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Abstract

Proof-Carrying Data (PCD) is a foundational tool for ensuring the correctness of incremental dis-
tributed computations that has found numerous applications in theory and practice. The state-of-the-art
PCD constructions are obtained via accumulation or folding schemes. Unfortunately, almost all known
constructions of accumulation schemes rely on homomorphic vector commitments (VCs), which results
in relatively high computational costs and insecurity in the face of quantum adversaries. A recent work
of Bünz, Mishra, Nguyen, and Wang removes the dependence on homomorphic VCs by relying only
on the random oracle model, but introduces a bound on the number of consecutive accumulation steps,
which in turn bounds the depth of the PCD computation graph and greatly affects prover and verifier
efficiency.

In this work, we propose ARC, a novel hash-based accumulation scheme that overcomes this restric-
tion and supports an unbounded number of accumulation steps. The core building block underlying ARC
is a new accumulation scheme for claims about proximity of claimed codewords to the Reed–Solomon
code. Our approach achieves near-optimal efficiency, requiring a small number of Merkle tree openings
relative to the code rate, and avoids the efficiency loss associated with bounded accumulation depth.
Unlike prior work, our scheme is also able to accumulate claims up to list-decoding radius, resulting in
concrete efficiency improvements.

We use this accumulation scheme to construct two distinct accumulation schemes, again relying
solely on random oracles. The first approach accumulates RS proximity claims and can be used as an
almost-drop-in replacement in existing PCD deployments based on IOP-based SNARKs. The second
approach directly constructs an accumulation scheme for rank-1 constraint systems (and more generally
polynomial constraint systems) that is simpler and more efficient than the former and prior approaches.

We introduce the notion of Interactive Oracle Reductions (IORs) to enable a modular and simple
security analysis. These extend prior notions of Reductions of Knowledge to the setting of IOPs.
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1 Introduction

Proof-carrying data (PCD) [CT10] is a powerful tool for proving the correctness of distributed computations
that unfold incrementally. PCD has enabled numerous theoretical and practical applications, such as enforc-
ing language semantics in distributed settings [CTV13], complexity-preserving [BCCT13; BCTV17] and
low-memory [NDCTB24] succinct arguments, verifiable MapReduce computations [CTV15], image prove-
nance [NT16], and consensus protocols and blockchains [Mina; KB20; BMRS20; CCDW20; BCG24].

These applications have motivated numerous constructions of PCD [COS20; BCMS20; BCLMS21;
KST22; BC23; KS24]. The state-of-the-art amongst these approaches relies on accumulation [BCMS20;
BCLMS21] or folding [KST22] schemes. At a high level, these schemes enable a prover to efficiently
accumulate arbitrary NP claims into a running ‘accumulator’, so that verifying the correctness of each
accumulation step can be done cheaply, and furthermore the final accumulator can be checked in time that
is independent of the number of accumulation steps. Prior work [BCMS20; BCLMS21] shows how to
construct PCD from any accumulation scheme for a non-succinct argument (NARK): at each step of the
computation, the PCD prover invokes the accumulation prover to accumulate claims about prior steps, and
then invokes the argument prover to assert that (a) the current step was performed correctly; and (b) prior
claims were accumulated correctly. This PCD construction inherits efficiency and expressivity properties
of the underlying accumulation scheme (and NARK), and recent work has made great progress in this
regard: the latest schemes achieve, among other benefits, simple constructions that are easy to analyze
and implement, low cost for verifying accumulation, and efficient support for claims that use custom gates
[GW19]. Unfortunately, existing schemes also suffer from some key drawbacks which we discuss next,
categorized by how the schemes are constructed.

Accumulation from homomorphic vector commitments. The vast majority of accumulation scheme
constructions [BCLMS21; KST22; BC23; EG23; KS23; KS24] use as a crucial building block homomor-
phic vector commitments. Unfortunately, all known constructions of the latter rely on one of two kinds
of number-theoretic assumptions. The first kind relies on the hardness of the discrete logarithm problem
in prime-order groups. This means that the accumulation prover must perform relatively expensive group
operations, and furthermore leaves the schemes vulnerable to quantum attacks. The second kind attempts
to fix the latter issue by relying on lattice assumptions [BC24; FKNP24], but the resulting accumulation
schemes still incur overhead due to their reliance on number-theoretic assumptions.

Furthermore, both kinds of accumulation schemes cannot take advantage of recent advances in the de-
sign and implementation of SNARKs based on interactive oracle proofs (IOPs) [BCS16], such as the ability
to use small fields [HLP24; Pol; DP23] and reliance on only cryptographic hashes [BCS16].

Accumulation from homomorphism-checkers. To remedy this, a recent work [BMNW24] constructs
hash-based accumulation schemes that avoid public-key assumptions, achieve plausible post-quantum se-
curity, rely on minimal assumptions (just cryptographic hashes), and are able to take advantage of the afore-
mentioned advances in IOP-based SNARKs. Unfortunately, their schemes only support a (small) bounded
number of consecutive accumulation steps, and this in turn forces their PCD scheme to declare an a priori
limit on the depth of the computation graph. Additionally, efficiency of the accumulation prover and verifier
worsens as this bound increases; see Section 1.2 for details.

1.1 Our results

In this work, we bypass the aforementioned limitations by constructing efficient hash-based accumulation
schemes that support unbounded accumulation depth. At a high level, our schemes work by replacing
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homomorphic vector commitments with (non-homomorphic) Merkle tree commitments to Reed–Solomon
encodings of the NP witnesses being accumulated. Making this high level sketch work requires us to develop
a number of new techniques, which we describe next.

New tool: accumulation for Reed–Solomon proximity claims. The key ingredient underlying the fore-
going results is a new accumulation scheme for claims about the proximity of a claimed codeword to the
Reed–Solomon (RS) code. Our construction makes crucial use of tools that were previously developed
for reasoning about properties of Reed–Solomon codes in the context of succinct arguments [BGKS20;
ACFY24], and shows how to adapt these tools to the accumulation setting.1

In terms of efficiency, our accumulation scheme obtains essentially optimal parameters: asymptotically,
for accumulating claims about proximity to the RS code of rate ρ, our scheme requires only 2λ

log(1/ρ) Merkle
tree openings, and we can get rid of the factor of 2 when assuming common conjectures about list-decoding
of RS codes [BBHR18; BGKS20].

In comparison, the accumulation verifier of the prior approach of Bünz et al. [BMNW24], which works
for any code but only supports a bounded accumulation depth d, requires O(dλ) Merkle tree openings;
this is concretely less efficient than our scheme for any non-trivial depth. We are able to avoid this depth
bound because the techniques underlying our scheme are distance-preserving: if the inputs are at most δ-
far from the RS code, then so is the output. In contrast, the approach of Bünz et al. [BMNW24] is not
distance-preserving: the output is only guaranteed to be δ + ϵ-far from the RS code for some parameter ϵ.
Furthermore, unlike the approach of Bünz et al. [BMNW24], our scheme extends to list-decoding radius
1−√ρ, which enables further efficiency improvements.

Reed–Solomon-based accumulation for NP. We leverage the foregoing RS proximity accumulation
scheme to construct two different accumulation schemes for NP that rely solely on random oracles:

• Accumulation for Polynomial IOPs: (Section 6) The first approach relies on the observation that numerous
prior SNARKs can be viewed as reducing checking NP witnesses to checking proximity of codewords to
the Reed–Solomon (RS) code. In more detail, prior work [ACFY24] shows that (the information-theoretic
component of) many IOP-based SNARKs for an NP relation R can be decomposed into three steps: a
polynomial interactive oracle proof (PIOP) [CHMMVW20; BFS20] for R where the verifier checks that
the prover’s messages (which are guaranteed to be low-degree polynomials) satisfy certain identities, a
transformation from these identities to RS proximity claims [KPV19; ACFY24], and a low-degree test
(LDT) that enforces these claims.

We leverage this decomposition to construct an accumulation scheme for R. Our scheme runs the first
two steps (PIOP and transformation to RS proximity claims) like above, but then, instead of enforcing the
proximity claims via the LDT, accumulates them via our accumulation scheme for RS proximity.

• Accumulation for R1CS: (Section 7) Our second approach builds on prior accumulation schemes [BC23;
EG23] which reduce claims about an NP relationR to claims about univariate polynomial identities. Our
construction translates these claims into RS proximity claims and then invokes our accumulation scheme
for the latter. In more detail, the accumulator in our construction now consists of two codewords: one
that corresponds to the RS proximity accumulator and one that contains the accumulated witness to the
polynomial identities. The construction maintains the essentially optimal properties of the underlying
accumulation for proximity claims. The accumulation verifier checks only t = 2λ

log(1/ρ) Merkle path open-
ings per input, and the accumulation is distance-preserving (unlike the scheme of Bünz et al [BMNW24]).

1In fact, one can key view (a part of) our scheme as performing the first round of the recent STIR interactive oracle proof of
proximity [ACFY24], which means that it will always be more efficient than STIR.
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scheme code IVC overhead per step IVC verifier max. IVC length

PIOP + STIR [ACFY24] RS λ( k
log(1/ρ) + log( logn

log(1/ρ) )) λ( k
log(1/ρ) + log( logn

log(1/ρ) )) TMT poly(λ)

[BMNW24] any d · λ
log(2/(1+ρ)) d · n md

this paper (PIOP-based) RS k · λ
log(1/ρ) k · n poly(λ)

this paper (direct) RS λ
log(1/ρ) n poly(λ)

Table 1: Comparison of IVC schemes constructed from PCD over a tree of depth d and arity m. All costs omit
constant factors. All rows except [BMNW24] assume conjectures about proximity-gaps in the list-decoding
radius. IVC overhead per step is measured in number of Merkle tree openings. Above n is the size of the
recursive circuit divided by the code rate ρ, and TMT is the time it takes to verify a Merkle Tree opening over
n-sized vectors. Finally, k denotes the number of oracles queried by the PIOP verifier. The IVC verifier in the
accumulation-based constructions can be outsourced using a SNARK, e.g., using STIR.

The two approaches are useful in different settings. The first approach offers an easy path to improve the
efficiency of existing PCD constructions rely on recursive composition of IOP-based SNARKs: simply
replace the LDT with our RS proximity accumulation scheme. On the other hand, the second approach, by
avoiding PIOPs, is able to attain a design that is simpler and more prover- and verifier- efficient than prior
work, and is hence better for new systems.

New model: interactive oracle reductions. Along the way, we formalize a new notion of interactive
and probabilistic reduction protocols that we call interactive oracle reductions (IORs). Roughly, an IOR
from relationR1 to relationR2 is an interactive protocol between a prover and a verifier that convinces the
verifier that a claimed instance x1 is in R1 if and only if another instance x2 is in R2. IORs can be seen as
the IOP analogues of reductions of knowledge [KP23]. We show how to compile IORs to non-interactive
reductions by adapting the BCS transformation [BCS16].

We show how to interpret accumulation schemes as applying IORs for specific pairs of relations, and this
perspective allows us to construct accumulation schemes in a straightforward manner, and also significantly
simplifies our security proofs.

1.2 Related work

Bounded-depth accumulation. As noted in Section 1, the only prior hash-based accumulation scheme is
that of Bünz et al [BMNW24]. Unlike our work, their scheme supports any (constant-distance) linear code,
including those that enjoy linear-time encoding algorithms [Spi96; DI14; GLSTW23]. However, this benefit
comes with a severe drawback: their scheme only supports a bounded number of consecutive accumulation
steps. In more detail, they construct a family of accumulation schemes that are parameterized by a depth
bound d. This bound affects the choice of the code (larger d requires better code distance), and hence also
prover efficiency (better distance results in worse rate and hence larger Merkle trees) and verifier efficiency
(larger d requires more Merkle tree openings). We also note that the PCD scheme constructed from their
accumulation scheme inherits this depth bound, and, even worse, suffers from a concrete attack once the
depth of the computation graph exceeds the bound.

In contrast, because our scheme does not have a depth bound, we can fix (for each input size) a code
with rate and distance that minimizes prover and verifier costs. For instance, we can arbitrarily choose rate
1/2 to minimize prover costs, or rate 1/4 or even 1/8 to reduce verifier costs. We are also not vulnerable to
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the aforementioned attack.
[BMNW24] also introduce several optimizations for IOP-based-accumulation IVC constructions. These

include batch committing to multiple input accumulators, in order to reduce the number of oracle queries.
These optimization also apply to our constructions.

Accumulation from hardness of discrete logarithms. As noted in Section 1, most existing accumula-
tion schemes [BGH19; BCMS20; BCLMS21; BDFG21; KST22; KS23; BC23; EG23; KS24] rely on the
hardness of computing discrete logarithms over elliptic curve groups. This in turn requires the use of cryp-
tographically large fields both to express the computation, which can incur overheads if the computation
does not need such large fields (e.g., it performs arithmetic over small integers). Furthermore, efficient
implementations require cycles of elliptic curves, which are tricky to use correctly in practice [NBS23].

Accumulation from lattice assumptions. Some recent works [BC24; FKNP24] construct plausibly post-
quantum accumulation schemes from lattice-based assumptions such as SIS and Module-SIS. Unlike our
work, they depend on additional assumptions beyond random oracles.

PCD from IOP-based SNARKs. A number of recent works have constructed PCD directly from IOP-
based SNARKs [COS20; Pol]. These works follow the standard methodology of constructing PCD from
succinct arguments [BCCT13; BCTV14]: to prove a t-step computation, the PCD prover invokes the prover
for the underlying SNARK to assert that not only was the t-th computation step performed correctly, but
also that there exists a valid SNARK proof for the first t− 1 steps.

While these PCD schemes inherit the benefits of their underlying SNARKs (e.g., plausible post-quantum
security, concretely efficient provers, reliance only on cryptographic hashes, etc.), they incur high asymptotic
and concrete PCD overhead due to the need to express the SNARK verifier as an arithmetic circuit. This
is problematic, as it lower-bounds the computations for which PCD is effective: for computations that are
cheaper than the SNARK verifier, the PCD prover spends most of its time proving the latter instead of the
actual computation.

Asymptotically, even incorporating state-of-the-art improvements like STIR [ACFY24] results in a ver-
ifier that requires O(log n+λ log log n) Merkle tree openings, whereas our accumulation-based approaches
would require only O(λ) openings. Concretely, when instantiating the Merkle tree with an arithmetization-
oriented hash function like Poseidon [GKRRS21], Fractal’s verifier circuit is of size at least 1.1 million gates
[COS20]. In contrast, using our direct approach to accumulate R1CS claims of 220 constraints requires only
roughly 200, 000 gates without standard optimizations used by Fractal like proof of work or tree caps, and
without using high-degree custom gates which our construction supports cheaply. (We set the rate of the RS
code to be 1/16, which results in 128/ log2(1/(1/16)) = 32 Merkle tree openings.)

PCD from other SNARKs. The earliest work on efficient constructions of PCD proceeded by recursive
composition of pairing-based SNARKs [BCTV14]. Like accumulation-based PCD that rely no prime-order
groups (i.e., without pairings), these constructions also require a cycle of elliptic curves to attain efficient re-
cursion. However, unlike the case for non-pairing curves, cycles of pairing-friendly curves are rare [CCW19;
BJS23], and current constructions that meet 128-bit security levels require arithmetic over 1000-bit prime
fields [Gui].
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2 Techniques

We introduce interactive oracle reductions, a notion which extends interactive oracle proofs [BCS16;
RRR16] to capture reductions, a framework recently introduced by Kothapalli and Parno [KP23].

(x,w) ∈ R x
↓ ↓
P

m−−−−−−−→
r←−−−−−−

V
↓ ↓
⊥ 0/1

Argument of Knowledge

(x,w) ∈ R x
↓ ↓
P

m−−−−−−−→
r←−−−−−−

V
↓ ↓
w′ x′

Reduction of Knowledge

(x, y,w) ∈ R (x, y)
↓ ↓

P Π−−−−−→
r←−−−−−

V y,Π(x)

↓ ↓
w′ (x′, y′)

Interactive Oracle Reduction

In a reduction of knowledge, a prover P and verifier V interact to reduce the claim that an instance x is
in a language L(R) into the claim that a new instance x′ is in a new language L(R′). Moreover, if P knows
a new witness w′ with (x′,w′) ∈ R′, then it must also know a witness w with (x,w) ∈ R. As an example, a
folding scheme [BCLMS21; KST22; BC23; KS24] is a reduction fromR×R toR.

The language of reductions seems to, in spirit, capture the protocols we construct. However, reductions
of knowledge as described by Kothapalli and Parno [KP23] do not capture (1) instances which contain oracle
strings y; and (2) verifiers having oracle access to prover messages Π, which are features we need to analyze
our protocols. Interactive Oracle Proofs of Proximity (IOPPs) [BCGRS17] roughly capture these features,
but are not reductions: in an IOPP, the verifier simply outputs a bit and not a new instance.

Therefore, we define an interactive oracle reduction for a relation R := {(x, y,w)} as an interactive
protocol between a prover and a verifier, where the verifier is given access oracle access to instance strings
y and prover messages Π. At the end of interaction, the prover outputs a new witness w′ and the verifier
outputs a new instance (x′, y′), where y′ is selected from either the input oracle strings or those sent by the
prover. Informally, if this new tuple (x′, y′,w′) belongs to R′, then the prover knows of a corresponding
witness w such that (x, y,w) belongs toR.

IORs, accumulation, and PCD. By adapting the BCS transformation [BCS16], we show that IORs can be
compiled into non-interactive reductions in the random oracle model. We then prove that an accumulation
scheme for a relationR can be constructed from the following (non-interactive) components:

1. A reduction fromR to an intermediate relationRACC.
2. A many-to-one reduction from R∗ACC to RACC. Here, R∗ACC is defined to be the multi-instance relation
{((x1, . . . , xm), (w1, . . . ,wm)) : ∀i ∈ [m], (xi,wi) ∈ RACC}.

Assuming that R is NP-complete, prior work [BCLMS21] has shown how to construct proof-carrying data
from such an accumulation scheme.

2.1 Accumulation for Reed–Solomon proximity claims

Let C ⊂ Fn be a Reed–Solomon code. Suppose we have two vectors f1, f2 ∈ Fn. Our goal is to reduce the
claim that f1 and f2 are δ-close to C to the claim that a related vector f is δ-close to C.2 For simplicity, we
assume that δ is at most the unique decoding radius of the code.

A natural approach is to take f to be a random linear combination of f1 and f2; indeed, proximity gaps
for Reed–Solomon codes [BCIKS23] tell us that if either f1 or f2 is δ-far, then f := f1 + r · f2 will be
δ-far with high probability. However, this fact alone does not give us a many-to-one reduction for proximity

2Two vectors f, g ∈ Fn are δ-close if they agree on at least a (1− δ)-fraction of entries. We say that a vector f is δ-close to C
if there exists a codeword which is δ-close to f .
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claims. The issue is that f is a “virtual” object defined over two vectors; whenever the verifier queries f [i],
it is implicitly querying f1[i] and f2[i]. This implies that the new claim doubles in size (concretely, 2n + 1
field elements). Ultimately, in order to realize accumulation, the size of the new claim must be independent
of the number of old claims.
Prior work. We first recall the approach taken in [BMNW24]. After the verifier samples r, the prover
sends a new vector f which is claimed to be f1+r ·f2. The verifier tests this by sampling a random location
i ∈ [n] and checking that the vectors are consistent at the i-th entry: f [i] = f1[i]+r ·f2[i]. By repeating this
spot check λ

− log(1−ε) times, the verifier ensures that f is ε-close to f1 + r · f2 with high probability. Hence,
if either f1 or f2 is δ-far, then f is (δ − ε)-far from the code. Although the size of the new claim is indeed
independent of the number of old claims, this is not quite a many-to-one reduction. The issue is that the
distance claim degrades from δ to δ−ε. As a result, [BMNW24] are only able to construct a bounded-depth
accumulation scheme, where the number of steps must be a small constant fixed in advance.
Background. Let L be a subset of F of size n; this is referred to as the evaluation domain. The Reed–
Solomon code RS[d] ⊂ Fn is the set of words3 f : L → F where f is consistent with a polynomial of degree
less than d. The quotient of a word f : L → F relative to x, y ∈ F is defined to be Quotient(f, x, y)(X) :=
f(X)−y
X−x . We make the following observations:

1. If f is a codeword in RS[d] with y = f(x), then Quotient(f, x, y) is a codeword in RS[d− 1]. This is
because x is a root of g(X)− y.

2. If Quotient(f, x, y) is δ-close to a codeword w ∈ RS[d−1], then f is δ-close to a codeword u ∈ RS[d]
with u(x) = y, namely u(X) := w(X) · (X − x) + y.

3. If f is δ-far from any codeword u ∈ RS[d] with u(x) = y, then Quotient(f, x, y) is δ-far from
RS[d− 1]. This is essentially the contrapositive of Item 2.

Quotients can be generalized to handle multiple points by defining

Quotient(f, (x1, y1), . . . , (xt, yt)) :=
f(X)− p(X)∏t
j=1(X − xj)

,

where p is the Lagrange interpolation of (xj , yj)j∈[t]. If f is δ-far from any codeword u ∈ RS[d] with
u(xj) = yj for all j, then Quotient(f, (x1, y1), . . . , (xt, yt)) is δ-far from RS[d− t].
This work. We give a many-to-one reduction for Reed–Solomon proximity claims which preserves dis-
tance; the resulting accumulation scheme therefore supports an unbounded number of steps. The protocol
starts off in the same way as before:

1. Verifier samples a random combination r ← F.
2. Prover sends a new word f : L → F. In the honest case, f := f1 + r · f2.
3. Verifier samples locations x1, . . . , xt ← L.

Where we depart is in how the new claim is formulated. The verifier computes yj := f1(xj)+ r · f2(xj) for
each j, and defines the quotient q := Quotient(f, (x1, y1), . . . , (xt, yt)). The new claim is that q is δ-close
to RS[d− t]. Observe that q is defined over f and a few (specifically, 2t) auxiliary field elements, and hence
the size of the new claim is independent of the number of old claims.

Suppose either f1 or f2 is δ-far from RS[d]. We show that q will be δ-far from RS[d − t] with high
probability:

3Any word f : L → F can be interpreted as a vector in Fn, and vice versa.
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1. The random combination f ′ := f1 + r · f2 is δ-far from RS[d] with high probability.
2. Since δ is at most the unique decoding radius, there is at most one codeword u ∈ RS[d] within δ

distance of f . Fix u if it exists. Since u is δ-far from f ′, there exists j such that u(xj) ̸= f ′(xj) = yj
with probability at least 1− (1− δ)t. Setting t := λ

− log(1−δ) , this is all but negligible.
3. We conclude that f is δ-far from any codeword u with u(xj) = yj for all j, which implies that q is

δ-far from RS[d− t].

We are not quite done, because the new claim is about proximity to RS[d−t], rather than RS[d]. Fortunately,
there exist efficient degree correction procedures which allow the verifier to soundly reduce a proximity
claim for RS[d− t] into a proximity claim for RS[d].

To summarize, we have described a reduction for Reed–Solomon proximity claims which satisfies two
key properties. First, the size of the new claim is independent of the number of old claims; this is necessary
for accumulation. Second, the reduction is distance-preserving; this is necessary for accumulating an un-
bounded number of times. Although we focused on combining two claims, our construction can easily be
extended to combine many at once.

Theorem 2.1 (informal). Define the relation RRS where (f, d) ∈ L(RRS) if f is δ-close to RS[d]. There
exists a many-to-one reduction forRRS.

Moving to the list decoding radius. Up to this point we have assumed that the distance parameter δ is at
most the unique decoding radius. We would ideally like to support larger δ; this would translate to smaller t
and therefore improve query complexity. The key step in the analysis which fails if δ were larger is Item 2;
namely, there may be more than one codeword u in the δ-ball of f . To resolve this, we leverage out-of-
domain sampling [BGKS20]. In more detail, after the prover sends the new word f , the verifier samples
an additional point xout ∈ F. The prover responds with a claimed evaluation yout; assuming δ is less
than the list decoding radius, with high probability there exists a unique codeword u in the δ-ball satisfying
u(xout) = yout. This point is additionally quotiented to obtain q.

2.2 Accumulation for NP

We describe a highly efficient accumulation scheme for R1CS circuit satisfiability. Recall that an R1CS
circuit is defined by matrices A,B,C ∈ FM×N and instance length n ∈ N. An instance x ∈ Fn is in the
language if there exists a witness w ∈ FN−n such that Az ◦ Bz = Cz for z := (x,w) ∈ FN. Our goal is to
accumulate instances of R1CS. Following the accumulation blueprint, it suffices to give (i) a reduction from
R1CS to an intermediate relationRACC; and (ii) a many-to-one reduction forRACC.

Informally, RACC encodes an “algebraic” proximity claim in the sense that f must be δ-close to a code-
word u which satisfies an algebraic constraint. Let d := N− n. Let P be a multivariate polynomial in k+ d
variables with total degree c. For a codeword u ∈ RS[d], let u⃗ ∈ Fd denote its decoding (concretely, its
coefficient vector). For a scalar e ∈ F, vector v ∈ Fk, and word f : L → F, we define (e, v, f) ∈ L(RACC)
if f is δ-close to a codeword u ∈ RS[F,L, d] such that P (v, u⃗) = e; here, u⃗ ∈ Fd refers to the decoding of
u, i.e., its vector of coefficients. We assume that δ is at most the unique decoding radius of the code.

2.2.1 Reduction from R1CS toRACC

For simplicity, assume that M is a power of two and define m := logM. For each i = 0, . . . ,M−1−1, define
the multilinear polynomial powi(Y1, . . . , Ym) = Y b1

1 · · ·Y bm
m , where b1, . . . , bm is the bit representation of

9



i. Observe that for all y ∈ F, powi(y, y
2, y4, . . . , y2

m−1
) = yi. RACC is defined with k := m + n and the

polynomial

P (Y1, . . . , Ym, Z1, . . . , ZN) :=
M∑
i=1

powi−1(Y1, . . . , Ym) · (aTi Z⃗ · bTi Z⃗ − cTi Z⃗),

where ai, bi, ci are the i-th rows of A, B, C. Observe that P total degree c := m + 2. The reduction from
R1CS toRACC is as follows.

1. Prover sends a word f : L → F. In the honest case, f is the encoding of witness w.
2. Verifier samples a random scalar r ← F.
3. The new claim is that (e, v, f) ∈ L(RACC), where e := 0 and v := (r, r2, r4, . . . , r2

m−1
, x) ∈ Fk.

Soundness. Suppose that x is not a valid R1CS instance. We show that (e, v, f) /∈ L(RACC) with high
probability. Observe that since δ is at most the unique decoding radius, there is at most one codeword u
within δ distance of f . Fix u if it exists; otherwise, we immediately have (e, v, f) /∈ L(RACC). Define
z := (x, u⃗). Since x is not a valid instance, there exists i ∈ [M] such that aTi z · bTi z ̸= cTi z. Equivalently,

F (X) := P (X,X2, X4, . . . , X2m−1
, z) =

M∑
i=1

Xi−1 · (aTi z · bTi z − cTi z)

is a non-zero univariate polynomial of degree at most N − 1. Since r is sampled uniformly, we have
P (v, u⃗) = F (r) ̸= 0 with probability at least 1− N−1

|F| . We conclude that (e, v, f) /∈ L(RACC).

2.2.2 Many-to-one reduction forRACC

Suppose we have many instances (e1, v1, f1), . . . , (em, vm, fm). Our goal is to reduce the claim that
(ei, vi, fi) ∈ RACC for all i to the claim that (e, v, f) ∈ RACC for a new instance (e, v, f). Consider the
reduction:

1. Fix a subset H = {a1, . . . , am} ⊂ F, and define V (X) =
∏m

i=1(X − ai), which vanishes on H .
Let Li denote the unique Lagrange polynomial of degree less than m satisfying Li(ai) = 1 and
Li(aj) = 0 for i ̸= j. The prover sends a univariate polynomial Q of degree at most c · (m− 1)−m.
In the honest case, Q is the unique polynomial which satisfies

P

(
m∑
i=1

Li(X) · (vi, f⃗i)

)
−

m∑
i=1

Li(X) · ei = Q(X) · V (X).

This exists because the left side of the above equation vanishes on H .
2. Verifier samples an evaluation point α← F.
3. Prover sends a new word f : L → F. In the honest case, f :=

∑m
i=1 Li(α) · fi.

4. Verifier samples locations x1, . . . , xt ← L.
5. Verifier computes e := Q(α) · V (α) +

∑m
i=1 Li(α) · ei and v :=

∑m
i=1 Li(α) · vi.

6. Verifier computes yj :=
∑m

i=1 Li(α) · fi(xj) for each j ∈ [t].
7. We have the following new claims:

• (e, v, f) ∈ RACC.

10



• (fi, d) ∈ R̃RS for each i ∈ [m].

• (q, d− t) ∈ R̃RS, where q := Quotient(f, (x1, y1), . . . , (xt, yt)).

This is not quite a many-to-one reduction for RACC, since we also output several proximity claims. We
resolve this by keeping track of two instances: one for RACC and one for R̃RS. It suffices to construct a
many-to-one reduction forRACC×R̃RS, where the verifier (i) reduces m instances forRACC into one instance
forRACC and m+ 1 instances for R̃RS; and (ii) reduces 2m+ 1 instances for R̃RS into one instance for R̃RS

using Theorem 2.1.

Soundness. We show that if (ei, vi, fi) /∈ RACC for some i, then at least one of the new instances is invalid
with high probability.

1. Assume that f1, . . . , fm are δ-close to RS[d]; otherwise, the many-to-one reduction for R̃RS will
output an invalid instance and we are done. In fact, the many-to-one reduction will only output a
valid instance if there is correlated agreement: there exist codewords u1, . . . , um ∈ RS[d] such that
f1, . . . , fm respectively agrees with u1, . . . , um on the same 1− δ fraction of points. This is implied
by proximity gaps for Reed–Solomon codes.

2. We are guaranteed that there exists some i such that P (vi, u⃗i) ̸= ei. Observe that

F (X) := P

(
m∑
i=1

Li(X) · (vi, f⃗i)

)
−Q(X) · V (X)−

m∑
i=1

Li(X) · ei

is a non-zero polynomial of degree at most c · (m − 1), since F (ai) = P (vi, u⃗i) − ei. Define
u′ :=

∑m
i=1 Li(α) · ui. With probability 1− c·(m−1)

|F| , F (α) = P (v, u⃗′) ̸= e.

3. Define f ′ :=
∑m

i=1 Li(α) · fi. By correlated agreement, u′ is δ-close to f ′.

4. Since δ is at most the unique decoding radius, there exists at most one codeword u ∈ RS[d] within δ
distance of f . Fix u if it exists and assume that P (v, u⃗) = e; otherwise, (e, v, f) ̸∈ RACC and we are
done.

5. Since P (v, u⃗) ̸= P (v, u⃗′), we know that u ̸= u′. Since the distance of the code is double the unique
decoding radius, u is 2δ-far from u′. By a triangle inequality, u is δ-far from f ′.

6. With probability at least 1 − (1 − δ)t, there exists j such that u(xj) ̸= f ′(xj) = yj . Setting t :=
λ

− log(1−δ) , this is all but negligible.

7. We conclude that f is δ-far from any codeword u with u(xj) = yj for all j, which implies that q
is δ-far from RS[F,L, d − t]. With high probability, the many-to-one reduction for R̃RS outputs an
invalid instance.

Moving to list decoding radius. As in Section 2.1, we can upgrade δ to be less than the list decoding
radius. We use the same technique of out-of-domain samples to bind vectors to a unique codeword within
the δ-ball. For the construction, we need to send three separate out-of-domain samples. First, we bind each
input fi to a unique codeword. Then, after the challenge α, we bind the virtual polynomial f ′. Finally, we
use an additional out-of-domain sample to bind f . We discuss the necessity of these samples in more detail
in Remark 7.15.

11



2.3 Proof-carrying data from reductions

Accumulation from Non-interactive Reductions. As we have seen, interactive oracle reductions and their
compiled form, non-interactive reductions, capture natural notions of batching and generalize the existing
frameworks of IOPPs and reductions of knowledge. In this work, we show that given a pair of non-interactive
reductions matching a particular form, we can naturally construct a corresponding non-interactive argument
and accumulation scheme for that non-interactive argument. We state this more clearly in the following
informal theorem.

Theorem 2.2 (informal). LetR andRACC be indexed relations. Suppose that
• RDXCAST is a non-interactive reduction fromR toRACC.
• RDXFOLD is a non-interactive reduction fromR∗ACC toRACC.

Then there exists a non-interactive argument ARG forR and an accumulation scheme ACC for ARG.

(x,w) ∈ R x
↓ ↓
PCAST

πCAST−−−−−−−−→ VCAST
↓ ↓

acc.w acc.x

(acci.x, acci.w)i∈[m+n] (acci.x)i∈[m+n]y y
PFOLD

πFOLD−−−−−−−−→ VFOLDy y
acc.w acc.x

Intuitively, the reduction RDXCAST casts a member (x,w) of relation R into a member (acc.x, acc.w)
in the accumulator relation RACC. While the reduction RDXFOLD, folds together multiple members (acci.x,
acci.w)i of the accumulator relation into a single instance (acc.x, acc.w). An initial observation is that the
reduction RDXCAST closely matches the shape of a non-interaction argument ARG = (P,V). The argument
prover and verifier can internally run the reduction RDXCAST to derive a new accumulator instance and
witness. The prover can send, along with the reduction proof, the new accumulator witness and the verifier
can check if the new accumulator belongs toRACC. This immediately gives us an argument for relationR.

(x,w) ∈ R x
↓ ↓

P : (πCAST, acc.w)← PCAST(x,w)
π := (πCAST, acc.w)−−−−−−−−−−−−−−−−−−→ V : acc.x← VCAST(x, πCAST)

↓
(acc.x, acc.w)

?
∈ RACC

All that remains to be shown is how to construct an accumulation scheme for ARG. Naturally, the
argument proof π can be partition into (π.x, π.w) := (πCAST, acc.w). By design, we now have that the
accumulation predicate instance (x, π.x) is exactly the input to the reduction verifier RDXCAST. Thus, given
m accumulator instances and n predicate instances, the accumulation prover and verifier can symmetrically
run VCAST to derive m+ n accumulator instances.

(acc1.x, · · · , accm.x, (πCAST1 , x1), · · · (πCASTn , xn))
↓ ↓
VCAST · · · VCAST
↓ ↓

(acc1.x, · · · , accm.x, accm+1.x, · · · accm+n.x)

Now, the accumulation prover can run the reduction RDXFOLD to derive the output accumulator acc ←
(acc.x, acc.w) which folds together the m+n accumulators and produce an accumulation proof pf ← πFOLD.
The accumulation verifier just has to check this new accumulator instance acc.x is identical to what is derived
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by running the reduction verifier RDXFOLD. Finally, the accumulation decider just checks if an accumulator
acc := (acc.x, acc.w) belongs to RACC. We treat this discussion formally in Theorem 4.3 and provide the
corresponding argument ARG and accumulation scheme ACC in Construction A.4 and Construction A.6.

From Reductions to Proof Carrying Data and IVC. What we just described is a method to construct ac-
cumulation from non-interactive reductions. In prior works [BCMS20; BCLMS21], accumulation schemes
for non-interactive arguments can be transformed into IVC and PCD schemes, assuming the non-interactive
argument is for an NP-complete relation and the circuit description of the accumulation verifier is succinct
(Theorem 5.3 in [BCLMS21]). In our construction, these requirements translate to whether the relation R
is NP-complete and if the reduction verifiers VCAST and VFOLD are succinct.

While the PCD construction naturally follows from prior work, the security analysis must be slightly
tweaked when considering promise relations, which have both strict and relaxed relations, RACC and R̃ACC

respectively. In particular, the knowledge soundness of both the argument ARG and accumulation scheme
ACC hold with respect to a relaxed verifier and decider, Ṽ and D̃, which check that an accumulator belongs
to the relaxed relation R̃ACC, while in the construction they check pairs belong to the strict relationRACC. We
observe that the knowledge soundness proof of the PCD construction (Theorem 5.3 in [BCLMS21]) can be
immediately adapted by replacing the verifier and decider with their relaxed variants. Alternatively, we can
also adapt the proof in [BMNW24] which shows how to construct PCD from bounded-depth accumulation.
Unlike our work, which has one relaxed verifier and decider, they have a different relaxed verifier and
decider for each recursive extraction, up to some depth-bound s ∈ N. In our setting, we would just maintain
the same relaxed verifier and decider regardless of the extraction depth.

13



3 Preliminaries

Strings and words. For an alphabet Σ, a string s ∈ Σ∗ is a tuple of characters in the alphabet. For a
finite set S, a word w : S → Σ is a function mapping elements of S to characters in Σ. These objects are
somewhat interchangeable; a string s ∈ Σn can be viewed as a word over the set of indices [n], and a word
w : S → Σ can be viewed as a string of length |S| (assuming S has a fixed ordering).

Restrictions. For a string s ∈ Σn and subset of indices I ⊆ [n], the restriction s|I : I → Σ is defined to be
s|I(i) = s(i). Alternatively, we can treat s|I as a string of length n over an augmented alphabet Σ ⊔ {⊥},
where the i-th character of s|I is s(i) if i ∈ I , and ⊥ otherwise.

Hamming distance. For an alphabet Σ, the relative Hamming distance between two strings s, s′ : s ∈ Σn,
denoted ∆(s, s′), is the number of locations where s and s′ disagree, divided by n. For a set of strings
S ∈ Σn, we define ∆(s, S) := mins′∈S ∆(s, s′).

Polynomials. For a field F, let F<d[X] denote the set of univariate polynomials over F of degree less than
d. For a set S ⊂ F, the vanishing polynomial VS(X) :=

∏
a∈S(X−a) is the unique non-zero polynomial of

degree at most |S| that is zero on S. For an element a ∈ S, let La,S denote the unique Lagrange polynomial
of degree less than |S| such that La,S(a) = 1 and La,S(b) = 0 for all b ∈ S \{a}. For a function f : S → F,
let f̂ denote the unique extension polynomial of degree less than |S| such that f̂(a) = f(a) for all a ∈ S,
i.e., f̂(X) :=

∑
a∈S f(a) · La,S(X).

Polynomial quotients. For a field F, polynomial p ∈ F<d[X], and set S ⊂ F, the polynomial quotient
PolyQuotient(p, S) ∈ F<d−|S|[X] is defined to be

PolyQuotient(p, S)(x) :=
p(x)− r(x)

VS(x)
,

where r is the unique polynomial of degree less than |S| such that r(a) = p(a) for all a ∈ S (in other words,
r is the extension of the restriction of p to S).

Random oracles. Let U(λ) denote the uniform distribution of functions that map {0, 1}∗ to {0, 1}λ. A
random oracle is a function ρ : {0, 1}∗ → {0, 1}λ sampled from U(λ). Our constructions will often use
multiple random oracles of varying output sizes; these can be derived from a single random oracle via
domain extension and output extension. For more discussion, see [CY24, Section 2.6].

3.1 Relations

Indexed relations. An indexed relationR is a set of triples {(i, x,w)}where i is the index, x is the instance,
and w is the witness; the corresponding indexed language L(R) is the set of pairs (i, x) for which there exists
a witness w such that (i, x,w) ∈ R. For example, the indexed relation of satisfiable boolean circuits consists
of triples where i is the description of a boolean circuit, x is a partial assignment to its input wires, and w is
an assignment to the remaining wires that makes the circuit output 1.

Parameterized relations and R1CS. A parameterized relation R over a (typically implicit) parameter
space P is a set of relations {R(p) : p ∈ P}. The R1CS relation is parameterized by a finite field F;
RR1CS(F) consists of triples (i, x,w) = ((A,B,C, n), x, w) where A,B,C are M × N matrices over F,
x ∈ Fn, and w ∈ FN−n such that Az ◦Bz = Cz for z := (x,w).

Relations relative to a random oracle. A relation relative to a random oracle, denoted RU , is a set of
relations {Rρ : ρ ∈ supp(U)}, where supp(U) denotes

⋃
λ∈N supp(U(λ)).
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Promise relations. Some proof systems exhibit a gap between completeness and soundness, i.e., com-
pleteness holds for a relation R, but soundness only guarantees membership in a superset relation R̃ ⊇ R.
In this case it is useful to describeR as a promise relation, where soundness holds for the associated relaxed
relation R̃.4

Putting it all together. A parameterized indexed promise relation RU (over parameter space P, relative
to a random oracle) is a set of indexed promise relations {(Rρ(p), R̃ρ(p)) : p ∈ P, ρ ∈ supp(U)} such
thatRρ(p) ⊆ R̃ρ(p). We say thatRU is in NPU if and only if there exists a polynomial-time oracle Turing
machine M such that for every p ∈ P and ρ ∈ supp(U),Rρ(p) = {(i, x,w) : Mρ(p, i, x,w) = 1}.
Multi-instance relations. Let R be an indexed relation. The multi-instance relation is defined to be
R∗ := {(i, (x1, . . . , xm), (w1, . . . ,wm)) : ∀i ∈ [m], (i, xi,wi) ∈ R}. This notion readily extends to the
types of relations described above.

3.2 Reed–Solomon codes

For a field F, evaluation domain L ⊂ F, and degree d ∈ N, the Reed–Solomon code RS[F,L, d] is the set of
words L → F corresponding to polynomials of degree less than d:

RS[F,L, d] := {f : L → F : f̂ ∈ F<d[X]}.

The rate of RS[F,L, d] is ρ := d/|L|. For a codeword f ∈ RS[F,L, d], let f⃗ ∈ Fd denote the coefficient
vector of f̂ .

3.2.1 Rational constraints

Definition 3.1. A rational function c = (p, q) is a pair of arithmetic circuits, p : Fk+1 → F and q : F→ F.
For an interleaved word f = (f1, . . . , fk), fi : L → F, we define c(f) : L → F to be

c(f)(x) :=
p(x, f1(x), . . . , fk(x))

q(x)
.

A rational constraint consists of a rational function c and a degree bound d ∈ N. We say that the rational
constraint is satisfied with respect to f if c(f) ∈ RS[F,L, d].

3.2.2 List decoding

Definition 3.2. Let f : L → F be a word, d ∈ N be a degree, and γ ∈ (0, 1) be a list decoding parameter.
We define List(f, d, γ) := {g ∈ RS[F,L, d] : ∆(f, g) ≤ γ} to be the set of codewords that are γ-close to f .
A Reed–Solomon code RS[F,L, d] is (γ, ℓ)-list decodable if |List(f, d, γ)| ≤ ℓ for any word f : L → F.

Theorem 3.3 (Johnson bound). The Reed–Solomon code RS[F,L, d] is (1 − √ρ − η, 1/(2η
√
ρ))-list-

decodable for any choice of η ∈ (0, 1−√ρ), where ρ is the rate of the code.

Lemma 3.4 ([ACFY24, Lemma 4.5]). Let f : L → F be a word, d ∈ N be a degree, s ∈ N be a repetition
parameter, and γ ∈ (0, 1) be a distance parameter. Suppose that RS[F,L, d] is (γ, ℓ)-list decodable. Then

Pr
x1,...,xs←F\L

[∃u, u′ ∈ List(f, d, γ), u ̸= u′,∀i ∈ [s], û(xi) = û′(xi)]

≤
(
ℓ

2

)
·
(

d− 1

F− |L|

)s

≤ ℓ2

2
·
(

d− 1

F− |L|

)s

.

4Alternatively, a promise relation can be defined as a pair (RYES,RNO), where completeness holds for RYES and soundness holds
for the complement of RNO.
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3.2.3 Quotients

Definition 3.5 ([ACFY24, Definition 4.2]). Let f : L → F be a word, S ⊂ F be a set, Ans : S → F be a
function, and Fill : S ∩ L → F be a function. We define Quotient(f, S,Ans,Fill) : L → F to be

Quotient(f, S,Ans,Fill)(x) :=

{
Fill(x) x ∈ S
f(x)−Âns(x)

VS(x)
x ̸∈ S.

Lemma 3.6 ([ACFY24, Lemma 4.4]). Let f : L → F be a word, d ∈ N be a degree, δ ∈ (0, 1) be a
distance parameter, S ⊂ F be a subset with |S| < d, and Ans : S → F be a function. Suppose that for every
u ∈ List(f, d, δ), there exists x ∈ S such that with û(x) ̸= Ans(x). Then for any choice of Fill,

∆(Quotient(f, S,Ans,Fill),RS[F,L, d− |S|]) > δ − |S ∩ L|/|L|.

3.2.4 Proximity gaps

Definition 3.7 ([BCIKS23]). Let F be a field, d ∈ N be a degree, ρ ∈ (0, 1) be a rate, δ ∈ (0, 1−√ρ) be a
distance parameter, and m ∈ N be an arity. The proximity error is defined to be

εprox(F, d, ρ, δ,m) :=


(m−1)·d
ρ·|F| δ ∈

(
0, 1−ρ2

]
(m−1)·d2

|F|·(2·min{1−√ρ−δ,√ρ/20})7 δ ∈
(
1−ρ
2 , 1−√ρ

)
Definition 3.8 ([ACFY24, Definition 4.11]). Let dmax ∈ N be a target degree, r ∈ F be a field element,
f1, . . . , fm : L → F be words, and d1, . . . , dm ∈ [dmax] be degrees. We define Combine(dmax, r, (f1, d1),
. . . , (fm, dm)) : L → F to be

Combine(dmax, r, (f1, d1), . . . (fm, dm))(x)

:=

m∑
i=1

ri · fi(x) ·

dmax−di∑
j=0

(rx)j

 =

{∑m
i=1 ri · fi(x) ·

(
1−(rx)dmax−di+1

1−rx

)
rx ̸= 1∑m

i=1 ri · fi(x) · (dmax − di + 1) rx = 1.

Lemma 3.9 ([ACFY24, Lemma 4.13]). Let dmax ∈ N be a target degree, f1, . . . , fm : L → F be words,
d1, . . . , dm ∈ [dmax] be degrees, and δ ∈ (0, 1−√ρ− 1/|L|) be a distance parameter, where ρ := d∗/|L|.
If

Pr
r←F

[∆(Combine(dmax, r, (f1, d1), . . . , (fm, dm)),RS[F,L, dmax]) ≤ δ]

< εprox

(
dmax, ρ, δ,m · (dmax + 1)−

m∑
i=1

di

)
,

then there exists a subset S ⊆ L with |S| ≥ (1 − δ) · |L| such that for all i ∈ [m], there exists a codeword
u ∈ RS[F,L, di] such that u agrees with fi on S.

3.3 Merkle trees

We recall the definition of Merkle commitments along with some useful security properties from [CY24,
Section 18]. The Merkle commitment scheme is a tuple of deterministic polynomial-time oracle algorithms
MT = (MT.Commit,MT.Open,MT.Check) implicitly parameterized by an output size σ ∈ N, alphabet
Σ, and string length ℓ ∈ N. All algorithms receive query access to a random oracle ρMT ∈ U(σ).
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• MT.Commit receives as input a string m ∈ Σℓ. It outputs a commitment cm ∈ {0, 1}σ and a trapdoor
td ∈ {0, 1}O(σℓ).

• MT.Open receives as input a trapdoor td and subset I ⊆ [ℓ]. It outputs an opening proof pf ∈
{0, 1}|I|·σ log ℓ.

• MT.Check receives as input a commitment cm, restriction a ∈ ΣI , and opening proof pf. It outputs
a bit indicating whether or not the opening proof authenticates the restriction with respect to the
commitment.

Lemma 3.10 (MT is complete). For every (unbounded) adversary A,

Pr

MT.CheckρMT(cm,m|I , pf) = 1

∣∣∣∣∣∣∣∣
ρMT ← U(σ)
(m, I)← AρMT

(cm, td) := MT.CommitρMT(m)
pf := MT.OpenρMT(td, I)

 = 1.

Lemma 3.11 (MT is multi-extractable). There exists a deterministic polynomial-time algorithm
MT.MultiExtract such that for every query bound t ∈ N, t-query adversary A, and k ∈ N,

Pr

 ∃i ∈ [k] :
MT.CheckρMT(cmi, Ii, ai, pfi) = 1
mi[Ii] ̸= ai

∣∣∣∣∣∣∣∣
ρMT ← U(σ)
(cmi, Ii, ai, pfi)i∈[k]

tr←− AρMT

(mi, tdi)i∈[k] := MT.MultiExtractρMT((cmi)i∈[k], tr)
∀i ∈ [k], pfi := MT.OpenρMT(tdi, Ii)


is at most

κMT(t, σ, ℓ, k) :=
3

2
· t

2

2σ
+

k · (log ℓ+ 1) · 3t
2σ

.
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4 Non-interactive reductions

LetRU1 andRU2 be parameterized indexed promise relations (relative to a random oracle). A (preprocessing)
non-interactive reduction from R1 to R2 in the random oracle model is a tuple of polynomial-time algo-
rithms RDX = (G, I,P,V), of which I, P , V have access to the same random oracle, with the following
syntax.

• The generator G receives as input a security parameter λ (in unary) and outputs public parameters pp.
• The indexer I is a deterministic algorithm which receives as input public parameters pp and index i,

and outputs a proving key pk, verification key vk, and new index i′.
• The prover P receives as input proving key pk, an instance x, and witness w, and outputs a proof π

and new witness w′.
• The verifier V is a deterministic algorithm5 which receives as input verification key vk, instance x,

and proof π, and outputs a new instance x′.

Completeness. RDX is complete if the following holds. For every adversary A,

Pr


(i, x,w) ∈ Rρ

1(pp)
⇓

(i′, x′,w′) ∈ Rρ
2(pp)

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)

(i, x,w)← Aρ(pp)
(pk, vk, i′)← Iρ(pp, i)
(π,w′)← Pρ(pk, x,w)

x′ ← Vρ(vk, x, π)

 = 1.

Straightline knowledge soundness. RDX is straightline knowledge sound (with respect to auxiliary input
distributionD) if the following holds. There exists a deterministic polynomial-time extractor E such that for
every (non-uniform) polynomial-time adversary P̃ ,

Pr


(i′, x′,w′) ∈ R̃ρ

2(pp)
∧

(i, x,w) ̸∈ R̃ρ
1(pp)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)
ai← D(1λ)

(i, x, π,w′; tr)← P̃ρ(pp, ai)
(pk, vk, i′)← Iρ(pp, i)

x′ ← Vρ(vk, x, π)
w← E(pp, i, x, π,w′, ai, tr)


≤ negl(λ).

Remark 4.1. We have defined non-interactive reductions for indexed relations in full generality (parame-
terized, relative to a random oracle, and relaxed soundness). Sometimes, full generality is not required; for
example, suppose R is a parameterized indexed relation. Then soundness should hold for the same relation
R, and the random oracle is not considered when testing membership inR.

4.1 IVC and PCD from non-interactive reductions

We construct a non-interactive argument ARG (Definition A.2) for a relation R and a corresponding accu-
mulation scheme ACC for ARG (Definition A.3) from two non-interactive reductions,

5Proof systems do not typically require verifier to be deterministic. For reductions, deterministic verifiers are useful because it
implies that the prover can compute the new instance. Moreover, deterministic verifiers are easy to attain; intuitively, this is because
any randomness can be derived from the random oracle.
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• RDXCAST, a non-interactive reduction fromR to some relationRACC, and

• RDXFOLD, a non-interactive reduction fromR∗ACC toRACC,

all of which are in the random oracle model. Crucially, to construct Proof-Carrying Data (PCD), prior work
[BCMS20; BCLMS21; COS20] requires a non-interactive argument for an NP-complete relation and an
accumulation scheme for that argument in the standard model. However, these works only provide secure
constructions of such non-interactive arguments and accumulation schemes in the random oracle model. By
heuristically instantiating the random oracle with an appropriate hash function, they obtain non-interactive
arguments and corresponding accumulation schemes in the standard model with conjectured security (some-
times referred to as heuristic security). This is a well-known limitation of the random oracle methodology
[CGH04; GK03]. We can follow the same approach to obtain a non-interactive argument and accumulation
scheme in the standard model. Furthermore, these prior works also require that the accumulation verifier is
succinct (sublinear, Theorem 5.3 in [BCLMS21]) such that the corresponding circuit description does not
increase in size after each recursive step. If the reduction verifier of RDXCAST and RDXFOLD are succinct,
then our constructions will trivially satisfy this requirement. What follows is our formal theorem about the
transformation from non-interactive reductions to arguments and accumulation. For brevity, we defer the
explicit constructions to Appendix A.2; see Section 2.3 for a high-level overview.

Definition 4.2. Let RU be a parameterized indexed promise relation. The corresponding multi-instance
relation (R∗)U is defined to be

R∗(p)ρ := {(i, (x1, . . . , xm), (w1, . . . ,wm)) : ∀i ∈ [m], (i, xi,wi) ∈ R(p)ρ}.

The relaxed relation R̃∗(p) is defined analogously. A many-to-one reduction is a non-interactive reduction
from R to R∗ which preserves the index: given an index i, the indexer I outputs the new index i′ := i (this
requirement is necessary for repeatedly composing many-to-one reductions).

Theorem 4.3. There exists a polynomial-time transformation T such that the following holds. Let R be
a parameterized indexed relation. Let RUACC be a parameterized indexed promise relation in NPU with the
same parameter space as R. Suppose we are given the following non-interactive reductions in the random
oracle model:

• RDXCAST = (GCAST, ICAST,PCAST,VCAST), a reduction fromR toRACC.

• RDXFOLD = (GFOLD, IFOLD,PFOLD,VFOLD), a many-to-one reduction from R∗ACC to RACC with the same
generator algorithm as RDXCAST (i.e., GFOLD ≡ GCAST).

Then T[RDXCAST,RDXFOLD,RACC] = (ARG,ACC), where ARG is a non-interactive argument for R and
ACC is an accumulation scheme for ARG, both in the random oracle model.

Proof. We defer the proof to Appendix A.
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5 Interactive oracle reductions

We define interactive oracle reductions (IORs), an information-theoretic proof system that adapts interactive
oracle proofs to the language of reductions. Intuitively, an IOR is an interactive reduction where the verifier
has oracle access to the prover’s messages and reads a small number of locations to output the new instance.
The key novelty, however, is that an IOR verifier may also want to output claims about proof strings without
fully reading them.

Formally, we consider indexed oracle relations6 where the instance is split into a short instance x and
a tuple of instance strings y⃗ = (y1, . . . , yn) written over some alphabet Σ. For notational convenience, we
write (i, x, y⃗,w) ∈ R to denote membership in an indexed oracle relation. In the relaxed relation R̃, we
allow instance strings to written over an augmented alphabet Σ ⊔ {⊥}; this will be useful when compiling
IORs.

5.1 Definition

LetR andR′ be indexed oracle promise relations. A (public-coin, holographic) interactive oracle reduction
fromR toR′ is a tuple of polynomial-time algorithms IOR = (I,P,V) with the following syntax.

• The indexer I is a deterministic algorithm which receives as input an index i (forR). It outputs a short
index ι, index string I, and new index i′ (forR′).

• The prover P is an interactive algorithm which receives as input the index i, short instance x, instance
strings y⃗, and witness w. It engages in k rounds of interaction. In the i-th round, it sends a proof string
Πi, then receives a challenge ri.

• The verifier V is an interactive algorithm which receives as input the short index ι, short instance
x, oracle access to index string I, and oracle access to instance strings y⃗. It engages in k rounds of
interaction. In each round, it receives oracle access to a proof string Πi, then sends a uniformly random
challenge ri. At the end of the protocol, it outputs a new instance (x′, y⃗ ′); the new instance oracles
are chosen from the old instance oracles or proof oracles received during the interactive protocol.

Without loss of generality, the verifier is split into two phases. In the interaction phase, it samples challenges
and sends them to the prover. In the query phase, it queries the index, instance, and proof oracles. The
verifier’s output is a deterministic function of its input and the transcript, which we denote

(x′, y⃗ ′) := VI,⃗y,Π⃗(ι, x, r⃗).

Completeness. IOR is complete if the following holds. For any (i, x, y⃗,w) ∈ R,

Pr

[
(i′, x′, y⃗ ′,w′) ∈ R′

∣∣∣∣ (ι, I, i′)← I(i)
(w′, (x′, y⃗ ′))← ⟨P(i, x, y⃗,w),VI,⃗y(ι, x)⟩

]
= 1.

Soundness. IOR has soundness error ε if the following holds. For any (i, x, y⃗) ̸∈ L(R) and adversary P̃,

Pr

[
(i′, x′, y⃗ ′,w′) ∈ R′

∣∣∣∣ (ι, I, i′)← I(i)
(w′, (x′, y⃗ ′))← ⟨P̃,VI,⃗y(ι, x)⟩

]
≤ ε(i, x).

Efficiency measures. We consider the following efficiency measures (these may be functions of the short
index and short instance).

6We emphasize that is not the same as a relation relative to a (random) oracle.
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• Alphabet: Σ is the set of symbols used to write the index, instance, and proof strings.

• Round complexity: k is the number of back-and-forth interactions in the protocol.

• Proof length: LI is the length of the index string, LYj is the length of the j-th instance string, and LPi is
the length of the i-th proof string. Let Lmax denote the maximum string length.

• Query complexity: the verifier reads qI locations from the index string, qYj locations from the j-th
instance string, and qPi locations from the i-th proof string. Let q denote the total number of queries.

• Randomness: ri is the number of bits in the i-th challenge sent by the verifier.

Parameterized reductions. We often parameterize reductions, e.g., by a security parameter. Formally, the
prover and indexer will additionally receive as input some parameters p. Completeness must hold for any
choice of parameters, and the soundness error is allowed to be a function of the parameters (in addition to
the index and short instance).

Remark 5.1 (non-oracle messages). In our constructions, the prover sometimes sends non-oracle messages
in the sense that the verifier reads the entire message (and hence oracle access is unnecessary). We do not
include this in the IOR definition, but it is straightforward to do so. As an efficiency measure, let s denote
the total size (in bits) of the non-oracle messages.

Remark 5.2 (oracle selection). When the verifier outputs new instance oracles y⃗ ′ = (y′1, . . . , y
′
n′), this

should not blow up its runtime or query complexity. We can formalize this by having the verifier output a
tuple of indices s⃗ = (s1, . . . , sn′), sj ∈ [n + k], which “select” from the old instance and proof oracles. In
particular, the j-th new instance string will be y′j := Select(⃗y,Π, sj), where

Select(⃗y, Π⃗, s) :=

{
ys 1 ≤ s ≤ n

Πs−n n < s ≤ n+ k.

5.2 Round-by-round soundness

We define round-by-round soundness and knowledge. These are stronger notions of soundness that allow us
to transform IORs into non-interactive reductions.

Definition 5.3. A state function for IOR is a function State for which the following holds.

• Empty transcript: State(p, i, x, y⃗,∅) = 0 unconditionally, where ∅ denotes the empty transcript.

• Prover moves: If State(p, i, x, y⃗, τ) = 0 for a partial transcript τ = (Π1, ri, . . . ,Πi−1, ri−1), i ∈ [k],
where the prover is about to move, then for any prover message Πi ∈ LP,i, State(p, i, x, y⃗, τ ||Πi) = 0.

• Full transcript: If State(p, i, x, y⃗, τ) = 0 for a full transcript τ = (Π1, r1, . . . ,Πk, rk), then the
verifier outputs (x′, y⃗ ′) := VI,⃗y,Π⃗(ι, x, r⃗) such that (i′, x′, y⃗ ′) ̸∈ L(R̃′) (where (ι, I, i′) := I(p, i)).

Definition 5.4. IOR has round-by-round soundness error εrbr if there exists a state function State such
that the following holds. If State(p, i, x, y⃗, τ) = 0 for (i, x, y⃗) ̸∈ L(R) and a partial transcript τ =
(Π1, r1, . . . ,Πi), i ∈ [k], where the verifier is about to move, then

Pr
ri←{0,1}ri

[State(p, i, x, y⃗, τ ||ri) = 1] ≤ εrbr(p, i, x).
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Definition 5.5. IOR has round-by-round knowledge error κrbr if there exists a state function State and
polynomial-time extractor E such that the following holds. If State(p, i, x, y⃗, τ) = 0 for a partial transcript
τ = (Π1, r1, . . . ,Πi), i ∈ [k], where the verifier is about to move, then

Pr
ri←{0,1}ri

[State(p, i, x, y⃗, τ ||Πi||ri) = 1] > κrbr(p, i, x)

implies the following. For any transcript continuation (Πi+1, . . . ,Πm,w′), the extractor outputs w ←
E(p, i, x, y⃗, Π⃗,w′) such that (i, x, y⃗,w) ∈ R̃.

Remark 5.6 (limitations of round-by-round knowledge). Definition 5.5 is unsatisfactory in the sense that the
extractor cannot meaningfully take advantage of the new witness to extract the old witness. It nevertheless
suffices because in our constructions, either (a) the prover sends the witness in one shot; or (b) the relation
has empty witnesses (hence, round-by-round soundness trivially implies round-by-round knowledge).

5.3 Non-interactive reductions from IORs

We show how to transform IORs into non-interactive reductions.

• In Definition 5.7 we define committed relations. Informally, given an oracle relation R, the commit-
ted relation Com[R] replaces instance strings with Merkle commitments and adds trapdoors Merkle
authentication paths to the witness.

• In Definition 5.8 we define monotone relations. This is a minor technical detail which is required
for the transformation to preserve soundness; informally, it ensures that a cheating non-interactive
prover cannot gain an advantage by withholding Merkle authentication paths from the new witness.
All relations considered in this work are monotone.

• In Theorem 5.9 we give a formal theorem statement for transforming IORs into non-interactive reduc-
tions. This is essentially the BCS transformation (with preprocessing), except we also need to handle
instance oracles.

Definition 5.7. Let R be an indexed oracle promise relation and S be a parameterized set. The commit-
ted relation Com[R, S] = SU is the parameterized indexed promise relation (relative to a random oracle)
defined below.

Sρ(p) :=

(i, (x, c⃗m), (w, y⃗, t⃗d)) :
(i, x) ∈ S(p)
(i, x, y⃗,w) ∈ R(p)
∀j ∈ [n],MT.CommitρMT(yj) = (cmj , tdj)



S̃ρ(p) :=

(i, (x, c⃗m), (w, y⃗, t⃗d)) :

(i, x) ∈ S(p)
(i, x, y⃗,w) ∈ R̃(p)
∀j ∈ [n] :
pfj := MT.OpenρMT(tdj ,Dom yj)
MT.CheckρMT(cmj , yj , pfj) = 1


Above, ρMT is a random oracle in U(σ) derived from ρ. Observe that if R is in NP and S is efficiently
computable, then SU is in NPU .
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Definition 5.8. We say that an indexed oracle promise relation R is monotone if the relaxed relation R̃
satisfies the following property. Suppose (i, x, y⃗) ̸∈ L(R̃) with yj : Ij → Σ (recall that a string written over
Σ ⊔ {⊥} can be interpreted as a restriction to a subset of indices). Then (i, x, (y1|A1 , . . . , yn|An)) ̸∈ L(R̃)
for all subsets A1, . . . , An with Aj ⊆ Ij .

Theorem 5.9. There exists a polynomial-time transformation T such that the following holds. Let R and
R′ be indexed promise relations (with strings). Let S and S′ be efficiently computable sets parameterized
by λ ∈ N. Let IOR be an interactive oracle reduction (also parameterized by λ) fromR toR′ such that the
following holds:

• IOR has round-by-round knowledge error κrbr such that

max
i,x∈S(λ)

|i|+|x|=poly(λ)

κrbr(λ, i, x) = negl(λ).

• For every parameter λ ∈ N and index i ∈ S(λ), the IOR indexer outputs a new index i′ ∈ S′(λ).
Then T[IOR] is a non-interactive reduction from Com[R, S] to Com[R′, S′] with the following efficiency
measures:

• Proof size: O(λ · k+ s+ q · (log |Σ|+ λ · log Lmax)).
• Verifier complexity: IOR verifier, plus O(k+ q · log Lmax) queries to the random oracle.

Proof. We defer the proof to Appendix B.
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6 Accumulation for Reed–Solomon proximity claims

We describe a many-to-one reduction for Reed–Solomon proximity claims. Intuitively, a proximity claim
consists of a rational constraint (c, d) and interleaved word f = (f1, . . . , fk) such that c(f) is δ-close to
RS[F,L, d]. For completeness, we require that c(f) is an exact codeword.

Definition 6.1 (Reed–Solomon proximity relation). The index consists of the following:
• Description of a finite field F and evaluation domain L ⊂ F.
• Maximum degree parameter dmax ∈ N, dmax < |L|. Define ρ := (dmax + 1)/|L| to be the rate of the

corresponding Reed–Solomon code RS[F,L, dmax].
• Distance parameter δ ∈ (0, 1).

The instance is a rational constraint (c, d), where d ≤ dmax. The instance oracles f = (f1, . . . , fk) are words
fi : L → F, collectively interpreted as an interleaved word in (Fk)L. The witness is empty. We define the
indexed promise relationRRS below.

RRS := {(i, (c, d), f ,⊥) : c(f) ∈ RS[F,L, d]}
R̃RS := {(i, (c, d), f ,⊥) : ∆(c(f),RS[F,L, d]) ≤ δ}

Theorem 6.2. Consider a security parameter λ ∈ N. Assume the index and instance are such that the
following holds:

• |F| ≥ 2λ · 107 ·m · dmax3 · ρ−3.5.
• δ ∈

(
0, 1− 1.05 · √ρ− λ

− log(1−δ)·|L|

)
.

Then Construction 6.3, when instantiated with parameters s = 1 and t = λ
− log(1−δ) , is an interactive oracle

reduction fromR∗RS toRRS with round-by-round soundness error 2−λ and the following efficiency measures:

• Alphabet: F.
• Round complexity: 3. The verifier sends the first message.
• Query complexity: t ·

∑m
i=1 ki, where ki is the number of oracles in the i-th instance.

• Proof length: |L|+ t+ 1 field elements.
• Prover time: O(|L| ·

∑m
i=1 |ci|+ dmax log dmax) field operations, where |ci| denotes the circuit size of

the i-th instance’s constraint.
• Verifier time: O(t ·

∑m
i=1 |ci|) field operations.

Moreover, the size of the new instance is independent of the size of the old instance.

Proof. Follows from instantiating Construction 6.3 with s := 1 and t := λ
− log(1−δ) , by Lemma 6.4 and

Lemma 6.5.

Soundness. We analyze the soundness error given the defined size of F:
• For dj ≥ 1 we have that εprox(dmax, ρ, δ,m · (dmax + 1) −

∑m
j=1 dj) ≤ εprox(dmax, ρ, δ,m · dmax) ≤

m·dmax3

|F|·(
√
ρ

10
)7

(Lemma 3.7)

• (m−1)·dmax2

|F|·(
√
ρ

10
)7
≤ (m−1)·dmax2

2λ·(m−1)·107·dmax2·ρ−3.5· ρ3.5
107

= 2−λ (Plugging in the value for F)

• ℓ ≤ 1

2·
√

ρ

20
·√ρ

= 1
ρ/10 (By Theorem 3.3)

• εood =
ℓ2

2 · (
dmax
|F|−|L|).

• Assuming that dmax < |L| ≤ |F|/2, we get εood ≤ 100
ρ2
· dmaxF
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• Since |F| ≥ 2λ · 100 · dmax · ρ−2 we have that εood ≤ 2−λ

• (1− δ)t ≤ (1− δ)
λ

− log(1−δ) = 2−λ

Since the RBR-soundness error is the max of these errors, we have that, for the chosen parameters, it is
bound by 2−λ.

Efficiency. The protocol has 3 rounds, 3 prover and 3 verifier messages. The number of oracle queries
is t = λ

− log(1−δ) . The total proof lengths consists of one oracle of length |L| and one F elements, along

with Fill of size t = λ
− log(1−δ) . The prover’s runtime is dominated by the computation of f , which takes

O(m · |cf | · |L|) = O(m · t · |L|) field operations, as well as the computation of Fill. Computing Fill can
be done using an FFT and takes O(dmax · log dmax) field operations. See Section 6.3 for an optimization that
can significantly reduce the number of FFT operations in a repeated invocation of the accumulation scheme.
The verifier needs to evaluate f ′ at t positions. Each evaluation requires O(m ·t) field operation. The overall
runtime is O(m · t2) field operations.

6.1 Construction

We describe an interactive oracle reduction fromR∗RS toRRS.

Construction 6.3. The prover and indexer are parameterized by p = (s, t), where s, t ∈ N are the out-of-
domain and in-domain repetition parameters. On input index i, the indexer I outputs short index ι := (i, s, t)
and new index i′ := i; there is no index oracle string. On input instance x = (ci, di)i∈[m] and instance oracles
y⃗ = (fi)i∈[m], the prover P(p, i, x, y⃗) and verifier Vy⃗(ι, x) engage in the following protocol.

Interaction phase.

1. V sends r ← F.
2. P sends f : L → F. In the honest case, f̂ := Combine(dmax, r, (ci(fi), di)i∈[m]).
3. V sends xout1 , . . . , xouts ← F \ L.
4. P sends y1, . . . , ys ∈ F. In the honest case, yj := f̂(xoutj ).
5. V sends xin1 , . . . , xint ← L. Define S := {xout1 , . . . , xouts , xin1 , . . . , xint }.
6. P sends Fill : {xinj }j∈[t] → F. In the honest case, Fill := PolyQuotient(f̂ , S), restricted to
{xinj }j∈[t].

Query phase.

1. Define the virtual function f ′ := Combine(dmax, r, (ci(fi), di)i∈[m]).
2. Define Ans : S → F such that Ans(xoutj ) := yj and Ans(xinj ) := f ′(xinj ).
3. Define the rational function c := Quotient(·, S,Ans,Fill) and degree constraint d := dmax − |S|.
4. V outputs the new instance x′ := (c, d) and instance oracle y′ := f .

Lemma 6.4. Construction 6.3 is complete.

Proof. Since each ci(fi) is a codeword in RS[F,L, di], the combination f ′ is a codeword in RS[F,L, dmax].
The prover computes f = f ′, so f̂ is a polynomial of degree at most dmax and PolyQuotient(f̂ , S) is a
polynomial of degree at most dmax − |S|. Moreover, f̂ agrees with Ans on S; this is because the prover
computes the out-of-domain responses honestly, and f agrees with f ′ (which is virtually computed by the
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verifier). Finally, Quotient(f, S,Ans,Fill) is precisely the evaluations of PolyQuotient(f̂ , S) over L; this is
because the prover computes the hole fills honestly. We conclude that Quotient(f, S,Ans,Fill) is a codeword
in RS[F,L, dmax − |S|].

6.2 Soundness analysis

Lemma 6.5. Construction 6.3 has round-by-round soundness error

εrbr(p, i, x) := max

(
εprox

(
dmax, ρ, δ,m · (dmax + 1)−

m∑
i=1

di

)
, εood(dmax, ℓ, s), (1− δ)t

)
,

where ℓ is such that RS[F,L, dmax] is (δ + t/|L|, ℓ)-list decodable.

Proof. Define γ := δ + t/|L|. We describe a state function State as follows.

1. Combined function. We assign State(p, i, x, y⃗, r) = 1 if and only if ∆(f ′,RS[F,L, dmax]) ≤ δ.

2. Out-of-domain samples. We assign State(p, i, x, y⃗, (r, f, (xoutj )j∈[s])) = 1 if and only if at least one
of the following holds:

(a) ∆(f ′,RS[F,L, dmax]) ≤ δ.
(b) There exist distinct codewords u, u′ ∈ List(f, dmax, γ) with û(xouti ) = û′(xouti ) for all i ∈ [s].

3. In-domain queries. We assign State(p, i, x, y⃗, (r, f, (xoutj )j∈[s], (yj)j∈[s], (x
in
j )j∈[t])) = 1 if and only

if there exists a codeword u ∈ List(f, dmax, γ) which agrees with Ans over S.

We analyze the round-by-round soundness errors of State as follows.

1. Suppose that State(p, i, x, y⃗,∅) = 0 and (i, x, y⃗) ̸∈ L(R). Since the instance is not in the language,
there exists i ∈ [m] such that ∆(ci(fi),RS[F,L, di]) > δ. Applying Lemma 3.9, we find that

Pr
r
[State(p, i, x, y⃗, r) = 1] ≤ εprox

(
dmax, ρ, δ,m · (dmax + 1)−

m∑
i=1

di

)
.

2. Suppose that State(p, i, x, y⃗, (r, f)) = 0. Clearly, Item 2a cannot hold, so it suffices to bound the
probability that Item 2b holds. Applying Lemma 3.4, we find that

Pr
xout1 ,...,xouts

[State(p, i, x, y⃗, (r, f, (xoutj )j∈[s])) = 1] ≤ εood(dmax, ℓ, s).

3. Suppose that State(p, i, x, y⃗, (r, f, (xoutj )j∈[s], (yj)j∈[s])) = 0. Then there exists at most one code-
word u ∈ List(f, dmax, γ) which agrees with Ans at the out-of-domain samples {xoutj }j∈[s]. In or-
der for State to transition to 1, u must exist and moreover agree with f ′ at the in-domain queries
{xinj }j∈[t]. But since f ′ is δ-far from the code, we conclude that

Pr
xin1 ,...,xint

[State(p, i, x, y⃗, (r, f, (xoutj )j∈[s], (yj)j∈[s], (x
in
j )j∈[t])) = 1] ≤ (1− δ)t.

Finally, we show that State is consistent with the verifier’s decision (this is necessary since the proto-
col ends on a prover message). In particular, let τ = (r, f, (xoutj )j∈[s], (yj)j∈[s], (x

in
j )j∈[t]) be a par-

tial transcript containing all but the prover’s final message and suppose that State(p, i, x, y⃗, τ) = 0. By
the definition of a state function, it must be the case that State(p, i, x, y⃗, τ ||Fill) = 0 for any prover
message Fill. Since this is a full transcript, we must show that the verifier outputs a bad instance, i.e.,
∆(Quotient(f, S,Ans,Fill),RS[F,L, dmax − |S|]) > δ. This follows from Lemma 3.6.
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6.3 Extensions and optimizations

Delaying FFTs. A computationally expensive step for the prover is computing Fill. Generally, this requires
t evaluations of the polynomial, e.g., using an FFT in time O(|L| log |L|). Note that the rest of g can be
computed by evaluating the quotient directly. This can be done in time O(t · |L|). The FFT is particularly
expensive if the alphabet of input codewords is some smaller base field F, but the challenge space is over a
larger extension field Fk. In this case, the alphabet for g, and thus the domain of the FFT, will be Fk. Given
this, we want to delay the FFT for multiple accumulation steps. To do this, the prover can send 0 output
values for Fill. Note that g, now is t

|L| far from the code. Let’s refer to these t locations as holes. Whenever
the verifier queries any of the holes, the prover aborts and then recommits to the actual codeword. This now
requires running an FFT. We now argue that the prover only needs to abort and recommit every once in a
while for reasonable parameters.
Assume there are w holes. The probability that the verifier does not query a hole on a single query is 1− w

|L|

or (1 − w
|L|)

t ≈ e
− t·w

|L| for t queries. After k steps, each with t queries, there should be at most k · t holes.

Thus, the probability that after k steps, no hole has been queried is lower bounded by
∏k

i=1(1 −
i·t
|L|)

t ≈

e
−

∑k
i=1

i·t2
|L| ≈ e

− k2·t2
2·|L| . As long as k2·t2

2·|L| ≤ 1/2, i.e. k <

√
|L|
t the probability of querying even a single hole

after k rounds can be upper bounded by 1 − e−1/2 ≈ 40%. For |L| = 226 and t = 80, this implies that
with high probability, the FFT needs to be run only every 100 steps or more. To run the FFT efficiently, the
prover maintains a representation of the polynomials as evaluation over L′ ⊂ F \ L. This ensures that there
will never be holes within L′.
Conjectured security. In Theorem 6.2, we prove that Construction 6.3 is secure for instances up to δ ∈
(0, 1 − √ρ − η) for a small value of η. The constraint directly influences t, the key efficiency parameter
in the protocol as the query complexity t = λ

− log(1−δ) ≈
2·λ

log(1/ρ) . The constraint on δ is related to the
Johnson bound (Theorem 3.3), which proves that there is only a polynomial (in 1/η and 1/ρ) number of
codewords in a (1 −√ρ − η) radius of any string. Prior work [BBHR18; BGKS20; BCIKS23; ACFY24],
as well as practical implementations, have taken a conjecture that even within a (1 − ρ − η′)-radius of any
string, there exists only a polynomial (in 1/ρ, 1/η) number of codewords, and that the proximity gap lemma
(Lemma 3.7) holds up to 1 − δ − η′. For small η′ this results in t ≈ λ

log(1/ρ) , i.e saving roughly a factor
of 2. The conjecture also enables reducing the field size. If we set s = 2 and use the Conjecture 5.6 from
[ACFY24], we can set the field size |F| ≥ 2λ · (m−1)·|L|(η′) , and achieve round-by-round soundness 2−λ.
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7 Accumulation for NP

We construct an accumulation scheme for R1CS relations.

RR1CS(F) :=


(
(A,B,C ∈ FM×N ,M,N),
(x ∈ Fn, w ∈ FN−n),
⊥, ⊥

) :
For z := (x,w) ∈ FN ,

Az ◦Bz = Cz


Consider the polynomial over a field F:

P̂ (Y1, . . . , Ym, Z1, . . . , ZN ) :=
M∑
i=1

eq((i− 1), Y1, . . . , Ym) · (aTi Z⃗ · bTi Z⃗ − cTi Z⃗),

for multi-linear eq(i, Y1, . . . , Ym) =

{
1 Y⃗ ∈ {0, 1}m ∧ i =

∑m
i=1 2

i−1 · Yi
0 Y⃗ ∈ {0, 1}m ∧ i ̸=

∑m
i=1 2

i−1 · Yi
, such that

P̂ (Y1, . . . , Ym, Z⃗) = 0 ∈ F

if and only if for Z⃗ = x||w ((A,B,C,M,N), x, w) ∈ RR1CS(F). Let dP = logm + 2 be the total degree
of P̂ .
We first construct a reduction from RR1CS(F) to an accumulator relation which we define below. The ac-
cumulator consists of two oracle strings and constraints on these oracle strings. The first oracle string is
equivalent to the oracle in the proximity claim accumulator. The second oracle string, in the honest case,
corresponds to the accumulated R1CS witness. We, then, show how to reduce multiple instances of this
accumulator relation into one.
Accumulator relation. The accumulator relation is defined as follows. The index i consists of the follow-
ing:

• Desciption of a finite field F and evaluation domain L ⊂ F.

• Maximum degree parameter dmax ∈ N, dmax < |L|. Define ρ := dmax+1
|L| to be the rate of the corre-

sponding Reed-Solomon code RS[F,L, dmax].

• Distance parameter δ ∈ (0, 1).

• A second distance parameter γ ∈ (0, 1).

The instance consists of two rational constraints of degree df = dmax− t− 2 and dg = dmax− t− 1, as well
as v ∈ Fk and error term e ∈ F, x = (v, e, cf , cg). There are two instance oracle strings f, g ∈ F|L|. There
is no witness. We formally define the promise relationRACC below.

RACC(p) :=

(i, (v, e, cf , cg), (f, g),⊥) :

f ∈ RS[F,L, dmax]
cf (f) ∈ RS[F,L, df ]
cg(g) ∈ RS[F,L, dg]

P̂ (v||f⃗) = e


R̃ACC(p) :=

(i, (v, e, cf , cg), (f, g),⊥) :

∆(cg(g),RS[F,L, dg]) ≤ δ

∃u ∈ List(f, dmax, γ), P̂ (v||u) = e
∧

cf (u) ∈ RS[F,L, dmax − t− 2]


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7.1 Reduction fromRR1CS toRACC

Theorem 7.1 (knowledge soundness of accumulation). Consider a security parameter λ ∈ N. Assume the
index and instance are such that the following holds:

• |F| ≥ 2λ · 10ρ ·m.
• δ ∈

(
0, 1− 1.05 · √ρ

)
.

• γ = δ
Then Construction 7.2 is an interactive oracle reduction (parameterized by λ with round-by-round knowl-
edge error 2−λ and the following efficiency measures:

• Alphabet: F.
• Round complexity: 1
• Proof length: |L|
• Query complexity: 0

Proof. Set η ≥ √ρ/20, the Johnson bound (Theorem 3.3), gives us that ℓ ≤ 1/(2η
√
ρ), i.e. ℓ < 10

ρ . This
implies that κrbr ≤ ℓ ·m/|F| ≤ 2−λ

Construction 7.2.

Interaction phase.
1. P sends f : L → F. In the honest case, f̂ ∈ RS[F,L, dmax] is the encoding of w ∈ FN−n.
2. V sends r1, . . . , rm ← F.

Output phase.
1. Define the vector v⃗ := (r1, . . . , rm, x1, . . . , xn).
2. V outputs the new instance (v, 0,⊥,⊥) and new instance string (f, [0]).

7.1.1 Soundness analysis

Lemma 7.3. Construction 7.2 is complete and is round-by-round knowledge sound with knowledge error
κrbr =

ℓ·m
F

Proof. Completeness is immediate. Given any transcript the extractor E decodes the first message f to
List(f, dmax, γ) and finds a u ∈ List(f, dmax, γ) such that P̂ (Y1, . . . , Ym, z⃗) = 0 for z⃗ = x⃗||u. If such a u
exits, E outputs u.
We analyze the round-by-round knowledge error of State as follows. Suppose that State(p, i, x⃗, f) = 0.
Then, for all codewords u in List(f, dmax, γ), P̂ (Y1, . . . , Ym, x⃗, u) ̸= 0. Since P̂ is a multi-linear m-variate
non-zero polynomial, we find that by the Schwartz-Zippel lemma Prr⃗[P̂ (r⃗, x⃗||u⃗)] ≤ m

|F| , and thus taking a
union bound over all ℓ polynomials in List(f, dmax, γ) we find that,

Pr
r⃗←Fm

[State(p, i, x⃗, (f, r⃗))] ≤ ℓ ·m
|F|

If the probability is greater than this, then P̂ (r⃗, x⃗||u⃗) must be a zero-polynomial for some u in the list
decoding radius and E outputs a valid witness to (i, x⃗) ∈ L(RR1CS).

29



7.2 Reduction fromR∗ACC toRACC

Theorem 7.4 (Security of accumulation). Consider a security parameter λ ∈ N. Assume the index and
instance are such that the following holds:

• |F| ≥ 2λ · 107 ·m · dP · dmax2 · 3t · ρ−3.5.
• δ ∈

(
0, 1− 1.05 · √ρ− λ

− log(1−δ)·|L|

)
.

• γ = δ + λ
− log(1−δ)·|L|

Then Construction 7.5, when instantiated with s = 1 and t = λ
− log(1−δ) , is an interactive oracle reduction

(parameterized by λ) with round-by-round soundness error 2−λ and the following efficiency measures:
• Alphabet: F.
• Round complexity: 5
• Query complexity: 6 ≤ t ≤ λ

− log(1−δ) .
• Proof length: 2 · (|L|+ t+m+ 1) field elements.

Proof. Soundness. We analyze the soundness error given the defined size of F:
• εprox(dmax, ρ, δ,m · (2t+ 6)) = m·3·t·dmax2

|F|(
√
ρ

10
)7
≤ 2−λ (Plugging in the value for F).

• εood = m · ℓ22 · (
dmax
|F|−|L|).

• Assuming that dmax < |L| ≤ |F|/2, we get εood ≤ m · 100
ρ2
· dmaxF .

• Since |F| ≥ 2λ ·m · 100 · dmax · ρ−2 we have that εood ≤ 2−λ

• εacc =
(m−1)·dP

F ≤ 2−λ for |F| ≥ m · dP · 2λ.

• (1− δ)t ≤ (1− δ)
λ

− log(1−δ) = 2−λ.
Since the round-by-round-soundness error is the maximum of these errors, we have that, for the chosen
parameters, it is bounded above by 2−λ.

Efficiency. The protocol has 5 rounds, 6 prover and 5 verifier messages. The number of oracle queries is
t = λ

− log(1−δ) to f and g which can be send as one interleaved codeword over F2. The total proof length
consists of two oracles of length |L|, each as well as 2m+ 2 out of domain responses, along with two Fills
of size t = λ

− log(1−δ) .

Construction 7.5. We describe an interactive oracle reduction from R∗ACC to RACC. On input index i, the
indexer I outputs short index ι := i; there is no index oracle string. The prover and verifier are additionally
parameterized by p = (s, t), where s, t ∈ N are the out-of-domain and in-domain repetition parameters,
respectively. On input instance x = (v, e, cf,i, cg,i)i∈[m] and instance oracles y⃗ = (fi, gi)i∈[m], the prover
P(p, i, x, y⃗) and verifier Vy⃗(p, i, x) engage in the following protocol.

Interaction phase. Let H ⊂ F be an arbitrary sized m subset of F, and L̂i(X)∀i ∈ [m], the corre-
sponding Lagrange polynomials, and V̂H(X), the vanishing polynomial on H . Define df = dmax−t−2
and dg = dmax − t− 1.

1. P sends q̂(X) ∈ F[X], a degree dP · (m− 1)−m polynomial.
In the honest case q̂(X) · V̂H(X) +

∑m
i=1 L̂i(X) · ei = P̂ (

∑m
i=1 L̂i(X) · (vi||f̂i))

2. V sends x(1) ← (F \ L)s

3. P sends y(1)i ∈ Fs for all i ∈ [m]. In the honest case y
(1)
i := f̂i(x

(1)). a

4. V sends α ∈ F and x(2) ∈ (F \ L)s
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5. P sends y(2)i ∈ Fs for all i ∈ [m]. In the honest case y
(2)
i := f̂i(x

(2)).
6. For all i ∈ [m], let cf ′

i
:= Quotient(·, {x(1), x(2)},Ans′i,⊥)

for Ans′i(x
(1)) = y

(1)
i ∧ Ans′i(x

(2)) = y
(2)
i .

7. V sends r ← F.
8. P sends f, g : L → F.

In the honest case, f̂ :=
∑m

i=1 L̂i(α) · f̂i and
ĝ := Combine(dmax, r, ((cf,i(f̂i), df ), (c

′
f,i(f̂i), dmax − 2), (cg,i(ĝi), dg))i∈[m])

9. V sends x(3) ∈ Fs

10. P sends y((3),g), y((3),f) ∈ Fs. In the honest case y
((3),g)
i := ĝ(x

((3),g)
i )∀i ∈ [s] and

y
((3),f)
i := f̂(x

((3),f)
i ).

11. V sends xin ← Ft.
12. P sends Fillf : Sf → F, where Sf := {xin, x(2), x(3)}.

In the honest case, Fillf := PolyQuotient(f̂ , Sf )|xin .
13. P sends Fillg : Sg → F, where Sg := {xin, x(3)}.

In the honest case, Fillg := PolyQuotient(ĝ, Sg)|xin .
Output phase.

1. Define v :=
∑m

i=1 L̂i(α) · vi
2. Define e := V̂H(α) · q̂(α) +

∑m
i=1 L̂i(α) · ei.

3. Define the virtual functions

• g′ := Combine(dmax, r, ((cf,i(f̂i), df ), (c
′
f,i(f̂i), dmax − 2), (cg,i(ĝi), dg))i∈[m])

• f ′ :=
∑m

i=1 L̂i(α) · fi
.

4. Define Ansf : Sf → F such that

• Ansf (x
(2)) :=

∑m
i=1 L̂i(α) · y(2)i

• Ansf (x
((3),f)) := y((3),f)

• Ansf (x
in) := f ′(xin)

5. Define the rational constraint cf := Quotient(·, Sf ,Ansf ,Fillf ).
6. Define Ansg : Sg → F such that Ansg(x(3)) := y((3),g) and Ansg(x

in) := g′(xin).
7. Define the rational constraint cg := Quotient(·, Sg,Ansg,Fillg).
8. V outputs new instance (v, e, cf , cg) and new instance strings (f, g).
aWe slightly abuse notation and write f(x⃗) = y⃗ for x⃗, y⃗ ∈ Fn to denote f(xi) = yi∀i ∈ [n]

7.3 Completeness and soundness of Construction 7.5

Lemma 7.6. Construction 7.5 is complete.

Proof. Since fi, cf,i(fi) and cg,i(gi) are codewords, and all in-domain and out-of-domain query responses
correspond to these codewords, we have that both g and f , the outputs of Combine and a random linear
combination are codewords as well. Further we have that P̂ (vi, fi) = ei. P̂ is a degree dP polynomial.
Therefore, P̂ (

∑m
i=1 L̂i(X)(vi, fi)) −

∑m
i=1 L̂i(X)ei is 0 on all of H . Therefore, there exists a degree

m · (dP − 1)−m polynomial q̂(X) such that P̂ (
∑m

i=1 L̂i(X)(vi, fi))−
∑m

i=1 L̂i(X)ei = q̂(X) · V̂H(X).
This implies that P̂ (v, f) = e.
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Lemma 7.7. Construction 7.5 has a round-by-round soundness error

κrbr = max

(
εprox(dmax, ρ, δ,m · (2t+ 6),m · ℓ

2

2
·
(

dmax
|F| − L

)s

,
(m− 1) · dP

F
, (1− δ)t

)
.

Proof. We denote by τi the index, the instance and the transcript up to the i-th verifier message, so that
τ0 = (p, i, x⃗). We define the following doom sets. Di is the doom set after the i-th verifier message. We will
show that τ0 ∈ D0 implies that there exists an i such that (i, xi) ̸∈ L(RACC) with all but negligble probability
for all sets. Concretely, we show that the probability Prcj [τj−1 ∈ Dj−1 ∧ τj = (τj−1||cj) ̸∈ Dj ] ≤ κ

(j)
rbr

for round-by-round errors κ(1)rbr, . . . , κ
(6)
rbr. The overall round-by-round error will be the maximum of these

per-round errors. Let γ = δ + t/|L|, df = dmax − t− 2 and dg = dmax − t− 1. Then the following holds:

• D0 = Df
0 ∪Dg

0 for

– Df
0 = {∃i s.t. ∀u ∈ List(fi, dmax, γ) : cf,i(u) ̸∈ RS[F,L, df ] ∨ P̂ (vi||u) ̸= ei}

– Dg
0 = {∃i s.t. ∀u ∈ List(gi, dmax, γ) : cg,i(u) ̸∈ RS[F,L, dg]}

• D1 = Df
1 ∪Dg

1 for

– Df
1 = Df

0 ∩ {∀i,∀(u, u′) ∈ List(fi, dmax, γ) : u(x
(1)) ̸= u′(x(1)) ∨ u = u′}

– Dg
1 = Dg

0

Claim 7.8 (D0 to D1). Let Prx(1) [τ0 ∈ D0 ∧ (τ0, x
(1)) ̸∈ D1] ≤ κ

(1)
rbr. If τ0 ∈ D0 and (τ, y(1)) ̸∈ D1, then

there exists an i such that two polynomials in the list decoding radius of fi are equal at x(1). The probability
that two degree dmax polynomials are equal at s points in F \ L is bounded by ( dmax

|F|−|L|)
s. A union bound

over all
(
ℓ
2

)
points in List(fi, dmax, γ) and over i yields that κ(1)rbr = m · ℓ22 ·

(
dmax
|F|−|L|

)s
• D2 = Df,far

2 ∪Df,ACC
2 ∪Dg

2 for Dg
2 = Dg

1 and

– Df,far
2 = {∃i ∀u ∈ List(fi, dmax, γ) : cf,i(u) ̸∈ RS[F,L, df ] ∨ u(x(1)) ̸= yi}

– Df,ACC
2 =

{
P̂ (v||

∑m
i=1 L̂i(α) · ui) ̸=

∑m
i=1 L̂i(α) · ei + q̂(α) · V̂ (α)

for unique ui ∈ List(fi, dmax, γ) : cf,i(ui) ∈ RS[F,L, df ] ∧ ui(x
(1)) = y

(1)
i

}

Claim 7.9 (D1 to D2). Let Prα[τ1 ∈ D1∧(τ1, α) ̸∈ D2] ≤ κ
(2)
rbr, and let ui ∈ List(fi, dmax, γ) be the unique

polynomial such that cf,i(ui) ∈ RS[F,L, dmax − |cf,i(ui)], and ui(x
(1)) = yi. If such a ui does not exist

then (τ1, α) ∈ Df
2 , if any two ui agree on x(1) then τ1 ̸∈ Df

1 so τ1 ∈ Dg
1 = Dg

2 . Let u′ :=
∑m

i=1 L̂i(α)ui.
Note that by assumption ∃i, s.t. P̂ (vi||ui) ̸= ei. The probability over α that P̂ (v||u′) = q̂(α) · V̂ (α) +∑m

i=1 L̂i(α) ·ei, is equivalent to two dP · (m−1) polynomials agreeing on a random point. This probability
is bounded by κ

(2)
rbr =

dP ·(m−1)
F

• D3 = Df,ACC
3 ∪Df,far

3 ∪Dg
3 for Dg

3 = Dg
2 , Df,far

3 = Df,far
2

– Df,ACC
3 = {∀u ∈ List(f ′, dmax, γ) : u(x

(2)) ̸=
∑m

i=1 L̂i(α) · y(2)i ∨ P̂ (v||u) ̸= e}
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Claim 7.10 (D2 to D3). Let Prx(2) [τ2 ∈ D2 ∧ (τ2, x
2) ̸∈ D3] ≤ κ

(3)
rbr. Either there exists an i such that all

polynomials in the list decoding radius of fi do not satisfy the constraints cf,i or c′f,i or we have for all u one
of the following two cases:
u = u′. In this case P (u) = P (u′) ̸= e

u ̸= u′. The probability that u and u′ agree on x(2) is bounded by ( dmax
|F|−L)

s

Taking a union bound over all ℓ polynomials in List[f ′, dmax, γ] we get κ(3)rbr = ℓ · ( dmax
|F|−L)

s

• D4 = Df
4 ∪Dg

4 for

– Df
4 = Df,ACC

3

– Dg
4 = {∆(g′,RS[F,L, dmax]) > δ}

Claim 7.11 (D3 to D4). Prr[τ3 ∈ D3 ∧ (τ3, r) ̸∈ D4] ≤ κ
(4)
rbr. If τ3 ∈ Df,far

3 or τ3 ∈ Dg
3 then for

some i ∈ [m] one of the constraints cf,i, c′f,i or cgi won’t be satisfied, i.e. the quotiented codeword is far
from the code. We can ergo bound the probability that the resulting combined g′ is close to the code, using
the proximity-gap Lemma 3.9. For this recall that df = dmax − t − 2 and dg = dmax − t − 1. Since
3m(dmax + 1)−

∑m
i=1(df + dg + dmax − 2) = m · (2t+ 6) by κ

(4)
rbr = εprox(dmax, ρ, δ,m · (2t+ 6))

• D5 = Df
5 ∪Dg

5 for

– Df
5 = Df

4 ∩ {∀(u, u′) ∈ List(f, dmax, γ) : u(x
(3)) ̸= u′(x(3)) ∨ u = u′}

– Dg
5 = Dg

4 ∩ {∀(u, u′) ∈ List(g, dmax, γ) : u(x
(3)) ̸= u′(x(3)) ∨ u = u′}

Claim 7.12 (From D4 to D5). Prx(3) [τ4 ∈ D4 ∧ (τ4, x
(3)) ̸∈ D5] ≤ κ

(5)
rbr We compute the probability over

y(3) that τ4 ∈ D4 implies (τ4, x(3)) ̸∈ D5. This is the case if two polynomials in the list decoding radius of
g or f are equal at independently chosen s points x(3) ∈ F \ L.

Assume τ4 ∈ Df
4 . Using a union bound over all pairs in the list decoding radius, we get that the probability

that τ4, x(3) ̸∈ Df
5 is bounded by ℓ2

2 ·
(

dmax
|F|−|L|

)s
. This is a necessary condition to escape the doomset and

thus suffices as an upper bound.
Otherwise, i.e. τ4 ∈ Dg

5 . Using the same union bound, we get the bound on the probability that τ4, x(3) ̸∈
Dg

5 .

Overall the probability is bounded by the max of the two cases, i.e. κ(5)rbr =
ℓ2

2 ·
(

dmax
|F|−|L|

)s
• D6 = Df

6 ∪Dg
6

– Df
6 = {∀u ∈ List(f, dmax, γ) : cf (u) ̸∈ RS[F,L, d]) ∨ P̂ (v||u) ̸= e}

– Dg
6 = {∀u ∈ List(g, dmax, γ) : ∆(cg(u),RS[F,L, d]) > δ}

Claim 7.13 (From D5 to D6). Prxin [τ5 ∈ D5 ∧ (τ5, x
in) ̸∈ D6] ≤ κ

(6)
rbr.

τ5 ∈ Dg
5 . If τ5 ∈ Dg

5 then there exists at most one codeword u ∈ List(g, dmax, γ) such that u(x(3)) =
y((3),g). Additionally ∆(u, g′) ≥ δ. The probability that g′ and u agree on xin is bounded by (1 − δ)t. If
they do not agree than cg(g) is at least δ far from RS[F,L, d] by Lemma 3.6.

Else, i.e. τ5 ∈ Df
5 . Let u′ be the unique polynomial in List(f ′, dmax, γ) such that u′(x(2)) =

∑m
i=1 L̂i(α) ·

y
(2)
i . Let u be the unique polynomial in List(f, dmax, γ) such that u(x(3)) = y((3),f). If no such polynomial

exists then cf (f) is δ-far from RS[F,L, d]. Otherwise, we have one of three cases:
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1. u ̸∈ List(f ′, dmax, γ). In this case ∆(u, f) > γ > δ and the probability that u and f ′ agree on xin is
bounded by (1− δ)t. If not then cf (f) is δ-far from RS[F,L, d].

2. u ∈ List(f ′, dmax, γ) and u(x(2)) ̸=
∑m

i=1 L̂i(α)·y(2)i . In this case cf (u) ̸∈ RS[F,L, d] by Lemma 3.6,
and thus cf (f) is δ-far from RS[F,L, d].

3. u = u′ and u(x(2)) =
∑m

i=1 L̂i(α) · y(2)i . Then, by assumption P̂ (v||u) ̸= e.

The error is the max of both cases, i.e., κ(6)rbr = (1− δ)t.

Note that τ6 ∈ D6 =⇒ (i, (v, e, cf , cg)) ̸∈ L(RACC).
The overall round-by-round soundness error is

κrbr = max
i∈[6]

(κ
(i)
rbr) =

(
εprox(dmax, ρ, δ,m · (2t+ 6)),m · ℓ

2

2
· ( dmax
|F| − L

)s,
(m− 1) · dP

F
, (1− δ)t

)
.

Remark 7.14 (Extension to arbitrary P̂ ). Our construction is written for a polynomial P̂ that encodes R1CS,
but we note that, like ProtoStar [BC23], it directly applies to more general P̂ , including ones that perform
higher-degree checks like those required for encoding a customizable constraint system [STW23] or high-
degree Plonk checks [CBBZ23]. This is beneficial because higher degree relations are more expressive and
have smaller witnesses; indeed, recent works [Xio+23; DMS24] have shown the concrete benefit of using
degree 5 to 7 constraints, and so supporting them can significantly reduce the cost of committing to a new
witness. However, this is traded off with a larger q̂(X) (linear in the degree). The protocol does not need
to change in order to accommodate different P̂ . The only difference is that q̂(X) is now a higher degree,
(dP − 1) ·m −m, polynomial, and that the soundness contains a dP ·m

F term. As long as F > dP ·m · 2λ,
the soundness error remains 2−λ.

Remark 7.15 (Number of out-of-domain samples). Note that the protocol requires three rounds of out-of-
domain samples. We give a brief intuitive explanation for these samples and in what scenarios the first can
be omitted. The first round binds the prover to use a unique polynomial ui within the list-decoding radius of
each fi. This is important as otherwise there could be up to ℓm possible combination of codewords within
the list-decoding radiuses. This is used, when bounding the probability over α that P (

∑m
i=1 L̂i(α) ·ui) = e.

The second out-of-domain challenge, after the choice of α, connects f ′ to u′ =
∑m

i=1 L̂i(α) · ui, i.e. a
prover can only succeed if u′ is in the list-decoding radius of f ′. The final out-of-domain challenge forces
the prover to use a unique polynomial in f . An astute reader will notice that in accumulation, f becomes an
input fi to the next round reduction-of-knowledge. This means that we ensure that the prover uses a unique
polynomial within the list decoding radius of f , twice: Once at the beginning of the reduction and once at
the end. This seems superfluous. However, in accumulation, we cannot guarantee that the accumulator was
generated in a particular way, e.g., is the output of a previous accumulation step. For completely arbitrary
inputs, we cannot guarantee that there is a unique polynomial corresponding to the constraint within the
decoding radius of the input. In many practical applications, however, one can safely skip the first round
of out-of-domain samples as long as the application checks that input accumulators are the output of an
accumulation procedure. This is the case in IVC and PCD.

Remark 7.16 (Conjectured security and delaying FFTs). The optimizations described in Section 6.3, equally
apply to Construction 7.5. Importantly, under a commonly taken coding conjecture t, the number of queries
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can be reduced from roughly t ≈ 2λ
log(1/ρ) to t ≈ λ

log(1/ρ) . Additionally, it is possible to delay FFTs by not
computing and sending Fill values until the code is queried at one of the holes. At that point, the prover can

run an FFT and compute a codeword without holes. This should at most happpen every
√
|L|
t steps.
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A Proof of Theorem 4.3

Theorem 4.3. There exists a polynomial-time transformation T such that the following holds. Let R be
a parameterized indexed relation. Let RUACC be a parameterized indexed promise relation in NPU with the
same parameter space as R. Suppose we are given the following non-interactive reductions in the random
oracle model:

• RDXCAST = (GCAST, ICAST,PCAST,VCAST), a reduction fromR toRACC.

• RDXFOLD = (GFOLD, IFOLD,PFOLD,VFOLD), a many-to-one reduction from R∗ACC to RACC with the same
generator algorithm as RDXCAST (i.e., GFOLD ≡ GCAST).

Then T[RDXCAST,RDXFOLD,RACC] = (ARG,ACC), where ARG is a non-interactive argument for R and
ACC is an accumulation scheme for ARG, both in the random oracle model.

Proof. Follows immediately from Lemma A.5 and Lemma A.7.

A.1 Accumulation schemes

Here, we include the definition of non-interactive arguments and accumulation schemes. The construction of
PCD from our follows exactly as in [BCLMS21]. However, unlike in [BCLMS21], our definitions include
a relaxed version of the verifier and decider, which are used in the corresponding knowledge soundness
definitions. Theorem 5.3 in [BCLMS21], the generic construction of PCD, follows almost immediately
from our definitions. Essentially, it suffices to replace the verifier and decider in the knowledge soundness
proof with their relaxed variants. This is similar to how recent work [BMNW24] builds proof-carrying
data from bounded-depth accumulation. However, here in our setting, there is only one relaxed verifier and
decider rather than up to s for some bound s ∈ N; hence, the generic construction and proof follows almost
immediately.

Definition A.2. A (preprocessing) non-interactive argument in the random oracle model is a tuple of
polynomial time algorithms ARG = (G, I,P,V, Ṽ) that satisfy the following properties.

Completeness. ARG is complete if the following holds. For every adversary A,

Pr


(i, x,w) ∈ Rρ(pp)

⇓
Vρ(vk, x, π) = 1

∣∣∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← G(1λ)
(i, x,w)← Aρ(pp)

(pk, vk)← Iρ(pp, i)
π ← Pρ(pk, x,w)

 = 1,

and

Pr

 V
ρ(vk, x, π) = 1

⇓
Ṽρ(vk, x, π) = 1

∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← G(1λ)
(i, x, π)← Aρ(pp)

(pk, vk)← Iρ(pp, i)

 = 1.

Knowledge soundness. ARG is knowledge sound (with respect to auxiliary input distribution D) if the
following holds. There exists a deterministic polynomial-time extractor E such that for every (non-uniform)
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polynomial-time adversary P̃ ,

Pr


Ṽρ(vk, x, π) = 1

∧
(i, x,w) ̸∈ Rρ(pp)

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)
ai← D(1λ)

(i, x, π; tr)← P̃ρ(pp, ai)
(pk, vk)← Iρ(pp, i)

w← E(pp, i, x, π, ai, tr)

 ≤ negl(λ).

Definition A.3. Let ARG = (G, I,P,V, Ṽ) be a non-interactive argument in the random oracle model for
index relationRρ such that the proofs have a canonical partition into pairs π := (π.x, π.w).
An accumulation scheme for ACC for ARG in the random oracle model is a tuple of polynomial-time
algorithms ACC = (G, I,P,V,D, D̃), which shares the same generator algorithm as ARG. An accumulation
scheme must satisfy the following properties.
Completeness. ACC is complete if the following holds. For every adversary A,

Pr



∀ i ∈ [n], Vρ(vk, xi, πi) = 1∧
∀ j ∈ [m], D(dk, accj) = 1

⇓

V

(
avk,

[
xi, πi.x

]
i∈[n]

,

[acci.x]i∈[m], acc.x, pf

)
= 1

∧D(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)(

i,
[
xi, (πi.x, πi.w)

]
i∈[n]

, [accj ]j∈[m]

)
← Aρ(pp)

(pk, vk)← Iρ(pp, i)
(apk, avk, dk)← Iρ(pp, i)

(acc, pf)← Pρ
(
apk,

[
xi, πi

]
i∈[n]

, [accj ]j∈[m]

)


= 1,

and

Pr

 D(dk, acc) = 1
⇓

D̃(dk, acc) = 1

∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← G(1λ)
(i, acc)← Aρ(pp)

(apk, avk, dk)← Iρ(pp, i)

 = 1.

where each accumulator has a canonical partition into pairs acc := (acc.x, acc.w).
Knowledge soundness. ACC is knowledge sound (with respect to auxiliary input distribution D) if there
exists a deterministic polynomial-time extractor E such that for every (non-uniform) polynomial-time ad-
versary P̃, the following holds

Pr



V

(
avk,

[
xi, πi.x

]
i∈[n]

,

[acci.x]i∈[m], acc.x, pf

)
= 1

∧ D̃(dk, acc) = 1
∧

∃ i ∈ [n], Ṽρ(vk, xi, πi) ̸= 1

∨∃ j ∈ [m], D̃(dk, accj) ̸= 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)
ai← D(1λ)(

i,
[
xi, πi.x

]
i∈[n]

,

[acci.x]i∈[m], acc, pf
; tr

)
← P̃ρ(pp, ai)

(pk, vk)← Iρ(pp, i)
(apk, avk, dk)← Iρ(pp, i)([

πi.w
]
i∈[n]

,
[
accj .w

]
j∈[m]

)
← E

(
pp,

i,
[
xi, πi.x

]
i∈[n]

,

[acci.x]i∈[m], acc, pf
, ai; tr

)


≤ negl(λ).

A.2 Construction

ARG Construction. The non-interactive argument Construction A.4 can be viewed as a simple wrapper
around the non-interactive reduction RDXCAST. Effectively, the prover and verifier both execute the reduction
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RDXCAST to reduce the claim aboutR toRACC. Now, the prover can simply include the output witnessRACC

as a part of the argument proof. To be specific, the argument proof will simply consist of both the reduction
proof πCAST and the output witness acc.w forRACC. The argument verifier simply derives the corresponding
output instance acc.x using πCAST and checks the output instance-witness pair belongs toRACC.

Construction A.4. We define ARG = (G, I,P,V, Ṽ) as follows.

G(1λ): Output pp← GCAST(1λ).

Iρ(pp, i):

1. Compute (pkCAST, vkCAST, i
′)← IρCAST(pp, i).

2. Output (pk, vk) :=
(
pkCAST, (vkCAST, i

′, pp)
)
.

Pρ(pk, x,w):

1. Compute (πCAST, acc.w)← Pρ
CAST(pk, x,w).

2. Assign (π.x, π.w) := (πCAST, acc.w).

3. Output π := (π.x, π.w).

Vρ
(
vk := (vkCAST, i′, pp), x, π := (πCAST, acc.w)

)
:

1. Compute acc.x← VρCAST(vkCAST, x, πCAST).
2. Check that (i′, acc.x, acc.w) ∈ Rρ

ACC(pp).

Ṽρ
(
vk := (vkCAST, i′, pp), x, π := (πCAST, acc.w)

)
:

1. Compute acc.x← VρCAST(vkCAST, x, πCAST).
2. Check that (i′, acc.x, acc.w) ∈ R̃ρ

ACC(pp).

Lemma A.5. Construction A.4 (ARG) is a non-interactive argument forR.

Proof. Since ARG is a trivial wrapper around the non-interactive reduction RDXCAST, the algorithms remain
polynomial-time.
Completeness. Since ARG is a trivial wrapper around the non-interactive reduction RDXCAST, completeness
follows immediately from the completeness of RDXCAST and the fact thatRρ

ACC(pp) ⊆ R̃
ρ
ACC(pp).

Knowledge soundness. Consider an arbitrary polynomial-time adversary P̃ . We construct an adversary
P̃CAST against the non-interactive reduction RDXCAST as follows:
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P̃ρ
CAST(pp, ai):

1. Compute (i, x, π, π; tr)← P̃(pp, ai).
2. Assign (πCAST, acc.w) := π.

3. Output (i, x, πCAST, acc.w; tr).

By the knowledge soundness of the non-interactive reduction RDXCAST, there exists a corresponding extrac-
tor ECAST. We construct an extractor for ARG as follows:

E(pp, i, x, π, ai, tr):

1. Assign (πCAST, acc.w) := π.

2. Compute w← ECAST(pp, i, x, πCAST, acc.w, ai, tr).
3. Output w.

By the construction of the relaxed argument verifier Ṽρ, knowledge soundness of RDX, and Remark 4.1, we
have that

Pr


Ṽρ(vk, x, π) = 1

∧
(i, x,w) ̸∈ Rρ(pp)

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)
ai← D(1λ)

(i, x, π; tr)← P̃ρ(pp, ai)
(pk, vk)← Iρ(pp, i)

w← E(pp, i, x, π, ai, tr)



≤ Pr


(i′, acc.x, acc.w) ∈ R̃ρ

ACC(pp)
∧

(i, x,w) ̸∈ Rρ(pp)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)
ai← D(1λ)

(i, x, πCAST, acc.w; tr)← P̃ρ
CAST(pp, ai)

(pkCAST, vkCAST, i
′)← IρCAST(pp, i)

acc.x← VρCAST(vkCAST, x, πCAST)
w← ECAST(pp, i, x, πCAST, acc.w, ai, tr)


≤ negl(λ).

ACC Construction. The accumulation scheme (Construction A.6) for ARG (Construction A.4) can simi-
larly be viewed as a simple wrapper around the non-interactive reduction RDXFOLD. The first step is to cast
the argument verifier claims to claims for RACC. This is done by simply calling VρCAST, which is used in the
argument verifier to generate an instance acc.x for RACC. Now that we have m + n claims for RACC, the
prover and verifier both execute the reduction RDXFOLD which exactly reduces m + n claims for RACC to a
single claim for RACC. The accumulation proof pf is simply the reduction proof πFOLD for RDXFOLD, and the
output accumulator is the output instance-witness pair inRACC. The decider (relaxed decider) just check this
pair belongs toRACC (R̃ACC).

Construction A.6. We define ACC = (G, I,P,V,D, D̃) as follows. The generator algorithm, G, is defined
in Construction A.4.
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Iρ(pp, i):

1. Compute (pkCAST, vkCAST, i
′)← IρCAST(pp, i).

2. Compute (pkFOLD, vkFOLD, i
′)← IρFOLD(pp, i′).

3. Output apk := (vkCAST, pkFOLD, vkFOLD), avk := (vkCAST, vkFOLD), and dk := (i′, pp).

Pρ
(
apk := (vkCAST, pkFOLD, vkFOLD), (xi, πi)i∈[n], (acci)i∈[m]

)
:

1. For each i = 1, . . . , n,

(a) Compute acc(m+i).x← V
ρ
CAST(vkCAST, xi, πi.x) and assign acc(m+i).w := π.w.

2. Compute (πFOLD, acc.w)← Pρ
FOLD

(
pkFOLD, (acci.x)i∈[m+n], (acci.w)i∈[m+n]

)
.

3. Compute acc.x← VρFOLD(vkFOLD, (acci.x)i∈[m+n], πFOLD).

4. Output acc← (acc.x, acc.w) and pf ← πFOLD.

Vρ
(
avk := (vkCAST, vkFOLD), (xi, πi.x)i∈[n], (acci.x)i∈[m], acc.x, pf

)
:

1. For each i = 1, . . . , n,

(a) Compute acc(m+i).x← V
ρ
CAST(vkCAST, xi, πi.x).

2. Check that acc.x = VρFOLD(vkFOLD, (acci.x)i∈[m+n], pf).

Dρ(dk = (i′, pp), acc):

1. Check that (i′, acc.x, acc.w) ∈ Rρ
ACC(pp).

D̃ρ(dk = (i′, pp), acc):

1. Check that (i′, acc.x, acc.w) ∈ R̃ρ
ACC(pp).

Lemma A.7. Construction A.6 (ACC) is an accumulation scheme for ARG.

Proof. Since ACC is a trivial wrapper around RDXCAST and RDXACC, the algorithms remain polynomial-time.
Completeness. By construction of Vρ and Dρ, if ∀ i ∈ [n], Vρ(vk, xi, πi) = 1 and ∀ j ∈ [m], D(dk, accj)
= 1, then [acci.x, acci.w]i∈[m+n] ∈ R

ρ
ACC(pp). Thus, since ACC is a trivial wrapper around RDXACC, com-

pleteness follows immediately from the completeness of RDXACC and the fact thatRρ
ACC(pp) ⊆ R̃

ρ
ACC(pp).

Knowledge Soundness. Consider an arbitrary polynomial-time adversary P̃. We construct an adversary
P̃FOLD against the non-interactive reduction RDXFOLD as follows:
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P̃ρ
FOLD(pp, ai):

1. Compute
(
i,
[
xi, πi.x

]
i∈[n], [acci.x]i∈[m], acc, pf; tr

)
← P̃ρ(pp, ai).

2. Assign (acc.x, acc.w) := acc and πFOLD := pf.

3. Compute (pkCAST, vkCAST, i
′)← IρCAST(pp, i).

4. For each i = 1, . . . , n,

(a) Compute acc(m+i).x← V
ρ
CAST(vkCAST, xi, πi.x).

5. Output (i′, [acci.x]i∈[m+n], πFOLD, acc.w; tr).

By the knowledge soundness of the non-interactive reduction RDXFOLD, there exists a corresponding extrac-
tor EFOLD. We construct an extractor for ACC as follows:

E
(
pp, i′,

[
xi, πi.x

]
i∈[n], [acci.x]i∈[m], acc, pf, ai; tr

)
:

1. Assign (acc.x, acc.w) := acc and πFOLD := pf.

2. Compute [acci.w]i∈[m+n] ← EFOLD(pp, i′, [acci.x]i∈[m+n], πFOLD, acc.w, ai, tr).

3. Assign [πi.w]i∈[n] := [acci.w]
m+n
i∈[m+1].

4. Output
(
[πi.w]i∈[n], [accj .w]j∈[m]

)
.

By construction of the relaxed argument verifier Ṽ and relaxed decider D̃, construction of the accumulation
verifier V and P̃FOLD, and by knowledge soundness of RDXFOLD, we have that
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Pr



V

(
avk,

[
xi, πi.x

]
i∈[n]

,

[acci.x]i∈[m], acc.x, pf

)
= 1

∧ D̃(dk, acc) = 1
∧

∃ i ∈ [n], Ṽρ(vk, xi, πi) ̸= 1

∨∃ j ∈ [m], D̃(dk, accj) ̸= 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)
ai← D(1λ)(

i,
[
xi, πi.x

]
i∈[n]

,

[acci.x]i∈[m], acc, pf
; tr

)
← P̃ρ(pp, ai)

(pk, vk)← Iρ(pp, i)
(apk, avk, dk)← Iρ(pp, i)([

πi.w
]
i∈[n]

,
[
accj .w

]
j∈[m]

)
← E

(
pp, i,

[
xi, πi.x

]
i∈[n]

,

[acci.x]i∈[m], acc, pf
, ai; tr

)



≤ Pr



V

(
avk,

[
xi, πi.x

]
i∈[n]

,

[acci.x]i∈[m], acc.x, pf

)
= 1

∧ D̃(dk, acc) = 1
∧

[(i′, acci.x, acci.w)]i∈[m+n] ̸∈ R̃ρ,m+n
ACC (pp)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)
ai← D(1λ)(

i,
[
xi, πi.x

]
i∈[n]

,

[acci.x]i∈[m], acc, pf
; tr

)
← P̃ρ(pp, ai)

(pk, vk)← Iρ(pp, i)
(apk, avk, dk)← Iρ(pp, i)

(pkCAST, vkCAST, i
′)← IρCAST(pp, i)

∀ i ∈ [n], acc(m+i).x← Vρ
CAST(vkCAST, xi, πi.x)([

acc(m+i).w
]
i∈[n]

,
[
accj .w

]
j∈[m]

)
← E

(
pp, i,

[
xi, πi.x

]
i∈[n]

,

[acci.x]i∈[m], acc, pf
, ai; tr

)



≤ Pr



(i′, acc.x, acc.w) ∈ R̃ρ
ACC(pp)

∧
[(i′, acci.x, acci.w)]i∈[m+n] ̸∈ R̃ρ,m+n

ACC (pp)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)
ai← D(1λ)(

i′, [acci.x]i∈[m+n],
πFOLD, acc.w

; tr

)
← P̃ρ

FOLD(pp, ai)

(pkFOLD, vkFOLD, i
′)← IρFOLD(pp, i′)

acc.x← Vρ
FOLD(vkFOLD, [acci.x]i∈[m+n], πFOLD)

[acci.w]i∈[m+n] ← EFOLD
(

pp, i′, [acci.x]i∈[m+n],
πFOLD, acc.w, ai, tr

)


≤ negl(λ).
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B Proof of Theorem 5.9

We first recall Theorem 5.9 and give a full description of the transformation T in Construction B.2. To prove
knowledge soundness, we follow the modular approach outlined in [CY24, Section 26.1.2]. In more detail,
we decompose T = FS ◦ Ti into two transformations:

• Ti takes an interactive oracle reduction from R to R′ and returns an interactive reduction (in the
ROM) from Com[R] to Com[R′]. In Appendix B.2 we show that if IOR is state-restoration knowledge
sound, then so is the interactive reduction.

• The Fiat–Shamir transformation FS takes an interactive reduction (in the ROM) and returns a non-
interactive reduction (in the ROM) between the same relations. In Appendix B.3 we show that if
the interactive reduction is state-restoration knowledge sound, then the non-interactive reduction is
knowledge sound.

Theorem 5.9. There exists a polynomial-time transformation T such that the following holds. Let R and
R′ be indexed promise relations (with strings). Let S and S′ be efficiently computable sets parameterized
by λ ∈ N. Let IOR be an interactive oracle reduction (also parameterized by λ) fromR toR′ such that the
following holds:

• IOR has round-by-round knowledge error κrbr such that

max
i,x∈S(λ)

|i|+|x|=poly(λ)

κrbr(λ, i, x) = negl(λ).

• For every parameter λ ∈ N and index i ∈ S(λ), the IOR indexer outputs a new index i′ ∈ S′(λ).
Then T[IOR] is a non-interactive reduction from Com[R, S] to Com[R′, S′] with the following efficiency
measures:

• Proof size: O(λ · k+ s+ q · (log |Σ|+ λ · log Lmax)).
• Verifier complexity: IOR verifier, plus O(k+ q · log Lmax) queries to the random oracle.

Construction B.2. Given IOR = (I,P,V), T[IOR] = (G, I,P,V) is defined as follows. We use domain
separation to split the random oracle ρ into a Merkle tree oracle ρMT and Fiat–Shamir oracle ρFS. The Fiat–
Shamir oracle is further split into oracles for each of the verifier’s challenges: ρFS = (ρi)i∈[k], ρi ∼ U(ri).
Without loss of generality, assume that the verifier’s challenges are at least λ bits.

G(1λ):

1. Output pp = 1λ.

Iρ(pp, i):

1. Run the IOR indexer (ι, I) := I(1λ, i).
2. Commit to the index string (icm, itd)← MT.CommitρMT(I).
3. Output pk := (pp, i, ι, I, icm, itd) and vk := (ι, icm).
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Pρ(pk, (x, c⃗m), (w, y⃗, t⃗d)):

1. For i = 1, . . . , k:

(a) Compute the i-th proof string

(sti,Πi)←

{
P(1λ, i, x, y⃗,w) i = 1

P(sti−1, ri−1) i > 1

(b) Commit to the i-th proof string (pcmi, ptdi)← MT.CommitρMT(Πi).
(c) Derive the i-th challenge

ri :=

{
ρ1(ι, icm, x, cm1, . . . , cmn, pcm1) i = 1

ρi(ri−1, pcmi) i > 1

2. Compute the IOR prover’s output w′ ← P(stk, rk).
3. Compute the IOR verifier’s output (x′, s⃗) ← VI,⃗y,Π⃗(ι, x, r⃗). Record the queries made by the IOR

verifier to the index, instance, and proof strings.
4. Select new instance strings and trapdoors: for j = 1, . . . , n′, let y′j := Select(⃗y, Π⃗, sj) and td′j :=

Select(t⃗d, p⃗td, sj).
5. Set answers and compute opening proofs:

(a) Let ans1 := I|QI and pf1 := MT.Open(itd, QI), where QI denotes the set of queries made
by the IOR verifier to the index string I.

(b) For j = 1, . . . , n, let ans1+j := yj |QY
j

and pf1+j := MT.Open(td, QY
j ), where QY

j denotes the
set of queries made by the IOR verifier to the j-th instance string yj .

(c) For i = 1, . . . ,m, let ans1+n+i := Πi|QP
i

and pf1+n+i := MT.Open(td, QP
i ), where QP

i

denotes the set of queries made by the IOR verifier to the i-th proof string Πi.

6. Output π := ( ⃗pcm, a⃗ns, p⃗f) and (w′, y⃗ ′, t⃗d′).

Vρ(vk, (x, c⃗m), π):

1. Check opening proofs:

(a) If MT.CheckρMT(icm, ans1, pf1) rejects, output ⊥.
(b) For j = 1, . . . , n, if MT.CheckρMT(cmj , ans1+j , pf1+j) rejects, output ⊥.
(c) For i = 1, . . . , k, if MT.CheckρMT(pcmi, ans1+n+i, pf1+n+i) rejects, output ⊥.

2. For i = 1, . . . , k: derive the i-th challenge

ri :=

{
ρ1(ι, icm, x, cm1, . . . , cmn, pcm1) i = 1

ρi(ri−1, pcmi) i > 1

3. Compute the IOR verifier’s output (x′, s⃗)← Va⃗ns(ι, x, r⃗).
4. Select new commitments: for j = 1, . . . , n′, let cm′j := Select(c⃗m, ⃗pcm, sj).
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5. Output (x′, c⃗m′).

Proof of Theorem 5.9. Let E be the IOR state-restoration extractor, Ei := Ei[E] be the IR state-restoration
extractor from Lemma B.6, and E := E [Ei] be the non-interactive reduction extractor from Lemma B.9;
these are all straightline extractors. Let P̃ be a non-interactive reduction prover which outputs at most n bits,
makes at most tMT queries to ρMT, and makes at most tFS queries to ρFS. Let x̄ = (x, c⃗m) and w̄ = (w, y⃗, t⃗d)
denote an instance and witness in the committed relations. The knowledge error of P̃ is

κ := Pr


(i, x̄, w̄) ̸∈ Com[R̃|S ]ρ(pp)

(i′, x̄′, w̄′) ∈ Com[R̃′|S′ ]ρ(pp)

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ := U(λ)
pp← G(1λ)
(i, x̄, π, w̄′)

tr←− P̃ρ(pp)
w̄ := E(i, x̄, π, w̄′, tr)
(pk, vk, i′) := Iρ(pp, i)
x̄′ := Vρ(vk, x̄, π)


.

Since committed relations do not access ρFS, it will be convenient to define the relations relative to ρMT and
explicitly sample the individual oracles. Define Z := {(i, x̄ = (x, c⃗m) : (i, x) ∈ S(λ), |i| + |x| ≤ n}.
Rewriting, we get

κ ≤ Pr


(i, x̄) ∈ Z

(i, x̄, w̄) ̸∈ Com[R̃]ρMT
(i′, x̄′, w̄′) ∈ Com[R̃′]ρMT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρMT ← U(λ)
ρFS ← U(λ)
ρ := (ρMT, ρFS)

(i, x̄, π, w̄′)
tr←− P̃ρ

w̄ := E(i, x̄, π, w̄′, tr)
(pk, vk, i′) := Iρ(1λ, i)
x̄′ := Vρ(vk, x̄, π)


.

From Lemma B.9, we obtain

κ ≤ Pr


(i, x̄) ∈ Z

(i, x̄, w̄) ̸∈ Com[R̃]ρMT
(i′, x̄′, w̄′) ∈ Com[R̃′]ρMT

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρMT ← U(λ)
ρSR ← U(λ)
(i, x̄, α⃗, w̄′, r⃗)

tr←− GameIR(ρSR, P̃i[P̃]ρMT)
w := Ei(i, x̄, α⃗, w̄′, tr)
(pk, vk, i′) := Ii(1λ, i)
x′ := VρMTi (vk, x, α⃗, r⃗)


+

t2FS
2λ

.

From Lemma B.6, we obtain

κ ≤Pr


|i|+ |x| ≤ n
(i, x) ∈ S(λ)

(i, x, y⃗,w) ̸∈ R̃
(i′, x′, y⃗ ′,w′) ∈ R̃′

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρMT ← U(λ)
ρSR ← U(λ)
(i, x, y⃗, Π⃗,w′, r⃗)

tr←− GameIOR(ρSR, P̃[P̃i[P̃]]ρMT)
w := E(i, x, y⃗, Π⃗,w′, tr)
(ι, I, i′) := I(1λ, i)

(x′, y⃗ ′) := VI,⃗y,Π⃗(ι, x, r⃗)


+ κMT(λ, tMT, Lmax, 1 + n+ k) +

t2FS
2λ

.
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Observe that P̃[P̃i[P̃]] makes at most tFS moves. By straightline state-restoration knowledge soundness of
IOR, we have

κ ≤ κSR(λ, tFS, n) + κMT(λ, tMT, Lmax, 1 + n+ k) +
t2FS
2λ

.

Setting n = poly(λ), tFS = poly(λ), and tMT = poly(λ), n = poly(λ), and k = poly(λ), we get κ =
negl(λ).

B.1 State-restoration soundness

We define state-restoration soundness for IORs, and show that round-by-round knowledge soundness im-
plies state-restoration soundness.

Definition B.3. The IOR state restoration game GameIOR with functions ρ = (ρi)i∈[k] and adversary P̃ is
defined below.

GameIOR(ρ, P̃):

1. Repeat the following until P̃ exists the loop:

(a) P̃ sends a move (i, x, y⃗, (Π1, . . . ,Πi)) with i ∈ [k].
(b) Set ri := ρi(i, x, y⃗, (Π1, . . . ,Πi)).
(c) Return ri to P̃.

2. P̃ outputs (i, x, y⃗, (Π1, . . . ,Πk),w′, (A1, . . . , An′)).
3. For each i = 1, . . . , k, set ri := ρi(i, x, (Π1, . . . ,Πi)).
4. Output (i, x, (Πi)i∈[k],w

′, (Aj)j∈[n′], (ri)i∈[k]).

Let tr denote the list of move-response pairs performed in the loop. We use the following notation to describe
an execution of the state-restoration game:

(i, x, Π⃗,w′, A⃗, r⃗)
tr←− GameIOR(ρ, P̃).

Definition B.4. IOR has straightline state-restoration knowledge error κsr if the following holds. There
exists a polynomial-time extractor E such that for every move budget t ∈ N, t-move deterministic adversary
P̃, parameters p, and set S,

Pr


(i, x) ∈ S

(i, x, y⃗,w) ̸∈ R̃
(i′, x′, y⃗∗,w′) ∈ R̃′

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ = (ρi)i∈[k] ← U((ri)i∈[k])
(i, x, y⃗, Π⃗,w′, A⃗, r⃗)

tr←− GameIOR(ρ, P̃)
(ι, I, i′) := I(p, i)

(x′, s⃗) := VI,⃗y,Π⃗(ι, x, r⃗)
∀j ∈ [n′], y∗j := Select(⃗y, Π⃗, sj)|Aj

w← E(p, i, x, y⃗, Π⃗,w′, A⃗, tr)


≤ κsr(t,p, S).

Theorem B.5. Suppose that R′ is monotone. If IOR has round-by-round knowledge error κrbr, then IOR
has straightline state-restoration knowledge error

κsr(t,p, S) := max
(i,x)∈S

(t+ k) · κrbr(p, i, x). (B.1)
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Proof. Since R′ is monotone, the adversary’s restrictions A⃗ cannot improve its advantage. It therefore
suffices to bound the following probability:

Pr


(i, x) ∈ S

(i, x, y⃗,w) ̸∈ R̃
(i′, x′, y⃗ ′,w′) ∈ R̃′

∣∣∣∣∣∣∣∣∣∣∣

ρ = (ρi)i∈[k] ← U((ri)i∈[k])
(i, x, y⃗, Π⃗,w′, r⃗)

tr←− GameIOR(ρ, P̃)
(ι, I, i′) := I(p, i)

(x′, y⃗ ′) := VI,⃗y,Π⃗(ι, x, r⃗)
w← E(p, i, x, y⃗, Π⃗,w′, tr)


Rearranging, we find that this is identical to the state-restoration knowledge error of an IOP where the prover
sends the new witness as an additional message and the verifier performs all of the highlighted steps:

Pr


(i, x) ∈ S

(i, x, y⃗,w) ̸∈ R̃
b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ = (ρi)i∈[k] ← U((ri)i∈[k])
(i, x, y⃗, (Π1, . . . ,Πk,w′), r⃗)

tr←− GameIOR(ρ, P̃)

(ι, I, i′) := I(p, i)

(x′, y⃗ ′) := VI,⃗y,Π⃗(ι, x, r⃗)

b := (i′, x′, y⃗ ′,w′) ∈ R̃′

w← E(p, i, x, y⃗, Π⃗,w′, tr)


Observe that the round-by-round knowledge error of this IOP is precisely κrbr. We conclude by appealing to
[CY24, Theorem 31.2.1], which relates IOP state-restoration knowledge to IOP round-by-round knowledge
precisely as in Equation (B.1).7

B.2 Replacing oracles with Merkle commitments

Lemma B.6. Let E be an IOR state-restoration straightline extractor. There exists an IOR state-restoration
prover P̃[·] and deterministic polynomial-time IR state-restoration straightline extractor Ei := Ei[E] such
that, for every t$-move IR state-restoration prover P̃i that makes at most tMT queries to ρMT, P̃[P̃i] makes at

7There are a few technical details which we address here. First, [CY24] restricts index-instance pairs by imposing a size bound,
whereas we test membership in S. This only changes how we compute the SR knowledge error, i.e., what index-instance pairs we
quantify over to find the maximum RBR knowledge error. Second, a direct application of [CY24, Theorem 31.2.1] would say that
the SR knowledge error is (t+k+1) ·κrbr, since the IOP has k+1 rounds. However, a close reading shows that the SR knowledge
error is in fact (t + k) · κrbr; this is because the final round only contains a prover message, and the RBR state function cannot
change after the verifier’s last message.
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most t$ moves and the following holds for any set Z:

Pr


(i, x) ∈ Z

(i, (x, c⃗m), (w, y⃗, td)) ∈ Com[R̃]ρMT
(i′, (x′, c⃗m′), (w′, y⃗ ′, td′)) ∈ Com[R̃′]ρMT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρMT ← U(λ)
ρSR ← U(λ)
(i, (x, c⃗m), α⃗, (w′, y⃗ ′, t⃗d

′
), r⃗)

tr←− GameIR(ρSR, P̃i
ρMT

)

(w, y⃗, t⃗d) := Ei(i, (x, c⃗m), α⃗, (w′, y⃗ ′, t⃗d
′
), tr)

(pk, vk, i′) := Ii(1λ, i)
(x′, c⃗m′) := VρMTi (vk, (x, c⃗m), α⃗, r⃗)



≤Pr


(i, x) ∈ Z

(i, x, y⃗,w) ̸∈ R̃
(i′, x′, y⃗ ′,w′) ∈ R̃′

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρMT ← U(λ)
ρSR ← U(λ)
(i, x, y⃗, Π⃗,w′, r⃗)

tr←− GameIOR(ρSR, P̃[P̃i]ρMT)
w := E(i, x, y⃗, Π⃗,w′, tr)
(ι, I, i′) := I(1λ, i)

(x′, y⃗ ′) := VI,⃗y,Π⃗(ι, x, r⃗)


+ κMT(λ, tMT, Lmax, 1 + n+ k).

(B.2)

Construction B.7. Given a state-restoration prover P̃i for Ti[IOR], the state-restoration prover P̃[P̃i] for
IOR is defined as follows.

P̃[P̃i]ρMT :

1. Initialize an empty query-answer trace trMT.
2. Simulate P̃i while answering its queries:

(a) When P̃i makes a query to the oracle ρMT, answer according to ρMT and append the query-
answer pair to trMT.

(b) When P̃i sends a move (i, (x, c⃗m), (pcm1, . . . , pcmi)) with i ∈ [k]:
i. Let tr ⊂ trMT be the query-answer pairs for ρMT since the previous move (or the beginning

if this is the first move).
ii. Extract commitment openings:

((y1, td1), . . . , (yn, tdn), (Π1, ptd1), . . . , (Πi, ptdi))

:= MT.MultiExtract((cm1, . . . , cmn, pcm1, . . . , pcmi), tr)

iii. Send the move (i, x, y⃗,Π1, . . . ,Πi) for the IOR state-restoration game.
iv. Receive the challenge ri from the game.
v. Return ri to P̃i.

3. Finally, P̃i halts and outputs (i, (x, c⃗m), (pcm1, . . . , pcmk, (a⃗ns, p⃗f)), (w
′, y⃗ ′, t⃗d′)).

4. Let tr ⊂ trMT be the query-answer pairs for ρMT since the last move while simulating P̃i.
5. Extract commitment openings:

((y1, td1), . . . , (yn, tdn), (Π1, ptd1), . . . , (Πk, ptdk))

:= MT.MultiExtract((cm1, . . . , cmn, pcm1, pcmk), tr)
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6. For each j = 1, . . . , n′, set the restriction Aj := Dom y′j .
7. Output (i, x, y⃗, Π⃗,w′, A⃗). Also, implicitly output c⃗m, ⃗pcm, ans, pf, y⃗ ′, t⃗d′ (these are only used in

the analysis).

Construction B.8. The IR state-restoration extractor Ei is defined as follows.

Ei(i, (x, c⃗m), (pcm1, . . . , pcmk, (a⃗ns, p⃗f)), (w
′, y⃗ ′, t⃗d

′
), tr):

1. Split the prover’s trace tr into an IR state-restoration game trace trIR and oracle trace trMT.
2. Set trIOR := IORTrace(trIR, trMT), where IORTrace is the deterministic algorithm which computes

the IOR state-restoration trace corresponding to P̃[P̃i], as defined in Construction B.7.
3. Extract commitment openings:

((y1, td1), . . . , (yn, tdn), (Π1, ptd1), . . . , (Πk, ptdk))

:= MT.MultiExtract((cm1, . . . , cmn, pcm1, pcmk), trMT)

4. Run the IOR state-restoration extractor: w := E(i, x, y⃗, Π⃗,w′, trIOR).
5. Output (w, y⃗, t⃗d).

Proof of Lemma B.6. Define the random variable X as follows:

(i, x, y⃗, b, trIOR, trMT, r⃗)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρMT ← U(λ)
ρSR ← U(λ)
(i, (x, c⃗m), ⃗pcm||(a⃗ns, p⃗f), (w′, y⃗ ′, t⃗d′), r⃗)

trIR,trMT←−−−− GameIR(ρSR, P̃i
ρMT

)
(yj , tdj)nj=1||(Πi, ptdi)

k
i=1

:= MT.MultiExtract(c⃗m|| ⃗pcm, trMT)
(pk, vk) := IρMTi (1λ, i)
(x′, c⃗m′) := VρMTi (vk, (x, c⃗m), ⃗pcm||(a⃗ns, p⃗f), r⃗)
b := (i, (x′, c⃗m′), (w, y⃗ ′, t⃗d′)) ∈ Com[R̃2]

ρMT

trIOR := IORTrace(trIR, trMT)



(B.3)
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Define the random variable Y as follows:

(i, x, y⃗, b, trIOR, trMT, r⃗)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρMT ← U(λ)
ρ← U(λ)
(i, x, y⃗, Π⃗,w′, A⃗, r⃗; c⃗m, ⃗pcm, a⃗ns, p⃗f, y⃗ ′, t⃗d′)

trIOR,trMT←−−−−− GameIOR(ρ, P̃[P̃i]ρMT)
(ι, I) := I(1λ, i)

(x′, s⃗) := VI,⃗y,Π⃗(ι, x, r⃗)
∀j ∈ [n′], y∗ := Select(⃗y, Π⃗, sj)|Aj

b1 := (i, x′, y⃗∗,w′) ∈ R̃2

(icm, itd) := MT.CommitρMT(I)
b2 := CheckAllρMT(icm, c⃗m, ⃗pcm, a⃗ns, p⃗f)
∀j ∈ [n′], cm′j := Select(c⃗m, ⃗pcm, sj)

b3 :=
∧n′

j=1MT.VerifyρMT(cm′j , y
′
j , td

′
j)

b := b1 ∧ b2 ∧ b3


It suffices to show that X and Y are κMT(. . . )-statistically close. Unwrapping Ii, Vi, and Com[R̃2] in the
definition of X , we get the following (differences from Equation (B.3) are highlighted ):

(i, x, y⃗, b, trIOR, trMT, r⃗)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρMT ← U(λ)
ρ← U(λ)
(i, (x, c⃗m), ⃗pcm||(a⃗ns, p⃗f), r⃗, (w′, y⃗ ′, t⃗d′))

trIR,trMT←−−−− GameIR(ρ, P̃i
ρMT

)
(yj , tdj)nj=1||(Πi, ptdi)

k
i=1

:= MT.MultiExtract(c⃗m|| ⃗pcm), trMT)

(ι, I) := I(1λ, i)

(icm, itd) := MT.CommitρMT(I)

b2 := CheckAllρMT(icm, c⃗m, ⃗pcm, a⃗ns, p⃗f)

(x′, s⃗) := Va⃗ns(ι, x, r⃗)

∀j ∈ [n′], cm′j := Select(c⃗m, ⃗pcm, sj)

b1 := (i, x′, y⃗ ′,w′) ∈ R̃2

b3 :=
∧n′

j=1MT.VerifyρMT(cm′j , y
′
j , td

′
j)

b := b1 ∧ b2 ∧ b3
trIOR := IORTrace(trIR, trMT)



(B.4)
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Define the event E as follows (differences from Equation (B.4) are highlighted ):

¬(b2 ∧ b3)
∨

I|Dom ans1 = ans1∧n
j=1 yj |Dom ans1+j = ans1+j∧k

i=1Πi|Dom ans1+n+i = ans1+n+i∧n′

j=1 y∗j = y′j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρMT ← U(λ)
ρ← U(λ)
(i, (x, c⃗m), ⃗pcm||(a⃗ns, p⃗f), r⃗, (w′, y⃗ ′, t⃗d′))

trMT←−− GameIR(ρ, P̃i
ρMT

)
(yj , tdj)nj=1||(Πi, ptdi)

k
i=1

:= MT.MultiExtract(c⃗m|| ⃗pcm), trMT)
(ι, I) := I(1λ, i)
(icm, itd) := MT.CommitρMT(I)
b2 := CheckAllρMT(icm, c⃗m, ⃗pcm, a⃗ns, p⃗f)

(x′, s⃗) := Va⃗ns(ι, x, r⃗)
∀j ∈ [n′], cm′j := Select(c⃗m, ⃗pcm, sj)

b3 :=
∧n′

j=1MT.VerifyρMT(cm′j , y
′
j , td

′
j)

∀j ∈ [n′], y∗j := Select(⃗y, Π⃗, sj)|Dom y′j


Observe that (X|E) is equivalent to the following distribution (differences from Equation (B.4) are highlighted ):

(i, x, y⃗, b, trIOR, trMT, r⃗)
conditioned on E

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρMT ← U(λ)
ρ← U(λ)
(i, (x, c⃗m), ⃗pcm||(a⃗ns, p⃗f), r⃗, (w′, y⃗ ′, t⃗d′))

trIR,trMT←−−−− GameIR(ρ, P̃i
ρMT

)
(yj , tdj)nj=1||(Πi, ptdi)

k
i=1

:= MT.MultiExtract(c⃗m|| ⃗pcm), trMT)
(ι, I) := I(1λ, i)
(icm, itd) := MT.CommitρMT(I)
b2 := CheckAllρMT(icm, c⃗m, ⃗pcm, a⃗ns, p⃗f)

(x′, s⃗) := VI,⃗y,Π⃗ (ι, x, r⃗)

∀j ∈ [n′], y∗j := Select(⃗y, Π⃗, sj)|Dom y′j

∀j ∈ [n′], cm′j := Select(c⃗m, ⃗pcm, sj)

b1 := (i, x′, y⃗∗ ,w′) ∈ R̃2(p)

b3 :=
∧n′

j=1MT.VerifyρMT(cm′j , y
′
j , td

′
j)

b := b1 ∧ b2 ∧ b3
trIOR := IORTrace(trIR, trMT)



(B.5)
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This is equivalent to the following distribution (differences from Equation (B.5) are highlighted ):

(i, x, y⃗, b, trIOR, trMT, r⃗)
conditioned on E

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρMT ← U(λ)
ρ← U(λ)
(i, x, y⃗, Π⃗,w′, A⃗, r⃗; c⃗m, ⃗pcm, a⃗ns, p⃗f, y⃗ ′, t⃗d′)

trIOR,trMT←−−−−− GameIOR(ρ, P̃[P̃i]ρMT)
(ι, I) := I(1λ, i)
(icm, itd) := MT.CommitρMT(I)
b2 := CheckAllρMT(icm, c⃗m, ⃗pcm, a⃗ns, p⃗f)

(x′, s⃗) := VI,⃗y,Π⃗(ι, x, r⃗)

∀j ∈ [n′], y∗j := Select(⃗y, Π⃗, sj) |Aj

∀j ∈ [n′], cm′j := Select(c⃗m, ⃗pcm, sj)

b1 := (i, x, y⃗∗,w′) ∈ R̃2(p)

b3 :=
∧n′

j=1MT.VerifyρMT(cm′j , y
′
j , td

′
j)

b := b1 ∧ b2 ∧ b3


Some rearranging shows that this is identical to the definition of (Y |E). It remains to give an upper bound
for the probability of E. From Lemma 3.11, we get κMT(λ, tMT, Lmax, 1 + n+ k).

B.3 Fiat–Shamir transformation

Lemma B.9. Let Ei be an IR state-restoration straightline extractor. There exists an IR state-restoration
prover P̃i[·] such that the following holds and a non-interactive reduction straightline extractor E := E [Ei]
such that, for every non-interactive reduction prover P̃ that makes at most tMT queries to ρMT and tFS queries
to ρFS, P̃i[P̃] makes at most tFS moves and the following holds for any set Z:

Pr


(i, x̄) ∈ Z

(i, x̄, w̄) ̸∈ Com[R̃]ρMT
(i′, x̄′, w̄′) ∈ Com[R̃′]ρMT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρMT ← U(λ)
ρFS ← U(λ)
ρ := (ρMT, ρFS)

(i, x̄, π, w̄′)
tr←− P̃ρ

w̄ := E(i, x, π,w, tr)
(pk, vk, i′) := Iρ(1λ, i)
x̄′ := Vρ(vk, x̄, π)



≤Pr


(i, x̄) ∈ Z

(i, x̄, w̄) ̸∈ Com[R̃]ρMT
(i′, x̄′, w̄′) ∈ Com[R̃′]ρMT

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρMT ← U(λ)
ρSR ← U(λ)
(i, x̄, α⃗, w̄′, r⃗)

tr←− GameIR(ρSR, P̃i[P̃]ρMT)
w̄ := Ei(i, x̄, α⃗, w̄′, tr)
(pk, vk, i′) := Ii(1λ, i)
x̄′ := VρMTi (vk, x̄, α⃗, r⃗)


+

t2$
2λ

.

(B.6)

Proof. This is a straightforward adaptation of [CY24, Theorem 16.1.1], which transforms interactive proofs
(or arguments) into non-interactive arguments. Observe that any reduction can be viewed as an argument
where the prover additionally sends the new witness and the verifier additionally tests membership in the
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new relation. From this perspective, the experiment on the right side of Equation (B.6) is equivalent to the
state-restoration experiment for an interactive argument, and the experiment on the left side is equivalent to
the knowledge soundness experiment for the Fiat–Shamir transformation of the interactive argument.

There are a few minor technical differences which we address here. First, we give the interactive prover
P̃i access to a random oracle ρMT; this is justified since the reduction only makes black-box use of P̃i.
Second, the relationsR,R′ are defined relative to ρMT and we additionally test membership in an arbitrary set
Z; this is justified since the distributions of index, instance, and witness in the experiments are statistically
close [CY24, Lemma 16.3.3].
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