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Abstract. NTRU is one of the most extensively studied lattice-based
schemes. Its flexible design has inspired different proposals constructed
over different rings, with some aiming to enhance security and others
focusing on improving performance. The literature has introduced a line
of noncommutative NTRU-like designs that claim to offer greater resis-
tance to existing attacks. However, most of these proposals are either
theoretical or fall short in terms of time and memory requirements when
compared to standard NTRU. To our knowledge, DiTRU (Africacrypt
2024) is the first noncommutative analog of NTRU provided as a com-
plete package. Although DiTRU is practical, it operates at two times
slower than NTRU with no decryption failure. Additionally, key gener-
ation, encryption, and decryption are 1.2, 1.7, and 1.7 times slower, re-
spectively, with negligible decryption failure. In this work, we introduce
a noncommutative version of NTRU that offers comparable performance
and key sizes to NTRU while improving upon DiTRU. Our cryptosys-
tem is based on the GR-NTRU framework, utilizing the group ring of
a semidirect product of cyclic groups over the ring of Eisenstein inte-
gers. This design allows for an efficient construction with key generation
speeds approximately two (three) times faster than NTRU (DiTRU).
Further, the proposed scheme provides roughly a speed-up by a factor
of 1.2 (2) while encrypting/decrypting messages of the same length over
NTRU (DiTRU). We provide a reference implementation in C for the
proposed cryptosystem to prove our claims.

Keywords: NTRU· GR-NTRU· Semidirect product· Group rings· Eisen-
stein integers

1 Introduction

NTRU [19], first introduced by Hoffstein, Pipher, and Silverman, is one of the
most prominent and efficient lattice-based postquantum cryptosystems. The long
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cryptanalytic history and absence of effective attacks against well-defined pa-
rameter sets of NTRU place it at a strong position in the pyramid of postquan-
tum schemes. The trust in NTRU is further deepened as three NTRU-style
schemes [7, 9, 25] reached the third round of NIST’s postquantum standardiza-
tion process. The flexibility in the design of NTRU has resulted in many variants
aimed at improving the efficiency and security of NTRU. We will refer to the
NTRU version presented in [18] as standard NTRU.

Crypanalytic landscape. Broadly, the security of NTRU is based on the
NTRU hard assumption, formulated as:

Given a public key h, computed as h = f−1 ∗ g (mod q), where f, g are short
private polynomials and q is a modulus, find f ′, g′ with small coefficients such
that f ′ ∗ h = g′ (mod q).

The most straightforward way to attack the problem is to search for small
elements from the underlying ring satisfying the NTRU key equation. One can
optimize the search process by incorporating approaches like Meet in the middle
attack [20]. The NTRU problem can also be solved by finding short vectors in
lattices of particular structures [13] using lattice reduction algorithms [12,32]. In
this sense, NTRU is classified as a lattice-based cryptosystem. The two previous
approaches can be further combined, resulting in a hybrid attack [21]. Other
attacks against NTRU exploit the selected parameters, like decryption failure
attacks [22] and subfield attacks [14]. Hence, to propose a set of parameters that
target a certain level of security, one needs to consider the cost of all previous
attacks. However, in some other scenarios, the attacker may have access to extra
information about the cryptosystem that enables different cryptanalysis tools.
For example, the NTRU learning problem, phrased as:

Given NTRU public keys hi = f−1 ∗ gi (mod q), for a fixed f and a number
of independently sampled gi, find f ,
was believed to be hard until recently, Kim and Lee [27] introduced a polynomial-
time attack that can break it if the attacker has access to n different samples of
hi (where n refers to the extension degree of the NTRU ring Z[x]/(xn − 1)). A
simple analysis of the Kim and Lee attack shows that their method works when
the underlying ring is commutative since building the system of equations that
leads to attacking the NTRU learning problem is possible only if the attacker
can reformulate the equations using commutativity. We refer the reader to the
original work [27] for the attack details. Therefore, employing noncommutative
algebras to generalize NTRU appears to be a promising research direction. Fur-
thermore, Coppersmith and Shamir [13], in the initial work of lattice attack on
NTRU, also hinted that noncommutative structure might prevent their attack
and other possible attacks that take benefit of the commutative structure.

Related works. Although several proposals exist for noncommutative NTRU-
like cryptosystems, many of them do not maintain the hard assumption of
NTRU. The first noncommutative variant of NTRU by Hoffstein and Silverman
is an example under this category, where the scheme was vulnerable to attack,
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which does not apply to standard NTRU. For details of this attack, we refer the
readers to [40]. Other proposals uphold the general assumption of NTRU but
fall behind in terms of the efficiency and compactness of the parameter sets com-
pared to standard NTRU. For example, QTRU [34], SQTRU [39], OTRU [33]
based on quaternion, split quaternion, and octonion algebras, respectively, are 4,
4, and 16 times slower than NTRU for the same level of security. BQTRU’s [5]
security analysis raises concerns as the authors discuss their parameter selection,
conjecturing that Gentry’s attack [17] does not challenge the security of their
scheme without a rigorous analysis. Further, none of the above constructions
provided a full implementation, keeping it unclear how efficiently one can ad-
dress some of the design aspects, like inverting elements in the new setting of
the noncommutative ring.

To our knowledge, DiTRU [35] is the only noncommutative NTRU-like design
provided with a full-package implementation. DiTRU is structured as a group
ring NTRU over the dihedral group of order 2N . The hard assumption of NTRU
is maintained as the key recovery attack is equal to finding ‘short’ elements
from the underlying noncommutative ring. However, according to the authors,
the associated lattice with DiTRU is susceptible to a one-layer Gentry attack,
which can reduce the dimension of lattice attacks from 4N to 2N . Consequently,
the parameters chosen for DiTRU are twice as large as those used for NTRU
to achieve equivalent levels of security without allowing decryption failure. This
ratio can be scaled down slightly when a negligible decryption failure is deemed
acceptable. In summary, while DiTRU offers a practical noncommutative analog
to NTRU, it fails to maintain NTRU performance for equivalent parameter sets.

Our contribution. We design a noncommutative NTRU variant in the GR-
NTRU framework [42]. Although GR-NTRU is usually designed over the group
rings ZG. To achieve faster multiplication, we make minor modifications and
build it over the group ring RG where R is the ring of Eisenstein integers as in
ETRU [26]. The group G = CN ⋊C3 is the noncommutative semidirect product
of cyclic groups CN and C3 of order N and 3, respectively. For our construction,
we clear all the implementation details and consider the following points:

– Inversion algorithm: We provide an inversion algorithm (Algorithm 2) to
find invertible elements in the underlying group ring. This algorithm consti-
tutes an essential part of the key generation process. The proposed algorithm
introduces a way to check/find invertible elements by mapping the units over
the proposed ring R(CN ⋊C3) to the ring RCN where R is the ring of Eisen-
stein integers. We provide the constant-time implementation for our algorithm
following the Bernstein-Yang algorithm [8]. Our findings demonstrate that the
proposed key generation process is faster than the key generation processes
for NTRU and DiTRU by a factor of 2 and 3, respectively.

– Analysis of lattice security: We give a detailed cryptanalysis of the security
of the associated lattices with our construction and analyze the hardness of
retrieving the decryption key using the lattice reduction algorithms.
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– Concrete parameter selections: We model the decryption failure with
respect to the chosen design, and accordingly, we provide two sets of param-
eters: one with zero decryption failure rate, and the other allows a negligible
decryption failure. These parameters have been selected considering the best
combinatorial and lattice-based attacks against our construction.

– Reference implementation: We provide a C reference implementation to
prove the claimed results on the performance and compactness of our proposal.
Table 4 compares the performance of our construction vs. NTRU and DiTRU
while encrypting/decrypting messages of the same length. Our cryptosystem
demonstrates improvement over NTRU and DiTRU by a factor of 1.2 and 2,
respectively. The implementation is available and can be accessed at https:
//github.com/The-Isogeniest/Ei_TRU.

1.1 Paper Layout

Section 2 contains the required notations and preliminaries. The proposed cryp-
tosystem is given in Section 3. Section 4 gives an analysis of different attacks on
the new design. Finally, the cryptosystem’s parameters, its performance analysis,
and comparison with NTRU and DiTRU are provided in Section 5.

2 Notation and preliminaries

C,R, and Z denote the set of complex numbers, real numbers and integers,
respectively. Symbol ∗, wherever it occurs, denotes the multiplication of two
elements with respect to the underlying algebraic structure, which should be
clear from the context. For a positive integer n, Z/nZ is the ring of integers
modulo n. R denotes a commutative ring with unity and Rn is cartesian product
of n copies of R. The norm of a vector u = (u1, u2, . . . , un) ∈ Rn is defined
as ∥u∥ =

√∑n
i=1 u

2
i . The length/norm of a complex number ξ = a + ιb is

|ξ|=
√
a2 + b2, where ι =

√
−1 ∈ C is the imaginary root of unity. Let Re

and Im denote the real and imaginary parts of a complex number, respectively.
We denote the primitive cube root of unity by ω, i.e., ω = e

2πi
3 , ω3 = 1 and

ω ̸= 1. Un denote the set of nth roots of unity. U3 = {1, ω, ω2 = −1 − ω} and
U6 = {±1,±ω,±ω2}. Mn(R) denotes the ring of n × n matrices with entries
from the ring R. Sampling an element s uniformly at random from a set S is
denoted by s

$← S. We may define more notations in the course of the paper,
wherever required.

2.1 Lattices

Definition 1 (Lattice). Let B ∈ Rn×m with linearly independent rows bi, for
i = 1, 2, . . . , n. A lattice LB generated by the matrix B is the set of integer linear
combination of rows of B, i.e.,

https://github.com/The-Isogeniest/Ei_TRU
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LB =


n∑

i=1

γibi : γi ∈ Z

 . (1)

The matrix B is called a basis matrix of the lattice LB . The determinant of
the lattice LB is given by

√
det(BTB) and is independent of the choice of basis.

If all the rows of B have integer entries, we say that the lattice is an integral
lattice. This paper deals with only full-rank integral lattices, i.e., n = m. A full
rank lattice LB ⊂ Zn is called q-ary lattice for some q > 0, if qZn ⊂ LB ⊂ Zn.

Definition 2 (SVP). The Shortest Vector Problem (SVP) is to find a non-zero
vector u ∈ LB such that

∥u∥ = min
w∈LB−{0}

∥w∥ .

We denote the length of the shortest vector in lattice LB by λ1(LB).

Definition 3 (CVP). Closest Vector Problem (CVP) is to find a vector v ∈ LB

closest to the given target vector t ∈ Rd, i.e., ||v− t ||≤ ||w− t || for all w ∈ LB.

Definition 4 (Gaussian heuristic). Suppose LB ⊂ Rn is a lattice generated
by matrix B ∈ Rn×n. Gaussian heuristic estimates the length of the shortest
vector in the lattice LB to be

σ(LB) =
√

n/2πe · det(B)1/n. (2)

2.2 Semidirect product of cyclic groups

Definition 5. [16, Definition 2.2] Given two groups G and H and a group
homomorphism ϕ : H → Aut(G) (the automorphism group of G), the Semidirect
Product of G and H with respect to ϕ, denoted G ⋊ϕ H(or, simply, G ⋊ H)
is a new group with set G × H and multiplication operation (g1, h1)(g2, h2) =
(g1ϕ(h1)(g2), h1h2).

The fact that Aut(CN ) ∼= ZN−1 gives the following result:
Theorem 1. [16, Proposition 2.1] Let CN

∼= Z
NZ and CM

∼= Z
MZ be two cyclic

groups of order N and M , respectively. A semidirect product CN ⋊k CM corre-
sponds to a choice of integer k such that kM ≡ 1 mod N . The semidirect product
group is given by

CN ⋊k CM =
〈
x, y | xN = yM = 1, yxy−1 = xk

〉
. (3)

When there is no confusion of k, we denote the semidirect product by CN ⋊CM .

In our work, we consider the case when N is prime, M = 3, and 3|(N−1) so that
we have a noncommutative semidirect product CN ⋊kC3 for some k ̸≡ 1 mod N
such that k3 ≡ 1 mod N . Let us fix such a k and order the elements of the group
CN ⋊k C3 as follows:

CN ⋊k C3 = {1, x, . . . , xN−1, y, yx, . . . , yxN−1, y2, y2x, . . . , y2xN−1}.
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Theorem 2. [15, Section 5.5] Let H be a finite cyclic group and N be an ar-
bitrary group. Suppose ϕ1, ϕ2 : H → Aut(N) (Aut(N) is the group of automor-
phisms on N) are homomorphisms such that Im(ϕ1) and Im(ϕ2) are conjugate
subgroups of Aut(N). Then N ⋊ϕ1 H

∼= N ⋊ϕ2 H.

Corollary 1. Let N be a prime number such that 3|(N − 1), then there exists
only one noncommutative semidirect product CN ⋊k C3 unique up to isomor-
phism.

Proof. Since N is prime, therefore Aut(CN ) ∼= CN−1 (cyclic group of order
N−1). Hence, there is one and only one subgroup of order 3 of Aut(CN ) because
3|(N − 1). Consequently, for any two non-trivial homomorphisms ϕ1, ϕ2 : C3 →
Aut(CN ), we have Im(ϕ1) = Im(ϕ2). Thus, CN ⋊ϕ1

C3
∼= CN ⋊ϕ2

C3. ⊓⊔

2.3 Ring of Eisenstein integers

We briefly discuss the essential properties of Eisenstein integers that are given
in [26] in detail. The ring of Eisenstein integers is defined as

Z[ω] = {a+ bω : a, b ∈ Z} =

{
a− b

2
+ i

b
√
3

2
: a, b ∈ Z

}
. (4)

The length of an Eisenstein integer z = a+bω is |z|=
√
a2 + b2 − ab. The product

of two Eisenstein integers is given by

(a+ bω) ∗ (c+ dω) = ac− bd+ (ac+ (a− b)(d− c))ω. (5)

Therefore, one product in Z[ω] requires 3 multiplications and 4 additions over
Z. The map ⟨·⟩ : Z[ω]→M2(Z) given by

⟨z⟩ =

(
a b

−b a− b

)
(6)

is a ring homomorphism and the map a+bω → (a, b) ∈ Z2 is an isomorphism. The
multiplication (a+ bω) ∗ (c+ dω) ∈ Z[ω] can be realized as (a, b) · ⟨c+ dω⟩ ∈ Z2.
The Voronoi cell Vq of an element q ∈ Z[ω] is the region bounded by a certain
regular hexagon inscribed between circles of radius |q|/2 and |q|/

√
3 as shown in

Figure 1.

Theorem 3. [26, Theorem 1] The set U6 consists of exactly all units (invertible
elements) of Z[ω]. The primes of Z[ω] are (up to multiplication by a unit): 1−ω;
rational primes p ∈ Z satisfying p ≡ 2 (mod 3); and those q ∈ Z[ω] for which
|q|2 = p is a rational prime satisfying p ≡ 1 (mod 3).

Division in Z[ω]. For any α and a nonzero q in Z[ω], we say that β ∈ Z[ω] is
residue or reduced element modulo q corresponding to α, i.e., α (mod q) = β,
if we can write α = rq + β where r ∈ Z[ω] is the closest element to q−1α ∈
C, or equivalently rq ∈ Z[ω] is the nearest multiple of q to α. The set of
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residues/reduced elements modulo q is denoted as Dq. It should be observed
that Z[ω] is a regular hexagonal lattice in C ∼= R2 with basis {1, ω} over Z,
and the ideal ⟨q⟩ is again a lattice with basis {q, qω}. Therefore, finding r ∈ Z[ω]
closest to q−1α ∈ C is equivalent to solving Closest Vector Problem (CVP) in the
lattice Z[ω]. A division algorithm over Z[ω] is discussed in [26, Algorithm 1] that
costs 27 integer multiplications and 32 integer additions, which is significantly
costlier than computing an integer modulus.

(a) P11 (b) D11

Fig. 1: Division in Z[ω] by q = 11. The different colors in P11 represent regions close
to different multiples of q = 11, which are possibly 0, 11, 11ω, or 11+11ω. Each colored
region in D11 represents the residues of elements in its corresponding part in P11

translated according to Algorithm 1 depending on their closeness to multiples of 11.

In this work, we propose a more efficient division algorithm (Algorithm 1)
that works for division by elements of the form q + 0ω, with a cost of 4 integer
multiplications and 4 integer additions. We briefly explain the working of Algo-
rithm 1. Let a, b ∈ Z then there exist unique integers r, s and 0 ≤ x, y < q such
that a = rq + x, b = sq + y. Therefore, a+ bω = q(r+ sω) + (x+ yω) ≡ x+ yω
(mod q). Let Pq = {x + yω : 0 ≤ x, y < q}, then it is enough to find residues
of elements in Pq modulo q. For an element x + yω ∈ Pq, Algorithm 1 returns
the residue modulo q by locating the nearest multiple of q in Z[ω] as follows:
If the nearest multiple of q is x1 + y1ω, where x1, y1 ∈ {0, q}, then the residue
is (x − x1) + (y − y1)ω. When a point is equidistant from two multiples of q,
then the algorithm chooses the one on the left. We have shown the regions in
Pq closer to different multiples of q in Figure 1a, and the corresponding residues
Dq in Figure 1b, for q = 11.

Algorithm 1: Division by integers in Z[ω]
Input: α = a+ bω ∈ Z[ω], and an element q = q + 0ω ∈ Z[ω].
Output: β ∈ Z[ω] such that α = rq + β where r ∈ Z[ω] is nearest to q−1α.

1 x = a (mod q), y = b (mod q), X = 2x, Y = 2y
2 if x+ y > q, X > y, Y ≥ x then return β = (x− q) + (y − q)ω
3 if X − y > q, Y < x then return β = (x− q) + yω
4 if Y − x ≥ q, X ≤ y then return β = x+ (y − q)ω
5 else return β = x+ yω

Remark 1. Algorithm 1 returns the set of residues Dq modulo q that is almost
symmetrically distributed around 0, which is needed to decrease the decryption
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failure. However, q = 2 is a special case where we get D2 = {0, 1,−ω,−ω2}
which is not distributed around 0. Observing that ω, ω2 ≡ −ω,−ω2 (mod 2) and
|±ω| = |±ω2| = 1. We redefine D2 as D2 = {0, 1, ω, ω2} by mapping −ω → ω
and −ω2 → ω2. Conclusively, a + bω (mod 2) = a (mod 2) + b (mod 2)ω, and
if a (mod 2) = b (mod 2) = 1 then a+ bω (mod 2) = −1− ω = −ω2.

Lemma 1. For a rational prime q ∈ Z[ω], inverse of a nonzero element z =
a+ bω modulo q is given by |z|−2((a− b)− bω), where |z|−1 is computed modulo
integer q in Zq.

Proof. Consider (a + bω) ∗ ((a − b) − bω) = a2 − ab + b2 = |z|2, and |z|−1=
|z|q−2 (mod q) (Fermat’s theorem) exists since Zq is a field as q is prime integer.

2.4 Group rings

Definition 6 (Group rings). The group ring of a group G = {gi : i =
1, 2, . . . , n} over a ring R is the set of formal sums

RG =

a =

n∑
i=1

αigi : αi ∈ R for i = 1, 2, . . . , n

 (7)

that forms a ring under the following operations. Suppose a =
∑n

i=1 αigi and
b =

∑n
i=1 βigi in RG.

1. The sum of a and b is given by a+ b =
∑n

i=1(αi + βi)gi.

2. The product of a and b is given by a ∗ b =
∑n

i=1

(∑
ghgk=gi

αhβk

)
gi.

Definition 7 (Coefficient vector). Every element a =
∑n

i=1 αigi can be mapped
uniquely to its coefficient vector (α1, α2, . . . , αn) ∈ Rn. We freely use the same
notation ′a′ to denote the elements of the group ring and their corresponding
coefficient vectors depending on the context.

Definition 8 (RG-matrix). [24] For every element a = (αg1 , αg2 , . . . , αgn) ∈
RG, we construct the RG-matrix of a as follows:

MRG(a) =


α
g−1
1 g1

α
g−1
1 g2

. . . . . . α
g−1
1 gn

α
g−1
2 g1

α
g−1
2 g2

. . . . . . α
g−1
2 gn

...
...

. . .
...

α
g−1
n g1

α
g−1
n g2

. . . . . . α
g−1
n gn

 . (8)

The set MRG = {MRG(a) : a ∈ RG} is the subring of Mn(R). We say a matrix
A ∈Mn(R) is an RG-matrix if there is an a ∈ RG such that A = MRG(a).

Theorem 4. [24, Thereom 1] The mapping τ : RG→ MRG ⊂ Mn(R) defined
as τ(a) = MRG(a) is a bijective ring homomorphism.

Theorem 5. [24, Thereom 2] An element a ∈ RG is a unit if and only if
MRG(a) is invertible in Mn(R). In that case, inverse of MRG(a) is also an RG-
matrix.
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2.5 Group ring R(CN ⋊ C3)

In this section, we derive some results on the group ring R(CN ⋊k C3). Partic-
ularly, we give the matrix representation of elements in R(CN ⋊k C3) and then
derive an inversion algorithm to check the invertibility and find the inverses of
elements in this group ring.

The group ring R(CN ⋊k C3) can be defined as

R(CN ⋊k C3) = {α(x) + yβ(x) + y2γ(x) : α(x), β(x), γ(x) ∈ RCN}, (9)

where yxy−1 = xk, k3 ≡ 1 mod N . Consider

(yxy−1)k
2

= (xk)k
2

yxk2

y−1 = x since k3 ≡ 1 mod N and xN = 1

yxt = xy where t ≡ k2 mod N.

Therefore,
CN ⋊t C3 =

〈
x, y | xN = y3 = 1, xy = yxt

〉
(10)

where 3|(N − 1), t3 ≡ 1 mod N , and t ̸≡ 1 mod N . As a result, α(x)y = yα(xt)
for every α(x) ∈ RCN . Consequently, the product of two elements z = u(x) +
yv(x) + y2w(x), a = α(x) + yβ(x) + y2γ(x) ∈ R(CN ⋊k C3) is given by

z ∗ a = u(x)α(x) + w(xt)β(x) + v(xt2)γ(x) + y
(
v(x)α(x) + u(xt)β(x) + w(xt2)γ(x)

)
+ y2

(
w(x)α(x) + v(xt)β(x) + u(xt2)γ(x)

)
. (11)

Lemma 2 (Matrix representation). Let G = CN ⋊k C3 then RG-matrix of
an element z ∈ R(CN ⋊k C3) is of the form

MRG(z) =

M0 M1 M2

M2 M0 M1

M1 M2 M0

 ∈ R3N×3N , (12)

i.e., MRG(z) is a block circulant matrix of order 3N where each submatrix Mi

is an order N matrix.

Proof. We divide the matrix MRG(z) into blocks as

MRG(z) =

A00 A01 A02

A10 A11 A12

A20 A21 A22

 ,

where Ars is an N ×N matrix over R, for r, s ∈ {0, 1, 2}. From the definition 8,
for every 0 ≤ i, j ≤ N − 1, we have

(Ars)i,j = coefficient of (yrxi)−1(ysxj) in z.
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Use xy = yxt, where t ≡ k2(modN), to get xiyj = yjxitj . Further, using xN =
y3 = 1 and t3 ≡ 1 mod N , we get

(yrxi)−1(ysxj) = xN−iy(s−r) mod 3xj = y(s−r) mod 3x(j−it(s−r) mod 3) mod N .

Therefore, A00 = A11 = A22, A01 = A12 = A20, and A02 = A10 = A21. ⊓⊔

Theorem 6 (Units). Let z = u(x) + yv(x) + y2w(x) ∈ R(CN ⋊k C3), and
t ≡ k2(modN). Then, z is a unit in R(CN ⋊k C3) if and only if the element

det(u, v, w) = u(x)u(xt)u(xt2) + v(x)v(xt)v(xt2) + w(x)w(xt)w(xt2)

− u(x)v(xt)w(xt2)− v(x)w(xt)u(xt2)− w(x)u(xt)v(xt2) (13)

is a unit in RCN . In this case, the inverse of z is given by

det(u, v, w)−1 ∗

(
u(x)u(xt)− v(xt)w(xt2) + y(w(x)w(xt2)− v(x)u(xt2))

+y2(v(x)v(xt)− w(x)u(xt))

)
. (14)

Proof. Element z is a unit if and only if there exists a unique a = α(x)+yβ(x)+
y2γ(x) ∈ R(CN ⋊k C3) such that z ∗ a = a ∗ z = 1. From (11), we have

z ∗ a =u(x)α(x) + w(xt)β(x) + v(xt2)γ(x) + y
(
v(x)α(x) + u(xt)β(x) + w(xt2)γ(x)

)
+ y2

(
w(x)a(x) + v(xt)b(x) + u(xt2)γ(x)

)
= 1 (15)

Rewriting Equation (15) asu(x) w(xt) v(xt2)

v(x) u(xt) w(xt2)

w(x) v(xt) u(xt2)


α(x)

β(x)

γ(x)

 =

1

0

0

 . (16)

By uniqueness of inverse, such an a exists if and only if the matrix in Eq. (16)
is invertible over RCN . Consequently, the determinant of this matrix, given
precisely by det(u, v, w), is a unit in RCN . Furthermore, a is obtained as defined
in Eq. (14). ⊓⊔

3 GR-NTRU over the group ring Z[ω](CN ⋊ C3)

The Group ring NTRU or GR-NTRU [42] provides a general framework to de-
sign NTRU-like cryptosystems by employing different group rings. The standard
NTRU operates over the truncated ring of polynomials Z[x]/

〈
xN − 1

〉
. If we let

CN =
〈
x : xN = 1

〉
to be the cyclic group of order N , then Z[x]/

〈
xN − 1

〉
can

be viewed as a group ring of CN over Z, i.e., Z[x]/
〈
xN − 1

〉
≈ ZCN .

Definition 9 (GR-NTRU). The GR-NTRU generalizes NTRU by replacing
the cyclic group ring ZCN in NTRU with any group ring ZG of a finite group
G and keeping all other procedures the same with a little modification depending
on the requirements.
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3.1 Z[ω](CN ⋊ C3)-NTRU
Let N be a prime number, and p, q ∈ Z[ω] be two primes chosen using Theorem 3
such that gcd(p, q) = 1 and |p|≪ |q|. We fix p = 2 for this work. Our scheme
operates over the following rings:

Rω = Z[ω](CN ⋊ C3) and Rω
α =

Z[ω]
⟨α⟩ (CN ⋊ C3), (17)

where α ∈ {p, q} and Rω
α is the set of elements in Rω whose coefficients are

reduced modulo α. Let r = 2/3, t be the nearest integer to r(3N) = 2N and s
be multiple of 3 nearest to 2N . The set Lf ⊂ Rω consists of elements with exactly
t nonzero coefficients from U6, and other coefficients are 0. Sets Lg, Lϕ ⊂ Rω

consists of elements with s/3 triples of coefficients each from sets either U3

or −U3 in a random order, and other coefficients are 0. The message space is
Lm = Rω

p . In other words, a message is an element of the group ring Rω whose
coefficients belong to the set D2 = U3 ∪{0}. The basic framework of the scheme
is similar to NTRU [18] and is sketched as follows:

Key Generation

1. Sample F
$← Lf until f =

1+ pF is invertible in Rω
q .

2. fq ← inverse of f in Rω
q .

3. Sample g
$← Lg.

4. Public key h = fq ∗ g
(mod q).

5. Private key F .

Encryption

1. Sample ϕ
$← Lϕ.

2. For messgae m ∈ Lm,
compute
e = ph ∗ ϕ + m (modq).

3. return e .

Decryption

1. Compute a = f ∗ e(mod
q).

2. return m = a (modp).

Correctness of decryption. We have a = p(g ∗ ϕ + F ∗ m) + m (modq). If
the absolute value of the largest coefficient of p(g ∗ ϕ+ F ∗m) +m is less than
|q|/2, then a = p(g ∗ ϕ + F ∗ m) + m without modulo q. Since g, ϕ, and F
have maximum 3rN = 2N nonzero coefficients and every coefficient has norm
1, also the coefficients of m belong to U3 ∪ {0} thus have norm 1. Therefore,
the absolute value of the largest possible coefficient of p(g ∗ ϕ + F ∗m) +m is
bounded by 4N |p|+1. So, if we choose q such that |q|> 8N |p|+2, then we can
eliminate decryption failure entirely. In particular, for p = 2, choose q such that
|q|> 16N + 2.

Inversion. For generating the keys, we need an efficient way to find the inverses
of elements in the group ring Rω

q , where q ∈ Z[ω] is a prime. There exist algo-
rithms [8,37,41] to check the invertibility and find inverses of elements in the ring
ZqCN where q is a prime or prime power. These algorithms can easily be modified
to work for the ring Z[ω]/⟨q⟩CN . We use the constant-time modular inversion by
Bernstein and Yang [8] in our implementation to compute inverses in Z[ω]/⟨q⟩CN

with some modifications as it requires to find inverses in Z[ω]/⟨q⟩. That can be
done in constant time using the Square-and-Multiply algorithm [38, Page 200] in
Lemma 1. Finally, combining the inversion in Z[ω]/⟨q⟩CN with Theorem 6, one
can find invertible elements in the ring Rω

q as shown in Algorithm 2. The com-
plexity of the inversion algorithm for our scheme and its efficiency over NTRU
is discussed in Section 5.
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Algorithm 2: Inversion in Rω
q

Input: z = u(x) + yv(x) + y2w(x) ∈ Rω
q

Output: z−1 = α(x) + yβ(x) + y2γ(x) ∈ Rω
q as inverse of f , or a failure

1 d(x)← det(u, v, w) /* as in Eq.(13) */
2 inv(x), found← find-inverse-of-d(x)-in- Z[ω]

<q>
CN

3 if not found then return failure
4 α(x)← inv(x) ∗ (u(xt)u(xt2)− v(xt)w(xt2)) /* product in Z[ω]

<q>
CN */

5 β(x)← inv(x) ∗ (w(x)w(xt2)− v(x)u(xt2)) /* product in Z[ω]
<q>

CN */

6 γ(x)← inv(x) ∗ (v(x)v(xt)− w(x)u(xt)) /* product in Z[ω]
<q>

CN */
7 return z−1 = α(x) + yβ(x) + y2γ(x)

Probability of decryption failure. Allowing negligible decryption failure in
accordance with NIST guidelines can help reduce the key sizes. To model the
probability of decryption failure, we follow a similar approach as [26] and make
the following assumptions regarding the distribution of coefficients of F, g, ϕ,m.

Assumption 1 We assume that r(3N) = 2N is evenly divisible by 6 so that the
number of nonzero coefficients in g and ϕ is 2N . Further, assume that all the
2N nonzero coefficients of F, g, and ϕ are equi-probable and uniformly distributed
over U6. Similarly, assume all the coefficients of m are uniformly distributed over
U3 ∪ {0}.

Let a′ = p(g ∗ ϕ+ F ∗m) +m, then the ith coefficient of a′ is given by

a′
i = p

 ∑
j+k≡i

gjϕk +
∑

j+k≡i

Fjmk

+mi

for each 0 ≤ i ≤ 3N . For a fixed pair (j, k), the terms gjϕk and Fjmk take
the values from the set U6 = {±1,− 1

2 ±
√
3
2 ι, 1

2 ±
√
3
2 ι} each with probabilities

r2/6 = 2/27 and r/8 = 1/12, respectively. Therefore, the expected mean values
of the real and imaginary parts of gjϕk and Fjmk are zero, i.e., E(Re(gjϕk)) =
E(Im(gjϕk)) = 0 and E(Re(Fjmk)) = E(Im(Fjmk)) = 0. Further, their vari-
ances are given by

V ar(Re(gjϕk)) =
r2

2
=

2

9
, V ar(Re(Fjmk)) =

3r

8
=

1

4
.

Similarly, V ar(Im(gjϕk)) = 2/9 and V ar(Im(Fjmk)) = 1/4. By the central
limit theorem for large N , the real and imaginary parts of a′i can be modeled
as a bivariate normal distribution (R, I). Then, the means of R and I are
µR = µI = 0 and their variances are

σ2 = σ2
R = σ2

I = 3Np2
(r2
2

+
3r

8

)
+

3

8
=

17N

3
+

3

8
,

since, p = 2, E(Re(mi)) = E(Im(mi)) = 0, and V ar(Re(mi)) = V ar(Im(mi))
= 3/8, for each i. The probability distribution function for the random variable
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(R, I) at each x+ ιy is P (x, y) = 1
2πσRσI

exp
(
− x2+y2

2σRσI

)
. For successful decryp-

tion, we need all the coefficients of a′ to be reduced modulo q. Therefore, the
probability of successful decryption is given by

Psuccess(N, q) =
(∫∫

Vq

P (x, y)dxdy
)3N

. (18)

We underestimate the probability of successful decryption to get a closed form
of the expression (18):

P̃success(N, q) =
(∫∫

C

P (x, y)dxdy
)3N

=
(
1− exp

(
− |q|

2

8σ2

))3N
, (19)

where C is a closed disk of radius |q|2 inscribed inside the voronoi cell Vq. We
experimentally confirmed the validity of our model in Figure 2. 1
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Fig. 2: The probability of success-
ful decryption as a function of |q| for
N = 61, p = 2. The curve represents
P̃success(N, q), and the crosses repre-
sent the ratio of the successful decryp-
tion out of 10, 000 randomly generated
messages for each prime q.

4 Security analysis

4.1 Combinatorial search attack

Given the public key h and other public parameters, the adversary can try brute
force search for some element f ′ ∈ Lf such that f ′ ∗ h ∈ Lg. Therefore, the size
of the search spaces is

|Lf |
3N

=
1

3N

(
3N

2N

)
62N . (20)

We have divided by 3N to account for all the 3N rotations associated with f ′.
Further, the meet-in-the-middle attack on private key f proposed by Odlyzkoa
presented in [20] decreases the size of search space to

√
|Lf |/3N. Table 2 gives

the cost (log base 2) of combinatorial or MITM attacks, denoted by Comb,
against the parameters recommended in Section 5.

1 The curve in Figure 2 lies slightly below the experimental observations since P̃success(N, q) (19)
gives the underestimated value of the probability of successful decryption while the actual value
of our model is given by Psuccess(N, q) (18).
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4.2 Lattice attacks

Lattice reduction attacks are the most prominent against NTRU-like schemes.
With the knowledge of the public information, the adversary constructs a lattice
containing the private key as a short vector that can be recovered by solving
SVP or its approximation. First, we discuss the state-of-art cost of lattice re-
duction algorithms, particularly BKZ, that depends on an important parameter
called blocksize β that dominates the runtime. The greater the value of β, the
more the runtime and the better the quality of the reduced basis. We call BKZ
with blocksize β to be BKZ-β. BKZ has many advancements like [3, 12]. In the
literature, many estimators estimate the value of β in higher dimensions. NTRU
fatigue estimator [14] is the most accurate one, which is itself based on 2016-
estimator [2]. According to 2016-estimator, for a basis matrix B = [b1, b2, . . . , bn]
of the lattice LB , BKZ-β detects a unique short vector u if

||πn−β(u)||< ||b∗n−β ||, (21)

where b∗i for i = 1, 2, . . . , n denote the Gram-Schmidt orgthogolization vec-
tors of rows of B, and πi is the orthogonal projection over (b1, b2, . . . , bi−1)

⊥.
The projected norm is expected to be

√
β/n||u||. 2016-estimator adopts the

GSA(Geometric Series Assumption) [36] that says, for a BKZ reduced lat-
tice with blocksize β, the Gram-Schmidt orthogonalized vectors follow ||b∗i ||=
δn−2i−1β det(B)

1
n , where δβ is called the root Hermite factor of BKZ-β. For

β ≥ 50, Chen [11] estimated that

δβ ≈
(

β

2πe
(πβ)

1
β

) 1
2(β−1)

. (22)

Ducas et al. [14] introduced alternative heuristics, called Z-GSA, for the lengths
of Gram-Schmidt vectors of a BKZ-β reduced basis of a q-ary lattice as follows:

Definition 10 (Z-GSA). [14, Heuristic 2.8] Let B be a basis of a 2n-dimensional
q-ary lattice LB with n q-vectors. After BKZ-β reduction, the lengths of Gram-
Schmidt vectors have the following shape: m = 1

2 + ln(q)
ln(δβ)

and

||b∗i ||=


q, if i ≤ n−m
√
q · δ2n−1−2i

β , if n−m < i < n+m

1, if i ≥ n+m

(23)

Since we deal with the lattices of the same nature as described in Z-GSA.
Therefore, we employ Z-GSA in 2016-estimation instead of GSA. However, both
the models coincide for the successful blocksize when B is a basis of a 2n-
dimensional q-ary lattice with det(B) = qn, as for the lattices in our case.

BKZ uses two approaches to solve SVP: Sieving and Enumeration. Empirical
results [29] show that sieving outperforms enumeration starting from a dimension
greater than or equal to 65. Therefore, we use the BKZ with Sieving model,
denoted as BKZ(S), to compute the cost of lattice attacks. The cost of BKZ(S)
is modeled as 20.292β+o(β) (classically) [6] and 20.265β+o(β) (quantumly) [31].
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Primal attack. Gentry [17] introduced a dimension reduction attack on an
NTRU variant by factoring the ring Z[x]/⟨xn − 1⟩, where n is composite, using
the Chinese remainder theorem (CRT). This technique has a possible extension
to different algebraic structures, as shown in [30]. Therefore, for any new NTRU-
like proposal, it is essential to discuss the possibility of Gentry’s attack for a
fair security estimate. The underlying algebra in our construction can also be
subjected to one layer of Gentry’s dimension reduction attack. We discuss the
possible homomorphisms that can help the adversary reduce the dimension of the
lattice attacks and show that recovering the private key is equivalent to solving
SVP in 8N dimensional lattices rather than 12N . However, it is important to
point out that the lattices to be attacked in our cryptosystem are difficult to
reduce by lattice reduction algorithms in practice.

Notations: We represent every element a = (α1 + ωβ1, . . . , αN + ωβN ) ∈
Z[ω]CN by its integral coefficient vector as a = (α1, β1, . . . , αN , βN ) ∈ Z2N .
Similarly, we represent every element f = (f0, f1, f2) ∈ Z[ω](CN ⋊ C3) where
fi ∈ Z[ω]CN by its integral coefficient vector f = (f0, f1, f2) ∈ Z6N . For a matrix
A ∈ Mn(Z[ω]), we define a 2n × 2n integral matrix A by replacing every entry
Aij with a 2× 2 integral matrix

〈
Aij

〉
as in (6).

The public key equation can be expressed as

f ∗H = g (mod q), (24)

where H ∈ Z6N×6N is the corresponding integer matrix of Rω-matrix of the
public key h given by MRω (h) ∈ M3N (Z[ω]) (Theorem 2). Similar to standard
NTRU, the private key (f,g) can be recovered in a naive way by solving SVP in
a 12-dimensional lattice LH generated by the matrix

MH =

(
I6N H
06N qI6N

)
. (25)

As discussed in Theorem 2, the matrix MRω (h) and consequently the matrix H
has a special structure

H =

H0 H1 H2

H2 H0 H1

H1 H2 H0

 ∈M6N (Z) (26)

where each Hi ∈ Z2N×2N . We discuss the scenarios of how an adversary can
take advantage of this structure in the context of dimension-reduction attacks.
Generally, the goal is to homomorphically reduce the size of the public matrix and
recover information about the private key that can be lifted back to the original
key. Since the value of N is selected to be prime, it rules out the possibility
of reducing the size of the matrices Hi (see [17] for details). The other ring
homomorphisms that preserve the information about the private key and prevent
the norms of the target vector from growing too large are of the form

H→ αH0 + βH1 + γH2 (27)
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where α, β, γ are small constants. Consequently, it reduces the public key equa-
tion to

(αf0 + βf1 + γf2) ∗ (αH0 + βH1 + γH2) = αg0 + βg1 + γg2 (mod q). (28)

It can easily be checked that map 27 is a ring homomorphism, i.e., preserve
the matrix addition and multiplication, if and only if (α, β, γ) ∈ {(0, 0, 0), (1, 1, 1),
(1, ω, ω2), (1, ω2, ω)}. The case (α, β, γ) = (0, 0, 0) is of no use, therefore, we con-
sider the others only. This way, one is able to reduce the size of the public matrix
but end up in matrices with complex entries, apart from when (α, β, γ) = (1, 1, 1).
In practice, for applying lattice reduction algorithms, such matrices are mapped
to the real matrices, which leads to an increase in the dimension. In our case,
the matrices

H01 = H0 + ωH1 + ω2H2 = (H0 −H2) + ω(H1 −H2),

H02 = H0 + ω2H1 + ωH2 = (H0 −H1) + ω(H2 −H1)

belonging to M2N (Z[ω]) can be mapped to 4N × 4N integer matrices H01

and H02, respectively, as done before. Suppose LH01 and LH02 are the 8N -
dimensional lattices generated by the matrices

MH01 =

(
I4N H01

0 qI4N

)
and MH02 =

(
I4N H02

0 qI4N

)
. (29)

Let f01, f02 ∈ Z4N be the integer vectors corresponding to the element (f0 −
f2)+ω(f1−f2), (f0−f1)+ω(f2−f1) ∈ Z[ω]2N , repspectively. Similarly are defined
the vectors g01, g02 ∈ Z4N . Then, the vectors (f01,g01), (f02,g02) belong to the
lattices LH01

and LH02
, respectively. According to Assumption 1, for the secret

vector (f,g) = (1 + pF,g), we have

||fi|| ≈ |p|·||Fi|| ≈ 2

√
8N

9
, ||gi|| ≈

√
8N

9
, (30)

and the length of the private vector (f,g) is approximately
√

40N/3. Therefore,

||(f01,g01)|| ≈ ||(f02,g02)|| ⪅

√
320N

9
≈
√

8

3
||(f ,g)||. (31)

While the Gaussian heuristic predicts the length of the shortest vectors in the
lattices LH01 and LH02 to be

σ(LH01) = σ(LH02) =

√
4N |q|
πe

≈ 2.738N. (32)

Therefore, the vectors (f01,g01) and (f02,g02) are O( 1√
N
) times shorter than

the Gaussian expected length. Hence, for large values of N , they are the shortest
vectors in the corresponding lattices with a high probability. Thus, the problem
of recovering the key is equivalent to solving SVP in 8N -dimensional lattices that
is equal to lattice dimension in the case of NTRU over ZCN ′≈4N . Conclusively, in
our design, the dimension reduction attack reduces the dimension of the lattice
by a factor of 1.5, i.e., from 12N to 8N , while DiTRU suffers a dimension loss
by a factor of 2. This shows the benefit of working with the semidirect product
CN ⋊ C3.
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Hardness of lattice reduction. It is a known fact that the hardness of solving
the SVP in a lattice increases with the ratio of the length of the shortest vector
to the Gaussian heuristic called lattice gap [14]. For NTRU over ZCN ′≈4N , this
ratio2 is 0.731/

√
N , while for our scheme, the lattice gap is 1.54/

√
N . Therefore,

the lattices associated with our cryptosystem are practically more resistant to
lattice attacks compared to the standard NTRU in equal dimensions. To further
investigate, corresponding to every parameter set (N ′, q′, p′) for NTRU HPS
in [35, Table 3], we choose a prime N ≈ N ′/4 and the smallest rational prime
q ∈ Z[ω] such that q > 16N+2. Then, according to 2016-estimation, we estimate
the blocksize β required for recovering the short vectors in lattices LH01 , LH02 ,
and compare with β′ required for NTRU in Table 1. It suggests that one can
select smaller values of N such that 4N < N ′ for our scheme and still achieve
the same security as NTRU over ZCN ′ .

Table 1: Blocksize estimation for NTRU vs. our scheme for approximately the
same dimensions.

NTRU HPS Our scheme

(N ′, q′, p′) β′ (N, q, p) β

(587, 2048, 3) 456 (139, 2237, 2) 506

(863, 2048, 3) 701 (211, 3389, 2) 777

(1109, 4096, 3) 893 (277, 4451, 2) 1025

The value of the required blocksize
is higher for the new proposal com-
pared to NTRU HPS. It confirms
that the lattices associated with our
design offer more resistance against
lattice reduction techniques, thus
resulting in smaller values of N in
Table 2.

Hybrid attack. As the name suggests, hybrid attack [21] combines two attacks,
the lattice and the combinatorial search attacks. It involves searching for some
coefficients of the key in its tail region and reducing a part of the lattice to recover
the full secret using the nearest neighborhood algorithm [4]. The parameters
of the recent NTRU proposals [9, 25], whose keys are ternary and sparse, are
evaluated based on hybrid attacks. However, it is observed that the primal attack
outperforms the hybrid attack when the secret key is not ternary, which increases
the search cost, as in the case of DiTRU [35]. In our design also, the partial
information of the key stored in lower dimensional lattices consists of coefficients
from the set {0,±1,±2,±3}. Expectedly, the overall cost of the hybrid attack
exceeds the cost of the primal attack. Therefore, we have selected parameters by
considering only the primal attack.

4.3 Overstreched NTRU attack.

An NTRU variant with a very large modulus is referred to as overstretched. The
attacks exploiting the presence of specific algebraic structures in overstretched
2 For NTRU, the length of the key is assumed to be

√
4N ′/3 + 1 and the value of q′ that achieves

no decryption failure is q′ ≥ 16N ′/3. For our scheme, although the norm of the target vector has
upper bound

√
320N/9. However, it is empirically observed that the norm of the target vector

is approximately
√

160N/9. Therefore, for a conservative estimation of the lattice gap and the
blocksize, we consider the latter value of the norm.
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NTRU lattices are presented in [1,28]. Later, Ducas and Woerdon [14] narrowed
down the estimation on modulus q that separates the overstretched regime from
the standard regime. They call this fatigue point and showed that for an NTRU
lattice of dimension 2n with modulus q, the fatigue point is q ≈ 0.004n2.484.
One can verify that the suggested parameter sets in Table 2 for GR-NTRU over
Z[ω](CN⋊C3) satisfy |q|≪ 0.004(4N)2.484. Therefore, our cryptosystem does not
fall under the category of overstretched NTRU and is safe against these kinds of
attacks.

5 Parameters and Performance analysis

For our scheme, we are proposing two categories of parameters targeting 128-bit
(Level I), 192-bit (Level III), and 256 (Level V) according to NIST definition.
Table 2 provides the memory and time requirements for the two selected param-
eter sets, where the first set provides no decryption failure while the other allows
a negligible decryption rate.

Table 2: Parameters for Z[ω](CN ⋊ C3)-NTRU with no decryption failure and
negligible decryption failure.

No decryption failure Neglible decryption failure

Security level I III V I III V

(N , q,p) (127, 2039, 2) (181, 2903, 2) (241, 3863, 2) (109, 701, 2) (157, 1013, 2) (211, 1361, 2)

sk (bytes) 153 218 290 131 189 254
pk (bytes) 1143 1629 2350 818 1296 1741

β 461 664 890 464 663 886
BKZ(S)
[classical] 134 193 259 135 193 258

BKZ(S)
[quantum] 122 175 235 122 175 234

Comb 505 719 957 433 624 838
Dec failure – – – 2−135 2−199 2−269

CPU cycles ×103

KeyGen 38 163 72 545 131 162 27 498 58 308 103 094

Enc 6 692 11 442 20 452 4 907 9 878 16 313

Dec 12 125 21 308 38 147 8 712 18 109 30 619

Memory requirements. According to [26, Theorem 3], any element a + bω
reduced modulo q satisfies a, b ∈

[
−2|q|/3, 2|q|/3

]
. Therefore, the size of the

public key h = f−1g ∈ Z[ω]/⟨q⟩(CN ⋊C3) is (6N/8) ·
⌈
log2

(
4|q|/3

)⌉
bytes. The

private key F ∈ Z[ω](CN ⋊C3) is such that its coefficients are of the form a+ bω

where a, b ∈ {0,±1}. Since, −1 ≡ 2 mod 3, and
∑4

i=0 2 ·3i ≤
∑7

i=0 2
i. Therefore,

every five coefficients of F can be stored in 8 bits or 1 byte. Thus, the size of
the private key is

⌈
6N/5

⌉
bytes.
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Table 3: Memory requirements of the considered NTRU variants.

NTRU HPS DiTRU

Level sk pk sk pk

I 118 808 217 1488

III 173 1187 319 2391

V 221 1664 416 3116

This demonstrates the memory benefits of
the proposed scheme as the size of the pri-
vate (sk) and public key (pk) (in bytes) of
parameters allowing negligible decryption
failure for our design are less than DiTRU,
while are approximately equal to NTRU
HPS.

Performace analysis. In order to analyze the performance of the proposed
scheme, we provide a full reference implementation in C. All the provided mea-
surements are evaluated on a single core of 12th Gen Intel(R) Core(TM) i7-1255U
with 32 GB RAM and running Linux (Ubuntu 22.04.3 LTS) with TurboBoost
and hyper-threading disabled. We compile the code using GCC version 11.4.0-
1ubuntu1 22.04 with no optimization flags enabled. Table 2 presents the average
CPU cycles required to generate a key, encrypt, and decrypt a message over
10,000 runs. In Table 4, we compare the performance of our work with other
prominent NTRU variants in the literature by comparing the CPU cycles needed
for key generation and for encrypting/decrypting messages of the same length,
not only a single message (see Section 5.1). The design rationale of the IND-
CCA2 PKE in our work, as well as DiTRU and NTRU HPS, is similar to the
one used in the NTRUEncrypt submission [10](see Appendix A).

Table 4: Performance benchmark (CPU cycles ×103) of this work vs. NTRU and
DiTRU for Key generation, Encryption, and Decryption for messages of equal
lengths.

NTRU HPS (N, q, p = 3) This work (N, q, p = 2) Ratioa

(587, 2048) (863, 2048) (1109, 4096) (109, 701) (157, 1013) (211, 1361) (r1, r2, r3)

Gen: 62 311 146 706 224 363 27 498 58 308 103 094 (2.27, 2.52, 2.18)

Enc: 3 132 799 9 105 932 19 790 178 2 772 310 7 569 493 16 294 397 (1.13, 1.20, 1.21)

Dec: 5 800 643 17 201 618 37 829 256 4 988 320 13 965 567 30 569 442 (1.16, 1.23, 1.24)

DiTRU (N, q, p = 3)

(541, 2048) (797, 4096) (1039, 4096) (109, 701) (157, 1013) (211, 1361) (r1, r2, r3)

Gen: 84 756 189 770 308 543 27 498 58 308 103 094 (3.08, 3.05, 2.99)

Enc: 9 777 811 29 658 528 66 558 364 5 092 057 14 373 555 30 551 756 (1.92, 2.06, 2.19)

Dec: 18 682 243 57 329 287 129 664 570 9 180 125 26 540 407 57 287 299 (2.04, 2.16, 2.26)

a The ratio is provided as a tuple (r1, r2, r3), where r1 represents the ratio of CPU cycles needed
for key generation, encryption, and decryption by NTRU (DiTRU) to the cycles required by
our work in the first level of security. Similarly, r2 and r3 represent the ratios measured for
the third and the fifth levels of security.

5.1 Discussion

The computational cost of key generation, encryption, and decryption is mainly
determined by the ‘polynomial’ multiplications over the underlying ring. For
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simplicity, we will discuss the results using the conventional polynomial multi-
plications. The cost of a polynomial multiplication is 27N2 scalar multiplications
for this work versus 16N2 and 32N2 for NTRU and DiTRU, respectively.

Analysis of Key Generation. We discuss the performance of the key gener-
ation algorithm when implemented in constant time using the Bernstein-Yang
algorithm [8]. For NTRU HPS, the inversion algorithm performs 8 polynomial
multiplication in ZCN ′≈4N (of cost ≈ 8 × 16N2). Similarly, for DiTRU, the in-
version algorithm [35, Algorithm 1] over ZDN ′ finds an inverse in ZCN ′ plus
does 4 extra multiplications over ZCN ′ , that costs approximately 12 × 16N2.
On the other hand, inversion for this work (Algorithm 2) requires 15 multipli-
cations over Z[ω]CN costing 3 × 15N2 scalar multiplications plus an inversion
over Z[ω]CN . The cost of finding the inverse in Z[ω]CN is upper bounded by
57N2 scalar multiplications as detailed in Appendix B. Hence, the cost of con-
stant time implementation of our key generation process is dominated by 102N2

scalar multiplications, which is roughly 1.3 and 1.9 faster than NTRU HPS and
DiTRU, respectively, when N ′ ≈ 4N . In practice, the decryption failure model
and a higher lattice gap of this work allow smaller values of N(< N ′/4) for equiv-
alent levels of security. As a result, the key generation is roughly two times (three
times) faster than the one used in NTRU (DiTRU) in practice. See Table 4.

Analysis of Encryption/Decryption. As in the key generation, the cost
of encryption/decryption is dominated by the polynomial multiplications cost.
The length of a message encrypted using ZCN ′ is N ′ ≈ 4N , using ZDN ′ is
2N ′ ≈ 8N , whereas the length of a message encrypted using Z[ω](CN⋊C3) is 6N
(integer coefficients). Therefore, for a fair comparison of efficiency, we compare
the cost of encrypting/decrypting messages of the same length, that is 3 message
processings by ZCN ′ and 3 message processings by ZDN ′ with 2 and 4 message
processings, respectively, by Z[ω](CN ⋊C3). Therefore, in general, for N ′ = 4N ,
our cryptosystem is approximately 1.125 times slower than the standard NTRU,
while it is approximately 1.7 times faster than DiTRU. However, this is not the
case in practice where the parameters selection (considering the smaller value
of modulus q and the hardness of the Core-SVP) leads to values of N smaller
than N ′/4. As a result, our cryptosystem is faster than NTRU and DiTRU by
approximately a factor of 1.2 and 2, respectively, while encrypting/decrypting
messages of the same length. Refer to Table 4.

A Sketched Design Rationale

We follow the same design framework as adopted in NTRUEncrypt [10] to con-
struct a Probabilistic Public Key Encryption (PPKE) scheme. The proposal
derives its CPA security from the NTRU assumption, which is transformed into
CCA2 secure by employing the NAEP padding mechanism [23]. All the steps
in Figure 3 are almost identical to the design rationale used in NTRUEncrypt
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submission [10], except that the operations are now performed in the noncom-
mutative structure Rω(CN ⋊ C3) modulo q or p.

Keygen(seed)

1. g ← Sampler(seed, Lg)
2. F ← Sampler(seed, Lf )
3. f ← 1 + pF
4. if(f invertible mod q)

fq ← inversemodq(f)
h← pfq ∗ g(mod q)
return (h, f)

5. else go to step 2

Encrypt(h,m)

1. coins← Hash(h,m)
2. ϕ← Sampler(coins, Lϕ)
3. s← ϕ ∗ h(mod q)
4. t← Sampler(Hash(s), Lm)
5. m′ = m− t(mod p)
6. c = s + m′(mod q)
7. return c

Decrypt(f, c)

1. a← c ∗ f(mod q)
2. m′ ← a(mod p)
3. s← c−m′(mod q)
4. t← Sampler(Hash(s), Lm)
5. m← m′ + t(mod p)
6. if(Encrypt(h,m) ̸= c)

return ⊥
7. else return m

Fig. 3: Sketch of the CCA2 secure PPKE for our proposal. The function Sampler
randomly samples an element unique to the seed from the input space. The spaces
Lf , Lg, Lϕ, and Lm are defined in the Section 3.

B Constant time inversion algorithm for Z[ω]/⟨q⟩CN

Algorithm 3: Constant time inversion in Z[ω]/⟨q⟩CN

Input: d(x) ∈ Z[ω]/⟨q⟩CN

Output: delta = 0, inv(x) = d(x)−1 ∈ Z[ω]/⟨q⟩CN , if d(x) is invertible, else
delta = −1

1 g(x)← d(x), f(x)← xN − 1, v(x)← 0, r(x)← 1
2 delta← 1
3 for i = 0 to 2N − 2 do
4 v(x)← x ∗ v(x)
5 swap = (−delta < 0) & (g0 ̸= 0)
6 delta∧ = swap & (delta∧ − delta)
7 delta = delta+ 1
8 constSwap(f(x), g(x), swap) /* swap f(x) and g(x) if swap is 1 */
9 constSwap(v(x), r(x), swap) /* swap v(x) and r(x) if swap is 1 */

10 g(x)← f0g(x)− g0f(x)(mod q)
11 r(x)← f0r(x)− g0v(x)(mod q)
12 g(x)← g(x)/x

13 k ← inverse-mod q-in-Z[ω](f0) /* inverse of f0 in Z[ω] modulo q */
14 inv(x)← k∗reverse(v(x))(mod q) /* reverse coefficients of v(x) */
15 return delta, inv(x)

Algorithm 3 is a direct adaptation of the Bernstein-Yang algorithm [8] with
the required modifications to our new ring Z[ω]/⟨q⟩CN .
– Multiplication of two Eisenstein integers requires 3 integer multiplications.
– Modulo q in Z (for a prime q) requires 4 scalar multiplications in constant-

time, therefore modulo q in Z[ω] (for a prime q + 0ω) requires 8 scalar multi-
plications (Algorithm 1).

– Inversion of an element in Z[ω] modulo q is upper bounded by 17+10 log2(q−2)
scalar multiplications as in Lemma 1.
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Therefore, lines 10 and 11 contribute to 14(N + 1) scalar multiplications each.
Line 13 contributes to 17+10 log2(q−2) multiplications, and line 14 contributes
to 11N scalar multiplications.
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