
Pseudorandom Multi-Input Functional Encryption
and Applications

Shweta Agrawal∗ Simran Kumari† Shota Yamada‡

Abstract

We construct the first multi-input functional encryption (MIFE) and indistinguishability obfuscation (iO) schemes
for pseudorandom functionalities, where the output of the functionality is pseudorandom for every input seen by the
adversary. Our MIFE scheme relies on LWE and (private-coin) evasive LWE (Wee, Eurocrypt 2022 and Tsabary,
Crypto 2022) for constant arity functions, and a strengthening of evasive LWE for polynomial arity. Thus, we obtain
the first MIFE and iO schemes for a nontrivial functionality from conjectured post-quantum assumptions.

Along the way, we identify subtle issues in the proof of witness encryption from evasive LWE by prior work and
believe that a similar strengthening of evasive LWE should also be required for their proof, for the same reasons as
ours. We demonstrate the power of our new tools via the following applications:

1. Multi Input Predicate Encryption for Constant Arity. Assuming evasive LWE and LWE, we construct a
multi-input predicate encryption scheme (MIPE) for P, supporting constant arity. The only prior work to support
MIPE for P with constant arity by Agrawal et al. (Crypto, 2023) relies on a strengthening of Tensor LWE in
addition to LWE and evasive LWE.

2. Multi Input Predicate Encryption for Polynomial Arity. Assuming a stronger variant of evasive LWE and LWE,
we construct MIPE for P for polynomial arity. MIPE for polynomial arity supporting P was not known before,
to the best of our knowledge.

3. Two Party ID Based Key Exchange. Assuming a stronger variant of evasive LWE and LWE, along with Decision
Bilinear Diffie-Hellman, we provide the first two-party ID based Non-Interactive Key Exchange (ID-NIKE)
scheme in the standard model. This leads to the first ID-NIKE in the standard model without using multilinear
maps or indistinguishability obfuscation.

4. Instantiating the Random Oracle. We use our pseudorandom iO to instantiate the random oracle in several
applications that previously used iO (Hohenberger, Sahai and Waters, Eurocrypt 2014) such as full-domain hash
signature based on trapdoor permutations and more.

Our tools of MIFE and iO for pseudorandom functionalities appear quite powerful and yield extremely simple
constructions when used in applications. We are optimistic they will find other applications.

∗IIT Madras, India, shweta@cse.iitm.ac.in
†IIT Madras, India, sim78608@gmail.com
‡AIST Tokyo, Japan, yamada-shota@aist.go.jp

1

Contents
1 Introduction 3

1.1 Our Results . 4
1.2 Recent Attacks on Evasive LWE and Repercussions. 6
1.3 Technical Overview . 6
1.4 Organization of the Paper . 16

2 Preliminaries 16
2.1 Assumptions . 16
2.2 Puncturable Pseudorandom Functions . 19
2.3 Symmetric Key Encryption with Pseudorandom Ciphertext . 19
2.4 Pseudorandom Functional Encryption . 20
2.5 Predicate Encryption . 22
2.6 Multi-Input Predicate Encryption . 23
2.7 ID-Based Non-Interactive Key Exchange . 24

3 Multi-Input FE for Pseudorandom Functionalities 25
3.1 Definition . 25
3.2 Construction for n-input prFE . 26
3.3 Security Proof for General n . 29
3.4 Security Proof for Constant n (with Weaker Assumption) . 36

4 Multi-Input Predicate Encryption for Polynomial Arity for P 37
4.1 Construction . 37
4.2 Security . 39

5 Indistinguishability Obfuscation for Pseudorandom Functionalities 41
5.1 Definition . 41
5.2 Construction . 42
5.3 Security . 43

6 Polynomial Domain IO for Pseudorandom Functionalities 44
6.1 Definition . 44
6.2 Construction for Fixed Input Domain . 46
6.3 Construction for Flexible Input Domain . 48
6.4 Extending the Output Length. 52

7 Instantiating the Random Oracles Using prIO 52
7.1 Full-Domain Hash Signatures (Selectively Secure) from prIO . 52
7.2 Discussion about Other Applications. 53

8 ID-Based Non-Interactive Key Exchange 54
8.1 Construction . 54
8.2 Security Proof . 55

A Additional Preliminaries 65
A.1 Lattice Preliminaries . 65
A.2 GSW Homomorphic Encryption and Evaluation . 66
A.3 Homomorphic Evaluation Procedures . 66

B Pseudorandom FE with Stronger Security 67
B.1 Construction . 67
B.2 Proof for prCT Security . 71
B.3 Proof for Non-Uniform κ-prCT Security . 76

2

1 Introduction
Functional Encryption (FE) [BSW11, SW05] is a popular strengthening of public key encryption where decryption
corresponds to functionalities rather than users. In more detail, in FE, the ciphertext encodes some private data x, the
secret key encodes some public function f and decryption allows to recover f (x) while hiding everything else about
x. Since FE supports computing on encrypted data together with learning outputs of some authorized computation
in the clear, it holds the promise of enabling futuristic applications such as privacy preserving machine learning. FE
also generalizes popular primitives [BSW11] such as Identity Based Encryption [BF01], Attribute Based Encryption
[SW05] and Predicate Encryption [KSW08]. Hence, FE attracted a lot of attention right from its inception, and has
been widely studied in the community.

Multi-Input FE and iO. A compelling extension of functional encryption, introduced by Goldwasser et al. is
multi-input FE (MIFE) [GGG+14] where multiple parties can independently encrypt their data and the key generator
can provide a function key that jointly decrypts all the ciphertexts. In more detail, now we have n parties, each of
who independently computes the ciphertext for its data xi, for i ∈ [n], the key generator provides a key for an n-ary
function f and decryption allows to recover f (x1, . . . , xn). Evidently for real world applications of computing on
encrypted data, it is highly desirable to be able to compute on data generated by different parties independently – this
can enable important statistical functionalities such as running medical research algorithms on encrypted genomic
or medical data. As discussed in the original work of MIFE, the notion is more meaningful in the symmetric rather
than public key setting, since the latter allows for too much leakage on the challenge message by dint of legitimate
combinations with messages chosen by the adversary. In two concurrent, influential works [AJ15, BV18] it was
shown that single input FE, if it supports sufficiently expressive functionality and satisfies an efficiency property called
compactness, is powerful enough to generically imply multi-input FE. We remark that for restricted functionalities,
the compiler does not apply and multi-input FE for interesting restricted classes have been studied extensively
[AGRW17, DOT18, ACF+18, CDG+18, Tom19, ABKW19, ABG19, LT19, AGT21b, AGT21a, AGT22, ATY23].

Aside from the real world applications of MIFE, the work of [AJ15, BV18] showed that sufficiently expressive
MIFE can be used to construct the powerful notion of Indistinguishability Obfuscation (iO), which seeks to garble
circuits while preserving their input-output behaviour. In more detail, given a circuit C, an obfuscation C̃ preserves the
correctness of C so that C(x) = C̃(x) for every input x, but hides everything else about C. This security property can
be formalized in various ways, and one popular formalization asks that an adversary, given the obfuscation of Cb where
b is a random bit and C0 is functionally equivalent to C1, cannot predict the value of b with non-negligible advantage.

While non-obvious in the beginning what such an object is useful for, a series of works has shown that iO can be
used to instantiate a large number of advanced cryptographic primitives [GGH+13, SW14, BFM14, GGG+14, HSW13,
KLW15, BPR15, CHN+16, GPS16, HJK+16, HY17, KS17]. Following this, there ensued a quest for constructing
iO from reasonable cryptographic assumptions, with a large number of works coming closer and closer to the goal
[GGH+16, Agr19, APM20, JLMS19, GJLS21, GP21, WW21, BDGM23, BDGM20], until the beautiful work of Jain,
Lin and Sahai [JLS21] finally accomplished the goal.

Constructions from Lattice Assumptions. So far, the only constructions of compact FE/MIFE/iO from standard
assumptions rely on pairings (together with LPN variants and/or low depth PRGs) [JLS21, JLS22, RVV24] and are
hence quantum insecure. Perhaps even more importantly, it is dissatisfying to have only a single pathway to constructing
such a central object in the theory of cryptography. Casting around for other assumptions, hopefully with (conjectured)
quantum security – the most obvious candidate is some assumption based on lattices. In particular, the Learning
With Errors (LWE) assumption has proven to be amazingly versatile and provides elegant solutions to encrypted
computation primitives such as fully homomorphic encryption or attribute based encryption [BV14, Bra12, BGV14,
GSW13, GVW13, BGG+14]. Thus the hope basing iO on LWE is natural, and unsurprisingly, has received a lot of
attention. Several exciting candidates for compact FE and iO have been constructed from strengthenings of the LWE
assumption [Agr19, APM20, WW21, GP21, DQV+21] – unfortunately, these either rely on some heuristic, or their
underlying assumptions have been broken [HJL21, JLLS23].

3

Our Approach. Since full fledged FE/iO from lattice based assumptions has been elusive despite significant effort,
a principled approach for making progress would be to restrict the functionality supported by FE/iO so that it is still
meaningful for applications while also admitting a construction from some reasonable lattice assumption. A promising
candidate assumption that interpolates the safety of LWE and the insecurity of iO or multilinear map assumptions is the
recently introduced evasive LWE [Wee22, Tsa22]. At a very high level, evasive LWE can be seen as a lattice analog of
the generic group model, which is popular in the pairings world, in that it restricts the class of attacks that an adversary
can mount. Below, we let X denote a noisy version of X where the exact value of noise is not important and B−1(P)
denote a short preimage K (say) such that BK = P mod q. The evasive LWE assumption roughly says that if(

A, B, P, sTA, sTB, sTP, aux
)
≈c
(
A, B, P, $, $, $, aux

)
where A, B, P are matrices of appropriate dimensions, s is a secret vector, aux is some auxiliary information and $
represents random, then(

A, B, P, sTA, sTB, B−1(P), aux
)
≈c
(
A, B, P, $, $, B−1(P), aux

)
Evasive LWE has proven to be a very meaningful strengthening of LWE in that it has provided several strong

new applications that had been elusive from plain LWE, despite significant research effort over decades – optimal
broadcast encryption [Wee22], witness encryption [VWW22], multi-input attribute based encryption [ARYY23],
optimal broadcast and trace [AKYY23], attribute based encryption (ABE) for unbounded depth circuits [HLL23] and
ABE for Turing machines [AKY24a], to name a few. Evasive LWE is considered plausible in “safe” regimes (discussed
in detail in Section 1.2). Continuing this agenda, we ask:

Can we construct MIFE/iO for a nontrivial functionality from evasive LWE?

1.1 Our Results
We answer the above question in the affirmative and construct the first MIFE and iO for pseudorandom functionalities,
namely functions where the output is pseudorandom for every input seen by the adversary. In the context of iO this
means that the entire truth table must be pseudorandom, since the adversary can compute the functionality for any input.
But for MIFE, it suffices to only restrict the output for the functions queried by the adversary. We denote such an MIFE
by prMIFE.
In more detail, we obtain the following results:

Theorem 1.1 (prMIFE for constant arity). Assume evasive LWE and LWE. Then there exists a prMIFE scheme for
arity n = O(1), supporting functions with (fixed) input length L and bounded polynomial depth.1

For polynomial arity, we require a strengthening of evasive LWE, which we call non-uniform κ-evasive LWE. This
is necessary to handle some delicate technical issues, which also appear in the proof of witness encryption from evasive
LWE by [VWW22], to the best of our understanding. We believe that a similar strengthening of evasive LWE should
also be required for their proof, for the same reasons as ours. We then show:

Theorem 1.2 (prMIFE for polynomial arity). Assume non-uniform κ-evasive LWE, non-uniform sub-exponential
PRF, and non-uniform sub-exponential LWE. Then there exists a prMIFE scheme for arity n = poly(λ), supporting
functions with bounded polynomial depth.

We bootstrap our prMIFE to obtain the first iO for pseudorandom functionalities, similar to [AJ15, BV18], albeit via
a different proof of security. We denote this by prIO. In more detail:

Theorem 1.3 (prIO). Assuming non-uniform κ-evasive LWE, non-uniform sub-exponential PRF, and non-uniform
sub-exponential LWE, there exists a prIO scheme for all polynomial sized circuits.

1As is shown in [AMYY25], evasive LWE does not hold for the general samplers. When we invoke the assumption, we always invoke it with
respect to a specific sampler class induced by the respective application. However, for ease of exposition, we will sometimes omit the reference to the
specific sampler in the overview. Similar remarks can be applied to prFE and prMIFE.

4

We also define a variant of prIO which only supports polynomial sized domains – we denote this variant by pPRIO.
The advantage of considering this restricted variant is that we can base its security on (plain) evasive LWE, rather than
it’s strengthening.

Theorem 1.4. Assuming evasive LWE and LWE, there exists a secure pPRIO scheme supporting circuits of bounded
size.

Applications.

We obtain several applications from our new tools of prMIFE and prIO:

1. Multi Input Predicate Encryption (miPE) for Constant Arity. Assuming evasive LWE and LWE, there exists a
prMIFE scheme for arity n = O(1), supporting functions of bounded polynomial depth. The only prior work to
support miPE with constant arity for function class P is by Agrawal et al. [ARYY23] and uses a strengthening of
(non-standard) tensor LWE [Wee21] together with evasive LWE.

2. Multi Input Predicate Encryption for Polynomial Arity. Assuming non-uniform κ-evasive LWE, non-uniform
sub-exponential PRF, and non-uniform sub-exponential LWE, there exists a miPE scheme for arity n = poly(λ),
supporting functions of bounded polynomial depth. MIPE for polynomial arity supporting P was not known
before, to the best of our knowledge.

3. Two Party ID Based Key Exchange. Assuming non-uniform κ-evasive LWE, non-uniform sub-exponential PRF,
non-uniform sub-exponential LWE, and the DBDH assumption, there exists a secure two-party ID-NIKE scheme.
This leads to the first ID-NIKE in the standard model without using multilinear maps or indistinguishability
obfuscation.

4. Instantiating the Random Oracle. Hohenberger, Sahai and Waters [HSW14] used iO to instantiate the random
oracle in several applications. In more detail, they showed selective security of the full-domain hash (FDH)
signature based on trapdoor permutations (TDP) [BR93], the adaptive security of RSA FDH signatures [Cor00],
the selective security of BLS signatures, and the adaptive security of BLS signatures [BLS01] in the standard
model. Our prIO can be used to instantiate all these applications.

Additional Prior Work. The notion of iO for pseudorandom functionalities was considered implicitly by the work of
Mathialagan, Peters and Vaikuntanathan [MPV24a] where they used subexponential LWE and evasive LWE to construct
adaptively sound zero-knowledge SNARKs for UP. In a previous version of their work [MPV24b], which was in private
circulation and shared with us, this notion was defined explicitly and leveraged to obtain unlevelled fully homomorphic
encryption. However, an explicit construction of iO for pseudorandom functionalities was not provided.

Our Companion Paper. In our companion work [AKY24b], we provided the first construction of compact FE for
pseudorandom functionalities, namely, functionalities where the output is (pseudo)random for any input seen by the
adversary. We then use our pseudorandom FE to improve the state of the art in single input attribute based encryption
(ABE) schemes, supporting circuits of unbounded depth. To achieve optimal parameters in [AKY24b], we use (black
box) the building block of “Polynomial Domain IO for Pseudorandom Functionalities” (pPRIO), which is constructed
only in the present work (Section 6), creating a dependence between the two works.

The rationale for our choice is primarily to have the most concise presentation and avoid duplication of content. We
chose to split the papers across the axis of single input and multi-input since this seems most natural. The notion of
pPRIO uses MIFE for constant arity, so fits naturally in the present work. By not using it in the companion work, we
would achieve ABE schemes with sub-optimal parameters in [AKY24b] which nevertheless outperform the state of
the art. We would then improve these schemes in the present work, which was undesirable. Another alternative was
to provide the multi-input compiler for constant arity in [AKY24b] and generalize this to polynomial arity (from a
stronger assumption) in the present work. However this would lead to duplicating the MIFE construction in both works.
Therefore, we believe that using the pPRIO black-box as a tool in the ABE application of [AKY24b] is the best option.

5

1.2 Recent Attacks on Evasive LWE and Repercussions.
As discussed in our companion paper [AKY24b], subsequent to the first online appearance of the present work, new
counter-examples for evasive LWE were developed [AMYY25, HJL25, DJM+25]. These attacks show that the intuition
that evasive LWE evades the zeroizing regime is not always true. Of these, the most important attacks as related to our
work, are presented in [AMYY25, HJL25] who showed (via essentially the same attack) that by carefully crafting a
contrived circuit to implement a PRF which is used (non black-box) in the construction of [AKY24b], the attacker can
obtain problematic leakage. However, as discussed by [AMYY25], this intuition can be recovered by placing appropriate
restrictions on the sampler. Additionally, subsequent to the development of the counter-examples, we modified the
construction in [AKY24b] so that the attacks no longer apply even when the sampler is malicious. We refer the reader to
the companion work [AKY24b] for a detailed discussion.

Additionally, the work of [BDJ+24] and [AMYY25] show that there exists a contrived “self-referential” functionality
for which pseudorandom functional encryption or pseudorandom obfuscation cannot exist. As discussed in [AMYY25],
this result may be seen as analogous to the impossibilities known for the random oracle model [CGH04] or virtual
black box (VBB) obfuscation [BGI+01]. In more detail, despite impossibilities known for ROM and VBB obfuscation
[CGH04, BGI+01], the meaningfulness of ROM for practical security, and of VBB obfuscation for restricted
functionalities [Wee05, CRV10] is accepted widely. The pseudorandom functionalities that are useful for our
applications, such as computing FE ciphertexts, are quite natural and do not fall prey to such attacks. Finally, we mention
the elegant work by [BÜW24] which presents attacks against classes of evasive LWE such that either B or P are not
known to the adversary. In our case, both B and P are known to the adversary, hence these attacks do not apply.

We view these attacks as an important step forward in our understanding of evasive LWE. Note that evasive LWE
should be seen as a family of assumptions parametrized by the description of the sampler and choice of error distributions,
which, if invoked in full generality, is now known to be false, even in the public-coin setting. However, as discussed
in [AMYY25], the original intuition by Wee [Wee22] and Tsabary [Tsa22] about the security of evasive LWE can be
recovered by taking precautions to identify and respect a “safe zone” for evasive LWE. In our opinion, constructions
from disciplined new assumptions are important to make meaningful progress on long-standing problems that have
resisted solutions from standard assumptions despite much effort.

1.3 Technical Overview
Compact FE for Pseudorandom Functionalities. Our starting point is our companion work which provides FE for
pseudorandom functionalities in the single input setting [AKY24b]. We recall the syntax here: The setup algorithm
takes as input the security parameter λ and parameter prm, specifying the parameters of the function class, and outputs
(mpk, msk). The key generation algorithm on input msk and a function f : {0, 1}L → {0, 1}ℓ outputs a functional
secret key sk f . The encryption algorithm on input mpk and an input message x ∈ {0, 1}L outputs a ciphertext ct.
The decryption algorithm takes the functional secret key sk f and ciphertext ct as input and outputs some y ∈ {0, 1}ℓ.
Correctness requires that decryption should output f (x) if the setup, encrypt and key generation algorithms were run
honestly.

The definition of security, termed prCT security, says that so long as the output of the functionality is pseudorandom,
the ciphertext is pseudorandom. In more detail, let Samp be a PPT algorithm that on input 1λ, outputs

(f1, . . . , fQkey , x1, . . . , xQmsg , aux ∈ {0, 1}∗)

where Qkey is the number of key queries, Qmsg is the number of message queries.
We define the following advantage functions:

AdvPRE
A0

(λ)
def
= Pr

[
A0

(
aux, { fi, fi(xj)}i∈[Qkey],j∈[Qmsg]

)
= 1

]
− Pr

[
A0(aux, { fi, ∆i,j ← Yprm}i∈[Qkey],j∈[Qmsg]) = 1

] (1)

AdvPOST
A1

(λ)
def
= Pr

[
A1(mpk, aux, { fi, ctj ← Enc(mpk, xj), sk fi

}i∈[Qkey],j∈[Qmsg]) = 1
]

− Pr
[
A1(mpk, aux, { fi, δj ← CT , sk fi

}i∈[Qkey],j∈[Qmsg]) = 1
] (2)

6

where (f1, . . . , fQkey , x1, . . . , xQmsg , aux ∈ {0, 1}∗) ← Samp(1λ), (mpk, msk) ← Setup(1λ, prm) and CT is the
ciphertext space. We say that a prFE scheme for function family Fprm satisfies prCT security if for every PPT Samp
and A1, there exists another PPT A0 such that

APRE
A0

(λ) ≥ APOST
A1

(λ)/Q(λ)− negl(λ) (3)

and Time(A0) ≤ Time(A1) ·Q(λ) for some polynomial Q(·).
The work of [AKY24b] obtains the following result:

Theorem 1.5. Assuming the LWE and evasive LWE assumptions, there exists a secure prFE scheme for function class
FL(λ),ℓ(λ),dep(λ) = { f : {0, 1}L → {0, 1}ℓ} satisfying

|mpk| = L · poly(dep, λ), |sk f | = ℓ · poly(dep, λ), |ct| = L · poly(dep, λ)

where dep = poly(λ) is the depth bound on the functions supported by the scheme.

We remark that their result is actually significantly more general – they construct the broader notion of partially
hiding FE, where the ciphertext can additionally have a public attribute in addition to a private payload2, with optimal
parameters and can support circuits of unbounded depth. But bounded depth prFE is sufficient for the applications
considered in the present work, so we restrict our attention to this.

Extending to the Multi-Input Setting. We extend the notion of prFE to multi-input setting and define a secret-key
multi-input FE for pseudorandom functionalities prMIFE = (Setup, KeyGen, Enc1, . . . , Encn, Dec) for n-ary functions
as follows: The setup algorithm on input 1λ, arity 1n and parameter prm, specifying the parameters of the function
class, outputs (mpk, msk). The key generation algorithm on input msk and a function f : (Xprm)n → Yprm outputs
a functional secret key sk f . The i-th encryption algorithm on input msk and an input message xi ∈ Xprm outputs a
ciphertext cti. The decryption algorithm on input secret key sk f and n ciphertexts ct1, . . . , ctn (corresponding to inputs
x1, . . . , xn respectively) outputs some y ∈ Yprm. The security has a similar flavor to the single-input setting, where we
require that the ct is pseudorandom given the output of the function of encrypted input is pseudorandom– however
it requires much care to accommodate the fact that there are exponentially many function evaluations even if only
polynomially many input queries per slot are issued. We define the security as follows.

Let κ = κ(λ) be a function in λ and Samp be a PPT algorithm that on input 1λ, outputs(
{ fk}k∈[q0]

, {xj1
1 }j1∈[q1]

, . . . , {xjn
n }jn∈[qn], aux ∈ {0, 1}∗

)
where q0 is the number of key queries and qi is the number of encryption queries for the i-th slot. We define the
following advantage functions:

AdvPRE
A0

(λ)
def
= Pr

[
A0(1κ , f1, . . . , fq0 , { fk(xj1

1 , . . . , xjn
n)}k∈[q0],j1∈[q1],...,jn∈[qn], aux) = 1

]
− Pr

[
A0(1κ , f1, . . . , fq0 , {∆k,j1,...,jn ← Yprm}k∈[q0],j1∈[q1],...,jn∈[qn], aux) = 1

]
AdvPOST

A1
(λ)

def
= Pr

[
A1(mpk, f1, . . . , fq0 , {Enci(msk, xji

i)}i∈[n],ji∈[qi]
, sk f1 , . . . , sk fq0

, aux) = 1
]

− Pr
[
A1(mpk, f1, . . . , fq0 , {δji

i ← Sim(msk)}i∈[n],ji∈[qi]
, sk f1 , . . . , sk fq0

, aux) = 1
]

where (mpk, msk)← Setup(1λ, 1n, prm) and sk fk
← KeyGen(msk, fk) for k ∈ [q0]. We say that a prMIFE scheme

is secure if for every PPT Samp, A1, and Sim there exists another PPT A0 and a polynomial p(·) such that

AdvPRE
A0

(λ) ≥ AdvPOST
A1

(λ)/p(κ)− negl(κ), Time(A0) ≤ p(κ) · Time(A1).

2The astute reader may wonder why regular FE does not imply partially hiding FE (PHFE) just by outputting the public attribute as part of the
ciphertext – such an approach would make the ciphertext size grow with the length of public attribute which can be avoided in PHFE.

7

The parameter κ above is introduced to adjust the strength of the requirement for the precondition. By default, we
require κ ≥ λn since the input length to the distinguisher is polynomial in λn anyway and this condition should be
fulfilled for the above equations to to make sense. If we need κ to be larger, this strengthens the requirement for the
precondition, as it means we want the distributions in the pre-condition to be indistinguishable against an adversary with
a longer running time.3 Ideally, we want κ to be as small as λn to make the requirement weaker. Looking ahead, for
our construction of prMIFE scheme supporting polynomial arity n = poly(λ), we require large κ as an artifact of the
security proof techniques. In the special case of n being constant, we can achieve κ = λn.

Construction. Next, we describe our construction for bounded depth prMIFE using a bounded depth prFE and a
secret-key encryption scheme. Our construction adapts the key idea from [AJ15], of "unrolling" ciphertexts on the fly
via recursive decryption. However, since our security notion is quite different, our proof departs significantly from
theirs, as we will discuss below.

Specifically, we use n instances of a single-input prFE scheme {prFEi}i∈[n], with appropriate input lengths, to build a
n arity prMIFE scheme where the i-th encryption algorithm Enci outputs the prFEi+1 functional secret-key, prFEi+1.sk,
for i ∈ [n− 1] and Encn outputs a ciphertext corresponding to prFEn scheme. Here the prFEi+1.sk contains the input
xi hardcoded within itself, wrapped in an SKE scheme, since prFE does not support function hiding. It computes the
ciphertext prFEi.ct for the input (SKE.sk, xi, xi+1, . . . , xn−1, xn) decryptable by prFEi.sk which in turn computes the
ciphertext prFEi−1.ct decryptable by prFEi−1.sk and so on. Now, note that the decryption of slot n ciphertext with
slot n− 1 functional secret-key will give us a ciphertext decryptable by functional key at slot n− 2. Unrolling upto
slot 1, we get a ciphertext, prFE1.ct, corresponding to prFE1 scheme. Finally, the key generation algorithm outputs a
functional secret-key for prFE1 which together with prFE1.ct will give us the desired output.
In more detail4,

1. The setup algorithm generates n instances of prFE scheme {prFEi.mpk, prFEi.msk} for appropriate input lengths
and a secret key corresponding to SKE scheme SKE.sk. It outputs mpk = ({prFEi.mpk}i∈[n]) and
msk = (SKE.sk, {prFEi.msk, prFEi.mpk}i∈[n]).

2. The key generation algorithm on input msk and a function f : ({0, 1}L)n → {0, 1}, computes prFE1.sk f ←
prFE1.KeyGen(prFE1.msk, f) and outputs sk f := prFE1.sk f .

3. The i-th encryption algorithm on input (msk, xi ∈ {0, 1}L), parses msk = (SKE.sk, {prFEi.msk, prFEi.mpk}i∈[n])
and does as follows. If i ∈ [n− 1]

− Compute SKE.cti ← SKE.Enc(SKE.sk, xi).
− Define function Fi := Fi[SKE.cti, prFEi.mpk] which on input (SKE.sk, xi+1, . . . , xn−1, xn) first computes

xi = SKE.Dec(SKE.sk, SKE.cti) and then computes a prFEi.ct encoding (SKE.sk, xi, xi+1, . . . , xn−1, xn) if
i ̸= 1 else it computes prFE1.ct encoding (x1, x2, . . . , xn−1, xn)5. It outputs prFEi.ct.

− It computes a functional key for Fi using the i + 1-th instance of prFE and outputs it as the i-th ciphertext, i.e.,
cti := prFEi+1.sk← prFEi+1.KeyGen(prFEi+1.msk, Fi).

If i = n, it outputs ctn := prFEn.ct← prFEn.Enc(prFEn.mpk, (SKE.sk, xn)).

4. The decryption algorithm on input sk f = prFE1.sk f , and ciphertexts cti = prFEi+1.sk for i ∈ [n− 1], and
ctn = prFEn.ct does the following: (a) Iteratively compute prFEi−1.ct for i ∈ [2, n] by decrypting prFEi.ct with
prFEi.sk starting with i = n. (b) Compute and output y← prFE1.Dec(prFE1.mpk, prFE1.sk f , f , prFE1.ct).

Correctness follows from the correctness of underlying ingredients. To see this, note that by the correctness of prFEn
and the definition of Fn−1, we have prFEn.Dec(prFEn.mpk, prFEn.sk, Fn−1, prFEn.ct) will output Fn−1(SKE.sk, xn)
correctly. Next, by the correctness of the SKE scheme, we have xn−1 = SKE.Dec(SKE.sk, SKE, ctn−1) thus

3Recall that A1 is a PPT algorithm. This means that it runs in polynomial time in its input length. Here, κ serves as a “padding", which artificially
makes the input longer and allows A1 to run in longer time.

4We omit substantial notation here for the ease of readability.
5The randomness for computing the ciphertexts comes from a PRF, which we omit here in the overview.

8

Fn−1(SKE.sk, xn) = prFEn−1.ct where prFEn−1.ct encodes
(SKE.sk, xn−1, xn). Unrolling as in decryption step (a), we get prFE1.ct which encodes (x1, x2, . . . , xn−1, xn). Now,
from step (b) of decryption and correctness of prFE1 scheme we have prFE1.Dec(prFE1.mpk, prFE1.sk f , f , prFE1.ct) =
f (x1, . . . , xn).

Security. While the key-idea of our construction is adapted from [AJ15], our security proof differs significantly from
theirs as we elaborate next. Consider the initial view of an adversary A which outputs q0 key queries { f1, . . . , fq0}, qi

input queries for i-th slot {xj1
1 }j1∈[q1]

, . . . , {xjn
n }jn∈[qn] and auxiliary information auxA

D0,0 :


auxA, {prFEi.mpk}i∈[n],

{
fk, sk fk

= prFE1.sk fk

}
k∈[q0]{

ctji
i = SKE.ctji

i , prFEi+1.skji
}

i∈[n−1],
ji∈[qi]

,{
ctjn

n = prFEn.ctjn
}

jn∈[qn]

 (4)

To prove security we design a simulator Sim as follows: On input msk = (SKE.sk, {prFEi.msk, prFEi.mpk}i∈[n])

− for i ∈ [n− 1], it first samples a random SKE ciphertext γi from the ciphertext space of SKE scheme, defines
Fi[γi, prFEi.mpk] as in the construction and outputs cti = prFEi+1.sk← prFEi+1.KeyGen(prFEi+1.msk, Fi[γi, prFEi.mpk]).

− for i = n, it outputs a randomly sampled ctn from the ciphertext space of prFEn scheme.

Given the above simulator it suffices to show that Equation (4) is indistinguishable from the following distribution

D0,1 :


auxA, {prFEi.mpk}i∈[n],

{
fk, sk fk

= prFE1.sk fk

}
k∈[q0]{

ctji
i = γ

ji
i ← CT SKE, prFEi+1.skji

}
i∈[n−1],

ji∈[qi]

,{
δjn ← CT prFEn

}
jn∈[qn]

 (5)

At a high level, the security proof proceeds as follows. To prove the pseudorandomness of {prFEn.ctjn}jn , we show that
the decryption results of these ciphertexts using the secret keys {prFEn.skjn−1}jn−1 are all pseudorandom. This allows
us to invoke the security of prFEn. The decryption results of the above ciphertexts using the secret keys are ciphertexts
{prFEn−1.ctjn−1,jn}jn−1,jn of prFEn−1 and we would like to prove the pseudorandomness of them. We again consider
the decryption results of the ciphertexts using the secret keys {prFEn−1.skjn−2}jn−2 . This process continues until
we reach the point where we have to prove the pseudorandomness of {prFE1.ctj1,··· ,jn}j1,...,jn , where each ciphertext
encodes (xj1

1 , . . . , xjn
n). By invoking the security of prFE1 once again, we can conclude that it suffices to show that

{ fk(x
j1
1 , . . . , xjn

n)}k,j1,...,jn are pseudorandom even given SKE ciphertexts encrypting each xji
i , where the latter is dealt

as auxiliary information throughout the process of the above recursive invocations of prFE security. We then invoke
the security of SKE to erase the information of xji

i from the SKE ciphertexts. This allows us to conclude, since the
pseudorandomness of { fk(x

j1
1 , . . . , xjn

n)}k,j1,...,jn directly follows from the precondition.
A bit more formally, to prove Equation (4)≈ Equation (5) we begin by invoking the security of prFEn with sampler that
provides inputs {(SKE.sk, xjn

n)}jn∈[qn], functions {Fjn−1
n−1[SKE.ctjn−1

n−1, prFEn−1.mpk]}jn−1∈[qn−1]
, and all the remaining

components of Equation (4) as auxiliary information. Now, from the security guarantee of prFEn with the sampler, we
know that to prove prFE.ctjn

n is pseudorandom it suffices to show function output

Fjn−1
n−1[SKE.ctjn−1

n−1, prFEn−1.mpk](SKE.sk, xjn
n) = prFEn−1.Enc(prFEn−1.mpk, (SKE.sk, xjn−1

n−1, xjn
n)) = prFEn−1.ctjn−1,jn

9

is pseudorandom for all jn−1 ∈ [qn−1], jn ∈ [qn]. Thus it suffices to show

D1,0 :


auxA, {prFEi.mpk}i∈[n−1],

{
fk, sk fk

= prFE1.sk fk

}
k∈[q0]

,{
SKE.ctji

i

}
i∈[n−1],

ji∈[qi]

,
{

prFEi+1.skji
}

i∈[n−2],
ji∈[qi]

,
{

prFEn−1.ctjn−1,jn
}

jn−1∈[qn−1],
jn∈[qn]


≈

D1,1 :


auxA, {prFEi.mpk}i∈[n−1],

{
fk, sk fk

= prFE1.sk fk

}
k∈[q0]

,{
γ

ji
i

}
i∈[n−1],

ji∈[qi]

,
{

prFEi+1.skji
}

i∈[n−2],
ji∈[qi]

{
δjn−1,jn

}
jn−1∈[qn−1],

jn∈[qn]


where γ

ji
i ← CT SKE, δjn−1,jn ← CT prFEn−1 , and CT SKE and CT prFEn−1 denotes the ciphertext space of the SKE

scheme and prFEn−1 scheme, respectively. Recursively invoking the security of prFEi for i = n− 1, . . . , 2, it suffices
to show the following:

Dn−1,0 :


1κ , auxA, prFE1.mpk,

{
fk, sk fk

= prFE1.sk fk

}
k∈[q0]

,{
SKE.ctji

i

}
i∈[n−1],

ji∈[qi]

,
{

prFE1.ctj1,...,jn
}

j1∈[q1],...,jn∈[qn]


≈

Dn−1,1 :


1κ , auxA, prFE1.mpk,

{
fk, sk fk

= prFE1.sk fk

}
k∈[q0]

,{
γ

ji
i ← CT SKE

}
i∈[n−1],

ji∈[qi]

,
{

δj1,...,jn ← CT prFE1

}
j1∈[q1],...,jn∈[qn]

 .

Finally, applying the security of prFE1 once again, we can see that it suffices to show the following:

Dn,0 :
(

1κ , auxA,
{

fk, fk(x
j1
1 , . . . , xjn

n)
}

k,j1,...,jn
,
{

SKE.ctji
i ← SKE.Enc(SKE.sk, xji

i)
}

i,ji

)
≈c

Dn,1 :
(

1κ , auxA,
{

fk, ∆j1,...,jn
k ← {0, 1}

}
k,j1,...,jn

,
{

γ
ji
i ← CT SKE

}
i,ji

)
(6)

Here, 1κ appearing in the above distributions is introduced for compensating the blow up of the size of the adversary
caused by the multiple invocations of the prFE security. The detail is not important here and we refer to Section 3 for
the detail.
To prove Equation (6), we first invoke the security of SKE scheme to show the pseudorandomness of SKE ciphertexts.
This erases the information of xji

i from SKE.ctji
i . Next, we use the fact that the functionality supported by our scheme is

pseudorandom to argue that the function values fk(x
j1
1 , . . . , xjn

n) are pseudorandom.

Subtleties in the proof. The high level overview presented above hides many important details, and indeed, as stated is
not secure. There are two important subtleties that arise when making the formal argument, and these are so significant
that they require us to strengthen the underlying evasive LWE assumption. Moreover, to the best of our understanding,
these issues also arise in prior work [VWW22] and fixing them there also requires to strengthen the evasive LWE
assumption as we do below.

We note that at a high level, the overall structure of our security proof above is similar to that of witness encryption
in [VWW22]. In both proofs, the main step considers parameterized distributions {Dh,b}h∈[n,0],b∈{0,1} and shows that
D0,0 and D0,1 are indistinguishable if Dn,0 ≈c Dn,1 even with subexponentially small advantage against subexponential
time adversary. To show this claim, [VWW22] uses the evasive LWE assumption, while we use the security of the prFE

10

instances, which in turn is reduced to the evasive LWE assumption. While this difference stems simply from the fact
that we introduce the intermediate primitive of prFE to construct prMIFE instead of directly constructing it from evasive
LWE, there are more fundamental differences as well. In particular, we identify certain subtle issues in the proof by
[VWW22] and fix these by strengthening the assumptions. We elaborate on this below. To begin, we formally define the
evasive LWE assumption.

Evasive LWE. Let Samp be a PPT algorithm that outputs (S, P, aux) on input 1λ. For PPT adversaries A0 and A1,
we define the following advantage functions:

AdvPRE
A0

(λ)
def
= Pr

[
A0(B, SB + E, SP + E′, aux) = 1

]
− Pr

[
A0(B, C0, C′, aux) = 1

]
(7)

AdvPOST
A1

(λ)
def
= Pr[A1(B, SB + E, K, aux) = 1]− Pr[A1(B, C0, K, aux) = 1] (8)

where (S, P, aux) ← Samp(1λ), B, C0, C′ are uniform matrices of appropriate dimensions, E, E′ are low norm
Gaussian error matrices, and K← B−1(P).

We say that the evasive LWE (EvLWE) assumption holds if for every PPT Samp and A1, there exists another PPT
A0 and a polynomial Q(·) such that

AdvPRE
A0

(λ) ≥ AdvPOST
A1

(λ)/Q(λ)− negl(λ) and Time(A0) ≤ Q(λ) · Time(A1). (9)

Issue 1: On the multiplicative invocation of evasive LWE. To prove D0,0 ≈c D0,1, [VWW22] assumes that there exists
an adversary A0 that distinguishes them with non-negligible advantage ϵ and polynomial time t for the sake of
contradiction. They then invoke the evasive LWE assumption with respect to an appropriately defined sampler Samp1
to conclude that there exists a distinguishing adversary A1 against D1,0 and D1,1. This process continues multiple
times, where they invoke evasive LWE with respect to the security parameter λj := 2jλ and an adversary Aj for the
j-th invocation to obtain another adversary Aj+1, where Ak is a distinguisher against Dk,0 and Dk,1. Denoting the
distinguishing advantage against Dj,0 and Dj,1 ofAj by ϵj, we have ϵj+1 ≥ ϵj/polyj(λj), where polyj is a polynomial
that is determined by the sampler Sampj. Finally, they obtain a distinguisher An against Dn,0 and Dn,1, where
ϵn = ϵ/poly1(λ1)poly2(λ2) · · ·polyn(λn) and the running time being poly1(λ1)poly2(λ2) · · ·polyn(λn). They
derive the conclusion by saying

poly1(λ1)poly2(λ2) · · ·polyn(λn) = poly(λ1 · · · λn) = poly(2n2
λn) (10)

and setting the parameters so that there is no adversary of this running time and distinguishing advantage against Dn,0
and Dn,1. However, a subtlety is that poly1(λ1)poly2(λ2) · · ·polyn(λn) = poly(λ1 · · · λn) is not necessarily true.
For example, one can consider the setting where we have polyj(λ) = λ2j . This example may look a bit artificial, but it
does not contradict the evasive LWE assumption, since j is treated as a constant asymptotically. In words, the issue arises
from the fact that even if each polynomial has a constant exponent, the maximum of the exponents can be arbitrarily large
function in λ, when we consider non-constant number of polynomials. In this setting, An’s distinguishing advantage is
too small to derive the contradiction.

The above issue occurs due to the invocations of evasive LWE super-constant times. To resolve the problem, we
consider non-uniform sampler {Samph∗}h∗ that hardwires the "best" index h∗ and invoke the evasive LWE6 only with
respect to this sampler. In more detail, to argue that the final distributions Dn,0 and Dn,1 are indistinguishable, it is
required that all pairs of distributions Dj,0 and Dj,1 be indistinguishable. Then, to arrive at a contradiction, it suffices
to find even one intermediate pair (for index h∗) which is distinguishable – we invoke evasive LWE with respect to
that. We avoid the problem of incurring security loss of polynomial with arbitrarily large exponent, since we invoke
the evasive LWE only once w.r.t a single sampler in the proof. However, this solution entails the strengthening of the

6To be precise, in our context, we invoke the security of prFE rather than evasive LWE. However, since the same issue arises both in our context
and the context of witness encryption [VWW22] and the security of prFE is eventually reduced to the evasive LWE in our context, we intentionally do
not distinguish the invocation of evasive LWE and prFE security here.

11

assumption where we consider non-uniform samplers. We believe that the same strengthening of the assumption is
required for the proof in [VWW22] as well.
Issue 2: On the additive term of evasive LWE. We believe there is another subtle issue that arises in the proof by
[VWW22]. To focus on the issue, we ignore the first issue discussed above and assume polyj(λ) = λc holds
for some fixed c ∈ N that does not depend on j, which makes Equation (10) correct. In the proof of [VWW22]
(and in our explanation above), we implicitly ignore the negligible additive term when applying evasive LWE.
Namely, when we apply the assumption with respect to Aj, the lower bound for the advantage ϵj+1 of Aj+1 should be
ϵj+1 ≥ ϵj/poly(λj)− negl(λj) rather than ϵj+1 ≥ ϵj/poly(λj). This does not cause any difference when we consider
the setting where ϵj is non-negligible in λj. However, for larger j, ϵj is negligible function in the security parameter
λj. Concretely, the lower bound on ϵn−1 obtained by ignoring the additive term is ϵ/poly(2(n−1)2

λn−1). If we apply
evasive LWE once more with respect to λn = 2nλn to complete the proof, we have ϵn ≥ ϵn−1/poly(λn)− negl(λn).
The RHS of the inequality may be negative, since ϵn−1/poly(λn) is some specific negligible function in λn and this
may be smaller than the second term negl(λn). Therefore, what we can derive here is the trivial bound ϵn ≥ 0, which is
not enough for our purpose. To fix this issue, we introduce additional parameter κ and then modify the assumption
so that the additive term is negligibly small in κ, which is set much larger than λ. Again, we believe that the same
strengthening of the assumption is required for the proof in [VWW22] as well. We define the strengthened version of
evasive LWE next.

Non-Uniform κ-Evasive LWE. Let Samp = {Sampλ}λ be a non-uniform sampler that takes as input 1λ and outputs
(S, P, aux) as above. For non-uniform adversaries A0 = {A0,λ}λ and A1 = {A1,λ}λ, we define the advantage
functions AdvPRE

A0
(λ) and AdvPOST

A1
(λ) as in Equation (7) and Equation (8), respectively. For a function κ := κ(λ) of

the security parameter λ, we say that the non-uniform κ-evasive LWE assumption holds if for every non-uniform sampler
Samp and a non-uniform adversary A1 whose sizes are polynomial in λ′ and κ respectively for λ′ := λ′(λ) < κ(λ),
there exists another non-uniform adversary A0 and a polynomial Q(·) such that

AdvPRE
A0

(λ) ≥ AdvPOST
A1

(λ)/Q(λ′)− negl(κ) and Size(A0) ≤ Q(λ′) · Size(A1). (11)

There are two main differences from the standard EvLWE assumption: (i) we consider non-uniform sampler and
adversaries, (ii) it is parameterized by κ and the additive term negl(λ) that appears in Equation (9) is replaced by negl(κ)
in Equation (11). These changes are introduced so that our prFE can satisfy a stronger notion of security, as discussed
below. Note that in the case λ′ is superpolynomial in λ, Samp(1λ) outputs S, P, and aux whose sizes are polynomial
in λ′ and thus superpolynomial in λ. We require the above assumption with κ = 2poly(λ) in our construction.

prFE with Non-Uniform κ Security. We now describe a stronger notion of security from prFE, which we need for
our prMIFE compiler.

We say that a prFE scheme is secure in the non-uniform κ setting if for every Samp and an adversary A1 whose
sizes are polynomial in λ′ and κ respectively for λ′ := λ′(λ) < κ(λ), there exists another adversary A0 such that

AdvPRE
A0

(λ) ≥ AdvPOST
A1

(λ)/Q(λ′)− negl(κ) (12)

where the advantage functions AdvPRE
A0

(λ) and AdvPOST
A1

(λ) are defined as in Equation (1) and Equation (2) respectively,
and Size(A0) ≤ Size(A1) ·Q(λ′) for some polynomial Q(·).

The new security notion differs from the previous one in two ways: (i) it considers non-uniform adversaries instead
of uniform adversaries, (ii) it is parameterized by κ and the additive term negl(λ) that appears in Equation (3) is replaced
by negl(κ) in Equation (12). By taking κ asymptotically larger than λ (e.g., κ := λλ), we can make the additive term
negl(κ) much smaller than negl(λ).

Fortunately, we can show, with some careful adjustments, that the prFE scheme from [AKY24b] also satisfies this
stronger notion of security. In Appendix B.3, we prove the following theorem.

12

Theorem 1.6. Let κ = 2λc for some constant c. Assuming non-uniform κ-evasive LWE, subexponentially secure PRF
against non-uniform adversary, and non-uniform sub-exponential LWE, there exists a prFE scheme for function class
FL(λ),ℓ(λ),dep(λ) = { f : {0, 1}L → {0, 1}ℓ} satisfying κ-prCT security as per Definition 2.15 with efficiency

|mpk| = L · poly(dep, λ), |sk f | = ℓ · poly(dep, λ), |ct| = L · poly(dep, λ).

where dep = poly(λ) is the depth bound on the functions supported by the scheme.

With the above modifications, we are ready to state our final theorem:

Theorem 1.7 (prMIFE for poly arity). Let κ = λn2 log λ. Assume non-uniform κ-evasive LWE, non-uniform sub-
exponential PRF, and non-uniform sub-exponential LWE. Then there exists a prMIFE scheme for arity n = poly(λ),
supporting functions with input length L and bounded polynomial depth d = d(λ), and satisfying κ-security
(Definition 3.2) with efficiency

|mpk| = poly(n, L, d, Λ, λ), |sk f | = poly(d, λ), |ct1| = nLpoly(dep, λ), |cti| = poly(n, L, d, Λ, λ) for i ∈ [2, n]

where Λ := (n2λ)1/δ.

Since the aforementioned issues in the proof only arise when evasive LWE is applied super-constant number of
times, we do not need the stronger version of evasive LWE to support constant arity. Hence we get:

Theorem 1.8 (prMIFE for constant arity). Let κ = λn. Assume evasive LWE and LWE. Then there exists a prMIFE
scheme for arity n = O(1), supporting functions with input length L and bounded polynomial depth d = d(λ), and
satisfying κ-security (Definition 3.2) with efficiency

|mpk| = poly(n, L, d, λ), |sk f | = poly(d, λ), |ct1| = nL · poly(dep, λ), |cti| = poly(n, L, d, λ) for i ∈ [2, n].

iO for Pseudorandom Functionalities. We now use our multi-input FE to construct iO, à la AJ/BV [AJ15, BV18] for
the same functionality. We begin with the definition of iO for pseudorandom functionalities, which we refer to as prIO.
Recall that this notion was first defined by Mathialagan, Peters and Vaikuntanathan [MPV24a]. The syntax of prIO is as
in regular iO, where we have (i) an obfuscation algorithm which takes as input the security parameter λ and a circuit C
and outputs an obfuscated circuit C̃, (ii) an evaluation algorithm takes as input an obfuscated circuit C̃ and an input x. It
outputs y = C(x). We also require that the evaluation time of the obfuscated circuit be only polynomially slower than
the run time of the circuit C on x.

Our notion of security however, differs from the standard notion considered in the literature of iO and is specified as
follows. For the security parameter λ = λ(λ), let Samp be a PPT algorithm that on input 1λ, outputs

(C0, C1, aux ∈ {0, 1}∗)

where C0 : {0, 1}n → {0, 1}m and C1 : {0, 1}n → {0, 1}m have the same description size. We then require that

If
(

1κ , {C0(x)}x∈{0,1}n , aux
)
≈c

(
1κ , {∆x ← {0, 1}m}x∈{0,1}n , aux

)
≈c

(
1κ , {C1(x)}x∈{0,1}n , aux

)
then

(
iO(1λ, C0), aux

)
≈c
(
iO(1λ, C1), aux

)
where the parameter κ above is introduced to adjust the strength of the requirement for the precondition, similarly to
the case of prMIFE. Roughly speaking, the above security definition says that the obfuscations of two circuits with
pseudorandom truth tables are indistinguishable.

Our construction follows the blueprint of the multi-input FE to iO conversion by Ananth and Jain [AJ15]. Briefly,
the obfuscation of a circuit C : {0, 1}n → {0, 1}m using a (n + 1) input prMIFE scheme is

{prMIFE.skU , prMIFE.ct1,0, prMIFE.ct1,1, . . . , prMIFE.ctn,0, prMIFE.ctn,1, prMIFE.ctn+1,C}

where prMIFE.skU is the prMIFE functional key corresponding to the universal circuit U such that U(x1, . . . , xn, C) =
C(x1, . . . , xn), prMIFE.cti,b for i ∈ [n], b ∈ {0, 1} denotes the i-th slot prMIFE ciphertext encoding bit b, and

13

prMIFE.ctn+1,C denotes the (n + 1)-th slot prMIFE ciphertext encoding the circuit C. The evaluation algorithm on
input x = (x1, . . . , xn) runs prMIFE.Dec(prMIFE.skU , prMIFE.ct1,x1 , . . . , prMIFE.ctn,xn , prMIFE.ctn+1,C).

Correctness as well as security follow from those of prMIFE. This leads to the following theorem, shown in
Section 5.

Theorem 1.9. Let κ = λn2 log λ. Assuming non-uniform κ-evasive LWE, non-uniform sub-exponential PRF„ and
non-uniform sub-exponential LWE, there exists a prIO scheme for circuits.

iO for Pseudorandom Functionalities with Polynomial Domains. We also define a variant of prIO which only
supports polynomial sized domains. We denote this variant by pPRIO. The advantage of considering this restricted
variant is that we can base the security of the construction on (plain) evasive LWE, rather than non-uniform κ-variant of
it. For applications we consider stronger variant of the primitive where we decompose the obfuscation algorithm into
online-offline parts and consequently define a reusable security for this variant. In more detail, we show the following:

Theorem 1.10. Assuming evasive LWE and LWE, there exists a secure pPRIO scheme supporting circuits of bounded
size L = poly(λ) with

|obfoff | = poly(L, λ), |obfon| = poly(L, λ),

where obfoff and obfon refer to the offline and online part of the obfuscated program, respectively.

We refer the reader to Section 6 for details. As discussed in Section 1, we use this construction in our companion paper
[AKY24b] to construct ABE for optimal parameters.

Applications. We show that our new tool of MIFE/iO for pseudorandom functionalities is quite powerful and yields
several interesting applications.

Multi-Input Predicate Encryption for Circuits. A multi-input predicate encryption (miPE) scheme [AYY22]
for n-ary functions miPE = (Setup, KeyGen, Enc1, . . . , Encn, Dec) generalizes single input predicate encryption
[GVW15b] to support multiple encryptors, who each encrypt their data with independently chosen randomness. In miPE,
the setup algorithm on input 1λ, arity 1n and parameter prm, specifying the parameters of the function class, outputs
(mpk, msk). The key generation algorithm on input msk and a function f : (Xprm)n → Yprm outputs a functional
secret key sk f . The i-th encryption algorithm on input msk, an attribute xi ∈ Xprm and a message µi ∈ {0, 1} outputs
a ciphertext cti. The decryption algorithm on input secret key sk f and n ciphertexts ct1, . . . , ctn (corresponding to
inputs (x1, µ1) . . . , (xn, µn) respectively) outputs a string µ′ ∈ {0, 1}n ∪⊥.

We prove the following security guarantee for miPE: Consider an adversary A which outputs q0 key queries
{ f0, . . . , fq0}, qi pairs of attribute-message queries for i-th slot {(xj1

1 , µ
j1
1)}j1∈[q1]

, . . . , {(xjn
n , µ

jn
n)}jn∈[qn] and auxiliary

information auxA. We say that a miPE scheme is secure if the following holds for the adversary A(
mpk,

{
fk, sk fk

}
k∈[q0]

,
{

ctji
i ← Enci(msk, xji

i , µ
ji
i)
}

i∈[n],ji∈[qi]
, auxA

)
≈c

(
mpk,

{
fk, sk fk

}
k∈[q0]

,
{

δ
ji
i ← Sim(msk)

}
i∈[n],ji∈[qi]

, auxA
)

given fk(xj1
1 , . . . , xjn

n) = 0 for every i ∈ [n], ji ∈ [qi], and k ∈ [q0], where (mpk, msk) ← Setup(1λ, 1n, prm) and
sk fk
← KeyGen(msk, fk).

Previously, the works of [AYY22, FFMV24] defined the notion of multi-input predicate encryption and provided the
first constructions for specific functionalities. The follow-up work of Agrawal et al. [ARYY23] supported the most
general functionality – it allowed to compute arbitrary predicates in P on vector (x1, . . . , xn) where xi is encrypted by
party i ∈ [n] and k is a constant. The miPE of this work is obtained by first building a multi-input ABE, which is then
compiled into miPE using a generic compiler by [AYY22]. Their multi-input ABE for constant arity is quite complex
and leverages intricate algebraic properties of the underlying building blocks. Moreover, the limitation for a constant
k seems inherent to their techniques, since the parameters grow exponentially in n. In contrast, our construction is

14

extremely simple and can bootstrap a single-input PE scheme to a polynomial-input one generically by simply using an
prMIFE to generate PE ciphertext using randomness jointly chosen by the encryptors. The PE must have pseudorandom
ciphertext so as to be suitable for the compiler but this is a relatively mild property and readily satisfied by known
constructions [GVW15b]. In more detail, our construction works as follows.

− The setup generates a prMIFE instance (prMIFE.msk, prMIFE.mpk) and a single-input PE instance (PE.msk, PE.mpk).
It outputs msk = (prMIFE.msk, PE.msk) and mpk = (prMIFE.mpk, PE.mpk).

− The i-th slot encryption algorithm on input (msk, xi, µi) generates an i-th slot prMIFE ciphertext prMIFE.cti ←
prMIFE.Enci(prMIFE.msk, (xi, µi)). It outputs cti = prMIFE.cti

− The key generator on input msk and a function f generates a single-input PE functional secret key PE.sk f ←
PE.KeyGen(PE.msk, f). It also generates a prMIFE key, prMIFE.skF, for function F[PE.mpk] that, on input n
attribute-message pairs (x1, µ1), . . . , (xn, µn), generates a single-input PE ciphertext w.r.t. attribute x = (x1, . . . , xn)
and message µ = (µ1, . . . , µn). It outputs sk f = (PE.sk f , prMIFE.skF).

− The decryption algorithm first runs the prMIFE decryption using prMIFE.skF and {cti = prMIFE.cti}i∈[n] to
compute the single-input PE ciphertext, PE.ct, encoding message µ = (µ1, . . . , µn) w.r.t attribute x = (x1, . . . , xn).
Finally it performs PE decryption using PE.sk f and PE.ct.

Correctness and security follow readily from those of the underlying building blocks. Please see Section 4 for details. In
summary, we obtain the following theorems.

Theorem 1.11 (miPE for poly arity). Let κ = λn2 log λ. Assuming non-uniform κ-evasive LWE, non-uniform
sub-exponential PRF, and non-uniform sub-exponential LWE, there exists a miPE scheme for arity n = poly(λ),
supporting functions of bounded polynomial depth.

Using prMIFE scheme for constant arity allows to relax the assumption to normal evasive LWE.

Theorem 1.12 (miPE for constant arity). Assuming evasive LWE and LWE, there exists a prMIFE scheme for arity
n = O(1), supporting functions of bounded polynomial depth.

Two Party ID based Non-Interactive Key Exchange. Next, we provide a construction of two party ID based
non-interactive key exchange (ID-NIKE) scheme. The construction is the same as the ID-based NIKE system by Sakai,
Ohgishi, and Kasahara [SOK00] except that the hash function is replaced with an obfuscation of a PRF, which can be
supported by our prIO. In more detail, we show:

Theorem 1.13. Let κ = λn2 log λ. Assuming non-uniform κ-evasive LWE (Assumption 2.4), non-uniform sub-
exponential PRF, non-uniform sub-exponential LWE, and the DBDH assumption, there exists a secure ID-NIKE
scheme.

This leads to the first construction of ID-NIKE without multilinear maps [FHPS13] or indistinguishability obfuscation
in the standard model. Please see Section 8 for details.

Instantiating the Random Oracle. In an elegant work [HSW14], Hohenberger, Sahai and Waters posed the following
question: “Can we instantiate the random oracle with an actual family of hash functions for existing cryptographic
schemes in the random oracle model, such as Full Domain Hash signatures?” They then demonstrated that the
selective security of the full-domain hash (FDH) signature based on trapdoor permutations (TDP) [BR93], the adaptive
security of RSA FDH signatures [Cor00], the selective security of BLS signatures, and the adaptive security of BLS
signatures [BLS01] can be proven in the standard model by carefully instantiating the underlying hash function by IO
for each application.

We show in Section 7.1, that the random oracle in the FDH signature can be instantiated using prIO instead of
full-fledged iO. Similarly, we can instantiate the random oracle in selectively secure BLS signatures with prIO, following
a strategy similar to that in [HSW14]. At a high level, these proofs follow those in the random oracle model (ROM),

15

where we use iO to obfuscate a derandomized version of the simulator for the hash function in ROM-based proofs. In
these settings, the truth table of the simulated hash function is pseudorandom, allowing us to follow the same proof
strategy using prIO.

For adaptively secure RSA FDH and BLS signatures, the situation is different. In these cases, Hohenberger et
al. adopt an alternative proof strategy that deviates from the high level strategy of obfuscating the simulator for the
proof in the ROM. This is due to the fact that the original proofs [BLS01, Cor00] are incompatible with the conditions
required for using iO, where the truth table of the hash functions must remain unchanged across game hops. To be
compatible with iO, they introduce a structure for the hash function, making its truth table no longer pseudorandom.
This prevents us from replacing the hash function with prIO following their approach.

To instantiate the hash function with prIO, we revert to the original ROM-based proof strategy [BLS01, Cor00].
Unlike the iO-based approach, prIO-based proof does not require the truth table of the hash function to remain unchanged
across game hops; it only requires the truth table to be pseudorandom. This relaxed condition enables the use of the
original ROM security proofs. Please see Section 7 for details.

1.4 Organization of the Paper
We provide the preliminaries used in this work in Section 2 and Appendix A. In Section 3, we define the notion of
multi-input FE for pseudorandom functionalities (prMIFE) and construct a (bounded-depth) prMIFE using a single-input
FE scheme for pseudorandom functionalities (prFE) – a tool from our companion paper [AKY24b]. In Appendix B, we
recall the construction of prFE from [AKY24b] and prove that it achieves strengthened security notion of non-uniform
κ-prCT security which is required for the prMIFE compiler in Section 3. In Section 4, we give the construction for
multi-input predicate encryption scheme for polynomial arity. In Section 5, we give the definitions for indistinguishability
obfuscation for pseudorandom functionalities (prIO) for circuits and construct this using a prMIFE scheme supporting
polynomial arity. In Section 6, we define and construct indistinguishability obfuscation for pseudorandom functionalities
with polynomial size domain (pPRIO) using a prMIFE scheme supporting constant arity. In Section 7 and 8 we show
how to instantiate the random oracle using a prIO scheme via various applications.

2 Preliminaries
In this section we define the notation and preliminaries used in our work.

Notation. We use bold letters to denote vectors and the notation [a, b] to denote the set of integers {k ∈N | a ≤ k ≤ b}.
We use [n] to denote the set [1, n]. Concatenation is denoted by the symbol ∥. We say a function f (n) is negligible if it is
O(n−c) for all c > 0, and we use negl(n) to denote a negligible function of n. We say f (n) is polynomial if it is O(nc)
for some constant c > 0, and we use poly(n) to denote a polynomial function of n. We use the abbreviation PPT for
probabilistic polynomial-time. We say an event occurs with overwhelming probability if its probability is 1− negl(n).
For two distributions Xλ and Yλ, Xλ ≈c Yλ (resp., Xλ ≈s Yλ) denotes that they are computationally indistinguishable
for any PPT algorithm (resp., statistically indistinguishable). We write Xλ ≡ Yλ when these distributions are the same.
Note that when we say two distributions are computational indistinguishable, this means that the two distributions
cannot be distinguished with non-negligible advantage in the input length of the adversary (rather than the security
parameter λ), whose size is polynomial in its input length. For example, if the output length of the distributions is
subexponential in λ, this means that the adversary is allowed to run in subexponential time and the advantage should be
subexponentially small. For a vector x, we let xi denote its i-th entry. For a set S, we let |S| denote the number of
elements in S. For a binary string x, we let |x| denote the length of x.

2.1 Assumptions
In this section, we define the assumptions that we use in this work.

16

Assumption 2.1 (Evasive LWE). [Wee22, ARYY23, AMYY25] Let n, m, t, m′, q ∈N be parameters and λ be a security
parameter. Let χ and χ′ be parameters for Gaussian distributions. For Samp that outputs

S ∈ Zm′×n
q , P ∈ Zn×t

q , aux ∈ {0, 1}∗

on input 1λ and for PPT adversaries A0 and A1, we define the following advantage functions:

AdvPRE
A0

(λ)
def
= Pr

[
A0(B, SB + E, SP + E′, aux) = 1

]
− Pr

[
A0(B, C0, C′, aux) = 1

]
(13)

AdvPOST
A1

(λ)
def
= Pr[A1(B, SB + E, K, aux) = 1]− Pr[A1(B, C0, K, aux) = 1] (14)

where
(S, P, aux)← Samp(1λ),

B← Zn×m
q ,

C0 ← Zm′×m
q , C′ ← Zm′×t

q ,

E← Dm′×m
Z,χ , E′ ← Dm′×t

Z,χ′

K← B−1(P) with standard deviation O(
√

m log(q)).

We say that the evasive LWE (EvLWE) assumption with respect to the sampler class SC holds if for every PPT
Samp ∈ SC and A1, there exists another PPT A0 and a polynomial Q(·) such that

AdvPRE
A0

(λ) ≥ AdvPOST
A1

(λ)/Q(λ)− negl(λ) and Time(A0) ≤ Time(A1) ·Q(λ). (15)

We conjecture that for reasonable class of samplers, the evasive LWE assumption holds. In particular, we conjecture
that our sampler SampprFE(1

λ) used for the security proof of the prFE (Appendix B) for natural class of functions
should be in the secure class of samplers SC for which the evasive LWE holds.

Remark 2.2. In the above definition, all the LWE error terms are chosen from the same distribution DZ,χ. However,
in our security proof, we often consider the case where some of LWE error terms are chosen from DZ,χ and others
from DZ,χ′ with different χ ≫ χ′. The evasive LWE assumption with such a mixed noise distribution is implied
by the evasive LWE assumption with all LWE error terms being chosen from DZ,χ as above definition, since if the
precondition is satisfied for the latter case, that for the former case is also satisfied. To see this, it suffices to observe that
we can convert the distribution from DZ,χ′ into that from DZ,χ by adding extra Gaussian noise.

In the security proof, we may require the auxiliary information to include terms dependent on S. Furthermore, we
may want to prove the pseudorandomness of such auxiliary information. The following lemma from [ARYY23] enables
this. In the lemma, we separate the auxiliary information into two parts aux1 and aux2, where aux1 is typically the
part dependent on S. The lemma roughly says that aux1 is pseudorandom in the post condition distribution, if it is
pseudorandom in the precondition distribution.

Lemma 2.3 (Lemma 3.4 in [ARYY23]). Let n, m, t, m′, q ∈N be parameters and λ be a security parameter. Let χ
and χ′ be Gaussian parameters. Let Samp be a PPT algorithm that takes as input 1λ and outputs

S ∈ Zm′×n
q , aux = (aux1, aux2) ∈ S × {0, 1}∗ and P ∈ Zn×t

q

for some set S . Furthermore, we assume that there exists a public deterministic poly-time algorithm Reconstruct that
allows to derive P from aux2, i.e. P = Reconstruct(aux2).

We introduce the following advantage functions:

AdvPRE′
A (λ)

def
= Pr

[
A(B, SB + E, SP + E′, aux1, aux2) = 1

]
− Pr

[
A(B, C0, C′, c, aux2) = 1

]
(16)

17

AdvPOST′
A (λ)

def
= Pr[A(B, SB + E, K, aux1, aux2) = 1]− Pr[A(B, C0, K, c, aux2) = 1] (17)

where
(S, aux = (aux1, aux2), P)← Samp(1λ),

B← Zn×m
q

C0 ← Zm′×m
q , C′ ← Zm′×t

q , c← S

E← Dm′×m
Z,χ , E′ ← Dm′×t

Z,χ

K← B−1(P) with standard deviation O(
√

m log(q)).

Then, under the Evasive-LWE (cited above in Assumption 2.1) with respect to Samp ∈ SC for a sampler class SC,
if AdvPRE′

A (λ) is negligible for any PPT adversary A, so is AdvPOST′
A (λ) for any PPT adversary A.

The following variant of the evasive LWE assumption will be used in Section 3. This strengthens Assumption 2.1
in that it considers non-uniform samplers and replaces the negligible term in Equation (15) with negligible function
in another parameter κ, which can be much larger than λ. The reason why we need this strengthened version of the
assumption is that we need prFE to satisfy stronger security notion than prCT security that we call non-uniform κ-prCT
security for the application to prMIFE. We refer to Remark 3.14 for the detailed discussion on why we need the stronger
security definition for prFE for the application to prMIFE.

Assumption 2.4 (Non-Uniform κ-Evasive LWE). Let n, m, t, m′, q, λ ∈N be parameters defined as in Assumption 2.1
and Samp = {Sampλ}λ be a non-uniform sampler that takes as input 1λ and outputs S, P, aux as in Assumption 2.1.
For non-uniform adversaries A0 = {A0,λ}λ and A1 = {A1,λ}λ, we define the advantage functions AdvPRE

A0
(λ)

and AdvPOST
A1

(λ) as in Equation (13) and Equation (14), respectively. For a function κ := κ(λ) of the security
parameter λ, we say that the non-uniform κ-evasive LWE assumption with respect to the sampler class SC holds if
for every non-uniform sampler Samp ∈ SC and a non-uniform adversary A1 such that Size(Samp) ≤ poly(λ′) and
Size(A1) ≤ poly(κ) for λ′(λ) ≤ κ(λ), there exists another non-uniform adversary A0 and a polynomial Q(·) such
that

AdvPRE
A0

(λ) ≥ AdvPOST
A1

(λ)/Q(λ′)− negl(κ) and Size(A0) ≤ Q(λ′) · Size(A1).

Note that in the case λ′ is superpolynomial in λ, Samp(1λ) outputs S, P, and aux whose sizes are polynomial in λ′

and thus superpolynomial in λ. We require the above assumption with κ = 2poly(λ) in our construction.
The following lemma is an adaptation of Lemma 2.3 for the stronger version of evasive LWE assumption defined in

Assumption 2.4. The proof is almost the same as that for Lemma 2.3. We provide it here for completeness.

Lemma 2.5. Let n, m, t, m′, q, λ ∈ N be parameters defined as in Assumption 2.1 and Samp = {Sampλ}λ be
a non-uniform sampler that takes as input 1λ and outputs S, aux = (aux1, aux2), and P as in Lemma 2.3. For a
non-uniform adversaries A, we define the advantage functions AdvPRE′

A (λ) and AdvPOST′
A (λ) as in Equation (16) and

Equation (17), respectively. Then, for a function κ := κ(λ) of the security parameter λ, under the non-uniform κ-evasive
LWE assumption (Assumption 2.4), if Size(Samp) ≤ poly(λ′) and Size(A1) ≤ poly(κ) for λ′(λ) ≤ κ(λ), there
exists another non-uniform adversary A0 and a polynomial Q(·) such that

AdvPRE′
A0

(λ) ≥ AdvPOST′
A1

(λ)/Q(λ′)− negl(κ) and Size(A0) ≤ Q(λ′) · Size(A1).

Proof. Let us consider an adversary A1 and a sampler Samp with size being polynomial in κ and λ′ respectively
and ϵ = AdvPOST′

A1
. Then, the same adversary is able to distinguish either (1) (B, SB + E, K, aux1, aux2) from

(B, C0, K, aux1, aux2)with advantage at least ϵ/2 or (2) (B, C0, K, aux1, aux2) from (B, C0, K, c, aux2)with advantage
at least ϵ/2. If the latter is the case, then we can obtain an adversary A0 that distinguishes (B, SB + E, SP +
E′, aux1, aux2) from (B, C0, C′, c, aux2) with advantage ϵ/2. This can be seen by observing that A1 can be turned

18

into an adversary that distinguishes (aux1, aux2) from (c, aux2) and then turned into an adversary that distinguishes
(B, C0, K, aux1, aux2) from (B, C0, K, c, aux2) by sampling (B, C0, K) by itself, where we sample B with the
corresponding trapdoor and then sample K using it. We therefore assume that the former is the case. Then,
by invoking the non-uniform κ-evasive LWE with respect to the sampler Samp, we obtain another adversary A0
whose size is bounded by Q(λ′) · Size(A1) and distinguishing advantage against (B, SB + E, SP + E′, aux1, aux2) and
(B, C0, C′, aux1, aux2) is at least ϵ/2Q(λ′). Then,A0 is able to distinguish either (1) (B, SB+E, SP+E′, aux1, aux2)
from (B, C0, C′, c, aux2) with advantage at least ϵ/4Q(λ′) or (2) (B, C0, C′, c, aux2) from (B, C0, C′, aux1, aux2)
with advantage at least ϵ/4Q(λ′). If the former is the case, we are done. If the latter is the case, we are still able to
convert it into a distinguisher against (B, SB + E, SP + E′, aux1, aux2) and (B, C0, C′, c, aux2) by the similar argument
to the above.

Assumption 2.6 (Decisional Bilinear Diffie-Hellman). Let e : G×G → GT be a bilinear map, where e(ga, gb) =
e(g, g)ab and a, b ∈ Zp, for a cyclic group G of order p with a generator g. The Decisional Bilinear Diffie-Hellman
assumption (DBDH) states that for any PPT adversary(

gα, gβ, gγ, e(g, g)αβγ | α, β, γ← Zp

)
≈c

(
gα, gβ, gγ, T | α, β, γ← Zp, T ← GT

)
2.2 Puncturable Pseudorandom Functions
Syntax. A puncturable pseudorandom function (PPRF) F : K×X → Y with key space K, input space X and output
space Y has the following syntax.

Setup(1λ)→ K. The setup algorithm takes as input the security parameter λ and outputs a key K ∈ K.

Puncture(K, x)→ Kx. The puncture algorithm takes as input a PRF key K ∈ K and an input x ∈ X , and outputs a
punctured key key Kx.

Eval(Kx, x′)→ y. The evaluation algorithm takes as input a punctured key Kx an input x′ ∈ X , such that x ̸= x′ and
outputs y ∈ Y . It outputs ⊥ if x = x′.

Definition 2.7. (Correctness) A PPRF scheme is said to be correct if for any K ∈ K, x, x′ ∈ X such that x ̸= x′, we
have

Pr
[
Eval(Kx, x′) = F(K, x′) | Kx ← Puncture(K, x)

]
= 1.

Definition 2.8. (Security) A PPRF scheme is said to be (selectively) secure if the advantage of a PPT adversary A in
the following experiment is negligible.

1. A on input 1λ outputs the challenge input x⋆.

2. The challenger samples a random key K ← K and a bit β← {0, 1}. Then, it computes y = F(K, x) if β = 0,
else it sample y← Y uniformly at random. It also computes Kx⋆ ← Puncture(K, x⋆) and sends Kx⋆ , y to A.

3. A outputs a guess bit β′.

A wins if β = β′.

We know that PPRF with the security defined above from one-way functions [GGM84, BW13, BGI14, KPTZ13].

2.3 Symmetric Key Encryption with Pseudorandom Ciphertext
Syntax. A symmetric key encryption scheme for message spaceM = {Mλ}λ∈[N], key space K = {Kλ}λ∈[N] and
ciphertext space CT SKE = {CT SKE,λ}λ∈[N] has the following syntax.

Setup(1λ)→ sk. The setup algorithm takes as input the security parameter λ and outputs a secret key sk.

19

Enc(sk, m)→ ct. The encryption algorithm takes as input the secret key sk and a message m ∈ Mλ and outputs a
ciphertext ct.

Dec(sk, ct)→ m′. The decryption algorithm takes as input a secret key sk and a ciphertext ct and outputs a message
m′ ∈ Mλ.

Definition 2.9. (Correctness) A SKE scheme is said to be correct if there exists a negligible function negl(·) such that
for all λ ∈N, for every message m ∈ Mλ, we have

Pr

 m′ = m :
sk← Setup(1λ);
ct← Enc(sk, m);
m′ = Dec(sk, ct).

 ≥ 1− negl(λ),

Definition 2.10. (Security) A SKE scheme is said to have pseudorandom ciphertext if there exists a negligible function
negl(·) such that for all λ ∈N, for every message m ∈ Mλ, we have∣∣∣∣∣Pr

[
β′ = β : sk← Setup(1λ);

β′ ← AEnc(sk,·),Encβ(sk,·).

]
− 1

2

∣∣∣∣∣ ≤ negl(λ),

where the Enc(sk, ·) oracle, on input a message m, returns Enc(sk, m) and Encβ(sk, ·) oracle, on input a message
m, returns ctβ, where ct0 ← Enc(sk, m) and ct1 ← CT SKE,λ. We say that an SKE scheme has (non-uniform)
subexponential security if there exists a constant 0 < δ < 1 such that the above advantage is at most 2−λδ for any
adversary whose running time (resp., size) is 2λδ for sufficiently large λ.

2.4 Pseudorandom Functional Encryption
In this section we give definitions for functional encryption for pseudorandom functionalities, adapted from [AKY24b].

Consider a function family {Fprm = { f : Xprm → Yprm}}prm for a parameter prm = prm(λ). Each function
f ∈ Fprm takes as input a string x ∈ Xprm and outputs f (x) ∈ Yprm.

Syntax. A functional encryption scheme prFE for pseudorandom functionalities Fprm consists of four polynomial
time algorithms (Setup, KeyGen, Enc, Dec) defined as follows.

Setup(1λ, prm) → (mpk, msk). The setup algorithm takes as input the security parameter λ and a parameter prm
and outputs a master public key mpk and a master secret key msk7.

KeyGen(msk, f) → sk f . The key generation algorithm takes as input the master secret key msk and a function
f ∈ Fprm and it outputs a functional secret key sk f .

Enc(mpk, x)→ ct. The encryption algorithm takes as input the master public key mpk and an input x ∈ Xprm and
outputs a ciphertext ct ∈ CT , where CT is the ciphertext space.

Dec(mpk, sk f , f , ct)→ y. The decryption algorithm takes as input the master public key mpk, a functional secret key
sk f , function f and a ciphertext ct, and outputs y ∈ Yprm.

Definition 2.11 (Correctness). A prFE scheme is said to satisfy perfect correctness if for all prm, any input x ∈ Xprm
and function f ∈ Fprm, we have

Pr

[
(mpk, msk)← Setup(1λ, prm) , sk f ← KeyGen(msk, f),

Dec
(
mpk, sk f , f , Enc(mpk, x)

)
= f (x)

]
= 1.

We define our security notion next. At a high level, our notion says that so long as the output of the functionality is
pseudorandom, the ciphertext is pseudorandom. For notational brevity, we denote this by prCT security.

7We assume w.l.o.g that msk includes mpk.

20

Definition 2.12 (prCT Security). For a prFE scheme for function family {Fprm = { f : Xprm → Yprm}}prm, parameter
prm = prm(λ), let Samp be a PPT algorithm that on input 1λ, outputs

(f1, . . . , fQkey , x1, . . . , xQmsg , aux ∈ {0, 1}∗)

where Qkey is the number of key queries, Qmsg is the number of message queries, and fi ∈ Fprm xj ∈ Xprm for all
i ∈ [Qkey], j ∈ [Qmsg].
We define the following advantage functions:

AdvPRE
A0

(λ)
def
= Pr

[
A0

(
aux, { fi, fi(xj)}i∈[Qkey],j∈[Qmsg]

)
= 1

]
− Pr

[
A0(aux, { fi, ∆i,j ← Yprm}i∈[Qkey],j∈[Qmsg]) = 1

]

AdvPOST
A1

(λ)
def
= Pr

[
A1(mpk, aux, { fi, ctj ← Enc(mpk, xj), sk fi

}i∈[Qkey],j∈[Qmsg]) = 1
]

− Pr
[
A1(mpk, aux, { fi, δj ← CT , sk fi

}i∈[Qkey],j∈[Qmsg]) = 1
]

where (f1, . . . , fQkey , x1, . . . , xQmsg , aux ∈ {0, 1}∗) ← Samp(1λ), (mpk, msk) ← Setup(1λ, prm) and CT is the
ciphertext space. We say that a prFE scheme for function family Fprm satisfies prCT security with respect to the sampler
class SC if for every PPT sampler Samp ∈ SC there exists a polynomial Q(·) such that for every PPT adversary A1,
there exists another PPT A0 such that

APRE
A0

(λ) ≥ APOST
A1

(λ)/Q(λ)− negl(λ) (18)

and Time(A0) ≤ Time(A1) ·Q(λ).

Remark 2.13 ([AKY24b]). It is shown in [AMYY25] that there is no prFE that satisfies prCT security for all general
samplers. Therefore, when we use the security of prFE, we invoke the security with respect to a specific sampler class
that is induced by the respective applications. For simplicity, we sometimes will treat as if there was prFE that is secure
for all the samplers.

Theorem 2.14 ([AKY24b]). Assuming LWE and evasive LWE assumptions, there exists a secure (Definition 2.12)
prFE scheme, with respect to a specific sampler class, for function class FL(λ),ℓ(λ),dep(λ) = { f : {0, 1}L → {0, 1}ℓ}
satisfying

|mpk| = L · poly(dep, λ), |sk f | = ℓ · poly(dep, λ), |ct| = L · poly(dep, λ).

where dep = poly(λ) is the depth bound on the functions supported by the scheme.

Definition 2.15 (Non-uniform κ-prCT Security). For a prFE scheme for function family {Fprm = { f : Xprm →
Yprm}}prm, parameter prm = prm(λ), and function κ

def
= κ(λ) of λ, let Samp = {Sampλ}λ be a non-uniform

polynomial-time algorithm that on input 1λ, outputs

(f1, . . . , fQkey , x1, . . . , xQmsg , aux ∈ {0, 1}∗)

where Qkey is the number of key queries, Qmsg is the number of message queries, and fi ∈ Fprm xj ∈ Xprm for all
i ∈ [Qkey], j ∈ [Qmsg].
For non-uniform adversaries A0 := {A0,λ}λ and A1 := {A1,λ}λ, we define the following advantage functions:

AdvPRE
A0

(λ)
def
= Pr

[
A0

(
aux, { fi, fi(xj)}i∈[Qkey],j∈[Qmsg]

)
= 1

]
− Pr

[
A0(aux, { fi, ∆i,j ← Yprm}i∈[Qkey],j∈[Qmsg]) = 1

]

21

AdvPOST
A1

(λ)
def
= Pr

[
A1(mpk, aux, { fi, ctj ← Enc(mpk, xj), sk fi

}i∈[Qkey],j∈[Qmsg]) = 1
]

− Pr
[
A1(mpk, aux, { fi, δj ← CT , sk fi

}i∈[Qkey],j∈[Qmsg]) = 1
]

where (f1, . . . , fQkey , x1, . . . , xQmsg , aux ∈ {0, 1}∗) ← Samp(1λ), (mpk, msk) ← Setup(1λ, prm) and CT is the
ciphertext space. We say that a prFE scheme for function family Fprm is secure in the non-uniform κ setting with respect
to the sampler class SC if for every sampler Samp ∈ SC and an adversary A1 such that Size(Samp) ≤ poly(λ′) and
Size(A1) ≤ poly(κ) for λ′ ≤ κ, there exists another adversary A0 such that

AdvPRE
A0

(λ) ≥ AdvPOST
A1

(λ)/Q(λ′)− negl(κ) (19)

and Size(A0) ≤ Size(A1) ·Q(λ′) for some polynomial Q(·).

In Appendix B.3, we prove the following theorem.

Theorem 2.16. Let κ = 2λc for some constant c. Assuming non-uniform κ-evasive LWE (Assumption 2.4), subexpo-
nentially secure PRF against non-uniform adversary, and non-uniform sub-exponential LWE (Assumption A.5), there
exists a prFE scheme for function class FL(λ),ℓ(λ),dep(λ) = { f : {0, 1}L → {0, 1}ℓ} satisfying κ-prCT security as per
Definition 2.15, with respect to a specific sampler class, with efficiency

|mpk| = L · poly(dep, λ), |sk f | = ℓ · poly(dep, λ), |ct| = L · poly(dep, λ).

where dep = poly(λ) is the depth bound on the functions supported by the scheme.

Remark 2.17 (Comparison between Definition 2.15 and Definition 2.12). We remark that Definition 2.15 strengthens
Definition 2.12 in two aspects. First of all, it considers non-uniform adversaries instead of uniform adversaries.
Secondly, it is parameterized by κ and the additive term negl(λ) that appears in Equation (18) is replaced by negl(κ) in
Equation (19). By taking κ asymptotically larger than λ (e.g., κ := λλ), we can make the additive term negl(κ) much
smaller than negl(λ). We note that these changes are introduced to prove the security of our prMIFE in Section 3. We
refer to Remark 3.14 for the discussion on why these changes are necessary for the security proof there.

2.5 Predicate Encryption
Consider a function family {Fprm = { f : Xprm → {0, 1}}}prm, for a parameter prm = prm(λ).

Syntax. A PE scheme PE for function familyFprm consists of polynomial time algorithms (Setup, KeyGen, Enc, Dec)
defined as follows.

Setup(1λ, prm) → (mpk, msk). The setup algorithm takes as input the security parameter λ and a parameter prm,
and outputs a master public key mpk and master secret key msk8.

KeyGen(msk, f) → sk f .The key generation algorithm takes as input the master secret key msk and a function
f ∈ Fprm and it outputs a functional secret key sk f .

Enc(mpk, x, µ)→ ct. The encryption algorithm takes as input a master secret key msk, an attribute x ∈ Xprm, and
message µ ∈ {0, 1}, and outputs a ciphertext ct.

Dec(mpk, sk f , f , ct)→ {0, 1} ∪ ⊥. The decryption algorithm takes as input the master public key mpk, secret key
sk f , function f and ciphertext ct, and outputs a string µ′ ∈ {0, 1} ∪ ⊥.

Definition 2.18 (Correctness.). For every λ ∈N, µ ∈ {0, 1}, x ∈ Xprm, f ∈ Fprm, if f (x) = 1, then

Pr
[
Dec

(
mpk, KeyGen(msk, f), f , Enc(mpk, x, µ)

)
= µ

]
= 1− negl(λ)

where (mpk, msk)← Setup(1λ, prm).
8We assume w.l.o.g that msk includes mpk.

22

Definition 2.19 (Selective INDr Security). A PE scheme is said to satisfy selective INDr security if there exists a
negligible function negl(·) such that for all λ ∈N, we have∣∣∣∣∣∣∣∣∣∣

Pr

 β′ = β :

(x, prm)← A(1λ);
(mpk, msk)← Setup(1λ, prm);
(µ, st)← AKeyGen(msk,·)(mpk);
ct0 ← Enc(mpk, x, µ), ct1 ← CT ;
β← {0, 1}, β′ ← AKeyGen(msk,·)(st, ctβ)

− 1
2

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where CT is the ciphertext space of the scheme and the adversary A is admissible in the sense that for all key query f
made by A, it holds that f (x) = 0.

Predicate encryption schemes for (bounded depth) circuits satisfying the above security notion are known from
LWE [GVW15a, GKW17, WZ17].

2.6 Multi-Input Predicate Encryption
In this section we define multi-input Predicate Encryption (mi-PE), adapting the syntax from [AYY22]. Consider a
function family {Fprm = { f : (Xprm)n → {0, 1}}}prm, for a parameter prm = prm(λ), where each Fprm is a finite
collection of n-ary functions. Each function f ∈ Fprm takes as input strings x1, . . . , xn, where each xi ∈ Xprm and
outputs f (x1, . . . , xn) ∈ {0, 1}.

Syntax. A mi-PE scheme miPEn for n-ary function familyFprm consists of polynomial time algorithms (Setup, KeyGen,
Enc1, . . . , Encn, Dec) defined as follows.

Setup(1λ, 1n, prm)→ (mpk, msk). The setup algorithm takes as input the security parameter λ, the function arity n
and a parameter prm and outputs a master public key mpk and master secret key msk.

KeyGen(msk, f) → sk f .The key generation algorithm takes as input the master secret key msk and a function
f ∈ Fprm and it outputs a functional secret key sk f .

Enci(msk, xi, µi)→ cti for i ∈ [n]. The encryption algorithm for the ith slot takes as input a master secret key msk,
an attribute xi ∈ Xprm, and message µi ∈ {0, 1}, and outputs a ciphertext cti.

Dec(mpk, sk f , f , ct1, ct2, . . . , ctn) → {0, 1}n ∪ ⊥. The decryption algorithm takes as input the master public key
mpk, secret key sk f , function f and n ciphertexts ct1, . . . , ctn and outputs a string µ′ ∈ {0, 1}n ∪⊥.

Next, we define correctness and security.

Correctness: For every λ ∈N, µ1, . . . , µn ∈ {0, 1}, x1, . . . , xn ∈ Xprm, f ∈ Fprm, it holds that if f (x1, . . . , xn) =
1, then

Pr
[
Dec

(
mpk, KeyGen(msk, f), f ,

Enc1(msk, x1, µ1), . . . , Encn(msk, xn, µn)

)
= (µ1, . . . , µn)

]
= 1− negl(λ)

where the probability is over the choice of (mpk, msk) ← Setup(1λ, 1n, prm) and over the internal randomness of
KeyGen and Enc1, . . . , Encn.

Definition 2.20 (Sim-Security.). For a miPE scheme for function family {Fprm = { f : (Xprm)n → {0, 1}}}prm,
parameter prm = prm(λ), a stateful adversary A, and a simulator algorithm {Simi}i∈[n], we define the Sim-security
game, ExpmiPE,A, as follows.

1. Query phase: On input 1λ, 1n, prm, A outputs the following in an arbitrary order.

23

(a) Key Queries: A issues polynomial number of key queries, say q0 = q0(λ). For each key query k ∈ [q0],
A chooses a function fk ∈ Fprm.

(b) Ciphertext Queries: A issues polynomial number of ciphertext queries for each slot, say qi = qi(λ) for the
ith slot. We use (xji

i , µ
ji
i) to denote the ji-th ciphertext query corresponding to the i-th slot, where ji ∈ [qi]

and i ∈ [n].

2. Setup phase: On input 1λ, 1n, prm,{ fk}k∈[q0]
, the challenger samples (mpk, msk)← Setup(1λ, 1n, prm), a bit

β← {0, 1} and does the following.

(a) It computes sk fk
← KeyGen(msk, fk).

(b) If β = 0, it computes ctji
i ← Enci(msk, xji

i , µ
ji
i), else if β = 1, it computes ctji

i ← Simi(msk) for
i ∈ [n], ji ∈ [qi].

It returns (mpk, {sk fk
}k∈[q0]

, {ctji
i }i∈[n],ji∈[qi]

) to A.

3. Output phase: A outputs a guess bit β′ as the output of the experiment.

For the adversary to be admissible, we require that it holds that fk(xj1
1 , . . . , xjn

n) = 0 for every i ∈ [n], ji ∈ [qi], and
k ∈ [q0]. We define the advantage AdvSim

miPE,A of A in the security game as

AdvSim
miPE,A(1

λ) :=
∣∣∣Pr
[
ExpmiPE,A(1

λ) = 1|β = 0
]
− Pr

[
ExpmiPE,A(1

λ) = 1|β = 1
]∣∣∣ .

The miPE scheme is said to satisfy Sim-security if for any stateful PPT adversary A, there exists a PPT simulator
algorithm {Simi}i∈[n] such that AdvSim

miPE,A(1
λ) = negl(λ).

2.7 ID-Based Non-Interactive Key Exchange
In this section, we give the definitions for an identity-based non-interactive key exchange scheme, for two parties,
adapted from [FHPS13].

Syntax. An identity-based non-interactive key exchange (ID-NIKE) scheme for identity space ID has the following
syntax.

Setup(1λ)→ (mpk, msk) The setup algorithm takes as input the security parameter 1λ and outputs a master public
key mpk and a master secret key msk.

Extract(mpk, msk, id)→ uskid. The key extraction algorithm takes as input the master public key mpk, the master
secret key msk and an identity id ∈ ID. It outputs a user secret key uskid for id.

Share(mpk, uskid1 , id2)→ K. The share algorithm takes as input the master public key mpk, a user secret key uskid1
for an identity id1 ∈ ID and an identity id2 ∈ ID. It outputs a shared key K.

Definition 2.21 (Correctness). An ID-NIKE scheme for an identity space ID is correct if for any λ ∈N, (mpk, msk)←
Setup(1λ), any id1, id2 ∈ ID we have

Share(mpk, uskid1 , id2) = Share(mpk, uskid2 , id1)

where uskid1 ← Extract(mpk, msk, id1) and uskid2 ← Extract(mpk, msk, id2) .

Definition 2.22 (Security). We say that an ID-NIKE scheme for an identity space ID is secure if the advantage function

AdvID-NIKE,A(λ) = Pr
[
ExpID-NIKE,A(λ) = 1

]
− 1

2

is negligible for all PPT adversaries A. Here, experiment ExpID-NIKE,A is defined as follows:

24

1. Setup Phase. The experiment samples (mpk, msk)← Setup(1λ), and gives A the mpk.

2. Query Phase. The adversary can make the following queries in an arbitrary order.

− Extraction Query: A sends an extraction query for an identity id ∈ ID. The experiment returns uskid to the
adversary, where uskid ← Extract(mpk, msk, id).

− Challenge Query : A sends a pair (id⋆1 , id⋆2) ∈ ID × ID as the challenge query. The experiment samples
a bit β ← {0, 1} and returns K⋆ ← Share(mpk, uskid⋆1 , id⋆2), where uskid⋆1 ← Extract(mpk, msk, id⋆1), if
β = 0 and returns K⋆ ← GT if β = 1.

3. Output Phase. A outputs a guess bit β′, and the experiment outputs 1 if β = β′.

We only quantify over A that guarantees that does not make extraction queries for id⋆1 and id⋆2 .

3 Multi-Input FE for Pseudorandom Functionalities
In this section, we construct our main tool – multi-input functional encryption for pseudorandom functionalities.

3.1 Definition
In this section we give the definitions for multi-input functional encryption for pseudorandom functionalities (prMIFE).
Consider a function family {Fprm = { f : (Xprm)n → Yprm}}prm, for a parameter prm = prm(λ), where eachFprm is
a finite collection of n-ary functions. Each function f ∈ Fprm takes as input strings x1, . . . , xn, where each xi ∈ Xprm
and outputs f (x1, . . . , xn) ∈ Yprm.

Syntax. A miprfe scheme prMIFEn for n-ary function family Fprm consists of polynomial time algorithms
(Setup, KeyGen, Enc1, . . . , Encn, Dec) defined as follows.

Setup(1λ, 1n, prm)→ (mpk, msk). The setup algorithm takes as input the security parameter λ, the function arity n
and a parameter prm and outputs a master public key mpk and master secret key msk9.

KeyGen(msk, f) → sk f . The key generation algorithm takes as input the master secret key msk and a function
f ∈ Fprm and it outputs a functional secret key sk f .

Enci(msk, x)→ ct. The encryption algorithm for the i-th slot takes as input the master secret key msk and an input
x ∈ Xprm and outputs a ciphertext cti ∈ CT , where CT is the ciphertext space.

Dec(mpk, sk f , f , ct1, . . . , ctn)→ y. The decryption algorithm takes as input the master public key mpk, secret key
sk f , function f and n ciphertexts ct1, . . . , ctn, and outputs y ∈ Yprm.

Definition 3.1 (Correctness). A prMIFE scheme is said to be correct if for every prm, n-ary function f ∈ Fprm and
input tuple (x1, . . . , xn) ∈ X n

prm we have

Pr

[
(mpk, msk)← Setup(1λ, 1n, prm) , sk f ← KeyGen(msk, f),

Dec
(
mpk, sk f , f , Enc1(msk, x1), . . . Encn(msk, xn)

)
= f (x1, . . . , xn)

]
≥ 1− negl(λ).

Definition 3.2 (κ-Security). Let κ = κ(λ) be a function in λ. For a prMIFE scheme for function family {Fprm = { f :
(Xprm)n → Yprm}}prm, parameter prm = prm(λ), let Samp be a PPT algorithm that on input 1λ, outputs(

{ fk}k∈[q0]
, {xj1

1 }j1∈[q1]
, . . . , {xjn

n }jn∈[qn], aux ∈ {0, 1}∗
)

9We assume w.l.o.g that msk includes mpk.

25

where q0 is the number of key queries, qi is the number of encryption queries for the i-th slot, f1, . . . , fq0 ∈ Fprm and
xji

i ∈ Xprm for all i ∈ [n], ji ∈ [qi]. We say that the prMIFE scheme satisfies κ-security with respect to the sampler
class SC if for every PPT sampler Samp ∈ SC there exists a PPT simulator algorithm {Simi}i∈[n] such that

If
(

1κ ,
{

fk, fk(xj1
1 , . . . , xjn

n)
}

k∈[q0],j1∈[q1]...,jn∈[qn]
, aux

)
≈c

(
1κ ,
{

fk, ∆k,j1,...,jn

}
k∈[q0],j1∈[q1],...,jn∈[qn]

, aux
)

(20)

then
(

mpk,
{

fk, sk fk

}
k∈[q0]

,
{

ctji
i

}
i∈[n],ji∈[qi]

, aux
)
≈c

(
mpk,

{
fk, sk fk

}
k∈[q0]

,
{

δ
ji
i

}
i∈[n],ji∈[qi]

, aux
)

,

where κ ≥ λn, (mpk, msk) ← Setup(1λ, 1n, prm), sk fk
← KeyGen(msk, fk), ctji

i ← Enc(msk, xji
i), δ

ji
i ←

Simi(msk), and ∆k,j1,...,jn ← Yprm for i ∈ [n], ji ∈ [qi], and k ∈ [q0].

Remark 3.3. Note that 1κ in Equation (20) is introduced for the purpose of padding, allowing the distinguisher for the
distributions to run in time polynomial in κ and requiring the distinguishing advantage to be negligible in κ.10 The
reason why we require κ ≥ λn is that the input length to the distinguisher is polynomial in λn anyway and in order
for the padding to make sense, κ should satisfy this condition. If we need κ to be larger, this doubly strengthens the
requirement for the precondition, as it means we want the distributions in Equation (20) to be indistinguishable against
an adversary with a longer running time and smaller advantage. Ideally, we want κ to be as small as λn to make the
requirement weaker. However, the security proof for our construction in Section 3.2 for general n requires large κ as an
artifact of the proof technique. In the special case of n being constant, we can achieve κ = λn.

The following variant of security will be necessary in Section 6.

Definition 3.4 (Pseudorandomness of the Last Slot Ciphertext). We say that a prMIFE scheme satisfies κ-
pseudorandomness of the last slot ciphertext property if it satisfies κ-security as per defined in Definition 3.2
where the simulator Simn corresponding to the last slot ciphertext outputs a random string of the same length as ctjn

n .

Remark 3.5. It is shown in [AMYY25, BDJ+24] that there is no prMIFE that satisfies the above style security for all
general samplers. Therefore, when we use the security of prMIFE, we invoke the security with respect to a specific
sampler class that is induced by the respective applications. For simplicity, we sometimes will treat as if there was
prMIFE that is secure for all the samplers.

3.2 Construction for n-input prFE
In this section we provide our construction of a multi-input functional encryption scheme for pseudorandom functionalities
for function family FnL(λ),d(λ) = { f : {{0, 1}L}n → {0, 1}}, where the depth of a function f ∈ F is at most
d(λ) = poly(λ). Each function f ∈ F takes as input strings x1, . . . , xn ∈ {0, 1}L and outputs f (x1, . . . , xn) ∈ {0, 1}.
We consider the case of arity n being constant and the general case of n being arbitrary polynomial in λ. While we
provide separate security proofs for these cases, we have unified description of the construction. The reason why we
consider the proofs separately is that we can base the security of the scheme on a weaker assumption when n is constant
than the general case.

Building Blocks. Our construction uses the following building blocks.

1. A secret key encryption scheme SKE = (SKE.Setup, SKE.Enc, SKE.Dec). When we set up the scheme SKE,
we run it on a scaled version of the security parameter Λ, instead of the usual security parameter λ. We will
explain how to set Λ in Remark 3.6. We denote the ciphertext space of the scheme by CT SKE,Λ and the key
space of the scheme by KSKE,Λ. In the following, we drop Λ and denote them as CT SKE and KSKE respectively.

10This is due to our convention, where the running time of the distinguisher should be polynomial in its input length and the distinguishing
advantage should be negligible in its input length. Please refer to Section 2 for the details.

26

2. n single-input FE scheme for pseudorandom functionality prFE1, . . . , prFEn. For i ∈ [n], prFEi = (prFEi.Setup,
prFEi.KeyGen, prFEi.Enc, prFEi.Dec) for circuit class Cinpi(λ),depi(λ),outi(λ)

consisting of circuits with input
length inpi(λ), maximum depth depi(λ) and output length outi(λ). We denote the ciphertext space of the prFEi
scheme by CT prFEi .
For our construction, we set the following parameters

− inp1 = n · L, dep1 = d, and out1 = 1.
− inpi = |SKE.key| + (n − i)L + nΛ, depi = poly(d, λ), and outi = |prFEi−1.ct| for i ∈ [2, n], where

SKE.key ∈ CT SKE and prFEi−1.ct ∈ CT prFEi−1 .

3. We also use n− 1 pseudorandom functions PRF1, . . . , PRFn−1. Similarly to the case of SKE, we use Λ to
setup these instances of PRF. We specify the domain and codomain of the functions as PRFi : {0, 1}Λ ×
{{0, 1}Λ}n−i → {0, 1}leni where leni is the length of randomness used in prFEi.Enc for i ∈ [n− 1].

We describe our construction of prMIFE = (Setup, KeyGen, Enc1, . . . , Encn, Dec) in the following.

Setup(1λ, 1n, prm)→ (mpk, msk). The setup algorithm does the following.

− For all i ∈ [n], generate (prFEi.mpk, prFEi.msk)← prFEi.Setup(1λ, 1prmi).
− Generate SKE.sk← SKE.Setup(1Λ).
− Output mpk := ({prFEi.mpk}i∈[n]) and msk := (SKE.sk, {prFEi.msk, prFEi.mpk}i∈[n]).

KeyGen(msk, f)→ sk f . The key generation algorithm does the following.

− Parse msk = (SKE.sk, {prFEi.msk, prFEi.mpk}i∈[n]).

− Compute prFE1.sk f ← prFE1.KeyGen(prFE1.msk, f).
− Output sk f := prFE1.sk f .

Enci(msk, xi)→ cti. For i ∈ [n− 1], the Enci algorithm outputs a function secret key corresponding to prFEi+1-th
instance in the following way.

− Parse msk = (SKE.sk, {prFEi.msk, prFEi.mpk}i∈[n]).

− Sample ri ← {0, 1}Λ.
− Compute SKE.cti ← SKE.Enc(SKE.sk, xi).
− Define Fi := Fi[SKE.cti, ri, prFEi.mpk] as in Figure 1.11
− Compute prFEi+1.sk← prFEi+1.KeyGen(prFEi+1.msk, Fi).
− Output cti := prFEi+1.sk.

Encn(msk, xn)→ ctn. The Encn algorithm does the following.

− Parse msk = (SKE.sk, {prFEi.msk, prFEi.mpk}i∈[n]).

− For i ∈ [n− 1], sample Ki ← {0, 1}Λ.
− Compute prFEn.ct← prFEn.Enc(prFEn.mpk, (SKE.sk, xn, K1, . . . , Kn−1)).
− Output ctn := prFEn.ct.

Dec(mpk, sk f , f , ct1, . . . , ctn)→ y ∈ {0, 1}. The decryption algorithm does the following.

− Parse mpk = ({prFEi.mpk}i∈[n]), sk f = prFE1.sk f , cti = prFEi+1.sk for i ∈ [n− 1], and ctn = prFEn.ct.
− For i = n, . . . , 2 and do the following.

1. Compute prFEi−1.ct := prFEi.Dec(prFEi.mpk, prFEi.sk, Fi−1, prFEi.ct).

27

Function Fi[SKE.cti, ri, prFEi.mpk]

Hardwired constants: A SKE ciphertext SKE.cti, ri ∈ {0, 1}Λ, and a prFE master public key prFEi.mpk.
On input (SKE.sk, (xi+1, ri+1), . . . , (xn−1, rn−1), xn, K1, . . . Ki), proceed as follows:

1. Compute xi := SKE.Dec(SKE.sk, SKE.cti).

2. Compute prFEi.ct as

− prFE1.Enc(prFE1.mpk, (x1, . . . , xn); PRF1(K1, (r1, . . . , rn−1))) if i = 1.
− prFEi.Enc(prFEi.mpk, (SKE.sk, (xi, ri), . . . , (xn−1, rn−1), xn, K1, . . . Ki−1); PRFi(Ki, (ri, . . . , rn−1))), if

i ̸= 1.

3. Output prFEi.ct.

Figure 1: Function Fi

2. If i = 2 output prFE1.ct, else set i := i− 1 and go to Step 1.
− Output y := prFE1.Dec(prFE1.mpk, prFE1.sk f , f , prFE1.ct).

Remark 3.6. We consider two cases of parameter settings for the construction. One is the case of n being constant. In
this case, we simply set Λ = λ. In the general case of n = poly(λ), we do something more complex. In this case, we
assume that PRF and SKE have subexponential security. This means that there exists 0 < δ < 1 such that there is no
adversary with size 2λδ and distinguishing advantage 2−λδ against SKE and PRF for all sufficiently large λ. In the
security proof, we require PRF and SKE to be secure even against an adversary that takes 1κ as an input and thus runs in
polynomial time in κ. To satisfy this requirement, we run SKE and PRF with respect to a larger security parameter Λ
that satisfies 2Λδ ≥ κω(1). An example choice would be to take Λ := (n2λ)1/δ.

Efficiency. The scheme satisfies

|mpk| = poly(n, L, d, Λ, λ), |sk f | = poly(d, λ), |ct1| = nLpoly(dep, λ), |cti| = poly(n, L, d, Λ, λ) for i ∈ [2, n].

Correctness. We prove the correctness of our scheme via the following theorem.

Theorem 3.7. Suppose prFEi for i ∈ [n] and SKE are correct, then the above construction of prMIFE satisfies correctness
as defined in Definition 3.1.

Proof. To prove the theorem, we first prove the following statement.

Claim 3.8. For i = n, . . . , 2, we have

Pr[prFEi.Dec(prFEi.mpk, prFEi.sk, Fi−1, prFEi.ct) = prFEi−1.ct] = 1 (21)

where

prFEi−1.ct =

 prFEi−1.Enc
(

prFEi−1.mpk, (SKE.sk, (xi−1, ri−1), . . . , (xn−1, rn−1), xn, K1, . . . Ki−2)

; PRFi−1(Ki−1, (ri−1, . . . , rn−1))

)
if i ̸= 2

prFE1.Enc(prFE1.mpk, (x1, . . . , xn); PRF1(K1, (r1, . . . , rn−1))) if i = 2.
11The hardwired values are not hidden, even if we don’t output them explicitly.

28

Proof. We prove this by induction.
Base Case: For i = n, we show that

Pr[prFEn.Dec(prFEn.mpk, prFEn.sk, Fn−1, prFEn.ct) = prFEn−1.ct] = 1.

From the correctness of prFEn scheme, we have with probability 1

prFEn.Dec(prFEn.mpk, prFEn.sk, Fn−1, prFEn.ct)
= Fn−1[SKE.ctn−1, rn−1, prFEn−1.mpk](SKE.sk, xn, K1, . . . Kn−1).

Next, by the definition of Fn−1 and the correctness of the SKE scheme, we have

prFEn.Dec(prFEn.mpk, prFEn.sk, Fn−1, prFEn.ct)

=prFEn−1.Enc
(

prFEn−1.mpk, (SKE.sk, (xn−1, rn−1), xn, K1, . . . Kn−2);
PRFn−1(Kn−1, rn−1)

)

which proves the base case.
Inductive Step: For the inductive step, suppose Equation (21) holds for some i ∈ [3, n] then we prove the same
statement for i− 1. Consider

prFEi−1.Dec(prFEi−1.mpk, prFEi−1.sk, Fi−2, prFEi−1.ct)
= Fi−2[SKE.cti−2, ri−2, prFEi−2.mpk](SKE.sk, (xi−1, ri−1), . . . , (xn−1, rn−1), xn, K1, . . . Ki−2)

=

 prFEi−2.Enc
(

prFEi−2.mpk, (SKE.sk, (xi−2, ri−2), . . . , xn, K1, . . . Ki−3);
PRFi−2(Ki−2, (ri−2, . . . , rn−1))

)
if i ̸= 3

prFE1.Enc(prFE1.mpk, (x1, . . . , xn); PRF1(K1, (r1, . . . , rn−1))) if i = 3.

where in the first equality we use prFEi−1.sk = prFEi−1.KeyGen(prFEi−1.msk, Fi−2) and prFEi−1.ct = prFEi−1.Enc
(prFEi−1.mpk, (SKE.sk, (xi−1, ri−1), . . . , (xn−1, rn−1), xn, K1, . . . Ki−2); PRFi−1(Ki−1, (ri−1, . . . , rn−1)))which fol-
lows from the assumption for i. The second equality follows from the definition of Fi−2 and the correctness of the SKE
scheme.
This completes the proof of the inductive step.

Using the above claim we get prFE.ct1 = prFE1.Enc(prFE1.mpk, (x1, . . . , xn); PRF1(K1, (r1, . . . , rn−1))) from
Step 3.2 of the decryption algorithm with probability 1. From the correctness of prFE1 scheme, the decryption Step 3.2
outputs

y =prFE1.Dec(prFE1.mpk, prFE1.sk f , f , prFE1.ct)
=prFE1.Dec(prFE1.mpk, prFE1.sk f , f , prFE1.Enc(prFE1.mpk, (x1, . . . , xn); PRF1(K1, (r1, . . . , rn−1)))

= f (x1, . . . , xn)

with probability 1.

3.3 Security Proof for General n

Theorem 3.9. Let SCprMIFE be a sampler class for prMIFE. Suppose prFEi scheme satisfies non-uniform κ-prCT
security as per Definition 2.15 for κ = λn2 log λ with respect to the sampler class that contains all SampprFE(1λ),
induced by SampprMIFE ∈ SCprMIFE, as in Equation (30), SKE satisfies sub-exponential INDr security and PRFi is
sub-exponentially secure, then prMIFE constructed above satisfies security for κ = λn2 log λ as in Definition 3.4. Note
that this in particular implies the κ-security defined in Definition 3.2.

Proof. Consider a sampler SampprMIFE that generates the following:

29

1. Key Queries. It issues q0 number of functions f1, . . . , fq0 for key queries.

2. Ciphertext Queries. It issues qi number of messages for ciphertext queries for slot i. We use xji
i to denote the

ji-th ciphertext query corresponding to the i-th slot, where ji ∈ [qi] and i ∈ [n].

3. Auxiliary Information. It outputs the auxiliary information auxA.

To prove the security of prMIFE as per Definition 3.4, we first define {Simi}i∈[n] as follows. Observe that Simn outputs
random string as is required by Definition 3.4.

Simi(msk)→ cti for i ∈ [n− 1].

− Parse msk = (SKE.sk, {prFEi.msk, prFEi.mpk}i∈[n]).

− Sample ri ← {0, 1}Λ and γi ← CT SKE.
− Compute prFEi+1.sk← prFEi+1.KeyGen(prFEi+1.msk, Fi[γi, ri, prFEi.mpk]).
− Output cti := prFEi+1.sk.

Simn(msk)→ ctn. Sample δn ← CT prFEn and output ctn := δn.

Then, it suffices to show auxA, {prFEi.mpk}i∈[n],
{

prFEn.ctjn
}

jn∈[qn]
,{

fk, sk fk
= prFE1.sk fk

}
k∈[q0]

,
{

SKE.ctji
i , rji

i , prFEi+1.skji
}

i∈[n−1],
ji∈[qi]

,



≈c

 auxA, {prFEi.mpk}i∈[n],
{

δ
jn
n

}
jn∈[qn]{

fk, sk fk
= prFE1.sk fk

}
k∈[q0]

,
{

γ
ji
i , rji

i , prFEi+1.skji
}

i∈[n−1],
ji∈[qi]

 (22)

where (auxA, { fk}k, {xji
i }i,ji)← SampprMIFE(1

λ),(
mpk = {prFEi.mpk}i, msk = (SKE.sk, {prFEi.msk, prFEi.mpk}i)

)
← Setup(1λ, 1n, prm),

prFE1.sk fk
← prFE1.KeyGen(prFE1.msk, fk) for k ∈ [q0],

SKE.ctji
i ← SKE.Enc(SKE.sk, xji

i), γ
ji
i ← CT SKE, rji

i ← {0, 1}Λ,

prFEi+1.skji ←
{

prFEi+1.KeyGen(prFEi+1.msk, Fi[SKE.ctji
i , rji

i , prFEi.mpk]) in LHS of Eq. (22)

prFEi+1.KeyGen(prFEi+1.msk, Fi[γ
ji
i , rji

i , prFEi.mpk]) in RHS of Eq. (22)

prFEn.ctjn ← prFEn.Enc(prFEn.mpk, (SKE.sk, xjn
n , K jn

1 , . . . , K jn
n−1)), δ

jn
n ← CT prFEn ,

K jn
i ← {0, 1}Λ, for i ∈ [n− 1], ji ∈ [qi], and jn ∈ [qn]

assuming we have (
1κ , auxA,

{
fk, fk(x

j1
1 , . . . xjn

n)
}

k∈[q0],j1∈[q1],...,jn∈[qn]

)
≈c

(
1κ , auxA,

{
fk, ∆j1,...,jn

k

}
k∈[q0],j1∈[q1],...,jn∈[qn]

)
(23)

where (auxA, { fk}k, {xji
i }i,ji)← SampprMIFE(1

λ), and ∆j1,...,jn
k ← {0, 1}. We prove this in the following two steps.

30

• Step 1. We first show that Equation (23) implies
1κ , auxA, prFE.mpk1

{SKE.ctji
i }i∈[n−1],ji∈[qi]

{
prFE1.ctj}

j∈[q1]×···×[qn]{
fk, sk fk

= prFE1.sk fk

}
k∈[q0]

 ≈c


1κ , auxA, prFE.mpk1

{SKE.ctji
i }i∈[n−1],ji∈[qmsg],

{
∆j}

j∈[q1]×···×[qn]{
fk, sk fk

= prFE1.sk fk

}
k∈[q0]


(24)

where j = (j1, . . . , jn) ∈ [q1]× · · · × [qn], ∆j ← CT prFE1 , and

prFE1.ctj ← prFE1.Enc
(

prFE1.mpk, (xj1
1 , . . . xjn

n)
)

.

• Step 2. We prove that Equation (24) implies Equation (22).

Step 1. We show the following lemma.

Lemma 3.10. If SKE satisfies subexponential INDr security, Equation (23) implies Equation (24).

Proof. We first prove the following:(
1κ , auxA,

{
fk, fk(x

j1
1 , . . . xjn

n)
}

k∈[q0],j1∈[q1],...,jn∈[qn]
,
{

SKE.ctji
i ← SKE.Enc(SKE.sk, xji

i)
}

i∈[n−1],ji∈[qi]

)
≈c

(
1κ , auxA,

{
fk, ∆j1,...,jn

k

}
k∈[q0],j1∈[q1],...,jn∈[qn]

,
{

SKE.ctji
i ← SKE.Enc(SKE.sk, xji

i)
}

i∈[n−1],ji∈[qi]

)
, (25)

where (auxA, { fk}k, {xji
i }i,ji) ← Samp(1λ), SKE.sk ← SKE.Setup(1Λ), and ∆j1,...,jn

k ← {0, 1}. To prove this, we
observe (

1κ , auxA,
{

fk, fk(x
j1
1 , . . . , xjn

n)
}

k,j1,...,jn
,
{

SKE.ctji
i ← SKE.Enc(SKE.sk, xji

i)
}

i,ji

)
≈c

(
1κ , auxA,

{
fk, fk(x

j1
1 , . . . , xjn

n)
}

k,j1,...,jn
,
{

γ
ji
i ← CT SKE

}
i,ji

)
(26)

≈c

(
1κ , auxA,

{
fk, ∆j1,...,jn

k

}
k,j1,...,jn

,
{

γ
ji
i ← CT SKE

}
i,ji

)
(27)

≈c

(
1κ , auxA,

{
fk, ∆j1,...,jn

k

}
k,j1,...,jn

,
{

SKE.ctji
i ← SKE.Enc(SKE.sk, xji

i)
}

i,ji

)
. (28)

Here, we justify each step of the equations above. We can see that Equation (26) follows from subexponential INDr
security of SKE, since SKE.sk is used only for computing {SKE.ctji

i }i,ji and not used anywhere else. Note that by our
choice of the parameter 2Λδ

> κω(1), we can use the security of SKE even for an adversary who runs in time polynomial
in κ. We can see that Equation (27) follows from Equation (23) by noting that adding random strings does not make the
task of disginguishing the two distributions any easier. Finally, Equation (28) follows from INDr security of SKE again.
We then consider a sampler Samp1 that on input 1κ outputs(

f1, . . . , fq0 , {(xj1
1 , . . . , xjn

n)}j1∈[q1],...,jn∈[qn], aux1
def
=
(

1κ , auxA, {SKE.ctji
i }i∈[n−1],ji∈[qi]

))
.

By the security guarantee of prFE1 with sampler Samp1 and Equation (25), we obtain Equation (24).

Step 2. To prove that Equation (24) implies Equation (22), we prove the following statement.

31

Lemma 3.11. For h ∈ [n] and an adversary A, let us consider the following distinguishing advantage:

Advh
A(λ)

def
=

∣∣∣∣∣∣∣∣A


auxA, {prFE.mpki}i∈[h], {SKE.ctji
i , rji

i }i∈[n−1],ji∈[qi]

{ fk, sk fk
= prFE1.sk fk

}k∈[q0]
,

{prFEi+1.skji}i∈[h−1],ji∈[qi]
, {prFEh.ctj}j∈[qh]×···×[qn],



− A


auxA, {prFE.mpki}i∈[h], {SKE.ctji

i , rji
i }i∈[n−1],ji∈[qi]

{ fk, sk fk
= prFE1.sk fk

}k∈[q0]
,

{prFEi+1.skji}i∈[h−1],ji∈[qi]
, {∆j}j∈[qh]×···×[qn]


∣∣∣∣∣∣∣∣ (29)

where j = (jh, . . . , jn), ∆j ← CT prFEh , prFEi+1.skji ← prFEi+1.KeyGen(prFEi+1.msk, Fi[SKE.ctji
i , ri, prFEi.mpk]),

and

prFEh.ctj ← prFEh.Enc
(

prFEh.mpk,
(

SKE.sk, (xjh
h , rjh

h), . . . , (xjn−1
n−1, rjn−1

n−1), (x
jn
n , K jn

1 , . . . , K jn
h−1)

))
.

Then, for every h∗ := {h∗λ ∈ [2, n(λ)]}λ and every non-uniform adversary A = {Aλ}λ such that Size(A) <
poly(κ),12 there exists another non-uniform adversary B = {Bλ}λ and a polynomial Q such that

Advh∗−1
B (λ) ≥ Advh∗

A (λ)/Q(λ′)− negl(κ) and Size(B) ≤ Q(λ′) · Size(A)

assuming the security of prFE as per Definition 2.15 with respect to κ and the subexponential security of PRF, where
λ′ := λn.

Proof. We invoke the security of prFEh∗ with non-uniform sampler Samph∗ that takes as input the security parameter
1λ and outputs

Functions:
{

Fjh∗−1
h∗−1 = Fjh∗−1

h∗−1[SKE.ctjh∗−1
h∗−1, rjh∗−1

h∗−1, prFEh∗−1.mpk]
}

jh∗−1∈[qh∗−1]
,

Inputs:
{

xjh∗ ,...,jn def
=
(

SKE.sk, (xjh∗
h∗ , rjh∗

h∗), . . . (xjn
n , K jn

1 , . . . , K jn
h∗−1)

)}
jh∗∈[qh∗],...,jn∈[qn]

Auxiliary Information: auxh∗
def
=

(
auxA, {prFEi.mpk}i∈[h∗−1], { fk, sk fk

= prFE1.sk fk
}k∈[q0]

,

{SKE.ctji
i , rji

i }i∈[n−1],ji∈[qi]
, {prFEi+1.skji}i∈[h∗−2],ji∈[qi]

)
 . (30)

We can see that the size of Samp is poly(λn) = poly(λ′), since q0q1 . . . qn = poly(λn). We also consider the
following distributions:(

prFEh∗ .mpk,
{

Fjh∗−1
h∗−1, prFEh∗ .skjh∗−1

}
jh∗−1

,
{

prFEh∗ .Enc(xjh∗ ,...,jn)
}

jh∗ ,...,jn
, auxh∗

)
and

(
prFEh∗ .mpk,

{
Fjh∗−1

h∗−1, prFEh∗ .skjh∗−1
}

jh∗−1
,
{

∆jh∗ ,...,jn ← CT prFEh∗

}
jh∗ ,...,jn

, auxh∗

)
. (31)

By the security guarantee of prFEh∗ with respect to Samph∗ , we can see that an adversaryA that can distinguish the
distributions in Equation (31) with advantage more than ϵ can be converted into another adversary B that can distinguish
the following distributions with advantage more than ϵ′

def
= ϵ/Q(λ′)− negl(κ) satisfying Size(B) ≤ Q(λ′)Size(A)

for some polynomial Q:

({
Fjh∗−1

h∗−1

}
jh∗−1

,
{

Fjh∗−1
h∗−1(x

jh∗ ,...,jn)
}

jh∗−1,...,jn
, auxh∗

)
and

({
Fjh∗−1

h∗−1

}
jh∗−1

,
{

∆jh∗−1,...,jn ← CT prFEh∗

}
jh∗−1,...,jn

, auxh∗

)
. (32)

12Here, we deviate from our convention that the adversary runs in polynomial time in its input length. Note that κ here may be super-polynomial in
the input length to A.

32

By inspection, one can see that the distributions in Equation (31) are equivalent to those in Equation (29) with h = h∗.13
Therefore, to complete the proof, it suffices to show that B can be used as a distinguisher against the distributions in
Equation (29) with h = h∗ − 1 whose advantage is at least ϵ′ − negl(κ). To show this, we first observe that the second
distribution in Equation (32) is equivalent to that in Equation (29) with h = h∗ − 1. Therefore, it suffices to prove that
A cannot distinguish the first distribution in Equation (32) from the first distribution in Equation (29) with h = h∗ − 1
with more than negligible advantage in κ. To show this, we consider the following sequence of hybrids.

Hyb1. This is the first distribution of Equation (32). Recall that we have

Fjh∗−1
h∗−1(x

jh∗ ,...,jn) = prFEh∗−1.Enc

prFEh∗−1.mpk,
(

SKE.sk, (xjh∗−1
h∗−1, rjh∗−1

h∗−1), . . . (xjn
n , K jn

1 , . . . , K jn
h∗−2)

)
;

PRFh∗−1(K
jn
h∗−1, (rjh∗−1

h∗−1, . . . , rjn−1
n−1))

 .

Hyb2. This hybrid is the same as the previous one except that we replace PRFh∗−1(K
jn
h∗−1, ·) with the real random

function Rjn(·) for each jn ∈ [qmsg]. Since K jn
h∗−1 is not used anywhere else, we can use the subexponential

security of PRF to conclude that this hybrid is computationally indistinguishable from the previous one. In
particular, by our choice of the parameter 2Λδ

> κω(1), we can conclude that the adversary cannot distinguish
this hybrid from the previous one with advantage more than negl(κ).

Hyb3. This hybrid is the same as the previous one except that we output a failure symbol when there exist

(jh∗−1, . . . , jn−1) ̸= (j′h∗−1, . . . , j′n−1) such that (rjh∗−1
h∗−1, . . . , rjn−1

n−1) = (r
j′h∗−1
h∗−1, . . . , r

j′n−1
n−1). We show that the

probability of this happening is negligible in κ. To prove this, it suffices to show that there are no i ∈
[h∗ − 1, n− 1], j, j′ ∈ [qi] satisfying j ̸= j′ and rj

i = rj′

i . The probability of this happening can be bounded by
(q2

1 + · · · q2
n−1)/22Λ by taking the union bound with respect to all the combinations of i, j, j′. By our choice of

Λ, this is bounded by negl(κ).

Hyb4. In this hybrid, we replace Fjh∗−1
h∗−1(x

jh∗ ,...,jn) with

prFEh∗−1.ctjh∗−1,...,jn = prFEh∗−1.Enc
(

prFEh∗−1.mpk,
(

SKE.sk, (xjh∗−1
h∗−1, rjh∗−1

h∗−1), . . . (xjn
n , K jn

1 , . . . , K jn
h∗−2)

))
.

Namely, we use fresh randomness for each encryption instead of deriving the randomness by Rjn(rjh∗−1
h∗−1, . . . , rjn−1

n−1).
We claim that this change is only conceptual. To see this, we observe that unless the failure condition introduced
in Hyb3 is satisfied, every invocation of the function Rjn is with respect to a fresh input and thus the output can be
replaced with a fresh randomness.

Hyb5. In this hybrid, we remove the failure event. Namely, we always outputs prFEh∗−1.ctjh∗−1,...,jn regardless of
whether the failure event happens or not. Since the failure event happens with probability only negl(κ) probability,
we conclude that the adversary is not able to distinguish this hybrid from the previous one with more than negl(κ)
probability.

Noting that the final hybrid is equivalent to the first distribution in Equation (29) with h = h∗ − 1, we complete the
proof.

Lemma 3.12. Assuming that Adv1
A(λ) (defined in Equation (29)) is negligible in κ for all non-uniform adversaryA such

that Size(A) = poly(κ), we have Advn
B(λ) = negl(λ) for all non-uniform adversary B such that Size(B) = poly(λ).

Proof. For the sake of contradiction, suppose that there exists an adversary B = {Bλ}λ such that ϵn(λ)
def
= Advn

B(λ)

is non-negligible and tn(λ)
def
= Size(B) is polynomial in λ. In particular, this implies that there exists an infinite

13Equation (31) includes additional terms {Fjh∗−1
h∗−1}jh∗−1

while Equation (29) does not. We ignore this difference, since theses terms can be
efficiently computed from auxh∗ and does not affect the indistinguishability.

33

set L ⊆ N and some polynomial p such that ϵn(λ) ≥ 1/p(λ) and tn(λ) ≤ p(λ) for all λ ∈ L. We then define
ti(λ)

def
= p(λ)λn(n−i) log λ and ϵi(λ)

def
= 1/p(λ)λn(n−i) log λ for i = 1, . . . , n− 1. We can also see that t1(λ) < κ and

ϵ1(λ) > 1/κ for sufficiently large λ. This implies that there exists λ0 ∈ N such that for all λ > λ0, there is no
adversary Aλ such that Size(Aλ) ≤ t1(λ) and Adv1

Aλ
(λ) ≥ ϵ1(λ). We then consider the following statement that is

parameterized by λ and h ∈ [n]:

Statementλ,h: There exists an adversary Aλ such that Size(Aλ) ≤ th(λ) and Advh
Aλ

(λ) ≥ ϵh(λ).

For each λ ∈ L ∩N>λ0 , there exists h∗λ ∈ [2, n] such that Statementλ,h∗λ−1 is false and Statementλ,h∗λ
is true,

since Statementλ,1 is false and Statementλ,n is true. However, by applying Lemma 3.11 to the adversary guar-
anteed by Statementλ,h∗λ

being true for the sequence {h∗λ}λ, we obtain another adversary A′ = {A′λ}λ such that
Size(A′λ) ≤ th∗Q(λn) and Advh∗−1

A′λ
(λ) ≥ ϵh∗/Q(λn)− negl(κ) ≥ ϵh∗/2Q(λn) for some polynomial Q. In partic-

ular, Size(A′λ) ≤ th∗−1(λ) and Advh∗−1
A′λ

(λ) ≥ ϵh∗−1(λ) for all sufficiently large λ, since we have λn log λ > Q(λn)

for all sufficiently large λ. However, this contradicts the above assertion that Statementλ,h∗λ−1 is false. This concludes
the proof.

The following lemma completes Step 2 of the proof of Theorem 3.9.

Lemma 3.13. If SKE is INDr secure, Equation (24) implies Equation (22).

Proof. We first observe that Equation (24) is equivalent to saying Adv1
A(λ) = negl(κ) for all A with Size(A) =

poly(κ). By Lemma 3.12, this implies that Advn
A(λ) = negl(λ) for allA with Size(A) = poly(λ). Namely, we have auxA, {prFEi.mpk}i∈[n],

{
fk, sk fk

= prFE1.sk fk

}
k∈[q0]{

SKE.ctji
i , rji

i , prFEi+1.skji
}

i∈[n−1],
ji∈[qi]

,
{

prFEn.ctjn
}

jn∈[qn]



≈c

auxA, {prFEi.mpk}i∈[n],
{

fk, sk fk
= prFE1.sk fk

}
k∈[q0]{

SKE.ctji
i , rji

i , prFEi+1.skji
}

i∈[n−1],
ji∈[qi]

,
{

δ
jn
n

}
jn∈[qn]

 .

By INDr security of SKE, we haveauxA, {prFEi.mpk}i∈[n],
{

fk, sk fk
= prFE1.sk fk

}
k∈[q0]{

SKE.ctji
i , rji

i , prFEi+1.skji
}

i∈[n−1],
ji∈[qi]

,
{

δ
jn
n

}
jn∈[qn]



≈c

auxA, {prFEi.mpk}i∈[n],
{

fk, sk fk
= prFE1.sk fk

}
k∈[q0]{

γ
ji
i , rji

i , prFEi+1.skji
}

i∈[n−1],
ji∈[qi]

,
{

δ
jn
n

}
jn∈[qn]

 .

Combining the above equations, Equation (22) readily follows.

We conclude the proof of Theorem 3.9.

Remark 3.14 (Comparison with [VWW22]). We note that in high level, overall structure of our security proof above is
similar to that of witness encryption in [VWW22]. In both proofs, the main step considers parameterized distributions
{Dh,b}h∈[n],b∈{0,1} and shows thatD1,0 ≈c D1,1 holds ifDn,0 andDn,1 are indistinguishable even with subexponentially
small advantage against subexponential time adversary. To show this claim, [VWW22] uses the evasive LWE assumption,
while we use the security of prFE, which in turn is reduced to the evasive LWE assumption. While this difference
stems simply from the fact that we introduce the intermediate primitive of prFE to construct prMIFE instead of directly

34

constructing it from evasive LWE, there are more fundamental differences as well. In particular, we identify certain
subtle issues in the proof by [VWW22] and fix these by strengthening the assumptions. We elaborate on this in the
following.

On the multiplicative invocation of evasive LWE. To prove D1,0 ≈c D1,1, [VWW22] assumes that there exists an
adversary A1 that distinguishes them with non-negligible advantage ϵ and polynomial time t for the sake of
contradiction. They then invoke the evasive LWE assumption with respect to an appropriately defined sampler
Samp1 to conclude that there exists a distinguishing adversary A2 against D2,0 and D2,1. This process continues
multiple times, where they invoke evasive LWE with respect to the security parameter λj := 2jλ and an adversary
Aj for the j-th invocation to obtain another adversary Aj+1, where Ak is a distinguisher against Dk,0 and
Dk,1. Denoting the distinguishing advantage against Dj,0 and Dj,1 of Aj by ϵj, we have ϵj+1 ≥ ϵj/polyj(λj),
where polyj is a polynomial that is determined by the sampler Sampj. Finally, they obtain a distinguisher
An against Dn,0 and Dn,1, where ϵn = ϵ/poly1(λ1)poly2(λ2) · · ·polyn(λn) and the running time being
poly1(λ1)poly2(λ2) · · ·polyn(λn). They derive the conclusion by saying

poly1(λ1)poly2(λ2) · · ·polyn(λn) = poly(λ1 · · · λn) = poly(2n2
λn) (33)

and setting the parameter so that there is no adversary of this running time and distinguishing advantage against
Dn,0 and Dn,1. However, a subtlety is that poly1(λ1)poly2(λ2) · · ·polyn(λn) = poly(λ1 · · · λn) is not
necessarily true. For example, one can consider the setting where we have polyj(λ) = λ2j . This example
may look a bit artificial, but it does not contradict the evasive LWE assumption, since j is treated as a constant
asymptotically. In words, the issue arises from the fact that even if each polynomial has a constant exponent,
the maximum of the exponents can be arbitrarily large function in λ, when we consider non-constant number of
polynomials. In this setting, An’s distinguishing advantage is too small to derive the contradiction.
The above issue occurs due to the invocations of evasive LWE super-constant times. To resolve the problem,
we consider non-uniform sampler {Samph∗}h∗ that hardwires the "best" index h∗ and invoke the evasive LWE
only with respect to this sampler (See Lemma 3.11 and 3.12). We avoid the above problem, since we invoke the
evasive LWE only once in the proof. However, this solution entails the strengthening of the assumption where we
consider non-uniform samplers. We believe that the same strengthening of the assumption is required for the
proof in [VWW22] as well.

On the additive term of evasive LWE. Here, we also discuss the other subtlety that arises in the proof by [VWW22].
To focus on the issue, we ignore the first issue discussed above and assume polyj(λ) = λc holds for some
fixed c ∈N that does not depend on j, which makes Equation (33) correct. In the proof of [VWW22] (and in
our explanation above), we implicitly ignore the negligible additive term when applying evasive LWE. Namely,
when we apply the assumption with respect to Aj, the lower bound for the advantage ϵj+1 of Aj+1 should be
ϵj+1 ≥ ϵj/poly(λj)− negl(λj) rather than ϵj+1 ≥ ϵj/poly(λj). This does not cause any difference when
we consider the setting where ϵj is non-negligible in λj. However, for larger j, ϵj is negligible function in
the security parameter λj. Concretely, the lower bound on ϵn−1 obtained by ignoring the additive term is
ϵ/poly(2(n−1)2

λn−1).14 If we apply evasive LWE once more with respect to λn = 2nλn to complete the proof,
we have ϵn ≥ ϵn−1/poly(λn)− negl(λn). The RHS of the inequality may be negative, since ϵn−1/poly(λn)
is some specific negligible function in λn and this may be smaller than the second term negl(λn). Therefore,
what we can derive here is the trivial bound ϵn ≥ 0, which is not enough for our purpose. To fix this issue, we
introduce additional parameter κ and then modify the assumption so that the additive term is negligibly small in κ,
which is set much larger than λ. Again, we believe that the same strengthening of the assumption is required for
the proof in [VWW22] as well. Finally, we note that the above problem does not occur when n is constant. This
is because in that case, we have ϵn is non-negligible and thus the problem of ϵn may be smaller than negln does
not occur.

14Namely, the actual value of ϵn−1 may be even smaller.

35

3.4 Security Proof for Constant n (with Weaker Assumption)
Here, we prove the security of our construction in the case of n being a constant. The reason why we consider the
security proof separately for this special case is that we can give a proof from better assumptions than the general case.
In more detail, the security is proven assuming the standard security notion for prFE, rather than the non-uniform and κ
version of it. As a result, the security of the prMIFE is reduced to the the (plain) evasive LWE instead of non-uniform
κ-evasive LWE. The reason why we can achieve this is that in the case of n being constant, we can avoid all the subtleties
that arise in the general case. We refer to Remark 3.14 for more discussions.

Theorem 3.15. Let SCprMIFE be a samples class for prMIFE. Suppose prFEi scheme satisfies prCT security as per
Definition 2.12 with respect to the sampler class that contains all SampprFE(1λ), induced by SampprMIFE ∈ SCprMIFE,
as in Equation (30), SKE satisfies INDr security and PRFi is secure, then prMIFE constructed in Section 3.2 for
constant n satisfies security for κ = λn as in Definition 3.4. Note that this in particular implies the κ-security defined in
Definition 3.2.

Proof. The proof of this theorem largely follows that of Theorem 3.9. The crucial difference is that to get the equivalent
of Lemma 3.12, we simply invoke the (non-κ, uniform) security of prFE n-times. We sketch the proof below while
highlighting the difference. We consider the same simulator as in the proof of Theorem 3.9 and divide the proof steps
into Step 1 and Step 2 in the same manner.

• We start with Step 1, which consists of proving that Equation (23) implies Equation (24). This is proven in the
same manner as Lemma 3.10. However here, since we set κ = λn = poly(λ), we do not need subexponential
INDr security and only (polynomial) INDr security suffices for SKE.

• We then move to prove Step 2. The goal here is to prove Equation (24) implies Equation (22).

– We first observe that the uniform version of Lemma 3.11 holds by the same proof, where we only consider
constant h∗ rather than arbitrary sequence h∗ = {h∗λ}λ and uniform PPT adversaries. Notice that then the
sampler is now uniform, since it no longer has to hardwire the sequence {h∗λ}λ. In this setting, non-uniform
κ-prCT security collapses to the (plain) prCT security, since κ = λn = poly(λ) and the sampler is uniform.
Therefore, plain prCT security is sufficient for the proof. Furthermore, since we set κ = λn = poly(λ), we
do not need subexponential security for PRF and standard security suffices.

– We then consider an analogue of Lemma 3.12, which asserts that if Adv1
A(λ) (defined in Equation (29)) is

negligible for all (uniform) PPT adversary that runs in polynomial time in λ, then so is Advn
A(λ). This

is proven by observing that the indistinguishability of the distributions in Equation (29) for h = h∗ − 1
implies that for h∗ by the analogue of Lemma 3.11 explained in the previous item. By applying this n-times,
we obtain the conclusion.

– We finally conclude the proof by the same argument as Lemma 3.13.

This completes the proof of Theorem 3.15.

We encapsulate the results of this section using the following theorems.

Theorem 3.16 (prMIFE for poly arity). Let κ = λn2 log λ. Assume non-uniform κ-evasive LWE (Assumption 2.4),
subexponentially secure PRF against non-uniform adversary, and non-uniform sub-exponential LWE (Assumption A.5).
Then there exists a prMIFE scheme for arity n = poly(λ), supporting functions with input length L and bounded
polynomial depth d = d(λ), and satisfying κ-security (Definition 3.2) with efficiency

|mpk| = poly(n, L, d, Λ, λ), |sk f | = poly(d, λ), |ct1| = nLpoly(dep, λ), |cti| = poly(n, L, d, Λ, λ) for i ∈ [2, n]

where Λ := (n2λ)1/δ.

Theorem 3.17 (prMIFE for constant arity). Let κ = λn. Assume evasive LWE (Assumption 2.1) and LWE
(Assumption A.5). Then there exists a prMIFE scheme for arity n = O(1), supporting functions with input length L
and bounded polynomial depth d = d(λ), and satisfying κ-security (Definition 3.2) with efficiency

|mpk| = poly(n, L, d, λ), |sk f | = poly(d, λ), |ct1| = nLpoly(dep, λ), |cti| = poly(n, L, d, λ) for i ∈ [2, n].

36

4 Multi-Input Predicate Encryption for Polynomial Arity for P
In this section, we provide our construction of multi-input predicate encryption (miPE) for all circuits as an application
of prMIFE. Similarly to Section 3, we consider two settings where the arity is either constant or arbitrary polynomial.
The former setting leads to a construction with weaker assumption where we only require (plain) evasive LWE and LWE.
This improves the construction by [ARYY23], which additionally requires non-standard tensor LWE assumption. The
latter setting leads to a construction with polynomial arity and for all circuits under the stronger non-uniform κ-evasive
LWE assumption. This resolves the open problem posed by [ARYY23].

4.1 Construction
In this section, we give a construction of a miPE scheme using prMIFE and PE. The construction will support functions
with arity n = n(λ) where input string for each arity is in {0, 1}L and the output is {0, 1}. We further restrict the depth
of the circuits that implement the function by a parameter dep. We denote this function class by Fprm, where prm is the
set of the parameters n, L, dep. Namely, Fprm consists of n-ary functions that takes as input strings x1, . . . , xn, where
each xi ∈ {0, 1}L and outputs f (x1, . . . , xn) ∈ {0, 1}. The message space for each slot is {0, 1}. Namely, we have
µ1, . . . , µn ∈ {0, 1} in the following.

Building Blocks. Below, we list the building blocks required for our construction.

1. A single input predicate encryption scheme PE = PE.(Setup, KeyGen, Enc, Dec) for function family supporting
functions f : {0, 1}nL → {0, 1} that can be represented as circuits with depth at most dep. We denote by this
function class by FprmPE , where prmPE = (1nL, 1dep) is the parameter that specifies the circuit class. We also
assume that the scheme has message space {0, 1}n and satisfies INDr security (Definition 2.19). We can instantiate
such a PE by using the construction by [GVW15b] or by the combination of lockable obfuscation [WZ17] (a.k.a
compute-and-compare obfuscation [WZ17]) and ABE for circuits by [BGG+14], for example.
We use CT PE to denote the ciphertext space, ℓPE

ct to denote the ciphertext length and dPE
Enc to denote the depth of

the circuit required to compute the PE.Enc algorithm.

2. A n-input FE for pseudorandom functionalities prMIFE = prMIFE.(Setup, KeyGen, Enc1, . . . , Encn, Dec) for
function family FL′(λ),dPE

Enc
consisting of circuits with input space {0, 1}L′ and output space {0, 1} where we set

L′ = L + λ + 1 for our construction and with maximum depth dPE
Enc. We denote the parameters that specify

FL′(λ),dPE
Enc

by prmprMIFE.

3. A pseudorandom function PRF : {0, 1}Λ × {0, 1}(n−1)Λ → {0, 1}Rlen , where {0, 1}Λ and {0, 1}(n−1)Λ are
the key space and input space respectively and Rlen is the length of randomness used in the PE.Enc algorithm.
We will discuss how to set Λ in Remark 4.1.

Next, we describe our construction.

Setup(1λ, 1n, prm)→ (mpk, msk). The setup algorithm does the following.

− Generate (prMIFE.mpk, prMIFE.msk)← prMIFE.Setup(1λ, 1n, prmprMIFE).

− Generate (PE.mpk, PE.msk)← PE.Setup(1Λ, prmPE).
− Output mpk = (prMIFE.mpk, PE.mpk) and msk = (prMIFE.msk, PE.msk).

KeyGen(mpk, msk, f)→ sk f .The key generation algorithm does the following.

− Parse mpk = (prMIFE.mpk, PE.mpk) and msk = (prMIFE.msk, PE.msk).
− Compute PE.sk f ← PE.KeyGen(PE.msk, f).

37

− Compute prMIFE.skF ← prMIFE.KeyGen(prMIFE.msk, F[PE.mpk]) where F[PE.mpk] is defined as follows:

F[PE.mpk]
(
(x1, µ1, r1), . . . , (x(n−1), µ(n−1), r(n−1)), (xn, µn, rn)

)
= PE.Enc

(
PE.mpk, (x1, . . . , xn), (µ1, . . . , µn); PRF(rn, (r1, . . . , r(n−1)))

)
− Output sk f = (PE.sk f , prMIFE.skF)15.

Enci(msk, xi, µi)→ cti for 1 ≤ i ≤ n.The slot i encryption algorithm does the following.

− Parse msk = (prMIFE.msk, PE.msk).
− For 1 ≤ i ≤ n, sample ri ← {0, 1}Λ and compute prMIFE.cti ← prMIFE.Enci(prMIFE.msk, (xi, µi, ri)).
− Output cti := prMIFE.cti.

Dec(mpk, sk f , f , ct1, . . . , ctn)→ y ∈ {0, 1}n ∪ {⊥}. The decryption algorithm does the following.

− Parse mpk = (prMIFE.mpk, PE.mpk), sk f = (PE.sk f , prMIFE.skF) and {cti = prMIFE.cti}i∈[n].

− Compute PE.ct = prMIFE.Dec(prMIFE.mpk, prMIFE.skF, F, prMIFE.ct1, . . . , prMIFE.ctn).
− Compute y = PE.Dec(PE.mpk, PE.sk f , f , PE.ct).
− Output y.

Remark 4.1. Here, we discuss how we set Λ. Similarly to the case of prMIFE in Section 3, we consider two cases of
parameter settings for the construction. One is the case of n being constant. In this case, we simply set Λ = λ. In the
general case of n = poly(λ), we assume that PRF and SKE are subexponentially secure. This means that there exists
0 < δ < 1 such that there is no adversary with size 2λδ and distinguishing advantage 2−λδ . Similarly to the case of
prMIFE (See Remark 3.6 for further discussion), we set Λ so that it satisfies 2Λδ ≥ κω(1). An example choice would be
to take Λ := (n2λ)1/δ.

Correctness. We prove the correctness of our scheme using the following theorem.

Theorem 4.2. Assume PE and prMIFE schemes are correct, and PRF is secure. Then the above construction of miPE
scheme is correct.

Proof. From the correctness of the prMIFE scheme and definition of function F, we have

prMIFE.Dec(prMIFE.mpk, prMIFE.skF, F, prMIFE.ct1, . . . , prMIFE.ctn) = PE.ct

with probability 1, where

PE.ct = PE.Enc
(

PE.mpk, (x1, . . . , xn), (µ1, . . . , µn); PRF(rn, (r1, . . . , r(n−1)))
)

.

Next, using the security of PRF, with all but negl advantage, PRF(rn, (r1, . . . , r(n−1))) is indistinguishable from
R← {0, 1}Rlen . Since

PE.Dec(PE.mpk, PE.sk f , f , PE.Enc (PE.mpk, (x1, . . . , xn), (µ1, . . . , µn); R)) = (µ1, . . . , µn)

holds for randomly chosen R with all but negl probability if f (x1, . . . , xn) = 1 by the correctness of PE scheme, the
above holds even for R = PRF(rn, (r1, . . . , r(n−1))) with all but negl probability. Hence, the correctness.

15Note that one can compute prMIFE.skF in the Setup algorithm and output it as a part of public key rather than the secret key as it does not
require the knowledge of f . We output this here for notational convinience.

38

4.2 Security
Here, we prove the security of our scheme. The following theorem asserts the security of the scheme for the case of n
being arbitrary polynomial.

Theorem 4.3. Assume prMIFE scheme is secure (as per Definition 3.2) with respect to κ = λn2 log λ and the sampler
class containing the sampler SampprMIFE as defined in Eq. 35, PE scheme is sub-exponentially secure (Definition 2.19)
and PRF is sub-exponentially secure. Then the construction of miPE is secure as per Definition 2.20.

Proof. Suppose the adversary A outputs the following:

1. Key Queries. It issues q0 number of functions f1, . . . , fq0 for key queries.

2. Ciphertext Queries. It issues qi number of messages for ciphertext queries for slot i. We use (xji
i , µ

ji
i) to denote

the ji-th ciphertext query corresponding to the i-th slot, where ji ∈ [qi] and i ∈ [n].

3. Auxiliary Information. It outputs the auxiliary information auxA.

To prove the security as per Definition 2.20 we first define {Simi}i∈[n] as follows.

Simi(msk)→ cti for i ∈ [n]. Parse msk = (prMIFE.msk, PE.msk). Set Simi(msk) = prMIFE.Simi(prMIFE.msk),
where {prMIFE.Simi}i∈[n] is the simulator whose existence is guaranteed by the security of prMIFE (See
Definition 3.2).

Then, it suffices to show
auxA, mpk = (prMIFE.mpk, PE.mpk),{

F[PE.mpk], fk, sk fk
= (PE.sk fk

, prMIFE.skF)
}

k∈[q0]
,{

ctji
i = prMIFE.ctji

i

}
i∈[n],ji∈[qi]

 ≈c


auxA, mpk = (prMIFE.mpk, PE.mpk),{

F[PE.mpk], fk, sk fk
= (PE.sk fk

, prMIFE.skF)
}

k∈[q0]
,{

δ
ji
i ← prMIFE.Simi(msk)

}
i∈[n],ji∈[qi]


(34)

where

(auxA, { fk}k, {(xji
i , µ

ji
i)}i,ji)← A(1

λ),

(mpk = (prMIFE.mpk, PE.mpk), msk = (prMIFE.msk, PE.msk))← Setup(1λ, 1n, prm),
prMIFE.skF ← prMIFE.KeyGen(prMIFE.msk, F[PE.mpk]),
PE.sk fk

← PE.KeyGen(PE.msk, fk) for k ∈ [q0],

prMIFE.ctji
i ← prMIFE.Enci(prMIFE.msk, (xji

i , µ
ji
i , rji

i)), rji
i ← {0, 1}Λ for i ∈ [n], ji ∈ [qi].

We invoke the security of prMIFE with sampler SampprMIFE that outputs
Function: F[PE.mpk],
Inputs:

{(
(xj1

1 , µ
j1
1 , rj1

1), . . . , (xjn
n , µ

jn
n , rjn

n)
)}

i∈[n],ji∈[qi]
,

Auxiliary Information: aux =
(

auxA, PE.mpk, { fk, PE.sk fk
}k∈[q0]

)
 (35)

From the security guarantee of the prMIFE scheme with sampler SampprMIFE and simulator {prMIFE.Simi}i∈[n], we
have that (

aux, prMIFE.mpk, F[PE.mpk], prMIFE.skF,
{prMIFE.ctji

i ← prMIFE.Enci(prMIFE.msk, (xji
i , µ

ji
i , rji

i))}i∈[n],ji∈[qi]

)

≈c

(
aux, prMIFE.mpk, F[PE.mpk], prMIFE.skF,

{prMIFE.ctji
i ← prMIFE.Simi(prMIFE.msk)}i∈[n],ji∈[qi]

)

39

if
(
1κ , aux, {F[PE.mpk], PE.ctj1,...,jn}i∈[n],ji∈[qi]

)
≈c
(
1κ , aux, {F[PE.mpk], PE.∆j1,...,jn}i∈[n],ji∈[qi]

)
where PE.∆j1,...,jn ← CT PE for i ∈ [n], ji ∈ [qi] and

PE.ctj1,...,jn =F[PE.mpk]
((

xj1
1 , µ

j1
1 , rj1

1

)
, . . . ,

(
x

j(n−1)
(n−1), µ

j(n−1)
(n−1), r

j(n−1)
(n−1)

)
,
(

xjn
n , µ

jn
n , rjn

n

))
=PE.Enc

(
PE.mpk, (xj1

1 , . . . , xjn
n), (µ

j1
1 , . . . , µ

jn
n); PRF

(
rjn

n , (rj1
1 , . . . , r

j(n−1)
(n−1))

))
and PE.∆j1,...,jn ← CT PE for i ∈ [n], ji ∈ [qi].

Thus to prove Equation (34), it suffices to show 1κ , auxA, F[PE.mpk], PE.mpk, { fk, PE.sk fk
}k∈[q0]

,{
PE.ctj1,...,jn = PE.Enc

(
PE.mpk, (xj1

1 , . . . , xjn
n), (µ

j1
1 , . . . , µ

jn
n); PRF(rjn

n , (rj1
1 , . . . , r

j(n−1)
(n−1)))

)}
i∈[n],ji∈[qi]

 (36)

≈c

(
1κ , auxA, F[PE.mpk], PE.mpk, { fk, PE.sk fk

}k∈[q0]
,{

PE.∆j1,...,jn ← CT PE
}

i∈[n],ji∈[qi]

)
We prove the above via the following sequence of hybrids.

Hyb1. This is Equation (36). 1κ , auxA, F[PE.mpk], PE.mpk, { fk, PE.sk fk
}k∈[q0]

,{
PE.ctj1,...,jn = PE.Enc

(
PE.mpk, (xj1

1 , . . . , xjn
n), (µ

j1
1 , . . . , µ

jn
n); PRF(rjn

n , (rj1
1 , . . . , r

j(n−1)
(n−1)))

)}
i∈[n],ji∈[qi]


Hyb2. This hybrid is the same as the previous one except that we replace PRF(rjn

n , ·) with the real random function
Rjn(·) for each jn ∈ [qn]. Since rjn

n is not used anywhere else, we can use the subexponential security of PRF
to conclude that this hybrid is computationally indistinguishable from the previous one. In particular, by our
choice of the parameter 2Λδ

> κω(1), we can conclude that the adversary cannot distinguish this hybrid from the
previous one with advantage more than negl(κ).

Hyb4. This hybrid is the same as the previous one except that we output a failure symbol when there exist
(j1, . . . , jn−1) ̸= (j′1, . . . , j′n−1) such that (rj1

1 , . . . , rjn−1
n−1) = (rj′1

1 , . . . , r
j′n−1
n−1). We show that the probability of this

happening is negligible in κ. To prove this, it suffices to show that there are no i ∈ [n], j, j′ ∈ [qi] satisfying
j ̸= j′ and rj

i = rj′

i . The probability of this happening can be bounded by (q2
1 + · · · q2

n−1)/22Λ by taking the
union bound with respect to all the combinations of i, j, j′. By our choice that 2Λδ

> κω(1), this probability is
bounded by negl(κ).

Hyb5. This hybrid is the same as the previous one except that we compute

PE.ctj1,...,jn ← PE.Enc
(

PE.mpk, (xj1
1 , . . . , xjn

n), (µ
j1
1 , . . . , µ

jn
n)
)

.

Namely, we use fresh randomness for each encryption instead of deriving the randomness from Rjn(·). This
change is only conceptual.
In this hybrid, the view of the adversary is 1κ , auxA, F[PE.mpk], PE.mpk, { fk, PE.sk fk

}k∈[q0]
,{

PE.ctj1,...,jn ← PE.Enc
(

PE.mpk, (xj1
1 , . . . , xjn

n), (µ
j1
1 , . . . , µ

jn
n)
)}

i∈[n],ji∈[qi]


40

Hyb6. This hybrid is the same as the previous one except that we use sub-exponential security of underlying PE scheme
to replace PE.Enc(PE.mpk, (xj1

1 , . . . , xjn
n), (µ

j1
1 , . . . , µ

jn
n)) with PE.δj1,...,jn ← CT PE for all i ∈ [n] and ji ∈ [qi].

By admissibility of A in the miPE security, we have f (xj1
1 , . . . , xjn

n) = 0 which satisfies the admissibility of
the single input PE security game. We therefore replace each of PE.ctj1,...,jn with a random string by the PE
security. By our choice of the parameter 2Λδ

> κω(1) and subexponential security of PE, the distinguishing
advantage of the adversary when we replace single ciphertext is negl(κ). Since there are q1 · · · qn = poly(κ)
ciphertexts, we can conclude that the distinguishing advantage between this hybrid from the previous one is at
most poly(κ)negl(κ) = negl(κ).
In this hybrid, the view of the adversary is(

1κ , auxA, F[PE.mpk], PE.mpk, { fk, PE.sk fk
}k∈[q0]

,{
PE.δj1,...,jn ← CT PE

}
i∈[n],ji∈[qi]

)
which is the distribution on RHS in Equation (36).

Hence, the proof.

Constant arity case. In the special case of n being a constant, we can base the security of the scheme on weaker
security requirements for the underlying ingredients. Concretely, we have the following theorem.

Theorem 4.4. Assume prMIFE scheme is secure (as per Definition 3.2) with respect to κ = λn and the sampler class
containing the sampler SampprMIFE as defined in Eq. 35, PE scheme is secure (Definition 2.19) and PRF is secure.
Then the construction of miPE is secure as per Definition 2.20.

The proof of the above theorem is exactly the same as Theorem 4.3 except that here κ = λn. Since κ = poly(λ),
we do not need subexponential security for PRF and PE. In addition, since prMIFE for constant arity with κ = λn can
be constructed from (plain) evasive LWE, which is weaker assumption than non-uniform κ-version of it that is necessary
for the general case.

We encapsulate the results of this section using the following theorems.

Theorem 4.5 (miPE for poly arity). Let κ = λn2 log λ. Assuming non-uniform κ-evasive LWE (Assumption 2.4),
subexponentially secure PRF against non-uniform adversary, and non-uniform sub-exponential LWE (Assumption A.5),
there exists a miPE scheme for arity n = poly(λ), supporting functions of bounded polynomial depth dep = dep(λ),
and satisfying security as per Definition 2.20.

Theorem 4.6 (miPE for constant arity). Assuming evasive LWE (Assumption 2.1) and LWE (Assumption A.5),
there exists a prMIFE scheme for arity n = O(1), supporting functions of bounded polynomial depth d = d(λ), and
satisfying security as per Definition 2.20.

5 Indistinguishability Obfuscation for Pseudorandom Functionalities
5.1 Definition
In this section we give the definitions for indistinguishability obfuscation for pseudorandom functionalities (prIO) for
circuits.

Syntax. An indistinguishability obfuscator for pseudorandom functionalities consists of the following algorithms.

iO(1λ, C)→ C̃. The obfuscation algorithm takes as input the security parameter λ and a circuit C : {0, 1}n → {0, 1}m

with arbitrary n and m. It outputs an obfuscated circuit C̃.

Eval(C̃, x)→ y. The evaluation algorithm takes as input an obfuscated circuit C̃ and an input x ∈ {0, 1}n. It outputs y.

41

A uniform PPT machine iO is an indistinguishability obfuscator for pseudorandom functionalities w.r.t parameter
κ = κ(λ) if it satisfies the following properties.

Definition 5.1 (Polynomial Slowdown). For all security parameters λ ∈N, for any circuit C and every input x, the
evaluation time of iO(1λ, C) on x is at most polynomially slower than the run time of the circuit C on x.

Definition 5.2 (Correctness). For all security parameters λ ∈N, for all integers n, m, all circuits C : {0, 1}n → {0, 1}m,
and all input x ∈ {0, 1}n, we have that:

Pr
[
C′ ← iO(1λ, C) : C′(x) = C(x)

]
= 1

where the probability is taken over the coin-tosses of the obfuscator iO.

Definition 5.3 (Indistinguishability for Pseudorandom Functionality). For the security parameter λ = λ(λ), let
Samp be a PPT algorithm that on input 1λ, outputs

(C0, C1, aux ∈ {0, 1}∗)

where C0 : {0, 1}n → {0, 1}m and C1 : {0, 1}n → {0, 1}m have the same description size. We say that a prIO scheme
is secure with respect to the sampler class SC if for every PPT sampler Samp ∈ SC the following holds.

If
(

1κ , {C0(x)}x∈{0,1}n , aux
)
≈c

(
1κ , {∆x ← {0, 1}m}x∈{0,1}n , aux

)
≈c

(
1κ , {C1(x)}x∈{0,1}n , aux

)
then

(
iO(1λ, C0), aux

)
≈c
(
iO(1λ, C1), aux

)
where κ ≥ 2n.

Remark 5.4. Note that 1κ in the precondition is introduced for the purpose of padding, allowing the distinguisher for
the distributions to run in time polynomial in κ. The reason why we require κ ≥ 2n is that the input length to the
distinguisher is polynomial in 2n anyway and in order for the padding to make sense, κ should satisfy this condition.

Remark 5.5. It is shown in [AMYY25, BDJ+24] that there is no prIO scheme satisfying the above security for all general
samplers. Therefore, when we use the security of prIO, we invoke the security with respect to a specific sampler class
that is induced by the respective applications.

5.2 Construction
Our construction follows the blueprint of the multi-input FE to iO conversion by Ananth and Jain [AJ15]. To obfuscate
a circuit with input domain {0, 1}n, we generate a prMIFE instance for arity n + 1. We then let C be encrypted in
position n + 1, and the two inputs 0 and 1 be encrypted in position i for i ∈ [n]. The 2n + 1 ciphertexts together with a
secret key for the universal circuit and the public parameters would form the iO.

Building Blocks. We use a (n + 1)-input prFE scheme prMIFE = prMIFE.(Setup, KeyGen, {Enci}i∈[n+1], Dec) for
the circuit class with fixed input length, bounded depth, and binary output. We require prMIFE to satisfy κ-security
defined as per Definition 3.2. We can instantiate the scheme by our construction in Section 3.2 with κ = λn2 log λ.

Next, we describe the construction of prIO for all circuits.

iO(1λ, C). Given as input the security parameter 1λ and a circuit C : {0, 1}n → {0, 1}m for arbitrary input length n,
output length m, and description size L, do the following:

− Run (mpk, msk)← prMIFE.Setup(1λ, 1n+1, prm), where prm specifies message length L and the maximum
depth d of the circuits supported by the prMIFE instance. We set d to be the depth of the universal circuit U
that, upon input an n-ary circuit C and vector x ∈ {0, 1}n, outputs U(C, x) = C(x).

− Compute ctn+1 ← prMIFE.Encn+1(msk, C).
− For i ∈ [n] and b ∈ {0, 1}, compute cti,b = prMIFE.Enci(msk, b).

42

− Compute skU ← prMIFE.KeyGen(msk, U), where U is defined in the first item above.
− Output C̃ =

(
{cti,b}i∈[n],b∈{0,1}, ctn+1, skU , mpk

)
Eval(C̃, x). Given as input an obfuscated circuit C̃ and an input x ∈ {0, 1}n, do the following:

1. Parse C̃ =
(
{cti,b}i∈[n],b∈{0,1}, ctn+1, skU , mpk

)
.

2. Output prMIFE.Dec(mpk, skU , U, ctx1 , . . . , ctxn , ctn+1).

Remark 5.6. We note that the input size of prMIFE scheme varies for slot 0, where we encrypt C, and slot i, where we
encrypt a bit b, for i ∈ [n]. To make the input size consistent throughout the slots, we can pad the bit b with 0 (say) such
that |b0| = |C| and give a prMIFE key for a circuit U which on input (C, b10, . . . , bn0), where bi ∈ {0, 1}, simply
discards the padding and outputs C(b1, . . . , bn).

Correctness. The correctness of the scheme follows in a straightforward manner from the correctness of the underlying
prMIFE scheme and the definition of the universal circuit U.

5.3 Security
Theorem 5.7. Let SCprIO be a sampler class for prIO. Suppose prMIFE scheme is secure (Definition 3.2) for κ = κ(λ)
w.r.t sampler class that contains all SampprMIFE,0 and SampprMIFE,1, induced by SampprIO ∈ SCprIO, as defined in
Equation (39). Then the prIO scheme satisfies security as defined in Definition 5.3 with κ = κ(λ).

Proof. Consider a sampler SampprIO that generates the following:

1. Obfuscation Query. It issues C0, C1 : {0, 1}n → {0, 1}m with the same size L as an obfuscation query.

2. Auxiliary Information. It outputs the auxiliary information auxA.

To prove the security as per Definition 5.3, we show that(
{cti,b}i∈[n],b∈{0,1}, ct0

n+1, skU , mpk, auxA
)
≈c

(
{cti,b}i∈[n],b∈{0,1}, ct1

n+1, skU , mpk, auxA
)

if
(
1κ , {C0(xi)}∀ xi∈Xλ

, auxA
)
≈c (1κ , {∆i ← Yλ}i, auxA) ≈c

(
1κ , {C1(xi)}∀ xi∈Xλ

, auxA
)

(37)

where

(C0, C1, auxA)← SampprIO(1
λ),

(msk, mpk)← prMIFE.Setup(1λ, 1n+1, prm),
skU ← prMIFE.KeyGen(msk, U),

ct0
n+1 ← prMIFE.Encn+1(msk, C0), ct1

n+1 ← prMIFE.Encn+1(msk, C1),
cti,b = prMIFE.Enci(msk, b), for i ∈ [n], b ∈ {0, 1}.

From the right hand indistinguishability of Equation (37), we have that(
{cti,b}i∈[n],b∈{0,1}, ct0

n+1, skU , mpk, auxA
)

(38)

≈c
(
{γi,b ← prMIFE.Simi(msk)}i∈[n],b∈{0,1}, γn+1 ← prMIFE.Simn+1(msk), skU , mpk, auxA

)
using the prMIFE security with simulator {prMIFE.Simi}i∈[n+1] and sampler SampprMIFE,0 that outputs Function: Universal Circuit U

Inputs: {xj1
1 = j1, . . . , xjn

n = jn}j1∈{0,1},...,jn∈{0,1}, xn+1 = C0
Auxiliary Information: auxA

 (39)

43

To see this we note that the pseudorandomness of U(x1 ∈ {0, 1} . . . , xn ∈ {0, 1}, xn+1 = Cn+1 ∈ {0, 1}L) =
C0(x1, . . . , xn) is implied from Equation (37).
Similarly, from the right hand indistinguishability of Equation (37), we have(

{cti,b}i∈[n],b∈{0,1}, ct1
n+1, skU , mpk, auxA

)
(40)

≈c
(
{γi,b ← prMIFE.Simi(msk)}i∈[n],b∈{0,1}, γn+1 ← prMIFE.Simn+1(msk), skU , mpk, auxA

)
using the prMIFE security with simulator {prMIFE.Simi}i∈[0,n] and sampler SampprMIFE,1 whose output is same as
that of Samp0 except that xn+1 = C1.
From Equation (38) and Equation (40), we have(

{cti,b}i∈[n],b∈{0,1}, ct0
n+1, skU , mpk, auxA

)
≈c

(
{cti,b}i∈[n],b∈{0,1}, ct1

n+1, skU , mpk, auxA
)

hence the proof.

The following theorem holds for the specific class of samplers we described in the proof.

Theorem 5.8. Let κ = λn2 log λ. Assuming non-uniform κ-evasive LWE (Assumption 2.4), subexponentially secure
PRF against non-uniform adversary, and non-uniform sub-exponential LWE (Assumption A.5), there exists a prIO
scheme for circuits with input domain {0, 1}n satisfying security as per Definition 5.3.

6 Polynomial Domain IO for Pseudorandom Functionalities
In this section, we define and construct indistinguishability obfuscation for pseudorandom functionalities with polynomial
size domain (pPRIO). The advantage of considering this restricted variant is that we can base the security of the
construction on (plain) evasive LWE, rather than non-uniform κ-variant of it. Here, we introduce online-offline property
and reusable security and provide a construction satisfying these properties. The reason why we introduce these
properties is that they seem to be useful for some applications. Indeed, in our companion paper [AKY24b], we use
pPRIO with these properties to construct ABE with optimized parameter size. We consider two variants of pPRIO:
pPRIO with fixed input domain and pPRIO with flexible domain. As the name suggests, the latter is more flexible and
desirable. To obtain the latter, we first construct the former from prMIFE in Section 6.2 and then convert it into the
latter in Section 6.3.

6.1 Definition
Definition 6.1 (Syntax). A pPRIO scheme consists of the following algorithms.

Obf(1λ, C)→ obf. The obfuscation algorithm takes as input the security parameter λ and a circuit C : [N]→ [M]
with size(C) ≤ L for some arbitrary polynomial L = L(λ). It outputs an obfuscation of the circuit obf.
We consider a definition where the Obf algorithm can be decomposed into the following two phases.

ObfOff(1λ, 1L)→ (obfoff , st). The offline obfuscation algorithm takes as input the security parameter λ and
the circuit size bound L. It outputs obfoff and st.

ObfOn(st, C)→ obfon. The online obfuscation algorithm takes as input the security parameter st and the circuit
C and outputs obfon.

The final output of Obf is obf = (obfoff , obfon).

Eval(obf, x)→ y. The evaluation algorithm takes as input an obfuscated circuit obf and an input x ∈ [N]. It outputs
y ∈ [M].

44

We consider the following syntax variants of a pPRIO scheme. We consider fixed input domain pPRIO and flexible
input domain pPRIO. In the former, we need that ObfOff algorithm should know the input domain [N] of C that is
going to be input to ObfOn while in the latter, we do not.

Definition 6.2 (Fixed Input Domain pPRIO). A fixed input domain pPRIO scheme has syntax as in Definition 6.1
except that ObfOff takes N (in binary) as an additional input.

Definition 6.3 (Flexible Input Domain pPRIO). A flexible input domain pPRIO scheme has syntax exactly as in
Definition 6.1, i.e., a variant without inputting N into ObfOff.

Next, we define the properties of a pPRIO scheme.

Definition 6.4 (Correctness for Flexible Input Domain Case). For all security parameters λ ∈N, for any C : [N]→
[M], L = L(λ) such that size(C) ≤ L and every input x ∈ [N], we have that:

Pr
[
Eval(obf, x) = C(x)

∣∣∣∣obf = (obfoff , obfon), (obfoff , st)← ObfOff(1λ, 1L),
obfon ← ObfOn(st, C)

]
= 1

where the probability is taken over the coin-tosses of the obfuscator Obf. The correctness for the fixed input domain
case is defined as above, except that ObfOff(1λ, 1L) is replaced with ObfOff(1λ, 1L, N).

We introduce a bit unusual efficiency requirement for pPRIO. Namely, we require that pPRIO can obfuscate circuits
from exponentially large input domain efficiently. One may think that with this property, pPRIO is equivalent to prIO.
However, for pPRIO, we require that it can securely obfuscate a circuit only when it has polynomial size domain and do
not require any security guarantee when it has superpolynomial domain size. This relaxation leads to the construction
with weaker assumption (i.e., uniform and non-κ variant of evasive LWE).

The following efficiency requirement is the consequence of inputting N into ObfOff in binary form and the
requirement that ObfOff is a PPT algorithm, which implies that it runs in polynomial time in the input length. We
explicitly require this for emphasizing the property.

Definition 6.5 (Efficiency for Fixed Input Domain). We require that the running time of ObfOff(1λ, 1L, N) is bounded
by poly(λ, L, log N).

We introduce the security definition for pPRIO.

Definition 6.6 (Security for Flexible Input Domain). Let Samp be a PPT algorithm that on input 1λ, outputs(
1N1+N2+···NQ , 1L, aux, C1, . . . , CQ

)
, where Ci : [Ni]→ [Mi], size(Ci) ≤ L

where we enforce Samp to output 1N1+N2+···NQ to make sure that all Ni are bounded by poly(λ). We say that a flexible
input domain pPRIO scheme is secure with respect to the sampler class SC if for every PPT sampler Samp ∈ SC the
following holds.

If
(

aux, 1L, {C1(i)}i∈[N1]
, . . . , {CQ(i)}i∈[NQ]

)
≈c

(
aux, 1L, {∆1

i }i∈[N1]
, . . . , {∆Q

i }i∈[NQ]

)
then

(
aux, obfoff , obf1

on, . . . , obfQ
on

)
≈c

(
aux, obfoff , δ1 ← CT 1 . . . , δQ ← CT Q

)
,

where ∆j
i ← [Mj] for j ∈ [Q], i ∈ [Nj], (obfoff , st)← ObfOff(1λ, 1L), obf j

on ← ObfOn(st, Cj) for j ∈ [Q], and CT j

denotes the set of binary strings of the same length as the output of obfon(st, Cj) algorithm.

Definition 6.7 (Security for Fixed Input Domain). The security for flexible input domain pPRIO is defined exactly as
in Definition 6.6, except that we have N1 = N2 = · · · = NQ.

45

Remark 6.8 (Comparison with Definition 5.3). Here, we compare the above security definitions for pPRIO with that for
prIO (Definition 5.3). On the one hand, the above security definition is weaker than Definition 5.3 in that the adversary
is not allowed to submit a circuit with exponential size input domain. This restriction is captured by the above definitions
where we enforce the adversary to output the size of the input domain for each circuit in unary.

On the other hand, the above security definitions are stronger than Definition 5.3 in two folds. First, it requires the
online part of the obfuscation obfon to be pseudorandom, whereas Definition 5.3 only requires the obfuscation of the
circuits are computationally indistinguishable (when their truth tables are pseudorandom). Secondly, the above security
definition considers a security game where the same internal state st is reused for obfuscating multiple circuits, whereas
only a single circuit is obfuscated in Definition 5.3. The above security definition may look odd, but pPRIO with this
security notion has proven useful in our companion paper [AKY24b] to obtain optimal parameters for ABE schemes.

Remark 6.9. Similar to Remark 5.5, there is no pPRIO scheme satisfying the above security for all general samplers.
Therefore, when we use the security of pPRIO, we invoke the security with respect to a specific sampler class that is
induced by the respective applications.

6.2 Construction for Fixed Input Domain
In this section, we provide a construction of fixed input domain pPRIO scheme pPRIO = (Obf = (ObfOff, ObfOn), Eval)
for circuit class C = {C : [λc]→ {0, 1}}, for some constant c ∈N, from prMIFE for c + 1 arity. The construction is
extended to be able to handle flexible input domain in Section 6.3.

Building Blocks. We use the following ingredient for our construction.

1. A mi-prFE scheme prMIFE = prMIFE.(Setup, KeyGen, {Enci}i∈[c+1], Dec) for the circuit class with fixed input
length L = |C|, bounded depth d = d(λ), and binary output. We require prMIFE to satisfy the pseudorandomness
of the last slot ciphertext as per Definition 3.4. We can instantiate the scheme by our construction in Section 3.2.

Next, we describe our construction.

ObfOff(1λ, 1L, N = λc). The offline phase of obfuscation algorithm does the following.

− Run (prMIFE.mpk, prMIFE.msk)← prMIFE.Setup(1λ, 1c+1, prm), where prm specifies the maximum size
L of the circuit that is going to input to ObfOn and the maximum depth d of the circuit class supported by
the prMIFE instance. We set d to be the depth of the universal circuit U that, upon input a c-ary circuit C
and vector x ∈ [λ]c, outputs U(C, x) = C(x), where x is interpreted as an integer in [λc] by some efficient
bĳective mapping between [λc] and [λ]c.

− For i ∈ [c] and j ∈ [λ], compute prMIFE.cti,j = prMIFE.Enci(prMIFE.msk, j).16
− Compute prMIFE.skU = prMIFE.KeyGen(prMIFE.msk, U), where U is supported by the prMIFE instance

because of our choice of prm.

− Output obfoff :=
(

prMIFE.mpk, {prMIFE.cti,j}i∈[c],j∈[λ], prMIFE.skU

)
and st = prMIFE.msk.

ObfOn(st, C). The online phase of obfuscation algorithm does the following.

− Run prMIFE.ctc+1 ← prMIFE.Encc+1(prMIFE.msk, C).
− Output obfon := prMIFE.ctc+1.

Eval(obf, x). The evaluation algorithm does the following.

1. Parse obf = (obfoff , obfon) where obfoff =
(

prMIFE.mpk, {prMIFE.cti,j}i∈[c],j∈[λ], prMIFE.skU

)
and

obfon = prMIFE.ctc+1.

16Using Remark 5.6, it is safe to use this instance of prMIFE to encrypt messages with smaller length than L.

46

2. Output prMIFE.Dec(prMIFE.mpk, prMIFE.skU , U, prMIFE.ct1,x1 , . . . , prMIFE.ctc,xc , prMIFE.ctc+1), where
x ∈ [λc] is mapped to (x1, . . . , xc) ∈ [λ]c by the bĳective mapping between [λc] and [λ]c.

Correctness. The correctness of the scheme follows in a straightforward manner from the correctness of the underlying
prMIFE scheme and the definition of the universal circuit U.

Efficiency. The scheme satisfies

|obfoff | = poly(c, L, λ) = poly(λ, L), |obfon| = poly(c, L, λ) = poly(λ, L),

where (obfoff , obfon)← Obf(1λ, C) for circuit C : [N]→ [M] whose size is bounded by L = L(λ).

Security. We prove the security of the fixed input pPRIO using the following theorem.

Theorem 6.10. Let SCpPRIO be a sampler class for pPRIO. Suppose prMIFE scheme is secure (Definition 3.2) with
κ = λc+1 and sampler class that contains all SampprMIFE induced by SampprIO ∈ SCprIO, as defined in Equation (42).
Then the pPRIO scheme satisfies security as defined in Definition 6.7.

Proof. Consider a sampler Samp that generates(
1Q·N , 1L, auxA, {Ck}k∈[Q]

)
.

To prove the theorem, we show that(
auxA, obfoff =

(
prMIFE.mpk, {prMIFE.cti,j}i∈[c],j∈[λ], prMIFE.skU

)
,
{

obfk
on = prMIFE.ctk

c+1

}
k∈[Q]

)
≈c

(
auxA, obfoff =

(
prMIFE.mpk, {prMIFE.cti,j}i∈[c],j∈[λ], prMIFE.skU

)
,
{

obfk
on ← CT prMIFE,c+1

}
k∈[Q]

)
,

holds assuming(
auxA, 1L, {C1(i)}i∈[N], . . . , {CQ(i)}i∈[N]

)
≈c

(
auxA, 1L, {∆1

i }i∈[N], . . . , {∆Q
i }i∈[N]

)
(41)

where CT prMIFE,c+1 denotes the set of binary strings with the same length as prMIFE.ctk
c+1 and(

1Q·N , 1L, auxA, {Ck}k∈[Q]

)
← Samp(1λ),

(prMIFE.mpk, prMIFE.msk)← prMIFE.Setup(1λ, 1c+1, prm),
prMIFE.skU ← prMIFE.KeyGen(prMIFE.msk, U),
prMIFE.cti,j ← prMIFE.Enci(prMIFE.msk, j) for i ∈ [c], j ∈ [λ],

∆k
1, . . . , ∆k

N ← {0, 1} for k ∈ [Q],

prMIFE.ctk
c+1 ← prMIFE.Encc+1(prMIFE.msk, Ck) for k ∈ [Q].

We invoke the security of prMIFE with sampler SampprMIFE that outputs Function: Universal Circuit U
Inputs: {xj1

1 = j1, . . . , xjc
c = jc, xk

c+1 = Ck}j1,...,jc∈[λ],k∈[Q]

Auxiliary Information: auxA

 (42)

Using the prMIFE security with sampler SampprMIFE, we have that(
auxA, prMIFE.mpk, {prMIFE.cti,j}i∈[c],j∈[λ], prMIFE.skU ,

{
prMIFE.ctk

c+1

}
k∈[Q]

)
≈c

(
auxA, prMIFE.mpk, {δi,j}i∈[c],j∈[λ], prMIFE.skU ,

{
δk

c+1

}
k∈[Q]

)
(43)

47

given (
auxA,

{
U(Ck, xj1

1 , . . . , xjc
c)
}

j1,...,jc∈[λ],k∈[Q]

)
≈c

(
auxA, {∆k

i ← {0, 1}}i∈[N],k∈[Q]

)
(44)

where δi,j ← Simi(prMIFE.msk) for i ∈ [c], j ∈ [λ] and δk
c+1 ← CT prMIFE,c+1 17.

This implies (
auxA, prMIFE.mpk, {prMIFE.cti,j}i∈[c],j∈[λ], prMIFE.skU ,

{
prMIFE.ctk

c+1

}
k∈[Q]

)
≈c

(
auxA, prMIFE.mpk, {δi,j}i∈[c],j∈[λ], prMIFE.skU ,

{
δk

c+1

}
k∈[Q]

)
≈c

(
auxA, prMIFE.mpk, {prMIFE.cti,j}i∈[c],j∈[λ], prMIFE.skU ,

{
δk

c+1

}
k∈[Q]

)
given Equation (44), where the first indistingusihability follows from Equation (43) and the second also from Equation (43)
by noting that replacing the last term with independently chosen random variable makes the distinguishing task of the
distributions even harder. Equation (44) follows from Equation (41) and the definition of circuit U, hence the proof.

Instantiation. Instantiating the underlying prMIFE scheme with constant arity c + 1 as in Theorem 3.17, we get the
following theorem.

Theorem 6.11. Assuming evasive LWE (Assumption 2.1) and LWE (Assumption A.5), there exists a secure pPRIO
scheme for fixed input domain supporting circuits of bounded size L = poly(λ) with

|obfoff | = poly(L, λ), |obfon| = poly(L, λ).

6.3 Construction for Flexible Input Domain
Here, we provide a construction of pPRIO for flexible input domain Flex.pPRIO = Flex.(ObfOff, ObfOn, Eval) for
any circuits with binary output space from pPRIO for fixed input domain. The restriction that the output domain of the
circuits being binary is removed in Section 6.4.

Building Blocks. Below, we list the ingredients for our construction.

1. A pseudorandom function PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ with key space, input space and output space
as {0, 1}λ. The input to the PRF will be in the form of x ∈ [λc] for some constant c ∈ N. Since we have
2λ > poly(λ), the input space of the PRF is large enough to accommodate inputs x ∈ [λc] with an appropriate
encoding. It is known that PRFs can be constructed from one-way functions.

2. A fixed input domain pPRIO scheme Fixed.(ObfOff, ObfOn, Eval) as constructed in Section 6.2 with the efficiency
requirement defined in Definition 6.5 and the security defined as per Definition 6.6. The input domain of pPRIO
should be [λc] for some constant c.

Flex.Obf(1λ, C). For a circuit C such that size(C) ≤ L for L = L(λ), the obfuscation algorithm works as following.

Flex.ObfOff(1λ, 1L). The offline phase of obfuscation algorithm does the following.
− Run (Fixed.obfoff,i, Fixed.sti)← Fixed.ObfOff(1λ, 1L, λi) for i ∈ [λ].
− Output obfoff := {Fixed.obfoff,i}i∈[λ] and st = {Fixed.sti}i∈[λ].

Flex.ObfOn(st, C). The online phase of obfuscation algorithm takes as input a circuit C : [N] → {0, 1} and
parses the input as st = {Fixed.sti}i∈[λ]. It then does the following:

17This follows from the fact that the simulator for the c + 1-th slot outputs a random string as is required by Definition 3.4.

48

− Find c ∈N such that λc−1 < N ≤ λc.
− Sample sd← {0, 1}λ

− Construct a circuit C[sd] : [λc] → {0, 1} that is defined as, on input x ∈ [λc], C[sd](x) ={
C(x) if x ≤ N
PRF(sd, x) if N < x ≤ λc .

− Compute Fixed.obfon,c ← Fixed.ObfOn(Fixed.stc, C[sd]).
− Output obfon := Fixed.obfon,c.

Flex.Eval(obf, x). The evaluation algorithm does the following.

− Parse obf = (obfoff , obfon) = ({Fixed.obfoff,i}i∈[λ], Fixed.obfon,c).

− Construct Fixed.obf = (Fixed.obfoff,c, Fixed.obfon,c)18.
− Output Fixed.Eval(Fixed.obf, x).

Correctness. For obf = (obfoff , obfon) = ({Fixed.obfoff,i}i∈[λ], Fixed.obfon,c), we have Fixed.obfoff,c ← Fixed.ObfOff(1λ, 1L, λc)

and Fixed.obfon,c ← Fixed.ObfOn(Fixed.stc, C[sd]) where C[sd] : [λc]→ {0, 1}. From the correctness of the under-
lying Fixed.pPRIO scheme we have Fixed.Eval(Fixed.obf, x) = C[sd](x) = C(x) for any input x ∈ [λc].

Efficiency. It is straightforward to see that the algorithms run in polynomial time in the input length and λ. The only
non-trivial part is to bound the running time of Fixed.ObfOff(1λ, 1L, λi) for i ∈ [λ]. The running time of this part
can be bounded by poly(λ, L, log λi) = poly(λ, L) by the efficiency property of the underlying fixed input domain
pPRIO as per Definition 6.5. In particular, we have

|obfoff | = poly(L, λ), |obfon| = poly(L, λ)

where (obfoff , obfon)← Obf(1λ, C) for circuit C : [N]→ [M] whose size is bounded by L = L(λ).

Security. We prove the security of the above construction. Before doing so, we prove the following useful lemma.
The lemma essentially says that if a part of the auxiliary information is pseudorandom in the pre-condition distribution,
then it is pseudorandom in the corresponding post-condition distribution where we apply pPRIO. Conceptually similar
lemma is proven in Lemma 3.4 of [ARYY23] in the context of evasive LWE.

Lemma 6.12. Let pPRIO = (Fixed.ObfOff, Fixed.ObfOn, Fixed.Eval) be a pPRIO scheme for fixed input domain and
Samp be a PPT algorithm that takes as input 1λ and outputs(

1NQ, 1L, aux = (aux1, aux2) ∈ {0, 1}∗ ×X , {Cj}j∈[Q]

)
for some set X . Let us assume that(

(aux1, aux2), 1L,
{

Cj(i)
}

i∈[N],j∈[Q]

)
≈c

(
(aux1, x), 1L,

{
∆j

i

}
i∈[N],j∈[Q]

)
holds for x← X , ∆j

i ← {0, 1} and assume the security of pPRIO with respect to Samp. We then have(
(aux1, aux2), obfoff ,

{
obf j

on
}

j∈[Q]

)
≈c

(
(aux1, x), obfoff ,

{
δj
}

j∈[Q]

)
,

where we have (obfoff , st) ← Fixed.ObfOff(1λ, 1L, N), obf j
on ← Fixed.ObfOn(st, Cj) and δj ← CT ObfOn for

j ∈ [Q], where CT ObfOn is the set of binary strings with the same length as obf j
on.

18We assume that we can obtain c from the length of x.

49

Proof. From the assumption, we have(
(aux1, aux2), 1L,

{
Cj(i)

}
i∈[N],j∈[Q]

)
≈c

(
(aux1, x), 1L,

{
∆j

i

}
i∈[N],j∈[Q]

)
(45)

which implies (aux1, aux2, 1L) ≈c (aux1, x, 1L). This further implies

(aux1, aux2, 1L, {∆j
i}i∈[N],j∈[Q]) ≈c (aux1, x, 1L, {∆j

i}i∈[N],j∈[Q]) (46)

since adding independently sampled random terms does not make the task of indistinguishing the distributions easier.
Equation (45) and Equation (46) implies (aux1, aux2, 1L, {Cj(i)}i∈[N],j∈[Q]) ≈c (aux1, aux2, 1L, {∆j

i}i∈[N],j∈[Q]).
Applying pPRIO security definition with respect to Samp, we get(

aux1, aux2, obfoff ,
{

obf j
on
}

j∈[Q]

)
≈c

(
aux1, aux2, obfoff ,

{
δj
}

j∈[Q]

)
. (47)

Recall that we have (aux1, aux2, 1L) ≈c (aux1, x, 1L). This further implies(
aux1, aux2, obfoff ,

{
δj
}

j∈[Q]

)
≈c

(
aux1, x, obfoff ,

{
δj
}

j∈[Q]

)
, (48)

since obfoff can be sampled independently given 1L, N and {δj}j∈[Q].
From Equation (47) and Equation (48) we deduce(

aux1, aux2, obfoff ,
{

obf j
on
}

j∈[Q]

)
≈c

(
aux1, x, obfoff ,

{
δj
}

j∈[Q]

)
and hence the lemma.

Following theorem asserts the security of our construction.

Theorem 6.13. Our pPRIO scheme for flexible input domain is secure.

Proof. Let us consider a sampler Samp that outputs
(

1∑j∈[Q] Nj , 1L, aux, {Cj}j∈[Q]

)
. To prove the theorem, we show

that (
aux, obfoff , obf1

on, . . . , obfQ
on

)
≈c

(
aux, obfoff , δ1 . . . , δQ

)
, (49)

holds assuming (
aux, {C1(i)}i∈[N1]

, . . . , {CQ(i)}i∈[NQ]

)
≈c

(
aux, {∆1

i }i∈[N1]
, . . . , {∆Q

i }i∈[NQ]

)
where

obfoff = {Fixed.obfoff,i}i∈[λ], (Fixed.obfoff,i, Fixed.sti)← Fixed.ObfOff(1λ, 1L, λi) for i ∈ [λ],

obf1
on = Fixed.obfon,cj , Fixed.obfon,cj ← Fixed.ObfOn(Fixed.stcj , Cj[sdj]) for cj ∈N s.t. λcj−1 < Nj ≤ λcj ,

δj ← CT j where CT j is the set of binary strings with the same length as obf j
on, for j ∈ [Q]

∆j
i ← {0, 1} for j ∈ [Q], i ∈ [Nj]

We define Sk to be Sk := {j ∈ [Q] : λk−1 < Nj ≤ λk}. Since Samp is a PPT algorithm, there exists a constant cmax
such that λcmax−1 < maxj∈[Q]Nj ≤ λcmax and therefore we have [Q] = ∪k∈[cmax]Sk. Rearranging the terms, it suffices
to show that(

aux, obfoff , {obf j
on}j∈S1 , . . . , {obf j

on}j∈Scmax

)
≈c

(
aux, obfoff , {δj}j∈S1 , . . . , {δj}j∈Scmax

)

50

holds assuming(
aux,

{
Cj(i)

}
j∈S1,i∈[Nj]

, . . . ,
{

Cj(i)
}

j∈Scmax ,i∈[Nj]

)
≈c

(
aux,

{
∆j

i

}
j∈S1,i∈[Nj]

, . . . ,
{

∆j
i

}
j∈Scmax ,i∈[Nj]

)
. (50)

To prove this, we prove the following lemma.

Lemma 6.14. For c ∈ [0, cmax], let us consider the following statement:(
aux, obfoff , {obf j

on}j∈S1 , . . . , {obf j
on}j∈Sc ,

{
Cj[sdj](i)

}
j∈Sc+1,i∈[λc+1]

, . . . ,
{

Cj[sdj](i)
}

j∈Scmax ,i∈[λcmax]

)
≈c

(
aux, obfoff , {δj}j∈S1 , . . . , {δj}j∈Sc ,

{
∆j

i

}
j∈Sc+1,i∈[λc+1]

, . . . ,
{

∆j
i

}
j∈Scmax ,i∈[λcmax]

)
. (51)

Then, assuming the security of pPRIO, the above computational indistinguishability for c = c∗ implies that for c∗ + 1
for all c∗ ∈ [0, cmax − 1].

Proof. By setting

aux1 :=
(

aux,
{

Fixed.obfoff,k
}

k∈[λ]\{c∗+1}

)
,

aux2 :=
(
{obf j

on}j∈S1 , . . . , {obf j
on}j∈Sc∗ ,

{
Cj[sdj](i)

}
j∈Sc∗+2,i∈[λc∗+2]

, . . . ,
{

Cj[sdj](i)
}

j∈Scmax ,i∈[λcmax]

)
,

Circuits :=
{

Cj[sdj]
}

j∈Sc∗+1

Equation (51) with c = c∗ implies(
(aux1, aux2),

{
Cj[sdj](i)

}
j∈Sc∗+1,i∈[λc∗+1]

)
≈c

(
(aux1, x),

{
∆j

i

}
j∈Sc∗+1,i∈[λc∗+1]

)
,

where x is a random string with the same length as aux2. By applying Lemma 6.12, we have(
(aux1, aux2), obfoff,c∗+1,

{
obf j

on
}

j∈Sc∗+1

)
≈c

(
(aux1, x), obfoff,c∗+1,

{
δj
}

j∈Sc∗+1

)
.

By rearranging the terms, we can observe that the above equation is equivalent to Equation (51) with c = c∗ + 1.

We then conclude the proof of Theorem 6.13 using Lemma 6.14. Our goal is to prove Equation (51) with c = cmax,
since it is equivalent to Equation (49). This is proven by the induction, where the induction step is already provided by
Lemma 6.14. Therefore, it suffices to prove Equation (51) with c = 0. This immediately follows from Equation (50)
and by the security of PRF, since the LHS distribution of Equation (51) with c = 0 is obtained by padding the LHS
distribution of Equation (50) with PRF values {PRF(sdj, i)}c∈[cmax],j∈Sc ,i∈[Nj+1,λc], which are pseudorandom. This
completes the proof of Theorem 6.13.

Instantiation. Instantiating the underlying pPRIO scheme as in Theorem 6.11, we get the following theorem.

Theorem 6.15. Assuming evasive LWE (Assumption 2.1) and LWE (Assumption A.5), there exists a secure pPRIO
scheme for flexible input domain supporting circuits of bounded size L = poly(λ) with

|obfoff | = poly(L, λ), |obfon| = poly(L, λ).

51

6.4 Extending the Output Length.
In our construction of pPRIO with flexible input space in Section 6.3, we only consider the case of the output space of
the obfuscated circuit being {0, 1}. We can extend the output space to be {0, 1}ℓout for arbitrary polynomial ℓout as
follows. We do not change the off-line phase of the obfuscation algorithm. When we run on-line phase of the obfuscation
algorithm, we derive sub-circuits C1, . . . Cℓout of C with binary outputs, where Cj takes on input i and outputs the j-th
bit of C(i). We then run ObfOn(st, Cj) for all j ∈ [ℓout] and output them as the obfuscation of C. The evaluation
algorithm then recovers each output separately and combines them. It is straightforward to see that the security of the
construction is preserved with this modification. As for the efficiency, we still maintain the asymptotic efficiency of

|obfoff | = poly(L, λ), |obfon| = ℓoutpoly(L, λ) = poly(L, λ)

where (obfoff , obfon)← Obf(1λ, C) for circuit C whose size is bounded by L = L(λ).

7 Instantiating the Random Oracles Using prIO
Hohenberger, Sahai, and Waters [HSW14] show that some applications of random oracles (ROM) can be made secure
in the standard model by instantiating the hash functions using iO in a specific manner. In this section, we discuss that
we can replace full-fledged iO with prIO in these applications. As a concrete example, we show that full-domian hash
(FDH) signatures can be proven secure in the standard model if we instantiate the hash function using prIO in place of
iO. We also refer to Section 8 for the application of prIO for instantiating random oracle in Sakai-Ohgishi-Kasahara
ID-based NIKE.

7.1 Full-Domain Hash Signatures (Selectively Secure) from prIO
Ingredients. We make use of the following ingredients.

1. A one-way trapdoor permutation family (TDP).

2. Punctured PRFs

3. A prIO scheme.

1. Setup(1λ) : The setup algorithm takes as input the security parameter and does the following:

• It runs the setup of the TDP to obtain a public index PK along with a trapdoor SK, yielding the map
gPK : {0, 1}n → {0, 1}n together with its inverse g−1

SK.

• It chooses a puncturable PRF key K for F where F(K, ·) : {0, 1}λ → {0, 1}n. Then, it creates a prIO
obfuscation of the of the program Full Domain Hash Figure 2. We refer to the obfuscated program as
the function H : {0, 1}λ → {0, 1}n. We need the truth table of the PRF to be pseudorandom against
an adversary whose size is polynomial in κ, where κ is the parameter specified by our prIO. This can be
achieved assuming the subexponential security for the PRF.

• It outputs the verification key VK as the trapdoor index PK as well as the hash function H(·). The secret
key is the trapdoor SK.

2. Sign(SK, m): Output σ = g−1
SK(H(m)).

3. Verify(VK, m, σ) : Check if gPK(σ) = H(m) and output “Accept” if and only if this is true.

Correctness follows from the correctness of the TDP. We sketch security next.

52

Full Domain Hash H

Constants: PRF key K, TDP key PK
Input: Message m.

• Output gPK(F(K, m)).

Figure 2: Full Domain Hash

Full Domain Hash* H

Constants: Punctured PRF key K(m∗), m∗, z∗, TDP key PK
Input: Message m.

• If m = m∗, output z∗ and exit.
• Else output gPK(F(K, m)).

Figure 3: Full Domain Hash*

Security The security proof closely resembles that of [HSW14], except that it can be simpler since the security
guarantee of prIO is stronger than iO for the specific case of pseudorandom functionalities. In particular, prIO does not
require two circuits to have identical truth tables in order to guarantee security, but allows different truth tables so long
as they are pseudorandom (given auxiliary information).

Theorem 7.1. If the obfuscation scheme in Section 5.2 is secure as per Definition 5.3 with respect to a parameter κ and
samplers that output circuits defined as Figure 2 and 3, F is subexponentially secure punctured PRF, and the trapdoor
permutation scheme TDP is one-way, then the above signature scheme is selectively secure.

Proof. The proof follows a similar sequence of hybrids as [HSW14] 19. In the first hybrid we move to using the
obfuscation of the circuit in Figure 3 with z∗ being a random point in {0, 1}n. Since the truth tables of the two programs
are pseudorandom given PK and SK (even against an adversary that runs in polynomial time in κ), indistinguishability
holds by the guarantee of prIO. This allows to reduce the security to that of the TDP, exactly as in [HSW14] since a
valid signature would imply a preimage to z∗ and other signatures can be simulated using the PRF key.

7.2 Discussion about Other Applications.
Hohenberger, Sahai, and Waters [HSW14] demonstrate that the selective security of the full-domain hash (FDH)
signature based on trapdoor permutations (TDP), the adaptive security of RSA FDH signatures [Cor00], the selective
security of BLS signatures, and the adaptive security of BLS signatures [BLS01] can be proven in the standard model
by carefully instantiating the underlying hash function by iO for each application. As shown in Section 7.1, the random
oracle in the FDH signature can be instantiated using prIO instead of full-fledged iO. Similarly, we can instantiate the
random oracle in selectively secure BLS signatures with prIO, following a strategy similar to that in [HSW14]. At a
high level, these proofs follow those in the random oracle model (ROM), where we use iO to obfuscate a derandomized
version of the simulator for the hash function in ROM-based proofs. In these settings, the truth table of the simulated
hash function is pseudorandom, allowing us to follow the same proof strategy using prIO.

19We can skip Hybrid 1 in [HSW14] because we don’t need the programs to be exactly equivalent as discussed above.

53

For adaptively secure RSA FDH and BLS signatures, the situation is different. In these cases, Hohenberger et
al. adopt an alternative proof strategy that deviates from the high level strategy of obfuscating the simulator for the
proof in the ROM. This is due to the fact that the original proofs [BLS01, Cor00] are incompatible with the conditions
required for using iO, where the truth table of the hash functions must remain unchanged across game hops. To be
compatible with iO, they introduce a structure for the hash function, making its truth table no longer pseudorandom.
This prevents us from replacing the hash function with prIO following their approach.

To instantiate the hash function with prIO, we revert to the original ROM-based proof strategy [BLS01, Cor00].
Unlike the iO-based approach, prIO-based proof does not require the truth table of the hash function to remain unchanged
across game hops; it only requires the truth table to be pseudorandom. This relaxed condition enables the use of the
original ROM security proofs. We omit the details on these applications, since they are similar to and simpler than our
random oracle instantiation for the Sakai-Ohgishi-Kasahara ID-based NIKE in Section 8.

8 ID-Based Non-Interactive Key Exchange
In this section we show our construction of ID-NIKE scheme. The construction is the same as the ID-based NIKE
system by Sakai, Ohgishi, and Kasahara [SOK00] except that the hash function modeled as random oracle is replaced
with an obfuscation of a PRF. This leads to the first instantiation of ID-NIKE without multi-linear maps [FHPS13] or
indistinguishability obfuscation in the standard model.

8.1 Construction
Building Blocks. We require the following building blocks for our construction.

1. We use prIO scheme (iO, Eval) with input space ID def
= {0, 1}n that is secure as per Definition 5.3 with parameter

κ. By using our construction in Section 5.2 instantiated by prMIFE construction in Section 3.2, we have
κ = λn2 log λ.

2. Symmetric pairing G = (G, GT , p, e, g) with prime order p that is equipped with an efficiently computable
function MapToPoint : DMTP → G, where DMTP is an efficiently samplable domain. We assume that the
DBDH assumption (Assumption 2.6) holds on G. We need that there is an efficiently computable randomized
function MapToPoint−1 satisfying MapToPoint(MapToPoint−1(h)) = h for all h ∈ G. We also need
MapToPoint−1(h) ≡ x for x ← DMTP and h ← G. We denote the randomness space of the algorithm
MapToPoint−1 byRMTP.

3. A subexponentially secure pseudorandom function PRF : {0, 1}Λ × ID → DMTP. Here, Λ = Λ(λ) is set
so that 2Λδ

> κω(1) holds, where δ is defined as a constant such that there is no adversary with size 2λδ and
distinguishing advantage 2−λδ against PRF for all sufficiently large λ. An example choice would be to take
Λ := (n2λ)1/δ.

We describe the construction below.

Setup(1λ): On input the security parameter 1λ, it chooses the description of symmetric pairing groups G =
(G, GT , p, e, g) with prime order p > 22λ, a PRF key sd ← {0, 1}Λ, and α ← Zp and computes C̃ ←
iO(PRF(sd, ·)). Here, the obfuscated circuit PRF(sd, ·) is appropriately padded so that its size is the same as the
circuit F[sd, s̃d, gβ, gγ] described in Figure 4. Finally, it outputs mpk = (G, C̃) and msk = α.

Ext(mpk, msk, id): On input mpk = (G, C̃), msk = α, and an identity id, it computes H(id), where the hash function
H : ID → G is defined as H(id) def

= MapToPoint(C̃(id)). It then computes and outputs uskid = H(id)α.

Share(mpk, uskid1 , id2). Given the master public key mpk, a user secret key uskid1 = H(id1)
α, and an identity

id2 ∈ ID, it computes and outputs K def
= e(uskid1 , H(id2)) as the shared key.

Correctness. The correctness of the construction can be seen by e(uskid1 , H(id2)) = e(H(id1), H(id2))
α =

e(uskid2 , H(id1)).

54

8.2 Security Proof
Theorem 8.1. The construction above is secure as per Definition 2.22 assuming that the DBDH assumption over G holds
(See Assumption 2.6), prIO is secure with parameter κ (as per Definition 5.3) and with respect to a sampler specified in
the proof of Lemma 8.2, and PRF is subexponentially secure.

Proof. We prove the security of the scheme via the following hybrids. Let us fix a PPT adversary A. We denote the
advantage of the adversary by ϵ and without loss of generality, we assume thatA makes exactly Q key extraction queries.
For the sake of contradiction, let us assume that ϵ is non-negligible. In the following, we denote the advantage of the
adversary in Game-xx by ϵxx.

Game-0. This is the security game for ID-NIKE. By definition, we have ϵ0 = ϵ.

Game-1. In this game, we sample random function R : ID → [2Q] at the end of the game independently from
anything else in the game. We then change the adversary A so that it outputs a random coin as its guess if the
following does not hold:

R(id∗1) = 1 ∧ R(id∗2) = 2 ∧ R(id1) ̸∈ {1, 2} ∧ · · · ∧ R(idQ) ̸∈ {1, 2}, (52)

where id∗1 and id∗2 are the challenge identities and id1, . . . , idQ are the identities for which key extraction queries
are made by A. If the abort condition above is not satisfied, the output of A is unchanged. Since Equation (52)

holds with probability 1
4Q2 ·

(
1− 2

2Q

)Q
= Θ(ϵ0/Q2), we have ϵ1 = Θ(ϵ0/Q2).

Game-2. In this game, we choose R at the beginning of the game and stop the game immediately and force A to output
random guess if A makes a key extraction query or challenge query that violates Equation (52). With this change,
the distribution of the output by A is unchanged and therefore we have ϵ2 = ϵ1.

Game-3. In this game, we replace R with a pseudorandom function PRF : {0, 1}λ × ID → [2Q]. In more detail,
the game samples sd ← {0, 1}λ and uses PRF(sd, ·) in place of the function R(·) when we check the abort
condition. It is straightforward to see that |ϵ3 − ϵ2| ≤ negl(λ) by the security of PRF.

Game-4. In this game, we change how C̃ is computed. In more detail, we sample β, γ ← Zp and s̃d← {0, 1}Λ at
the beginning of the game. We then set F[sd, s̃d, gβ, gγ] as Figure 4, where we use yet another pseudorandom
function P̃RF : {0, 1}Λ × ID → RMTP ×Zp in the description of the circuit. In this game, C̃ is computed
as C̃ ← iO(F[sd, s̃d, gβ, gγ]). As we will show in Lemma 8.2, we have |ϵ4 − ϵ3| ≤ negl(λ) by the security of
PRIO and by the subexponential security of PRF and P̃RF.

Circuit F[sd, s̃d, gβ, gγ]

• On input id, compute (Rid, xid) = P̃RF(s̃d, id).

• Compute

vid
def
=


MapToPoint−1(gβ+xid ; Rid) if PRF(sd, id) = 1,
MapToPoint−1(gγ+xid ; Rid) if PRF(sd, id) = 2,
MapToPoint−1(gxid ; Rid) otherwise.

(53)

• Output vid.

Figure 4: Description of the circuit F[sd, s̃d, gβ, gγ].

55

Game-5. In this game, we no longer use the exponents β and γ explicitly in answering the key extraction queries.
In more detail, when the adversary makes a key extraction query to id, we proceed as follows. First, we check
whether PRF(sd, ·) ̸∈ {1, 2} or not. If it does not hold, we abort the game as specified in Game-2. Otherwise,
we compute (Rid, xid) = P̃RF(s̃d, id) and return uskid

def
= (gα)xid as the secret key.

We claim that this change does not alter the view of the adversary. To see this, we observe that

H(id) = MapToPoint(C̃(id)) = MapToPoint
(

F[sd, s̃d, gβ, gγ](id)
)
= MapToPoint

(
MapToPoint−1(gxid ; Rid)

)
= gxid

holds, where the first equation holds by the definition of H, the second by the correctness of iO, the third
by PRF(sd, id) ̸∈ {1, 2} and Equation (53), and the fourth by the property of MapToPoint−1. This implies
(gα)xid = H(id)α as desired. We therefore have ϵ5 = ϵ4.

Game-6. In this game, we change the way K∗ is computed when coin = 0. In particular, we compute T = e(g, g)αβγ

at the beginning of the game and when the adversary asks for the challenge key, we return

K∗ = T · e(gα, gβ)
xid∗2 · e(gα, gγ)

xid∗1 · e(g, gα) (54)

to the adversary, where (Rid∗i , xid∗i , yid∗i) = P̃RF(s̃d, id∗i) for i = 1, 2.
We claim that this change does not alter the view of the adversary. To see this, recall that the game aborts unless
PRF(sd, id∗1) = 1∧ PRF(sd, id∗2) = 2. The first condition implies H(id∗1) = MapToPoint(vid∗1) = g

β+xid∗1 by

Equation (53) and by the property of MapToPoint−1. Similarly, we have H(id∗1) = g
γ+xid∗2 . Thus, we have

e(H(id∗1), H(id∗2))α = e(g
β+xid∗1 , g

γ+xid∗2)α = T · e(gα, gβ)
xid∗2 · e(gα, gγ)

xid∗1 · e(g, gα)
xid∗1

xid∗2

as desired. We therefore have ϵ6 = ϵ5.
Note that in this game, we do not need to know α any more to efficiently simulate the game. Rather, it suffices to
know gα, gβ, gγ, and T = e(g, g)αβγ.

Game-7. In this game, we replace T with random T ← GT . We claim that the adversary cannot distinguish this
game from the previous game. This can be seen by straightforward reduction to the DBDH assumption, where
we simulate Game-6 if T = e(g, g)αβγ and Game-7 if T ← GT . Indeed, we only need to know gβ and gγ for
simulating mpk, gα for answering the key extraction queries, and gα, gβ, gγ, and T for simulating the challenge
key. We therefore have |ϵ6 − ϵ7| ≤ negl(λ).

Game-8. In this game, we change the challenge shared key K∗ to be random group element in GT , regardless of whether
coin = 0 or coin = 1. We claim that this is a conceptual change. This can be easily seen by observing that K∗

computed as Equation (54) is distributed uniformly at random over GT if so is T. Thefefore, we have ϵ8 = ϵ7.

Clearly, we have ϵ8 = 0, since no information of coin is leaked to the adversary in Game-8. However, from the above
discussion, we have 0 = ϵ8 ≥ Θ(ϵ)/Q2 − negl(λ) by the triangle inequality. This contradicts our assumption that ϵ is
non-negligible.

To complete the proof of Theorem 8.1, it remains to prove Lemma 8.2.

Lemma 8.2. Assuming that iO is a secure PRIO scheme as per Definition 5.3 with the parameter κ and PRF and P̃RF
are subexponentially secure, we have |ϵ3 − ϵ4| ≤ negl(λ).

Proof. To prove the lemma, it suffices to show (iO(PRF(sd, ·)), sd,G) ≈c (iO(F[sd, s̃d, gβ, gγ]), sd,G), since we can
simulate the game in a way that we simulate Game-3 if the given terms come from the left distribution and Game-4
otherwise. Any adversary distingushing the games can be turned into an adversary that distinguishes the distributions.

56

By considering a sampler Samp that takes as input 1λ and outputs the auxiliary information aux def
= (sd,G) and circuits

C0
def
= PRF(sd, ·) and C1

def
= F[sd, s̃d, gβ, gγ] and invoking the security of PRIO, we can see that it suffices to prove

(1κ , aux, {PRF(sd, id)}id∈ID) ≈c (1κ , aux, {δid ← DMTP}id∈ID) ≈c

(
1κ , aux, {vid = F[sd, s̃d, gβ, gγ]}id∈ID

)
.

(55)

The former indistinguishability holds by the subexponential security of PRF. In particular, by our choice of the parameter
2Λδ

> κω(1), we can conclude that the adversary with running time poly(κ) cannot distinguish the distributions with
advantage more than negl(κ). To prove the latter indistinguishability, we further consider the following distributions. In
the following, we do not change the distribution of aux = (sd,G) and only focus on the distribution of {vid}id.

• This is the rightmost distribution of Equation (55), where vid is computed as Equation (53) for (Rid, xid) =

P̃RF(id).

• This is the same as the previous distribution except that (Rid, xid) that is used for computing vid is chosen
uniformly at random from their respective domains.

• {vid}id, where vid ← DMTP. Observe that this is the middle distribution in Equation (55).

It suffices to prove that the first and the third distributions are indistinguishable given (1κ , aux). We first observe that
the first and the second distributions are computationally indistinguishable by the subexponential security of P̃RF
and our choice of parameter Λ, where we have 2Λδ

> κω(1). To conclude the proof, we show that the second and
the third distributions are actually the same distribution. In particular, we show that vid is uniformly distributed over
DMTP for each id in the second distribution. Here, we consider the case of PRF(sd, id) = 1. The other cases follow
similarly. By the assumption, we know that gβ+xid is distributed uniformly at random over G. Then, by the property of
MapToPoint−1 and by the fact that Rid is random, vid is uniformly distributed over DMTP as desired.

Theorem 8.3. Let κ = λn2 log λ. Assuming non-uniform κ-evasive LWE (Assumption 2.4), subexponentially secure
PRF against non-uniform adversary, non-uniform sub-exponential LWE, and the DBDH assumption, there exists a
secure ID-NIKE scheme.

57

References
[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model. In

Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 553–572. Springer, Heidelberg,
May / June 2010. (Cited on page 65.)

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension and shorter-
ciphertext hierarchical IBE. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 98–115.
Springer, Heidelberg, August 2010. (Cited on page 65.)

[ABG19] Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input to multi-client inner-product
functional encryption. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III,
volume 11923 of LNCS, pages 552–582. Springer, Heidelberg, December 2019. (Cited on page 3.)

[ABKW19] Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik Waldner. Decentralizing inner-
product functional encryption. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443
of LNCS, pages 128–157. Springer, Heidelberg, April 2019. (Cited on page 3.)

[ACF+18] Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. Multi-input functional
encryption for inner products: Function-hiding realizations and constructions without pairings. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 597–627.
Springer, Heidelberg, August 2018. (Cited on page 3.)

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New techniques for bootstrap-
ping and instantiation. In Eurocrypt, 2019. (Cited on page 3.)

[AGRW17] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input inner-product functional
encryption from pairings. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part I, volume 10210 of LNCS, pages 601–626. Springer, Heidelberg, April / May 2017. (Cited on page 3.)

[AGT21a] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional encryption from
pairings. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages
208–238, Virtual Event, August 2021. Springer, Heidelberg. (Cited on page 3.)

[AGT21b] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-party functional encryption. In TCC, 2021.
(Cited on page 3.)

[AGT22] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional encryption: Stronger
security, broader functionality. In TCC, 2022. (Cited on page 3.)

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact functional encryption.
In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS,
pages 308–326. Springer, Heidelberg, August 2015. (Cited on page 3, 4, 8, 9, 13, 42.)

[AKY24a] Shweta Agrawal, Simran Kumari, and Shota Yamada. Attribute Based Encryption for Turing Machines from
Lattices. In Crypto, 2024. (Cited on page 4.)

[AKY24b] Shweta Agrawal, Simran Kumari, and Shota Yamada. Compact Pseudorandom Functional Encryption from
Evasive LWE , 2024. (Cited on page 5, 6, 7, 12, 14, 16, 20, 21, 44, 46, 67, 71, 76.)

[AKYY23] Shweta Agrawal, Simran Kumari, Anshu Yadav, and Shota Yamada. Broadcast, trace and revoke with
optimal parameters from polynomial hardness. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 605–636. Springer, 2023. (Cited on page 4.)

[AMYY25] Shweta Agrawal, Anuja Modi, Anshu Yadav, and Shota Yamada. Evasive lwe: Attacks, variants &
obfustopia, 2025. (Cited on page 4, 6, 17, 21, 26, 42.)

58

[APM20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without maps: Attacks and
fixes for noisy linear fe. In Advances in Cryptology–EUROCRYPT 2020: 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10–14,
2020, Proceedings, Part I, pages 110–140. Springer, 2020. (Cited on page 3.)

[ARYY23] Shweta Agrawal, Mélissa Rossi, Anshu Yadav, and Shota Yamada. Constant input attribute based (and
predicate) encryption from evasive and tensor LWE. In CRYPTO 2023, Part IV, LNCS, pages 532–564.
Springer, Heidelberg, August 2023. (Cited on page 4, 5, 14, 17, 37, 49.)

[ATY23] Shweta Agrawal, Junichi Tomida, and Anshu Yadav. Attribute-based multi-input FE (and more) for
attribute-weighted sums. In CRYPTO 2023, Part IV, LNCS, pages 464–497. Springer, Heidelberg, August
2023. (Cited on page 3.)

[AYY22] Shweta Agrawal, Anshu Yadav, and Shota Yamada. Multi-input attribute based encryption and predicate
encryption. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of
LNCS, pages 590–621. Springer, Heidelberg, August 2022. (Cited on page 14, 23.)

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and pairings are not
necessary for io: Circular-secure lwe suffices. Cryptology ePrint Archive, 2020. (Cited on page 3.)

[BDGM23] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate io from homomorphic
encryption schemes. Journal of Cryptology, 36(3):27, 2023. (Cited on page 3.)

[BDJ+24] Pedro Branco, Nico Döttling, Abhishek Jain, Giulio Malavolta, Surya Mathialagan, Spencer Peters, and
Vinod Vaikuntanathan. Pseudorandom obfuscation and applications. Cryptology ePrint Archive, Paper
2024/1742, 2024. (Cited on page 6, 26, 42.)

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg, August 2001. (Cited
on page 3.)

[BFM14] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguishability obfuscation and UCEs:
The case of computationally unpredictable sources. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 188–205. Springer, Heidelberg, August 2014. (Cited
on page 3.)

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod Vaikun-
tanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE
and compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 533–556. Springer, Heidelberg, May 2014. (Cited on page 3, 37.)

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 1–18. Springer, Heidelberg, August 2001. (Cited on page 6.)

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In
Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer, Heidelberg, March
2014. (Cited on page 19.)

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without
bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–36, 2014. (Cited on page 3.)

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hardness of
learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 575–584. ACM Press, June 2013. (Cited on page 65, 66.)

59

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin Boyd, editor,
ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Heidelberg, December 2001. (Cited
on page 5, 15, 16, 53, 54.)

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding a Nash equilibrium.
In Venkatesan Guruswami, editor, 56th FOCS, pages 1480–1498. IEEE Computer Society Press, October
2015. (Cited on page 3.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Proceedings of the 1st ACM Conference on Computer and Communications Security, pages
62–73, 1993. (Cited on page 5, 15.)

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. In
Annual Cryptology Conference, pages 868–886. Springer, 2012. (Cited on page 3.)

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In Yuval
Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Heidelberg, March 2011. (Cited
on page 3.)

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private constrained PRFs (and
more) from LWE. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS,
pages 264–302. Springer, Heidelberg, November 2017. (Cited on page 67.)

[BÜW24] Chris Brzuska, Akin Ünal, and Ivy KY Woo. Evasive lwe assumptions: Definitions, classes, and
counterexamples. In International Conference on the Theory and Application of Cryptology and Information
Security, pages 418–449. Springer, 2024. (Cited on page 6.)

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) lwe.
SIAM Journal on computing, 43(2):831–871, 2014. (Cited on page 3.)

[BV18] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional encryption.
Journal of the ACM, 65(6):39:1–39:37, 2018. (Cited on page 3, 4, 13.)

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Kazue Sako
and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer,
Heidelberg, December 2013. (Cited on page 19.)

[CDG+18] Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval. Decentral-
ized multi-client functional encryption for inner product. In Thomas Peyrin and Steven Galbraith, editors,
ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 703–732. Springer, Heidelberg, December 2018.
(Cited on page 3.)

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. J. ACM,
51(4):557–594, 2004. (Cited on page 6.)

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice basis.
In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 523–552. Springer, Heidelberg,
May / June 2010. (Cited on page 65.)

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel Wichs. Watermarking
cryptographic capabilities. In Daniel Wichs and Yishay Mansour, editors, 48th ACM STOC, pages
1115–1127. ACM Press, June 2016. (Cited on page 3.)

[Cor00] Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir Bellare, editor, CRYPTO 2000,
volume 1880 of LNCS, pages 229–235. Springer, Heidelberg, August 2000. (Cited on page 5, 15, 16, 53,
54.)

60

[CRV10] Ran Canetti, Guy N. Rothblum, and Mayank Varia. Obfuscation of hyperplane membership. In Daniele
Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 72–89. Springer, Heidelberg, February 2010.
(Cited on page 6.)

[DJM+25] Nico Döttling, Abhishek Jain, Giulio Malavolta, Surya Mathialagan, and Vinod Vaikuntanathan. Simple
and general counterexamples for private-coin evasive lwe. Cryptology ePrint Archive, 2025. (Cited on
page 6.)

[DOT18] Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. Full-hiding (unbounded) multi-input inner product
functional encryption from the k-Linear assumption. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part II, volume 10770 of LNCS, pages 245–277. Springer, Heidelberg, March 2018. (Cited on
page 3.)

[DQV+21] Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Succinct lwe
sampling, random polynomials, and obfuscation. In Theory of Cryptography: 19th International Conference,
TCC 2021, Raleigh, NC, USA, November 8–11, 2021, Proceedings, Part II 19, pages 256–287. Springer,
2021. (Cited on page 3.)

[FFMV24] Danilo Francati, Daniele Friolo, Giulio Malavolta, and Daniele Venturi. Multi-key and multi-input predicate
encryption (for conjunctions) from learning with errors. Journal of Cryptology, 37(3):24, 2024. (Cited on
page 14.)

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Programmable hash
functions in the multilinear setting. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 513–530. Springer, Heidelberg, August 2013. (Cited on page 15, 24, 54.)

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu, Amit Sahai,
Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602. Springer, Heidelberg, May
2014. (Cited on page 3.)

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49.
IEEE Computer Society Press, October 2013. (Cited on page 3.)

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM Journal on Computing,
45(3):882–929, 2016. (Cited on page 3.)

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (extended
abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press, October 1984. (Cited on page 19.)

[GJLS21] Romain Gay, Aayush Jain, Huĳia Lin, and Amit Sahai. Indistinguishability obfuscation from simple-to-state
hard problems: New assumptions, new techniques, and simplification. In EUROCRYPT, 2021. (Cited on
page 3.)

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris Umans, editor, 58th
FOCS, pages 612–621. IEEE Computer Society Press, October 2017. (Cited on page 23.)

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. In Proceedings of the
53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 736–749, 2021. (Cited on page 3.)

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the cryptographic hardness of
finding a nash equilibrium. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 579–604. Springer, Heidelberg, August 2016. (Cited on page 3.)

61

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM
Press, May 2008. (Cited on page 65.)

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer, Heidelberg, August 2013. (Cited on
page 3, 66.)

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits. In
STOC, 2013. (Cited on page 3.)

[GVW15a] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits from LWE.
In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 503–523. Springer, Heidelberg, August 2015. (Cited on page 23.)

[GVW15b] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic signatures from
standard lattices. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 469–477, 2015. (Cited on page 14, 15, 37.)

[HJK+16] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and Mark Zhandry. How to
generate and use universal samplers. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016,
Part II, volume 10032 of LNCS, pages 715–744. Springer, Heidelberg, December 2016. (Cited on page 3.)

[HJL21] Sam Hopkins, Aayush Jain, and Huĳia Lin. Counterexamples to new circular security assumptions
underlying io. In Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part II 41, pages 673–700.
Springer, 2021. (Cited on page 3.)

[HJL25] Yao-Ching Hsieh, Aayush Jain, and Huĳia Lin. Lattice-based post-quantum io from circular security
with random opening assumption (part ii: zeroizing attacks against private-coin evasive lwe assumptions).
Cryptology ePrint Archive, 2025. (Cited on page 6.)

[HLL23] Yao-Ching Hsieh, Huĳia Lin, and Ji Luo. Attribute-Based Encryption for Circuits of Unbounded Depth
from Lattices. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages
415–434. IEEE, 2023. (Cited on page 4, 66.)

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (leveled) multilinear maps and
identity-based aggregate signatures. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 494–512. Springer, Heidelberg, August 2013. (Cited on page 3.)

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full domain hash from
indistinguishability obfuscation. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 201–220. Springer, Heidelberg, May 2014. (Cited on page 5, 15, 52, 53.)

[HY17] Pavel Hubácek and Eylon Yogev. Hardness of continuous local search: Query complexity and cryptographic
lower bounds. In Philip N. Klein, editor, 28th SODA, pages 1352–1371. ACM-SIAM, January 2017. (Cited
on page 3.)

[JLLS23] Aayush Jain, Huĳia Lin, Paul Lou, and Amit Sahai. Polynomial-time cryptanalysis of the subspace flooding
assumption for post-quantum i o. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 205–235. Springer, 2023. (Cited on page 3.)

[JLMS19] Aayush Jain, Huĳia Lin, Christian Matt, and Amit Sahai. How to leverage hardness of constant-degree
expanding polynomials over r to build io. In EUROCRYPT, 2019. (Cited on page 3.)

62

[JLS21] Aayush Jain, Huĳia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assumptions.
In Samir Khuller and Virginia Vassilevska Williams, editors, 53rd ACM STOC, pages 60–73. ACM Press,
June 2021. (Cited on page 3.)

[JLS22] Aayush Jain, Huĳia Lin, and Amit Sahai. Indistinguishability obfuscation from lpn over f p, dlin, and prgs
in nc 0. In Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 670–699. Springer, 2022. (Cited on page 3.)

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation for Turing
machines with unbounded memory. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC,
pages 419–428. ACM Press, June 2015. (Cited on page 3.)

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable
pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM CCS 2013, pages 669–684. ACM Press, November 2013. (Cited on page 19.)

[KS17] Ilan Komargodski and Gil Segev. From minicrypt to obfustopia via private-key functional encryption.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 122–151. Springer, Heidelberg, April / May 2017. (Cited on page 3.)

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In Advances in Cryptology–EUROCRYPT 2008: 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17,
2008. Proceedings 27, pages 146–162. Springer, 2008. (Cited on page 3.)

[LT19] Benoît Libert and Radu Titiu. Multi-client functional encryption for linear functions in the standard model
from LWE. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of
LNCS, pages 520–551. Springer, Heidelberg, December 2019. (Cited on page 3.)

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718.
Springer, Heidelberg, April 2012. (Cited on page 65.)

[MPV24a] Surya Mathialagan, Spencer Peters, and Vinod Vaikuntanathan. Adaptively sound zero-knowledge snarks
for up. In Crypto. Springer, 2024. (Cited on page 5, 13.)

[MPV24b] Surya Mathialagan, Spencer Peters, and Vinod Vaikuntanathan. Using prtt obfuscation for unlevelled fhe.
Personal Communication, 2024. (Cited on page 5.)

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM,
56(6):34:1–34:40, 2009. (Cited on page 66.)

[RVV24] Seyoon Ragavan, Neekon Vafa, and Vinod Vaikuntanathan. Indistinguishability obfuscation from bilinear
maps and lpn variants. Cryptology ePrint Archive, 2024. (Cited on page 3.)

[SOK00] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on pairing. SCIS 2000, 2000.
(Cited on page 15, 54.)

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, 2005. (Cited on page 3.)

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and more.
In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June 2014. (Cited on
page 3.)

[Tom19] Junichi Tomida. Tightly secure inner product functional encryption: Multi-input and function-hiding
constructions. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III, volume 11923
of LNCS, pages 459–488. Springer, Heidelberg, December 2019. (Cited on page 3.)

63

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 535–559. Springer, Heidelberg,
August 2022. (Cited on page 4, 6.)

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and null-IO from evasive
LWE. In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part I, volume 13791 of LNCS,
pages 195–221. Springer, Heidelberg, December 2022. (Cited on page 4, 10, 11, 12, 34, 35.)

[Wee05] Hoeteck Wee. On obfuscating point functions. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 523–532. ACM Press, May 2005. (Cited on page 6.)

[Wee21] Hoeteck Wee. Broadcast encryption with size N1/3 and more from k-lin. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 155–178, Virtual Event, August 2021.
Springer, Heidelberg. (Cited on page 5.)

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice assumptions. In Orr
Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages
217–241. Springer, Heidelberg, May / June 2022. (Cited on page 4, 6, 17.)

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious lwe sampling. In Advances in
Cryptology–EUROCRYPT 2021: 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part III, pages 127–156.
Springer, 2021. (Cited on page 3.)

[WWW22] Brent Waters, Hoeteck Wee, and David J. Wu. Multi-authority ABE from lattices without random oracles.
In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages 651–679.
Springer, Heidelberg, November 2022. (Cited on page 65.)

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under LWE. In Chris
Umans, editor, 58th FOCS, pages 600–611. IEEE Computer Society Press, October 2017. (Cited on
page 23, 37.)

64

A Additional Preliminaries
A.1 Lattice Preliminaries
Here, we recall some facts on lattices that are needed for the exposition of our construction. Throughout this section,
n, m, and q are integers such that n = poly(λ) and m ≥ n⌈log q⌉. In the following, let SampZ(γ) be a sampling
algorithm for the truncated discrete Gaussian distribution over Z with parameter γ > 0 whose support is restricted to
z ∈ Z such that |z| ≤

√
nγ.

Let
g = (20, 21, . . . , 2

m
(n+1)−1

)⊺ , G = I(n+1) ⊗ g⊺

be the gadget vector and the gadget matrix. For p ∈ Zn
q , we write G−1(p) for the m-bit vector (bits(p[1]), . . . , bits(p[n+

1]))⊺, where bits(p[i]) are m/(n + 1) bits for each i ∈ [n + 1]. The notation extends column-wise to matrices and it
holds that GG−1(P) = P.

Trapdoors. Let us consider a matrix A ∈ Zn×m
q . For all V ∈ Zn×m′

q , we let A−1(V) be an output distribution
of SampZ(γ)m×m′ conditioned on A · A−1(V, γ) = V. A γ-trapdoor for A is a trapdoor that enables one to
sample from the distribution A−1(V, γ) in time poly(n, m, m′, log q) for any V. We slightly overload notation and
denote a γ-trapdoor for A by A−1

γ . The following properties had been established in a long sequence of works
[GPV08, CHKP10, ABB10a, ABB10b, MP12, BLP+13].

Lemma A.1 (Properties of Trapdoors). Lattice trapdoors exhibit the following properties.

1. Given A−1
τ , one can obtain A−1

τ′ for any τ′ ≥ τ.

2. Given A−1
τ , one can obtain [A∥B]−1

τ and [B∥A]−1
τ for any B.

3. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A, A−1
τ0

) where A ∈ Zn×m
q for some

m = O(n log q) and is 2−n-close to uniform, where τ0 = ω(
√

n log q log m).

Useful Lemmata.
Lemma A.2 (tail and truncation of DZ,γ). There exists B0 ∈ Θ(

√
λ) such that

Pr
[

x ← DZ,γ : |x| > γB0(λ)
]
≤ 2−λ for all γ ≥ 1 and λ ∈N.

Lemma A.3 (Smudging Lemma [WWW22]). Let λ be a security parameter. Take any a ∈ Z where |a| ≤ B. Suppose
γ ≥ Bλω(1). Then the statistical distance between the distributions {z : z ← DZ,γ} and {z + a : z ← DZ,γ} is
negl(λ).
Lemma A.4 (Leftover Hash Lemma). Fix some n, m, q ∈N. The leftover hash lemma states that if m ≥ 2n log q,
then for A ← Zn×m

q , x ← {0, 1}m and y ← Zn
q the statistical distance between (A, A · x) and (A, y) is negligible.

More concretely, it is bounded by qn
√

21−m.

Additional Hardness Assumptions.
Assumption A.5 (The LWE Assumption). Let n = n(λ), m = m(λ), and q = q(λ) > 2 be integers and χ = χ(λ) be
a distribution over Zq. We say that the LWE(n, m, q, χ) hardness assumption holds if for any PPT adversaryA we have

|Pr[A(A, s⊺A + e⊺)→ 1]− Pr[A(A, v⊺)→ 1]| ≤ negl(λ)

where the probability is taken over the choice of the random coins by the adversary A and A ← Zn×m
q , s ← Zn

q ,
e ← χm, and v ← Zm

q . We also say that LWE(n, m, q, χ) problem is (non-uniformly and) subexponentially hard if
there exists some constant 0 < δ < 1 such that the above distinguishing advantage is bounded by 2−nδ for for all
adversaries A whose running time (resp., size) is 2nδ .

65

As shown by previous works [Reg09, BLP+13], if we set χ = SampZ(γ), the LWE(n, m, q, χ) problem is as
hard as solving worst case lattice problems such as gapSVP and SIVP with approximation factor poly(n) · (q/γ) for
some poly(n). Since the best known algorithms for 2k-approximation of gapSVP and SIVP run in time 2Õ(n/k), it
follows that the above LWE(n, m, q, χ) with noise-to-modulus ratio 2−nϵ is likely to be (subexponentially) hard for
some constant ϵ.

A.2 GSW Homomorphic Encryption and Evaluation
We recall the format of the (leveled fully) homomorphic encryption due to [GSW13] and the correctness property. We
adapt the syntax from [HLL23].

Lemma A.6. The leveled FHE scheme works as follows:

• The keys are

(public) Afhe =

(
Āfhe

s̄⊺Āfhe + e⊺fhe

)
∈ Z

(n+1)×m
q , (secret) s⊺ = (s̄⊺,−1),

where s̄ ∈ Zn,Āfhe ∈ Zn×m
q , and e⊺fhe ∈ Zm.

• A ciphertext of x ∈ {0, 1} is X = AfheR− xG ∈ Z
(n+1)×m
q , where R ∈ Zm×m is the encryption randomness.

The decryption equation is

s⊺X = −e⊺fheR− xs⊺G ∈ Zm
q ,

which can be used to extract x via multiplication by G−1(⌊q/2⌋ ιn+1), where ιn+1 is the n + 1-th unit vector.

Lemma A.7. (homomorphic evaluation for vector-valued functions [HLL23]) There is an efficient algorithm

MakeVEvalCkt(1n, 1m, q, C) = VEvalC

that takes as input n, m, q and a vector-valued circuit C : {0, 1}L → Z1×m′
q and outputs a circuit

VEvalC(X1, ..., XL) = C,

taking L ciphertexts as input and outputting a new ciphertext C of different format.

• The depth of VEvalC is d ·O(log m log log q) + O(log2 log q) for C of depth d.

• Suppose Xℓ = AfheRℓ − x[ℓ]G for ℓ ∈ [L] with x ∈ {0, 1}L, then

C = AfheRC −
(

0n×m′

C(x)

)
∈ Z

(n+1)×m′
q ,

where
∥∥R⊺

C

∥∥ ≤ (m + 2)d ⌈log q⌉maxℓ∈[L]
∥∥R⊺

ℓ

∥∥.
The new decryption equation is

s⊺C = −e⊺fheRC + C(x) ∈ Z1×m′
q .

A.3 Homomorphic Evaluation Procedures
In this section we describe the properties of the attribute encoding and its homomorphic evaluation. We adapt the syntax
from [HLL23].

• For L-bit input, the public parameter is Aatt ∈ Z
(n+1)×(L+1)m
q .

66

• The encoding of x ∈ {0, 1}L is
s⊺(Aatt − (1, x⊺)⊗G) + e⊺att,

where s⊺ = (s̄⊺,−1) with s̄ ∈ Zn and e⊺att ∈ Z(L+1)m.

• There are efficient deterministic algorithms [BTVW17]

MEvalC(Aatt, C) = HC and MEvalCX(Aatt, C, x) = HC,x

that take as input Aatt, a matrix-valued circuit C : {0, 1}L → Z
(n+1)×m′
q , and (for MEvalCX) some x ∈ {0, 1}L,

and output some matrix in Z(L+1)m×m′ .

– Suppose C is of depth d, then
∥∥H⊺

C

∥∥,
∥∥∥H⊺

C,x

∥∥∥ ≤ (m + 2)d ⌈log q⌉.

– The matrix encoding homomorphism is (Aatt − (1, x⊺)⊗G)HC,x = AattHC − C(x).

Dual-Use Technique and Extension. In [BTVW17], the attribute encoded with secret s⊺ is FHE ciphertexts under
key s⊺ (the same, "dual-use") and the circuit being MEvalCX’ed is some HEvalC. This leads to automatic decryption.
Let C be a vector-valued circuit, with co-domain Z1×m′

q , then VEvalC is Z
(n+1)×m′
q -valued and

(s⊺(Aatt − (1, bits(X))⊗G) + e⊺att) ·HVEvalC ,X

= s⊺AattVEvalC − s⊺VEvalC(X) + (e′)⊺ (MEvalCX)
= s⊺AattVEvalC − C(x) + (e′′)⊺. (VEval decryption)

B Pseudorandom FE with Stronger Security
In this section, we provide the description of the pseudorandom FE construction proposed in [AKY24b]. For the reference
for the readers, we provide the full description of the construction and the proof for prCT security (Definition 2.12) below.
Furthermore, we explain how to extend their construction to achieve strengthened security notion for pseudorandom FE
that we call non-uniform κ-prCT security (Definition 2.15), which is required for many of our applications.

B.1 Construction
The construction below is exactly the same as [AKY24b]. The construction supports the function familyFL(λ),ℓ(λ),dep(λ) =

{ f : {0, 1}L → {0, 1}ℓ}, where the depth of a function f ∈ F is at most dep(λ) = poly(λ). We denote the information
of the parameters representing the supported class of the circuits by prm = (1L(λ), 1ℓ(λ), 1dep(λ)).

Ingredients. Below, we list the ingredients for our construction.

1. A pseudorandom function PRF : {0, 1}λ × {0, 1}λ → [−q/4 + B, q/4− B]1×ℓ that can be evaluated by a
circuit of depth at most dep(λ) = poly(λ). Here B is chosen to be exponentially smaller than q/4. We
note that for our choice of B the statistical distance between the uniform distribution over [−q/4, q/4] and
[−q/4 + B, q/4− B] is exponentially small.

Setup(1λ, prm)→ (mpk, msk). The setup algorithm parses prm = (1L(λ), 1ℓ(λ), 1dep(λ)) and does the following.

− Set LX = mL(n + 1) ⌈log q⌉, sample Aatt ← Z
(n+1)×(LX+1)m
q and (B, B−1

τ) ← TrapGen(1n+1, 1mw, q),
where w ∈ O(log q).

− Sample a constant M ∈ Z such that M divides q.
− Output mpk := (Aatt, B, M) and msk := B−1

τ .

67

KeyGen(msk, f)→ sk f . The key generation algorithm parses msk = B−1
τ and does the following.

− Sample r← {0, 1}λ.
− Define function F[f , r] with f , r hardwired as follows:

On input (x, sd), compute and output f (x) ⌊q/2⌉+ PRF(sd, r) ∈ Z1×ℓ
q .

− Parse F[f , r](x, sd) = M · fhigh(x, sd) + flow(x, sd), where fhigh(x, sd) ∈ [0, q/M]ℓ and flow(x, sd) ∈
[0, M − 1]ℓ.20 Using the fact that the PRF and f (x) can be computed by a circuit of depth at most
dep(λ) = poly(λ), the function F[f , r] can be computed by a circuit of depth at most d = poly(dep).

− Define functions Fhigh := M · fhigh and Flow := M · flow, which on input (x, sd) outputs M · fhigh(x, sd)
and M · flow(x, sd), respectively. We note that these functions can be computed by a circuit of depth at most
d = poly(dep).

− Define VEvalhigh = MakeVEvalCkt(n, m, q, Fhigh) and VEvallow = MakeVEvalCkt(n, m, q, Flow). From
Lemma A.7, the depth of VEvalhigh and VEvallow is bounded by (dO(log m log log q) + O(log2 log q)).

− Compute HFhigh
Aatt

= MEvalC(Aatt, VEvalhigh), HFlow
Aatt

= MEvalC(Aatt, VEvallow) ∈ Z
(LX+1)m×ℓ
q .

− Compute Ahigh = Aatt ·H
Fhigh
Aatt

and Alow = Aatt ·HFlow
Aatt

.
− Compute

AF = M ·
⌊

Ahigh
M

⌋
+

⌊
Alow

M

⌋
and sample K← B−1

τ (AF).
− Output sk f = (K, r).

Enc(mpk, x)→ ct. The encryption parse mpk = (Aatt, B, M) algorithm does the following.

− Sample s̄← Dn
Z,σs

and set s = (s̄⊺,−1)⊺.
− Sample eB ← Dmw

Z,σB
and compute c⊺B := s⊺B + e⊺B.

− Sample sd ← {0, 1}λ, Āfhe ← Zn×m
q , efhe ← Dm

Z,σ, R ← {0, 1}m×m(λ+L) and compute a GSW
encryption as follows.

Afhe :=
(

Āfhe
s̄⊺Āfhe + e⊺fhe

)
, X = AfheR− (x, sd)⊗G ∈ Z

(n+1)×m(λ+L)
q .

Let LX = m(λ + L)(n + 1) ⌈log q⌉ be the bit length of X.
− Compute a BGG+ encoding as follows.

eatt ← D(LX+1)m
Z,σ , c⊺att := s⊺(Aatt − bits(1, X)⊗G) + e⊺att.

− Output ct = (cB, catt, X).

Dec(mpk, sk f , f , ct)→ y. The decryption algorithm does the following.

− Parse mpk = (Aatt, B, M), sk f = (K, r) and ct = (cB, catt, X).

− Compute HFhigh
Aatt,X = MEvalCX(Aatt, VEvalhigh, X) and HFlow

Aatt,X = MEvalCX(Aatt, VEvallow, X) for circuits
VEvalhigh and VEvallow as defined in the key generation algorithm.

− Compute z := c⊺B ·K−
(

M ·
⌊

c⊺att·H
Fhigh
Aatt ,X

M

⌋
+

⌊
c⊺att·H

Flow
Aatt ,X

M

⌋)
.

− For i ∈ [ℓ], set yi = 0 if zi ∈ [−q/4, q/4) and yi = 1 otherwise, where zi is the i-th coordinate of z.
− Output y = (y1, . . . , yℓ).

20Please note that fhigh and flow hardwire the information about f and r even though it is not written explicitly.

68

Parameters. We set our parameters as follows.

β = 2O(dep·log λ), q = 212λβ, M = 24λβ, n = poly(λ, dep), m = O(n log q), τ = O
(√

(n + 1) log q
)

B = 210λβ, σs = σ = 22λ, σB = 29λβ, σ1 = 28λ+O(1)β/poly(λ). (56)

Efficiency. Using the above set parameters, we have

|mpk| = L · poly(dep, λ), |sk f | = ℓ · poly(dep, λ), |ct| = L · poly(dep, λ).

Correctness We analyse the correctness of our scheme below.

− First, we note that

c⊺att ·H
Fhigh
Aatt,X = (s⊺(Aatt − bits(1, X)⊗G) + e⊺att)H

Fhigh
Aatt,X

= s⊺AattH
Fhigh
Aatt
− s⊺VEvalhigh(bits(X)) + e⊺attH

Fhigh
Aatt,X

= s⊺Ahigh − Fhigh(x, sd) + e⊺fheRhigh + e⊺attH
Fhigh
Aatt,X

=⇒

 c⊺att ·H
Fhigh
Aatt,X

M

 =

 s⊺Ahigh −M · fhigh(x, sd) + e⊺fheRhigh + e⊺attH
Fhigh
Aatt,X

M


=

 s⊺Ahigh + e⊺fheRhigh + e⊺attH
Fhigh
Aatt,X

M

− fhigh(x, sd) (57)

where VEvalhigh(bits(X)) = AfheRhigh −
(

0n×ℓ
Fhigh(x, sd)

)
. Using Lemma A.7, we have

∥∥∥R⊺
high

∥∥∥ ≤ (m + 2)d ⌈log q⌉ ·m = (m + 2)d ⌈log q⌉ · 3(n + 1) ⌈log q⌉

≤ (m + 2)dO(log q) ≤ β.

and using the depth bound from Appendix A.3,∥∥∥(HFhigh
Aatt,X

)⊺∥∥∥ ≤ (m + 2)dVEvalhigh ⌈log q⌉ ≤ 2d·O(log λ) ≤ β

where dVEvalhigh denotes the depth of the circuit VEvalhigh. So we have
∥∥∥e⊺fheRhigh + e⊺attH

Fhigh
Aatt,X

∥∥∥ ≤ 22λ+1
√

λβ ≤
23λβ < M. Using this in Equation (57), c⊺att ·H

Fhigh
Aatt,X

M

 =

⌊
s⊺Ahigh

M

⌋
− fhigh(x, sd) + errhigh

= s⊺
⌊

Ahigh
M

⌋
+ e⊺s,high − fhigh(x, sd) + err⊺high (58)

where err⊺high ∈ {0, 1}ℓ, is the rounding error which is 1 if s⊺Ahigh sits around the boundary of multiple of M and the∥∥∥e⊺fheRhigh + e⊺attH
Fhigh
Aatt,X

∥∥∥ exceeds the distance from that boundary and 0 otherwise, and
∥∥es,high

∥∥ ≤ (n + 1) · ∥s∥.
To see the latter, we use the fact that ⌊s⊺X⌋ − s⊺⌊X⌋ = ⌊s⊺X− s⊺⌊X⌋⌋ = ⌊s⊺(X− ⌊X⌋)⌋, where X− ⌊X⌋ < 1.
So e⊺s,high =

⌊
s⊺
(

Ahigh
M −

⌊
Ahigh

M

⌋)⌋
and

∥∥es,high
∥∥ ≤ ∥s∥∥∥∥(Ahigh

M −
⌊

Ahigh
M

⌋)⊺∥∥∥ < (n + 1)∥s∥.

69

Using a similar analysis as to obtain Equation (58), we get⌊
c⊺att ·H

Flow
Aatt,X

M

⌋
= s⊺

⌊
Alow

M

⌋
+ e⊺s,low − flow(x, sd) + err⊺low (59)

where err⊺low ∈ {0, 1}ℓ and ∥es,low∥ ≤ (n + 1) · ∥s∥. Using Equation (58) and Equation (59), we get

M ·

 c⊺att ·H
Fhigh
Aatt,X

M

+

⌊
c⊺att ·H

Flow
Aatt,X

M

⌋

= s⊺
(

M ·
⌊

Ahigh
M

⌋
+

⌊
Alow

M

⌋)
− (M · fhigh(x, sd) + flow(x, sd)) + err

= s⊺
(

M ·
⌊

Ahigh
M

⌋
+

⌊
Alow

M

⌋)
− F[f , r](x, sd) + err (60)

where

err = M · e⊺s,high + e⊺s,low + M · errhigh + errlow

= M ·
(

s⊺
⌊

Ahigh
M

⌋
−
⌊

s⊺
Ahigh

M

⌋)
+

(
s⊺
⌊

Alow
M

⌋
−
⌊

s⊺
Alow

M

⌋)
+ M · errhigh + errlow

where errhigh, errlow ∈ {0, 1}ℓ are rounding errors and matrices Ahigh, Alow are publicly computable matrices and

∥err∥ ≤M · ((n + 1) · ∥s∥+ 1) + (n + 1) · ∥s∥+ 1 ≤ 2M · ((n + 1) · ∥s∥+ 1)

=24λ+1β
(
(n + 1) · 22λ+1

√
λ
)
≤ 27λβ

− Next, we note that

c⊺B ·K = s⊺
(

M ·
⌊

Ahigh
M

⌋
+

⌊
Alow

M

⌋)
+ c⊺B ·K. (61)

where
∥∥(c⊺B ·K)⊺

∥∥ ≤ 29λβ
√

λ · τ from our parameter setting.

− Using Equations (60) and (61), we get

z = c⊺B ·K−

M ·

 c⊺att ·H
Fhigh
Aatt,X

M

+

⌊
c⊺att ·H

Flow
Aatt,X

M

⌋
= F[f , r](x, sd) + e⊺B ·K− err
= f (x) ⌊q/2⌉+ PRF(sd, r) + e⊺B ·K− err

where ∥∥PRF(sd, r) + e⊺B ·K− err
∥∥ ≤ ∥PRF(sd, r)∥+ 29λβ

√
λ · τ + 27λβ

≤ ∥PRF(sd, r)∥+ 29λ+1β
√

λ · τ < q/4− B + B < q/4

Hence the last step of decryption outputs y correctly with probability 1.

70

B.2 Proof for prCT Security
The proof below is adapted from [AKY24b].

Theorem B.1. Let SCprFE be a sampler class for prFE. Assuming LWE (Assumption A.5) and private coin Evasive
LWE (Assumption 2.1) with respect to the sampler class that contains all Sampevs(1λ) induced by SampprFE ∈ SCprFE
as defined in Figure 5, our prFE scheme satisfies prCT security with respect to SCprFE as defined in Definition 2.12.

Proof. Consider a sampler SampprFE that generates the following:

1. Key Queries. It issues Qkey number of functions f1, . . . , fQkey for key queries.

2. Ciphertext Queries. It issues Qmsg ciphertext queries x1, . . . , xQmsg .

3. Auxiliary Information. It outputs the auxiliary information auxA.

To prove the prCT security as per Definition 2.12, we show
mpk = (Aatt, B, M), auxA, CB = SB + EB,

{Xj = Afhe,jRj − (xj, sdj)⊗G}j∈[Qmsg],

{c⊺att,j = s⊺j (Aatt − bits(1, Xj)⊗G) + e⊺att,j}j∈[Qmsg],

{Kk, rk}k∈[Qkey]

 (62)

≈c


mpk = (Aatt, B, M), auxA, CB ← Z

Qmsg×mw
q ,

{Xj ← Z
(n+1)×m(λ+L)
q }j∈[Qmsg],

{catt,j ← Z
(LX+1)m
q }j∈[Qmsg],

{Kk, rk}k∈[Qkey]


where

S =

 s⊺1
...

s⊺Qmsg

, EB =

 e⊺B,1
...

e⊺B,Qmsg

 ,

(auxA, { fk}k∈[Qkey], {xj}j∈[Qmsg])← SampprFE(1
λ)

and for j ∈ [Qmsg], sj, eB,j, Afhe,j, Rj, sdj, eatt,j are sampled as in the construction, for k ∈ [Qkey], we have rk ← {0, 1}λ,
Fk = F[fk, rk] and AFk is as defined in the construction, and Kk = B−1

τ (AFk)

assuming we have

(1λ, auxA, { fk, fk(xj)}j∈[Qmsg],k∈[Qkey]) ≈c (1λ, auxA, { fk, ∆j,k ← {0, 1}ℓ}j∈[Qmsg],k∈[Qkey]). (63)

We invoke evasive LWE assumption for a matrix B with the private coin sampler Sampevs that outputs (S, P, aux =

(aux1, aux2)) with private coin coinsSampevs
priv = {sdj, Rj, eatt,j, Afhe,j}j∈[Qmsg], defined as follows.

By Lemma 2.3, to prove Equation (62) assuming evasive LWE, it suffices to show


aux2, B, CB = SB + EB,

{Xj = Afhe,jRj − (xj, sdj)⊗G}j∈[Qmsg],

{c⊺att,j = s⊺j (Aatt − bits(1, Xj)⊗G) + e⊺att,j}j∈[Qmsg],

CP = SP + EP

 ≈c


aux2, B, CB ← Z

Qmsg×mw
q ,

{Xj ← Z
(n+1)×m(λ+L)
q }j∈[Qmsg],

{catt,j ← Z
(LX+1)m
q }j∈[Qmsg],

CP ← Z
Qmsg×ℓ·Qkey
q

 (64)

71

Sampevs(1λ)

The sampler does the following.
− Runs the prFE sampler SampprFE to obtain ({ fk}k∈Qkey , {xj}j∈[Qmsg], auxA) where fk : {0, 1}L → {0, 1}ℓ, xj ∈
{0, 1}L and auxA ∈ {0, 1}⋆.

− Set appropriate parameters as in Equation (56)a.
− Samples sdj ← {0, 1}λ, Āfhe,j ← Zn×m

q , efhe,j ← Dm
Z,σ, Rj ← {0, 1}m×m(λ+L) and computes Xj = Afhe,jRj −

(xj, sdj)⊗G for j ∈ [Qmsg] where Afhe,j =

(
Āfhe,j

s̄⊺Āfhe,j + e⊺fhe,j

)
∀ j ∈ [Qmsg].

− Samples s̄j ← Dn
Z,σs

, eatt,j ← D
(LX+1)m
Z,σ , sets sj = (s̄⊺j ,−1)⊺ and computes c⊺att,j = s⊺j (Aatt − bits(1, Xj)⊗G) +

e⊺att,j ∀ j ∈ [Qmsg].

− Samples rk ← {0, 1}λ, defines F[fk, rk] and computes AFk , for k ∈ [Qkey], as in the key generation algorithm.
− It outputs

S =


s⊺1
...

s⊺Qmsg

 , P = [AF1 || . . . ||AFQkey
]

aux1 =
(
{Xj = Afhe,jRj − (xj, sdj)⊗G}j∈[Qmsg], {c

⊺
att,j = s⊺j (Aatt − bits(1, Xj)⊗G) + e⊺att,j}j∈[Qmsg]

)
,

aux2 = (f1, . . . , fQkey , auxA, r1, . . . , rQkey , Aatt, M).

aWe assume the parameters to be output as a part of aux2, even though we do not explicitly write so.

Figure 5: Description of the Sampler for Evasive LWE

where EP ← D
Qmsg×ℓ·Qkey
Z,σ1

. Using the representation

CB =

 c⊺B,1 = s⊺1 B + e⊺B,1
...

c⊺B,Qmsg
= s⊺Qmsg

B + e⊺B,Qmsg

 = {c⊺B,j}j∈[Qmsg],

CP =


c⊺P,1 = s⊺1 AF1 + e⊺P,1,1|| . . . ||s⊺1 AFQkey

+ e⊺P,1,Qkey
...

c⊺P,Qmsg
= s⊺Qmsg

AF1 + e⊺P,Qmsg,1|| . . . ||s⊺Qmsg
AFQkey

+ e⊺P,Qmsg,Qkey

 = {c⊺P,j,k}j∈[Qmsg],k∈[Qkey],

we rewrite Equation (64) as follows.
aux2, B, {c⊺B,j = s⊺j B + e⊺B,j}j∈[Qmsg],

{Xj = Afhe,jRj − (xj, sdj)⊗G}j∈[Qmsg],

{c⊺att,j = s⊺j (Aatt − bits(1, Xj)⊗G) + e⊺att,j}j∈[Qmsg],

{c⊺P,j,k = s⊺j AFk + e⊺P,j,k}j∈[Qmsg],k∈[Qkey]

 ≈c


aux2, B, {cB,j ← Zmw

q }j∈[Qmsg],

{Xj ← Z
(n+1)×m(λ+L)
q }j∈[Qmsg],

{catt,j ← Z
(LX+1)m
q }j∈[Qmsg],

{c⊺P,j,k ← Zℓ
q}j∈[Qmsg],k∈[Qkey]

 (65)

where eP,j,k ← Dℓ
Z,σ1

. Now, to prove Equation (62) it suffices to show Equation (65).
We prove Equation (65) via the following sequence of hybrids.

Hyb0. This is L.H.S distribution of Equation (65).

72

Hyb1. This hybrid is same as Hyb0, except we compute c⊺P,j,k as

c⊺P,j,k = M ·

 c⊺att,j ·H
Fhigh,k
Aatt,Xj

M

+

 c⊺att,j ·H
Flow,k
Aatt,Xj

M

+ fk(xj) ⌊q/2⌉+ PRF(sdj, rk) + e⊺P,j,k

where eP,j,k ← Dℓ
Z,σ1

. We claim that Hyb0 and Hyb1 are statistically indistinguishable. To see this, we observe
the following.

− From Equation (60) we note that

M ·

 c⊺att,j ·H
Fhigh,k
Aatt,Xj

M

+

 c⊺att,j ·H
Flow,k
Aatt,Xj

M

+ fk(xj) ⌊q/2⌉+ PRF(sdj, rk) + e⊺P,j,k

= s⊺j

(
M ·

⌊
Ahigh,k

M

⌋
+

⌊
Alow,k

M

⌋)
+ errj,k + e⊺P,j,k

= s⊺j AFk + errj,k + e⊺P,j,k

where
∥∥∥errj,k

∥∥∥ ≤ 27λβ.

− Next, we note that
∥∥∥errj,k

∥∥∥ ≤ 28λ+O(1)β/poly(λ) = χ1 =
∥∥∥eP,j,k

∥∥∥. Thus by noise flooding (Lemma A.3)
we have e⊺P,j,k ≈s errj,k + e⊺P,j,k with a statistical distance of poly(λ)2−λ.

From the above, we have

∆(Hyb0, Hyb1) =
Qkey ·Qmsg · poly(λ)

2λ
.

Thus, it suffices to show pseudorandomness of the following distribution given aux2
B, {c⊺B,j = s⊺j B + e⊺B,j}j∈[Qmsg]

{Xj = Afhe,jRj − (xj, sdj)⊗G}j∈[Qmsg],
{c⊺att,j = s⊺j (Aatt − bits(1, Xj)⊗G) + e⊺att,j}j∈[Qmsg],

{F̃j,k = fk(xj) ⌊q/2⌉+ PRF(sdj, rk) + e⊺P,j,k}j∈[Qmsg],k∈[Qkey].


Hyb2. This hybrid is same as Hyb1 except that for all j ∈ [Qmsg] we sample cB,j ← Zmw

q , catt,j ← Z
(LX+1)m
q and

Afhe,j ← Z
(n+1)×m
q , where Afhe,j is the fhe public key used to compute Xj. We have Hyb1 ≈c Hyb2 using LWE.

To prove this we consider sub-hybrids Hyb1.i for i ∈ [Qmsg], where in Hyb1.i we sample cB,j ← Zmw
q , catt,j ←

Z
(LX+1)m
q and Afhe,j ← Z

(n+1)×m
q for 1 ≤ j ≤ i. We set Hyb1 = Hyb1.0 and Hyb2 = Hyb1.Qmsg . Next, we

prove that for all i ∈ [Qmsg], Hyb1.i−1 ≈c Hyb1.i via the following claim.

Claim B.2. Hyb1.i−1 ≈c Hyb1.i, for i ∈ [Qmsg], assuming the security of LWE.

Proof. We show that if there exists an adversary A who can distinguish between the two hybrids with non-
negligible advantage, then there is a reduction B that breaks LWE security with non-negligible advantage. The
reduction is as follows.

1. The adversary A sends the function queries f1, . . . , fQkey , message queries x1, . . . , xQmsg and auxiliary
input auxA to the reduction.

2. B initiates the LWE security game with the LWE challenger. The challenger sends ALWE ∈ Z
n×mw+m+(LX+1)m
q

and b ∈ Z
mw+m+(LX+1)m
q to B.

73

3. B parses ALWE = (B′, Âfhe, A′att), where B′ ∈ Zn×mw
q , Âfhe ∈ Zn×m

q , A′att ∈ Z
n×(LX+1)m
q and

b⊺ = (b⊺
B, b⊺

fhe, b⊺
att). For j ∈ [Qmsg], it computes cB,j, catt,j and Afhe,j as follows.

• For 1 ≤ j < i: B samples cB,j ← Zmw
q , catt,j ← Z

(LX+1)m
q and Afhe,j ← Z

(n+1)×m
q .

• For j = i: B does the following.

− Samples b← Zmw
q and sets B =

(
B′

b⊺

)
and c⊺B,i := b⊺

B − b⊺.

− Sets Afhe,i :=
(

Âfhe
b⊺

fhe

)
and computes Xi = Afhe,iRi − (xi, sdi)⊗G as in the construction.

− Sets Āatt = A′att + bits(1, Xi) ⊗ Ḡ, Aatt =

(
Āatt
a⊺att

)
, where aatt ← Z

(LX+1)m
q , and c⊺att,i =

b⊺
att − (a⊺att − bits(1, Xi)⊗G), where Ḡ and G denotes the first n rows and n + 1-th row of the

gadget matrix G ∈ Z
(n+1)×m
q , respectively.

• For j > i: B computes c⊺B,j, Xj and c⊺att,j as in the construction, where c⊺att,j is computed using

Aatt =

(
Āatt
a⊺att

)
.

4. B sets aux2 = (f1, . . . , fQkey , auxA, r1, . . . , rQkey , Aatt, M) where rk ← {0, 1}λ and computes F̃j,k as in
Hyb1. It sends (aux2, {c⊺B,j, Xj, c⊺att,j, F̃j,k}) to the adversary.

5. A outputs a bit β′. B forwards the bit β′ to the LWE challenger.

We note that if the LWE challenger sent b = s̄ALWE + eLWE, then B simulated Hyb1,i−1 with A else if LWE

challenger sent random b← Z
mw+m+(LX+1)m
q then B simulated Hyb1,i with A.

To see the former case, we note that if b = s̄ALWE + e⊺LWE = s̄(B′, Âfhe, A′att) + (e⊺B, e⊺fhe, e⊺att), then
bB = s̄B′ + e⊺B, bfhe := s̄Âfhe + e⊺fhe, and batt := s̄A′att + e⊺att. Thus we have

c⊺B,i = (s̄,−1)
(

B′

b⊺

)
+ e⊺B, Afhe,i =

(
Âfhe

s̄Âfhe + e⊺fhe

)
, c⊺att,i = (s̄,−1)

((
Āatt
a⊺att

)
− bits(1, Xi)⊗G

)
+ e⊺att

To see the latter case, we note that if b← Z
mw+m+(LX+1)m
q then it implies bB ← Zmw

q , bfhe ← Zm
q , batt ←

Z
(LX+1)m
q . This implies the following.

− Randomness of bB implies the randomness of c⊺B,i := b⊺
B − b⊺.

− Randomness of bfhe implies Afhe,i ← Z
(n+1)×m
q .

− Randomness of batt implies randomness of c⊺att,i = b⊺
att − (a⊺att − bits(1, Xi)⊗G).

Thus, it suffices to show pseudorandomness of the following distribution given aux2 B, {cB,j ← Zmw
q }j∈[Qmsg], {Xj = Afhe,jRj − (xj, sdj)⊗G}j∈[Qmsg],

{catt,j ← Z
(LX+1)m
q }j∈[Qmsg], {F̃j,k = fk(xj) ⌊q/2⌉+ PRF(sdj, rk) + e⊺P,j,k}j∈[Qmsg],k∈[Qkey].


where Afhe,j ← Z

(n+1)×m
q .

74

Hyb3. This hybrid is same as Hyb2 except that for j ∈ [Qmsg] we sample Xj ← Z
(n+1)×m(λ+L)
q . We have

Hyb2 ≈s Hyb3 using leftover hash lemma. By leftover hash lemma (Lemma A.4) we have that the statistical
distance between Afhe,jRj and a uniform matrix U ← Z

(n+1)×m(λ+L)
q is m(λ + L)/2n. This implies that the

statistical distance between Xj = Afhe,jRj − (xj, sdj)⊗G and Xj ← Z
(n+1)×m(λ+L)
q is m(λ + L)/2n and we

have
∆(Hyb2, Hyb3) ≤

Qmsg ·m(λ + L)
2n ≤ Qmsg · poly(λ)

2λ
.

Thus, it suffices to show pseudorandomness of the following distribution given aux2B, {cB,j ← Zmw
q , Xj ← Z

(n+1)×m(λ+L)
q , catt,j ← Z

(LX+1)m
q }j∈[Qmsg],

{F̃j,k = fk(xj) ⌊q/2⌉+ PRF(sdj, rk) + e⊺P,j,k}j∈[Qmsg],k∈[Qkey].


Hyb4. This hybrid is the same as the previous one except that we replace PRF(sdj, ·) with the real random function

Rj(·) for each j ∈ [qmsg]. Since sdj is not used anywhere else, we can use the security of PRF to conclude that
this hybrid is computationally indistinguishable from the previous one.

Hyb5. This hybrid is same as the previous one except that we output a failure symbol if the set {rk}k∈[Qkey], in aux2,
contains a collision. We prove that the probability with which there occurs a collision is negligible in λ. To
prove this it suffices to show that there is no k, k′ ∈ [Qkey] such that k ̸= k′ and rk = rk′ . The probability of this
happening can be bounded by Q2

key/2λ by taking the union bound with respect to all the combinations of k, k′.
Thus the probability of outputting the failure symbol is Q2

key/2λ which is negl(λ).

Hyb6. In this hybrid we compute F̃j,k as

F̃j,k = fk(xj) ⌊q/2⌉+ Rj,k + e⊺P,j,k

for all j ∈ [Qmsg], k ∈ [Qkey]. Namely, we use fresh randomness Rj,k ← [−q/4 + B, q/4− B]1×ℓ instead of
deriving the randomness by Rj(rk). We claim that this change is only conceptual. To see this, we observe that
unless the failure condition introduced in Hyb5 is satisfied, every invocation of the function Rj is with respect to a
fresh input and thus the output can be replaced with a fresh randomness.
Thus, it suffices to show pseudorandomness of the following distribution given aux2B, {cB,j ← Zmw

q , Xj ← Z
(n+1)×m(λ+L)
q , catt,j ← Z

(LX+1)m
q }j∈[Qmsg],

{F̃j,k = fk(xj) ⌊q/2⌉+ Rj,k + e⊺P,j,k}j∈[Qmsg],k∈[Qkey].


Hyb7. This hybrid is same as the previous one except we sample Rj,k ← [−q/4, q/4]1×ℓ. We note that Hyb6 ≈s Hyb7.

To see this note that the statistical distance between the uniform distributions U1 = [−q/4 + B, q/4− B] and
U2 = [−q/4, q/4] is

∆(U1, U2) =
1
2

∣∣∣∣ 2
q− 4B

− 2
q

∣∣∣∣ ≤ 4B
q
≤ poly(λ)

2λ

by our parameter setting. Therefore,

∆(Hyb2, Hyb3) ≤
Qkey ·Qmsg · poly(λ)

2λ
.

Hyb8. This hybrid is same as the previous one except we sample F̃j,k ← Zℓ
q. This follows from the pseudorandomness

of { fk(xj)}j,k. To see this note that we have

(1λ, auxA, { fk, fk(xj)}j∈[Qmsg],k∈[Qkey]) ≈c (1λ, auxA, { fk, ∆j,k ← {0, 1}ℓ}j∈[Qmsg],k∈[Qkey])

75

which implies

(1λ, auxA, { fk, F̃j,k = fk(xj) ⌊q/2⌉+ Rj,k + e⊺P,j,k}j∈[Qmsg],k∈[Qkey]) (66)

≈c (1λ, auxA, { fk, F̃j,k ← Zℓ
q}j∈[Qmsg],k∈[Qkey])

where Rj,k ← [−q/4, q/4]1×ℓ and eP,j,k ← Dℓ
Z,σ1

.
Thus, using Equation (66) and noting that adding random strings does not make the task of distinguishing the two
distributions any easier, we achieve the following distributionauxA, B, {cB,j ← Zmw

q , Xj ← Z
(n+1)×m(λ+L)
q , catt,j ← Z

(LX+1)m
q }j∈[Qmsg],

{F̃j,k ← Zℓ
q}j∈[Qmsg],k∈[Qkey].


which is the R.H.S distribution of Equation (65), hence the proof.

B.3 Proof for Non-Uniform κ-prCT Security
Our construction also achieves stronger non-uniform κ-prCT security assuming the corresponding strengthening of
evasive LWE. This stronger version of the security is not proven in [AKY24b], but will be required for the construction
of prMIFE in Section 3. The formal statement follows.

Theorem B.3. Let κ = 2λc for some constant c. Assuming non-uniform κ-evasive LWE (Assumption 2.4), subexponen-
tially secure PRF against non-uniform adversary, and non-uniform sub-exponential LWE (Assumption A.5), there exists
a prFE scheme satisfying κ-prCT security as per Definition 2.15.

Proof. We prove that the construction in Appendix B.1 with λ being replaced by appropriately chosen Λ = poly(λ)
satisfies the security notion. The reason why we need this scaled version of the security parameter is that we have to
consider an adversary whose running time can be κ, which is exponential in λ. In particular, in the security proof,
we require LWE and PRF to be secure even against an adversary that runs polynomial time in κ. To handle such an
adversary, we rely on the subexponential security of LWE and PRF. By our assumption, there exists 0 < δ < 1 such
that there is no adversary with size 2λδ and distinguishing advantage 2−λδ against LWE and PRF for all sufficiently
large λ. To satisfy the requirement, we generate PRF and LWE instances with respect to a larger security parameter Λ
that satisfies 2Λδ ≥ κω(1). An example choice of the parameter would be Λ := λ(c+1)/δ.

The overall structure of the proof is the same as that of Theorem B.1.
We start with a sampler SampprFE and an adversary A1 satisfying Size(SampprFE) ≤ poly(λ′) and Size(A1) ≤

poly(κ) for λ′ < κ.21 We denote the size of A1 by t and the distinguishing advantage for the distributions in
Equation (62) by ϵ. Assuming non-uniform κ-evasive LWE with respect to Samp defined from SampprFE as in the
proof of Theorem B.1, we obtain an adversary A0 whose size is Q(λ′)t and the distinguishing advantage against the
distributions in Equation (65) is ϵ/Q(λ′)− negl(κ) for some polynomial Q by applying Lemma 2.5. We then consider
the same sequence of hybrids as that for the proof of Theorem B.1. Note that here, the security parameter for the
construction λ is replaced by Λ and Qmsg and Qkey are bounded by poly(λ′), since the size of the sampler is poly(λ′).
By the definition of the hybrids, the adversary has the distinguishing advantage ϵ/Q(λ′)− negl(κ) for Hyb0 and Hyb8.
Furthermore, we argue that the distinguishing advantage between Hyb0 and Hyb7 is only negl(κ). We inspect this in the
following:

• The changes from Hyb0 to Hyb1, from Hyb2 to Hyb3, from Hyb4 to Hyb5, and from Hyb6 to Hyb7 are statistical,
where each statistical difference is bounded by poly(λ′)/2−Λ. We have poly(λ′)/2−Λ ≤ poly(κ)/2−Λ =
negl(κ) by our choice of Λ.

21Here, we deviate from our convention that the adversary runs in time polynomial in its input length. The input length of A1 is poly(λ′), but its
running time is poly(κ), which may be super-polynomial in λ′.

76

• The change from Hyb1 to Hyb2 is computational, which is dependent on the hardness of LWE. Since the size of
A0 is bounded by poly(κ), the distinguishing advantage between Hyb1 and Hyb2 should be bounded by negl(κ)
by the subexponential hardness of LWE and by our choice of Λ.

• The change from Hyb3 to Hyb4 is computational, which is dependent on the security of PRF. Since the size of
A0 is bounded by poly(κ), the distinguishing advantage between Hyb3 and Hyb4 should be bounded by negl(κ)
by the subexponential security of PRF.

• The changes from Hyb5 to Hyb6 is conceptual and thus they are equivalent.

We therefore conclude that the distinguishing advantage of A0 against Hyb7 and Hyb8 should be ϵ/Q(λ′)− negl(κ).
Then, from A0, it is straightforward to extract a distinguisher A′0 against the distributions in Equation (63) with the
same advantage and almost the same size. This concludes the proof of the theorem.

Theorem B.4. Let κ = 2λc for some constant c. Assuming non-uniform κ-evasive LWE (Assumption 2.4), subexpo-
nentially secure PRF against non-uniform adversary, and non-uniform sub-exponential LWE (Assumption A.5), there
exists a prFE scheme for function class FL(λ),ℓ(λ),dep(λ) = { f : {0, 1}L → {0, 1}ℓ} satisfying κ-prCT security as per
Definition 2.15 with efficiency

|mpk| = L · poly(dep, λ), |sk f | = ℓ · poly(dep, λ), |ct| = L · poly(dep, λ).

where dep = poly(λ) is the depth bound on the functions supported by the scheme.

77

	Introduction
	Our Results
	Recent Attacks on Evasive LWE and Repercussions.
	Technical Overview
	Organization of the Paper

	Preliminaries
	Assumptions
	Puncturable Pseudorandom Functions
	Symmetric Key Encryption with Pseudorandom Ciphertext
	Pseudorandom Functional Encryption
	Predicate Encryption
	Multi-Input Predicate Encryption
	ID-Based Non-Interactive Key Exchange

	Multi-Input FE for Pseudorandom Functionalities
	Definition
	Construction for n-input prFE
	Security Proof for General n
	Security Proof for Constant n (with Weaker Assumption)

	Multi-Input Predicate Encryption for Polynomial Arity for P
	Construction
	Security

	Indistinguishability Obfuscation for Pseudorandom Functionalities
	Definition
	Construction
	Security

	Polynomial Domain IO for Pseudorandom Functionalities
	Definition
	Construction for Fixed Input Domain
	Construction for Flexible Input Domain
	Extending the Output Length.

	Instantiating the Random Oracles Using prIO
	Full-Domain Hash Signatures (Selectively Secure) from prIO
	Discussion about Other Applications.

	ID-Based Non-Interactive Key Exchange
	Construction
	Security Proof

	Additional Preliminaries
	Lattice Preliminaries
	GSW Homomorphic Encryption and Evaluation
	Homomorphic Evaluation Procedures

	Pseudorandom FE with Stronger Security
	Construction
	Proof for prCT Security
	Proof for Non-Uniform -prCT Security

