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Abstract. Falcon is one of the three postquantum signature schemes
already selected by NIST for standardization. It is the most compact
among them, and offers excellent efficiency and security. However, it is
based on a complex algorithm for lattice discrete Gaussian sampling
which presents a number of implementation challenges. In particular, it
relies on (possibly emulated) floating-point arithmetic, which is often
regarded as a cause for concern, and has been leveraged in, e.g., side-
channel analysis. The extent to which Falcon’s use of floating point
arithmetic can cause security issues has yet to be thoroughly explored in
the literature.
In this paper, we contribute to filling this gap by identifying a way in
which Falcon’s lattice discrete Gaussian sampler, due to specific design
choices, is singularly sensitive to floating-point errors. In the presence
of small floating-point discrepancies (which can occur in various ways,
including the use of the two almost but not quite equivalent signing pro-
cedures “dynamic” and “tree” exposed by the Falcon API), we find that,
when called twice on the same input, the Falcon sampler has a small
but significant chance (on the order of once in a few thousand calls) of
outputting two different lattice points with a very structured difference,
that immediately reveals the secret key. This is in contrast to other lattice
Gaussian sampling algorithms like Peikert’s sampler and Prest’s hybrid
sampler, that are stable with respect to small floating-point errors.
Correctly generated Falcon signatures include a salt that should in prin-
ciple prevent the sampler to ever be called on the same input twice. In
that sense, our observation has little impact on the security of Falcon
signatures per se (beyond echoing warnings about the dangers of repeated
randomness). On the other hand, it is critical for derandomized variants
of Falcon, which have been proposed for use in numerous settings. One
can mention in particular identity-based encryption, SNARK-friendly
signatures, and sublinear signature aggregation. For all these settings,
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small floating point discrepancies have a chance of resulting in full pri-
vate key exposure, even when using the slower, integer-based emulated
floating-point arithmetic of Falcon’s reference implementation.

Keywords: Falcon · Lattice-Based Cryptography · Floating-Point Arith-
metic · Hash-and-Sign Signatures · NTRU

1 Introduction

Falcon [PFH+22] is a postquantum signature scheme based on structured lat-
tices, which was one of the three signatures selected by NIST for standardization
in 2022. It is a particularly efficient instantiation of the GPV lattice trapdoor
framework [GPV08] over NTRU lattices. It was the most compact signature
scheme in the third round of the NIST standardization process (some candidates
had shorter keys but much larger signatures, and vice versa), and has both fast
signing and verification on architectures for which an optimized implementation
is available.

In addition, since it is one of the most efficient available instantiations of a
lattice trapdoor, Falcon is also an attractive building block for more advanced
primitives and protocols, including identity-based encryption [DLP14, ZMS+24],
trapdoor commitments [DOTT21] and ring signatures [LAZ19].

Falcon’s main drawback, however, is its overall complexity. The signing al-
gorithm samples lattice points according to a discrete Gaussian distribution, and
a small deviation from the correct distribution may result in leakage of the entire
private key. Moreover, the sampling algorithm relies fairly crucially on floating-
point arithmetic. This makes Falcon challenging to implement correctly, and
issues like side-channel resilience are difficult to address efficiently [FKT+20,
KA21, GMRR22, ZLYW23].

Falcon’s reliance on floating-point arithmetic, specifically, is often raised as
a point of potential concern, but a thorough discussion of its security implications
seems to be lacking aside from the context of side-channels.

1.1 Our contributions

This paper aims at filling this gap in the literature, with a discussion of Falcon’s
sensitivity to floating-point errors, and a discussion of its consequences. Our
contributions are threefold:

– we first show that the discrete Gaussian sampler within Falcon behaves in
such a way that small discrepancies introduced by floating-point arithmetic
can result in very structured differences in its output;

– we then describe how this can yield to a complete key recovery when the
sampler if called twice on the same input, but with different intermediate
floating-point errors;

2



– we finally mention how such distinct intermediate floating-point errors can
occur in certain contexts due to the API exposed by Falcon, demonstrate
the key recovery attack in those contexts, and discuss the security impact
on non-standard and advanced uses of Falcon.

1.2 Applicability

We stress that the sensitivity to floating-point errors that we identify only re-
sults in a vulnerability in contexts where the sampler can be called twice on
the same input, but with different intermediate floating-point errors. For nor-
mal Falcon signatures, this should never happen, owing to the use of a salt
that never repeats. It should be noted, however, that repeated randomness
does occur in the real world, sometimes with catastrophic cryptographic con-
sequences [HDWH12, BHH+14, HFH16].

More to the point, our observations are critical to the security of derandom-
ized variants of Falcon, which are often necessary in advanced applications. For
example, in an identity-based encryption scheme based on Falcon, key extrac-
tion (which corresponds to Falcon signing) should always output the same key
on a given identity. Short of making the scheme stateful, this requires relying on
a derandomized variant of Falcon signing, as noted in the Falcon specification
document itself [PFH+22, §2.2.1]. Such a design is adopted, for instance, by the
Latte (H)IBE construction [ZMS+24], under consideration for UK NCSC and
ETSI standardization.

Derandomization is also useful for other purposes. For example, Lazar and
Peikert [LP21a] describe and fully implement a deterministic variant of Falcon
in order to obtain SNARK-friendly signatures. The idea is that, when proving
knowledge of a normal, salted Falcon signature on a given message, the digest
(i.e., the center of the lattice discrete Gaussian distribution that signature gen-
eration samples from, and that is recomputed in signature verification) depends
on the salt, which is part of the signature. As a result, the SNARK circuit has
to include the entire digest computation (using the SHAKE expandable output
function) which is very costly. In contrast, for deterministic signatures with no
salt, or equivalently a fixed salt, the digest computation depends only on the
message, and can thus be carried out “outside” the SNARK, resulting in much
more efficient proofs.

Along those lines, the SNARK-based signature aggregation technique for
Falcon signatures recently proposed by Aardal et al. [AAB+24] achieves sub-
stantially smaller (and asymptotically sublinear) aggregated signature size for
deterministic Falcon compared to standard Falcon (for which, in particular,
linear scaling is unavoidable since all salts need to be included in the aggregated
signatures).

For these reasons, there is significant interest in derandomized versions of
Falcon, and it is therefore important to understand their security, and how it
is impacted by the floating-point error sensitivity of Falcon’s sampler.

The impact is particularly dramatic in the IBE setting: in the presence of
floating-point discrepancies, our attack shows that it suffices for a legitimate user
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to ask the master key authority for its own key twice to have a chance (on the
order of once in a few thousands) to trigger the issue, and instantly recover the
authority’s master secret key! For deterministic and unsalted Falcon signatures,
the situation is similar: each time a signer signs the same message twice in the
presence of floating-point discrepancies, they have a chance of exposing their
entire private key.

1.3 Technical overview

Floating-point error sensitivity. As mentioned above, we identify a particu-
lar property of the Falcon discrete Gaussian sampler that make it uniquely
sensitive to small discrepancies introduced by floating-point computations, in
a way that other similar samplers, such as those of Mitaka [EFG+22] and
Antrag [ENS+23] are not.

At a high level, this comes from the fact that Falcon’s one-dimensional
discrete Gaussian sampler SamplerZ, which samples from the discrete Gaussian
distribution DZ,σ,c over Z with given center c and standard deviation σ, presents
a discontinuity around integer values of the center c. For an integer c and a small
error ε, the distributions DZ,σ,c+ε and DZ,σ,c−ε are of course close, and SamplerZ
samples correctly from them. However, for a fixed set of random coins, SamplerZ
will output completely different results for the centers c + ε and c − ε, due to
those values rounding to different integers.

The second part of the observation is that, within the Falcon lattice Gaus-
sian sampler, SamplerZ can in fact be called with an integer center up to floating
point errors.6 In fact, this happens with small but significant probability at one
of exactly 4 positions during the traversal of the so-called Falcon tree, corre-
sponding to the first two and the last two calls of SamplerZ (for reasons related
to arithmetic properties of the Falcon keys).

Key recovery from two outputs of the sampler. By the preceding discussion,
when the lattice Gaussian sampler of Falcon is called twice on the same input,
but with different floating-point errors, it can happen that the SamplerZ outputs
differ in one of the first two or the last two calls.

A difference in one of the first two calls affects the entire remainder of the
sampling procedure, and hence one obtains two entirely different lattice points
close to the chosen center of the lattice Gaussian. Their difference is therefore
a fairly short vector in the NTRU lattice, which is somewhat concerning, but
even obtaining many such vectors is not believed to enable a key recovery attack
(they aren’t small enough).

A difference in one of the last two calls to SamplerZ, however, is a totally dif-
ferent matter: it introduces a difference in just two components of (the Fourier
6 This is precisely what does not happen for Mitaka and Antrag, except with negli-

gible probability. Indeed, the implementations of those schemes also use Falcon’s
SamplerZ, but they call it with centers that are themselves distributed according to
a continuous normal distribution (up to floating-point precision), and in particular,
integer values only occur with negligible probability.
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domain representations of) the coefficient vectors of the outputs over the se-
cret trapdoor basis. The difference between the two outputs is therefore highly
structured, and recovering the entire private key from it is fairly straightforward
(it involves at most a simple exhaustive search over a few thousand pairs of
integers).

This means in particular that two signatures on the same message in a de-
randomized variant of Falcon have a chance of leaking the entire private key if
a floating-point discrepancy occurs between them.

Floating-point discrepancies in Falcon. We then discuss some examples of the
ways in which such floating-point discrepancies can appear.

A first way, which we do not explore further, is the weak determinism of
floating-point arithmetic [DGPY20]. The exact same source code compiled with
the same compiler with the same options and run on the same inputs can yield
different floating-point results on architectures compatible with the IEEE-754
floating-point arithmetic standard [iee85] (e.g., because of the use of extended
precision for intermediate results in registers, as is done on x87 FPU [Mon08]).

A second way is through running different floating-point implementations of
the same algorithm. When compiling Falcon with native floating-point arith-
metic, the resulting compiled code can in principle depend on the target architec-
ture, the compiler and the choice of compiler optimizations, and all those factors
can result in different signatures for the same message with the same salt. In
addition, the Falcon also includes optimized versions for the Intel AVX2 vec-
tor unit, with or without fused multiply-add (FMA) instructions, which can
lead to discrepancies as well. This is a fairly well-understood problem: for ex-
ample, due to these differences, the deterministic Falcon implementation of
Lazar and Peikert [LP21b] actually strongly recommends the use of the much
slower emulated implementation with 64-bit integers, “unless performance con-
siderations absolutely require otherwise” (and moreover, it stresses that, when
other implementations are used, “caution should be exercised to ensure functional
(near-)equivalence”). Nevertheless, we do experimentally test for this issue. In-
terestingly, on our target platform, we find no signature discrepancies arising
from the various floating-point variants exposed by the code base except for the
FMA-optimized code. Signature pairs generated by the FMA code on the one
hand and one of the other floating-point flavors on the other hand do present oc-
casional discrepancies that allow for full key recovery (once every few thousand
pairs).

A third and somewhat more surprising way is through the API exposed
by the Falcon implementation (and its deterministic variants). Namely, Fal-
con includes two slightly different implementations of its signing procedure: the
“dynamic” variant, which generates the Falcon tree on the fly, and the “tree”
variant, which takes a precomputed Falcon tree as input. Those two variants
carry out almost the same floating point computations on the same values in
the same order, except at the bottom few levels of the tree traversal, where the
“tree” variant uses some small shortcuts. It turns out that those minor differ-
ences are sufficient to induce exploitable discrepancies as well. The differences
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have in fact been pointed out in the literature before [PKKK24], albeit with no
analysis of the reason why they occur or of their impact. In any case, we experi-
mentally confirm that these discrepancies occur, including in the slow, emulated
floating point version recommended by the deterministic Falcon authors7. The
discrepancies also give rise to a full key recovery at a similar rate as the ones
from completely different floating-point instructions through the entire signing
procedure.

1.4 Organization of the paper

Following some preliminary material in Section 2, Section 3 recalls the Fal-
con scheme along with its deterministic variant and different implementations.
Section 4 demonstrates the floating-point error sensitivity of the integer Gaus-
sian sampler of Falcon that could trigger discrepant signing executions for
distinct implementations of Falcon. Section 5 then describes a key recovery
attack exploiting close discrepant Falcon signatures for the same digest syn-
drome and discusses its feasibility. Section 6 presents our experiments validating
that different signing modes of Falcon and the use of the FMA floating-point
instructions can indeed cause discrepant signatures in practice. Finally, some
countermeasures are proposed in Section 7.

2 Preliminaries

We use bold lowercase letters to represent (row) vectors, i.e., b = (b0, · · · , bn−1),
where bi is coefficient i of vector b (note that we use zero-based indexing
throughout the paper). For a,b ∈ Rn, the coefficient-wise inner product is
⟨a,b⟩ =

∑n−1
i=0 aibi. Given b ∈ Rn, its ℓ2-norm is denoted ∥b∥ =

√
⟨b,b⟩.

We also use bold uppercase letters to denote matrices, i.e., B = (b0, · · · ,bn−1),
where bi is the row vector of index i of B. The inverse and conjugate transpose
of B are denoted by B−1 and B∗ respectively.

For x ∈ R, ⌊x⌉ denotes rounding x to the nearest integer and ⌊x⌋ is the floor
operation of x.

We abbreviate “floating-point representation” to fpr and define the fpr oper-
ations ∗̊ ∈ { +̊ , −̊ , ×̊ }.

2.1 Linear algebra and lattices

Let B = (b0, . . . ,bn−1) ∈ Rn×m be a full-rank matrix. The Gram–Schmidt
orthogonalization (GSO) of B is the unique matrix B̃ = (b̃0, · · · , b̃n−1) with

7 While the deterministic Falcon specification does not include a specific warning
against using those two variants concurrently, it does stress that the “same private key
should not be used to sign the same message digest using functionally inequivalent
sampling procedures,” and the two variants count as functionally inequivalent since
they accept different signing key formats.
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pairwise orthogonal rows such that there exists a lower triangular matrix L with
only 1’s on its diagonal satisfying B = LB̃.

Any symmetric positive definite matrix G admits a unique decomposition of
the form LDL∗ where L is a lower triangular matrix with only 1’s on its diagonal
and D is a diagonal matrix. In particular, when G is the Gram matrix BB∗ of
the matrix B above, then the matrix L associated with its GSO coincides with
the matrix L appearing in the LDL∗ decomposition of G, and D = B̃B̃∗.

A lattice L is a discrete additive subgroup of some finite dimensional vector
space Rm. It can always be written as the set of all integer linear combina-
tions of some linearly independent vectors b0, . . . ,bn−1, i.e., L =

{∑n−1
i=0 xibi |

(x0, . . . , xn−1) ∈ Zn
}
. We call the matrix B = (b0, . . . ,bn−1) a basis of the

lattice L, and n the rank of L (it is independent of the choice of a basis). The
lattice corresponding to B is denoted by L(B). When m = n, we say that it is
full-rank.

2.2 Gaussian distributions

For a distribution D, we write a ← D to mean that a is a sample from the
distribution D, and y ∼ D to say that the random variable y is distributed
according to D. We denote by D(z) the probability that a random variable
y ∼ D satisfies that y = z.

Given a standard deviation σ > 0 and a center c ∈ Rn, we define the Gaussian
function as ρσ,c(x) = exp

(
−∥x−c∥2

2σ2

)
. For some fixed σ, c and a lattice L, we

denote by DL,σ,c the discrete Gaussian distribution over the lattice L given by:

DL,σ,c(u) =
ρσ,c(u)∑

v∈L ρσ,c(v)
.

In the particular case when L = Z, we call DZ,σ,c the integer Gaussian distribu-
tion of parameters σ, c and following the Falcon specification, denote by D+

Z+,σ

the integer “half-Gaussian” distribution defined by D+
Z+,σ(u) =

ρσ,0(u)∑
v∈Z+ ρσ,c(v)

.

2.3 NTRU

Let R = Z[x]/ϕ where ϕ = xn + 1 with n a power of 2 and K = Q[x]/ϕ. In
the NTRU scheme, the secret key consists of two short polynomials f, g ∈ R
such that f invertible modulo some prime number q, and the public key is
h = g/f mod q. The NTRU lattice defined by h ∈ R is LNTRU = {(s0, s1) ∈
R2 | s0 + s1h = 0 mod q}. The NTRU trapdoor basis is

Bf,g =

(
g −f
G −F

)
where (F,G) ∈ R2 is such that fG− gF = q.
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2.4 Fast Fourier transform

Let Ωϕ a set of representatives of the complex roots of ϕ up to conjugation. We
usually take:

Ωϕ =

{
exp

(
i(2j + 1)π

2n

)∣∣∣∣0 ≤ j < n/2

}
.

The (fast, negacyclic) Fourier transform (FFT) maps an element f of K (or more
generally of K⊗QR) to the vector of its evaluations at the roots ζ ∈ Ωϕ, namely:

FFT(f) =
(
f(ζ)

)
ζ∈Ωϕ

.

It induces an isomorphism of R-algebras FFT : K ⊗Q R → CΩϕ = Cn/2. The in-
verse isomorphism is denoted by invFFT. Both FFT and invFFT can be computed
in O(n log n) operations.

To make the computation of these maps cache-friendly, it is customary to
represent the coefficients of the polynomials in K ⊗Q R in bit reversed order,
where the coefficient of index i corresponds to the monomial of degree αi, where
αi is obtained from i by reversing its representation as a number of log2(n) bits.
For example, the first four coefficients in bit reversed order correspond to the
monomials of degree 0, n/2, n/4 and 3n/4 in this order.

3 The Falcon Signature Scheme

This section covers some background about the Falcon signature scheme, in-
cluding a description of its signing algorithm, an overview of one of its deter-
ministic variants, and some details about its various implementations.

3.1 The Falcon signing procedure

Falcon is an instantiation over NTRU lattices of the GPV framework for hash-
and-sign lattice based signatures [GPV08]. Using the notation of Section 2.3,
it uses an NTRU trapdoor basis Bf,g as its secret key and h = g/f mod q as
the public key, where the coefficients of (f, g) are sampled from DR,σ{f,g},0 with
σ{f,g} = 1.17

√
q/2n, ensuring nearly optimal parameters [DLP14].

Parameters. Falcon is defined over the power-of-two cyclotomic ring R =
Z[x]/(xn + 1), and uses the prime modulus q = 12289. It has two parameter
sets, corresponding to n = 512 for NIST security level I (128-bit security), and
to n = 1024 for NIST security level V (256-bit security). These parameter sets
are usually called Falcon–512 and Falcon–1024 respectively. Note that the
dimension over Z of the NTRU module lattice is 2n in both cases, so 1024 for
Falcon–512 and 2048 for Falcon–1024.
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Algorithm 1: Sign

Input: A message msg and an NTRU lattice trapdoor basis Bf,g

Output: A valid signature (r, s)

1 r
$← {0, 1}320, c← H(r∥msg)

2 t← (FFT(c),FFT(0)) · FFT(Bf,g)
−1 ▷ pre-image computation

3 do
4 do
5 z← ffSampling(t,T) ▷ trapdoor sampling
6 s = (t− z) · FFT(Bf,g) ▷ s ∼ D(c,0)+L(B),σsig,0

7 while ∥s∥ > ⌊β2⌋
8 (s0, s1)← invFFT(s)

9 while s =⊥
10 return (r, s1)

Signing. Algorithm 1 describes the signing procedure of Falcon, which essen-
tially amounts to sampling a short signature vector s = (s0, s1) ∼ D(c,0)+L(B),σsig,0

in a certain coset of the NTRU lattice, or equivalently, a lattice point (c, 0)−s ∼
DL(B),σsig,(c,0) close to (c, 0). The center (c, 0), also called the syndrome, is com-
puted by the hash function c = H(r∥msg) where r is a 320-bit random salt and
msg is the message. The validly generated signature (s0, s1) is short, and its
acceptance bound is β = 1.1 · σsig

√
2n.

Trapdoor sampling. Falcon uses the fast Fourier sampler [DP16] (ffSampling,
Algorithm 2) as its trapdoor sampler. It takes as input the coordinates t over the
trapdoor basis Bf,g of the syndrome, as well as the Falcon tree T, which is in
essence a compact representation of the GSO of the trapdoor basis Bf,g (or more
properly, of the LDL∗ decomposition of its Gram matrix). All ring elements are
represented in the FFT domain, and the sampling algorithm runs in quasilinear
time overall.

In ffSampling, the lattice Gaussian sampling is reduced to a series of calls to
an integer Gaussian sampler SamplerZ, which samples from the integer discrete
Gaussian distribution DZ,σ,c with varying centers and standard deviations.

3.2 Reference and optimized implementations

Falcon provides one reference implementation and several optimized implemen-
tations in the NIST round 3 submission package [PFH+22].

The reference implementation only contains one pure portable C version in
which all floating-point operations are emulated with integer arithmetic and bit
fiddling. We refer to this implementation as fpemu throughout this paper. It
stores IEEE-754 [iee85] double precision values as fixed-width unsigned integer
elements of type uint64_t, and does not require the support of a hardware
floating-point unit (fpu). It is also fully constant time for all intermediate values
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Algorithm 2: ffSamplingn

Input: A Target vector t = (t0, t1) ∈ FFT(K)2, a Falcon tree T
Output: z = (z0, z1) ∈ FFT(R)2

1 if n = 1 then
2 σ ← T.value ▷ σ ∈ [σmin, σmax]
3 z0 ← SamplerZ(t0, σ), z1 ← SamplerZ(t1, σ)
4 return z = (z0, z1)

5 end if
6 (l,T0,T1)← (T.value,T.leftchild,T.rightchild)
7 t1 ← split fft(t1)
8 z1 ← ffSamplingn/2(t1,T1) ▷ First recursive call
9 z1 ← merge fft(z1)

10 t′0 ← t0 + (t1 − z1)⊙ l
11 t0 ← split fft(t′0)
12 z0 ← ffSamplingn/2(t0,T0) ▷ Second recursive call
13 z0 ← merge fft(z0)
14 return z = (z0, z1)

in the context of Falcon. However, the overhead of floating point emulation
makes it considerably slower than the optimized variants.

The following optimized implementations (summarized in Table 1) are also
included in the Falcon code based:

– fpnative: makes use of the native hardware fpu (SSE2 unit on x86_64) using
floating point values of type double;

– avx2: also uses the native hardware fpu with values of type double, and packs
them into AVX2 registers for four-way vectorization;

– avx2 fma: further optimized by enabling “fused multiply-add” (FMA) intrin-
sics;

– cxm4: inline assembly code for ARM Cortex-M4 microcontrollers, particu-
larly embedded in the fpr operations.

Table 1. Different implementations of Falcon.

Version Reference Optimized n = 512&1024 sign dyn&sign tree fpr

fpemu Ë é Ë Ë uint64 t
fpnative é Ë Ë Ë double
avx2 é Ë Ë Ë double

avx2 fma é Ë Ë Ë double
cxm4 é Ë Ë Ë uint64 t
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3.3 Deterministic Falcon

The signing procedure of the normal Falcon signature is probabilistic, since it
samples the random salt r as well as many random samples as part of the calls
to the SamplerZ algorithm. As discussed in the introduction, however, there are
numerous settings where derandomized variants may be desirable.

In [LP21a], Lazar and Peikert propose, specify and implement such a deter-
ministic variant for SNARK-friendly applications, called “deterministic Falcon”.
In that scheme, signing the same message multiple times is supposed to result
in the same signature every time. To this end, the signing algorithm uses a fixed
salt value r, and the random tape used in all the random sampling procedures is
obtained by expanding a seed randbytes derived from the secret key sk and the
message msg as follows:

r = 0∥ℓ∥FALCON_DET∥00 · · · 00 and randbytes = ℓ∥sk∥msg

where the first zero byte is salt version with default value 0, ℓ = log2(n),
the string FALCON_DET is in ASCII representation and the remaining part
is padded by all zero bytes.

The specification of deterministic Falcon is accompanied by an implemen-
tation [LP21b] based on the most recent version of the standard Falcon imple-
mentation at the time of this writing, namely the implementation included in the
NIST round 3 submission package [PFH+22]. The code base includes the both
the reference implementations as well as the various optimized ones, although
only the reference implementation is enabled by default, and the included README
files warns against the use of the other ones due to risks from floating point dis-
crepancies. We refer to those various implementations with the same names as
the standard Falcon ones with a det suffix to emphasize that they are deter-
ministic Falcon implementations. The fpemu det is thus the supported variant,
whereas avx2 det, avx2 fma det, etc., are unsupported.

4 Floating-Point Error Sensitivity of the Falcon Integer
Gaussian Sampler

At the heart of the Falcon signing algorithm is the fast Fourier sampler ffSampling
(Algorithm 2) which is an efficient variant of the Klein–GPV sampler [GPV08]
over cyclotomic rings with smooth conductors. It can be seen as the Gaussian
sampling version of the Ducas–Prest fast Fourier nearest plane algorithm [DP16].
As in the Klein–GPV sampler, the sampling procedure of ffSampling is decom-
posed into a sequence of integer Gaussian samplings. While a Falcon signature
is fully determined by these integer samples, the sampling procedure involves
extensive floating-point arithmetic.

In this section, we present our main observation: the integer Gaussian sam-
pling algorithm SamplerZ of Falcon presents a marked sensitivity to floating
point errors at very specific input points, namely, when sampling integer discrete
Gaussians with integer centers. In addition, we show that such input points do
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Algorithm 3: SamplerZ

Input: A center c and standard deviation σ ∈ [σmin, σmax]
Output: An integer z derived from a distribution close to DZ,σ,c

1 r ← c− ⌊c⌋
2 y+ ← BaseSampler()

3 b
$← {0, 1}

4 y ← b+ (2b− 1)y+

5 x← (y−r)2

2σ2 − y2
+

2σ2
max

6 return z ← y + ⌊c⌋ with probability σmin
σ
· exp (−x), otherwise restart.

have a (relatively small but nonetheless) significant at some well-defined loca-
tions within the execution of the ffSampling procedure (namely, at the positions
corresponding to the first two and last two calls to SamplerZ), and are very rare
otherwise.

This sensitivity to floating point errors gives rise to concrete attacks against
various Falcon-based constructions, that will be discussed in later sections.

4.1 The Falcon integer Gaussian sampler

The integer Gaussian sampling algorithm of Falcon can be described as follows.
To sample from DZ,σ,c, the algorithm SamplerZ first shifts the center c to its
fractional part r = c−⌊c⌋ ∈ [0, 1). Next it produces a base sample y+ ∼ D+

Z+,σmax

and converts y+ into a bimodal Gaussian y = b+(2b−1)y+, where b is uniformly
random in {0, 1}. Then rejection sampling is performed to ensure that y follows
the correct discrete Gaussian distribution of y with center r (and to guarantee
isochronicity [HPRR20]), and the final output is z = y+⌊c⌋. A formal description
of SamplerZ is given in Algorithm 3.8

In the context of ffSampling, the execution of one call to SamplerZ has a direct
impact on the outputs of the subsequent calls in two different ways. On the one
hand, the output of SamplerZ affects the computation of the centers of later inte-
ger discrete Gaussians. On the other hand, since all integer samplings share the
same random tape, the randomness consumption of each integer sampling also
affects all subsequent results. Therefore, one can think of the algorithm SamplerZ
as sending a triple (σ, c, randbytes) to a pair (z, randbytes), where randbytes is the
state of the pseudorandom number generator. That pseudorandom number gen-
erator is used to generate the following random values:

– the generation of y+ uses the first 9 bytes;
8 Strictly speaking, the description of SamplerZ in the Falcon specification differs

slightly from Algorithm 3, mainly due to the fact that the rejection probability
is computed using a polynomial approximation of the exponential function. That
approximation is, however, sufficiently close in terms of the Rényi divergence of the
sampler, so our discussion applies to the real sampler by a composition argument.
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– the generation of b uses the next byte;
– the rejection sampling uses a varying number of random bytes (a little over

1 byte on average) and if rejection happens, the previous samplings are of
course repeated.

4.2 Sensitivity analysis

Significant efforts have been made in analyzing the numerical precision required
on the inputs and in the computation of the integer Gaussian sampler [DN12,
MW17, Pre17]. It is generally accepted that IEEE-754 double precision floating-
point arithmetic is sufficient for most practical schemes including Falcon. It is
worth noting that all these works focus on the distribution output by the sampler
from a statistical standpoint.

In this work, we investigate how floating-point errors on the center and the
standard deviation affect the execution of SamplerZ rather than its distribution.
To this end, we treat SamplerZ as a function with Gaussian parameters and ran-
domness as input. We call the executions of two calls to SamplerZ(σ, c, randbytes)
consistent if their all intermediate discrete samples (y+, b, y, z) are the same, and
inconsistent otherwise.

Lemma 1 shows that for a nearly-integer center, SamplerZ can be sensitive
to floating-point errors. Intuitively, a minor floating-point error is sufficient to
trigger inconsistent outputs of the floor function around integers.

Lemma 1 (Sensitivity of the centers). Let c and c′ be two floating-point
numbers such that |c − c′| ≤ ϵ < 1. For σ ∈ [σmin, σmax] and a PRNG state
randbytes,

1. if ⌊c⌋ = ⌊c′⌋, then SamplerZ(σ, c, randbytes) and SamplerZ(σ, c′, randbytes)
have the same execution with probability ≥ 1 − 11ϵ

σ2 over the randomness of
randbytes;

2. if ⌊c⌋ ̸= ⌊c′⌋, then SamplerZ(σ, c, randbytes) and SamplerZ(σ, c′, randbytes)
have an inconsistent execution.

Proof. Let (r, y+, b, y, x, z) and (r′, y′+, b
′, y′, x′, z′) denote the intermediate val-

ues in one repetition of SamplerZ(σ, c, randbytes) and SamplerZ(σ, c′, randbytes)
respectively. At each repetition, the computation before the rejection sampling
consumes a fixed number of random bytes, which implies that (y+, b, y) =
(y′+, b

′, y′) once the repetition in two executions begins with the same random
tape.

When ⌊c⌋ = ⌊c′⌋, the execution discrepancy must stem from rejection sam-
pling that is implemented by lazy Bernoulli sampler. For uniformly random
randbytes, the probability of inconsistent executions SamplerZ(σ, c, randbytes) ̸=
SamplerZ(σ, c′, randbytes) is thus the probability of an inconsistency in rejection
sampling, which is:

σmin

σ
E[| exp(−x)− exp(−x′)|].

13



Now we can compute:

E[| exp(−x)− exp(−x′)|]

=
∑
y∈Z

∣∣∣∣ exp(− (y − r)2

2σ2
+

y2+
2σ2

max

)
− exp

(
− (y − r′)2

2σ2
+

y2+
2σ2

max

)∣∣∣∣ · exp
(
− y2

+

2σ2
max

)
2ρσmax

(Z+)

=
1

2ρσmax
(Z+)

·
∑
y∈Z

∣∣∣∣ exp(− (y − r)2

2σ2

)
− exp

(
− (y − r′)2

2σ2

)∣∣∣∣
=

1

2ρσmax
(Z+)

·
∑
y∈Z

exp
(
− (y − r)2

2σ2

)∣∣∣∣1− exp
( (r′ − r)y

σ2
+

(r2 − r′2)

2σ2

)∣∣∣∣
≤ 1

2ρσmax
(Z+)

·
∑
y∈Z

exp
(
− (y − r)2

2σ2

)(
1− exp

(
− 19ϵ

σ2

))
≤ ρσ(Z)

2ρσmax(Z+)
· 19ϵ
σ2
≈ σ

√
2π

2ρσmax(Z+)
· 19ϵ
σ2
≤ 8.5ϵ

σ
.

The first inequality is due to the fact that |r − r′| = |c − c′| ≤ ϵ and |y| ≤ 18.
The second inequality follows from ρσ,r(Z) ≤ ρσ(Z). This concludes the proof of
the first assertion.

Conversely, suppose that we have consistent executions SamplerZ(σ, c, randbytes)
and SamplerZ(σ, c′, randbytes). Then in particular, the intermediate values y, z
and y′, z′ coincide, which implies that z − y = ⌊c⌋ coincides with z′ − y′ = ⌊c′⌋.
Hence, if ⌊c⌋ ≠ ⌊c′⌋, the executions are necessarily inconsistent. ⊓⊔

Contrary to the integer Gaussian center, the standard deviation has a strong
error tolerance.

Lemma 2 (Non-sensitivity of the standard deviations). Let σ, σ′ ∈
[σmin, σmax] such that |σ − σ′| ≤ ϵ < 2−10. Then SamplerZ(σ, c, randbytes) and
SamplerZ(σ′, c, randbytes) have consistent executions with probability ≥ 1− 160ϵ
over the randomness of randbytes for any c.

Proof. We follow the notations in the proof of Lemma 1. By a similar argument,
it suffices to investigate the difference within rejection sampling. The probability
of inconsistent executions SamplerZ(σ, c, randbytes) ̸= SamplerZ(σ′, c, randbytes)
over the randomness of randbytes is again σmin

σ E[| exp(−x)− exp(−x′)|] and we
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have:

E[| exp(−x)− exp(−x′)|]

=
∑
y∈Z

∣∣∣∣ exp(− (y − r)2

2σ2
+

y2+
2σ2

max

)
− exp

(
− (y − r)2

2σ′2 +
y2+

2σ2
max

)∣∣∣∣ · exp
(
− y2

+

2σ2
max

)
2ρσmax

(Z+)

=
1

2ρσmax
(Z+)

·
∑
y∈Z

∣∣∣∣ exp(− (y − r)2

2σ2

)
− exp

(
− (y − r)2

2σ′2

)∣∣∣∣
=

1

2ρσmax
(Z+)

·
∑
y∈Z

exp
(
− (y − r)2

2σ2

)∣∣∣∣1− exp
(
(y − r)2 · σ

2 − σ′2

2σ2σ′2

)∣∣∣∣
≤ 1

2ρσmax
(Z+)

·
∑
y∈Z

exp
(
− (y − r)2

2σ2

)∣∣∣∣1− exp
(
361 · σ

2 − σ′2

2σ2σ′2

)∣∣∣∣
≤ 1

2ρσmax
(Z+)

·
∑
y∈Z

exp
(
− (y − r)2

2σ2

)(
exp

(
361 · ϵ(σ + σ′)

2σ2σ′2

)
− 1

)
≤ ρσ(Z)

2ρσmax
(Z+)

· 400ϵ · σmax

σ2σ′2 ≤ σmax

√
2π

σ3
minρσmax

(Z+)
· 200ϵ ≤ 160ϵ.

This completes the proof. ⊓⊔

In Lemma 2, the bound of 2−10 is chosen somewhat arbitrarily to make the
proof work, but ϵ corresponds to the absolute error on the floating-point standard
deviation, which for actually occurring floating-point discrepancies should be on
the order of 2−50, give or take a coupe of bits. For such an ϵ, Lemma 2 shows that
one would need many billions of signatures before having a significant chance of
observing a single case of different results due to a discrepancy on the standard
deviation.

4.3 Integer centers in Gaussian sampling

As indicated by Lemma 1, the integer Gaussian sampler of Falcon is sensitive
to floating-point errors when the center is (within a small interval around) an
integer value.

Now, while the centers in the successive calls to SamplerZ throughout the
computation of a Falcon signature are all represented as floating point values,
their exact theoretical values (if all computations were to be carried out with un-
limited precision) are rational numbers, and some of the denominators involved
are relatively small. As a result, certain centers have a non-negligible chance of
having an integer their exact theoretical value, which gives rise to an almost
integer floating point value in the actual computation, with high sensitivity to
floating point errors.

We now argue that, in Falcon, this is the case for the first two and the last
two centers sampled in the ffSampling procedure, whereas other coefficients are
very unlikely to have an exact theoretical value equal to an integer.
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Indeed, denote by ci, 0 ≤ i ≤ 2n− 1 the exact theoretical value of the center
output by the call of index i to SamplerZ within the ffSampling algorithm. Then,
by standard properties of the fast Fourier Gaussian sampling algorithm, ci has
the following form:

ci =
⟨ci,b∗

2n−1−i⟩
∥b∗

2n−1−i∥2
,

where b∗
2n−1−i is one of the vectors of the Gram–Schmidt orthogonalization

B̃ = (b∗
0, . . . ,b

∗
2n−1) of the NTRU trapdoor basis of Falcon in bit reversed

order.
Several properties of this Gram–Schmidt basis B̃ are established in Theo-

rem 1. In particular, let mk =
∏k−1

i=0 ∥b∗
2i∥2 for 0 ≤ k ≤ n. Then, by assertions

(c) and (e) of that theorem, mk is an integer of the same order of magnitude as
qk. Moreover, by assertions (g) and (h), the (2k)-th and (2k + 1)-st centers:

c2k =
⟨c2k,b∗

2n−1−2k⟩
∥b∗

2n−1−2k∥2
and c2k+1 =

⟨c2k+1,b
∗
2n−1−(2k+1)⟩

∥b∗
2n−1−(2k+1)∥2

are rational numbers with denominator dividing both qmk and mn−k. By asser-
tion (i) of the same theorem, qmk actually divides mn−k for k < n/2, and vice
versa for k ≥ n/2.

Denoting by gk the smaller of those two values, gk·b∗
j/∥b∗

j∥2 for j = 2n−1−2k
and j = 2n − 1 − (2k + 1) is itself an integer vector, with coefficients that are
not expected to satisfy any particular arithmetic relation, and therefore those
coefficients are expected to be setwise coprime with overwhelming probability ≈
1/ζ(2n). As a result, since c2k and c2k+1 are somewhat random, we heuristically
expect the probability of c2k being an integer to be 1/gk, and similarly for c2k+1.
This is summarized as Heuristic 1.

Heuristic 1. For 0 ≤ k ≤ n− 1, let:

mk =

k−1∏
i=0

∥b∗
2i∥2 and gk =

{
q ·mk if k < n/2;
mn−k otherwise.

Then, the (exact theoretical values of the) centers c2k and c2k+1 each have a
probability 1/gk of being integers.

Under Heuristic 1, c0 and c1 each have a probability equal to 1/g0 = 1/q
to be integers, and for c2n−2 and c2n−1, the probability is 1/gn−1 = 1/m1 =
1/∥b∗

0∥2 = 1/∥(g,−f)∥2. Both probabilities are between 1/10000 and 1/20000,
so we should expect to observe integer centers at those positions once every few
thousand signatures.

On the other hand, gk ≈ qk+1 for k < n/2 and qn−k for k ≥ n/2. One there-
fore concludes that all centers except the first and last two have a denominator
≳ q2. This already yields a very low probability of getting an integer center in
theory (occurring at best once every few tens of millions of signatures). More-
over, except for the centers corresponding to k ≤ 2 or k ≥ n − 3 (i.e., the first
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six and the last six), the values gk even have a bit size exceeding the floating
point precision, and thus even if integer centers happen to occur in theory, this
won’t be detectable in the double precision floating point computations.

Remark 1. The reason why Heuristic 1 is a heuristic and not a theorem is
twofold.

On the one hand, there is a small chance that the coefficients of uj = gk ·
b∗
j/∥b∗

j∥2 for j = 2n − 1 − 2k and j = 2n − 1 − (2k + 1) might not be setwise
coprime, so that b∗

j/∥b∗
j∥2 actually has a slightly smaller denominator than gk.

This should only happen with negligible probability around 1 − ζ(2n) ≈ 2−2n,
but making this estimate rigorous is tedious.

On the other hand, even if we can make the distributions of c2k and c2k+1

more explicit than saying that they are “somewhat random” (they should in fact
be uniform modulo q), it is not possible to get a probability of exactly 1/gk
of getting an integer due to counting reasons (gk does not usually divide q2n).
A rigorous way of establishing that the probability is close to 1/gk involves
applying the leftover hash lemma to the 2-universal hash c 7→ ⟨c,uj⟩ mod gk,
but we omit the details of that argument.

5 Exploiting Floating Point Discrepancies

As shown in Section 4, the integer Gaussian sampler of Falcon can have a
different execution when some floating-point error is introduced on an integer
center. Due to this sensitivity and the weak determinism of floating-point arith-
metic, various Falcon implementations can generate distinct signatures for the
same digest syndrome, as confirmed in Section 6 below.

This section demonstrates the insecurity of Falcon signatures for the same
digest syndrome in the presence of floating point discrepancies. A key recovery
attack can be mounted once close discrepant signatures are released. To clarify
the impact of this attack, Section 5.2 showcases some Falcon-based schemes
allowing the adversary to make two signing queries associated with the same
syndrome.

5.1 Key recovery from signature discrepancies

In a GPV lattice signature scheme, the signing procedure proceeds in two steps.
First, the signer hashes the message to a point u = Hash(msg), the syndrome,
in the ambient space of the underlying lattice L. Then, the signer performs
trapdoor sampling to compute a vector v ∈ L close to the syndrome u and
outputs s = v − u as the signature.

For a syndrome u, the signing procedure of Falcon samples an integer vector
z = (z0, z1) ∈ R2 using ffSampling and outputs (a compressed form of):

s = u− z ·Bf,g = u− z ·
(
g −f
G −F

)
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as a signature where s = (s0, s1) ∼ DL(Bf,g)+u,σsig is short. Let s, s′ be two
distinct signatures for the same u. Their difference is

∆s = (s0 − s′0, s1 − s′1) = (z− z′) ·
(
g −f
G −F

)
= (z0 − z′0, z1 − z′1)

(
g −f
G −F

)
and then we have

∆s0 = s0 − s′0 = (z0 − z′0) · g + (z1 − z′1) ·G,

∆s1 = s1 − s′1 = (z0 − z′0) · (−f) + (z1 − z′1) · (−F ).

The ffSampling (Algorithm 2) samples the vector z coefficient by coefficient
in a tree-wise fashion, essentially from right to left in bit reversed order, each
coefficient being the output of the SamplerZ algorithm discussed in the previous
section.

If we denote by z(i), 0 ≤ i ≤ 2n−1, the coefficient of z output by the (i+1)-st
call to SamplerZ as part of the traversal of the Falcon tree, then the position
of z(i) is depicted in Fig. 1 where the vector z has its components in bit reversed
order for each of the two ring elements, and in Fig. 2 in the standard monomial
order.

Now, floating point discrepancies arising for the instability of SamplerZ only
have a good chance to occur in the first or the last two calls to SamplerZ, i.e., at
coefficient z(0), z(1), z(2n−2) or z(2n−1).

When the discrepancy occurs at coefficient z(0) or z(1), the entire remainder
of the ffSampling computation is affected, which yields a large, somewhat un-
structured difference ∆s between the two signatures output by the algorithm.
This vector ∆s is a short lattice vector, but it is not expected to be short enough
to make key recovery feasible.

In contrast, when the discrepancy occurs at coefficient z(2n−2) or z(2n−1), only
those two indices are affected, making the difference vector ∆s highly structured.
Indeed, as seen on Fig. 2, z(2n−2) corresponds to the element of degree 0 of the
ring element z0, and z(2n−1) to the element of degree n/2 of z0. Therefore:

∆s0 = (z0 − z′0) · g = ∆z0 · g and ∆s1 = (z0 − z′0) · (−f) = ∆z0 · (−f),

where ∆z0 = a + b · xn/2 and (a, b) =
(
z(2n−2) − z′(2n−2), z(2n−1) − z′(2n−1)

)
.

Since z(i) and z′(i) are sampled by SamplerZ around almost the same centers,

...

z(1022) z(1023)

...

z(1020) z(1021)

...

· · · · · ·

...

· · · · · ·

...

· · · · · ·

...

· · · · · ·

...

z(2) z(3)

...

z(0) z(1)

Fig. 1. Positions of the bit reversed order coefficients of z in the order of their genera-
tion as outputs of SamplerZ in ffSampling (case of Falcon–512, where 2n = 1024).

18



we know that a, b ∈ {−18,−17, . . . , 0, . . . , 18, 19}. A simple exhaustive search on
the space of pairs (a, b) of cardinality 382 < 211 is thus sufficient for complete
key recovery.

5.2 Cryptanalytic impact on Falcon and its variants

The attack described in this section is only possible to the extent that the ad-
versary can make two signing queries giving rise to the same syndrome.

This normally does not happen in plain Falcon signatures, since the random
salt in signatures should ensure that even multiple signatures on the same mes-
sage are sampled with distinct syndromes. Care may still be warranted in that
setting, however, as improperly repeated randomness does occasionally happen
in the real world with catastrophic cryptographic consequences, as evidenced
for example by the observation of pairs of RSA keys in the wild with nontrivial
GCDs [HDWH12].

The attack is, however, much more directly relevant for derandomized vari-
ants of Falcon. This includes in particular the “deterministic Falcon” signature
scheme specified and implemented by Lazar and Peikert [LP21a], with the goal
of achieving SNARK-friendliness. Unsalted Falcon signatures are also consid-
ered for similar reasons by Aardal et al. [AAB+24] to achieve more efficient (and
asymptotically sublinear) aggregation for Falcon signatures.

Derandomized variants of Falcon are also used in primitives other than sig-
natures to provide efficient lattice trapdoors. As mentioned in the Falcon spec-
ification [PFH+22, §2.2.1], one can directly derive an identity-based encryption
scheme from derandomized Falcon, similarly to [DLP14]: Falcon key genera-
tion becomes setup and signature generation becomes key extraction on a given
identity. This exact design is used in the Latte (H)IBE [ZMS+24] considered
for UK NCSC and ETSI standardization.

In those various settings, we argue that the attack is possible and invalidates
the standard security definitions of the corresponding primitives.

Deterministic Falcon. The case of deterministic Falcon is straightforward:
a chosen-message attack adversary can query the signer for two signatures on
the same fixed, arbitrary message. In the presence of floating-point discrepancies
(which can occur for all the reasons discussed in Section 6 below and more), the
attack we have described shows that the two signatures will have a non-negligible
probability (of one in a few thousands) of differing in a way that leads to full

z0︷ ︸︸ ︷
z(1022)

↑
degree 0

z(766) · · · z(1023)
↑

degree 256

· · · z(769) z(513)

z1︷ ︸︸ ︷
z(510) z(254) · · · z(129) z(257) z(1)

Fig. 2. Positions of the standard monomial order coefficients of z in the order of their
generation as outputs of SamplerZ (case of Falcon–512).
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key recovery. This violates unbreakability under chosen-message attacks, and a
fortiori existential unforgeability.

In all fairness, one should note that Lazar and Peikert’s implementation of
deterministic Falcon strongly recommends the use of fpemu unless performance
considerations require otherwise, and also warns that functionally inequivalent
signing procedures should not be used to sign the same message with the same
key, which should rule out the concurrent use of the “dynamic” and “tree” variants
of the signing algorithm. Identifying the risks associated with deviating from
those recommendations is nevertheless important, especially as other comparable
constructions, such as the unsalted Falcon signatures considered in [AAB+24],
come with no particular security caveat.

Incidentally, we note that one can easily imagine real-world scenarios in which
this vulnerability would have a substantial impact. Deterministic Falcon is
particularly considered for blockchain-related applications; in such a context, an
adversary can passively scan the blockchain, waiting for a discrepancy to appear,
and skim off the corresponding private key when it happens (in a similar fashion
as for Bitcoin signatures with repeated nonces [BHH+14, §4.4]).

Falcon-based IBE. Even in the weakest security definition for identity-based
encryption, the adversary is allowed to query the master key authority for the
secret key associated with a fixed identity, and do so twice. When doing so,
in the presence of floating-point discrepancies, there is again a non-negligible
probability that the two extracted keys (a.k.a. Falcon signatures) will differ
in a way that fully exposes the authority’s master secret key! This means that,
when floating-point discrepancies can occur, a Falcon-based IBE will fail to
even satisfy IND-sIDCPA (or even UBK-sIDCPA) security.

Moreover, the vulnerability is particularly severe in that it can manifest itself
in the absence of any malicious party: indeed, a legitimate user can certainly
query for the secret key on their own identity twice, and the authority’s reply
will have a chance of leaking the master secret key if they do. Deployments of
Falcon-based IBE should therefore be especially careful to avoid all possible
sources of floating-point discrepancies (and should also consider adopting some
of the countermeasures we suggest at the end of this paper).

6 Sources of Floating-Point Discrepancies in Falcon

We have seen that, in the presence of floating-point discrepancies, two calls to
the Falcon sampler on the same input can result in outputs that completely
leak the private signing key. We now turn to the question of how such floating-
point discrepancies can arise. We identify in particular two possible sources for
such discrepancies, although there are undoubtedly more.

Firstly, the Falcon API exposes two variants of the signing procedure, called
“dynamic” and “tree”: in the dynamic mode, the Falcon tree is regenerated
on the fly as part of the sampling algorithm, whereas the tree mode uses a
precomputed Falcon tree. Interestingly, both modes carry out the same floating
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point operations on the same values in the same order, except on the last couple
of levels of the tree, where the computations are done in a subtly different order.
This introduces small discrepancies that we show are exploitable, and exist even
when using the integer-based floating-point emulation of the Falcon reference
implementation. We describe this issue in Section 6.1 below. We note that an
observational mention of the existence of such discrepancies can be found in the
literature [PKKK24], although that paper fails to give any explanation of how
they arise.

Secondly, although it is less surprising, we verify in Section 6.2 that the use
of fused multiply-add (FMA) floating-point instructions, which can be enabled
in the Falcon code, can also cause signature discrepancies compared to the
reference implementation.

In both two cases, discrepancies giving rise to a full key recovery appear
between pairs of signatures at a frequency of once in a few thousands. In other
words, collecting a few thousand pairs is sufficient to completely recover the key
with high probability.

6.1 Discrepancies between two signing modes

The Falcon code offers two different signing modes: the “dynamic” mode sign dyn
and the “tree” mode sign tree. In sign dyn, the ffSampling algorithm dynamically
computes the LDL∗ decomposition, i.e., the construction of the Falcon tree,
as part of the lattice Gaussian sampling procedure. In sign tree, the signing
procedure takes the Falcon tree as input, and thus assumes that it has been
precomputed and stored in memory. In summary, sign tree supports faster sign-
ing while sign dyn requires less RAM usage. As a result, both signing modes
have their strong suits, and one may want to switch from one to the other and
back depending on how frequently a given key is used, how much memory is
available at a given point in time and whether spare cycles are available for
precomputations.

Discrepancies. Let us have a close look at how the ffSampling algorithm (Al-
gorithm 2) is concretely implemented in the two signing modes. The algorithm
itself is recursive, and the implementations follow this recursive structure.

Consistently with the pseudo-code (Lines 1–5 of Algorithm 2), in sign dyn, the
deepest recursive layer, corresponding to n = 1, only contains the normalization
of the leaf of the Falcon tree T and two calls to SamplerZ.

In contrast, in sign tree, the deepest layer actually corresponds to n = 4,
and effectively contains the last two recursion layers in inlined form. It includes
8 calls to SamplerZ, and inlined code equivalent to 2 split and 2 merge opera-
tions. Instead of recursively calling split fft and merge fft, it reimplements them
directly. This could be done in a way that follows the same floating-point evalu-
ation order, but the actual code introduces subtle differences in the order of the
computations, which turn out to lead to floating-point discrepancies on the cen-
ters on the one-dimensional Gaussians. Note that only the centers are affected:
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the standard deviations, i.e., the Falcon tree leaves, have identical values in the
two signing modes.

We exhibit the split (resp. merge) operation in sign dyn and sign tree via the
code snippets in Listing 1 and Listing 3 (resp. Listing 2 and Listing 4). The
discrepancies are marked with the color block (resp. ). The symbols of
those code snippets are described in Fig. 3.

Discussion. To make entirely explicit how those source code differences yield
floating-point discrepancies, let us write down the corresponding computations
as formulas.

We first discuss the split operation split fft. Given t ∈ FFT(Q[x]/ϕ), it can be
uniquely split as t = t0(ζ

2)+ζt1(ζ
2) in FFT domain, where t0, t1 ∈ FFT(Q[x]/ϕ′)

and ϕ′ = xn/2+1. In both sign dyn and sign tree, the split processes in ffSampling
(Listings 1 and 3) at the recursive layer n = 4 are identical for the calculation
of t0, which is evaluated as:

t0[0] =
1

2
×̊
(
t[0] +̊ t[1]

)
t0[1] =

1

2
×̊
(
t[2] +̊ t[3]

)
.

However, the calculations of t1 proceed in different orders in sign dyn and
sign tree. More concretely, the process in sign dyn can be seen as the following
expressions for t1:

t1[0] =
1

2
×̊
(

1√
2
×̊
(
t[0] −̊ t[1]

)
−̊
(
− 1√

2

)
×̊
(
t[2] −̊ t[3]

))
,

t1[1] =
1

2
×̊
((
− 1√

2

)
×̊
(
t[0] −̊ t[1]

)
+̊

1√
2
×̊
(
t[2] −̊ t[3]

))
,

whereas in sign tree, the following, slightly different equality holds:

t1[0] =
1

2
√
2
×̊
((

t[0] −̊ t[1]
)
+̊
(
t[2] −̊ t[3]

))
,

t1[1] =
1

2
√
2
×̊
((

t[2] −̊ t[3]
)
−̊
(
t[0] −̊ t[1]

))
.

Due to the fact that floating-point arithmetic does not satisfy the distributivity
of multiplication over addition, t1 ends up evaluating to a slightly different value
in sign dyn vs. sign tree, and that value t1 is one of the Gaussian centers passed
to SamplerZ.

We next consider the merge operation merge fft. Given t0, t1 ∈ FFT(Q[x]/ϕ′),
they can be merged into t = t0(ζ

2) + ζt1(ζ
2) ∈ FFT(Q[x]/ϕ). For the recursive

layer n = 4, the merge operation in sign dyn (Listing 2) is interpreted as following
expression for t:

t[0] = t0[0] +̊
( 1√

2
×̊ t1[0] −̊

1√
2
×̊ t1[1]

)
, t[2] = t0[1] +̊

( 1√
2
×̊ t1[0] +̊

1√
2
×̊ t1[1]

)
,

t[1] = t0[0] −̊
( 1√

2
×̊ t1[0] −̊

1√
2
×̊ t1[1]

)
, t[3] = t0[1] −̊

( 1√
2
×̊ t1[0] +̊

1√
2
×̊ t1[1]

)
.
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Fig. 3. Symbols in Listing 1, 3, 2 and 4. All involved operations are in fpr.
Symbol Description

a_re, a_im the real and imaginary part of a complex number
FPC_ADD, FPC_SUB the addition and subtraction of two complex numbers
FPC_MUL the multiplication of two complex numbers
fpr_add, fpr_sub the addition and subtraction of two numbers
fpr_mul the multiplication of two numbers
fpr_half, fpr_neg halve and negate the numbers
fpr_invsqrt2, fpr_invsqrt8 the number of 1/

√
2 and 1/

√
8

1 for (u = 0; u < 1; u ++) {
2 fpr a_re , a_im , b_re , b_im;
3 fpr t_re , t_im;
4

5 a_re = f[(u << 1) + 0];
6 a_im = f[(u << 1) + 0 + 2];
7 b_re = f[(u << 1) + 1];
8 b_im = f[(u << 1) + 1 + 2];
9

10 FPC_ADD(t_re , t_im , a_re , a_im , b_re ,
b_im);

11 f0[u] = fpr_half(t_re);
12 f0[u + 1] = fpr_half(t_im);
13

14 FPC_SUB(t_re , t_im , a_re , a_im , b_re ,
b_im);

15 FPC_MUL(t_re, t_im, t_re, t_im, fpr_invsqrt2,

16 fpr_neg(fpr_invsqrt2));

17 f1[u] = fpr_half(t_re);

18 f1[u + 1] = fpr_half(t_im);
19 }

Listing 1. The for-loop of split fft in the recursive layer n = 4
for the subroutine ffSampling of sign dyn.

1 f[0] = f0[0];
2 f[2] = f1[0];
3 for (u = 0; u < 1; u ++) {
4 fpr a_re , a_im , b_re , b_im;
5 fpr t_re , t_im;
6

7 a_re = f0[u];
8 a_im = f0[u + 1];
9

10 FPC_MUL(b_re, b_im, f1[u], f1[u + 1], fpr_invsqrt2,

11 fpr_invsqrt2);
12

13

14 FPC_ADD(t_re , t_im , a_re , a_im , b_re ,
b_im);

15 f[(u << 1) + 0] = t_re;
16 f[(u << 1) + 0 + 2] = t_im;
17 FPC_SUB(t_re , t_im , a_re , a_im , b_re ,

b_im);
18 f[(u << 1) + 1] = t_re;
19 f[(u << 1) + 1 + 2] = t_im;
20 }

Listing 2. The for-loop of merge fft in the recursive layer n = 4
for the subroutine ffSampling of sign dyn.

1 a_re = t1[0];
2 a_im = t1[2];
3 b_re = t1[1];
4 b_im = t1[3];
5

6 c_re = fpr_add(a_re , b_re);
7 c_im = fpr_add(a_im , b_im);
8 w0 = fpr_half(c_re);
9 w1 = fpr_half(c_im);

10

11 c_re = fpr_sub(a_re , b_re);
12 c_im = fpr_sub(a_im , b_im);
13 w2 = fpr_mul(fpr_add(c_re, c_im), fpr_invsqrt8);

14 w3 = fpr_mul(fpr_sub(c_im, c_re), fpr_invsqrt8);

Listing 3. The first call reordered split operations in the
recursive layer n = 4 for the subroutine ffSampling of sign tree.

1 a_re = w0;
2 a_im = w1;
3 b_re = w2;
4 b_im = w3;
5

6

7 c_re = fpr_mul(fpr_sub(b_re, b_im), fpr_invsqrt2);

8 c_im = fpr_mul(fpr_add(b_re, b_im), fpr_invsqrt2);
9

10

11 z1[0] = w0 = fpr_add(a_re , c_re);
12 z1[2] = w2 = fpr_add(a_im , c_im);
13 z1[1] = w1 = fpr_sub(a_re , c_re);
14 z1[3] = w3 = fpr_sub(a_im , c_im);

Listing 4. The first call reordered merge operation in the
recursive layer n = 4 for the subroutine ffSampling of sign tree.
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In sign tree, the merge operation (Listing 4) can be written as the following
expression instead:

t[0] = t0[0] +̊
1√
2
×̊
(
t1[0] −̊ t1[1]

)
, t[2] = t0[1] +̊

1√
2
×̊
(
t1[0] +̊ t1[1]

)
,

t[1] = t0[0] −̊
1√
2
×̊
(
t1[0] −̊ t1[1]

)
, t[3] = t0[1] −̊

1√
2
×̊
(
t1[0] +̊ t1[1]

)
.

Again, since floating-point arithmetic is not distributive, t1 may evaluate to
different values in the two signing modes, which affects the centers of subsequent
integer samplings.

Experimental validation. We experimentally verify the impact of reordered oper-
ations in the two signing modes of deterministic Falcon [LP21b]. We tested dif-
ferent implementations including the default fpemu det and fpnative det, avx2 det,
avx2 fma det for n = 512 and 1024. For each instance, 10 million signatures are
generated using each of the two signing modes. All experiments are carried out
on an Intel Xeon Gold 6338-based workstation, and all examples are compiled
with GCC 9.4.0. Optimizations -O3 are enabled, consistent with the Makefile
of the provided implementation.

We observed that with 10 million signature queries, the two signing modes
sign dyn and sign tree will generate a few hundred pairs of different signatures
per instance. Detailed experimental results are provided in Table 2. Each table
entry is of the form “A/B”, where “A” represents the number of signatures with
differences in just the last two integer samples, and “B” is the total number of
different signature pairs.

Interestingly, for most instances, more than 70% of the discrepancies occur
only in the last two calls to SamplerZ, which is the setting that allows for direct
full key recovery as discussed earlier. This is somewhat unexpected. Indeed, by
the results of Section 4.3, integer centers, which are sensitive to floating-point
errors, occur slightly more frequently in the first two calls to SamplerZ than
they do in the last two. However, for reasons that we do not fully understand,
the probability of discrepancy on the last two calls conditional on having an
integer center appears to be larger for the last two calls than the first two. This
phenomenon is specific to the “dynamic” vs. “tree” discrepancy, and does not
occur with, e.g., the FMA discrepancies discussed in the next section.

Exploiting those signature discrepancies, we mounted the key recovery attack
shown in Section 5.1. Table 3 records the number of successful key recoveries
for varying number of signatures. Around one in every 10,000 or so pairs of
signatures appear to lead to full key recovery.

6.2 Discrepancies caused by FMA floating-point instructions

For better efficiency, some optimized implementations of Falcon use the fused
multiply-add (FMA) instructions that support the evaluation of ab + c in a
single instruction and with one floating-point rounding only. Compared to the
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Table 2. Experimental results on deterministic Falcon.

Instance fpemu det 512 fpnative det 512 avx2 det 512 avx2 fma det 512

0 140 / 173 133 / 176 168 / 214 170 / 292
1 299 / 381 216 / 402 264 / 321 76 / 213
2 253 / 320 207 / 278 243 / 320 249 / 315
3 211 / 324 236 / 339 232 / 340 259 / 313
4 236 / 328 226 / 319 305 / 337 223 / 259
5 294 / 346 253 / 313 303 / 386 230 / 302
6 204 / 281 235 / 300 270 / 367 309 / 362
7 256 / 313 225 / 289 183 / 286 331 / 378
8 230 / 287 176 / 243 170 / 227 256 / 342
9 74 / 164 211 / 334 190 / 304 168 / 269

Instance fpemu det 1024 fpnative det 1024 avx2 det 1024 avx2 fma det 1024

0 234 / 297 244 / 313 255 / 303 214 / 277
1 259 / 339 281 / 361 223 / 260 191 / 281
2 224 / 290 244 / 346 206 / 299 282 / 348
3 232 / 303 226 / 283 251 / 300 224 / 282
4 242 / 317 264 / 341 260 / 326 276 / 355
5 267 / 328 219 / 266 161 / 265 279 / 316
6 221 / 282 214 / 321 204 / 268 217 / 306
7 244 / 304 185 / 277 232 / 299 209 / 283
8 253 / 332 216 / 276 315 / 409 241 / 323
9 276 / 306 203 / 297 253 / 324 37 / 110

Table 3. The number of successful key recovery with N signature queries on deter-
ministic Falcon.

N × 10−3 10 20 30 40 50 60 70 80 90 100

fpemu det 512 1 4 6 6 6 7 8 8 8 8
fpnative det 512 2 5 7 7 8 8 10 10 10 10
avx2 det 512 1 6 8 8 8 8 8 9 9 9

avx2 fma det 512 2 4 6 7 8 8 8 9 9 9

fpemu det 1024 5 6 6 6 7 7 7 8 8 9
fpnative det 1024 2 2 3 3 4 6 7 8 8 8
avx2 det 1024 3 4 5 5 6 6 7 7 7 7

avx2 fma det 1024 1 3 4 7 8 9 9 9 10 10
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regular “multiply then add” two-step computations, FMA instructions reduce
the floating-point errors. On the flip side, they are also a source of floating-point
discrepancies in Falcon signature generation.

Experimental validation. We ran experiments to compare the implementation
using FMA of deterministic Falcon, avx2 fma det with other implementations.
Our experiments are performed in dynamic and tree signing modes respec-
tively. For the same signing mode, we did not observe any discrepancies among
fpemu det, fpnative det and avx2 det. Therefore, we only present the comparison
between avx2 fma det and the default implementation fpemu det.

Table 4 shows the detailed experimental results measured over 10 million
signatures per instance. Each table entry is again of the form “A/B”, where “A”
represents the number of signatures with differences in just the last two integer
samples, and “B” is the total number of different signature pairs. We also present
the experimental success rate of key recovery for this discrepancy in Table 5.

Compared to different signing modes (Table 2), the use of FMA instructions
tends to cause a larger number of differing signature pairs This is because the
FMA instructions are applied to a large amount of computations in both signing
and key generation, which affects almost all floating-point intermediate values
associated with ffSampling and has a more significant impact. In this setting,
the discrepancies between avx2 fma det and fpemu det tend to occur in the first
two calls of SamplerZ at a higher rate than in the last two calls, consistently
with the results of Section 4.3, but unlike what happens for “dynamic” vs. “tree”
discrepancies.

Table 4. Experimental results on avx2 fma det and fpemu det of deterministic Falcon.

Instance sign dyn 512 sign tree 512 sign dyn 1024 sign tree 1024

0 274 / 748 344 / 852 483 / 991 432 / 987
1 316 / 819 340 / 720 380 / 828 446 / 1134
2 422 / 883 336 / 806 327 / 926 370 / 819
3 322 / 738 544 / 1205 328 / 763 396 / 1148
4 361 / 781 260 / 564 460 / 1138 409 / 803
5 448 / 1054 383 / 1011 292 / 630 452 / 1048
6 308 / 741 416 / 841 317 / 800 427 / 924
7 352 / 839 450 / 1066 438 / 782 358 / 726
8 292 / 767 341 / 858 377 / 784 534 / 1014
9 392 / 982 332 / 886 313 / 877 402 / 806
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Table 5. The number of successful key recovery with N signature queries on
avx2 fma det and fpemu det of deterministic Falcon.

N × 10−3 10 20 30 40 50 60 70 80 90 100

sign dyn 512 2 4 5 7 7 8 9 9 10 10
sign tree 512 4 6 6 8 8 8 8 9 9 9

sign dyn 1024 2 4 6 8 9 9 9 9 9 9
sign tree 1024 4 8 8 8 9 9 9 9 9 10

7 Countermeasures

7.1 Remedying the floating-point error sensitivity

As identified in Section 4, the one-dimensional discrete Gaussian sampler of
Falcon is only sensitive to floating-point errors for a nearly-integer center. Un-
fortunately, (nearly) integer centers do occasionally occur in Falcon signature
generation. A natural solution to this issue could therefore be to shift the points
at which the one-dimensional is numerically unstable to locations that cannot
occur with significant probability within Falcon signing. This can be done as
follows.

Algorithm 4: NewSamplerZ

Input: A center c and standard deviation σ ∈ [σmin, σmax]
Output: An integer z derived from a distribution close to DZ,σ,c

1 r ← c− ⌊c⌉
2 y+ ← NewBaseSampler()

3 b
$← {0, 1}

4 y ← (2b− 1)y+

5 x← (y−r)2

2σ2 − y2
+−y+

2σ2
max

6 return z ← y + ⌊c⌉ with probability σmin
σ
· exp (−x), otherwise restart.

The reason why Falcon’s discrete Gaussian sampler has sensitivity for in-
teger centers is that the center received as input is first split into its integer and
fractional parts, and computations are carried out on those two. It is not difficult,
however, to modify the sampler to use rounding to the nearest integer instead
of the floor operation. This results in the NewSamplerZ of Algorithm 4, where
NewBaseSampler samples from the one-sided non-negative discrete Gaussian dis-
tribution centered at 1/2 of standard deviation σmax—or rather a truncation of
it, such as the distribution D given by:

D(i) ∝

{
ρσmax,

1
2
(i) for 1 ≤ i ≤ 18;

1
2ρσmax,

1
2
(i) for i = 0.
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The correctness of the NewSamplerZ is established similarly to Falcon’s origi-
nal SamplerZ; for the sake of completeness, we provide a proof in Lemma 3 in
Appendix B.

What replacing SamplerZ with NewSamplerZ changes is that the algorithm
now presents instability at half-integers (i.e., elements of Z + 1/2) instead of
integers, and preventing half-integer centers from appearing at all is feasible.

Indeed, let mk as in the statement of Theorem 1. As discussed in Section 4.3,
under Heuristic 1, the centers c2k, c2k+1 are rational numbers of the form nk/gk
with gk = qmk if k < n/2 and gk = mn−k otherwise. Moreover, mk ≈ qk, so
for 3 ≤ k < n− 3, gk exceeds the floating point precision, and hence even if the
corresponding c2k or c2k+1 happens to be half-integer for those k, this will not
be detectable in the double precision floating point computations.

As a result, we can effectively avoid all half-integer centers if we ensure that
the six denominators g0 = qm0, g1 = qm1, g2 = qm2, gn−3 = m3, gn−2 = m2

and gn−1 = m1 are all odd. Since q is itself an odd prime and m0 = 1, this
reduces to ensuring that m1, m2 and m3. Now let:

t = ⟨b0,b0⟩, u = ⟨b0,b2⟩, v = ⟨b0,b4⟩, w = ⟨b0,b5⟩.

A tedious but straightforward computation shows that:

m1 = t, m2 = t2 − 2u2, m3 = t3 − 2t · (u2 + v2 + w2) + 2u(v − w)2.

In particular, as long as t = ∥(g,−f)∥2 is odd, then so are m1, m2 and m3.
Therefore, we conclude that the following steps constitute an effective coun-

termeasure against the sensitivity of Falcon’s sampler to floating-point errors:

1. replace the integer sampler by Algorithm 4, which is stable away from half-
integer centers; and

2. restrict ∥(g,−f)∥2 to be an odd integer in key generation.

One issue with this countermeasure is that the reference C implementation
of Falcon only generates keys with ∥(g,−f)∥2 even! Note that this is an id-
iosyncrasy of the C implementation itself, that is easily fixable, and does not
reflect either the Falcon specification or alternate implementations like Prest’s
Python version, which can generate keys with odd ∥(g,−f)∥2.

This happens because the parity of ∥(g,−f)∥2 is simply the parity of the
sum of all coefficients of f and g, and the C implementation forces the sum of
the coefficients of both f and g to be odd (so that their sum is even). This is
unnecessary to solve the NTRU equation: one should ensure that either of the
parity is odd (otherwise f and g are both divisible by the prime above 2 in the
ring, and the NTRU equation is not solvable), but there is no reason to require
both to be odd.9 Modifying the Falcon code to lift this restriction (or rather, to
9 It appears that the Falcon C implementation does so in order to take some shortcuts

in the computation of the extended GCD algorithm on the algebraic norms of f and
g. The underlying algorithm [Por20] does support the case of one operand being
even, but by assuming that both operands are odd, the Falcon implementation
possibly saves a parity test and a swap?
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impose instead that exactly one of f and g has an even coefficient sum) is simple
and has no efficiency penalty—in fact, it is likely to lead to a slight speed-up,
since it rejects half of the choices of (g,−f) on parity grounds, whereas Falcon’s
C implementation rejects three quarters.

7.2 Eliminating discrepancies between dynamic and tree modes

As analyzed in Section 6, the basic reason why there exist floating point dis-
crepancies between the sign dyn and sign tree modes (even when using IEEE-754
compliant floating point arithmetic) is the fact that the order of floating point
operations differ between the two modes at the second-to-last level of recursion
in the traversal of the Falcon tree by ffSampling. Therefore, the discrepancies
should disappear provided that sign tree is modified to follow the simpler or-
dering used by sign dyn. We suggest two alternate approaches to achieve that
goal.

Re-ordering computations in sign tree. A first possible solution is to manually re-
order the floating point computations in the bottom recursion layer of sign tree
(corresponding to n = 4) so that the inlined reimplementations of the split fft and
merge fft that it contains match the floating point computations of the actual
subroutines when called from sign dyn. This boils down to modifying lines 13–14
of Listing 3 (corresponding to the split operation) and lines 6–7 of Listing 4
(corresponding to the merge operation) as shown below.

13 w2 = fpr_half(fpr_sub(fpr_mul(c_re, fpr_invsqrt2), fpr_mul(c_im, fpr_neg(fpr_invsqrt2))));

14 w3 = fpr_half(fpr_add(fpr_mul(c_re, fpr_neg(fpr_invsqrt2)), fpr_mul(c_im, fpr_invsqrt2)));

Listing 5. Countermeasure for Line 13 and 14 of Listing 3.

6 c_re = fpr_sub(fpr_mul(b_re, fpr_invsqrt2), fpr_mul(b_im, fpr_invsqrt2));

7 c_im = fpr_add(fpr_mul(b_re, fpr_invsqrt2), fpr_mul(b_im, fpr_invsqrt2));

Listing 6. Countermeasure for Line 6 and 7 of Listing 4.

Avoiding the re-ordered code path. While the bottom recursion layer of sign tree
normally corresponds to n = 4, the code base actually contains, for testing
purposes, another possible bottom layer for n = 2 that only gets called when
Falcon is compiled for a base ring with extension degree 2 (instead of 512 or
1024 in proposed parameters).
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This alternate recursion layer does not include any re-ordering like the n = 4
layer does, and instead follows the same floating point operations as sign dyn.
Therefore, a very simple countermeasure for sign tree is to simply skip the code
path corresponding to the bottom layer for n = 2 (e.g., by commenting out the
if (logn == 2) conditional clause at the beginning of ffSampling_fft), and
instead let the program flow fall over to the n = 2 bottom layer.

In fact, there is an even simpler n = 1 bottom recursion layer that exists in
the code base in commented out form, and that can be used instead for the same
purpose.

Experimental validation. We tested the effectiveness of those countermeasures by
generating 10 million pairs of “dynamic” and “tree” signatures for deterministic
Falcon, and as expected, did not observe any floating point discrepancies when
either of the two countermeasures above are implemented. They did not appear
to have measurable effect on performance either (although the second approach
may be slightly slower when using AVX optimizations).

7.3 Avoiding native or optimized floating-point implementations

As illustrated by our findings regarding FMA instructions, a deterministic Fal-
con implementation should certainly avoid such floating point arithmetic opti-
mizations known to break strict compliance with the IEEE-754 standard [iee85].

The use of native or vectorized floating-point arithmetic with FMA disabled
was not found to produce discrepancies in our limited testing, but this may
not be a robust observations across CPU architectures, compilers and choices
of compiler options. It should be safe to rely on native floating-points if strict
compliance with IEEE-754 is ensured, but this may be difficult to do in a portable
way.

Failing that, deterministic Falcon implementations may prefer to heed the
warning of Lazar and Peikert [LP21b] and avoid all floating-point implementa-
tions other than the integer-based emulated one. This is unfortunately a costly
choice in terms of performance (and does not dispense from applying at least
the countermeasure from the previous section if both dynamic and tree modes
are exposed by the API).
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A Properties of the Falcon Gram–Schmidt basis

Let B be the NTRU trapdoor basis of Falcon in bit reversed order, and B̃ the
associated Gram–Schmidt orthogonalized basis. The (row) vectors of B (resp.
B̃) are denoted by bi (resp. b∗

i ), 0 ≤ i ≤ 2n− 1.
The following theorem collects a number of properties of the Gram–Schmidt

basis, most of which are well-known, but others may be of independent interest.

Theorem 1. The following properties hold.

(a) Let ω : Z2n → Z2n be the isometry given by:

ω(u0, u1, . . . , u2k, u2k+1, . . . , u2n−2, u2n−1)

= (−u1, u0, . . . ,−u2k+1, u2k, . . . ,−u2n−1, u2n−2)

(i.e., ω negates the second element in each pair of consecutive coefficients
and swaps the pair). In the bit reversed order representation of the module
lattice, ω corresponds to multiplication by xn/2 =

√
−1 on both ring elements,

so that, e.g., b0 = (g,−f) is sent to ω(b0) = (xn/2g,−xn/2f) = b1.
Then, for 0 ≤ i ≤ n− 1, we have:

ω(b2i) = b2i+1 and ω(b2i+1) = −b2i.

Moreover, the same relation holds for the Gram–Schmidt vectors:

ω(b∗
2i) = b∗

2i+1 and ω(b∗
2i+1) = −b∗

2i.

In particular, ∥b∗
2i∥ = ∥b∗

2i+1∥.
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(b) For all i, ∥b∗
i ∥ · ∥b∗

2n−1−i∥ = q. Moreover, we have:

b∗
2n−1−i =

q

∥b∗
i ∥2

b∗
iJ

where J is the standard symplectic involution.
(c) For all i, 1

1.17

√
q ≤ ∥b∗

i ∥ ≤ 1.17
√
q.

(d) For all i, b∗
i has rational coefficients, and in particular ∥b∗

i ∥2 is a rational
number.

(e) For 0 ≤ k ≤ n, let mk :=
∏2k−1

i=0 ∥b∗
i ∥ (in particular, m0 = 1 by definition).

Then mk is an integer for all k, and:

mk =

k−1∏
i=0

∥b∗
2i∥2 =

k−1∏
i=0

∥b∗
2i+1∥2.

(f) For 0 ≤ k ≤ n, mk · b∗
j has integer coefficients for j = 2k and j = 2k + 1.

(g) For j = 2k and j = 2k+1, mk+1·b∗
j/∥b∗

j∥2 is an integer vector. In particular,
for any integer vector c, the value

c =
⟨c,b∗

j ⟩
∥b∗

j∥2
.

satisfies that mk+1 · c is an integer.
(h) For j = 2n− 1− 2k and j = 2n− 1− (2k+1), qmk ·b∗

j/∥b∗
j∥2 is an integer

vector. In particular, for any integer vector c, the value

c =
⟨c,b∗

j ⟩
∥b∗

j∥2
.

satisfies that qmk · c is an integer.
(i) For 0 ≤ k ≤ n, we have:

mn−k = qn−2kmk.

Proof. (a) For 0 ≤ i ≤ n− 1, let αi denote the bit reversed representation of i.
The vectors of B can be written as follows:

bi = (xαig,−xαif) and bn+i = (xαiG,−xαiF ).

As a result, for 0 ≤ i < n/2, we have:

b2i+1 = (xα2i+1g,−xα2i+1f) = (xα2i+n/2g,−xα2i+n/2f)

= ω(xα2ig,−xα2if) = ω(b2i)

and similarly bn+2i+1 = ω(bn+2i). Moreover, we clearly have ω2 = −1. This
all shows that for 0 ≤ i ≤ n− 1:

ω(b2i) = b2i+1 and ω(b2i+1) = −b2i
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as required.
Turning now to the Gram–Schmidt vectors, denote by V (j) the linear sub-
space spanned by bk (or equivalently b∗

k for k ≤ j). By definition, b∗
2i is

the unique vector in V (2i+1) orthogonal to V (2i). It follows that ω(b∗
2i) is in

ω
(
V (2i+1)) and orthogonal to ω

(
V (2i)). Now by the previous relations, we

have:
ω
(
V (2i)) = V (2i)

and
ω
(
V (2i+1)) = ω

(
V (2i) + Rb2i

)
= V (2i) + Rb2i+1 ⊂ V (2i+2).

Moreover, ω(b∗
2i) is also orthogonal to b∗

2i since ω sends any vector to an
orthogonal one. Hence, ω(b∗

2i) is in V (2i+2) and orthogonal to V (2i)+Rb∗
2i =

V (2i+1), so we have ω(b∗
2i) = b∗

2i+1 as required. This concludes the proof of
assertion (a).

(b) This is results from q-symplecticity of the NTRU basis [GHN06, Cor. 1].
(c) Falcon key generation imposes ∥b∗

i ∥ ≤ 1.17
√
q for all i. Then, by relation

(b), we also have ∥b∗
i ∥ = q/∥b∗

2n−1−i∥ ≥
√
q/1.17.

(d) This is a general fact about the rationality of the Gram–Schmidt orthogo-
nalization process.

(e) First, the fact that:

mk =

k−1∏
i=0

∥b∗
2i∥2 =

k−1∏
i=0

∥b∗
2i+1∥2

follows directly from (a). By (d), this shows moreover that mk is rational
for all k. Then, note that m2

k =
∏2k−1

i=0 ∥b∗
i ∥2 is the 2k-th leading principal

minor of the Gram matrix G = BB∗, which is an integer matrix. Therefore,
m2

k is an integer and also the square of a rational number. It must therefore
be a perfect square, and hence mk is itself an integer.

(f) It is a general fact that the i-th Gram–Schmidt vector of any family of integer
vectors becomes integral after multiplication by the (i−1)-st principal minor
of the Gram matrix. A proof of that theorem is given, e.g., in [Gal12, Lemma
17.3.2]. In our case, this says that m2

kb
∗
j has integer coefficients for j = 2k

and j = 2k + 1.
To obtain our stronger claim that mkb

∗
j is already integral for those j, one

can observe that assertion (a) says that B and B̃ are in fact the Weil restric-
tions of n× n matrices over the ring of Gaussian integers Z[

√
−1] (resp. the

quadratic field Q(
√
−1)), and apply the general fact, mutatis mutandis, to

those matrices.
Concretely speaking, for 0 ≤ i ≤ n − 1, let wi be the vector over Z[

√
−1]

whose j-th coefficient is b2i,2j+b2i,2j+1

√
−1, and w∗

i the vector over Q(
√
−1)

whose j-th coefficient is b∗2i,2j+b∗2i,2j+1

√
−1. The corresponding matrices are

denoted by W and W̃. Then, for the standard Hermitian inner product on
Q(
√
−1)n (antilinear on the right since we use row vectors), we claim that
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W̃ is the Gram–Schmidt orthogonalization of W. Indeed, for any k, ℓ we
have:

⟨w∗
k,w

∗
ℓ ⟩ =

n−1∑
j=0

(
b∗2k,2j + b∗2k,2j+1

√
−1

)
·
(
b∗2ℓ,2j − b∗2ℓ,2j+1

√
−1

)
=

n−1∑
j=0

(
b∗2k,2jb

∗
2ℓ,2j + b∗2k,2j+1b

∗
2ℓ,2j+1

)
+

n−1∑
j=0

(
− b∗2k,2jb

∗
2ℓ,2j+1 + b∗2k,2j+1b

∗
2ℓ,2j

)√
−1

= ⟨b∗
2k,b

∗
2ℓ⟩+ ⟨b∗

2k, ω(b
∗
2ℓ)⟩ = ⟨b∗

2k,b
∗
2ℓ⟩+ ⟨b∗

2k,b
∗
2ℓ+1⟩,

which shows in particular that ⟨w∗
k,w

∗
ℓ ⟩ = 0 for ℓ < k and ⟨w∗

k,w
∗
k⟩ =

∥b∗
2k∥2 = mk+1/mk. Moreover, w∗

k is in the span of the vectors wℓ for ℓ ≤ k.
Indeed, write b∗

2k over the basis B as follows:

b∗
2k = b2k −

k−1∑
i=0

a2k,2ib2i + a2k,2i+1b2i+1

From there and the fact that b2i+1 = ω(b2i), it follows that we have:

w∗
k = wk −

k−1∑
i=0

vk,iwi where vk,i = a2k,2i + a2k,2i+1

√
−1.

This shows that W̃ is indeed the Gram–Schmidt orthogonalization of W.
To then obtain the desired integrality result, we take the inner product of
the previous equation with all the wℓ with ℓ < k. Since w∗

k is orthogonal to
all of these vectors, we get:

⟨wk,wℓ⟩ =
k−1∑
i=0

vk,i⟨wi,wℓ⟩

for all ℓ < k. In matrix form, if we let W(k) be the matrix consisting of the
first k rows of W (i.e., those of index ℓ < k), this says:

wk

(
W(k)

)∗
= vkW

(k)
(
W(k)

)∗ where vk = (vk,0, . . . , vk,k−1)

and the asterisk denotes the conjugate transpose as usual. Multiplying on
both sides by the adjugate of U(k) = W(k)

(
W(k)

)∗ shows that det(U(k)) ·
vk has coefficients in Z[

√
−1]. Moreover, det(U(k)) =

∏
ℓ<k ∥w∗

ℓ∥2 = mk.
Therefore, the mkvk,i are elements of Z[

√
−1] and hence mka2k,i is an integer

for all i < 2k. This shows that mkb
∗
2k is an integer linear combination of the

integer vectors bi, i < 2k, and the same is true for mkb
∗
2k+1 = ω(mkb

∗
2k).

This concludes the proof of assertion (f).
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(g) To obtain the assertion for j = 2k, it suffices to write:

mk+1 ·
b∗
2k

∥b∗
2k∥2

= mkb
∗
2k

which is an integer vector by assertion (f). The result on c follows immedi-
ately, and the case j = 2k + 1 is treated similarly.

(h) Suppose j = 2n− 1− 2k. Applying assertion (b), we have

b∗
j =

q

∥b∗
2k∥
· b∗

2kJ and ∥b∗
j∥2 =

q2

∥b∗
2k∥2

.

Therefore:

qmk ·
b∗
j

∥b∗
j∥2

= qmk ·
q/∥b∗

2k∥2 · b∗
2kJ

q2/∥b∗
2k∥2

= qmk ·
1

q
b∗
2kJ = mkb

∗
2kJ

which is again an integer vector (as J obviously sends integer vectors to
integer vectors). The result on c again follows immediately, and the case
j = 2n− 1− (2k + 1) is treated in the same way.

(i) Applying assertions (b) and (e), we have:

mn−k = mn ·
k−1∏
j=0

1

∥b∗
2n−1−(2j+1)∥2

= det(B) ·
k−1∏
j=0

∥b∗
2j+1∥2

q2
= qn · mk

q2k
= qn−2kmk

as required.

B Correctness of NewSamplerZ

In this appendix, we include a proof that the NewSamplerZ procedure defined
in Algorithm 4 is correct, in the sense that, on input of a center c and a stan-
dard deviation σ ∈ [σmin, σmax], it properly samples from the discrete Gaussian
distribution DZ,σ,c.

Lemma 3. Suppose that NewBaseSampler exactly samples from the distribution
D+ supported over the non-negative integers and defined by:

D+(i) ∝

{
ρσmax,

1
2
(i) for i ≥ 1;

1
2ρσmax,

1
2
(i) for i = 0.

Then the output of NewSamplerZ is distributed according to DZ,σ,c.
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Proof. Let G denote the distribution of y in line 4 of Algorithm 4. Since y is
sampled as the output of NewBaseSampler multiplied by a uniform random sign
in {±1}, we have:

G(i) =


DZ,σmax,

1
2
(i) for i > 0;

ρσmax,
1
2
(0) for i = 0;

DZ,σmax,
1
2
(−i) for i < 0,

which is to say that y ∼ DZ,σmax,
1
2
.

Suppose then that we wanted to carry out rejection sampling on y with
rejection rate M = exp

(
1

8σ2
max

)
in order to arrive at the distribution DZ,σ,r with

r = c− ⌊c⌉. We would have to accept with probability:

prej =
DZ,σ,r(y)

M ·G(y)
=

exp
(

(y− 1
2 )

2

2σ2
max
− (y−r)2

2σ2 − 1
8σ2

max

)
for y ≥ 0;

exp
(

(−y− 1
2 )

2

2σ2
max

− (y−r)2

2σ2 − 1
8σ2

max

)
for y < 0;

= exp

(
y2+ − y+

2σ2
max

− (y − r)2

2σ2

)
,

which is possible because:

y2+ − y+

2σ2
max

− (y − r)2

2σ2
≤

y2+ − y+ − (y − r)2

2σ2
max

=
y2 − |y| − (y2 − 2ry + r2)

2σ2
max

= − (|y| − 2ry + r2)

2σ2
max

≤ 0,

and hence the probability is well-defined.
Since line 6 of Algorithm 4 carries out rejection sampling with precisely

probability prej, it follows that, after the rejection, y is now distribution as DZ,σ,r,
and hence z is distributed as DZ,σ,c since r + ⌊c⌉ = c. This concludes the proof.

⊓⊔
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