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Abstract. Based on the CM method for primality testing (ECPP) by Atkin and
Morain published in 1993, we present two algorithms: one to generate embedded
elliptic curves of SNARK-friendly curves, with a variable discriminant D; and another
to generate families (parameterized by polynomials) with a fixed discriminant D.
When D = 3 mod 4, it is possible to obtain a prime-order curve, and form a cycle.
We apply our technique first to generate more embedded curves like Bandersnatch
with BLS12-381 and we propose a plain twist-secure cycle above BLS12-381 with
D = 6673027. We also devise about the scarcity of Bandersnatch-like CM curves, and
show that with our algorithm, it is only a question of core-hours to find them. Second,
we obtain families of prime-order embedded curves of discriminant D = 3 for BLS
and KSS18 curves. Our method obtains families of embedded curves above KSS16
and can work for any KSS family. Our work generalizes the work on Bandersnatch
(Masson, Sanso, and Zhang, and Sanso and El Housni).
Keywords: elliptic curves · SNARK · embedded curves · cycles of curves

1 Introduction
With the development of proof-of-knowledge systems, in particular SNARK (Succinct
Non-interactive ARgument of Knowledge), new elliptic curves know a recent regain of
interest. These curves are defined over a prime field Fp and equipped with a polynomial
commitment. We distinguish two types of constructions:

• Elliptic curves with a polynomial commitment based on the discrete logarithm
problem [Hop20b, BGH19],

• Pairing-friendly curves equipped with an efficient bilinear map that pairs points on
the curve and outputs a value in a finite field. A polynomial commitment [KZG10]
can be obtained from the bilinear map, also called a pairing.

Zero-knowledge SNARKs are built using arithmetic circuits corresponding to operations
involving a secret value. In other words, ZK proofs demonstrate the knowledge of a secret
information that satisfies a specified list of arithmetic operations. While the arithmetic
circuit can be very large in practice, SNARK proofs are small (succinct) so that it is
fast enough to verify the proof. Many zero-knowledge constructions are instantiated
using a pairing-friendly elliptic curve. In this context, the output proof includes a point
of the pairing-friendly elliptic curve, and the verification requires the computation of
a cryptographic pairing. In [Gro16], Groth was the first to achieve a cost as small as
three pairings and additional multiplications/exponentiations. The construction was later
improved and optimized [GWC19, GW20, CBBZ22]. The design was then adapted for
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2 Embedded curves

the DL polynomial commitment [BGH19]. In most of the constructions, the elliptic curve
equipped with a polynomial commitment is defined over a prime field Fp, and has a
cryptographically secure prime subgroup of size q, also called scalar field Fq.

ZK proofs built using circuits compute proofs of arithmetic in a finite field. In the
context of the designs mentioned above (in particular [GWC19, BGH19]), this field is the
scalar field Fq of the elliptic curve. In a cryptographic setting, it is interesting to build
proofs related to cryptographic protocol objects (such as digital signatures, or even other
ZK proofs). In practice, elliptic curve point arithmetic is usually computed, involving
arithmetic on the base field of the curve. Thus, the base field of this second elliptic curve
needs to be Fq, the scalar field of the first curve. The naive idea of finding an elliptic
curve with identical base and scalar fields is not cryptographically secure [Sma99]. These
curves are called anomalous and must be avoided. Hence, a second curve, embedded on the
proof curve is required, and its base field needs to match the scalar field of the proof curve.
The relation between base field of the embedded curve and scalar field of the proof curve
is summarized in Figure 1. Many ZK projects are based on the pairing-friendly curve
BLS12-381. It is possible to obtain an embedded curve for BLS12-381. Jubjub was first
proposed [Hop17], and [MSZ24] considers a second curve called Bandersnatch, allowing
faster scalar multiplications.

Proof curve
with prime factor q

elliptic curve
defined over Fq

statement
with arithmetic
over a field Fq

SNARK with
a group

of order q

polynomials
in Fq[X]

arithme-
tisation

proof of
the circuit

Figure 1: Relation between base field of the embedded curve and scalar field of the proof
curve (from [AHG23, Fig. 3]).

Zero-knowledge proofs can be recursively computed in order to keep the proof size small
enough and the verification time efficient at a large scale. In this context, the arithmetic
circuit includes information on the verification of the previous proof. In other words, if a
circuit is defined over Fq as above, the next proof will be defined using a circuit over Fp.
Using a chain of curves (where the scalar field of a curve is the base field of the previous
curve), it is possible to compose proofs in order to achieve a better efficiency. This is
also called a one-layer proof composition setting. In order to achieve recursive proofs,
the curves involved in the proofs need to be chained so that every proof on a curve can
be composed with a proof on the next curve. Cycles of curves make this construction
possible, where the scalar field of a curve is the base field of another curve and vice-versa.
In particular, a 2-cycle refers to two curves E1 and E2 defined respectively over Fp and
Fq and of respective scalar field Fq and Fp. This construction together with the pairing
property is possible using MNT curves, but due to NFS variants on the discrete logarithm
problem over the pairing output fields, the size of the primes p and q are very large, making
the computations very slow. Recent works [CK24] investigate supersingular cycles for a
higher security, leading to a better efficiency than MNT cycles. Another approach avoids
pairings and considers the DL polynomial commitment scheme. Using this approach,
pairing-friendly curves are not needed and one can consider 256-bit primes p and q. We
refer here to plain 2-cycle as a cycle of two curves cryptographically secure, without the
pairing property. A plain 2-cycle was originally designed for HALO2 [Hop20b, BGH19].
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The two curves are called Pallas and Vesta, forming the Pasta cycle, used for instance
within the Rust implementation of NOVA [KST22]. Although this construction makes
recursive proofs possible, the proof size is not constant anymore (but still logarithmic
in the size of the inputs). Finally, it is possible to alternate proofs on a pairing-friendly
curve and on a plain elliptic curve ([Azt] for the BN-254–Grumpkin half-cycle, [Hop21] for
Pluto-Eris). This construction has been considered only theoretically and its efficiency is
not well understood.

Our constributions. In this work, we look for embedded curves with different goals.
First, we obtain an efficient algorithm for finding embedded curves for a fixed elliptic
curve. Then, we apply this algorithm in order to find a plain 2-cycle with the standardized
ed255-19 elliptic curve, and for obtaining a plain 2-cycle embedded on the pairing-friendly
curve BLS12-381. We investigate the scarcity of such curves and show that despite
Bandersnatch is indeed a lucky curve (secure, of very small discriminant and twist-secure),
it is possible to generate a curve with similar properties (considering a larger discriminant).
We also consider families of embedded curves for a fixed discriminant, generalizing the
idea of [SEH24].

Organization of the paper. Preliminaries on the CM method, the ECPP algorithm,
and the previous works on finding embedded curves are in Section 2. In Section 3, we
propose our new efficient algorithm for finding embedded curves, based on algorithmic
number theory of imaginary quadratic fields. We apply this method for different zero-
knowledge proof use-cases in Section 3.3. Finally, we consider families of embedded curves
in Section 4, for fixed discriminants such as D = 1, 3.

2 Preliminaries
2.1 Notations
2.1.1 Elliptic curves.

In this paper, E : y2 = x3 + ax + b is an elliptic curve (4a3 + 27b2 ̸= 0) defined over a prime
finite field F of large characteristic ≥ 5 and in practice, of cryptographic size of about 256
bits. The above equation is a Weierstrass representation of the curve, and in practice, it is
common to use a small a-coefficient. In particular, a = −3 leads to an efficient arithmetic
on the curve [CS18].

We denote by t the trace of the Frobenius map on E, so that the curve order is
#E(F) = #F + 1− t. From now, we denote q for the characteristic of the base field of the
elliptic curve. Here, we consider ordinary elliptic curves, meaning that the endomorphism
ring of the curve E is always an order of the imaginary quadratic field K = Q[

√
t2 − 4q].

Ordinary curves have a trace t ̸= 0 mod q. Thanks to the Hasse–Weil bound, the quantity
t2 − 4q is always negative. Let us denote its square-free factorization as t2 − 4q = −dy2,
where d > 0 is square-free, so that

4q = t2 + dy2. (1)

In Section 3.2, we will be interested in solving Equation (1) for integers t, y, a prime q and
d > 0. This is closely related to the theory of imaginary quadratic fields.

2.1.2 Imaginary quadratic fields.

To keep consistent notations, we define the imaginary quadratic number field K for a
square-free positive d:

K = Q[
√
−d] = Q[X]/(X2 + d) .
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The negative fundamental discriminant of K is −D, where D = 4d if d = 1, 2 mod 4;
D = d if d = 3 mod 4. The structure of the maximal order of K (its ring of integers OK)
is Z[ω] where ω is defined as follows:

ω =
{√
−D/4 if D ̸≡ 3 mod 4,

1+
√

−D
2 if D ≡ 3 mod 4.

The element ω characterizes OK and it is a root of the polynomial P (X) where

P (X) =
{

X2 + d if d ≡ 1, 2 mod 4,
X2 −X + (d + 1)/4 if d ≡ 3 mod 4.

Observe that −D is the discriminant of the polynomial P (X).
Every order is a suborder of the maximal order. In this paper, we identify elliptic curves

to their fundamental discriminant: the endomorphism ring is a suborder of a maximal
order of Q[

√
t2 − 4q] of a given fundamental discriminant. In other words, we consider

elliptic curve isogeny classes. We refer to [Feo17] for the theory of isogenies (not needed
here). Let τ denote complex conjugation. The conjugate of an element α = a + bω is
α′ = τ(α) = a + bτ(ω). The norm of an element α = a + bω is NK/Q(α) = ατ(α). More
precisely,

NK/Q(a + bω) =
{

(a + b
√
−d)(a− b

√
−d) = a2 + db2 D ̸≡ 3 mod 4,

(a + b 1+
√

−d
2 )(a + b 1−

√
−d

2 ) = a2 + ab + d+1
4 b2 D ≡ 3 mod 4.

2.2 The CM method
The theory of Complex Multiplication for curves over finite fields was developed in the 90’s,
at a time where point counting algorithms were still under improvements and required a
huge computing power. With the development of the Schroof, Elkies, and Atkin algorithm
(SEA) for point counting, the Complex Multiplication was never massively employed
to obtain cryptographic elliptic curves, as it produces curves with a small discriminant.
Despite not being directly a weakness, this makes a particularity that one prefers to avoid
whenever possible. In the recent survey [BL24], discriminants |D| ≥ 2110 are considered
safe, which is far beyond the feasibility of the CM method.

The CM method is crucial in the Elliptic Curve Primality Proving (ECPP) method.
With input a probable prime q whose primality should be established, it consists in
enumerating fundamental discriminants of increasing magnitude, until one gives valid
parameters (a valid trace) for an elliptic curve over Z/qZ (and other requirements on the
smoothness of its order are met). Once D is known, the CM method consists in finding
the elliptic curve coefficients a, b in the equation y2 = x3 + ax + b. A modular polynomial
(Hilbert or Weber class polynomial computation) is computed. Its roots modulo q are
the j-invariants of curves E over Z/qZ having CM by

√
−D. The curve coefficients are

deduced from j with the formula E : y2 = x3 + 3j
j−1728 x + 2j

1728−j . The special cases for
j = 0 and 1728 are done separately: curves with j = 0 have equation y2 = x3 + b whereas
curves with j = 1728 have equation y2 = x3 + ax. The complexity of the CM method
comes from the computation of the invariant j from class field theory. Following the
notations in [AM93], the Hilbert Class Field of K is the maximal unramified Abelian
extension of K and is denoted by KH . the Hilbert Class Polynomial denoted H−D, is
such that KH is its splitting field. The roots of H−D(X) mod q are the j-invariants of the
elliptic curves over Fq having discriminant −D.
Remark 1 (Small discriminant 2-cycles.). When an elliptic curve E1/Fq is of prime order
r, there always exists another elliptic curve E2/Fr of order q, i.e. a 2-cycle between E1
and E2. This result comes from the CM method. Let t be the trace of E1/Fq so that
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q + 1 − t = r. Writing r + 1 − (2 − t) = q, we obtain using the CM method another
curve defined over Fr of trace 2− t. As long as D is small enough, we can compute the
curve coefficients using the Hilbert class polynomial. In practice, this polynomial can be
computed directly modulo q using [Sut11], and the largest computation was done for a
discriminant with a dozen of digits.

2.3 Solving norm equations in imaginary quadratic orders
The solution of a norm equation of the form x2 + dy2 = q is closely related to number
theory. In particular, these equations are related to imaginary quadratic fields, and this
theory has been intensively studied in the context of norm equations. Here, we look for
class of solutions of equations of the form x2 + dy2 = q. In particular, we will consider a
result of [AM93], that we adapt to our context.

Proposition 1 ([AM93, Proposition 2.3]). Let D, K, OK , ω as in Section 2.1. Let q be
a rational prime. The equation q = NK/Q(π) has a solution π in OK if, and only if, (q)
splits as the product of two principal ideals π, τ(π) in K. In other words: 4q = A2 + DB2

with A and B in Z.

Theorem 1 ([AM93, Theorem 3.2]). Let D, K, OK , ω as in Section 2.1. Let KH , HD

as in Section 2.2. A rational prime q is a norm in K if and only if (q) splits completely in
KH . This is equivalent to saying that HD(X) (mod q) has only simple roots and they are
all in Z/qZ. Moreover, we have that

4q = A2 + DB2

has a solution in rational integers (A, B) if and only if HD(X) splits completely modulo q.

We re-phrase the above results as Theorem 2 to suit our needs.

Theorem 2 (deduced from Proposition 1 and Theorem 1). Let K, d, D as in Section 2.1.
There exists π ∈ OK of norm q if, and only if, there exist t, y ∈ Z satisfying t2 + Dy2 = 4q.

Proof.

( =⇒ ) Suppose that there exists π = a + bω ∈ OK (a, b ∈ Z) of norm q. If D ̸≡ 3 mod 4,
then the norm of π is q = a2 + db2 where d = D/4. Multiplying by 4, we get
4q = 4a2 + Db2. Then, we simply choose t = 2a and y = b. If D ≡ 3 mod 4, D = d
and the norm of π is q = a2 + ab + b2 D+1

4 = (a + b/2)2 + Db2/4. Multiplying by 4,
we get 4q = (2a + b)2 + Db2. In this case, we choose t = 2a + b and y = b.

(⇐=) Reciprocally, looking at the equation t2 + Dy2 = 4q modulo 4, for D ̸≡ 3 mod 4,
D = 4d and D = 4, 8 mod 16, one can show that t should be even, so that we set
π = t

2 + ωy ∈ OK having norm q. For D ≡ 3 mod 4, we show that t, y should have
same parity to satisfy t2 + Dy2 = 0 mod 4. Hence, we set π = t−y

2 + ωy ∈ OK ,
having norm (t−y)2

4 + t−y
2 y + D+1

4 y2 = t2/4 + Dy2/4 = q as required.

Remark 2. If a curve defined over Fq has discriminant −D and trace t, we know that
t2−4q = −Dy2 for an integer y. From the proof of Theorem 2, we know that if D ̸≡ 3 mod 4,
then t must be even. In consequence, the order of the curve must be even. Reciprocally,
the curve will have prime order only if D ≡ 3 mod 4.
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2.4 Pairing-friendly curves
In this section, we consider an elliptic curve E defined over a prime field Fp. Pairing-
friendly curves are such that the Tate or Weil pairings and their variants are computable
in reasonable time. For that, the curve embedding degree k with respect to a subgroup of
points of order q should be small, say k ≤ 54. The embedding degree k with respect to
q is the smallest extension degree of the base field Fp such that all q-torsion points are
Fpk -rational. Usually for efficiency implementations, k is chosen to be a power of 2 and 3,
for example k = 12, 24. In this work, we consider several families of pairing-friendly curves:
Barreto–Naehrig (BN), Barreto–Lynn–Scott (BLS), Kachisa–Schaefer–Scott (KSS) whose
parameter sets are given in Tables 1, 2, and 3. Popular seeds are:

• u = 0x44e992b44a6909f1 to generate a BN254 curve,

• u = -0xd201000000010000 for a BLS12-381,

• u = 0x8508c00000000001 for BLS12-377.

The number after the family name in the label refers to the bitsize of the prime p(u).
Evaluating the polynomials p(x), t(x) and q(x) at the seed u, we obtain three parameters
p, t and q. We can derive the corresponding elliptic curve using the CM method described
in Section 2.2.

Table 1: BN curve parameters

k = 12
−D =−3
q(x) = 36x4 + 36x3 + 18x2 + 6x + 1
t(x) = 6x2 + 1
p(x) = 36x4 + 36x3 + 24x2 + 6x + 1
c(x) = 1
y(x) = 6x2 + 4x + 1

Table 2: Selected BLS curve parameters

k = 12 k = 24
−D =−3 −D =−3
q(x) = Φ12(x) = x4 − x2 + 1 q(x) = Φ24(x) = x8 − x4 + 1
t(x) = x + 1 t(x) = x + 1
p(x) = (x− 1)2/3(x4 − x2 + 1) + x p(x) = (x− 1)2/3(x8 − x4 + 1) + x
c(x) = (x− 1)2/3 c(x) = (x− 1)2/3
y(x) = (x− 1)(2x2 − 1)/3 y(x) = (x− 1)(2x4 − 1)/3

u = 1 mod 3 u = 1 mod 3

In the next section, we consider the problem of finding an embedded curve E1(Fq)
relatively to a fixed elliptic curve E(Fp) of order divisible by q. We follow the complex
multiplication method together with Theorem 2.

2.5 Bandersnatch: a curve embedded on BLS12-381 scalar field
In [MSZ24], the authors investigate an embedded curve for the BLS12-381 curve. In this
context, they look for a curve above the BLS12 curve with a fast scalar multiplication,
and so the base field of the new curve, called Bandersnatch, is fixed to be the scalar field
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Table 3: Selected KSS curve parameters

k = 16 k = 18
−D =−4 −D =−3
q(x) = (x8 + 48x4 + 625)/61250 q(x) = (x6 + 37x3 + 343)/343
t(x) = (2x5 + 41x + 35)/35 t(x) = (x4 + 16x + 7)/7
p(x) = (x10 + 2x9 + 5x8 + 48x6 + 152x5

+ 240x4 + 625x2 + 2398x + 3125)/980
p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4

+ 259x3 + 343x2 + 1763x + 2401)/21
c(x) = 125(x2 + 2x + 5)/2 c(x) = 49(x2 + 5x + 7)/3
y(x) = (x5 + 5x4 + 38x + 120)/35 y(x) = (5x4 + 14x3 + 94x + 259)/21

u = 24, 45 mod 70 u = 14 mod 21

of BLS12-381. The authors obtain an embedded curve using the Complex Multiplication
method of Section 2.2. In [MSZ24], Algorithm 1 iterates on various discriminants and
computes the Hilbert Class polynomials in order to compute the order of the curves. Using
their technique, they are able to derive an elliptic curve embedded above BLS12-381, with
almost optimal structure.

2.5.1 Parameters.

The Bandersnatch curve is defined over Fq where q is the large prime factor of the order of
BLS12-381. Its j-invariant is 8000, and [MSZ24] provides a representation of the curve in
Weierstrass model with the equation y2 = x3−3763200000x−78675968000000. In practice,
other representations are usually preferred [CS18] for a more efficient elliptic curve group law.
For Bandersnatch, we obtain an isomorphic curve with the equation y2 = x3 +5x+ b where
b is 0x6a8d275fe8126c2c0022c15e1f181e282fb81761827fdf4ccdf7834600226d91.

2.5.2 Endomorphism.

The curve has endomorphism ring Z[
√
−2], i.e. a fundamental discriminant −D = −8, and

the endomorphism of multiplication by
√
−2 can be computed efficiently. This enables

faster scalar multiplications than on Jubjub [ZCa21], also defined over the scalar field of
BLS12-381, but with a larger discriminant (as it was obtained with SEA point counting).

2.5.3 Security.

The curve has order 4r, where r is prime. This lets us represent the curve in the Montgomery
model, and avoids subgroup attacks with appropriate strategies such as Decaf [Ham15] or
Ristretto [Val21]. The quadratic twist has order 27 · 33 · r′

244 for a prime r′
244 of 244 bits.

This avoids twist subgroup attacks [BL24, Section 9].
It seems unlikely to have all these conditions at a time for one curve, given the base

field Fq (tiny D, order of the form 4r with r prime, twist-security). In Section 3.3.3, we
provide arguments for showing that there is no polynomial structure on Bandersnatch
parameters (except q = q(u) of Table 2). Moreover, we explain the scarcity of such curves
and prove that although it was lucky to find one with a small discriminant −D = −8, we
are able to find another one with the same properties on its order and twist order, for a
larger discriminant, as expected.

Originally, [MSZ24, Algorithm 1] searches for secure embedded curves by computing
the candidate curve orders using the Hilbert class polynomial. This computation become
cumbersome as long as D increases. We adapt the original algorithm into Algorithm 1 in
order to obtain a faster search in Section 3. Our algorithm produces the same output as
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in [MSZ24, Table 2], but the computation is much faster and thus we can consider much
larger discriminants.

3 Generation of embedded curves for a variable dis-
criminant

3.1 The problem
In this section, we consider a fixed elliptic curve defined over a prime field, and we look
for an embedding above or under this curve. More precisely, we consider two cases where
a curve is fixed and we look for an embedded curve above it, and one case where we look
for a curve under the fixed curve.

3.1.1 Prime order embedded curve above a given curve.

Given an elliptic curve E defined over Fp of composite order hq where q is prime, find an
embedded curve E1 of prime order r defined over Fq. From Remark 1, this automatically
leads to a 2-cycle with E1 and another curve E2 (defined over Fr of order q), if the
discriminant is small enough. We provide in Section 3.3.1 an example when E is the
pairing-friendly curve BLS12-381.

E/Fp

of order h · q with prime q
reference curve

E1/Fq

of prime order r
embedded curve

3.1.2 Prime order curve below a given curve.

We also consider the case where E1, defined over Fq and of order 4r for a prime r, is fixed.
In this case, we look for a curve E defined over a prime field Fp of order q. Again, this
produces a 2-cycle with E as we will see in the example of Section 3.3.2, where we consider
Ed255-19 for E1.

E/Fp

of prime order q
below E1

E1/Fq

of order 4r with prime r
reference curve

3.1.3 Composite order embedded curve above a composite order curve.

When E is defined over Fp and has a composite order, it is not possible to obtain a 2-cycle,
and so in this context, we look for a curve E1 of order 4r where r is prime, above E.
Bandersnatch falls in this setting. We provide in Section 3.3.3 a curve embedded above
BLS12-381, with similar security features as Bandersnatch, but a larger discriminant. This
lets us understand better the scarcity of Bandersnatch.

E/Fp

of order h · q with prime q
reference curve

E1/Fq

of order 4r with prime r
embedded curve

In order to generate these embeddings, we start with the idea of [MSZ24, SEH24], and
we modify the original algorithm in Section 3.2 in order to improve the exhaustive search
of curves.
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3.2 The method
Given a prime q, we consider the Complex Multiplication method. In other words, we look
for a discriminant −D such that there exists an elliptic curve whose endomorphism ring is
an order of discriminant −D. From the CM theory, the elliptic curve trace t will satisfy
t2 − 4q = −Dy2 for an integer y. We find it interesting to remember that solving a CM
equation was needed in the 90’s for the ECPP algorithm [AM93, §8.4.2]. We solve this
equation using Theorem 2. We find the corresponding element π using lattice reduction.
Indeed, an algebraic integer of norm q is a generator of the ideal of norm q, and is a
shortest non-zero element (in terms of coefficient size) of that ideal. A generator may
not exist when the ring OK is not principal. Using Cohen’s notation, this ideal can be
represented by I = Z⟨q, X − s⟩, where X − s ∈ Fq[X] is a factor of X2 + d mod q when
d ̸≡ 3 mod 4, of X2−X + d+1

4 mod q when d ≡ 3 mod 4. We look for the shortest element
of I by reducing the lattice defined by I. When an element of norm q exists, we deduce
t, y as we did in the proof of Theorem 2. Finally, we use the Hilbert class polynomial
computation modulo q in order to get the j-invariant and curve coefficients. Our method
is summarized in Algorithm 1.

Algorithm 1: EmbeddedCurve(q, dmin, dmax)
Input: prime integer q, minimum and maximum values of d > 0
Output: A list of traces and discriminants of embedded elliptic curves for Fq

L ← {}
for d from dmin to dmax do

if d is square-free and −d is a square modulo q then

s←

{√
−d mod q d ̸≡ 3 mod 4

1+
√

−d
2 mod q d ≡ 3 mod 4

lift s in Z
π ← a + bX the shortest non-zero element of the lattice Z⟨q, X − s⟩
if π has norm q then

(t, y)←
{

(2a, b) if d ≡ 3 mod 4
(2a + b, b) otherwise

L ← L ∪ {(d, t, y)}
return L

While the order of the embedded curve is known (it is q + 1− t), we need to compute
the Hilbert class polynomial modulo q in order to get the actual curve coefficients, and
this is way much slower (and resource-consuming) than finding (t, y). This computation is
possible only up to discriminants of a dozen of digits [Sut11]. We remark that for D ̸≡ 3
mod 4, the resulting curves have even trace and so the order of the curve is always even.
Additional conditions on the obtained order (for instance on its factorization) can be
included in Algorithm 1 in order to refine the search for specific curves. In Sections 3.3.1
and 3.3.2, we apply Algorithm 1 for two base fields corresponding to practical use-cases of
zero-knowledge proofs.

3.3 Practical results
In this section, we consider three use-case related to elliptic curves used in practice. First,
we look for an embedded plain cycle above BLS12-381. Then, we consider a similar case
with Ed255-19. Finally, we look for an embedded curve with the same properties as
Bandersnatch in order to understand better its scarcity.
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3.3.1 Embedded plain cycle above BLS12-381.

In this section, we look for a plain 2-cycle above BLS12-381, as depicted in Figure 2. From
Remark 2, we need D ≡ 3 mod 4 in order to get a prime order curve. From Remark 1,
we know that a 2-cycle automatically exists. We observe that such a setting may become
needed in future settings [NPR24].

BLS12-381
over Fp

subgroup of
prime order q

elliptic curve
E1(Fq)

of prime order r

elliptic curve
E0(Fr)

of prime order q

embedded
curve

plain
cycle

Figure 2: Plain cycle above BLS12-381.

In order to get this curve, we consider various discriminants in the range 1− 108, with
the condition D ≡ 3 mod 4. Using the method of Algorithm 1, we expect to find a prime
order curve after ln(q) ≈ 177 discriminants. After a few hours of computation on one
core of an Intel i7-1365U, we obtain the following parameters for a cycle of curves above
BLS12-381. We enumerated the roots j of H−D(X) mod q until choosing a = −3 was
possible.

We obtain a plain cycle of elliptic curves for D = 6673027. The curve E1/Fq : y2 =
x3 + bq (resp. E0/Fr : y2 = x3 − 3x + br) is defined over Fq (resp. Fr) and has order r
(resp. q). By default, the curves are subgroup secure because they are prime order curves.
While E1 is also twist-secure (its quadratic twist order is 32 · 192 · 953 · r234 where r234
is a prime of 234 bits), E0 does not fulfill this requirement, and the largest factor of the
order of the quadratic twist of E0 is 176-bit long. The parameters q, r, bq and br are the
followings:

q : 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001,
r : 0x73eda753299d7d483339d80809a1d80496b5714d26546fcc43d6b3e6dd7e79ed,
bq : 0x181db5d04907341a0a65de398d54bad311b5cf755ded77e2b1e865971c5d3bd4,
br : 0x4c4e0682a1ae35f11ce41de53abb7e6cb6f90abc7280629d0fed4785715a4468.

We mention that while these curves are obtained using the CM method, the corresponding
endomorphism might be expensive to compute. Thus, the GLV acceleration, at the origin
of [MSZ24], would probably not apply and scalar multiplications would probably be slower
than on Bandersnatch. The rational functions defining the endomorphism have degree
o(D), and the endomorphism might be defined over an extension of Fq. This computation
can be fastened by decomposing the endomorphism as a chain of smaller degree isogenies.
Still, this computation would require a lot of computation, and the GLV technique would
not improve the scalar multiplication.

In many proof systems, the Fast Fourier Transform is used in order to improve the
efficiency of the polynomial multiplications. This requires additional conditions on the
fields Fq and Fr. More precisely, implementations usually require 232-th roots of unity
defined over these two fields. This property, available for instance in [Hop20b], adds an
additional condition on q and r: q − 1 and r − 1 must be divisible by 232. While q is
fixed in our context (and 232 divides q − 1), this condition on r happens with probability
2−32. In order to obtain a prime order curve with this 2-adicity condition, we would
iterate on larger discriminant (try roughly 232 times more discriminants congruent to
3 mod 4). We would obtain a curve with a discriminant of more than twelve digits,
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reaching the records of Hilbert class polynomial computation. We did not investigate
further this computation, as it is very cumbersome. Moreover, this condition on 2-adicity
might be avoided using [BCKL22], a novel technique for computing on-circuit polynomial
multiplications. In this case, the 2-adicity condition on r is not required.

3.3.2 Embedded plain cycle above Ed255-19.

Another interesting application is related to the standardized Ed25519 curve. We use
Algorithm 1 in a similar way to Section 3.3.1, in order to generate a prime order elliptic
curve whose scalar field is F2255−19, the base field of Ed25519, as depicted in Figure 3. As
in Section 3.3.1, we obtain by construction a 2-cycle because E1(Fp) = 2255 − 19 is prime.

Ed255-19
over Fq

of order 8r

elliptic curve
E1(Fp)

of prime order q

elliptic curve
E0(Fq)

of prime order p

embedded
curve

plain
cycle

Figure 3: Plain cycle under Ed255-19.

We scan the square-free discriminants D ≡ 3 mod 4 in the range 1− 1010. After a day
of computation, we obtain an elliptic curve for D = −65012179. The discriminant is larger
than in the case of Section 3.3.1. We were able to compute the Hilbert class polynomial in
a few seconds using PARI-GP. The curve coefficients were deduced by finding the roots of
the polynomial, following the method of Section 2.2. Finally, the two curves of the cycles
are E1/Fp : y2 = x3 − 3x + bp (of order q) and E0 : Fq : y2 = x3 − 3x + bq (of order p).
The coefficients defining the curves are:

p : 0x7fffffffffffffffffffffffffffffff34a2208109393ca351aa6d362f601a5f,
q : 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed,
bp : 0x1d426f89bb7e48f1cc1a5ec1b850994254b762353cab0b1a0bca0ea8d50ad73c,
bq : 0x475335deba31abe6a6e06ea61b48032598e7920645cdb8f81f2444aaa8cb0345.

Note that E1 is also twist secure. More precisely, the order of its quadratic twist is prime.
E2 is also twist secure in the sense that its quadratic twist has a prime factor of 215
bits. While this curve has nice security features (prime order curve, and twist security), it
has the same issue as in Section 3.3.1: the fields Fq and Fp do not allow fast polynomial
multiplications (p− 1, q − 1 do not have large 2-valuation). We did not investigate further
this additional property as it requires a much larger discriminant. As well as for the
embedded cycle above BLS12-381, the endomorphism is expensive to compute and so
the GLV technique cannot be applied for fast scalar multiplications. As mentioned in
Section 3.3.1, for this size of discriminant, the endomorphism degree is too large, and
evaluating this endomorphism requires too many operations. However, we stress that
without the CM method with a manageable-size discriminant, it would not be possible to
obtain the curve parameters of the second cycle curve E0.

3.3.3 Scarcity of subgroup-secure twist-secure embedded curves.

In this section, we investigate the scarcity of Bandersnatch. As we have seen in Section 2.5,
Bandersnatch has several properties related to security and efficiency. In this section, we
prove that finding such a curve was unlikely because it has a very small discriminant,
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allowing fast scalar multiplications. However, we also show that it is just a matter of few
hours of computation in order to get a similar curve (with a larger discriminant). This
result is also showing that Bandersnatch is not too good to be true. This expression was
used to qualify the BN curves by Menezes in 2007, and then Aranha in 2017: “These
curves should not exist, they are too good to be true”. Later when Costello and Longa
came with the FourQ curve, again it was said to be a too good to be true curve. FourQ was
lucky to have a tiny discriminant for a chosen base field over the Mersenne prime 2127 − 1.

Bandersnatch has a fast endomorphism
√
−2 that enables fast scalar multiplications.

While this endomorphism was targeted by the authors of [MSZ24], it avoids any polynomial
structure on the parameters of the curve. As we will see in Section 4, we can represent the
parameters of the embedded curve as polynomials of Q[X], evaluated at the seed u only
when −D is a square in Q[X]/(q(X)). In the case of Bandersnatch, −2 is not a square,
meaning that there is no hidden structure as one variable polynomial representation.

While Bandersnatch was found for a small discriminant, it has also good security
features: the order has a subgroup of 254-bit order, and its quadratic twist has also a
subgroup of 253-bit order. This provides a good subgroup and twist security. Meeting these
two conditions happens with probability 1/ log(q)2 ≈ 2−14, which is quite small. Note that
this rough probability estimation does not take into account the fact that discriminants
might not lead to solution of the norm equation in Theorem 2. Estimating this probability
depends on the discriminant, more precisely on the genera number g(−D) and the class
number h(−D). We refer to [AM93] for further details. More precisely, [Mor06, §2,§3.7]
(FastECPP) recalls that the probability that a prime q splits in the Hilbert class field KH

of discriminant −D is 1/(2h(−D)) where h(−D) denotes the class number. To increase the
probability, the strategy of ECPP and FastECPP is to select a subset of small primes di

and combine them to form smooth discriminants. We do not go further in this direction as
we were not limited by the class number (a basic iteration over discriminants of increasing
magnitude was enough). However for finding a twist-secure embedded curve with high
2-adicity, it can become useful to apply this strategy. In conclusion, given a prime q, finding
an embedded curve with the CM method seems not harder than finding an appropriate
curve for the ECPP method, that does work well in practice, so we again stress that finding
CM embedded curves is not a surprise. In addition, ECPP works for very large primes
such as 2000 decimal digits, while here q is only 256 bits long.

With the technique presented in Section 3, we are able to iterate on many discriminants
until we find an embedded curve. We obtain a curve similar to Bandersnatch with a larger
discriminant D = 4 · 1030258. The curve is E1 : Fq : y2 − 3x + b and has order 4r and
its quadratic twist has order 23 · 7 · r′

250 where r′
250 is a prime number of 250 bits. The

coefficients of the curve are the following:

q : 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001,
r : 0x1cfb69d4ca675f520cce7602026876011d928688cbe65dba241d31a34658145b,
b : 0x284504e3feb2feda870885babe7e63bb3a55276335d818514a9313120e044ae9.

BLS12-381
over Fp

subgroup of
prime order q

Bandersnatch curve over Fq,
Order 4r, quad. twist order 27 · 33 · r′

244,
Discriminant −D = −4 · 2.

New embedded curve over Fq,
Order 4r, quad. twist order 23 · 7 · r′

250,
Discriminant −D = −4 · 1030258.

Embedded curves

Figure 4: Two secure embedded curves above BLS12-381.
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In this context, the FFT condition is not really an issue, as we are not considering
a 2-cycle of curves, but simply an embedded curve as in the case of Bandersnatch. The
existence of such a curve provides some evidence that while Bandersnatch is a “lucky”
curve, the properties on its order and the quadratic twist order were possible to achieve at
the cost of a slower endomorphism. In practice, Bandersnatch is of course preferred, for
its fast scalar multiplications.

4 Families of embedded curves for a fixed discriminant
4.1 Previous works
4.1.1 Embedded families for BLS12.

In [SEH24], Sanso and El Housni introduce a technique to obtain families of endomorphism-
equipped embedded curves with BLS. They apply the technique to BLS12 and BLS24.
They observe that the scalar field of BLS12 curves q(u) = u4 − u2 + 1 can be written in
the form q(u) = (t2

e + 3y2
e)/4 = ((2u2 − 1)2 + 3(1)2)/4 to generate an embedded curve

family with −D = −3, and q(u) = (t2
e + 4y2

e)/4 = ((2u)2 + 4(1− u2)2)/4 to generate an
embedded curve family with −D = −4. Observe that these two equations allow to solve
the norm equation of Section 2.3.

We rephrase Sanso and El Housni procedure as Algorithm 2. The output for BLS12 is
Table 4 for embedded curves with j-invariant 0 (−D = −3). Two families can produce
prime-order embedded curves. For −D = −4, Sanso and El Housni procedure will
output Table 5. curves with j-invariant 1728 cannot have prime order as they always
have at least one point of order two and an even order. One can note that the order is
u4 − 3u2 + 4 = u2(u2 − 1)− 2u2 + 4 which is always even whenever the parity of u.

Algorithm 2: Generating prime-order endomorphism-equipped embedded curves with
BLS or KSS [SEH24]
Input: parameterized pairing-friendly curve order q(u) that generates primes,

discriminant −D for the embedded curve
Output: Embedded curve families of discriminant −D or ⊥
if −D is a square in Q[x]/(q(x)) then

W (x)←
√
−D mod q(x)

(t(x), y(x))← half-gcd(W (x), q(x))
if t(x)2 + Dy(x)2 = 4q(x) then

for te(x) in the set of traces of twisted curves with respect to t(x) do
qe(x)← q(x) + 1− te(x)
if qe(u) is irreducible then

Append (te, ye, qe) to the list of families
return the list of families

return ⊥

4.1.2 Finding a square root of −D modulo q(x) in Algorithm 2.

Looking at Algorithm 2, there are two steps that can fail. The first is testing if −D is a
square in Q(x)/(q(x)). We note that it is a much stronger condition than asking for −D
being a square modulo a prime integer q = q(u) for some seed u. For example, −D = −2
is not a square modulo q(x) = Φ12(x) = x4 − x2 + 1 however is it a square modulo q(u0)
where u0 = −0xd201000000010000 = −(263 + 262 + 260 + 257 + 248 + 216) is the seed of the
BLS12-381 curve. Considering the Legendre symbol and the law of quadratic reciprocity,
−2 is a square modulo a prime q if and only if q = ±1 mod 8. Back to the polynomial form
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Table 4: Embedded curve families above BLS12 with q(x) = x4 − x2 + 1 and −D = −3.
A first pair is (te, ye) = (2x2 − 1, 1) and the other pairs are for the quadratic, cubic and
sextic twists. The fourth one’s order q + 1− te = x4 − 2x2 + 4 is not prime but can give
three times a prime (when evaluated at a seed u = 1 mod 3).

(te, ye) s.t. q = (t2
e + 3y2

e)/4 q + 1− te family
t, y 2x2 − 1, 1 x4 − 3x2 + 3 yes
−t, y −2x2 + 1, 1 (x2 − x + 1)(x2 + x + 1) no

(t + 3y)/2, (t− y)/2 x2 + 1, x2 − 1 (x− 1)2(x + 1)2 no
(t− 3y)/2, (t + y)/2 x2 − 2, x2 x4 − 2x2 + 4 (yes)
−(t− 3y)/2, (t + y)/2 −x2 + 2, x2 x4 no
−(t + 3y)/2, (t− y)/2 −x2 − 1, x2 − 1 x4 + 3 yes

Table 5: Embedded curve families above BLS12 with q(x) = x4 − x2 + 1 and −D = −4.
A first pair is (t, y) = (2x2 − 2, x) and the other pairs are for the quadratic and quartic
twists. The first one’s order q + 1− te is not prime but can give two times a prime.

(te, ye) s.t. q = (t2
e + 4y2

e)/4 q + 1− te family
t, y 2x2 − 2, x x4 − 3x2 + 4 (yes)
−t, y −2x2 + 2, x x4 + x2 = x2(x2 + 1) no

2y, t/2 2x, x2 − 1 x4 − x2 − 2x + 2 = (x− 1)2(x2 + 2x + 2) no
−2y, t/2 −2x, x2 − 1 x4 − x2 + 2x + 2 = (x + 1)2(x2 − 2x + 2) no

of q(x), we deduce that q(u) ≡ 1 mod 4 for any u, and q(u) ≡ 1 mod 8 ⇐⇒ u ̸≡ 2 mod 4.
However, this does not make a family. To design a family of embedded curves with
−D = −2 for BLS12 curves, one example could be to write q(x2) = x8−x4 +1 (replace the
variable x by x2 everywhere i.e. assume the seed is a square) then apply Algorithm 2 with√
−2 ≡ x5 + x3 − x mod q(x), a half-gcd gives directly q(x) = (x4 − x2 + 1)2 + 2(x3 − x),

and (t, y) = (2(x4 − x2 + 1), 2(x3 − x)).

4.1.3 Solving for polynomials (t(x), y(x)) in the norm equation q(x) = (t(x)2 +
Dy(x)2)/4.

Sanso and El Housni suggest to compute a half-gcd of q(x) and W (x) to obtain candidates
for t(x), y(x) such that their degree is at most half the degree of q(x). We recall that
this strategy is well-known for example in cryptanalysis, in the descent step of a discrete
logarithm computation. The first occurrence of this technique (applied to polynomials) is
for the initial splitting step of discrete logarithm computation in GF(2n) and dates back
to 1984. It is known under the name Waterloo algorithm from the University of Waterloo,
ON, Canada, where the authors are from [BFHMV84, BMV84]. The idea is to express
the target (a polynomial in F2[x] of even degree n − 1) as the ratio of two polynomials
of degree (n − 1)/2, modulo an irreducible polynomial of odd degree n. The aim is to
increase the smoothness probability.

In the present case q has usually an even degree, and a half-gcd algorithm on inputs
(q(x), W (x)) with deg q > deg W outputs three polynomials I(x), U(x), V (x) such that
I(x)q(x) = U(x) − V (x)W (x) with usually deg(I) = 1, deg U, deg V ≤ deg q/2. Luckily
for BLS and BN, I = 1 and the equation t2 + Dy2 = 4q is solved, with t = 2U and y = 2V .
But for KSS18 for example, W = 2x3 + 37, U = 3, V = −2x3 − 37, I = 1372.
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4.2 Our Generic Method
4.2.1 A particular case: embedded curves above KSS18.

Building on Algorithm 2, Sanso and El Housni looked at KSS18 curves. The difficulty
comes from finding a generic formula to express the parameterized KSS18 order q =
(x6 + 37x3 + 343)/343 as a sum of two squares q(x) = (t2(x) + Dy2(x))/4. From Section 2,
we can write

q(u) = (t2 + 3y2)/4 = ((t + y)/2)2 − y(t + y)/2 + y2 = a2
0 − a0a1 + a2

1 (2)

and deduce that (a0, a1) = ((t + y)/2, y). In other words, (t, y) = (2a0 − a1, a1). Then we
recognize that (2) is exactly the formula of Dai, Lin, Zhao, and Zhou [DLZZ23, Remark 4]
for G1 subgroup membership testing. Then we deduce that the formula Sanso and El
Housni were looking for is

(a0, a1) = ((x/7)3,−18(x/7)3 − 1) ⇐⇒ (t, y) = (20(x/7)3 + 1,−18(x/7)3 − 1) . (3)

We deduce Algorithm 3 and run it to obtain the prime-order endomorphism-equipped
embedded curves with KSS18 (Fig. 8).

Algorithm 3: Generating prime-order endomorphism-equipped embedded curve families
with KSS18 and −D = −3
q(x)← (x6 − 37x3 + 343)/343, a KSS18 curve order
(t(x), y(x))← (20(x/7)3 + 1,−18(x/7)3 − 1)
for (te(x), ye(x)) in the set of 6 twist parameters of (t(x), y(x)) do

qe(x)← q + 1− te

if qe(x) is irreducible then
Append (te, ye, qe) to the list of families

return the list of families

Table 6: Embedded curves above KSS18, −D = −3. A first pair is (t, y) = (20(x/7)3 +
1,−18(x/7)3 − 1) and the other pairs are for the quadratic, cubic and sextic twists. The
first and fifth one’s order qe = q + 1− te are irreducible but multiple of 3.

(te, ye) s.t. q = (t2
e + 3y2

e)/4 qe = q + 1− te family
t, y 20(x/7)3 + 1,−18(x/7)3 − 1 (x6 + 17x3 + 343)/343 (yes, 3)
−t, y −20(x/7)3 − 1,−18(x/7)3 − 1 (x6 + 57x3 + 1029)/343 yes

(t + 3y)/2, (t− y)/2 −17(x/7)3 − 1, 19(x/7)3 + 1 (x6 + 54x3 + 1029)/343 yes
(t− 3y)/2, (t + y)/2 37(x/7)3 + 2, (x/7)3 x6/73 no
−(t− 3y)/2, (t + y)/2 −37(x/7)3 − 2, (x/7)3 (x6 + 74x3 + 1372)/343 (yes, 3)
−(t + 3y)/2, (t− y)/2 17(x/7)3 + 1, 19(x/7)3 + 1 (x2 − 4x + 7)(x2 − x + 7)(x2 + 5x + 7)/343 no

To conclude we mention the halographs project of Daira Hopwood at [Hop20a], who
already in 2020 obtained the formulas of prime-order j-invariant 0 embedded curves forming
a plain cycle for BLS12 and KSS18. A careful look at the SageMath source code shows
that it uses the same formulas as [SEH24] for BLS12. For KSS18, the change of variables
x 7→ 7x allowed to obtain the formulas, avoiding the denominator issue that Sanso and El
Housni faced.

4.2.2 Our general solution.

We stick together different pieces that come from the literature about elliptic curves and
cryptography. In particular, we will explain the link with Smith technique [Smi15] and
Dai, Lin, Zhao, and Zhou work [DLZZ23].
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Dai, Lin, Zhao, and Zhou work over the integer values of the curve parameters. Their
aim is to obtain an optimal formula for G1 subgroup membership testing that is, given
a point P on E(Fp), check that [q]P = O without computing the full and costly scalar
multiplication by q. For that, the endomorphism ϕ on the curve of characteristic polynomial
χϕ is used. This technique is known as the GLV method [GLV01]. The endomorphism ϕ has
eigenvalue λϕ mod q. A Gaussian reduction gives two shorter scalars a0 + a1λϕ ≡ 0 mod q
however, as pointed out by Dai, Lin, Zhao, and Zhou, [a0]P + [a1]ϕ(P ) might actually
compute a small multiple [sq]P instead of [q]P and the test is not valid if s is not coprime
to the curve cofactor. The authors of [DLZZ23] develop a criterion to test whether the
short scalars (a0, a1) give a valid subgroup membership test. They propose an algorithm
and a Magma implementation to compute the short scalars that pass the test.

We then observe that we face a very similar problem: with an elementary change of
variables, finding (t, y) to define embedded curves correspond to finding the short scalars
(a0, a1) to design a valid and optimal G1 subgroup membership testing. However as we are
interested in defining families of embedded curves, we are interested in finding the scalars
generically, parameterized by polynomials. For that we exploit Smith technique that dates
back to an AGCT workshop at CIRM in Marseille Luminy in 2015 [Smi15].

We present our technique based on Smith idea for KSS16 and KSS18 curves. The
general strategy follows the same procedure for other pairing-friendly curves. For these
two curves the output is exactly what Dai, Lin, Zhao, and Zhou found with a Gaussian
reduction on integers (Table 7).

Table 7: From [DLZZ23, Table 4], with q = (x8 + 48x4 + 625)/61250 for KSS16, q =
(x6 + 37x3 + 343)/343 for KSS18.

Curve −D χϕ λ mod q short vector (a0, a1) criterion
KSS16 −4 X2 + 1

√
−1 = (x4 + 24)/7 ((31x4 + 625)/8750,−(17x4 + 625)/8750) a2

0 + a2
1 = q

KSS18 −3 X2 + X + 1 (−1 +
√
−3)/2 = x3 + 18 ((x/7)3,−18(x/7)3 − 1) a2

0 − a0a1 + a2
1 = q

4.2.3 Smith technique.

Smith [Smi15] is interested in computing a ready-made short basis of the lattice whose
long basis is given by the following b⃗i, where λϕi stands for the eigenvalue of the i-th
endomorphism ϕi on the curve E.

b⃗1 = (q, 0, . . . , 0)
b⃗2 = (−λϕ2 , 1, 0, . . . , 0)
b⃗3 = (−λϕ3 , 0, 1, 0, . . . , 0)

...
b⃗d = (−λϕd

, 0, . . . , 0, 1)

In our case, there are two endomorphisms, ϕ1 = Id and ϕ2 = ϕ, of characteristic polynomial
χ(T ) = T 2 − tϕT + nϕ. We recall [Smi15, Theorem 2].

Theorem 3 ([Smi15, Th. 2]). Let ϕ be a non-integer endomorphism of E such that
Z[π] ⊂ Z[ϕ], so π = cϕ + b for some integers c and b. Suppose that we are in the situation
of §1 with A = E and (ϕ1, ϕ2) = (1, ϕ). The vectors

b⃗1 = (b− 1, c) and b⃗2 = (c deg(ϕ) + (b− 1)tϕ, 1− b)

generate a sublattice of L of determinant #E(Fp). If G = E(Fp), then L = ⟨⃗b1, b⃗2⟩.

In [Smi15, Sect. 4], Smith provides a way for reducing the basis (⃗b1, b⃗2) in case of small
co-factors h = 2 for example, and provides a general framework for the technique.
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We clarify that Smith’s technique starts from the curve endomorphism and the curve
coefficients and defines the basis in a context where the curve is of prime order. In our
case, we know the pairing-friendly curve coefficients and we are looking for the embedded
curve coefficients.

Another point of view is to look for a generator of a principal ideal in Q(
√
−D) of

norm q. It will be of the form τ = cω + b. But again as we are working with parameters in
polynomial form, we follow Smith technique.

We consider the pairing-friendly curve parameters (p, t, q, y) where p defines the field
characteristic, t the curve trace, q the prime order of the subgroup of embedding degree k,
and y such that t2 − 4p = −Dy2 with square-free D. We compute

√
−D modulo q(x) in

polynomial form. Actually #E(Fp) = cq = ((t−2)2+Dy2)/4 so
√
−D = (t−2)/y mod q(x).

Inverting y(x) is done with an extended Euclidean algorithm on q(x), y(x). Then we run a
half-gcd algorithm to obtain

√
−D ≡ U(x)/V (x) of reduced degrees and U, V coprime. At

this point we introduce Smith basis reduction technique. The first vector of the basis is
b⃗1 = (U(x),−V (x)). We need to complete the basis: the second vector is (DV (x),−U(X)).
Observe that the determinant of

B =
[

U(x) −V (x)
DV (x) −U(x)

]
is det(B) = U2(x)+DV 2(x) and is a multiple of q(x). For each factor ℓ of the determinant,
we reduce the basis. It consists in finding a left kernel of B in Z/ℓZ. At the end of this
process we expect to obtain a reduced basis whose determinant is exactly q(x).

For D = 3 mod 4 and characteristic polynomial χ = X2 − tϕX + degϕ of discriminant
t2
ϕ − 4 degϕ = −D with tϕ = −1 and degϕ = (D + 1)/4, a variant can be used (to avoid

a factor 4). Compute (tϕ +
√
−D)/2 = λ as U(x)/V (x) modulo q(x). The first vector is

(U(x),−V (x)). Multiply U(x)− V (x)λ by the negative of the conjugate root λ− tϕ and
observe that −λ(λ− tϕ) = degϕ: one obtains U(x)λ− U(x)tϕ + degϕ V (x). The second
vector is (−tϕU(x) + deg ϕV (x), U(X)) so that

B =
[

U(x) −V (x)
−tϕU(x) + degϕ V (x) U(x)

]
and the determinant of the basis matrix B is U2(x) − tϕU(x)V (x) + deg ϕV 2(x). Once
the matrix is reduced of determinant exactly q, we obtain the embedded curve coefficients
from the formulas (2).

4.3 Practical results
4.3.1 Application to KSS18.

A curve like KSS18 with j-invariant 0 has complex multiplication (CM) by Z[(−1+
√
−3)/2].

The Frobenius is π = (−t + y
√
−3)/2 so that ππ = (t2 + 3y2)/4. For the embedded

curve parameters we are looking for (te, ye) such that (t2
e + 3y2

e)/4 = q. We denote
τ = (te + ye

√
−3)/4. The endomorphism ϕ on KSS18 has characteristic polynomial

χ = X2 + X + 1 and its eigenvalue is λϕ = (−1 +
√
−3)/2. We obtain λ = x3 + 18, already

of degree deg q/2. No half-gcd is required. The first basis vector is b⃗1 = (x3 + 18,−1) and
a second vector can be b⃗2 = (1, x3 + 19). We define the basis[

λ −1
deg ϕ λ + 1

]
=

[
x3 + 18 −1

1 x3 + 19

]
whose determinant is 343q(x) = 73 · q. The aim is to reduce this basis by a factor 73. We
are looking for a linear combination

(i⃗b1 + jb⃗2)/343 = ((j + 18i + i · x3)/343, (19j − i + j · x3)/343)
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such that the denominator 343 will simplify and the coefficients will be integers. Note that
x ≡ 14 mod 21 hence 7 | x, 343 | x3 and we are looking for i, j ∈ Z/343Z satisfying

j + 18i ≡ 0 mod 343 ⇐⇒ 19j − i = 0 mod 343 indeed 1/18 = −19 mod 343 .

We have a degree of freedom on j as i = 19j mod 343. We test all 1 ≤ j < 343, and keep
the pairs such that b⃗i,j = (i⃗b1 + jb⃗2)/343 = (a0, a1) satisfies a2

0 + a0a1 + a2
1 = q (with

exactly q, not a multiple). Finally we obtain a solution whose coefficients are integer-valued
assuming x ≡ 14 mod 21 like for KSS18 curves.

(i, j) = (19, 1)

b⃗ = (19⃗b1 + b⃗2)/343 = ((1 + 19λ)/73, (λ + 1)− 19)
= (19(x/7)3 + 1, (x/7)3) .

The pair (a0, a1) = (19(x/7)3 + 1, (x/7)3) corresponds to a twist of the embedded curve
given by Dai, Lin, Zhao, and Zhou parameters.

Table 8: Seeds u of Hamming weight ≤ 6 such that the KSS18 curve E/Fp has a high
2-valuation 2L | q − 1 and admits a prime-order embedded curve E1/Fq of j-invariant 0
that has a plain cycle curve E0/Fqe

. All curves have −D = −3.

seed L equation p q embedded curve plain cycle curve
EKSS/Fp (bits) (bits) equation E1/Fq equation E0/Fqe

q = (u6 + 57u3 + 1029)/343
-0xfdde07f8000
−244 + 237 + 233 + 229 − 223 + 215 45 y2 = x3 + 13 348 256 y2 = x3 + 13 y2 = x3 − 4

q = (u6 + 54u3 + 1029)/343
-0xfd7ffdee000
−244 + 237 + 235 + 221 + 216 + 213 39 y2 = x3 + 2 348 256 y2 = x3 + 7 y2 = x3 + 2

4.3.2 Application to KSS16.

For KSS16 curves, the endomorphism has characteristic polynomial χ = X2 + 1. One
obtains, with λϕ = (x4 + 24)/7,

b⃗1 = (1, λϕ) = (1, (x4 + 24)/7), b⃗2 = (λϕ,−1) = ((x4 + 24)/7,−1) .

The determinant of the matrix made of b⃗1, b⃗2 is −1250q(x) and we are looking for a linear
combination to simplify by 1250 = 2 · 54,

(i⃗b1 + jb⃗2)/1250 = (i + j(x4 + 24)/7, i(x4 + 24)/7− j)/1250

such that the denominator 1250 will simplify and the coefficients will be integers. Note
that x ≡ 25, 45 mod 70 hence x ≡ 5 mod 10, 54 | x4. With x = 10x0 + 5 = 5(2x0 + 1)),

(i⃗b1 + jb⃗2) = (i + j(54(2x0 + 1)4 + 24)/7, i(54(2x0 + 1)4 + 24)/7− j)
= (i + j(54 + 24)/7, i(54 + 24)/7− j) mod 1250

and we are looking for i, j ∈ Z/2 · 54Z satisfying

i + (54 + 24)/7j ≡ 0 mod 2 · 54 ⇐⇒ i + 807j ≡ 0 mod 2 · 54 .

(Note that ((54 + 24)/7)2 = −1 mod 2 · 54 so that the two constraints are equivalent). We
have a degree of freedom on j as i = −807j = 443j mod 2 · 54. We test the pairs (i, j)
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and keep those such that (a0, a1) = (i⃗b1 + jb⃗2) satisfies a2
0 + a2

1 = q(x). We obtain integer
valued parameters for x ≡ ±25 mod 70 for KSS16:

(i, j) =(31, 17),

b⃗ =(31⃗b1 + 17⃗b2)/1250 = ((31 + 17λϕ)/1250, (31λϕ − 17)/1250)
=((17(x/5)4 + 1)/14, (31(x/5)4 + 1)/14) . (4)

Algorithm 4: Generating embedded curve families with KSS16 and −D = −4
q(x)← (x8 + 48x4 + 625)/61250, a KSS16 curve order
(t(x), y(x))← ((31(x/5)4 + 1)/7,−(17(x/5)4 + 1)/14)
for (te(x), ye(x)) in the set of 4 twist parameters of (t(x), y(x)) do

qe(x)← q + 1− te

if qe(x) is irreducible then
Append (te, ye, qe) to the list of families

return the list of families

We give in Table 9 the results of Alg. 4 applied to KSS16 parameters.

Table 9: Embedded curves for KSS16, parameters (te, ye) such that q = (t2
e + 4y2

e)/4 with
−D = −4. A first pair is (t, y) = ((31(x/5)4 + 1)/7,−(17(x/5)4 + 1)/14) and the other
pairs are for the quadratic and quartic twists. The polynomials for the orders are all
irreducible but have cofactors 2, 2, 32, and 20.

(te, ye) s.t. q = (t2
e + 4y2

e)/4 qe = q + 1− te family
t, y (31(x/5)4 + 1)/7, (−17(x/5)4 − 1)/14 (x8 − 386x4 + 55 · 17)/61250 (yes, 2)
−t, y (−31(x/5)4 − 1)/7, (−17(x/5)4 − 1)/14 (x8 + 482x4 + 54 · 113)/61250 (yes, 2)

2y, t/2 (−17(x/5)4 − 1)/7, (31(x/5)4 + 1)/14 (x8 + 286x4 + 54 · 113)/61250 (yes, 32)
−2y, t/2 (17(x/5)4 + 1)/7, (31(x/5)4 + 1)/14 (x8 − 190x4 + 55 · 17)/61250 (yes, 20)

Table 10: Seeds u of Hamming weight ≤ 8 such that the KSS16 curve E/Fp admits an
embedded curve E1/Fq of j-invariant 1728 and order h · s with s prime and even h tiny.
All curves have −D = −4.

seed L equation p q embedded curve h
u EKSS/Fp (bits) (bits) equation E1/Fq

q = (u8 − 386u4 + 55 · 17)/61250 (row 1 in Table 9)
0x37effef25 = 45 mod 70
234 − 231 − 224 − 212 − 28 + 25 + 22 + 1 5 y2 = x3 + 25x 329 255 y2 = x3 + 3x

0x36007bf3f = 25 mod 70
234 − 231 − 229 + 219 − 214 − 28 + 26 − 1 4 y2 = x3 + 11x 328 255 y2 = x3 + 3x

(u8 − 190u4 + 55 · 17)/61250 (row 4 in Table 9)
0x3dee0008d = 25 mod 70
234 − 229 − 224 − 221 + 27 + 24 − 22 + 1 6 y2 = x3 + 2x 330 256 y2 = x3 + 3x

4.4 Better seeds of embedded curves with BLS12
In [SEH24], Sanso and El Housni propose the seed 0xb504f33499580000 that generates
a BLS12-380 curve and a prime-order embedded curve. Alternatively we generated the
seeds in Table 11 of Hamming weight up to 6 in signed binary representation.
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Moreover with a larger search space (Hamming weight 7), we were able to obtain seeds
in Table 12 such that the BLS12 curve E admits at the same time a prime-order embedded
curve E1 (with its cycle plain curve E0) and a second embedded curve E2 of order 4 times
a prime (like in the CØCØ construction), see Fig. 5. We think it can be of interest for
interoperability purposes.

Table 11: Seeds u of Hamming weight ≤ 6 such that the BLS12 curve E/Fp has a high
2-valuation 2L | p − 1, 2L | q − 1 and admits a prime-order embedded curve E1/Fq of
j-invariant 0 that has a plain cycle curve E0/Fqe

, and 2L | qe − 1. For 2L | u− 1, u is odd
and the order is necessarily qe = u4 − 3u2 + 3 because q′

e = u4 + 3 is even for odd seeds u.
All curves have −D = −3.

seed L equation p q embedded curve plain cycle curve
EBLS/Fp (bits) (bits) equation E1/Fq equation E0/Fqe

0x9ffc012000000001
263 + 261 − 250 + 240 + 237 + 1 37 y2 = x3 + 1 379 254 y2 = x3 + 7 y2 = x3 + 15

-0xff97ffdfffffffff
−264 + 255 − 253 + 251 + 237 + 1 37 y2 = x3 + 1 383 256 y2 = x3 + 11 y2 = x3 + 7

0x87fbc01000000001
263 + 259 − 250 − 246 + 236 + 1 36 y2 = x3 + 1 377 253 y2 = x3 + 13 y2 = x3 + 11

0x80067fff00000001
263 + 251 − 249 + 247 − 232 + 1 32 y2 = x3 + 1 377 253 y2 = x3 + 15 y2 = x3 + 5

Table 12: Seeds u of Hamming weight 7 such that the BLS12 curve E/Fp has a high
2-valuation, a prime-order embedded curve E1/Fq with a plain cycle curve E0/Fqe

and
a second embedded curve E2/Fq of order u4 + 3 = 4s where s is prime. All curves have
−D = −3.

seed L equation p q embedded curve plain cycle curve
EBLS/Fp (bits) (bits) equation E1,2/Fq equation E0/Fqe

0xffff007fda000001 25 y2 = x3 + 1 383 256 E1 : y2 = x3 + 19 y2 = x3 + 7
264 − 248 + 239 − 229 − 227 + 225 + 1 E2 : y2 = x3 + 17

0xfc3ec00400000001 34 y2 = x3 + 1 383 256 E1 : y2 = x3 + 23 y2 = x3 + 29
264 − 258 + 254 − 248 − 246 + 234 + 1 E2 : y2 = x3 + 29

-0xef000ffefdffffff 25 y2 = x3 + 1 382 256 E1 : y2 = x3 + 11 y2 = x3 + 17
−264 + 260 + 256 − 244 + 232 + 225 + 1 E2 : y2 = x3 + 17

0xdf07fffdfc000001 26 y2 = x3 + 1 382 256 E1 : y2 = x3 + 11 y2 = x3 + 7
264 − 261 − 256 + 251 − 233 − 226 + 1 E2 : y2 = x3 + 23

5 Conclusion
In this paper, we investigate the search of embedding curves in the context of zero-
knowledge proofs. We optimize the algorithm introduced in [MSZ24] using the theory
provided in [AM93] in order to accelerate the search of curves. More precisely, our algorithm
does not compute Hilbert class polynomials, but computes the parameters describing the
curve (up to isomorphism) using imaginary quadratic field results. However, in order to
compute the curve coefficients, the computation of the Hilbert class polynomial (and its
factorization) is still needed, as we follow the Complex Multiplication method.

In a first part, we obtain new embedded elliptic curves using our algorithm, considering
fixed prime fields:

• A prime order elliptic curve embedded above BLS12-381. It leads to a plain cycle
with another curve, enabling recursive ZK proofs.
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BLS12 E/Fp

pairing-friendly
subgroup G1 of
prime order q

elliptic curve
E1(Fq) of

prime order qe

elliptic curve
E0(Fqe

) of
prime order q

elliptic curve
E2(Fq) of

order 4s, s prime

BW E′/FQ

pairing-friendly
subgroup G′

1 of
prime order p

embedded
curve

embedded
curve

plain
cycle

2-chain

Figure 5: Plain embedded cycle and embedded curve above an inner BLS12 curve, and an
outer curve forming a 2-chain.

• An elliptic curve embedded under Ed255-19. This curve is useful in order to prove
arithmetic circuit on the curve Ed255-19. Moreover, it is of prime order, enabling
recursive proofs as in the previous curve.

• An embedded curve above BLS12-381 similar to [MSZ24]. The endomorphism of this
curve is not as fast as in the case of Bandersnatch, but it helps us understand the
sparsity of Bandersnatch (high security and small discriminant). This second curve
fulfills the security requirements of Bandersnatch, for another (larger) discriminant.

Although these curves open new directions for recursive proofs, we mention that in the
context of ZK proofs, high 2-adicity is usually required for the proof generation. We did
not investigate this property as it probably requires a new record of computation for the
Hilbert class polynomial.

In the second part, we consider families of embedded curves. Instead of considering a
field Fq, we consider Q[X]/(q(x)) and our results let us generate embedded curves for a
generic seed u (so that Fq can be defined using q(u)). In particular, we obtain families of
prime-order embedded curves of discriminant 3 that form a family of plain cycles above
BLS12, KSS16 and KSS18 curves.
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