,ℓ,S′ with advantage ε, i.e., it
distinguishes Ls,q,p(R,B) from uniformly random samples. Then the algorithm
must be able to distinguish some neighboring hybrids, i.e., Lis,q,p(R,B) and
Li−1s,q,p(R,B), with advantage ε/g, as there are g intermediate hybrids. ut

The proof of Theorem 6.3 follows from Lemmas 6.5, 6.8, 6.10, and 6.15.

Remark 6.16 We note that the reduction in Theorem 6.3 is not sample pre-
serving, as the number of samples depends on the advantage of the decision
RLWR distinguisher. However, as our target is to establish the pseudorandom-
ness of a special entropic RLWR problem (with Gaussian distribution of secrets)
with poly-modulus, we can only derive a reduction from search entropic RLWE
to 1

poly(λ) -secure decision entropic RLWR due to that the reduction in Theorem
6.1 only holds for a bounded number of samples. Nevertheless, we can apply the
hardness amplification technique of [58] to achieve negl(λ)-security by a parallel
repetition up to ω(1) times.

27



Remark 6.17 To further establish the pseudorandomness of RLWR with Gaus-
sian distribution of secrets from standard assumptions, two points are worth to
mention. On one hand, the distribution S of ent-sRLWRq,p,B,ℓ,S should satisfy
that S ⊆ R∗q by Theorem 6.1. This can be achieved by Theorem 6.11 and the
instantiation of S (e.g., UB1,B2

(B) with certain parameters B1 and B2). On the
other hand, S should have enough entropy to guarantee the hardness of entropic
RLWE with secret distribution S by Corollary 6.2. To be more concrete, S should
satisfy that νσ(S) ≥ H∞(S)−

√
2πn log(e) · rσ ≥ n log(γ ·

√
n log(n))+ω(log(λ)),

where r ≤ 2τ is the ℓ2 upper bound of S. To this end, we can set τ =
O(γ · n2

√
log n), σ = nτ = O(γ · n3

√
log n).
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Supplementary Material

A Omitted definitions

A.1 Rounding Function

For any integer modulus q ≥ 2, we use the “rounding” function defined in [5] –
for q ≥ p ≥ 2, let b·ep : Zq → Zp be the function as bxeq,p = b(p/q) · x̄e mod p,
where x̄ ∈ Z is any integer congruent to x mod q. We write b·ep for short.

Definition A.1 For integers q ≥ p ≥ 2 and any rational numbers 0 ≤ ν < 1
and τ > 0, we define the following set:

borderp,q,ν(τ)
def
= {x ∈ Zq + ν : ∃ y ∈ Q, |y| ≤ τ, bxep 6= bx+ yep}.

For any rational number 0 ≤ ν < 1, the distribution U(Zq) + ν is defined by
sampling a uniformly random variable u in Zq and outputting u+ ν. Similarly,
we denote Z+ ν as the set {y : y = x+ ν, x ∈ Z}.

Lemma A.2 We have |borderp,q,ν(τ)| ≤ 2τp, and thus Prx∼U(Zq)+ν [x ∈ borderp,q,ν(τ)]

≤ 2τp
q .

Proof. Let S =
⋃
i∈{0,··· ,p−1}((i+

1
2 )
q
p−τ, (i+

1
2 )
q
p+τ ] be a subset over the reals.

It’s easy to see that borderp,q,ν(τ) = (Z+ ν)∩ S and therefore |borderp,q,ν(τ)| ≤
2τp. The lemma follows. ut

Rounding of Ring Elements. We recap the definition of rounding over ring.

Definition A.3 (Rounding according basis [36]) Let K = Q(α) be a num-
ber field with degree n, and I be a fractional ideal over K with a Z-basis
B = {b1, · · · , bn}. Then for any integers q ≥ p ≥ 2, we define the rounding
function (with respect to basis B) b·eB,p : Iq → Ip as

baeB,p = bx1epb1 + · · ·+ bxnepbn mod pI,

where Iq (similarly Ip) is the quotient groups I/qI, and a = x1b1+ · · ·+xnbn ∈
Iq, x1, · · · , xn ∈ Zq. The rounding function for Zq → Zp, i.e., b·ep, is the same
as described above.

A.2 Rényi Divergence and Smooth Entropy

The Rényi divergence (RD) [4] defines a measure of distribution closeness. This
notion has many useful application in cryptography – for example, Bai et al. [4]
used RD as a powerful tool to analyze hardness and security of certain lattice-
based crypto systems. The definition is as follows:
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Definition A.4 (Rényi divergence) Let P,Q be two discrete distributions
s.t. Supp(P) ⊆ Supp(Q). For a ∈ (1,+∞), the Rényi divergence of order a is
defined as

RDa(P‖Q) =
( ∑
x∈Supp(P)

(P(x)a/Q(x)a−1)
) 1

a−1

.

Specifically, the Rényi divergence of order +∞ is given by

RD∞(P‖Q) = max
x∈Supp(P)

(P(x)/Q(x)).

If P,Q are two continuous distributions s.t. Supp(P) ⊆ Supp(Q). For a ∈
(1,+∞), an analogous version for Rényi divergence of order a is defined as

RDα(P‖Q) =

(∫
x∈Supp(P)

P(x)αQ(x)1−αdx

) 1
α−1

The Rényi divergence admits the following properties.

Lemma A.5 ( [4]) For tow distributions P,Q and two families of distributions
(Pi)i, (Qi)i, the Rényi divergence verifies the following properties:

– Data Processing Inequality. For any function f , RDa(f(P)‖f(Q)) ≤
RDa(P‖Q).

– Multiplicativity. RDa(
∏
i Pi‖

∏
iQi) =

∏
i RDa(Pi‖Qi), if {Pi}i are mu-

tually independent and {Qi}i are mutually independent.
– Probability preservation. For any event E ⊆ Supp(Q) and a ∈ (1,+∞),

Q(E) ≥ P(E)a/(a−1)

RDa(P‖Q)
, Q(E) ≥ P(E)

RD∞(P‖Q)
.

Definition A.6 (Smooth Entropy, Definition 2.3 in [1]) The ε-smooth min-
entropy of a random variable X is at least e, denoted by Hε

∞(X) ≥ e, if
there exists another variable X ′ such that ∆(X,X ′) ≤ ε and H∞(X ′) ≥ e.
If ε = negl(λ), we can omit ε and write Hsmooth

∞ for the smooth min-entropy.
Similarly, the ε-smooth conditional min-entropy of X given Y is at least e,
denoted by Hε

∞(X|Y ) ≥ e, if there exists other variables (X ′|Y ′) such that
∆((X,Y ); (X ′, Y ′)) ≤ ε and H∞(X ′ | Y ′) ≥ e.

Lemma A.7 (Lemma 2.4 in [1]) Let X,Y, Z be correlated random variables
and Z be some set such that Pr [ Z ∈ Z ] ≥ 1 − ε and |Z| ≤ 2λ. Then, for any
ε′ > 0, Hε+ε′

∞ (X | Y, Z) ≥ Hε′

∞(X | Y )− λ.

A.3 Gaussians

Positive Definite. We say that a square matrix Σ ∈ Rn×n, iff for every x ∈ Rn
and x 6= 0, it holds that x⊤Σx > 0, abbreviated by Σ > 0. For any Σ > 0, there
exists a unique matrix

√
Σ > 0 such that

√
Σ
√
Σ
⊤
= Σ.
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Continuous Gaussians. For a positive definite matrix Σ, the multivariate n-
dimensional Gaussian function ρσ : Rn → R with matrix parameter Σ centered
at c ∈ Rn is defined as

ρ√Σ,c(x) := exp(−π(x− c)⊤Σ−1(x− c)) = exp

(
−π
∥∥∥√Σ−1(x− c)

∥∥∥2) .
The continuous Gaussian distribution D√Σ of matrix parameter

√
Σ over Rn

is defined as the probability function proportional to ρ√Σ, since
∫
Rn ρ√Σ,c(y)dy =√

detΣ for all positive definite Σ and center c ∈ Rn, we have

D√Σ,c(x) :=
ρ√Σ,c(x)√

detΣ
.

For convenience, we will omit c if c = 0. We will write Dσ,c in short if
Σ = σ2I for some Gaussian parameter σ > 0.

Discrete Gaussians. For a positive definite matrix Σ, we represent the dis-
crete Gaussian distribution with matrix parameter

√
Σ over some n-dimensional

lattice Λ and coset vector u ∈ Rn as DΛ+u,
√
Σ with mass function

DΛ+u,
√
Σ(x) =

ρ√Σ(x)

ρ√Σ(Λ+ u)
, forx ∈ Λ.

A.4 The Space H

When working with number fields and algebraic number theory, it is convenient
to work with a certain linear subspace H ⊆ Rs1×C2s2 for some integers s1, s2 > 0
such that s1 + 2s2 = n, defined as

H = {(x1, · · ·xn) ∈ Rs1 × C2s2 |xs1+s2+j = xs1+j , ∀j ∈ [s2]}.

As described in the work [38], we can equip H with norms, which would naturally
define norms of elements in a number field or ideal lattice via an embedding that
maps field elements into H. We will present more details next.

It is not hard to verify that H equipped with the inner product induced by
Cn, is isomorphic to Rn as an inner product space. We denote Θ : H → Rn as
this isomorphism.

We can equip H with the ℓ2 and ℓ∞ norms induced on it from Cn. Namely,
for x ∈ H we have ‖x‖2 =

∑
i(|xi|2)1/2 =

√
〈x,x〉 and ‖x‖∞ = maxi |xi|. ℓp

norms can be defined similarly.

A.5 Algebraic Number Theory Background

Algebraic number theory is the study of number fields. Below we present the req-
uisite concepts and notations used in this work. More backgrounds and complete
proofs can be found in any introductory book on the subject, e.g., [19, 57].
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Number Fields and Their Geometry

A number field can be defined as a field extension K = Q(α) obtained by adjoin-
ing an abstract element α to the field of rationals, where α satisfies the relation
f(α) = 0 for some irreducible polynomial f(x) ∈ Q[x], called minimal polyno-
mial of α, which is monic without loss of generality. The degree n of the number
field is the degree of f .

A number field K = Q(α) of degree n has exactly n field embeddings (in-
jective homomorphisms) σi : K → C. Concretely, these embeddings map α to
each of the complex roots of its minimal polynomial f . An embedding whose
images lies in R is said to be real, or otherwise it is complex. Because roots of
f come in conjugate pairs, so do the complex embeddings. The number of real
embeddings is denoted as s1 and the number of pairs of complex embeddings
is denoted as s2, satisfying n = s1 + 2s2 with σi for 1 < i < s1 being the real
embeddings and σs1+s2+i = σs1+i for 1 ≤ i ≤ s2 being the conjugate pairs of
complex embeddings.

The canonical embedding σ : K ← Rs1 × C2s2 is then defined as σ(x) =
(σ1(x), · · ·σn(x)). Note that σ is a ring homomorphism from K to H, where
multiplication and addition in H are both component-wise.

By identifying elements of K and their canonical embeddings on H, we can
define the norms on K. For any x ∈ K and any p ∈ [1,∞], the ℓp norm of x is
simply ‖x‖p = ‖σ(x)‖p. Then we have that ‖xy‖p ≤ ‖x‖∞ · ‖y‖p ≤ ‖x‖p · ‖y‖p,
for any x, y ∈ K and p ∈ [1,∞].

The canonical embedding also allows us to view Gaussian distribution Dr

over H, or their discrete analogues over a lattice L ⊂ H, as distributions over
K. Formally, the continuous distribution Dr is actually over the field tensor
product KR = K ⊗Q R, which is isomorphic to H. Let Θ̄ : KR → Rn be the
metric isomorphism from KR to Rn, Θ̄ is just the concatenation of σ and Θ.

Ring of Integers and Ideals

An algebraic integer is an algebraic number whose minimal polynomial over the
rationals has integer coefficients. For a number field K, we denote its subset of
algebraic integers by R = OK . This set forms a ring, called the ring of integers
of the number field. The norm of any algebraic integer is in Z. For any modulus
q and ring of integers R, we define Rq = R/qR to be the quotient ring.

An (integer) ideal I ⊆ OK is an additive subgroup that is closed under
multiplication by R. Every ideal in OK is the set of all Z-linear combinations
of some basis {b1, · · · , bn} ⊂ I. An ideal p ⊊ OK is prime if ab ∈ p for some
a, b ∈ OK , then a ∈ p or b ∈ p (or both). In OK , an ideal p is prime if and only
if it is maximal, which implies that the quotient ring OK/p is a finite field of
order N(p).

An ideal p ⊊ OK is prime if ab ∈ p for some a, b ∈ OK , then a ∈ p or b ∈ p
(or both). In OK , an ideal p is prime if and only if it is maximal, which implies
that the quotient ring OK/p is a finite field of order N(p). An ideal I is called
to divide ideal J , which is written as I|J , if there exists another ideal H ∈ OK
such that J = HI. Two ideal I,J ⊆ OK are coprime if I + J = OK .
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Ideal Lattices

Recall that an ideal I of OK has a Z-basis B = {b1, · · · , bn}. Therefore, under
the canonical embedding σ, the ideal yields a full-rank lattice σ(I) have basis
σ(B) = {σ(b1), · · · , σ(bn)} ⊂ H. According map Θ, we further obtain a lattice
Λ = Θ̄(I) ⊆ Rn with basis B̄ = Θ̄(B). In some cases, we also consider the
coefficient embedding ϕ, i.e., the ideal thus also yields a full-rank lattice ϕ(I),
which has basis B.

A.6 Duality

For any lattice L ⊆ K (i.e., for the Z-span of any Q-basis of K), its dual is
defined as L∨ = {x ∈ K : Tr(xL) ⊆ Z}.

Then L∨ embeds as the complex conjugate of the dual lattice,i.e., σ(L∨) =
σ(L)∗ due to the fact that Tr(xy) =

∑
i σi(x)σi(y) = 〈σ(x), σ(y)〉. It is easy to

check that (L∨)∨ = L, and that if L is a fractional ideal, then L∨ is one as well.
We point out that the ring of integers R = OK is not self-dual, nor are an

ideal and its inverse dual to each other. For any fractional ideal I, its dual ideal is
I∨ = I−1 ·R∨. The factor R∨ is a fractional ideal whose inverse (R∨)−1, called
the different ideal, is integral and of norm N((R∨)−1) = ∆K . The fractional
ideal R∨ itself is often called the codifferent.

For any Q-basis B = {bj} of K, we denote its dual basis by B∨ = {b∨j },
which is characterized by Tr(bi · b∨j ) = δij , the Kronecker delta. It is immediate
that (B∨)∨ = B, and if B is a Z-basis of some fractional ideal I, then B∨ is a
Z-basis of its dual ideal I∨. If a =

∑
j aj ·bj for aj ∈ R is the unique presentation

of a ∈ KR in basis B, then aj = Tr(a · b∨).

A.7 Prime Splitting and Chinese Remainder Theorem

For an integer prime p ∈ Z, the factorization of the principal ideal 〈p〉 ⊂ R = OK
for a number field K (where K/Q is a field extension with degree n) is as follows.

Lemma A.8 (Dedekind [20]) Let K = Q(α) be a number field for α ∈ OK ,
and F (x) be the minimal polynomial of α in Z[x]. For any prime p, the ideal
pOK factors into prime ideals as 〈p〉 = pe11 · · · p

eg
g , where N(pi) = pfi for fi =

[OK/pi : Zp], and n =
∑g
i=1 eifi.

Moreover if p does not divide the index of [OK : Z[α]], then we have further
structures as following. We can express F (x) = f1(x)

e1 . . . fg(x)
eg mod p, where

each fi(x) is a monic irreducible polynomial in Zp[x]. There exists a bijection
between pi’s and fi(x)’s such that pi = 〈p, fi(α)〉, and fi = deg fi(x).

For each pi, we have pi | pOK , which can be written as pi|〈p〉, and call pi
a factor of 〈p〉. We can easily generalize Lemma A.8 to the case of composite
number as follows.

Lemma A.9 Let K = Q(α) be a number field for α ∈ OK . For any composite
number q with decomposition q =

∏t
i p
xi
i , where pi is the prime factor of q.

Then the ideal qOK factors into prime ideals as 〈q〉 =
∏t
i p
ei,1
i,1 · · · p

ei,gi
i,gi

, where
N(pi,j) = p

fi,j
i for fi,j = [OK/pi,j : Zpi ], and nxi =

∑gi
j=1 ei,jfi,j.
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If considering the case that K is a cyclotomic ring, it further enjoys the good
splitting property that ei,1 = · · · = ei,gi and fi,1 = · · · = fi,gi for each i ∈ [t].

Next we recall the Chinese Remainder Theorem (CRT) for the fraction ideal
over a number field K.

Lemma A.10 (Chinese Remainder Theorem [9]) Let I be a fractional ideal
over K, and let pi be pairwise coprime ideals in R = OK , then natural ring ho-
momorphism is an isomorphism: I/

(∏
i pi

)
I →

⊕
i(I/piI).

As a corollary of Chinese Remainder Theorem above, the following lemma
states the equivalence of prime ideal factors of qR and qR∨ under isomorphism.

Lemma A.11 (Lemma 2.35 of [9]) Let I,J be integral ideals in an order
O and let M be a fractional O-ideal. Assume that I is invertible. Given the
associated primes of J , p1, p2, . . . , pk, and an element t ∈ I \

⋃k
j=1 pjI the map

θt :M/JM→ IM/IJM
x 7→ t · x

induces an isomorphism of O-modules. Moreover, θt is efficiently inverted given
I,J ,M and t, and t can be computed given I and p1, · · · , pk.

In particular, let I = (R∨)−1,J = qR,M = R∨, then R/qR ∼= R∨/qR∨.
Finally, as an application of prime splitting and CRT, we have the following

lemma.

Lemma A.12 (Generalization of Lemma 3.5 in [56]) Let R = Z[X]/(Xn+
1) with n ≥ 8 a power of 2, p > n be a prime such that 〈p〉 = p1 · · · pg,
q = pt be a (constant) power of p. σ ≥

√
n ln(2n(1 + n2))/π · p1/g. Let B =

{1, X, · · · , XN−1}. Then it holds that

Pr
x←DCoeff(B)

R,σ

[
x ∈ (Rq)

∗] ≥ 1− g(1/p+ 2/n2) ≥ 1− n(1/p+ 2/n2).

A.8 General-LWE Problem and HNFLWE Problem

We now provide the definition of the LWE problem, including four versions, e.g.
plain LWE, (non-dual) Ring-LWE , Module-LWE and HNFLWE. In this paper, we
consider the “non-dual” form of RLWE defined in [46], and various LWE problems
with discrete error distribution for convenience of our analyses and applications.

Definition A.13 (GLWE distribution) Let R be a sub-ring of a number field
K, q ≥ 2, k ≥ 1 be positive integers and χ be an discrete error distribution
over Rq. For s ∈ Rkq , a sample from the GLWE distribution AR,ks,q,χ over Rk+1

q is
generated by choosing a

$← Rkq uniformly at random and error e← χ, outputting
(a, b = 〈a, s〉+ e).
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Definition A.14 (GLWE problem, decision) The decision problem D-GLWER,km,q,χ

is to distinguish between m samples from AR,ks,q,χ where s
$← Rkq , and m samples

from U(Rk+1
q ).

Definition A.15 (GLWE problem, search) The search problem S-GLWER,km,q,χ

is given m samples from AR,ks,q,χ for s
$← Rkq , find s.

We can capture several LWE variants by choosing the appropriate ring R
and dimension k. Let R = Z and k > 1, the problem becomes the plain LWE
problem [52]. Alternatively, if we choose R = OK and k = 1, we obtain the
(non-dual) RLWE problem [46]. Furthermore, by taking R = OK and k > 1, we
get Module LWE [33].

In our compact gadget trapdoor scheme, we need to prove the pseudoran-
domness of public matrix A based on the plain HNFLWE problem where each
entry of secret s follows the same distribution as error χ. We only introduce the
plain version of the decision HNFLWE problem (choose R = Z and k = n).

Definition A.16 (HNFLWE problem [2]) The decision problem HNFLWEn,m,q,χ
is to distinguish between m samples from AZ,n

s,q,χ where s ← χk, and m samples
from U(Rk+1

q ).

For the hardness of these LWE problems, the works of [2, 33, 38, 44, 48, 52]
show these LWE problems are as hard as (quantum or classical) various lattice
problems under various parameter regimes. We summarize the hardness of all
versions of LWE in Appendix A.10.

A.9 General-LWR Problem

The learning with rounding problem in some sense, can be seen as a de-randomized
version of the LWE problem. In this paper, we consider three types LWR prob-
lems, e.g., LWR over Zn, (non-dual) RLWR and Module-LWR. To simplify our
presentation, we define a “General Learning with Errors (GLWR)” problem,
which captures the three types LWR.

Definition A.17 (GLWR distribution) Let R be a sub-ring of a number field
K, q ≥ p ≥ 2, k ≥ 1 be positive integers, and B be a basis of R. For s ∈ (Rq)

k,
a sample from the GLWR distribution Lks,q,p(R,B) over (Rq)

k ×Rp is generated
by choosing a← (Rq)

k uniformly at random, outputting (a, b = b〈a, s〉eB,p).

Definition A.18 (GLWR problem, decision) The decision problem D-GLWRkB,q,p,ℓ,ψ
is to distinguish between ℓ samples from Lks,q,p(R,B) where s← ψ ⊆ Rkq , and ℓ
samples from U((Rq)

k ×Rp).

Definition A.19 (GLWR problem, search) The search problem S-GLWRkB,q,p,ℓ,ψ
is given ℓ samples from Lks,q,p(R,B) for s← ψ ⊆ Rkq , find s.
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For simplicity of notation, we omit the subscript ψ for the uniform distribution
for the above two definitions. Below the computational problems are all average-
case, where distinguishability/solvability is referred to the case when the secret s
comes from some distribution. We also define their worst-case variants by adding
(W), i.e., (W)-GLWR, where solvability means finding solutions for any s in the
support of ψ, i.e., for any s ∈ Supp(ψ).

The definitions above captures a few LWR variants. For example, let R =
Z,B = 1 and k > 1, we obtain the plain LWR problem defined in [5]. Alterna-
tively, by taking R = OK and k = 1, we get the “primal” form of RLWR over
OK . Furthermore, if we take R = OK and k > 1, the Module LWR is obtained.

A.10 Hardness of LWE

Hardness of LWE. For the hardness of LWE problem, we need the following
lemma.

Theorem A.20 ( [16,52]) Let λ ∈ N be a secruity parameter, let n,m, q =
poly(λ) be lattice parameters. Let χ = DZ,σ be a discrete Gaussian distribution
with parameter σ > 2

√
n. There exists an efficient and deterministic reduction

from the shortest independent vector problem (SIVPγ) with γ = Õ(nq/σ) in worst
case dimension n lattices to the (decision) LWEn,m,q,χ problem.

Hardness of RLWE. We define the distribution Υα over error distributions that
was used in the reduction of [49].

Definition A.21 For an arbitrary f(n) = ω(
√
log n). For α > 0, a distribution

sampled from Υα is an elliptical Gaussian Dr, where r is sampled as follows:
for i = 1, · · · , s1, sample xi ← D1 and set r2i = α2(x2i + f2(n))/2. for i = s1 +
1, · · · , s1+s2, sample xi, yi ← D1/

√
2 and set r2i = r2i+s2 = α2(x2i +y

2
i +f

2(n))/2.

Then we have the following Theorems:

Theorem A.22 (Combine [49] and [46]) Let K be arbitrary number field of
degree n, R = OK and t ∈ (R∨)−1 such that tR∨ + qR = R. Let α be the
parameter in Definition A.21, and α < ω(

√
log n/n), and let q ≥ 2 be an integer

such that αq ≥ ω(
√
log n). There exists a polynomial-time quantum reduction

from K-SIVPγ to (average-case,decision) R-LWEq,t·Υα
for any

γ ≤ max
{
ω(
√
n log n/α),

√
2n
}
.

Lemma A.23 (Combine [49] and [46]) With the same notations as Theo-
rem A.22, there is a polynomial-time quantum reduction from K-SIVPγ to the
(average-case, decision) problem of solving R-LWEq,t·Dξ

using ℓ samples, where

γ ≤
{
ω(
√
n log n/ξ) · (nℓ/ log(nℓ))1/4,

√
2n
}
.
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Hardness of Module-RLWE. For the hardness of Module-RLWE, we have the
following Lemma.

Lemma A.24 ( [48]) Let K be a number field and K ′/K be a field extension;
R be the ring of integers of K; R′ be the ring of integers of K ′ that is a rank-f free
R-module with know basis B∗, ϕ′ be a distribution over K ′R; and q be a positive
integer. Then there exists an efficient, deterministic reduction from (decision)
RLWEℓ,q,ϕ′ with respect to R′ to (decision) module-RLWEℓ,f,q,ϕ with respect R,
where ϕ = TrK′

R/KR(ϕ
′).

Hardness of HNFLWE. For the hardness of HNFLWE, the following lemma
holds.

Lemma A.25 (Lemma 2 in [2]) Let λ ∈ N be a secruity parameter, let n, q =
poly(λ) be lattice parameters. Let χ be any error distribution. There exists an ef-
ficient and classical reduction from (decision) LWEn,q,χ problem to HNFLWEn,q,χ
problem.

A.11 Entropic RLWE and Noise Lossiness

In this part, we first recall the definition of entropic RLWE problem in [15], then
present the hardness reduction in [15].

Definition A.26 ((Search) Entropic RLWE [15]) Let R be a ring of integers
of a number field K, q be a modulus and n, ℓ be integers. Let χ be an error
distribution on KR, S be a distribution on Rq. The ent-sRLWEℓ,q,χ,S problem is
given ℓ samples ((a1, b1), · · · , (aℓ, bℓ)) from As,χ, where s $←− S, find s.

We say that the ent-sRLWEℓ,q,χ,S problem is (standard) hard, if it holds for
every PPT adversary A that

Pr
[
A
(
(a1, · · · , aℓ), {ai · s+ ei}i∈{1,··· ,ℓ}

)
= s
]
≤ negl(λ),

where ei
$←− χ, ai

$←− Rq, and s $←− S.

For the hardness of entropic RLWE, [15] presented a reduction from DSPR
and RLWE to entropic RLWE for power-of-two cyclotomic ring. To this end, let’s
recall the Decisional Small Polynomial Ratio (DSPR) problem, as defined by
Lopez-Alt et al. [37], the lossiness model called noise lossiness considered in [15]
and some lower bounds of noise lossiness.

Definition A.27 (Decisional Small Polynomial Ratio Problem (DSPR))
Let R be a ring of integers of a number field K and let q be a modulus. Let
γ > 0. Let g $←− DR,γ and f $←− DR,γ conditioned on f mod q ∈ R×q . Let h be the
Rq-inverse of f . The DSPR problem for distribution DR,γ asks to distinguish
hg ∈ Rq from a uniformly random a

$←− Rq.
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Definition A.28 (Noise Lossiness [14]) Let S ⊆ Znq be a distribution of se-
crets, B ∈ Rn×n be a real matrix, and σ > 0 be a gaussian parameter. The
noise-lossiness measure denoted by νσB(S) is defined by

νσB(S) = H∞(s|s+ e),

where s
$←− S and e

$←− DσB.

Lemma A.29 (General Distributions [14]) Let σ > 0 be a gaussian param-
eter, q be a modulo such that q ≥ σ√

π/ log(4n)
, S be any distribution on Znq . Then

it holds that
νσ(S) ≥ H∞(S)− n · log(q/σ)− 1.

Lemma A.30 (Bounded Distributions [14]) Let σ > 0 be a gaussian pa-
rameter, S be a r-bounded (ℓ2 norm) distribution on Znq . Then it holds that

νσ(S) ≥ H∞(S)−
√
2πn log(e) · r

σ
.

Then, we have the following reduction for the hardness of entropic RLWE [15].

Theorem A.31 Assume that DSPR with parameter γ and RLWE with a B-
bounded noise distribution χ holds. Let S be a distribution such that νσ(S) ≥
n log(γ ·

√
n log(n))+ω(log(λ)) for some parameter σ. Then entSLWE for power-

of-two cyclotomics with ℓ ≥ 2n log q+ω(log(λ)) samples, secret distribution S and
error distribution Φbin is standard hard, where Φbin is defined as the distribution
determined by choosing ℓ elements e1, · · · , eℓ from Gaussian distribution χ with
parameter σ0 ≥ O(σn log(n)

√
ℓB) and x

$←− {0, 1}ℓ, and outputting
∑
i xi.

Remark A.32 We note that the entropic RLWE considered in Corollary A.31
is with continuous error distribution over KR/qR. However, we require the error
distribution of entropic RLWE to be discrete in our later application. Fortunately,
there exists a simple reduction from entropic RLWE with continuous error distri-
bution to the one with discrete error distribution by making use of the randomized
rounding procedure in [45].

Corollary A.33 Assume that DSPR with parameter γ and RLWE with a B-
bounded noise distribution χ holds. Let S be a distribution such that νσ(S) ≥
n log(γ ·

√
n log(n))+ω(log(λ)) for some parameter σ. Then entSLWE for power-

of-two cyclotomics with ℓ ≥ 2n log q + ω(log(λ)) samples, secret distribution S
and error distribution Φbin defined as Theorem A.31 above for discrete Gaussian
distribution χ with parameter σ0 ≥ O(σn log2(n)

√
ℓB) is standard hard.

A.12 Leftover hash lemma

We will use the following two variants of the leftover hash lemma. Particularly,
the first one is with respect to the case of Z, and the second one is related to
the case of OK .
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Lemma A.34 (Particular case of Lemma 2.3 in [40]) Let m,n, q ∈ N be
integers and ε ∈ (0, 1). Suppose s is chosen from some distribution over Znq and
A

$←− Zm×nq , u $←− Zmq are chosen independently of s from uniform distribution.
Furthermore let Y be a random-variable (possibly) correlated with s.

– If q is a prime, and H∞(s mod q | Y ) ≥ m log q + 2 log
(
1
ε

)
. Then we have:

∆[(A,A · s, Y ); (A,u, Y )] ≤ ε.
– If q is a composite number, and H∞(s mod p | Y ) ≥ 2m log q+2 log

(
1
ε

)
for

any factor p of q. Then we have: ∆[(A,A · s, Y ); (A,u, Y )] ≤ ε.

Lemma A.35 (Generalization of Corollary 5.7 in [36]) Let k, e, q be inte-
gers, ε ∈ (0, 1), and R = OK be the ring of integers of a number field K = Q(α)

with degree n, such that gcd(q, [OK : Z[α]]) = 1 and e ≥ 2 log
(

1
ε

)
+2n log q− 2.

Suppose s is chosen from some distribution X over (Rq)
k and Y be a random-

variable (possibly) correlated with s, such that H∞(s mod q | Y ) ≥ e for any
ideal q|qR, and a

$←− (Rq)
k, u

$←− Rq are uniformly random and independent of
s. Then we have that ∆

[
(a, 〈a, s〉 mod qR, Y ), (a, u, Y )

]
≤ ε.

B Omitted Definitions, Constructions and Proof of
Public Key Cryptography

B.1 Lossy Trapdoor Functions

Definition B.1 ( [1,50]) An lossy trapdoor function (LTF) scheme LTF with
preimage distribution S and image set Y includes the following algorithms:

– Injective Key Generation. LTF.IGen(1λ) generates an injective evaluation
key ek and its corresponding inversion key ik.

– Lossy Key Generation. LTF.LGen(1λ) generates an lossy evaluation key
ek′.

– Evaluation. LTF.Eval(ek, s) inputs an (injective or lossy) evaluation key
and a preimage s ∈ S, and outputs the image y = fek(s).

– Inversion. LTF.Invert(ik,y) inputs an inversion key ik and y ∈ Y, and
outputs the unique preimage s = f−1ik (y) such that y = fek(s).

We discuss the following properties of LTF:

– Correctness. For key pair (ek, ik) ← LTF.IGen(1λ), we require that for all
s ∈ S, with overwhelming probability over LTF.IGen(1λ) that x = f−1ik (fek(x)).

– Expansion. We define the expansion of LTF as χ := log |Y|/ log |S| and we
expect it to be a constant.

– l-Lossiness. We define that a LTF with l-lossiness (abbreviated by l-LTF)
satisfies that for mutually correlated random variables (s, aux), ek′ ← LTF.LGen(1λ)
we have

Hsmooth
∞ (s | ek′, fek′(s), aux) ≥ Hsmooth

∞ (s | aux)− l(λ)
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– Key Indistinguishability. The distribution of injective evaluation key from
LTF.IGen(1λ) is computationally indistinguishable from the distribution of
lossy evaluation key from LTF.LGen(1λ), i.e. for any PPT adversary A

AdvINDLTF,A(λ) :=
∣∣Pr [A(1λ, ek) = 1

]
− Pr

[
A(1λ, ek′) = 1

]∣∣
is negligible, with probability under (ek, ik) ← LTF.IGen(1λ) and ek′ ←
LTF.LGen(1λ).

Proof (Proof of 5.15). We separate the theorem 5.15 into several sub-lemmas
and each lemma refers to a property of LTF.

Lemma B.2 (Constant Expansion) Let m = (k + 2)n and k = dlogb qe is
a constant. If the preimage distribution S covers U(Znq ), our LTF construction
has O(1) expansion.

Proof. For all s ∈ Znq and (injective or lossy) evaluation key A ∈ Zm×nq , we
obtain the image y = bA · sep ∈ Zmp . Therefore, we compute the expansion as

η =
m · log p
n · log q

= O(1).

ut

Lemma B.3 (Correctness) If p ≥ 2(b + 1)(2nβ + 1) the above construction
has overwhelming probability to inverse correctly in the injective mode.

Proof. This proof is directly from constraints on upper bound of ‖TA‖∞ from
lemma 5.13 and correctness of LWRInvert from theorem 5.11. ut

Lemma B.4 (l-Lossiness) For parameters restriction q > p∗ > nmpβ, our
LTF construction has l-lossiness where l = (ℓ+ λ) log q + n log p∗.

Lemma B.5 (Key Indistinguishability) Let m = (k + 2)n. Our LTF con-
struction achieves key indistinguishability assuming hardness of HNFLWEn,n,q,χ
and LWEℓ,m,q,χ.

Proof. From the theorem 5.11, with the assumption of HNFLWEn,n,q,χ, the dis-
tribution of our injective evaluation key A is computationally indistinguishable
from U(Zm×n).

From the lemma 4.2, under the assumption of LWEl,m,q,χ, the distribution of
our lossy evaluation key A′ is computationally indistinguishable from U(Zm×n).

With hybrid arguments, the proof is done. ut

ut
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B.2 All-but-many Lossy Trapdoor Functions (ABM-LTF)

Next we give the definition of all-but-many lossy trapdoor functions (ABM-
LTF) [28].

Definition B.6 ( [28]) An all-but-many lossy trapdoor function (ABM-LTF)
scheme ABM with domain S and range Y includes the following algorithms:

– Key Generation. ABM.Gen(1λ) generates an evaluation key ek, an in-
version key ik and a tag key tk. The evaluation key ek specifies a tag set
T = Tc × Ta that contains two disjoint sets of injective tags Tinj and lossy
tags Tloss. Every tag t = (tc, ta) is composed of a core part tc ∈ Tc and an
auxiliary part ta ∈ Ta.

– Evaluation. ABM.Eval(ek, t, s) inputs an evaluation key, a tag t ∈ T and a
preimage s ∈ S, and outputs the image y = fek,t(s).

– Inversion. ABM.Invert(ik, y) inputs an inversion key ik, a tag t ∈ T and
y ∈ Y, and outputs the unique preimage s = f−1ik,t(y) such that y = fek,t(s).

– Lossy Tag Labeling. ABM.LTag(tk, ta) inputs a tag key tk and auxiliary part
of a tag ta ∈ Taux, and outputs a core part tc ∈ Tcore such that (tc, ta) ∈ Tloss.

– Lossy Tag Judgement. ABM.isLossy(tk, t) judges whether the tag t ∈ T is
a lossy tag. If t ∈ Tloss, return 1; Otherwise, return 0.

We consider the following properties of ABM-LTF:

– Correctness. For key pair (ek, ik) ← ABM.Gen(1λ), we require that for all
s ∈ S, with overwhelming probability over ABM.Gen(1λ) that x = f−1ik (fek(x)).

– Expansion. We define the expansion of ABM-LTF as χ := log |Y|/ log |S|
and we expect it to be a constant.

– l-Lossiness. We define that a ABM-LTF with l-lossiness (abbreviated by
l-ABM-LTF) satisfies that for mutually correlated random variables (s, aux),
(ek, ik, tk) ← ABM.Gen(1λ), any ta ∈ Taux and tc ← ABM.LTag(tk, ta), we
have

Hsmooth
∞ (s | ek, t, fek,t(s), aux) ≥ Hsmooth

∞ (s | aux)− l(λ)
– Indistinguishability. Multiple lossy tags are computationally indistinguish-

able from random tags, i.e. for all PPT adversary A,

AdvINDABM,A(λ) :=
∣∣∣Pr [A(1λ, ek)ABM.LTag(tk,·) = 1

]
− Pr

[
A(1λ, ek)OTc (·) = 1

]∣∣∣
is negligible, where (ek, ik, tk) ← ABM.Gen(1λ) and OTc(·) is an oracle that
returns a uniform random core tag tc ← U(Tc).

– Evasiveness. We require that lossy tags are computationally hard to find
with access to oracles outputting and judging lossy tags, i.e. for all PPT
adversary A,

AdvEVAABM,A(λ) := Pr
[
A(1λ, ek)ABM.LTag(tk,·),ABM.isLossy(tk,·) ∈ Tloss

]
is negligible, where (ek, ik, tk) ← ABM.Gen(1λ) and A never outputs a tag
t = (tc, ta) such that tc was queried from ABM.LTag oracle on ta.
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We apply the similar strategy in [13, 29, 34] to build our ABM-LTF scheme
based on our LTF construction, which is homomorphically evaluating a PRF
circuit. We need the following lemma for homomorphic computation based on
the gadget matrix G with general gadget base b.

Lemma B.7 (Homomorphic Computation [10,17]) Let λ be a security pa-
rameter, and n,m, q = poly(λ) be lattice parameters. Let b > 0 be a gadget base
such that k = dlogb qe is a constant and G ∈ Zkn×nq be the gadget matrix.
Let m = kn. Let {Fλ}λ∈N be a circuit family f : {0, 1}u(λ) → {0, 1} with
depth d = d(λ). There exists a pair of efficient and deterministic algorithms
(pubEval, ctEval) satisfying the following properties:

– pubEval(f ∈ F , {Bi ∈ Zm×nq }i∈[u])→ Bx ∈ Zm×nq ;
– ctEval(f ∈ F ,A ∈ Zm×nq , {Ri ∈ Zm×mq }i∈[u],x ∈ {0, 1}u)→ Rx ∈ Zm×mq .

Furthermore, for all matrix A ∈ Zm×nq , {Ri ∈ Zm×mq }i∈[u], input x ∈ {0, 1}u
such that Bi = Ri ·A+ x[i] ·G and d-depth Boolean circuit f ∈ F , we have

Bx = Rx ·A+ f(x) ·G

Let χ be a β-bounded distribution over Zq. If for all Ri ← χm×m, then

‖Rx‖∞ ≤ 2 · 4dβm2(b− 1).

The proof of this lemma is similar to [17], while generalizing the base b from 2
to any positive integer b < q. We first need the result of Barrington’s theorem
from [6].

Width-5 Permutation Branching Programs. We say that Π is a permu-
tation branching program of length L with input space {0, 1}ℓ is a sequence of
L tuples with the form (var(t), σt,0, σt,1) if

– Function var : [L]→ [ℓ] takes input as t ∈ [L] and outputs var(t) ∈ [ℓ], which
associates t-th tuple with bit xvar(t).

– For all t ∈ [L] and i ∈ 0, 1, σt,i ∈ S5 is a permutation on [5].

We next describe the computation procedure of the program Π on ℓ-bit input
x = (x1, · · · , xℓ). In each step t ∈ [L], the program has a state ζt ∈ [5]. Initially,
program Π begins with starting state ζ0 = 1, computes each state recursively
as ζt = σt,var(t)(ζt−1) and obtains a final state ζL after L steps. The program Π
outputs 1 if ζL = 1, and 0 if ζL ∈ {2, 3, 4, 5}.

An important theoretical result in the relationship between a Boolean circuit
C with two-input NAND gates and a width-5 permutation branching program
is stated as below:

Theorem B.8 (Barrington’s Theorem [6]) Every boolean circuit Ψ in two-
input NAND gates with input {0, 1}ℓ and depth d can be transformed to a width-5
permutation branching program Π with length 4d and same input and output as
Ψ . Furthermore, the branching program Π can be computed in poly(ℓ, 4d) time
with the description of Boolean NAND circuit Ψ .
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With these powerful tools, we next prove lemma B.7.

Proof (Proof of B.7). For every Boolean NAND circuit f with input x ∈ {0, 1}ℓ
and depth d, we apply the Barrington’s theorem B.8 to f and obtain an equiv-
alent width-5 permutation branching program Π with length L = 4d. Thus,
homomorphically evaluating the boolean circuit f is equivaleng to homomorphi-
cally evaluate the branching program Π.

For a GSW encoding B = R · A + xG ∈ Zm×nq such that A ∈ Zm×nq ,
R ∈ Zm×mq and x ∈ {0, 1}, we define R(B) = R ∈ Zm×mq . We first describe
the homomorphic evaluation procedure related to addition and multiplication of
two GSW encodings Bi = Ri ·A+ xiG for i ∈ {1, 2} [10, 24].

– For addition, HomoAdd(B1,B2) = B1+B2. It is obvious that R(B1+B2) =
R1 +R2, indicating the norm bound ‖R(B1 +B2)‖∞ ≤ ‖R1‖∞ + ‖R2‖∞.

– For multiplication, HomoMult(B1,B2) = G−1(B1) · B2. Rewrite the result
with A, Ri and xi where i ∈ {1, 2}, we have

G−1(B1) ·B2 = G−1(B1) · (R2 ·A+ x2G)

= G−1(B1) ·R2 ·A+ x2B1

= (G−1(B1) ·R2 + x2R1) ·A+ x1x2G.

Thus, we have R(G−1(B1) ·B2) = G−1(B1) ·R2+x2R1 which is assymetric
between two GSW encodings. Since every entry of G−1(B1) is bounded by
b− 1, we have ‖R(G−1(B1) ·B2)‖∞ ≤ m(b− 1)‖R2‖∞ + x2‖R1‖∞.

Same as [17], we represent each state ζt ∈ [5] by a binary vector vt which is
unit vector uζt in 5 dimensions. It holds that for t = 1, · · · , L and i ∈ [5],

vt[i] = vt−1
[
σ−1t,0 (i)

]
· (1− xvar(t)) + vt−1

[
σ−1t,1 (i)

]
· xvar(t)

= vt−1[γt,i,0] · (1− xvar(t)) + vt−1[γt,i,1] · xvar(t)

where γt,i,0 = σ−1t,0 (i) and γt,i,1 = σ−1t,1 (i) can be publicly derived from the de-
scription of Π.

Homomorphic Evaluation of pubEval(Ψ,B1, · · · ,Bu). The homomorphic
evaluation procedure takes input as Bi = Ri · A + xiG for i ∈ [u] and Ri ←
χm×m. Since χ is a β-bounded distribution, it is easy to verify that ‖Ri‖∞ ≤ mβ.

We maintain a GSW encoding vector Vt = (Vt,1,Vt,2,Vt,3,Vt,4,Vt,5) re-
lated to state vector vt[i] for each t ∈ {0, 1, · · · , L}, i.e Vt,i ∈ Zm×nq is a
GSW encoding of vt[i] for each t ∈ {0, 1, · · · , L} and i ∈ [5] and we denote
Rt,i = R(Vt,j).

– Initialization. Initialize the 0 state as V0,i := v0[i] ·G. Note that V0,i is a
valid GSW encoding for v0[i] with R0,i = 0.
Compute the GSW encodings of the complements of input bits as B̄j =
G − Bj . It is obvious that B̄j is a valid GSW encoding of 1 − xj with
R̄j := R(B̄j) = −Ri for every j ∈ [u].
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– Evaluation. The evaluation procedure proceeds iteratively for t ∈ [L]. Given
Vt−1 = (Vt−1,1,Vt−1,2,Vt−1,3,Vt−1,4,Vt−1,5), we compute Vt by

Vt,i = HomoAdd
(
HomoMult

(
Vt−1,γt,i,0 , B̄var(t)

)
,HomoMult

(
Vt−1,γt,i,1 ,Bvar(t)

))
for i ∈ [5].

– Output. Output VL,1.

The procedure of ctEval(Ψ,A, {Ri}i∈[u],x) and the correctness is obvious
so we omit it. We next use the induction on t ∈ {0, 1, · · · , L} to prove that
‖Rt,i‖∞ ≤ 2tβm2(b− 1).

This statement is no doubt true for t = 0. We assume that the statement
holds for t− 1, from the noise growth property of homomorphic evaluation, for
i ∈ [5], we have

‖Rt,i‖∞ ≤ 2m(b− 1)‖Rvar(t)‖∞ +
(
1− xvar(t)

)
‖Rt−1,γt,i,0‖∞ + xvar(t)‖Rt−1,γt,i,1‖∞

≤ 2m2β(b− 1) + 2(t− 1)m2β(b− 1) (5)
= 2tm2β(b− 1)

where (5) follows the induction assumption, the upper bound for ‖Rvar(t)‖∞ and
exactly one of xvar(t) and 1− xvar(t) is 1. Thus, the statement holds for t.

We choose the case t = L ≤ 4d and complete the proof. ut

In [13, 29, 34], the authors utilized pseudorandom function PRF, where our
lossy ABM-LTF tag (tc, ta) is defined by a PRF key K ∈ {0, 1}k such that
tc = PRFK(ta). We encodes each bit of K, then the evaluation key ek consists of
λ GSW encodings and both inversion key ik and tag key tk includes the PRF key
K. In the evaluation (resp. inversion) step, we apply homomorphic evaluation
in the public (resp. private) way from lemma B.7 to the PRF evaluation circuit.

However, there is no known construction for lattice-based PRF scheme in
NC1 so that directly doing homomorphic computation to the PRF evaluation
circuit results in a super-polynomial modulus q. In order to guarantee a poly-
nomial modulus q, we need to apply the method in [32], which is using a fully
homomorphic encryption scheme HE, evaluating the PRF circuit by HE.Eval in-
stead of pubEval to get a HE ciphertext HE.ct related to the PRF value, and then
evaluate HE.Dec on the GSW encodings of HE.sk and HE.ct by pubEval to get a
GSW encoding of the PRF value. The homomorphic encryption scheme is defined
as follows.

Definition B.9 (Fully Homomorphic Encryption [24]) HE is a special kind
of PKE with an additional public evaluation key hevk generated in HE.Gen, an
additional evaluation PPT algorithm HE.Eval and message space M = {0, 1}:

– HE.Gen(1λ): Input a security parameter λ, output a public key hek, a public
evaluation key hevk and a secret decryption key hdk.

– HE.Eval(hevk, C, ct1, · · · , ctl): Input an evaluation key evk, homomorphically
evaluate a circuit f : {0, 1}l → {0, 1} on ct1, · · · , ctl, and output a ciphertext
ctf .
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We require HE scheme has full homomorphism and compactness.

– Full homomorphism. For any boolean circuit C with polynomial depth
L = L(λ), and any messages msg1, · · · ,msgl ∈ {0, 1}, we have

Pr[HE.Dec(hdk,HE.Eval(hevk, C, {cti}i∈[l])) = f(msg1, · · · ,msgl)] = 1−negl(λ),

where (hek, hevk, hdk)← HE.Gen(1λ) and cti ← HE.Enc(hek,msgi).
– Compactness. The decryption circuit is independent of the evaluated circuit
C.

With all the definitions above, we can construct our compact ABM scheme.

Construction B.10 Let λ be a security parameter and n,m, q = poly(λ) be
lattice parameters. Let S be our entropic preimage distribution over Znq and
Y = Z2m

p be the image set. Let PRF : {0, 1}k0 × {0, 1}k1 → {0, 1}k2 be a secure
pseudorandom function with key length k0 = k0(λ), input length k1 = k1(λ) and
output length k2 = k2(λ). Let HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) be a
fully homomorphic encryption scheme with g = g(λ) as the secret key length,
g′ = g′(λ) as the ciphertext length and d = d(λ) as the depth of decryption circuit
HE.Dec. Let (pubEval, ctEval) be the homomorphic computation algorithms. Our
ABM-LTF scheme includes the following algorithms:

– ABM.Gen(1λ):
1. Sample a lossy matrix A ← Lossy(1n, 1m, 1ℓ, q, χ) and a uniformly ran-

dom PRF key K
$← {0, 1}k0 . Define the tag space as T = {0, 1}k2 ×

{0, 1}k1 , the core part of tag space as Tc = {0, 1}k2 and the auxiliary
part of tag space as Ta = {0, 1}k1 ;

2. Sample HE keys (hek, hevk, hdk)← HE.KeyGen(1λ) and describe the de-
cryption algorithm HE.Dec as a NAND Boolean circuit CDec;

3. Encrypt each bit of K by HE: di
$← HE.Enc(hek,Ki) for i ∈ [k0];

4. Sample RDi

$← χm×m and compute Di = RDi
·A + hdki ·G for each

i ∈ [g], where hdki denotes i-th bit of hdk;
5. Sample Rent

$← [−b2, b2]m×m ∈ Zm×mq and compute Aent = Rent ·A;
6. Output the evaluation key ek = (A,Aent, {di}i∈[k0], {Di}i∈[g], hek, hevk),

the inversion key ik = ({RDi}i∈[g],Rent, hdk,K) and the tag key tk = K.
– ABM.Eval(ek, t, s): Input ek = (A,Aent, {di}i∈[k0], {Di}i∈[g], hek, hevk), a preim-

age s ∈ Znq and a tag t = (tc, ta) ∈ {0, 1}k2 × {0, 1}k1 .
1. Let RCt be a circuit which is hardwired the tag t and takes a pseudo-

random key K ∈ {0, 1}k0 as input, and judge the tag whether is lossy or
not:

RCt :=

{
0, if tc = PRFK(ta);
1, otherwise.

2. Homomorphically evaluate the circuit RCt on the HE ciphertexts of PRF
key K by HE.Eval, i.e.

ct = HE.Eval(hevk,RCt, {di}i∈[k0]);
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3. Homomorphically evaluate the decryption circuit CDec on the GSW en-
codings {Di}i∈[g] and {ctjG}j∈[g′] where ctj denotes the j-th bit of ct,
i.e.

Apub ← pubEval
(
CDec, {Di}i∈[g], {ctjG}j∈[g′]

)
∈ Zm×nq ;

4. Add Aent to Apub: A1 ← Apub +Aent;
5. Compute and output

y ←
⌊(

A
A1

)
· s
⌉
p

∈ Z2m
p .

– ABM.LTag(tk, ta): Input tag key tk = K and an auxiliary tag component
ta ∈ {0, 1}l. Compute the core tag component tc = PRF(K, ta) ∈ {0, 1}k2 .

– ABM.Invert(ek, ik, t,y): Input ek = (A,Aent, {di}i∈[k0], {Di}i∈[g], hek, hevk),
ik = ({RDi

}i∈[g],Rent, hdk,K), an injective tag t = (tc, ta) and an image
y ∈ Z2m

p ,
1. Return ⊥ if tc = PRF(K, a);
2. Homomorphically evaluate the circuit RCt on the HE ciphertexts of PRF

key K by HE.Eval, i.e.

ct = HE.Eval(hevk,RCt, {di}i∈[k0]);

3. Using ctEval to compute the Matrix

Rct ← ctEval
(
CDec,A, {hdki}i∈[g], {ctj}j∈[g′], {RDi

}i∈[g], {[0]i}i∈[g′]
)
∈ Zm×mq ;

4. Add Rent to Rct in order to provide enough entropy: R← Rct +Rent;
5. Let Ā←

(
A

R ·A+G

)
∈ Z2m×n

q . Compute the gadget trapdoor TĀ ←(
−R Im

)
∈ Zm×2mq of Ā;

6. Run the LWR inversion algorithm to return the preimage

s← LWRInvert(TĀ, Ā,y) ∈ Znq .

Parameter Selection. Our goal is to achieve the five properties described in
the B.6, we need the following restrictions:

– LWEℓ,m,q,χ is hard, β∗ = mβ(b2 + 2 · 4dβm(b− 1)) and q > p∗ ≥ nmpβ∗ to
guarantee the pseudorandomness of lossy matrix and l-lossiness property of
lossy mode;

– k = dlogb qe is a constant which is to ensure the constant expansion property
of our ABM-LTF;

– HNFLWEn,n,q,χ is hard and m = (k + 2)n to achieve the pseudorandomness
of our GSW encodings;

– p ≥ 2(b+1)(2 · 4dβm2(b− 1)+mb2 +1) in order to make the LWR inversion
algorithm recover the preimage successfully.

– n ≥ 2ℓ and the least prime factor pmin of q satisfies pmin > b2. These are the
prerequisite of applying leftover hash lemma.

49



Theorem B.11 Let λ be the security parameter and guarantee the constraints of
each parameter above. The consturction ABM = (ABM.Gen,ABM.LTag,ABM.Eval,
ABM.Invert) is an l-lossy ABM scheme which satisfies constant expansion, in-
vertible correctness, indistinguishability and evasiveness.

Lemma B.12 (Constant Expansion) Let k = dlogb qe be a constant and m =
kn. If S covers U(Znq ), our LTF construction has O(1) expansion.

Proof. Given the public matrix A ∈ Zm×nq , for any tag t we compute the matrix
A1 ∈ Zm×nq as described in the function evaluation algorithm. For all s ∈ Znq , we

obtain the image y =

⌊(
A
A1

)
· s
⌉
p

∈ Z2m
p . Therefore, we compute the expansion

as
η =

2m · log p
n · log q

= O(1).

ut

Lemma B.13 (Correctness) Let p ≥ 2(b + 1)(2 · 4dβm2(b − 1) + mb2 + 1).
If HE is a fully homomorphic encryption scheme and (pubEval, ctEval) satisfies
the homomorphic properties in lemma B.7, then the above construction has all-
but-negligible probability to inverse correctly in the injective mode where the
probability is taken over ABM.Gen(1λ).

Proof. Let (ek, ik, tk) be the output of ABM.Gen(1λ) as described in construction.
Let t = (tc, ta) ∈ {0, 1}k2 × {0, 1}k1 be an injective tag, i.e. PRF(K, ta) 6= tc,
indicating that RCt(K) = 1. This formula and the homomorphic property of HE
imply that ct is an HE encryption of RCt(K), hence CDec(hdk, ct) = 1. From
lemma B.7, Apub = Rct ·A+G and ‖R‖∞ ≤ 2 ·4dβm2(b−1) with overwhelming
probability over the sampling of each RDi

. Then A1 = R · A + G with R =
Rct + Rent. It is easy to verify that TĀ = (−R, Im) is a gadget trapdoor of
Ā with norm ‖TĀ‖ ≤ 2 · 4dβm2(b − 1) + mb2 + 1. From theorem 5.11, with
sufficiently large p ≥ 2(b+ 1)(2 · 4dβm2(b− 1) +mb2 + 1) ≥ 2(b+ 1)‖TĀ‖, the
LWR inversion algorithm recovers s ∈ Znq from y = bĀsep successfully. ut

Lemma B.14 (l-Lossiness) Let q > p∗ ≥ nmpβ∗, β∗ = mβ(b2 +2 · 4dβm(b−
1)) and n ≥ 2ℓ, then our ABM-LTF construction has l-lossiness, where l =
(ℓ+ λ) log q + n log p∗.

Proof. This proof is similar to the proof of residual leakage of all-but-one LTF in
[1, Theorem 7.3]. For any lossy tag t ∈ Tloss, in the algorithm ABM.Eval(ek, t, s),

we compute the image y = bĀ·sep where Ā =

(
A
RA

)
and A← Lossy(1n, 1m, 1ℓ, q, χ).

Next, we illustrate that we can regard Ā as a lossy matrix from Lossy(1n, 12m, 1ℓ, q, χ∗)
where χ∗ is a β∗-bounded distribution over Zq.

We rewrite A = BC + F where B
$← Zm×ℓq , C $← Zℓ×nq and F

$← χm×n.

Then, we rewrite Ā = B̄C + F̄ where B̄ =

(
B
RB

)
and F̄ =

(
F
RF

)
. Since
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R = Rent+Rct where Rent
$← [−b2, b2]m×m and Rct is coming from homomorphic

computation. First, we need to prove that (B,RB) is statistically closed to
the uniform distribution thanks to the randomness extractor B. Though the
detection of remaining entropy in Rct is hard, the source Rent can provide enough
entropy for R. For every row r⊤ of R, the term RF at most leaks n log q bits of
information on r⊤. Since pmin > b2 hence the remaining entropy in r is at least
m log(2b2) − n log q > m + n log q ≥ 2ℓ log q + O(λ) with m = kn and bk ≥ q.
Therefore, the distribution B̄ is statistically closed to U(Z2m×ℓ

q ). The next goal
is to prove that every entry of RF is bounded by β∗. From lemma B.7 and the
choose of Rent, ‖R‖∞ ≤ 2 · 4dβm2(b − 1) +mb2. Therefore, for every column f
of F, ‖Rf‖∞ ≤ ‖R‖∞‖f‖∞ ≤ mβ(2 · 4dβm(b− 1) + b2) = β∗ and we can model
F̄ as a β∗-bounded distribution.

Finally, we apply the parameters m∗ = 2m and β∗ to lemma 4.3 to get the
lossiness l = (ℓ+ λ) log q + n log p∗. ut

Lemma B.15 (Indistinguishability) Assume LWEℓ,m,q,χ and HNFLWEn,n,q,χ
is hard, PRF is a secure pseudorandom function scheme and HE has IND-CPA
security. The above ABM-LTF construction has indistinguishability.

Proof. This proof is similar to the proof of indistinguishability of the ABM-LTF
scheme from Libert et al. [34, Lemma 14].
A is a PPT adversary to attack the indistinguishability property. We prove

this theorem by hybrid arguments and the first game is the real indistinguisha-
bility game. Denote Wi as the event that adversary A outputs 1 in hybrid i.

Hybrid 0: This hyrbid is the experiment 0 in the indistinguishability game
defined in B.6. The challenger generates the evaluation key ek as described in the
ABM construction and gives ek to the adversary. The challenger answers each
lossy tag queries by ABM.LTag(tk, ·).

Hybrid 1: This hybrid is the same as hybrid 0 except that the challenger
generates the evaluation key ek in a different way. Instead of applying the Lossy
function to generate A i.e. A ← Lossy(1n, 1m, 1ℓ, q), the challenger samples A

uniformly random on Zm×nq i.e. A $← Zm×nq . From lemma 4.2, under the hard-
ness of LWEℓ,m,q,χ, the lossy matrix and the uniform matrix are computationally
indistinguishable, hence |Pr[W0]− Pr[W1]| ≤ nAdvℓ,m,q,χLWE,A0

(λ) for some LWE in-
distinguisher A0.

Hybrid 2: This hybrid is the same as hybrid 1 except that the challenger
samples {Di}i∈[g] in uniformly at random i.e. Di

$← Zm×mq for all i ∈ [g], instead
of making each Di be a GSW encoding of the bit hdki. From lemma 5.10, under
the hardness of HNFLWEn,n,q,χ and m = kn ≥ 2n+ω(log λ · log log λ), we obtain
that |Pr[W1]− Pr[W2]| ≤ mgAdvn,m,qpse,A1

(λ) for some adversary A1 attacking the
pseudorandomness in lemma 5.10.

Hybrid 3: This hybrid is the same as hybrid 2 except that the challenger
encrypts k0 bits of 0 by HE, i.e. di ← HE.Enc(hek, 0) for i ∈ [k0], instead of
encrypting each bit of the PRF key K. From the IND-CPA security of HE,
|Pr[W2]− Pr[W3]| ≤ k0AdvIND-CPA

HE,A2
(λ) for some CPA security attacker A2 of HE.
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Hybrid 4: This hybrid is the same as hybrid 3 except that the challenger
answers the lossy tag queries by OTc(·), an oracle that returns a uniform random
core tag tc

$← Tc, which substitute the oracle ABM.LTag(tk, ·).
Next, we prove that for a secure PRF, the views of A in Hybrid 3 and Hybrid

4 are computationally indistinguishable. We can use distinguishing ability in Hy-
brid 3 and Hybrid 4 of A to construct a PRF attacker A3. In detail, A3 interacts
with a PRF challenger C that uniformly choose a PRF key K

$← {0, 1}k0 and
answer each query M ∈ {0, 1}k1 by returning either PRFK(M) or implement-
ing a random function R(·) by lazy sampling and outputting R(M). Initially,
A3 generates the evaluation key ek = (A,Aent, {di}i∈[k0], {Di}i∈[g], hek, hevk) by
sampling A

$← Zm×nq , Rent
$← [−b2, b2]m×m, (hek, hevk, hdk) ← HE.KeyGen(1λ),

di
$← HE.Enc(hek, 0) for i ∈ [k0], Di

$← Zm×nq for i ∈ [g] and computing
Aent ← RentA. Then A3 gives ek to A and if A makes a lossy tag query for
auxiliary tag ta ∈ {0, 1}k1 , A3 makes a PRF query for image ta to C and re-
turns the result to A. If C uses PRFK(·) (resp. R(·)) to answer queries, then
A3 perfectly simulate the environment of Hybrid 3 (resp. 4) for A. Therefore,
|Pr[W3]− Pr[W4]| ≤ AdvPRF,A3

(λ).
Hybrid 5: This hybrid is the same as hybrid 4 except that the challenger

encrypts each bit of the PRF key K, i.e. di ← HE.Enc(hek,Ki), instead of en-
crypting k0 bits of 0. From the IND-CPA security of HE, |Pr[W4]− Pr[W5]| ≤
k0Adv

IND-CPA
HE,A2

(λ) for some CPA security attacker A2 of HE.
Hybrid 6: This hybrid is the same as hybrid 5 except that the challenger

makes each Di as a GSW encoding of hdki instead of sample each Di uniformly
at random. With similar arguments for transformation from Hybrid 1 to Hybrid
2, we obtain that |Pr[W5]− Pr[W6]| ≤ mgAdvn,m,qpse,A1

(λ) for some adversary A1

attacking the pseudorandomness in lemma 5.10.
Hybrid 7: This hybrid is the same as hybrid 6 except that the challenger

samples the public matrix A by the Lossy function i.e. A← Lossy(1n, 1m, 1ℓ, q),
instead of sample it uniformly random from Zm×nq . This hybrid is exactly the ex-
periment 1 of the indistinguishability game. From lemma 4.2, |Pr[W0]− Pr[W1]| ≤
nAdvℓ,m,q,χLWE,A0

(λ) for some LWE indistinguisher A0.
Therefore, we obtain that

AdvINDABM,A(λ) ≤ 2nAdvℓ,m,q,χLWE,A0
(λ)+2mgAdvn,m,qpse,A1

(λ)+2k0Adv
IND-CPA
HE,A2

(λ)+AdvPRF,A3(λ)

which is negligible in λ. ut

Lemma B.16 (Evasiveness) Assuming the hardness of LWEℓ,m,q,χ and HNFLWEn,n,q,χ,
the IND-CPA security of HE, and the pseudorandomness of PRF, our ABM-LTF
construction has evasiveness.

Proof. This proof is similar to the proof of evasiveness of the ABM-LTF scheme
from Libert et al. [34, Lemma 13].
A is a PPT adversary to attack the evasiveness property. We prove this

lemma also by hybrid games and the first game is the real evasiveness game. We
denote Wi as the event that adversary outputs 1 in hybrid i.
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Hybrid 0: This hybrid is the real evasiveness game defined in B.6. The
challenger gives the real evaluation key ek to the adversary A, then A request
for the following two types of queries:

1. ABM.LTag(tk, ·) : A submits an auxiliary tag ta and get the corresponding
c← PRF(K, a) returned. A asks this type of query for Q1 times.

2. isLossy(tk, ·) : A submits a tag t = (tc, ta) and get the boolean value indi-
cating whether tc = PRF(K, ta) or not. A asks this type of query for Q2

times.

Finally, A submits a challenge tag t∗ = (t∗c , t
∗
a). A wins if and only if t∗ ∈ Tloss

and A never obtained t∗c by an oracle query t∗a .
Hybrid 1: This hybrid is the same as hybrid 0 except that the challenger gen-

erates the evaluation key ek in a different way. Instead of applying the Lossy func-
tion to generate A i.e. A ← Lossy(1n, 1m, 1ℓ, q), the challenger samples A uni-
formly random on Zm×nq i.e. A $← Zm×nq . From lemma 4.2, |Pr[W0]− Pr[W1]| ≤
nAdvℓ,m,q,χLWE,A0

(λ) for some LWE indistinguisher A0.
Hybrid 2: This hybrid is the same as hybrid 1 except that the challenger

samples {Di}i∈[g] in uniformly at random i.e. Di
$← Zm×mq for all i ∈ [g], instead

of making each Di be a GSW encoding of the bit hdki. From lemma 5.10, under
the hardness of HNFLWEn,n,q,χ and m = kn ≥ 2n+ω(log λ · log log λ), we obtain
that |Pr[W1]− Pr[W2]| ≤ mgAdvn,m,qpse,A1

(λ) for some adversary A1 attacking the
pseudorandomness in lemma 5.10.

Hybrid 3: This hybrid is the same as hybrid 2 except that the challenger
encrypts k0 bits of 0 by HE, i.e. di ← HE.Enc(hek, 0), instead of encrypting each
bit of the PRF key K. From the IND-CPA security of HE, |Pr[W2]− Pr[W3]| ≤
k0Adv

IND-CPA
HE,A2

(λ) for some CPA security attacker A2 of HE.
Hybrid 4: This hybrid is the same as hybrid 3 except that the challenger

returns two queries in a different way. The challenger maintains a random func-
tion R : {0, 1}k1 → {0, 1}k2 by lazy sampling, and returns tc = R(ta) instead of
tc = PRF(K, ta) in the lossy core tag query, and returns the bit tc

?
= R(ta) if A

makes a lossy tag judgement query for t = (tc, ta). Since R is a random function,
Pr[W4] = Q2/2

k2(λ).
Similarly to the proof of indistinguishability, we prove that for a secure

PRF, the views of A in Hybrid 3 and Hybrid 4 are computationally indistin-
guishable. We construct a PRF attacker A3 based on the distinguihing abil-
ity in Hybrid 3 and Hybrid 4 of A. In detail, A3 interacts with a PRF chal-
lenger C that uniformly choose a PRF key K $← {0, 1}k0 and answer each query
M ∈ {0, 1}k1 by returning either PRFK(M) or implementing a random function
R(·) by lazy sampling and outputting R(M). Initially, A3 generates the evalua-
tion key ek = (A,Aent, {di}i∈[k0], {Di}i∈[g], hek, hevk) by sampling A

$← Zm×nq ,
Rent

$← [−b2, b2]m×m, (hek, hevk, hdk) ← HE.KeyGen(1λ), di
$← HE.Enc(hek, 0)

for i ∈ [k0], Di
$← Zm×nq for i ∈ [g] and computing Aent ← RentA. Then A3

gives ek to A. If A makes a lossy tag query for auxiliary tag ta ∈ {0, 1}k1 , A3
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makes a PRF query for image ta and returns the result from C to A. If A makes
a lossy tag judgement query for tag t = (tc, ta), A3 makes a PRF query for image
ta and returns 0/1 to A, which indicates whether tc matches the result from C
or not. As a result, A3 makes Q1 + Q2 PRF queries. If C uses PRFK(·) (resp.
R(·)) to answer queries, then A3 perfectly simulate the environment of Hybrid
3 (resp. 4) for A. Therefore, |Pr[W3]− Pr[W4]| ≤ AdvPRF,A3

(λ).
Finally, with the help of traingular inequality, we obtain that

AdvEVAABM,A(λ) ≤ nAdv
ℓ,m,q,χ
LWE,A0

(λ)+mgAdvn,m,qpse,A1
(λ)+k0Adv

IND-CPA
HE,A2

(λ)+AdvPRF,A3
(λ)+

Q2

2k2(λ)

which is negligible in λ. ut

B.3 Deterministic Encryption
Deterministic public key encryption (DPKE) is a variant of PKE with deter-
ministic encryption and decryption algorithm. The goal of this primitive is to
guarantee the security if the plaintexts are drawn from a large min-entropy dis-
tribution. Here we give the definition that a deterministic encryption scheme
requires the computational indistinguishability of plaintexts from two different
high-entropy distributions.
Definition B.17 A deterministic public key encryption scheme DPKE with mes-
sage space S = Sλ includes the following algorithms:

– Key Generation. A PPT algorithm DPKE.KeyGen(1λ) generates a public
and secret key pair (pk, sk).

– Encryption. A deterministic algorithm DPKE.Enc(pk, s) takes a public key
pk and a plaintext s ∈ S, and outputs the ciphertext y.

– Decryption. A deterministic algorithm DPKE.Dec(sk,y) takes a secret key
sk and a ciphertext y, and output the plaintext s.

We require DPKE has the following properties:
– Correctness. For (pk, sk) ← KeyGen(1λ), we have Dec(sk,Enc(pk, s)) with

overwhelming probability over randomness of KeyGen.
– k(λ)-Security. Let S0 and S1 be any two distributions over Mλ which are

efficiently samplable in poly(λ) time with min-entropy Hsmooth
∞ (S0) ≥ k and

Hsmooth
∞ (S1) ≥ k, then for all PPT adversary A,

Adv
k(λ)
DPKE,A(λ) :=

∣∣Pr [A(1λ, pk,Enc(pk, s0)) = 1
]
− Pr

[
A(1λ, pk,Enc(pk, s1)) = 1

]∣∣
is negligible, where the probability is taken over (pk, sk)← KeyGen(1λ), s0

$←
S0 and s1

$← S1.

We adopt the construction of DPKE from [1], except for some parameter change.
In [1], the security of DPKE requires the message distribution S to be bounded,
e.g. binary vectors, while we remove the bound limitation. Since we proved the
hardness of entropic LWR in 4.3 for any secret distirbution S over Znq with high
min-entropy, we can change the message space to be Znq instead of {0, 1}n.
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Construction B.18 Let λ be a security parameter, and n,m, p, q = poly(λ) be
lattice parameters. Let b be a gadget base. Let S be an entropic distribution over
Znq such that Pr[s /∈ (Znq )∗ : s← S] is negligible. Our DPKE scheme includes the
following algorithms:

– KeyGen(1λ): Sample (A,TA)← TrapGen(1n, q, b). Output pk = A and sk =
(A,TA).

– Enc(pk, s): Input public key pk = A ∈ Zm×nq and a plaintext s← S, output
bA · sep.

– Dec(sk,y): Input secret key sk = (A,TA) and a ciphertext y ∈ Zmp , run the
LWR inversion algorithm to return the plaintext s← LWRInvert(TA,A,y).

Theorem B.19 Let q be a prime and χ be a β-bounded distribution over Zq
such that q > p∗ ≥ nmpβ and p ≥ 2(b + 1)(2nβ + 1). Assuming the hardness
of HNFLWEn,n,q,χ and LWEℓ,m,q,χ, our DPKE scheme has k-security for k =
n log p∗ + (ℓ+ λ+ 1) log q + ω(log λ).

Proof. Correctness follows the same way of LTF correctness proof in lemma B.3.
The proof of k-security is similar to [1, Theorem 8.2]. From lemma 4.3, the

hardness of LWEℓ,m,q,χ implies the hardness of ent-dLWR(q, p, n,m,S) for en-
tropic distribution S over Znq such that Hsmooth

∞ (S) ≥ k = n log p∗ + (ℓ + λ +
1) log q+ω(log λ). Let S0 and S1 be two distributions with smooth min-entropy
at least k. With the hardness of HNFLWEn,n,q,χ, we have the following distribu-
tions computationally indistinguishable:

(A, bA · s0ep)
c
≈ (Ā, bĀ · s0ep)

c
≈ (Ā, buep)

c
≈ (Ā, bĀ · s1ep)

c
≈ (A, bA · s1ep)

where A comes from the first term in TrapGen(1λ, q, b), Ā
$← Znq , u

$← Znq ,
s0 ← S0 and s1 ← S1. Therefore, we obtain the advantage of a PPT adversary
A in attacking k-security:

Adv
k(λ)
DPKE,A(λ) ≤ 2mAdvn,m,qpse,A0

(λ) + 2Advn,m,q,p,kent-dGLWR,A1
(λ)

which is negligible. ut

B.4 Public Key Encryption with Selective Opening Security

In this appendix section, we recall some notions of cryptography primitives with
the standard security model which we used in our LTF and ABM construction.

Public Key Encryption. A PKE scheme with message space M =Mλ con-
sists of the following three PPT algorithms:

– PKE.Gen(1λ): Input the security parameter and output a public key pk and
a secret key sk.

– PKE.Enc(pk,msg): Input a public key pk and a message msg ∈ M, and
output a ciphertext ct.

55



– PKE.Dec(sk, ct): Input a secret key sk and a ciphertext ct, and output a
message msg ∈M or ⊥.

The correctness refers to that for all message msg, for (pk, sk)← PKE.Gen(1λ),
PKE.Dec(sk,PKE.Enc(pk,msg)) = m holds overwhelmingly where the probabil-
ity is taken from the randomness in PKE.Gen and PKE.Enc.

We adopt the following definitions related to efficiently samplable, explain-
able and re-samplable from [28].

Definition B.20 (Efficiently samplable and explainable) A discrete dis-
tribution S is efficiently samplable and explainable if every element s can be
explained by sampling from a uniform randomness R. There exists PPT algo-
rithm SampS and ExplS satisfying that

1. SampS(1
k;R) where R $← {0, 1}|R| samples exactly from S;

2. For all s ∈ S, ExplS(s) returns randomness R such that s = SampS(1
k;R).

Definition B.21 (Efficiently re-samplable) Let N = N(λ) > 0 and n =
n(λ). A joint distribution dist over ({0, 1}n)N is efficiently re-samplable, if ther
exists a PPT algorithm ReSampdist such that for all I ⊆ [N ] and any partial
vector msg′I := (msg′i)i∈I ∈ ({0, 1}n)|I|, ReSampdist(msg′I) samples from dist
conditioned on msgi = msg′i for i ∈ I.

IND-SO-CCA Security. We first recall the following experiment ExpIND-SO-CCA
PKE,A,N,b

between a challenger C and an adversary A for b ∈ {0, 1} and polynomial N =
N(λ).
1. At the beginning, C runs (pk, sk)← PKE.Gen(1λ) and sends pk to A;
2. A is given 1λ and pk as input and an oracle to PKE.Dec(sk, ·), chooses an ef-

ficiently samplable, explainable and re-samplable joint distribution dist over
MN , and sends dist to C;

3. C samples msg0 := (msgi)i∈[N ]
$← dist and R := (Ri)i∈[N ]

$← (RPKE.Enc)
N

whereRPKE.Enc refers to the randomness space in PKE.Enc. Then C computes
C := (cti)i∈[N ] ← (PKE.Enc(pk,msgi;Ri))i∈[N ] and sends all ciphertexts C
to A;

4. A is given C as input and an oracle to PKE.Dec(sk, ·), selects a subset I ∈ [N ]
and sends I to C;

5. C re-samples msg1 from dist conditioned on (msgi)i∈I and sends (msgi, Ri)i∈I
and msgb to A;

6. A is given (msgi, Ri)i∈I and msgb as input and the decryption oracle PKE.Dec(sk, ·),
finally outputs a bit b′ ∈ {0, 1};

We require that A never submits a received challenge ciphertext cti to the de-
cryption oracle. We say that if a PKE scheme has IND-SO-CCA security if for all
PPT adversary A and polynomial N ,

AdvIND-SO-CCA
PKE,A,N (λ) :=

∣∣∣Pr [ExpIND-SO-CCA
PKE,A,N,0 (λ) = 1

]
− Pr

[
ExpIND-SO-CCA

PKE,A,N,1 (λ) = 1
]∣∣∣

is negligible.
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Lossy Authenticated Encryption. A LAE scheme with key space {0, 1}2k and
message space {0, 1}k for k = k(λ) consists of the following two PPT algorithms:

– E(K,msg) : Input a secret key K ∈ {0, 1}2k and a message msg ∈ {0, 1}k,
output a ciphertext ct.

– D(K, ct): Input a secret key K ∈ {0, 1}2k and a ciphertext ct, output a
message msg ∈ {0, 1}k or a decryption failure symbol ⊥.

We consider the following properties:

– Correctness. D(K,E(K,msg)) = msg holds for all K ∈ {0, 1}2k and msg ∈
{0, 1}k.

– Authentication. This security notion is defined by the following game be-
tween a challenger C and an adversary A.
1. At the beginning of the game, C samples a uniform key K $← {0, 1}2k;
2. One Time Encryption Query. A is given 1λ as input, chooses and

sends a message msg ∈ {0, 1} to C, and get the ciphertext ct← E(K,msg)
from C.

3. Many Times Decryption Query. A queries for the decryption of a
ciphertext ct through a decryption oracle D(K, ·) polynomial times.

4. A wins if A outputs a valid ciphertext ct∗ 6= ct, i.e. D(K, ct∗) 6=⊥.
We require that the probability of winning the game for every PPT adversary
A is negligible.

– Lossiness. For message msg ∈ {0, 1}k, letDmsg be the distribution E(K,msg)

where K $← {0, 1}2k. For any msg0,msg1 ∈ {0, 1}k, the two distributions
Dmsg0 and Dmsg1 are identical.

Universal Hash Function. Let UH ⊆ {h : {0, 1}L → {0, 1}t} be a family of
universal hash function, then for any distinct x1, x2 ∈ {0, 1}L, we have

Pr
h

$←UH
[h(x1) = h(x2)] ≤ 2−t.

Lemma B.22 (Leftover Hash Lemma) For any integers d ≤ k ≤ l, let
UH ⊆ {h : {0, 1}l → {0, 1}k−d} be a family of universal hash functions. Then,
for any random distribution X over {0, 1}l such that H∞(X) ≥ k, we have

SD(h(X ), U({0, 1}k−d) | h)
h

$←UH
≤ 2−

d
2−1.

Our compact LTF and ABM-LTF can be adapted to the black box construction
of PKE scheme with SO-CCA in [28]. Next, we present the construction from
Hofheinz [28]. We require the following ingredients:

– A lossy trapdoor function LTF = (LTF.IGen, LTF.LGen, LTF.Eval, LTF.Invert)
with domain {0, 1}L and lossiness l0;

– An all-but-many lossy trapdoor function ABM = (ABM.Gen,ABM.Eval,ABM.Invert,ABM.LTag)
with domain {0, 1}L and lossiness l1;

57



– A universal hash function family UH = UHλ with UHF h : {0, 1}L → {0, 1}2k
for some n = n(λ) and k = k(λ) such that L− l0 − l1 − 2k = ω(log λ).

– A lossy authenticated encryption scheme LAE = (E,D) with keyK ∈ {0, 1}2k,
message m ∈ {0, 1}k and ciphertext ct ∈ {0, 1}2κ.

With the cryptography primitives above, we have the following PKE = (PKE.Gen,
PKE.Enc,PKE.Dec) scheme.

– PKE.Gen(1λ):
1. Sample (ek0, ik0) ← LTF.IGen(1λ), (ek1, ik1, tk) ← ABM.Gen(1λ) and
h

$← UH;
2. Output pk := (ek0, ek1, h) and sk := (ik0, ek1, h);

– PKE.Enc(pk,m): Input pk = (ek0, ek1, h) and a message m ∈ {0, 1}k.
1. Sample s

$← {0, 1}L and compute the LAE key K ← h(x);
2. Encrypt m by the LAE scheme ct← E(K,m);
3. Compute y0 ← LTF.Eval(ek0, x) and y1 ← ABM.Eval(ek1, (tc,y0), x)

where tc ← SampTcore(1
λ;Rtc);

4. Output C := (ct,y0, tc,y1).
Notice that the randomness in PKE.Enc is (s, Rtc).

– PKE.Dec(sk, C): Input sk = (ik, ek, h) and C = (ct,y0, tc,y1).
1. Compute s← LTF.Invert(ik0,y0);
2. If y1 6= ABM.Eval(ek1, (tc,y0)), return ⊥;
3. Compute K ← h(x) and output m← D(K, ct).

The proof of IND-SO-CCA security is already done in [28] and [29], so we
omit it here.

For a post-quantum instantiation of the PKE scheme with IND-SO-CCA
security, we choose the LTF and ABM scheme to be our l0-LTF from Con-
struction 5.14 and l1-ABM-LTF from Construction B.10 with same preimage
space Znq . Apart from the inner constraints of LTF and ABM-LTF, we need
n log q− l0− l1−2k = ω(log λ). Therefore, with the compact expansion property
of our LTF and ABM-LTF, we can obtain a SO-CCA PKE scheme with compact
expansion ( |ct||m| is constant).

C Omitted Proof

C.1 Proof of Lemma 4.3

Lemma C.1 (Lemma 4.3) Let n,m, ℓ, p, p∗, q, β be positive integers such that
q > p∗ ≥ nmpβ, and χ be a β-bounded distribution over Zq. Let (s, aux) be a pair
of correlated random variables with s distributed according to some distribution
S ⊆ Znq and Prs

[
s /∈

(
Znq
)∗ ]

< δ, and let Ã be a matrix independently output
by the algorithm Lossy(1n, 1m, 1ℓ, q, χ). Then for ε = 2−λ+δ+2−ℓ+1, any ε′ > 0
and any every function f taken input over S, we have:

Hε′+ε
∞ (f(s) | Ã, bÃ · sep, aux) ≥ Hε′

∞(f(s) | bseq,p∗ , aux)− (ℓ+ λ) log q.
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Proof. According to Definition 4.1, Ã can be written as Ã = B · C + F, then
bÃ · sep = bB ·C · s+F · sep. Furthermore, bB ·C · s+F · sep can be written as

bB ·C · s+ F · sep =
⌊
B ·C · s+

q

p∗
F · bsep∗ +

q

p∗
F(
p∗

q
s− bsep∗)

⌉
p

.

We define the set I def
=
{
i ∈ [m] :

⌊(
B ·C · s+ q

p∗F · bsep∗
)
i

⌉
p
6=
⌊(
Ã · s

)
i

⌉
p

}
,

where (x)i denotes i-th coordinate of x. Let Z =
{(
i,
⌊(
Ã · s

)
i

⌉
p

)
: i ∈ I

}
, and

it is not hard to see that (Ã, bÃ · sep) can be reconstructed completely given
B,C,F,Cs, qp∗ bsep∗ , Z. Therefore:

Hε′+ε
∞ (f(s) | Ã, bÃ · sep, aux) ≥ Hε′+ε

∞ (f(s) | B,C,F,Cs,
q

p∗
bsep∗ , Z, aux).

Next we show a lower bound for the right hand side by bounding the min-entropy
loss given Z. To do this, we first bound the probability that the size of I is large:

Claim C.2 PrB,C,F,s[|I| > λ] < δ + 2−ℓ+1 + 2−λ.

Proof. We can divide the event |I| > λ into two conditions: s ∈
(
Znq
)∗ and

s /∈
(
Znq
)∗ and obtain:

Pr
B,C,F,s

[ |I| > λ ] = Pr
B,C,F,s

[
|I| > λ | s /∈

(
Znq
)∗ ] · Pr

s

[
s /∈

(
Znq
)∗ ]

+ Pr
B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗ ] · Pr

s

[
s ∈

(
Znq
)∗ ]

≤ Pr
s

[
s /∈

(
Znq
)∗ ]

+ Pr
B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗ ]

.

(6)

Then, we have PrB,C,F,s [ |I| > λ ] < δ + PrB,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗ ]. So

our next step is to bound PrB,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗ ].

For any s ∈
(
Znq
)∗ and independently chosen matrix C

$←− Zℓ×nq , C · s is
uniformly distributed over Zℓq. Thus by the lower bound of

∣∣(Zℓq)∗∣∣, PrC,s[C ·s ∈(
Zℓq
)∗ | s ∈ (Znq )∗] ≥ 1−2−ℓ+1. Now we further divide PrB,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗ ]

into two cases as follows:

Pr
B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗]

= Pr
B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗
,C · s /∈

(
Zℓq
)∗] · Pr

C,s

[
C · s /∈

(
Zℓq
)∗ | s ∈ (Znq )∗]

+ Pr
B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗
,C · s ∈

(
Zℓq
)∗] · Pr

C,s

[
C · s ∈

(
Zℓq
)∗ | s ∈ (Znq )∗] .
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Combining the above equation with (14), we have

Pr
B,C,F,s

[|I| > λ ]

< δ + Pr
C,s

[
C · s /∈

(
Zℓq
)∗ | s ∈ (Znq )∗]+ Pr

B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗
,C · s ∈

(
Zℓq
)∗]

< δ + 2−ℓ+1 + Pr
B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗
,C · s ∈

(
Zℓq
)∗ ]

.

(7)
It’s easy to see

Pr
B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗
,C · s ∈

(
Zℓq
)∗ ]

= Pr
B,C,F,s

[
|I| > λ | C · s ∈

(
Zℓq
)∗]

as C·s ∈
(
Zℓq
)∗ implies s ∈

(
Znq
)∗, so it’s remain to bound PrB,C,F,s

[
|I| > λ | C · s ∈

(
Zℓq
)∗ ].

To do this, we denote the i-th column of the matrices B and F as as bi and f i, re-
spectively. We fix s and C such that C·s ∈

(
Zℓq
)∗, and compute Pr[|I| > λ | C, s].

For simplicity, we omit the condition C and s below as they are fixed now. Then,
according to our definition of I, we have for every i ∈ [m]:

Pr
B,F

[i ∈ I] = Pr
B,F

[
⌊(Ã · s)i⌉p ̸= ⌊(B ·C · s+

q

p∗
F · ⌊s⌉p∗)i⌉p

]
= Pr

bi,fi

[⌊
⟨C · s, bi⟩+

q

p∗
⟨⌊s⌉p∗ ,f i⟩+

q

p∗

〈
f i,

p∗

q
s− ⌊s⌉p∗

〉⌉
p

̸= ⌊⟨C · s, bi⟩+
q

p∗
⟨⌊s⌉p∗ ,f i⟩⌉p

]

≤ Pr
bi,fi

[
⟨C · s, bi⟩+

q

p∗
⟨⌊s⌉p∗ ,f i⟩ ∈ borderp,q,ν

(∣∣∣∣ qp∗
〈
f i,

p∗

q
s− ⌊s⌉p∗

〉∣∣∣∣)] (8)

=
∑
τ

Pr
fi

[ ∣∣∣∣〈s− q

p∗
⌊s⌉p∗ ,f i

〉∣∣∣∣ = τ

]
Pr

bi,fi

[
⟨C · s, bi⟩+

q

p∗
⟨⌊s⌉p∗ ,f i⟩ ∈ borderp,q,ν(τ)

]
≤
∑
τ

Pr
fi

[ ∣∣∣∣〈s− q

p∗
⌊s⌉p∗ ,f i

〉∣∣∣∣ = τ

]
· 2τp

q
(9)

= Efi

[ ∣∣∣∣〈s− q

p∗
⌊s⌉p∗ ,f i

〉∣∣∣∣ ] · 2pq
≤ npβ

p∗
≤ 1

m
. (10)

where ν = q
p∗ 〈bsep∗ ,f i〉 − b

q
p∗ 〈bsep∗ ,f i〉c and (8) follows from the definition of

a “border”, (9) follows by Lemma A.2 and the uniformity of 〈C · s, bi〉 over Zq,
and (10) follows since each entry of s − q

p∗ bsep∗ is bounded by q
2p∗ in absolute

value, and each entry of f i is bounded by β in absolute value.
From the above, we have that E [ |I| ] =

∑
i∈[m] E [ i ∈ I ] =

∑
i∈[m] Pr [ i ∈ I ] ≤

1. Furthermore for i ∈ [m], the events i ∈ I are mutually independent, as their
probabilities are based on independently chosen bi’s and f i’s. Therefore, by the
Chernoff bound, we have PrB,F

[
|I| > λ | C · s ∈

(
Zℓq
)∗ ]

< 2−λ, for any fixed
s,C satisfying the condition. Using Equation (7) and the above calculation, we
have

Pr
B,C,F,s

[ |I| > λ ] < δ + 2−ℓ+1 + 2−λ.
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This completes the proof. ut

The bit-length of Z is |I|(logm+log p), which is upper-bounded by λ(logm+
log p) with overwhelming probability, i.e., 1−ε = 1−(δ+2−ℓ+1+2−λ). Therefore,
we have

Hε′+ε
∞

(
f(s) | Ã, ⌊Ã · s⌉p, aux

)
≥ Hε′+ε

∞ (f(s) | B,C,F,C · s, q

p∗
⌊s⌉p∗ , Z, aux)

≥ Hε′
∞(f(s) | B,C,F,C · s, q

p∗
⌊s⌉p∗ , aux)− λ(logm+ log p)

≥ Hε′
∞(f(s) | B,C,F,

q

p∗
⌊s⌉p∗ , aux)− ℓ log q − λ(logm+ log p)

≥ Hε′
∞(f(s) | q

p∗
⌊s⌉p∗ , aux)− (ℓ+ λ) log q

= Hε′
∞(f(s) | ⌊s⌉p∗ , aux)− (ℓ+ λ) log q.

where the second and the third lines follow by Lemma A.7 and Claim C.2, and
the last line follows by q ≥ p∗ ≥ mp. This completes the proof of Lemma 4.3. ut

C.2 Proof of Theorem 4.4

Theorem C.3 (Theorem 4.4) Let n,m, ℓ, p, p∗, q, β be positive integers such
that q > p∗ ≥ βnmp, χ be a β-bounded distribution over Zq and S be a distribu-
tion on Znq . Then we have the following:

– There exists a poly-time reductions from LWEℓ,m,q,χ to ent-dLWR(q, p, k,m,S),
for which q is a prime and Rq,p∗(S) ≥ (ℓ+ λ+ 1) · log(q) + ω(log(λ)).

– There exists a poly-time reductions from LWEℓ,m,q,χ to ent-dLWR(q, p, k,m,S),
for which q is a composite number and Rq,p∗(S mod pi) ≥ (ℓ+λ+2)·log(q)+
ω(log(λ)) for any factor pi of q.

Proof. We only prove the first result of the theorem. The proof of the second
result works in complete analogy.

Our target is to prove the following: under LWEℓ,m,q,χ assumption with pa-
rameters in the theorem, we have( [

A
a

]
,

[
bAsep
b〈a, s〉ep

] )
c
≈
( [

A
a

]
,

[
bAsep
buep

] )
(11)

where A
$←− Zm×nq ,a

$←− Znq , s
$←− S, u $←− Zp.

By Lemma 4.2, we can replace the uniformly random A with lossy Ã to
obtain ( [

A
a

]
,

[
bAsep
b〈a, s〉ep

] )
c
≈
( [

Ã
a

]
,

[
bÃsep
b〈a, s〉ep

] )
By Lemma 4.3, for ε = 2−λ + δ + 2−ℓ+1 and any ε′ > 0, we have:

Hε′+ε
∞ (s | Ã, bÃ · sep) ≥ Hε′

∞(s | bseq,p∗)− (ℓ+ λ) log(q)

≥ (ℓ+ λ+ 1) · log(q) + ω(log(λ))− (ℓ+ λ) log(q)

≥ log(q) + ω(log(λ)).
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On the other hand, it’s clear that H∞(s) ≥ H∞(s | bseq,p∗) ≥ (ℓ + λ + 1) ·
log(q)+ω(log(λ)). Then Pr

[
s /∈

(
Znq
)∗ ]

= Pr [ s = 0 ] ≤ q−(ℓ+λ+1)·2−ω(log λ) <
q−λ, which means that δ can be set as q−λ, and thus ε = 2−λ + q−λ + 2−ℓ+1.

Combining above with leftover hash lemma as Lemma A.34, we have( [
Ã
a

]
,

[
bÃsep
b〈a, s〉ep

] )
s
≈
( [

Ã
a

]
,

[
bÃsep
buep

] )
.

The exact statistical distance is bounded by 2−ω(log λ). Finally, we replace the
lossy Ã with uniformly random A to get:( [

Ã
a

]
,

[
bÃsep
buep

] )
c
≈
( [

A
a

]
,

[
bAsep
buep

] )
.

Combining the above three hybrids proves (11).
By a simple hybrid argument as [1], we can further prove the desired state-

ment
(A, bAsep)

c
≈ (A, buep).

ut

C.3 Proof of Claim 5.3
To prove claim 5.3, we need the following estimation of sum of each prime’s t-th
power.
Lemma C.4 Let t ≥ 2 be a positive integer and {pi}i≥1 be all different sequenced
primes. We have

∞∑
i=1

p−ti < 2−(t−1).

Proof. In the case t ≥ 3,
∞∑
i=1

p−ti < 2−t + 3−t +

∞∑
j=2

(2j)−t = 2−t ·

1 +

(
3

2

)−t
+

∞∑
j=2

j−t


= 2−t ·

(
1 +

(
3

2

)−t
+

∫ ∞
1

x−tdx

)

= 2−t ·

(
1 +

(
3

2

)−t
+

1

t− 1

)
< 2−(t−1).

For the case t = 2,
∞∑
i=1

p−2i <

∞∑
i=1

i−2 − 1−
∞∑
i=2

(2i)−2

=

∞∑
i=1

i−2 − 1− 1

4

( ∞∑
i=1

i−2 − 1

)

=
3

4

( ∞∑
i=1

i−2 − 1

)
=

3

4

(
π2

6
− 1

)
< 2−1.
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ut

Claim C.5 (Claim 5.3) We have

– If 1 ≤ i ≤ n− 1, Prui
[Ei | Ei−1] ≥ 1− 2−n+i.

– Prun [En | En−1] = φ(q)/q, where φ is the Euler totient function.

Proof. First, we can get a lower bound for each Prui
[Eji | E

j
i−1] where the prob-

ability is taken from ui
$← Znqj . For all 1 ≤ j ≤ k,

Pr
ui

$←Zn
qj

[Ej
i | Ej

i−1] = Pr
ui

$←Zn
pj

[Dj
i | Dj

i−1]

= Pr
ui

$←Zn
pj

[ui /∈ span{u1, · · · ,ui−1} | Dj
i−1]

= 1− Pr
ui

$←Zn
pj

[ui ∈ span{u1, · · · ,ui−1} | Dj
i−1]

= 1− p
−(n−i+1)
j .

Since the k random variables (ui mod qj) for j ∈ [k] is mutually independent
when ui

$← Znq , we observe that for all 1 ≤ i ≤ n,

Pr
ui

$←Zn
q

[Ei | Ei−1] =
k∏
j=1

Pr
ui

$←Zn
qj

[Eji | E
j
i−1] =

k∏
j=1

(
1− p−(n−i+1)

j

)
.

If 1 ≤ i ≤ n− 1, by Lemma C.4 and union bound,

Pr
ui

$←Zn
q

[Ei | Ei−1] ≥ 1−
k∑
j=1

p
−(n−i+1)
j > 1− 2−(n−i).

For the case i = n,

Pr
un

$←Zn
q

[En | En−1] =
k∏
j=1

(
1− p−1j

)
=
φ(q)

q
.

ut

C.4 Proof of Theorem 5.11 and Lemma 5.13

Proof (Lemma 5.13). It is easy to verify the correctness TA · A = G. The
pseudorandomness of A is directly based on the lemma 5.10. For the upper bound
of the trapdoor’s quality, since R← χkn×2n, with overwhelming probability we
have

‖TA‖∞ = ‖R‖∞ + 1 ≤ 2nβ + 1.

ut
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Proof (Theorem 5.11). We prove the three algorithms TrapGen, LWEInvert and
LWRInvert listed in Section 5.2 satisfy the properties.

From lemma 5.13, proof is done for TrapGen.
For the LWE samples (A, c = A · s+ e), we compute

TA · c = G · s+TA · e.

Note that ‖TA · e‖∞ ≤ ‖TA‖∞ · ‖e‖∞. With lemma 5.12, we can successfully
output the secret s from DecodeG(TA · c) if the error norm ‖e‖ ≤ q

2(b+1)∥TA∥∞ .
With LWR samples (A, c = dA·scp), the algorithm LWRInvert first transform

c to the form of LWE samples

c′ =

⌈
q

p
· c
⌋
=

⌈
q

p
·
⌈
p

q
·A · s

⌋⌋
=

⌈
q

p
·
(
p

q
·A · s+ e′

)⌋
= A · s+ e

where e′ ∈ (−1/2, 1/2]m and e = d(q/p)e′c = (q/p)e′ + e′′ for some e′′ =
(−1/2, 1/2]m. Hence ‖e‖∞ ≤ (q/p + 1)/2 < q/p. Therefore, as long as p ≥
2(b + 1)‖TA‖∞, the error norm ‖e‖∞ < q

2(b+1)∥TA∥∞ then DecodeG(TA · c′)
recovers s successfully. ut

C.5 Proof of Theorem 6.1
Theorem C.6 (ent-RLWEℓ,q,χ,S to ent-sRLWRq,p,B,ℓ,S , Theorem 6.1) Let
q ≥ p ≥ 2, n, ℓ, B be positive integers such that q ≥ 18pBℓn, R be a ring of inte-
gers of a number field K with degree n, B be a basis of R. Let χ be a B-bounded
distribution over R with respect to basis B, S be a distribution over R∗q . Then
there exists a poly-time reduction from ent-RLWEℓ,q,χ,S to ent-sRLWRq,p,B,ℓ,S

Proof. Set β = 2B. Then the reduction can be obtained by the following two
steps:

ent-RLWEℓ,q,χ,S
(1)−−→ ent-RLWEℓ,q,χ+Uβ(B),S

(2)−−→ ent-sRLWRq,p,B,ℓ,S .

The first reduction is straight-forward: given ℓ samples (ai, bi) ∈ Rq ×Rq where
s

$←− S, the reduction just adds independent samples from Uβ(B) to each bi of the
basis B. It is easy to see the reduction maps the uniformly random distribution
to itself, and As,χ to As,χ+Uβ

, concluding the analysis of this part.
For the second reduction, we can bound the RD between samples from the

two distributions. Thus, a solver of RLWR (as is) can be used to solve the Ring-
LWE with the specified parameters.

Let Xs be the distribution of a single ent-RLWRq,p,B,S sample, and let Ys be
that of a single rounded RLWEq,χ+Uβ ,S sample under basis B. By our setting
of parameters β = 2B, the coefficients of e ← χ + Uβ with respect to B are
B′-bounded, where B′ = 3B. By the definition of Rényi divergence,

RD2(Xs‖Ys) = Ea←Rq

Pr
(
Xs = (a, ba · seB,p)

)
Pr
(
Ys = (a, ba · seB,p)

)
= Ea←Rq

1

Pre←χ+Uβ
(ba · s+ eeB,p = ba · seB,p)

.
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Next we define the set

borderq,p(B
′) =

{
x ∈ Zq : x−

q

p

(
bxep −

1

2

)
< B′ or q

p

(
bxep +

1

2

)
− x < B′

}
.

For any t ∈ {0, · · · , n}, we define the set BADs,t =
{
a ∈ Rq : |{i ∈ [n], (a · s)i ∈

borderq,p(B
′)}| = t

}
, where (a · s)i is the ith coefficient of a · s with respect to

the basis B. Fix t and a ∈ BADs,t, and below we do a case analysis:

– for any i ∈ [n] such that (a · s)i /∈ borderq,p(B
′), we have

Pr
[
b(a · s)i + eieB,p = b(a · s)ieB,p

]
= 1.

– For any i ∈ [n] such that (a ·s)i ∈ borderq,p(B
′), the event b(a ·s)i+eieB,p =

b(a · s)ieB,p holds at least in one of the two cases: (1) ei ∈ [−B′, · · · , 0] or
(2) ei ∈ [0, · · · , B′].

Even though the coefficients of e (with respect to B) might not be independent,
and thus bounding Pre←χ+Uβ

(
ba · s+ eeB,p = ba · seB,p

)
is not straight-forward.

To tackle this, we decompose e = e′ + e′′ where e′ ← χ and e′′ ← Uβ(B),
and note that the coefficients of e′′ dominates those of e′ (as β = 2B). More
importantly, the coefficients of e with respect to B become independent of each
others (in distribution) when we condition on e′. Since a ∈ BADs,t, a has exactly
t coefficients in borderq,p(B

′). Without loss of generality, we assume that the first
t coefficients of (a · s) ∈ borderq,p(B

′), i.e., (a · s)1, . . . , (a · s)t. Next we would
like to bound

Pr
[
ba · s+ eeB,p = ba · seB,p

]
= Pr

[
∀i ∈ [t] b(a · s)i + eieB,p = b(a · s)ieB,p

]
.

We know that for any i ∈ [t], the event b(a · s)i + eieB,p = b(a · s)ieB,p happens
if e′′i + e′i falls belong to the correct half. Since e′i is B bounded and β = 2B, this
happens with probability at least 1/4 over the choice of e′′i . As the {e′′i }i∈[t] are
independent, we have

Pr
[
∀i ∈ [t] b(a · s)i + eieB,p = b(a · s)ieB,p

]
≥ (1/4)t.

On the other hand, s ∈ S ⊆ (Rq)
∗, so a ·s is uniformly random over Rq, implying

Pr[a ∈ BADs,t] ≤
(
n
t

)
·
(
1− |borderq,p(B

′)|
q

)n−t( |borderq,p(B′)|
q

)t
. Conditioning over

the event a ∈ BADs,t, we have

RD2(Xs‖Ys) ≤
n∑
t=0

4t · Pr[a ∈ BADs,t] =
(
1 +

3|borderq,p(B′)|
q

)n
.

By the definition of RD2, it is easy to see

RD2(X ℓs ‖Yℓs) ≤
(
1 +

3|borderq,p(B′)|
q

)ℓn
,
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for ℓ independent samples.
Define the functions f(η) = Pr[X=η]√

Pr[Y=η]
, and g(η) =

√
Pr[Y = η]. By the

properties of Lemma A.5 and Cauchy-Schwarz inequality, we have that for
any event E, Pr[Yℓ ∈ E] ≥ Pr[X ℓ∈E]2

RD2(X ℓ∥Yℓ)
. Further more, Let E be the event

{(a, b) : Search(a, b) = s},

Pra,e
[
Search(a, ba · s+ eeB,p) = s

]
≥

Pra
[
Search(a, ba · seB,p) = s

]2(
1 +

3|borderq,p(B′)|
q

)ℓn .

The desired conclusion follows from |borderq,p(B′)| ≤ 2pB′ and the parameter
settings in the theorem. ut

C.6 Proof of Lemma 6.5

Lemma C.7 (ent-sRLWRq,p,B,ℓ′,S to (W)-pi-RLWRq,p,B,ℓ′′,S , Lemma 6.5)
For every i ∈ {1, · · · , g}, there exists a deterministic poly-time reduction from
ent-sRLWRq,p,B,ℓ′,S to (W)-pi-RLWRq,p,B,ℓ′′,S , where ℓ′ = gℓ′′.

Proof. To prove this theorem, we will work on an arbitrary i ∈ {1, · · · , g}. The
same argument can be extended to all the other i’s. Throughout the rest of the
poof, we will view i as an arbitrary fixed index.

We first observe a simple fact. For k ∈ {1, · · · , g}, let σk be an automor-
phism that maps pk to pi. We know that all these automorphisms exist as
K = Q[X]/(Xn + 1) is a Galois extension. Then the reduction proceeds as
follow.

– For each k ∈ {1, · · · , g}, the reduction runs through the following steps.
• Make ℓ′′ queries to the oracle Ls,q,p(R,B).
• For each given sample (a, b), transform it to (σk(a), σk(b)).
• Send the ℓ′′ transformed samples to the pi-RLWRq,p,B,ℓ′′,S oracle
• Upon receiving the answer x ∈ R/piR, store σ−1k (x) ∈ R/pkR.

– Next, the reduction combines all {σ−1k (x)}k∈{1,··· ,g} by the Chinese Remain-
der Theorem. Then it outputs the combined value s′ ∈ Rp.

We now show that for each k ∈ [g], σ−1k (x) = s mod pkR. To show this, we
prove that the distribution of the transformed samples is correctly distributed as
the pi-RLWRq,p,B,ℓ′′,S oracle requires. Particularly, for each (a, b)← Ls,q,p(R,B),
σk(a) is uniformly random in σk(Rq) = Rq as σk is an automorphism. Further-
more, it’s easy to see σ(S) = S, since the effect of σ on s ∈ S is just a per-
mutation of the coefficients (up to a sign). Next we would like to show that
σk(b) = bσk(a) ·σk(s)eB,p. If this holds, then (σk(a), σk(b)) would be the correct
distribution that the pi-RLWRq,p,B,ℓ′′,S oracle expects, and then the oracle would
return x = σk(s) mod piR (with a non-negligible probability). Thus, we have
σ−1k (x) = s mod pkR. Now we focus on proving σk(b) = bσk(a) · σk(s)eB,p.

We analyze the term b = ba · seB,p. Without loss of generality, we write a ·
s mod qR =

∑n−1
i=0 αiX

i for αi ∈ Zq, i ∈ [n]. When rounding with respect to this
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basis, we can write b =
∑n−1
i=0 bαiepXi ∈ Rp. By taking the automorphism σk, we

have σk(b) = σk

(∑n−1
i=0 bαiepXi

)
=
∑n−1
i=0 bαiepσk(Xi). Next we observe that

σk(a ·s mod qR) = σk(a) ·σk(s) mod qR, which is also equal to σk
(∑n−1

i=0 αiX
i
)
.

Then we have bσk(a)·σk(s)eB,p = bσk
(∑n−1

i=0 αiX
i
)
eB,p = b

∑n−1
i=0 αiσk(X

i)eB,p.
On the other hand, we know that σk acts as a permutation over the basis (up

to a sign), i.e., σk(B) is equivalent to B up to a signed permutation. In addition,
it holds that b−xe = −bxe for rounding function b·e and any x ∈ Z. Thus,

bσk(a) · σk(s)eB,p =

⌊
n∑
i=1

αiσk(X
i)

⌉
B,p

=

n∑
i=1

bαiepσk(Xi) = σk(b).

Finally, by the Chinese Reminder Theorem, s mod pR can be reconstructed
from {s mod pkR}gk=1. Since the secret distribution S has support over Rα ⊆ Rp,
we have s = s mod pR. This completes the proof. ut

C.7 Proof of Lemma 6.8

Lemma C.8 ((W)-pi-RLWRq,p,B,ℓ′′,S to (W)-D-RLWRi
q,p,B,ℓ,S , Lemma 6.8)

Let p | q. For any i ∈ {1, · · · , g}, and ideal pi with N(pi) = pn/g = pc where c ≥ 1
is a constant integer, there exists a probabilistic polynomial time reduction from
(W)-pi-RLWRq,p,B,ℓ′′,S to (W)-D-RLWRiq,p,B,ℓ,S where S can be any distribution
over Rq, ℓ′′ = pcℓ ·poly(1/ε), and ε is the advantage of the (W)-D-RLWRiq,p,B,ℓ,S
oracle.

Proof. At a high level, the reduction recovers s mod piR by trying each of
its possible values, and uses the (W)-D-RLWRiq,p,B,ℓ,S oracle to determine which
trial is correct. For each trial, the reduction transforms samples from Ls,q,p(R,B)
so that the resulting samples are distributed according to Li−1s,q,p(R,B) if the
trial equal to the value of s mod piR, or otherwise, Lis,q,p(R,B). Then the (W)-
D-RLWRiq,p,B,ℓ,S oracle can be used to distinguish the two cases, and thus the
reduction can determine whether this trial is correct. Since there are N(pi) =
pc = poly(n) possible values, the reduction’s running time is upper bounded
by a polynomial. Moreover, the reduction needs to call (W)-D-RLWRiq,p,B,ℓ,S
poly(1/ε) times in order to get a sufficient confidence, and each call takes ℓ
samples. Thus, in total the reduction needs up to ℓ′′ = pcℓ · poly(1/ε) samples.

Below we just describe the transformation, and note that the other steps of
the reduction are trivial (ref. [38]). Given a sample (a, b) ← Ls,q,p(R,B) and a
trial value g ∈ ψ, the reduction computes a sample

(a′, b′) =

(
a+

q

p
v, b+ h+ vg

)
∈ Rq ×Rp,

where v ∈ Rp is sampled according to the distribution that is uniformly random
mod piR and 0 mod all the other pjR’s, and h ∈ Rp is uniformly random mod
piR for all j < i, and is 0 mod pjR’s for j ≥ i.
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It is clear that a′ is uniformly random over Rq because a is uniformly random
over Rq. On the other hand, b′ can be written as

b′ = b+ h+ vg

= ba · seB,p + h+ vg

= ba′ · s− q

p
v · seB,p + h+ vg

= ba′ · seB,p + h+ v(g − s).

If s ≡ g mod piR, then by the Chinese Remainder Theorem A.10, v(s− g) =
0 mod pR. In this case, (a′, b′) is distributed according to Li−1s,q,p(R,B). Otherwise
if s 6= g mod piR, we claim that v(s−g) mod piR is uniformly random over mod
piR and is 0 mod all the other ideals pjR’s for j 6= i: as R/pi is a field, v(s− g)
mod piR is uniformly random for a random v mod piR, and any (s − g) 6= 0
mod piR. Therefore, v(g − s) + h is uniformly random mod pjR for all j ≤ i,
and is 0 mod all the remaining pjR’s. Thus, the distribution of (a′, b′) follows
Lis,q,p(R,B) in this case, completing the proof. ut

C.8 Proof of Lemma 6.10

Lemma C.9 (Worst-case to average-case, Lemma 6.10) Let S,S1,S2 be
distributions over Rq. For every i ∈ {1, · · · , g}, if r ← S1 is invertible with
non-negligible probability, and RD (CoeffB(S2)‖RotB(s) · CoeffB(S1)) ≤ poly(λ)
for any s ∈ Supp(S). Then there exists a randomized poly-time reduction from
worst-case (W)-D-RLWRiq,p,B,ℓ,S to average-case D-RLWRiq,p,B,ℓ,S2 .

Proof. Given sample (a, b) ← Lis,q,p(R,B) for arbitrary s ∈ Supp(S), the re-
duction transforms it into (a′, b′) = (ar−1, b + h) ∈ Rq × Rp, where r ← S1,
and h ∈ Rq is uniformly random mod pjR for all j ≤ ν (where ν ≤ i),
and 0 over mod all the other ideals. It’s clear that a′ is uniformly random,
since a is uniformly random and r−1 is invertible. For the other term, we have
b′ = b + h = ba · seB,p + h = bar−1 · rseB,p + h. Therefore, for all s ∈ Rq and
i ∈ {1, · · · , g}, this transformation maps Lis,q,p(R,B) to Lmax{ν,i}

s·S1,q,p (R,B).
Formally, the reduction is executed by repeating the following steps a poly-

nomial number of times: Choose an r from S1, and then estimate the acceptance
probability of the oracle on the following two input distributions: the first is
obtained from our input by applying the above transformation with parameters
r, and i− 1; the second is obtained similarly using parameters r, and i. If in any
of these polynomial number of attempts a non-negligible difference is observed
between the two acceptance probabilities, output “i− 1”; otherwise output “i”.

If the input distribution is Lis,q,p(R,B), then in each of the attempts, the
two distributions on which we estimate the oracle’s acceptance probability are
exactly the same, and we output “i” with overwhelming probability. If the input
distribution is Li−1s,q,p(R,B), we estimate the oracle’s acceptance probability on
Li−1s·S1,q,p(R,B) and Lis·S1,q,p(R,B).
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Let Bi−1(r) and Bi(r) be the two distributions on the sample which our
reduction uses as input to the oracle. The average of Bi−1(r) over r chosen from
S1, is Li−1s·S1,q,p(R,B) and similarly with Bi and Li.

Let S be the set of all secrets s for which the oracle has a non-negligible
difference in acceptance probability on Bi−1(r) and Bi(r). By assumption, the
measure of S under S2 is non-negligible. By condition of lemma, the measure of
S under s · S1 is also non-negligible. This finishes the proof. ut

C.9 Proof of Lemma 6.12

Lemma C.10 (Lemma 6.12) For invertible square matrices S1,S2 ∈ Rn×n,
let DS1

and DS2
be two continuous multivariate Gaussian distributions on Rn

with covariance matrix S1S
⊤
1 and S2S

⊤
2 . If 2S2S

⊤
2 − S1S

⊤
1 is positive definite,

we have
RD2(DS1 , DS2) =

(detS2)
2

| detS1| ·
√

det(2S2S⊤2 − S1S⊤1 )
.

Proof. From the definition of Rényi divergence, we can compute that

RD2(DS1‖DS2) =

∫
Rn

(
exp

(
−x⊤(S1S

⊤
1 )
−1x

)
| detS1|

)2(
exp

(
−x⊤(S2S

⊤
2 )
−1x

)
| detS2|

)−1
dx

=
| detS2|
(detS1)2

·
∫
Rn

exp
(
−x⊤(2(S1S

⊤
1 )
−1 − (S2S

⊤
2 )
−1)x

)
dx

=
| detS2|
(detS1)2

· 1√
det
(
2(S1S⊤1 )

−1 − (S2S⊤2 )
−1
)

=
(detS2)

2

| detS1| ·
√

det(2S2S⊤2 − S1S⊤1 )
.

(12)

The third and fourth equality holds under the fact that

2(S1S
⊤
1 )
−1 − (S2S

⊤
2 )
−1 = (S2S

⊤
2 )
−1(2S2S

⊤
2 − S1S

⊤
1 )(S1S

⊤
1 )
−1

and 2(S1S
⊤
1 )
−1 − (S2S

⊤
2 )
−1 is positive definite if 2S2S

⊤
2 − S1S

⊤
1 is positive def-

inite. ut

D Hardness of Entropic LWR from Noise Lossiness

In this part, we prove a lemma which is analogous to Lemma 4.3 via noise
lossiness [14].

Lemma D.1 Let n,m, ℓ, p, q, β be positive integers and σ be a Gaussian param-
eter such that q > nmpβ(σ + 1), and χ be a β-bounded distribution over Zq.
Let (s, aux) be a pair of correlated random variables with s distributed according
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to some distribution S ⊆ Znq and Prs

[
s /∈

(
Znq
)∗ ]

< δ, and let Ã be a ma-
trix independently output by the algorithm Lossy(1n, 1m, 1ℓ, q, χ). Let the random
variable e be sampled from the continuous Gaussian distribution Dn

σ . Then for
ε = 2−λ + δ + 2−ℓ+1 + e−(

π
4−ln 2)n, any ε′ > 0 and any every function f taken

input over S, we have:

Hε′+ε
∞

(
f(s) | Ã,

⌊
Ã · s

⌉
p
, aux

)
≥ Hε′

∞ (f(s) | s+ e, aux)− (ℓ+ λ) log q.

Proof. According to Definition 4.1, Ã can be written as Ã = B · C + F, then
bÃ · sep = bB ·C · s+F · sep. Furthermore, bB ·C · s+F · sep can be written as

bB ·C · s+ F · sep = bB ·C · s+ F · (s+ bee)− F · beeep .

We define the set I def
=
{
i ∈ [m] : b(B ·C · s+ F · (s+ bee))iep 6=

⌊(
Ã · s

)
i

⌉
p

}
,

where (x)i[j] denotes the jth coefficient of ith coordinate of x relative to B. Let
Z =

{(
i,
⌊(
Ã · s

)
i

⌉
p

)
: i ∈ I

}
, and it is not hard to see that (Ã, bÃ · seB,p) can

be reconstructed completely via B,C,F,Cs, s+ bee, Z. Therefore:

Hε′+ε
∞

(
f(s) | Ã,

⌊
Ã · s

⌉
p
, aux

)
≥ Hε′+ε

∞ (f(s) | B,C,F,Cs, s+ bee, Z, aux) .

Next we show a lower bound for the right hand side by bounding the min-entropy
loss given Z. To do this, we first bound the probability that the size of I is large:

Claim D.2 PrB,C,F,s,e[|I| > λ] < δ + 2−ℓ+1 + 2−λ + e−(
π
4−ln 2)n.

Proof. We first separate the event |I| > λ into two conditions: ‖e‖1 ≤ nσ/2 and
‖e‖1 > nσ/2 and get:

Pr
B,C,F,s,e

[ |I| > λ ] = Pr
B,C,F,s,e

[ |I| > λ | ‖e‖1 > nσ/2 ] · Pr
e
[ ‖e‖1 > nσ/2 ]

+ Pr
B,C,F,s,e

[ |I| > λ | ‖e‖1 ≤ nσ/2 ] · Pr
e
[ ‖e‖1 ≤ nσ/2 ]

≤ Pr
e
[ ‖e‖1 > nσ/2 ] + Pr

B,C,F,s,e
[ |I| > λ | ‖e‖1 ≤ nσ/2 ]

≤ e−(
π
4−ln 2)n + Pr

B,C,F,s,e
[ |I| > λ | ‖e‖1 ≤ nσ/2 ] (13)

where the inequality (13) is taken from Lemma D.3 by setting t = 1/2.
Then we will find an upper bound of the latter term in (13). We fix e such

that ‖e‖1 ≤ nσ/2 and we can also divide the event |I| > λ into two conditions:
s ∈

(
Znq
)∗ and s /∈

(
Znq
)∗ and obtain:

Pr
B,C,F,s

[ |I| > λ ] = Pr
B,C,F,s

[
|I| > λ | s /∈

(
Znq
)∗ ] · Pr

s

[
s /∈

(
Znq
)∗ ]

+ Pr
B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗ ] · Pr

s

[
s ∈

(
Znq
)∗ ]

≤ Pr
s

[
s /∈

(
Znq
)∗ ]

+ Pr
B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗ ]

.

(14)
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Then, we have PrB,C,F,s [ |I| > λ ] < δ + PrB,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗ ]. So

our next step is to bound PrB,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗ ].

For any s ∈
(
Znq
)∗ and independently chosen matrix C

$←− Zℓ×nq , C · s is uni-
formly distributed over Zℓq. Thus by the lower bound of

∣∣(Zℓq)∗∣∣, PrC,s [C · s ∈ (Zℓq)∗ | s ∈ (Znq )∗] ≥
1−2−ℓ+1. Now we further divide PrB,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗ ] into two cases

as follows:

Pr
B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗]

= Pr
B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗
,C · s /∈

(
Zℓq
)∗] · Pr

C,s

[
C · s /∈

(
Zℓq
)∗ | s ∈ (Znq )∗]

+ Pr
B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗
,C · s ∈

(
Zℓq
)∗] · Pr

C,s

[
C · s ∈

(
Zℓq
)∗ | s ∈ (Znq )∗] .

Combining the above equation with (6), we have

Pr
B,C,F,s

[|I| > λ ]

< δ + Pr
C,s

[
C · s /∈

(
Zℓq
)∗ | s ∈ (Znq )∗]+ Pr

B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗
,C · s ∈

(
Zℓq
)∗]

< δ + 2−ℓ+1 + Pr
B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗
,C · s ∈

(
Zℓq
)∗ ]

.

(15)

It’s easy to see

Pr
B,C,F,s

[
|I| > λ | s ∈

(
Znq
)∗
,C · s ∈

(
Zℓq
)∗ ]

= Pr
B,C,F,s

[
|I| > λ | C · s ∈

(
Zℓq
)∗]

as C·s ∈
(
Zℓq
)∗ implies s ∈

(
Znq
)∗, so it’s remain to bound PrB,C,F,s

[
|I| > λ | C · s ∈

(
Zℓq
)∗ ].

To do this, we denote the i-th column of the matrices B and F as as bi and f i, re-
spectively. We fix s and C such that C·s ∈

(
Zℓq
)∗, and compute Pr[|I| > λ | C, s].

For simplicity, we omit the condition C and s below as they are fixed now. Then,
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according to our definition of I, we have for every i ∈ [m]:

Pr
B,F

[i ∈ I] = Pr
B,F

[
⌊(Ã · s)i⌉p ̸= ⌊(B ·C · s+ F · (s+ ⌊e⌉))i⌉p

]
= Pr

bi,fi

[
⌊⟨C · s, bi⟩+ ⟨s+ ⌊e⌉,f i⟩ − ⟨⌊e⌉,f i⟩⌉p ̸= ⌊⟨C · s, bi⟩+ ⟨s+ ⌊e⌉,f i⟩⌉p

]
≤ Pr

bi,fi

[ ⟨C · s, bi⟩+ ⟨s+ ⌊e⌉,f i⟩ ∈ borderp,q,ν (|⟨e,f i⟩|)] (16)

=
∑
τ

Pr
fi

[ |⟨⌊e⌉,f i⟩| = τ ] · Pr
bi,fi

[ ⟨C · s, bi⟩+ ⟨s+ ⌊e⌉,f i⟩ ∈ borderp,q,ν(τ)]

≤
∑
τ

Pr
fi

[ |⟨⌊e⌉,f i⟩| = τ ] · 2τp
q

(17)

= Efi
[ |⟨⌊e⌉,f i⟩| ] ·

2p

q

≤ β · ∥⌊e⌉∥1 ·
2p

q
≤ β ·

(
∥e∥1 +

n

2

)
· 2p
q

(18)

≤ npβ(σ + 1)

q
≤ 1

m
. (19)

where ν = 〈s+ bee,f i〉 − b〈s+ e,f i〉c and (16) follows from the definition of a
“border”, (17) follows by Lemma A.2 and the uniformity of 〈C · s, bi〉 over Zq,
and (19) follows given the precondition ‖e‖ ≤ nσ/2, and each entry of f i is
bounded by β in absolute value.

From the above, we have that E [ |I| ] =
∑
i∈[m] E [ i ∈ I ] =

∑
i∈[m] Pr [ i ∈ I ] ≤

1. Furthermore for i ∈ [m], the events i ∈ I are mutually independent, as their
probabilities are based on independently chosen bi’s and f i’s. Therefore, by the
Chernoff bound, we have PrB,F

[
|I| > λ | C · s ∈

(
Zℓq
)∗
, ‖e‖1 ≤ nσ/2

]
< 2−λ,

for any fixed s,C, e satisfying the condition. Using Equation (15) and the above
calculation, we have

Pr
B,C,F,s,e

[ |I| > λ ] < δ + 2−ℓ+1 + 2−λ + e−(
π
4−ln 2)n,

which completes the proof of Claim D.2. ut

The bit-length of Z is |I|(logm+log p), which is upper-bounded by λ(logm+

log p) with overwhelming probability, i.e., 1−ε = 1−
(
δ + 2−ℓ+1 + 2−λ + e−(

π
4−ln 2)n

)
.

Therefore, we have

Hε′+ε
∞

(
f(s) | Ã, ⌊Ã · s⌉p, aux

)
≥ Hε′+ε

∞ (f(s) | B,C,F,C · s, s+ ⌊e⌉, Z, aux)

≥ Hε′
∞(f(s) | B,C,F,C · s, s+ ⌊e⌉, aux)− λ(logm+ log p)

≥ Hε′
∞(f(s) | B,C,F, s+ ⌊e⌉, aux)− ℓ log q − λ(logm+ log p)

≥ Hε′
∞(f(s) | s+ ⌊e⌉, aux)− (ℓ+ λ) log q

≥ Hε′
∞(f(s) | s+ e, aux)− (ℓ+ λ) log q.

where the second and the third lines follow by Lemma A.7 and Claim D.2, and
the last line follows by q ≥ mp. This completes the proof of Lemma D.1. ut
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Lemma D.3 Let random variables X1, X2, · · · , Xn be i.i.d and follow Dσ where
σ > 0 is a Gaussian parameter. For any t > 0, we have

Pr

[
n∑
i=1

|Xk| ≥ tnσ

]
≤ 2n · e−πnt

2

.

Proof. For any i, consider the moment generating function of the random vari-
able |Xi|

E
[
eθ|Xi|

]
≤ E

[
eθ|Xi| + e−θ|Xi|

]
= E

[
eθXi + e−θXi

]
= 2e

σ2θ2

4π .

Then, for any parameter κ > 0, we have

Pr

[
n∑
i=1

|Xi| ≥ tnσ

]
= Pr

[
e

κ
n

n∑
i=1
|Xi|
≥ eκt

]

≤ e−κtσ ·E

[
e

κ
n

n∑
i=1
|Xi|
]

(20)

= e−κtσ ·
n∏
i=1

E
[
e

κ
n |Xi|

]
≤ 2n · eσ2κ2

4πn −κtσ,

where the inequality (20) comes from Markov’s inequality. In order to let the
term σ2κ2

4πn − κtσ reaches its minimum, we set κ = 2πnt
σ , then we have

Pr

[
n∑
i=1

|Xi| ≥ tnσ

]
≤ 2n · e−πnt

2

,

which completes the proof. ut

Comparison with Noise Lossiness Framework. It should be noted that
we can also analyze the hardness of general entropic LWR by employing the
noise lossiness framework [14]. In brief, the conditional smooth entropyHϵ

∞(s|Ã,
bÃse) can be similarly lower bounded by Hϵ

∞(s | s + e). This means that the
noise lossiness framework is consistent with our framework from the perspective
of feasibility.

For further comparison, especially the concrete lower bound of modulus,
we need to compute the modulus constraint when applying the noise lossiness
framework. Concretely, in the proof of Lemma 4.3, the inequality 10 is turned to
upper bound E [ |〈f i, e〉| ] for β bounded f i and Gaussian noise e ∼ Dn

σ . In order
to apply the Chernoff bound lemma to give an upper bound for Pr[|I| > λ | C·s ∈(
Zℓq
)∗
], we need each event i ∈ I to be mutually independent, which indicates

that fixing e before approximation of Pr[i ∈ I | C ·s ∈
(
Znq
)∗
] is necessary. Thus,

E[|〈fi, e〉|] can be bounded by β ·
∑
i |ei|. Since each entry ei of e is distributed
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according to Dσ, we can prove that Pre[
∑
i |ei| ≥ nt] ≤ 2n · exp

(
−πnt

2

σ2

)
. Hence∑

i |ei| has an upper bound O(nσ) overwhelmingly, yielding that E[|〈fi, e〉|] can
be bounded by O

(
pβnσ
q

)
. Therefore, q is with lower bound O(nmpβσ). On the

other hand, the lower bound itself of noise lossiness should also be considered.
Specifically, for general entropic secrets, the noise lossiness is with lower bound
H∞(s|s + e)g ≥ H∞(s) − n log( qσ ) − 1; for bounded entropic secrets, the noise
lossiness is with lower bound H∞(s|s + e)b ≥ H∞(s) −

√
2πn rσ log e, where

r is the upper bound of ℓ2 norm of secrets. For convenience of comparison,
we relist the lower bound of q by our rounding lossiness approach, and the
lower bounds of rounding lossiness for general and bounded entropic secrets as
follows: q > p∗ ≥ nmpβ, H∞(s|bseq,p∗)g ≥ H∞(s)− n log p∗, H∞(s|bseq,p∗)g ≥
H∞(s)− n log(p

∗·γ
q ), where γ is the upper bound of ℓ∞ norm of secrets.

Based on these bounds, we can see that, for general entropic secrets, the
modulus q of our framework is similar to the noise lossiness framework, if the
two frameworks are required to have the same entropy lower bound. For bounded
secrets, the modulus q of our framework can be saved at least a factor of O(

√
n)

compared with the noise lossiness framework, if we minimize the entropy re-
quirement of secrets of the two frameworks simultaneously. In other words, our
approach can achieve better parameters than the noise lossiness approach. Be-
sides, when working with certain secret distribution S, rounding lossiness is
easier to compute since the leakage is a determined function on s.

To sum up, we find it more advantageous to work with our rounding lossiness
framework compared with the noise lossiness presented in [14].

E Hardness of Entropic MLWR

Definition E.1 (Lossy Sampler over Ring, Definition 5.13 in [36]) Let n, ℓ, f, p, q, k
be positive integers, R = OK be the ring of integers of a field extension K with
degree n, and ϕ be a distribution over KR. We define the following efficient lossy
sampler Ã

$←− Lossy(1n, 1ℓ, 1f , 1k, q, ϕ) as:
Lossy(1n, 1ℓ, 1f , 1k, q, ϕ) : Sample D

$←− (Rq)
ℓ×f , C

$←− (Rq)
f×k, F

$←− ϕℓ×k

and output Ã = D ·C+ F.

The output of Lossy algorithm is computationally indistinguishable from uni-
formly random sample according to the following lemma and corollary.

Lemma E.2 Let A
$←− (Rq)

ℓ×k, and let Ã
$←− Lossy(1n, 1ℓ, 1f , 1k, q, ϕ). Then,

according to the module-RLWEℓ,f,q,ϕ assumption, we have: A c
≈ Ã.

Corollary E.3 Adopt the notations in Lemma A.24 and Lemma E.2. Assuming
the RLWEℓ,q,ϕ′ problem is computationally hard, then A

c
≈ Ã.

We denote that vector r ∈ (R)k maximal belongs to a factor I of qR, abbre-
viated as r ∈max IR if the following conditions hold.
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– For every coordinate ri of r, we have ri ∈ IR.
– For any ideal J |qR such that I|J , there exists at least one coordinate rj

such that rj /∈ JR.

Lemma E.4 ( [39]) Let a ∈ Rq and a ← ϕ for a Be-bounded distribution ϕ
under canonical embedding, let B be a basis of R with dual basis B′ that has
Bd-bounded ℓ∞ norm for all coordinates, and b ∈ Rq is arbitrary. Then writing
a · b = 〈B, c〉 for some integral vector c, we have that cj is BeBd · ‖b‖2-bounded.

Theorem E.5 (Hardness of Entropic Module-RLWR) Let λ, n, p, p∗, q, ℓ, f, k
be positive integers, R = OK be the ring of integers of a number field K = Q(α)
with degree n, B be a basis of R with Bd1 bounded ℓ∞ norm for all entries,
all entries of its dual basis B′ be Bd2-bounded in ℓ∞ norm, ϕ be a β-bounded
distribution over KR for some real β > 0, such that q > p∗ ≥ Bd1Bd2βkℓpn

5
2

and gcd(q, [OK : Z[α]]) = 1. Then there exists a poly-time reductions from
module-RLWEℓ,f,q,ϕ to ent-dMLWR(q, p,B, k,m,S), where Rq,p∗(S mod q) ≥
(2n+ ℓ+ λ) log q + ω(log λ) for any prime ideal factor q of qR.

Lemma E.6 Adopt the parameters and conditions in Theorem E.5: let λ n, p, p∗,
q, ℓ, k, β,Bd1 , Bd2 be positive integers, R = OK be the ring of integers of a number
field K with dimension n with basis B of R, and ϕ be a distribution over KR. Let
(s, aux) be a pair of correlated random variables such that Pr [ s /∈max 〈1〉 ] < δ.
Let Ã be a vector independently output by the algorithm Lossy(1n, 1ℓ, 1f , 1k, q, ϕ).
Then, for any ε′ > 0 and security parameter λ, ε = δ + n

2f−1 + 2−λ, it holds:

Hε′+ε
∞ (s | Ã, bÃ · seB,p, aux) ≥ Hε′

∞(s | bseB,p∗ , aux)− (n+ λ) log q. (21)

Proof. According to Definition E.1, Ã can be written as Ã = D · C + F, then
bÃ · seB,p = bD ·C · s+F · seB,p. Moreover, bD ·C · s+F · seB,p can be written
as

bD ·C · s+ F · seB,p =
⌊
D ·C · s+

q

p∗
F · bseB,p∗ +

q

p∗
F(
p∗

q
s− bseB,p∗)

⌉
B,p

.

We define the set I def
=
{
(i, j) ∈ [ℓ]×[n] :

⌊(
D·C·s+ q

p∗F·bseB,p∗
)
i
[j]
⌉
p
6=
⌊(
Ã·

s
)
i
[j]
⌉
p

}
, where (x)i[j] denotes the jth coefficient of ith coordinate of x relative

to B. Let Z =
{(

(i, j),
⌊(
Ã · s

)
i
[j]
⌉
p

)
: (i, j) ∈ I

}
, and it is not hard to see that

(Ã, bÃ ·seB,p) can be reconstructed completely given D,C,F,Cs, qp∗ bseB,p∗ , Z.
Therefore:

Hε′+ε
∞ (s | Ã, bÃ · seB,p, aux) ≥ Hε′+ε

∞ (s| C,D,F,Cs,
q

p∗
bseB,p∗ , Z, aux ).

Next, we show a lower bound for the right hand side by bounding the min-
entropy loss given Z. To do this, we first bound the probability that the size of
I is large:

Claim E.7 PrD,C,F,s[|I| > λ] < δ + n
2f−1 + 2−λ.
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Proof. We divide the event |I| > λ into two cases: s ∈max 〈1〉 and s /∈max 〈1〉:

Pr
D,C,F,s

[|I| > λ] = Pr
D,C,F,s

[|I| > λ | s /∈max ⟨1⟩] · Pr
s
[s /∈max ⟨1⟩] (22)

+ Pr
D,C,F,s

[|I| > λ | s ∈max ⟨1⟩] · Pr
s
[s ∈max ⟨1⟩] (23)

≤ Pr
s
[s /∈max ⟨1⟩] + Pr

D,C,F,s
[|I| > λ | s ∈max ⟨1⟩] (24)

< δ + Pr
D,C,F,s

[|I| > λ | s ∈max ⟨1⟩]. (25)

It remains to bound PrD,C,F,s[|I| > λ | s ∈max 〈1〉]. In order to compute
Pr[|I| > λ | s ∈max 〈1〉], we divide the condition into two cases: C · s ∈max 〈1〉
and C · s /∈max 〈1〉. Then we have:

Pr
D,C,F,s

[|I| > λ | s ∈max 〈1〉]

= Pr
D,C,F,s

[|I| > λ | s ∈max 〈1〉,C · s ∈max 〈1〉] · Pr
C,s

[C · s ∈max 〈1〉 | s ∈max 〈1〉]

+ Pr
D,C,F,s

[|I| > λ | s ∈max 〈1〉,C · s /∈max 〈1〉] · Pr
C,s

[C · s /∈max 〈1〉 | s ∈max 〈1〉].

Combining equations 22, we have

Pr
D,C,F,s

[|I| > λ] < δ + Pr
C,s

[C · s /∈max 〈1〉] + Pr
D,C,F,s

[|I| > λ | s ∈max 〈1〉,C · s ∈max 〈1〉]

< δ +
n

2f−1
+ Pr

D,C,F,s
[|I| > λ | s ∈max 〈1〉,C · s ∈max 〈1〉].

(26)

Finally, it remains to bound PrD,C,F,s[|I| > λ | s ∈max 〈1〉,C · s ∈max 〈1〉].
It is easy to verify that C · s ∈max 〈1〉 implies s ∈max 〈1〉, so PrD,C,F,s[|I| > λ |
s ∈max 〈1〉,C · s ∈max 〈1〉] = PrD,C,F,s[|I| > λ | C · s ∈max 〈1〉]. On the other
hand, for uniformly random matrix D ∈ (Rq)

ℓ×f and Cs ∈max 〈1〉, it’s easy
to verify D · Cs is uniformly at random by similar arguments as Theorem 5.7
in [36].

Now we claim that PrD,C,F,s[|I| > λ | C·s ∈max 〈1〉] < 2−λ. To show this, we
fix any s and C such that C · s ∈max 〈1〉, and compute PrD,C,F,s[|I| > λ | C, s].
For simplicity, below we omit the condition s,C as they are fixed now.

We denote the i-th row of the matrices D and F as as di and f i, respectively,
and omit the common basis B in the subscript of rounding function for simplicity.
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For the definition of I, we have that for every (i, j) ∈ [ℓ]× [n]:

Pr
B,F

[ (i, j) ∈ I ] = Pr
B,F

[ ⌊(
D ·Cs+

q

p∗
F · ⌊s⌉p∗

)
i

[j]

⌉
p

̸=
⌊(
Ã · s

)
i
[j]
⌉
p

]

= Pr
di,fi

[ ⌊(
⟨Cs,di⟩+

q

p∗
⟨f i, ⌊s⌉p∗⟩

)
[j]

⌉
p

̸=
⌊(

⟨Cs,di⟩+
q

p∗
⟨f i, ⌊s⌉p∗⟩

)
[j] +

q

p∗

〈
f i,

p∗

q
s− ⌊s⌉p∗

〉
[j]

⌉
p

]

≤ Pr
di,fi

[ (
⟨C · s,di⟩+

q

p∗
⟨⌊s⌉p∗ ,f i⟩

)
[j] ∈ borderp,q,ν

(∣∣∣∣ qp∗
〈
f i,

p∗

q
s− ⌊s⌉p∗

〉
[j]

∣∣∣∣) ]
(27)

=
∑
τ

Pr
fi

[ ∣∣∣∣〈s− q

p∗
⌊s⌉p∗ ,f i

〉
[j]

∣∣∣∣ = τ

]
Pr
di

[ (
⟨C · s,di⟩+

q

p∗
⟨⌊s⌉p∗ ,f i⟩

)
[j] ∈ borderp,q,ν(τ)

]
(28)

≤
∑
τ

Pr
fi

[ ∣∣∣∣〈s− q

p∗
⌊s⌉p∗ ,f i

〉
[j]

∣∣∣∣ = τ

]
· 2τp

q
(29)

= Efi

[ ∣∣∣∣〈s− q

p∗
⌊s⌉p∗ ,f i

〉
[j]

∣∣∣∣ ] · 2pq
≤ Bd1Bd2βn

3/2kp

p∗
≤ 1

ℓn
, (30)

where (27) follows from the definition of a “border”, (28) follows from the formula
of total probability, (29) follows by the size of a “border” in Lemma A.2 and the
uniformity of 〈di,Cs〉[j] over Zq, and (30) follows from the Lemma E.4, since
each entry of s− q

p∗ bsep∗ has q
2p∗ -bounded ℓ∞ norm with respect to B, then the

ℓ2-norm of (s− q
p∗ bsep∗)i is q

2p∗Bd1n
3/2-bounded by Cauchy-Schwarz inequality,

and each entry of f is bounded by β under the canonical imbedding.
From the above calculation, we can derive that E [ |I| ] =

∑
(i,j)∈[ℓ]×[n] E[ (i, j) ∈

I] =
∑

(i,j)∈[ℓ]×[n] Pr [ (i, j) ∈ I ] < 1. (Recall that (i, j) ∈ I is a binary event).
We note that for (i, j) ∈ [ℓ]× [n], the events (i, j) ∈ I are mutually independent,
as di and f i are independently chosen, and 〈di,Cs〉 is uniformly random over
Rq thus each coefficient of it is independent to others. Therefore, by the Cher-
noff bound, we have PrB,F [ |I| > λ | C · s ∈max 〈1〉 ] < 2−λ, for any fixed s,C
satisfying the condition.

Using Equation (26) and the above calculation, we have

Pr
B,C,F,s

[ |I| > λ ] < δ+
n

2f−1
+ Pr

B,C,F,s
[ |I| > λ | C · s ∈max 〈1〉 ] < δ+

n

2f−1
+2−λ.

This proves the claim. ut

The bit-length of Z is |I|(log(ℓn)+log p), which is upper-bounded by λ(log(ℓn)+
log p) with overwhelming probability, i.e., 1 − ε = 1 − (δ + n

2f−1 + 2−λ) (as the
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Lemma statement). Therefore, we have

Hε′+ε
∞

(
s | Ã, ⌊Ã · s⌉B,p, aux

)
≥ Hε′+ε

∞ (s | C,D,F,Cs,
q

p∗
⌊s⌉B,p∗ , Z, aux)

≥ Hε′
∞(s | C,D,F,Cs,

q

p∗
⌊s⌉B,p∗ , aux)− λ(log(ℓn) + log p)

≥ Hε′
∞(s | C,D,F,

q

p∗
⌊s⌉B,p∗ , aux)− n log q − λ(log(ℓn) + log p)

≥ Hε′
∞(s | q

p∗
⌊s⌉B,p∗ , aux)− (n+ λ) log q

= Hε′
∞(s | ⌊s⌉B,p∗ , aux)− (n+ λ) log q,

where the second and the third lines follow from Lemma A.7 and Claim E.7,
and the last line follows from the fact q ≥ ℓnp. This completes the proof. ut

Now we can prove Theorem E.5 as follows:

Proof (Theorem E.5). Our target is to prove the following: under module-RLWEℓ,f,q,ϕ
assumption with parameters in the theorem, we have( [

A
a

]
,

[
bAseB,p
b〈a, s〉eB,p

] )
c
≈
( [

A
a

]
,

[
bAseB,p
bueB,p

] )
(31)

where A
$←− (Rq)

ℓ×k,a
$←− (Rq)

k, s
$←− S ⊆ (Rq)

k, u
$←− Rp.

By Lemma E.2, we can replace A with Ã to obtain( [
A
a

]
,

[
bAseB,p
b〈a, s〉eB,p

] )
c
≈
( [

Ã
a

]
,

[
bÃseB,p
b〈a, s〉eB,p

] )
By Lemma E.6, for ε = 2−λ + δ + n

2f−1 and any ε′ > 0, we have:

Hε′+ε
∞ (s mod q | Ã, bÃ · seB,p) ≥ Hε′

∞(s mod q | bseB,p∗)− (ℓ+ λ) log(q)

≥ (2n+ ℓ+ λ) · log(q) + ω(log(λ))− (ℓ+ λ) log(q)

≥ 2n log(q) + ω(log(λ)).

On the other hand, it’s clear that H∞(s mod q) ≥ H∞(s mod q | bseB,p∗) ≥
(2n+ ℓ+λ) · log(q)+ω(log(λ)) for any prime ideal factor q of qR. Then by union
bound,

Pr
s
[ s /∈max 〈1〉 ] ≤ Pr

s
[∃ prime q | qR : s mod q = 0] ≤

∑
prime q

Pr[s mod q = 0]

≤ n log q · q−(2n+ℓ+λ) · 2−ω(log λ) < q−λ,

Therefore, δ can be set as q−λ, and thus ε = 2−λ + q−λ + 2−ℓ+1.
Combining above with leftover hash lemma as Corollary A.35 we have:( [

Ã
a

]
,

[
bÃseB,p
b〈a, s〉eB,p

] )
s
≈
( [

Ã
a

]
,

[
bÃseB,p
bueB,p

] )
.
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The exact statistical distance is bounded by 2−ω(log λ). Finally, we replace the
lossy Ã with uniformly random A to get:( [

Ã
a

]
,

[
bÃseB,p
bueB,p

] )
c
≈
( [

A
a

]
,

[
bAseB,p
bueB,p

] )
.

Combining the above three hybrids proves (31). By a simple hybrid argument
as [1], we can further prove the desired statement

(A, bAseB,p)
c
≈ (A, bueB,p).

ut
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