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Abstract. Since designing a dedicated secure symmetric PRF is diffi-
cult, various works studied optimally secure PRFs from the sum of in-
dependent permutations (SoP). At CRYPTO’20, Gunsing and Mennink
proposed the Summation-Truncation Hybrid (STH). While based on SoP,
STH releases additional a ≤ n bits of the permutation calls and sums
n− a bits of them. Thus, it produces n+ a bits at O(n− a/2)-bit PRF
security. Both SoP or STH can be used directly in encryption schemes or
MACs in place of permutation calls for higher security. However, simply
replacing every call as in GCM-SIVr would demand more calls.
For encryption schemes, Iwata’s XORP scheme is long known to pro-
vide a better trade-off between efficiency and security. It extends SoP to
variable-length-outputs by using r + 1 calls to a block cipher where the
output of one call is added to each of the other r outputs. A similar exten-
sion can be conducted for STH that we call XTH, the XORP-Truncation
Hybrid. Such an extension was already suggested in the final discussion
by Gunsing and Mennink, but left as an open problem.
This work fills the gap by formalizing and proving the security of XTH.
For a rate of r/(r + 1) as in XORP, we show O(n− a/2− 1.5 log(r))-bit
security for XTH.

Keywords: Secret-key cryptography · provable security · encryption · sum of
permutations

1 Introduction

Since dedicated symmetric-key pseudorandom functions (PRFs) are hard to con-
struct, the cryptographic community has been devoting sophisticated efforts to-
wards designing PRFs from block ciphers and permutations. Research on the
design of more secure PRFs from permutations came from truncation and sum-
mation. Hall et al. [10] truncated the output of an n-bit permutation from n bits
to a bits, which yielded security for up to O(2n−a/2) queries [1, 8], i.e., (n−a/2)-
bit security. On the other hand, Bellare et al. [2] studied the security of the sum
of permutations SoP. Initially, they studied two domain-separated instances of
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the same permutation Π. That is, they fed an (n − 1)-bit value x, appended
different domain bits and summed the outputs from Π(x∥0)⊕Π(x∥1). Alterna-
tively, one could also consider the sum of two independent n-bit permutations,
i.e. Π1(x) ⊕ Π2(x) (also called SoP2). After a long series of works, the PRF
security of SoP and SoP2 is well-understood to be about O(n) [3, 4, 6, 7, 15].

Summation-Truncation Hybrid. In [9], Gunsing and Mennink proposed
a trade-off between output length and PRF security by reconsidering trunca-
tion. They introduced the Summation-Truncation Hybrid (STH), which filled
the range between those extremes. STH outputs a bits of each permutation call
and the sum of the remaining (n− a)-bit outputs from both permutations:

STH[a](x)
∆
= Π1(x)[n− 1..n− a]∥ (0a∥Π1(x)[n− a− 1..0])⊕Π2(x) .

They showed that STH provides PRF security for up to O(2n−a/2) queries.

SoP has proven highly useful for a number of designs, e.g. as a finalization
of MACs or authentication parts of authenticated encryption schemes, e.g. in
PMAC+ [17], 3kf9 [18], Lightmac+ [16], DBHtS [5], or Deoxys [14]. It is still an
interesting question of finding good applications for STH. Efficient extensions to
variable output lengths (VOL) could be one avenue towards more applications.
Simply plugging in SoP or STH as a replacement for a block cipher in encryption
or authenticated encryption can already suffice to increase a scheme’s security,
e.g. in GCM-SIVr [13]. However, such in-place instantiations would double the
number of primitive calls compared to a usual block-cipher-based construction.
For SoP, a more efficient extension is long known. In [11], Iwata had extended
SoP to a VOL-PRF XORP, which takes an m-bit input and produces a sequence
of r n-bit outputs as

XORP[r](x)
∆
= ∥ri=1Π(x∥⟨0⟩s)⊕Π(x∥⟨i⟩s) ,

where s = ⌈log2(r + 1)⌉ and ⟨i⟩s denotes the s-bit binary representation of the
integer i and m + s = n. XORP achieved O(n − log2(r

2))-bit PRF security at a
rate of r/(r + 1) [12].

Extending STH. In the concluding thoughts of their work, Gunsing and Men-
nink [9] suggested an extension of STH to more outputs, but left it as an open
problem. We formalize such an extension as XTH, the XORP-Truncation Hybrid,
which takes n-bit inputs x and produces (a+ rn)-bit outputs as

XTH[a, r](x)
∆
= Π0(x)[n− 1..n− a]∥

∥∥∥∥r
i=1

(0a∥Π0(x)[n− a− 1..0])⊕Πi(x) .

Thus, it uses the first permutation’s (n − a) bits to mask the other outputs,
increasing the output size by a bits compared to that of XORP. Thus, XTH
seems interesting, but has not a security proof yet.
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Fig. 1.1: Gunsing and Mennink’s Summation-truncation hybrid and the XORP
extension considered in this work.

Outline. In this work, we study the provable security of XTH and show that it
achieves O(n− a/2− 1.5 log(r))-bit PRF security. The remainder of this work is
structured as follows. After preliminaries, Section 3 briefly recalls the definitions
of STH and XTH before Sections 4 and 5 analyze the security of the latter.
Section 6 concludes.

2 Preliminaries

For positive integers x, y, we write [x] = {1, . . . , x}, [0..x] = {0, 1, . . . , x}, and
[x..y] = {x, x + 1, . . . , y}. We write {0, 1}n for n-bit strings, and X∥Y for the
concatenation of two bitstrings X and Y . By ⟨i⟩s, we denote the s-bit binary rep-
resentation of a non-negative integer i. For a bitstring X, |X| denotes the length
of the bitstring X in terms of the number of bits. For integers x, n and bitstring
X ∈ {0, 1}n, we use X1, . . . , Xm

x←− X for the splitting of X into segments of ≤ x

bits s. t. |X1| = · · · = |Xm−1| = x and |Xm| ≤ x. (X1, X2)
x,n−x←−−−− X indicates

that |X1| = x, |X2| = n−x and X1∥X2 = X. We write X1, X2, . . . ←$X for the
uniform and pairwise independent sampling with replacement of X1, X2, . . . from
X . Thus, Xi←$X , independent of the values Xj for i ̸= j. For non-empty sets or

spaces T and X , Perm(X ) is the set of permutations over X and P̃erm(T ,X ) the
set of tweakable permutations over X with tweak space T , that is, the functions
Π̃(T, ·) that, for each tweak T ∈ T , Π̃(T, ·), is a bijection over X .

Distinguishers. A distinguisher D is an algorithm that interacts with one of
several worlds that it shall distinguish between. Prior, the challenger samples a
random bit b←$ {0, 1} and presents D with one of two sets of oracles depending
on the value of b. We use b = 1 for the real world. Moreover, the challenger
uses internal secrets. D interacts with the individual oracles and collects the
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responses. At the end, D outputs a guess b′ and wins iff b = b′. We write

∆D(RK ; I) ∆
=
∣∣∣Pr
K

[
DRK = 1

]
− Pr

[
DI = 1

]∣∣∣
for the advantage of D in distinguishing a real keyed construction RK from an
ideal construction I, where the probability is over the key K, the randomness
of I, the coins of D and that of the challenger, if any.

PRF Security. Given two non-empty sets or spaces X ,Y, let F : K × X →
Y, ρ←$Func(X ,Y), and let K ←$K be a secret key. The PRF advantage of a

distinguisher D on FK is defined as AdvPRF
FK

(D)
∆
= ∆D(FK ; ρ).

The χ2 Method. We will employ the χ-square method by Dai et al. [4]. For
this purpose, we briefly recall its main theorem. For each i ∈ [q] and each vector
Wi−1 = (W i−1

2 , . . . ,W i−1
r ) with Wi−1

j = (W 1
j , W

2
j , . . . ,W

i−1
j ), define

χ2(Wi−1)
def
=

∑
W∈(Fb

2)
r−1

(
PrOreal

[Wi = W |Wi−1]− PrOideal
[Wi = W |Wi−1]

)2
PrOideal

[Wi = W |Wi−1]
.

Theorem 1 (χ2 Method [4]). Consider two systems Oreal and Oideal. Suppose
that for any vector W, it holds that PrOideal

[Wi] > 0 whenever PrOreal
[Wi] > 0.

Then ∣∣∣∣ PrOreal

[
Wi
]
− Pr

Oideal

[
Wi
]∣∣∣∣ ≤

√√√√1

2

q∑
i=1

EOreal
[χ2(Wi−1)] .

3 XTH

STH. We note that two versions of the Summation-Truncation-Hybrid [9] exist:
based on a single n-bit secret full-round permutation Π, and based on a pair of
independent permutations Π1 and Π2. Here, we focus on the second version and
refer to it as STH.
It feeds the n-bit input x into two independent full round n-bit secret permuta-
tions Π1 and Π2, and splits each of their outputs Yi, where Yi = Πi(x), into an

a-bit part Yi,0 and an (n−a)-bit part Yi,1, for i ∈ {1, 2}, i.e., (Yi,0, Yi,1)
a,n−a←−−−− Yi,

for i ∈ {1, 2}. The a-bit parts Y1,0 and Y2,0 are output in plain; the (n− a)-bit
parts are summed and output as Y1,1 ⊕ Y2,1. Gunsing and Mennink have shown
that STH achieves roughly (n− a/2)-bit security.

XTH. We define the XORP-based Summation-Truncation Hybrid (XTH) as fol-
lows. For a, r ∈ N with a ≤ n, XTH[a, r] feeds an n-bit input x into r independent
n-bit secret permutations Π1, . . . ,Πr. Thereupon, it partitions each permuta-
tion output Yi = Πi(x) into an a-bit part Yi,0 and an (n − a)-bit part Yi,1, for
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Algorithm 1 Definition of XTH[a, r]Π0,...,Πr .

11: function STH[a]Π1,Π2(x)

12: (Y1,0, Y1,1)
a,n−a←−−−− Π1(x)

13: (Y2,0, Y2,1)
a,n−a←−−−− Π2(x)

14: return Y1,0∥Y2,0 ⊕ Y2,1

21: function XTH[a, r]Π1,Π2,...,Πr (x)
22: for i← 1 .. r do
23: (Yi,0, Yi,1)

a,n−a←−−−− Πi(x)

24: return Y1,0∥
(
∥ri=2Yi,0∥Y1,1 ⊕ Yi,1

)

i ∈ {1, . . . , r}. The a-bit parts Y1,0, Y2,0, . . . , Yr,0 are then returned as outputs.
The (n − a)-bit parts Y2,1, Y3,1 etc., in contrast, are XORed to the (n − a)-bit
output of the first permutation call, and the sum is returned for each block:
Y1,1 ⊕ Y2,1, Y1,1 ⊕ Y3,1, . . . , Y1,1 ⊕ Yr,1. Algorithm 1 lists formal definitions for
both STH and XTH.

4 Security Analysis of XTH

In this section, we state and prove the following main security result of XTH.

Theorem 2. Let r, n, a, b and q be positive integers with r ≥ 2, a + b = n,
and q < 2b−2 and q ≤ 2n/(2r). Let Π1, . . . ,Πr ←$Perm({0, 1}n) be indepen-
dent random permutations. Let D be a PRF distinguisher on the construction
XTH[a, r]Π1,Π2,...,Πr . Then

AdvPRF
XTH[a,r](D) ≤

(
4

3

)r ( rq

2n−a/3

)3/2
+ 2a−1 ·

(
16rq

2n

)2b−2

+AdvPRF
trunca(rq) .

By substituting r = 2 into Theorem 2, we recover the PRF advantage of STH
using a pair of independent permutations as follows:

Corollary 1. Let n, a, b and q be positive integers such that a + b = n, and
q < 2b−2 and q ≤ 2n/4. Let Π1, Π2←$Perm({0, 1}n) be independent random
permutations. Let D be a PRF distinguisher on STH[a]Π1,Π2

. Then

AdvPRF
STH[a](D) ≤ 8 ·

( q

2n−a/3

)3/2
+ 2a−1 ·

(
32q

2n

)2b−2

+AdvPRF
trunca(2q) .

Proof (Proof of Theorem 2). The general proof strategy will follow that by [9].
Let Π1, . . ., Πr ←$Perm(Fn

2 ) such that all permutations Πj are pairwise inde-
pendent. We consider two oracles, Oideal and Oreal. Let D be a distinguisher that
is given access to one of them, chosen uniformly at random. D shall distinguish
between both worlds, given the transcript τ of queries of D to the oracle, the
corresponding responses, and intermediate variables. We define by In the iden-
tity permutation over Fn

2 . For integers n = a + b and X ∈ Fn
2 with X = V ∥Y

and V ∈ Fa
2 , Y ∈ Fb

2, we define msba(X) = V to always return the leftmost
a bits of X and lsbb(X) = Y to return the b least significant b bits of X, and

(V, Y )
a,n−a←−−−− X splits X into an a-bit part V and an (n− a)-bit part Y .
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Algorithm 2 Real-world oracles from the analysis of XTH[a, r]Π1,...,Πr .

11: function O1(M)
12: Π1, Π2, . . . Πr ←$Perm(Fn

2 )
13: M1, . . . ,Mq ←M
14: for i← 1 to q do
15: for j ← 1 to r do

16: (V i
j , Y

i
j )

a,b←−− Πj(M
i)

17: if j ≥ 2 then
18: W i

j ← Y i
1 ⊕ Y i

j

19: Vi ← (V i
1 , V

i
2 , . . . , V

i
j )

20: Wi ← (W i
2 , . . . ,W

i
j )

21: V← (V1, . . . ,Vq)
22: W← (W1, . . . ,Wq)
23: τ ← (V,W)
24: return τ

31: function O2(M)
32: V← PTrunc[r](M)
33: W← PSoP[r](M,V)
34: return τ = (V,W)

41: function PTrunc[r](M)
42: for i← 1 to q do
43: for j ← 1 to r do
44: V i

j ←$Fa
2

45: Vi ← (V i
1 , . . . , V

i
r )

46: return V = (V1, . . . ,Vq)

51: function PSoP[r](M,V)
52: for j ← 1 to r do
53: if Permcomp(Vj) = ∅

then
54: Πj ←$ In
55: else
56: Πj ←$Permcomp(Vj)

57: for i← 1 to q do
58: for j ← 1 to r do
59: Y i

j ← lsbb(Πj(⟨i⟩))
60: if j ≥ 2 then
61: W i

j ← Y i
1 ⊕ Y i

j

62: Wi ← (W i
2 , . . . ,W

i
r)

63: return W = (W1, . . . ,Wq)

On message input M i, the real world Oreal uses XTH[a, r]Π1,...,Πr
(M i) and pro-

duces and outputs V i
1 , V

i
2 ,W

i
2, . . . , V

i
r ,W

i
r , where for each j ∈ [r], (V i

j , Y
i
j )

a,b←−−
Πj(M

i) and W i
j = Y i

1 ⊕ Y i
j for all j ∈ [2..r]. The values are collected in

vectors V = (V1, . . . ,Vq),Y = (Y1, . . . ,Yq), and W = (W1, . . . ,Wq) with
Vi = (V i

1 , . . . , V
i
r ),Y

i = (Y i
1 , . . . , Y

i
r ), and Wi = (W i

2, . . . ,W
i
r) for all i ∈ [q].

Let τ = (V,W) be the transcript. Over all queries, we define the short-hand
notation Vj = (V 1

j , . . . , V
q
j ) for some j ∈ [r].

The ideal world Oideal samples all outputs V i
j ←$Fa

2 , for all i ∈ [q] and j ∈ [r]

and samples W i
2, . . . ,W

i
r ←$Fb

2, for all i ∈ [q]. We denote the real-world oracle
as O1 since we will modify it stepwise in the following. It holds that

AdvPRF
XTH[a,r](A) ≤ |Pr [Oideal]− Pr [Oreal]| .

Next, we separate the a-bit values, (V i
1 , . . . , V

i
r ), given out in clear from the

results of the sums, (W i
2, . . . ,W

i
r). This yields the modified real world O2. Inter-

nally, O2 uses a function PTrunc[r] that samples the values V = (V1, . . . , Vr) as
a-bit values sampled independently uniformly at random from Fa

2 each. This is
given in Algorithm 2. Moreover, we define PSoP[r], which takes (V1, . . . , Vr) and
samples r−1 permutations compatible to it (if they exist) and computes the vec-
tor of sum values, W = (W i

2, . . . ,W
i
r), from it. For all j ∈ [r] and given vectors of

a-bit strings Vj = (V 1
j , . . . , V

q
j ) ∈ (Fa

2)
q, we define Permcomp(Vj) ⊆ Perm(Fn−a

2 )
as the set of all n-bit permutations that would produce Vj in their most signif-
icant a-bit outputs for the inputs in Vj . The difference between both worlds is
upper bounded by

|Pr[O2]− Pr[Oreal]| ≤ AdvPRF
trunca(rq) .

From the triangle inequality, the difference in the setting is at most

|Pr[Oideal]− Pr[Oreal]| ≤ |Pr[Oideal]− Pr[O2]|+AdvPRF
trunca(rq) .

We want to upper bound the distance between the multi-sum of pairwise in-
dependent permutations and the function that produces random bits. For the
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values V1, V2, . . . , Vr, we define counters

CV,j(i)
def
=
∣∣∣{V i′

j : V i′

j = V i
j

}∣∣∣ , for all j ∈ [r] .

Those counters will later have to remain below 2b−2. For the case that one of
them exceeds this amount, we define a set bad of vectors V such that there exists
k ∈ [r] with CV,k(i) ≥ 2b−2, which we denote as bad. Given a transcript τ that
contains V, we see that

Eτ [Pr[Oideal = τ ]− Pr[O2 = τ ]] ≤ Eτ [Pr[Oideal = τ ]− Pr[O2 = τ |bad]] + Pr[bad] .

Multi-Collision. We can upper bound Pr[bad] first, which requires a (2b−2)-

collision of values V i1
j = · · · = V

i
2b−2

j inside any one of r vectors Vj in V.

Since the values V i
j are chosen independently and uniformly at random each,

the probability for a t-collision is upper bounded by

(rq)t

2a(t−1) · t!

By using Stirling’s approximation and substituting t = 2b−2

Pr[bad] ≤ 1√
2π
· (rq)t

2a(t−1)
·
(

1

23/2 · t

)t

≤ 2a√
2π
·
( rq

2a−3/2 · t

)t
≤ 2a√

2π
·
( rq

2a−2 · 2b−2

)2b−2

≤ 2a−1 ·
(
16rq

2n

)2b−2

.

We have to upper bound the expectation of the difference of the probabilities of
the realized good transcripts in world O2 and Oideal. Since for good transcripts,
the vectors V are sampled equally in both worlds, we can focus on the vectors
W. We obtain the following.

Theorem 3. Let a, b, q, r be positive integers and τ = (V,W) be a good tran-
script such that CV,j(i) < 2b−2 holds for all i ∈ [q] and j ∈ [r] and q ≤ 2n/(3r).
Then, for r ≥ 2

Eτ [|Pr [O2 = τ ]− Pr [Oideal = τ ]|] ≤
(
4

3

)r

·
( rq

2n−a/3

)3/2
.

5 Proof of Theorem 3

We can easily see that PrOideal
[W i = W |Wi−1] = 2−(r−1)b. Though, it re-

mains to determine the probability in the real world. We denote the outputs
(Y i

1 , Y
i
2 , . . . , Y

i
r ) also as (yi1, y

i
2, . . . , y

i
r) and the fixed sum values at the i-th step

(W i
2, . . . ,W

i
r) also as (wi

2, . . . , w
i
r). We consider r independent permutations π1,

. . .πr. We have to determine the probability

Pr
Oreal

[Wi = (wi
2, . . . , w

i
r)|Yi−1] ,
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whereYi−1 = (Y 1
1 , . . ., Y

1
r , . . ., Y

i−1
1 , . . ., Y i−1

r ). Fix a tupleWi = (wi
2, . . . , w

i
r) ∈

(Fb
2)

r−1. We define q × r sets Sij = {y1j , . . . , y
i−1
j } for all i ∈ [q] and j ∈ [r]. Fur-

thermore, we propose sets of translated values Siyj→wj
= Sij ⊕ wj

∆
= {Yj ∈ Sij :

Yj⊕wj} to denote the elementwise translation of Sij for the fixed scalar wj ∈ Fb
2

for all j ∈ {2, . . . , r}. For consistency, we introduce wi
1 = 0b for all i ∈ [q] so

we can define Siy1→w1
= Si1. We define cardinalities s

i,wj

j = |Siyj→wj
| = |Sij |

for all j ∈ [r], and will use the short form sij = s
i,wj

j hereafter. We have to

find the number of possible solutions Y i = (Y i
1 , . . . , Y

i
r ) for the next fixed tuple

W i = (wi
2, . . . , w

i
r). For Y

i
1 ⊕ Y i

2 = wi
2, Y

i
1 ⊕ Y i

3 = wi
3, . . . , it must hold that

Y i
1 ∈ Fb

2 \

Si1 ∪ r⋃
j=2

(Siyj→wj
)

 .

Let ni denote the number of choices for Y i
1 . From the inclusion-exclusion principle

ni = 2b −
(
|Siy1→w1

|+ |Siy2→w2
|+ · · ·+ |Siyr→wr

|
)

+
(
|Siy1→w1

∩Siy2→w2
|+ |Siy1→w1

∩Siy3→w3
|+ · · ·+ |Siyr−1→wr−1

∩Siyr→wr
|
)

−
(
|Siy1→w1

∩ Siy2→w2
∩ Siy3→w3

|) + · · ·
)
+ · · ·

= 2b −

 r∑
j=1

|Siyj→wj
|

+

∑
j1<j2

|Siyj1
→wj1

∩ Siyj2
→wj2

|


−

 ∑
1≤j1<j2<j3≤r

|Siyj1
→wj1

∩ Siyj2
→wj2

∩ Siyj3
→wj3

|

+ · · ·

= 2b −

 r∑
j=1

sij

+

 ∑
1≤j1<j2≤r

s
i,wj1

,wj2
j1,j2

−
 ∑

1≤j1<j2<j3≤r

s
i,wj1

,wj2
,wj3

j1,j2,j3


+ · · ·+ (−1)r

 ∑
1≤j1<···<jr≤r

s
i,wj1

,wj2
,...,wjr

j1,...,jr

 , (1)

where we define si,w1,w2

1,2 , si,w1,w2,w3

1,2,3 , . . . for the cardinalities of the corresponding

intersection sets in a natural manner. We call the terms si,w1,w2

1,2 2-tuple-related,

si,w1,w2,w3

1,2,3 3-tuple-related, and so on. For each, we have to upper bound its
expectation and variance.

Expectation and Variance of 2-tuple-related Terms. We can use the
knowledge about si,w1,w2

1,2 = si,0,w2

1,2 = Di,w from [4, 9]. Thus, the expectation and
variance of all cardinalities of two-component intersections can be taken from
Equations (34), (35) in [9] as

E
[
s
i,wj1

,wj2
j1,j2

]
=

sij1s
i
j2

2b
and Var

[
s
i,wj1 ,wj2
j1,j2

]
≤

2sij1s
i
j2

2b
. (2)
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For independent permutations π1, . . . , πr, and independent Binomial variables,
we can derive them more precisely.

Lemma 1. For distinct j1, j2 ∈ [r], it holds that

E
[
s
i,wj1 ,wj2
j1,j2

]
=

sij1s
i
j2

2b
and Var

[
s
i,wj1 ,wj2
j1,j2

]
=

sij1s
i
j2

2b
−

(sij1s
i
j2
)2

23b
.

Expectation and Variance of 3-tuple-related Terms. Next, we consider

the expectation and variance of s
i,wj1

,wj2
,wj3

j1,j2,j3
.

Lemma 2. For distinct j1, j2, j3 ∈ [r], it holds that

E
[
s
i,wj1

,wj2
,wj3

j1,j2,j3

]
=

sij1s
i
j2
sij3

22b
, Var

[
s
i,wj1

,wj2
,wj3

j1,j2,j3

]
=

sij1s
i
j2
sij3

22b
−

(sij1s
i
j2
sij3)

2

25b
.

Expectation and Variance of Terms for General Tuples.

Lemma 3. Let t ≤ r and I = {j1, . . . , jt} ⊆ {1, . . . , r}. Then, it holds for the
expectation and variance that

E
[
s
i,wj1

,wj2
,...,wjt

j1,j2,...,jt

]
=

∏
j∈I sij

2(t−1)b
, Var

[
s
i,wj1

,wj2
,...,wjt

j1,j2,...,jt

]
=

∏
j∈I sij

2(t−1)b
−

(∏
j∈I sij

)2
2(2t−1)b

.

We defer the proof of Lemmas 1, 2, and 3 to Appendix A.1, Appendix A.2, and
Appendix A.3 respectively.

Determining the Ratio. In the real and ideal worlds, it holds that

Pr
Oreal

[
W i = (wi

2, . . . , w
i
r)|Yi−1

]
= E

[
ni

di

]
and

Pr
Oideal

[
W i = (wi

2, . . . , w
i
r)|Wi−1

]
=

1

2(r−1)b
,

respectively, with ni given in Equation (1). The number of all choices of Y i, that
represents the denominator di, is given by

di = (2b − si1) · (2b − si2) · · · · · (2b − sir) =

r∏
j=1

(2b − sij)

= 2rb − 2(r−1)b

 r∑
j=1

sij

+ 2(r−2)b

 ∑
1≤j1<j2≤r

sij1s
i
j2

−
2(r−3)b

 ∑
1≤j1<j2<j3≤r

sij1s
i
j2s

i
j3

+ · · ·+ (−1)r
 ∑

1≤j1<···<jr≤r

sij1 · · · s
i
jr

 ,

(3)
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which yields

E

[(
Pr

Oreal

[W i = (wi
2, . . . , w

i
r)|Yi−1]− Pr

Oideal

[W i = (wi
2, . . . , w

i
r)|Wi−1]

)2
]

= E

[(
ni

di
− 1

2(r−1)b

)2
]
= E

[(
2(r−1)b · ni − di

2(r−1)b · di

)2
]

≤
(
4

3

)2r

· 1

2(4r−2)b
· E
[(

2(r−1)b · ni − di
)2]

, (4)

where we used the assumption of sij < 2b−2, for all j ∈ [r], to upper bound

di ≥
(
3
4 · 2

b
)r
. In the following, we focus on the rightmost term of Equation (4),

i.e., the expectation of the squared difference. We observe that the two leftmost
terms of 2(r−1)b · ni, that we call ni for short,

ni = 2(r−1)b ·

2b −
r∑

j=1

sij

 = 2rb − 2(r−1)b

 r∑
j=1

sij

 ,

are identical to the two leftmost terms in di as in Equation (3) and cancel in the
difference. We define

ni = ni −

2b −
r∑

j=1

sij

 =

 ∑
1≤j1<j2≤r

s
i,wj1

,wj2
j1,j2


−

 ∑
1≤j1<j2<j3≤r

s
i,wj1

,wj2
,wj3

j1,j2,j3

+ · · ·+ (−1)r
(
si,w1,w2,...,wr

1,...,r

)
. (5)

We define d
i
= di − ni. We substitute the extended formulation of di from

Equation (3) into Equation (5) and factor out (2(r−1)b)2:

E
[(

2(r−1)b · ni − di
)2]

= E

[
22(r−1)b ·

(
ni − di

2(r−1)b

)2
]

= 22(r−1)b · E

(ni − d
i

2(r−1)b

)2
 . (6)

We can write the rightmost term as

d
i

2(r−1)b
=

 ∑
1≤j1<j2≤r

sij1s
i
j2

2b

−
 ∑

1≤j1<j2<j3≤r

sij1s
i
j2
sij3

22b


+ · · ·+ (−1)r · s

i
1 · · · sir
2(r−1)b

. (7)
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From Equation (1) for ni, we can observe that for the sum of terms x in ni,
Equation (7) consists of exactly the sum of terms E[x].

(6) = 2(2r−2)b · E
[(
ni − E

[
ni
])2]

= 2(2r−2)b ·Var[ni] .

Inserting it into Equation (4) yields(
4

3

)2r

· 1

2(4r−2)b
· E
[(

2(r−1)b · ni − di
)2]
≤
(
4

3

)2r

· 1

22rb
·Var[ni] .

For the sum of random variables xi, it holds that

Var[ni] =
∑
i

∑
j

Cov[xi, xj ] = ci ,

where ci is the sum of the pairwise covariances of all combinations of two addends
in Var[ni], which includes the (always positive) variance terms:

ci =

 ∑
1≤j1<j2≤r

∑
1≤j′1<j′2≤r

Cov[s
i,wj1 ,wj2
j1,j2

, s
i,wj′1

,wj′2
j′1,j

′
2

]


−

 ∑
1≤j1<j2≤r

∑
1≤j′1<j′2<j′3≤r

Cov[s
i,wj1

,wj2
j1,j2

, s
i,wj′1

,wj′2
,wj′3

j′1,j
′
2,j

′
3

]

+ · · ·

+(−1)r
∑

j1,j2

∑
j′1,...j

′
r

Cov[s
i,wj1

,wj2
j1,j2

, s
i,wj′1

,wj′2
,...,wj′r

j′1,...,j
′
r

]


−

 ∑
1≤j1<j2<j3≤r

∑
1≤j′1<j′2<j′3≤r

Cov[s
i,wj1

,wj2
,wj3

j1,j2,j3
, s

i,wj′1
,wj′2

,wj′3
j′1,j

′
2,j

′
3

]

− · · ·
+(−1)r

 ∑
j1,j2,j3

∑
j′1,...j

′
r

Cov[s
i,wj1 ,wj2 ,wj3
j1,j2,j3

, s
i,wj′1

,wj′2
,...,wj′r

j′1,...,j
′
r

]

+ · · · .

Covariance. Recall that the covariance of a term with itself equals its variance
and is always positive: Cov[xi, xi] = Var[xi]. Thus, we need to compute the co-
variance for all pairs of different variables. From the definition of the covariance,

Cov[xi, xj ] = E[xi · xj ]− E[xi] · E[xj ] , (8)

we can compute the products of expectations, but have to find the expectations
of the products E[xi · xj ], with dependent variables xi and xj .
Lemma 4 considers the expectation of products. We use I,J ⊆ {j1, . . . , jr}
as distinct index sets and overload the notations so that for each set I =
{j′1, . . . , j′t} ⊆ {j1, . . . , jr}, we define siI = sij′1,...,j′t

. Moreover, we define pI =∏
j∈I pj . Note that

E[siI ] · E[siJ ] = npI · npJ , E[siI · siJ ] = E[siI ] · E[siJ ] +Cov[siI , s
i
J ] .
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If I ∩ J = ∅, it follows that pI∪J = pI · pJ ; thus, Cov[siI , s
i
J ] = 0 and

E[siI · siJ ] = E[siI ] · E[siJ ] .

Though, for the cases when I ∩J ≠ ∅, we have to find Cov[siI , s
i
J ] in Lemma 4.

We defer its proof to Appendix A.4.

Lemma 4. It holds that Cov
[
siI , s

i
J
]
= npI∪J − npI · pJ .

We show that we are allowed to apply Lemma 4. Since the permutations are
independent from each other and the values are sampled independently at ran-
dom, we can say that each value in Su, Sv, Sw is chosen independently from
the others. The size of all three lists is n = 2b; moreover, we can instantiate the

probabilities pj , for j ∈ [r] as pj =
sij
2b
. In our case, this means

E
[
siI · siJ

]
= 22b ·

∏
i∈I

pj ·
∏
j∈J

pj +Cov
[
siI , s

i
J
]
, where

Cov
[
siI , s

i
J
]
= 2b ·

∏
i∈I∪J

pi − 2b ·
∏
i∈I

pi ·
∏
j∈J

pj .

For example, let I = {1, 2} and J = {1, 3, 4}. Then,

Cov
[
si1,2, s

i
1,3,4

]
= 2b ·

(
si1s

i
2s

i
3s

i
4

24b
− (si1)

2si2s
i
3s

i
4

25b

)
.

Decomposing ci. Given the covariance, we can rewrite ci. We define Ct,r for
the set of t-out-of-r element combinations, e.g. C2,3 = {(1, 2), (1, 3), (2, 3)}.

ci =

r∑
t1=2

r∑
t2=2

(−1)t1+t2 · cit1,t2,r, where cit1,t2,r =
∑

I∈Ct1,r

∑
J∈Ct2,r

Cov[si,wI
I , si,wJ

J ] .

(9)

Lemma 4 yields

cit1,t2,r =
∑

I∈Ct1,r

∑
J∈Ct2,r

2b · (pI∪J − pIpJ ) (10)

= 2b ·

 ∑
I∈Ct1,r

∑
J∈Ct2,r

∏
j∈I∪J

pj


︸ ︷︷ ︸

cit1,t2,r

−2b ·

 ∑
I∈Ct1,r

∑
J∈Ct2,r

∏
i∈I

pi
∏
j∈J

pj


︸ ︷︷ ︸

cit1,t2,r

.

(11)

Later, we will consider the case that p1 = p2 = · · · = pr = p. Then, we can write
cit1,t2,r as

2b ·
(
cit1,t2,r − cit1,t2,r

)
= 2b ·

 u∑
j=0

(
k
i

t1,t2,r,j · p
ℓ
i
t1,t2,r,j

)
− kit1,t2,r · p

ℓit1,t2,r


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with u =def min(r − t2, t1) and j denotes the number of elements in I that are
not contained in J . Thus, we can reduce the task to that of finding the multiples

k
i

t1,t2,r,j = |{(I,J ) ∈ Ct1,r,×Ct2,r : |I ∪ J | = t2 + j}| and ℓ
i

t1,t2,r,j = |I ∪ J | .
(12)

and

kit1,t2,r = |{(I,J ) ∈ Ct1,r,×Ct2,r}| = |Ct1,r| · |Ct2,r| =
(
r

t1

)
·
(
r

t2

)
and (13)

ℓit1,t2,r = |I|+ |J | = t1 + t2 . (14)

The exponent ℓ
i

t1,t2,r,j is derived from the size of the union set I ∪ J when j

elements of I are not in J . Thus ℓ
i

t1,t2,r,j = max(t1, t2) + j for all j ∈ [0..u]

where u =def min(r− t2, t1). It remains to determine k
i

t1,t2,r,j . For this purpose,
we can use the simple combinatorial Lemma 5.

Lemma 5. Let t1, t2, r, j be fixed integers with t1 ≤ t2 ≤ r and j ∈ [t2..r]. Let
I,J ⊆ [r] be non-identical subsets of [r] with |I| = t1 and |J | = t2. Then, the
number of combinations of distributing I and J so that

|{(I,J ) ∈ Ct1,r,×Ct2,r : |I ∪ J | = t2 + j}| =
(
r

t2

)
·
(

t2
t1 − j

)
·
(
r − t2

j

)
.

Proof. W.l.o.g., we had fixed that |I| ≤ |J | and therefore t1 ≤ t2. There are
(
r
t2

)
sets J among r elements. We defined that j elements of I are not in J . For a
fixed J and fixed j, there are

(
t2

t1−j

)
combinations of the t1 − j values in I ∩ J

and
(
r−t2
j

)
combinations of distributing j values from I \ J outside of J . ⊓⊔

We can rewrite Lemma 5 as Lemma 6, which will serve useful.

Lemma 6. Let t1, t2, r, ℓ be fixed integers with t1, t2 ≤ r. Let I,J ⊆ [r] such
that |I| = t1, |J | = t2, and j = ℓ − t1. Then, the number of combinations of
distributing I and J so that |I ∪ J | = ℓ is

|{(I,J ) ∈ Ct1,r,×Ct2,r : |I ∪ J | = ℓ}| =
(
r

t1

)(
t1

t1 + t2 − ℓ

)(
r − t1
ℓ− t1

)
(−1)t1+t2 .

Proof. There are
(
r
t1

)
sets I among r elements. The overlap, i.e., the number of

shared elements in the intersection |I ∩J | = t1 + t2− ℓ. Among the t1 elements
of I, there are

(
t1

t1+t2−ℓ

)
combinations what elements of I and J could be in the

intersection. Then, the remaining ℓ− t1 elements in J \ I can be distributed by(
r−t1
ℓ−t1

)
combinations over the remaining r − t1 elements not in I. ⊓⊔
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Upper Bounding ci for General r. We aim at having a simplified upper
bound for ci for general r. The terms in ci consist of multiples of powers of p
from exponents 2 to 2r. Now, we can find non-negative integer coefficients kij ,
for all j ∈ [2..r], so that

ci = ki2 · p2 + ki3 · p3 +
r∑

j=2

(
ki2j · p2j

)
. (15)

We show that there the indices j ∈ [2..2r] are the only potential positive coef-

ficients kij . For kiℓ · pℓ with kℓ < 2, there must exist ℓ
i

t1,t2,r,j < 2 or ℓit1,t2,r < 2
for some t1, t2 ∈ [2..r] and j ≤ r. Though, our sets always have |I|, |J | ∈ [2..r].
Hence,

ℓ
i

t1,t2,r,j = |I ∪ J | =⇒ ℓ
i

t1,t2,r,j ∈ [2..2r] and

ℓit1,t2,r = |I|+ |J | =⇒ ℓit1,t2,r ∈ [4..2r] .

Thus, kiℓ = 0 for all ℓ ̸∈ [2..2r]. We want to reduce the bound to the terms
with the few lowest exponents and show that we can upper bound the tail. In
particular, we want a bound so that we can reduce Equation (15) to

ci ≤ 2b · (ki2 · p2 + ki3 · p3) .

We show the following lemma. Later, we also show that p ≤ 1/3r always holds.

Lemma 7. Let r ≥ 2 be integer. For all even ℓ = 2j for some j ∈ [2..r − 1],

|kiℓ+1|
|kiℓ|

≤ 3r , kiℓ+1 ≥ 0 , kiℓ ≤ 0 and ki2r ≤ 0 .

We defer the proof of Lemma 7 to Appendix A.5. Combined with our assumption
that p ≤ 1/3r, it follows for all ℓ = 2j for some j ∈ [2..r − 1], that

kiℓ+1 · pℓ+1 ≤
(
3r · kiℓ

)
·
(
pℓ · 1

3r

)
= kiℓ · pℓ ,

and therefore

ci = 2b · (ki2p2 + ki3p
3 +

r−1∑
j=2

(
−ki2jp2j + ki2j+1p

2j+1
)︸ ︷︷ ︸

≤0

−ki2rp2r) ≤ 2b · (ki2p2 + ki3p
3) .

The factors ki2 and ki3 result from only few terms in ci. In particular, they stem
from ci2,2,r, c

i
2,3,r = ci3,2,r, and ci3,3,r. Given r ≥ 3, they result from

ki2 = k
i

2,2,r,0 =

(
r

2

)(
2

2

)(
2

0

)
=

(
r

2

)
ki3 = k

i

2,2,r,1 − k
i

2,3,r,0 − k
i

3,2,r,0 + k
i

3,3,r,0 =

(
r

3

)
.
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Note that the statement also holds for r = 2, where ki2 = 1, ki4 = 1, and kij = 0
for all positive integers j ̸∈ {2, 4}. We obtain

ci ≤ 2b ·
((

r

2

)
· p2 +

(
r

3

)
· p3
)

. (16)

Equal Probabilities pi. It remains to show that p1 = · · · = pr. The values
of the a most significant bits of the permutation outputs, Vi

j = V 1
j , . . . , V

i
j ,

for all j ∈ [r], are sampled uniformly and independently at random, also in
the modified real world Oreal since we replace their sampling with that from
a truncated permutation. Thus, every V i

j has probability 2−a to be equal to a
specific a-bit value. Therefore

EVi−1 [si1] = · · · = EVi−1 [sir] =
i− 1

2a
.

Thus, for all j ∈ [r], we can use

pj = E

[
sij
2b

]
=

E[sij ]
2b

=
i− 1

2n
.

We have to show that the expectations of the quantities si1, . . . , s
i
r are indepen-

dent. We can adopt the argument from [9] here: it holds since they stem from
pairwise independent permutations and hence

EVi−1 [si2|si1] = EVi−1 [si2]

and similar statements can be derived for all other combinations. We can use

EVi−1 [si1s
i
2] = EVi−1 [si1] · EVi−1 [si2]

and the other product combinations can be decomposed similarly.

Finalizing with the χ2 Approach. We have that

E

[(
Pr

Oreal

[W i = W |Wi−1]− Pr
Oideal

[W i = W |Wi−1]

)2
]
≤
(
4

3

)2r

· 1

22rb
·Var[ni] .
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Using the χ2 approach and inserting PrOideal
[W i = W |Wi−1] = 2−(r−1)b, we

obtain

(|Pr[Oreal = τ ]− Pr[Oideal = τ ]|)2

≤ 1

2

q∑
i=1

EOreal
[χ2(Wi−1)]

≤ 1

2

q∑
i=1

∑
W∈(Fb

2)
r−1

EOreal

[(
PrOreal

[W i = W |Wi−1]− PrOideal
[W i = W |Wi−1]

)2
PrOideal

[W i = W |Wi−1]

]

≤ 1

2
· 2(r−1)b ·

q∑
i=1

∑
W∈(Fb

2)
r−1

E

[(
Pr

Oreal

[W i = W |Wi−1]− Pr
Oideal

[W i = W |Wi−1]

)2
]

≤ 1

2
· 2(r−1)b ·

q∑
i=1

∑
W∈(Fb

2)
r−1

((
4

3

)2r

· 1

22rb
· ci
)

≤ 1

22b+1
·
(
4

3

)2r

·
q∑

i=1

ci . (17)

From Equation (16)

ci ≤ 2b
((

r

2

)
p2 +

(
r

3

)
p3
)

and p = (i− 1)/2n, we obtain that

(17) =

√√√√ 1

22b+1
·
(
4

3

)2r

·
q∑

i=1

2b ·
((

r

2

)
(i− 1)2

22n
+

(
r

3

)
(i− 1)3

23n

)

=

√√√√ 1

22b+1
·
(
4

3

)2r

· 1
2a
·

q∑
i=1

((
r

2

)
(i− 1)2

2n
+

(
r

3

)
(i− 1)3

22n

)

≤

√
1

22n−a
·
(
4

3

)2r

· 1
2
·
(
r2q3

2n
+

r3q4

22n

)
≤
(
4

3

)r

· 1
2
·
√

r2q3

23n−a
+

r3q4

24n−a

≤
(
4

3

)r

·
( rq

2n−a/3

)3/2
,

where we used q ≤ 2n/3r to upper bound

r2q3

23n−a
+

r3q4

24n−a
≤ 2r3q3

23n−a
.

This yields the bound in Theorem 3. ⊓⊔
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We can obtain tighter constant factors for concrete values of r. We give the
results for r = 3, 4 in Corollary 2 to aid the reader.

Corollary 2. Let a, b, q be positive integers and τ = (V,W) be a good tran-
script such that CV,j(i) < 2b−2 holds for all i ∈ [q] and j ∈ [r] and q ≤ 2n/9.
Then, it holds

Eτ [Pr[O2 = τ ]− Pr[Oideal = τ ]] ≤

{
4 ·
(

q
2n−a/3

)3/2
for r = 3

8 ·
(

q
2n−a/3

)3/2
for r = 4 .

6 Conclusion

We have shown that XTH, the XORP-like extension of STH achieves a level of
O(n−a/2−1.5 log(r))-bit PRF security. This is similar to the logarithmic loss in
r of XORP compared to the sum of permutations, providing a trade-off between
releasing more bits from each permutation call and from summation. Note that
this work has considered the version with independent permutations. Future
work can investigate variants that feed domain-separated inputs into the same
permutation.
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A Proof of the Leftover Lemmas for Theorem 3

A.1 Proof of Lemma 1

Lemma 1. For distinct j1, j2 ∈ [r], it holds that

E
[
s
i,wj1 ,wj2
j1,j2

]
=

sij1s
i
j2

2b
and Var

[
s
i,wj1 ,wj2
j1,j2

]
=

sij1s
i
j2

2b
−

(sij1s
i
j2
)2

23b
.

Proof. Let us focus on si,w1,w2

1,2 ; the remaining 2-tuple-related terms s
i,wj1

,wj2
j1,j2

behave similarly, for all j1 ̸= j2, j1, j2 ∈ [r]. Given fixed w2 ∈ Fb
2, for each

y1 ∈ Fb
2, we define Bernoulli variables Iy1

as

Iy1

∆
=

{
1 y1 ∈ Si1 ∧ y1 ⊕ w2 ∈ Si2
0 otherwise.

Then, we derive

E
[
si,w1,w2

1,2

]
=
∑

y1∈Fb
2

Pr[Iy1
] .
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To obtain

Var [x] = E
[
x2
]
− (E[x])2 ,

we have to determine E
[
x2
]
. For a sum of n independent Bernoulli variables Iy1

,
with Pr[Iy1 = 1] = p for all y1,

x =
∑
y1

Pr[Iy1
= 1] ,

it holds that

E
[
x2
]
= E


 n∑

j=1

Ij

2
 = n(n− 1)p2 + np .

In our case, n = 2b and p = si1s
i
2 · 2−2b, for all y1 ∈ Fb

2. Given that (E[x])2 =
(2bp)2, we obtain

Var
[
si,0,w2

1,2

]
≤ si1s

i
2

2b
− (si1s

i
2)

2

23b
and in general

Var
[
s
i,wj1

,wj2
j1,j2

]
≤

sij1s
i
j2

2b
−

(sij1s
i
j2
)2

23b
.

A.2 Proof of Lemma 2

Lemma 2. For distinct j1, j2, j3 ∈ [r], it holds that

E
[
s
i,wj1

,wj2
,wj3

j1,j2,j3

]
=

sij1s
i
j2
sij3

22b
, Var

[
s
i,wj1

,wj2
,wj3

j1,j2,j3

]
=

sij1s
i
j2
sij3

22b
−

(sij1s
i
j2
sij3)

2

25b
.

Proof. Again, the remaining 3-tuple-related terms s
i,wj1

,wj2
,wj3

j1,j2,j3
behave similarly,

for all distinct j1, j2, j3 ∈ [r]. Given fixed w1 = 0b and w2, w3 ∈ Fb
2, for each

y1 ∈ Fb
2, we define Bernoulli variables Iy1

as

Iy1

∆
=

{
1 y1 ∈ Si1 ∧ y1 ⊕ w2 ∈ Si2 ∧ y1 ⊕ w3 ∈ Si3
0 otherwise.

Then, it holds that

E
[
si,w1,w2,w3

1,2,3

]
= E

 ∑
y1∈Fb

2

Iy1

 =
∑

y1∈Fb
2

E[Iy1
] .

Since the expectations for a fixed value y1 ∈ Fb
2 and its translations to be in the

list of all three permutations are mutually independent, the probability is 2−3b.
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Over all elements of the sets |Siy1→w1
| = |Si1|, |Siy2→w2

|, and |Siy3→w3
|, it holds

that

E[Iy1 ] =
si1s

i
2s

i
3

23b
and therefore E

[
si,w1,w2,w3
y1,y2,y3

]
=

si1s
i
2s

i
3

22b
. (18)

It remains to determine its variance

Var
[
si,w1,w2,w3
y1,y2,y3

]
= E

[(
si,w1,w2,w3
y1,y2,y3

)2]− (E[si,w1,w2,w3
y1,y2,y3

])2
= Var

 ∑
y1∈Fb

2

Iy1

 =
∑

y1∈Fb
2

Var [Iy1 ] +
∑

y1 ̸=y′
1

Cov
[
Iy1 , Iy′

1

]
,

with the covariance

Cov
[
Iy1

, Iy′
1

]
= E

[
Iy1
· Iy′

1

]
− E[Iy1

]E
[
Iy′

1

]
= E[Iy1

] · Pr[Iy′
1
= 1|Iy1

= 1]− E[Iy1
]E
[
Iy′

1

]
.

For the variance of the Bernoulli variables, it holds that

Var [Iy1
] = E

[
(Iy1

)2
]
− (E[Iy1

])
2
= E[Iy1

]− (E[Iy1
])
2
=

sius
i
vs

i
w

23b
−
(
sius

i
vs

i
w

23b

)2

.

For their covariance, we need to determine the conditional probability. We con-
sider the case that y′1 ̸∈ {y1⊕w2, y1⊕w3}. Since y′1 ̸= y1, it holds that all values
differ mutually

Pr[Iy′
1
= 1|Iy1

= 1] = Pr[(y′1 ∈ Si1) ∧ (y′1 ⊕ w2 ∈ Si2) ∧ (y′1 ⊕ w3 ∈ Si3)|
(y1 ∈ Si1) ∧ (y1 ⊕ w2 ∈ Si2) ∧ (y1 ⊕ w3 ∈ Si3)]

≤ (si1 − 1)(si2 − 1)(si3 − 1)

(2b − 1)3
.

We conduct it for y′1 = y1⊕w2 exemplarily. From the requirement of the covari-
ance that y′1 ̸= y1, we must exclude w2 = 0.

Pr[Iy1⊕w2
= 1|Iy1

= 1]

≤ Pr[(y1 ⊕ w2 ∈ Si1) ∧ (y1 ∈ Si2) ∧ (y1 ⊕ w2 ⊕ w3 ∈ Si3)|Iy1
= 1]

≤ (siu − 1)(siv − 1)(siw − 1)

(2b − 1)3
.

From si1, s
i
2, s

i
3 < 2b, it follows that

Pr[Iy1⊕w2 = 1|Iy1 = 1] ≤ E[Iy1⊕w2 ] ,

and therefore Cov [Iy1
, Iy1⊕w2

] ≤ 0 in this case. A similar argument holds for
y′1 = y1 ⊕ w3, w2 ̸= w3. It remains to consider y′1 = y1 ⊕ w2 with w2 = w3.

Pr[Iy1⊕w2
= 1|Iy1

= 1, w2 = w3]

≤ Pr[(y1 ⊕ w2 ∈ Si1) ∧ (y1 ∈ Si2) ∧ (y1 ∈ Si3)|Iy1
= 1]

≤ (si1 − 1)(si2 − 1)(si3 − 1)

(2b − 1)3
.
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Again, si1, s
i
2, s

i
3 < 2b implies

Pr[Iy1⊕w2
= 1|Iy1

= 1] ≤ E[Iy1+w2
] ,

and therefore, Cov [Iy1
, Iy1⊕w2

] ≤ 0. Thus, it holds that Cov
[
Iy1

, Iy′
1

]
≤ 0 over

all cases of y′1, and it follows that

Var
[
si,w1,w2,w3

1,2,3

]
≤
∑

y1∈Fb
2

Var [Iy1
]

= 2b ·

(
si1s

i
2s

i
3

23b
−
(
si1s

i
2s

i
3

23b

)2
)

=
si1s

i
2s

i
3

22b
− (si1s

i
2s

i
3)

2

25b
.

A.3 Proof of Lemma 3

Lemma 3. Let t ≤ r and I = {j1, . . . , jt} ⊆ {1, . . . , r}. Then, it holds for the
expectation and variance that

E
[
s
i,wj1

,wj2
,...,wjt

j1,j2,...,jt

]
=

∏
j∈I sij

2(t−1)b
, Var

[
s
i,wj1

,wj2
,...,wjt

j1,j2,...,jt

]
=

∏
j∈I sij

2(t−1)b
−

(∏
j∈I sij

)2
2(2t−1)b

.

Proof. Given fixed wj2 , . . . wjt ∈ Fb
2, for each y1 ∈ Fb

2, we define Bernoulli vari-
ables Iy1

as

Iy1

∆
=

{
1 y1 ∈ Si1 ∧ y1 ⊕ wj2 ∈ Sij2 ∧ . . . ∧ y1 ⊕ wjt ∈ Sijt
0 otherwise.

Then, it holds that

E
[
s
i,wj1 ,wj2 ,...,wjt

j1,j2,··· ,jt

]
= E

 ∑
y1∈Fb

2

Iy1

 =
∑

y1∈Fb
2

E[Iy1
] .

Since the expectations for a fixed value y1 ∈ Fb
2 and its translations to be in the

list of all three permutations are mutually independent, the probability is 2−tb.
Over all elements of the sets, it holds that

E[Iy1
] =

∏
j∈I sij

2tb
and therefore E

[
s
i,wj1 ,wj2 ,...,wjt

j1,j2,··· ,jt

]
=

∏
j∈I sij

2(t−1)b
.

For x =
∑

y1
Pr[Iy1 = 1], as a sum of n independent Bernoulli variables Iy1 , with

Pr[Iy1 = 1] = p for all y1, it holds that

E
[
x2
]
= E


 n∑

j=1

Ij

2
 = n(n− 1)p2 + np .
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In our case, n = 2b and p =
∏

j∈I sij · 2−tb, for all y1 ∈ Fb
2. Given that (E[x])2 =

(2bp)2, we obtain

Var
[
s
i,wj1

,wj2
,...,wjt

j1,j2,··· ,jt

]
≤
∏

j∈I sij

2(t−1)b
−

(∏
j∈I sij

)2
2(2t−1)b

.

A.4 Proof of Lemma 4

Lemma 4. It holds that Cov
[
siI , s

i
J
]
= npI∪J − npI · pJ .

Proof. Let us focus examplarily on I = {1, 2, 3} and J = {1, 2, 4}. Thus, we
consider si,w1,w2,w3

1,2,3 and si,w1,w2,w4

1,2,4 . The remaining tuples behave similarly, for

all I ≠ J . Given fixed w1 = 0b and w2, w3, w4 ∈ Fb
2, for each y1 ∈ Fb

2, we define
Bernoulli variables Iy1 as

Iy1

∆
=

{
1 y1 ∈ Si1 ∧ y1 ⊕ w2 ∈ Si2 ∧ y1 ⊕ w3 ∈ Si3
0 otherwise

and

Jy1

∆
=

{
1 y1 ∈ Si1 ∧ y1 ⊕ w2 ∈ Si2 ∧ y1 ⊕ w4 ∈ Si4
0 otherwise.

Then, we derive

E
[
si,w1,w2,w3

I

]
=
∑

y1∈Fb
2

Pr[Iy1 ]

E
[
si,w1,w2,w4

J

]
=
∑

y1∈Fb
2

Pr[Jy1
]

We want to bound

Cov
[
siI , s

i
J
]
= E

[
siI · siJ

]
− E

[
siI
]
· E
[
siJ
]
. (19)

We know the latter expectations from the proof of Lemma 3 to be bounded by

E
[
siI
]
= 2b ·

∏
j∈I

sij
2b

and E
[
siJ
]
= 2b ·

∏
j∈J

sij
2b

.

Thus, it remains to bound the expectation of the product. It holds that

E
[
siI · siJ

]
= E

 ∑
y1∈Fb

2

Iy1

 ·
 ∑

y1∈Fb
2

Jy1


= ρIy1 ,Jy1

·
√

2b · 2b ·Var [Iy1
] ·Var [Jy1

]

+

 ∑
y1∈Fb

2

E[Iy1
]

 ·
 ∑

y1∈Fb
2

E[Jy1
]

 . (20)
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where

ρIy1 ,Jy1
=

E[Iy1
· Jy1

]− E[Iy1
] · E[Jy1

]√
Var [Iy1

] ·Var [Jy1
]

. (21)

We know

E[Iy1
] =

∏
j∈I

sij
2b

and E
[
siJ
]
=
∏
j∈J

sij
2b

.

and need

E[Iy1
· Jy1

] = E[Iy1
] · Pr [Jy1

|Iy1
] .

We know that

Pr [Jy1
|Iy1

] = Pr
[
y1 ∈ Si1 ∧ y1 ⊕ w2 ∈ Si2 ∧ y1 ⊕ w4 ∈ Si4

∣∣
y1 ∈ Si1 ∧ y1 ⊕ w2 ∈ Si2 ∧ y1 ⊕ w3 ∈ Si3

]
= Pr

[
y1 ⊕ w4 ∈ Si4 | y1 ∈ Si1 ∧ y1 ⊕ w2 ∈ Si2 ∧ y1 ⊕ w3 ∈ Si3

]
=

si4
2b

since the individual terms wi are independent from each other and
∏

j∈J\I
sij
2b

in general. Thus, it holds that

E[Iy1 · Jy1 ] =
∏
j∈I

sij
2b
·
∏

j∈I\J

sij
2b

=
1

2b
·
∏

j∈I∪J
sij .

Thus,

(21) =

∏
j∈I∪J

sij
2b
−
∏

j∈I
sij
2b
·
∏

j∈J
sij
2b√

Var [Iy1 ] ·Var [Jy1 ]

Inserting into Equation (20),

E
[
siI · siJ

]
=

(∏
j∈I∪J

sij
2b

)
−
(∏

j∈I
sij
2b
·
∏

j∈J
sij
2b

)
√
Var [Iy1

] ·Var [Jy1
]

·
√
2b · 2b ·Var [Iy1

] ·Var [Jy1
] + ∑

y1∈Fb
2

E[Iy1 ]

 ·
 ∑

y1∈Fb
2

E[Jy1 ]


= 2b ·

 ∏
j∈I∪J

sij
2b


︸ ︷︷ ︸

pI∪J

−2b ·

∏
j∈I

sij
2b


︸ ︷︷ ︸

pI

·

∏
j∈J

sij
2b


︸ ︷︷ ︸

pJ

+ 2b ·

∏
j∈I

sij
2b


︸ ︷︷ ︸

pI

·2b ·

∏
j∈J

sij
2b


︸ ︷︷ ︸

pJ
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substituting n = 2b and inserting into Equation produces

(19) = Cov
[
siI , s

i
J
]
= E

[
siI · siJ

]
− E

[
siI
]
· E
[
siJ
]

= n · pI∪J − n · pI · pJ + n · pI · n · pJ − n · pI · n · pJ
= n · pI∪J − n · pI · pJ ,

which gives our claim in Lemma 4.

A.5 Proof of Lemma 7

Lemma 7. Let r ≥ 2 be integer. For all even ℓ = 2j for some j ∈ [2..r − 1],

|kiℓ+1|
|kiℓ|

≤ 3r , kiℓ+1 ≥ 0 , kiℓ ≤ 0 and ki2r ≤ 0 .

Proof. First, we note that kiℓ will be negative whereas k
i
ℓ+1 will be positive, given

that ℓ ≥ 4. We can write kiℓ = kiℓ + k
i

ℓ. We consider kiℓ first. To isolate those
terms that contribute to the fixed ℓ, we can see from Equation 11 and 14 that
t1+ t2 = ℓ must hold. Since we consider an even exponent ℓ = t1+ t2 = 2j, those
summands add to

kiℓ = −(−1)t1+t2

(
r

2

)(
r

ℓ− 2

)
−
(
r

3

)(
r

ℓ− 3

)
− · · · −

(
r

ℓ− 2

)(
r

2

)
= −

(
ℓ−2∑
t1=2

(
r

t1

)(
r

ℓ− t1

))
.

For odd ℓ+ 1, the inverse holds, i.e., all terms in kiℓ+1 will be positive:

kiℓ =

(
ℓ−1∑
t1=2

(
r

t1

)(
r

ℓ+ 1− t2

))
.

Next, we consider the summands that contribute to k
i

ℓ. From Lemma 6, we know

that the factors for fixed t1, t2, r, and ℓ for k
i

ℓ are

k
i

t1,t2,r =

(
r

t1

)(
r

t1 + t2 − ℓ

)(
r − t1
ℓ− t1

)
(−1)t1+t2 .

Over all t1, t2 ∈ {2, . . . , ℓ} in Equation 9 and considering the correct signs,

k
i

ℓ =

ℓ∑
t1=2

ℓ∑
t2=2

((
r

t1

)(
t1

t1 + t2 − ℓ

)(
r − t1
ℓ− t1

)
(−1)t1+t2

)
.

Note that values of t1, t2 > ℓ do not contribute since they have no terms in ci

that produce powers pℓ. We observe that k
i

ℓ consists of summands of different
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sign. To gain clarity, we decompose and group those first according to
(
r
t1

)
and

second to their sign.

k
i

ℓ =

ℓ∑
t1=2

(
r

t1

)(
r − t1
ℓ− t1

)
(−1)t1+t2

 ∑
t2=2,4,...,ℓ

(
t1

t1 + t2 − ℓ

)
−

∑
t2=3,5,...,ℓ+1

(
t1

t1 + t2 − ℓ

) (22)

k
i

ℓ+1 =

ℓ+1∑
t1=2

(
r

t1

)(
r − t1

ℓ+ 1− t1

)
(−1)t1+t2+1

 ∑
t2=2,4,...,ℓ+1

(
t1

t1 + t2 − (ℓ+ 1)

)
−

∑
t2=3,5,...,ℓ+1

(
t1

t1 + t2 − (ℓ+ 1)

) .

(23)

Note that for odd ℓ+1, the cardinalities of |{2, 4, . . . , ℓ+1}| = |{3, 5, . . . , ℓ+1}| =
ℓ/2. Though, while |{2, 4, . . . , ℓ}| = ℓ/2, |{3, 5, . . . , ℓ}| = ℓ/2− 1. Since the term(

t1
t1+t2−ℓ

)
=
(
t1
−1

)
= 0 for t2 = ℓ + 1, we were allowed to extend the underlined

index in the rightmost sum in Equation (22) from ℓ to ℓ + 1 without changing
the result. Then, we have ℓ/2 terms in each difference and will be able to use
another helping lemma.

For some set I ⊆ N0, let Ie = {i ∈ I : i is even} and Io = {i ∈ I : i is odd}
denote the sets of even and odd non-negative numbers in I. The following result
is well-known.

Lemma 8. Let n be a positive integer. Then

∑
k∈[0..n]e

(
n

k

)
=

∑
k∈[0..n]o

(
n

k

)
=

2n

2
.

It follows that

∑
k∈[0..n]o

(
n

k

)
−

∑
k∈[0..n]e

(
n

k

)
= 0

∑
k∈[1..n]o

(
n

k

)
−

∑
k∈[1..n]e

(
n

k

)
=

(
n

0

)
= 1

∑
k∈[2..n]o

(
n

k

)
−

∑
k∈[2..n]e

(
n

k

)
=

(
n

0

)
−
(
n

1

)
= 1− n .

First, we consider k
i

ℓ+1 with three cases.
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Case t1 ≤ ℓ− 1: From Equation (23), we see that for all even t1 ≤ ℓ− 1∑
t2=2,4,...,ℓ+1

(
t1

t1 + t2 − (ℓ+ 1)

)
=

∑
k∈[0..ℓ+1]o

(
t1
k

)
∑

t2=3,5,...,ℓ+1

(
t1

t1 + t2 − (ℓ+ 1)

)
=

∑
k∈[0..ℓ+1]e

(
t1
k

)
and from Lemma 8∑

t2=2,4,...,ℓ+1

(
t1

t1 + t2 − (ℓ+ 1)

)
−

∑
t2=3,5,...,ℓ+1

(
t1

t1 + t2 − (ℓ+ 1)

)
= 0 .

A similar statement can be derived for all odd t1 ≤ ℓ− 1.

Case t1 = ℓ: For t1 = ℓ, we have∑
t2=2,4,...,ℓ+1

(
t1

t1 + t2 − (ℓ+ 1)

)
=

∑
k∈[0..ℓ+1]o

(
t1
k

)
∑

t2=3,5,...,ℓ+1

(
t1

t1 + t2 − (ℓ+ 1)

)
=

∑
k∈[0..ℓ+1]e

(
t1
k

)
−
(
t1
0

)
.

Case t1 = ℓ: For t1 = ℓ+ 1, it holds that∑
t2=2,4,...,ℓ+1

(
t1

t1 + t2 − (ℓ+ 1)

)
=

∑
k∈[0..ℓ+1]e

(
t1
k

)
−
(
t1
0

)
∑

t2=3,5,...,ℓ+1

(
t1

t1 + t2 − (ℓ+ 1)

)
=

∑
k∈[0..ℓ+1]o

(
t1
k

)
−
(
t1
1

)
We obtain that

k
i

ℓ+1 =

(
r

ℓ

)(
r − ℓ

ℓ+ 1− ℓ

)(
ℓ

0

)
−
(

r

ℓ+ 1

)(
r − (ℓ+ 1)

ℓ+ 1− (ℓ+ 1)

)((
ℓ+ 1

1

)
−
(
ℓ+ 1

0

))
=

(
r

ℓ+ 1

)
.

Next, we consider k
i

ℓ with three similar cases.

Case t1 ≤ ℓ− 2: From Equation (23), we see that for all even t1 ≤ ℓ− 2∑
t2=2,4,...,ℓ

(
t1

t1 + t2 − ℓ

)
=

∑
k∈[0..ℓ+1]e

(
t1
k

)
∑

t2=3,5,...,ℓ+1

(
t1

t1 + t2 − ℓ

)
=

∑
k∈[0..ℓ+1]o

(
t1
k

)
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and from Lemma 8∑
t2=2,4,...,ℓ

(
t1

t1 + t2 − ℓ

)
−

∑
t2=3,5,...,ℓ+1

(
t1

t1 + t2 − ℓ

)
= 0 .

A similar statement can be derived for all odd t1 ≤ ℓ− 2.

Case t1 = ℓ− 1: For t1 = ℓ− 1, we have∑
t2=2,4,...,ℓ

(
t1

t1 + t2 − ℓ

)
=

∑
k∈[0..ℓ]o

(
t1
k

)
∑

t2=3,5,...,ℓ+1

(
t1

t1 + t2 − ℓ

)
=

∑
k∈[0..ℓ]e

(
t1
k

)
−
(
t1
0

)
.

Case t1 = ℓ: For t1 = ℓ, it holds that∑
t2=2,4,...,ℓ

(
t1

t1 + t2 − ℓ

)
=

∑
k∈[0..ℓ]e

(
t1
k

)
−
(
t1
0

)
∑

t2=3,5,...,ℓ+1

(
t1

t1 + t2 − ℓ

)
=

∑
k∈[0..ℓ]o

(
t1
k

)
−
(
t1
1

)
We obtain that

k
i

ℓ =

(
r

ℓ− 1

)(
r − (ℓ− 1)

ℓ− (ℓ− 1)

)(
ℓ− 1

0

)
−
(
r

ℓ

)(
r − ℓ

ℓ− ℓ

)((
ℓ

1

)
−
(
ℓ

0

))
=

(
r

ℓ

)
.

Now, we can insert our terms to bound our desired ratio

kiℓ+1

kiℓ
=

kiℓ+1 + k
i

ℓ+1

kiℓ + k
i

ℓ

=

(∑ℓ−1
t1=2

(
r
t1

)(
r

ℓ+1−t1

))
+
(

r
ℓ+1

)
−
(∑ℓ−2

t1=2

(
r
t1

)(
r

ℓ−t1

))
−
(
r
ℓ

)

=

a︷ ︸︸ ︷(
ℓ−2∑
t1=2

(
r

t1

)(
r

ℓ+ 1− t1

))
+

b︷ ︸︸ ︷(
r

ℓ− 1

)(
r

2

)
+

c︷ ︸︸ ︷(
r

ℓ+ 1

)

−

(
ℓ−2∑
t1=2

(
r

t1

)(
r

ℓ− t1

))
︸ ︷︷ ︸

d

−
(
r

ℓ

)
︸︷︷︸

e

.

Thus, we have shown the positivity and negativity statements from Lemma 7:

kiℓ+1 ≥ 0, kiℓ ≤ 0, and ki2r ≤ 0 .

It remains to obtain upper bound the ratio of their absolutes. We can use

a+ b+ c

d+ e
≤ a

d+ e
+

b

d+ e
+

c

d+ e
≤ a

d
+

b

d
+

c

e
.
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We can see that

a

d
=

∑ℓ−2
t1=2

(
r
t1

)(
r

ℓ+1−t1

)∑ℓ−2
t1=2

(
r
t1

)(
r

ℓ−t1

) =

∑ℓ−2
t1=2

(
r
t1

)(
r

ℓ−t1

) r−(ℓ−t1)
ℓ−t1+1∑ℓ−2

t1=2

(
r
t1

)(
r

ℓ−t1

) ≤
∑ℓ−2

t1=2

(
r
t1

)(
r

ℓ−t1

)
r−2
3∑ℓ−2

t1=2

(
r
t1

)(
r

ℓ−t1

) ≤ r

3
.

Similarly, for all ℓ ≥ 4:

b

d
=

(
r

ℓ−1

)(
r
2

)∑ℓ−2
t1=2

(
r
t1

)(
r

ℓ−t1

) ≤ (r2)( r
ℓ−1

)(
r
2

)(
r

ℓ−2

) ≤ (r2)( r
ℓ−2

) r−(ℓ−2)
ℓ−1(

r
2

)(
r

ℓ−2

) ≤ r

3
.

Finally, for all ℓ ≥ 4, it holds

c

e
=

(
r

ℓ+1

)(
r
ℓ

) ≤ (rℓ) r−ℓ
ℓ+1(
r
ℓ

) ≤ r

ℓ+ 1
≤ r

5
.

The sum of the three bounds yields that for all ℓ = 2j and j ∈ [2..r − 1]:

|kiℓ+1|
|kiℓ|

≤ 3r .


