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Abstract

The indifferentiability framework has become a standard methodology that enables us to
study the security of cryptographic constructions in idealized models of computation. Unfor-
tunately, while indifferentiability provides strong guarantees whenever the security of a con-
struction is captured by a “single-stage” security game, it may generally provide no meaningful
guarantees when the security is captured by a “multi-stage” one. In particular, the indiffer-
entiability framework does not capture offline-online games, where the adversary can perform
an extensive offline computation to later speed up the online phase. Such security games are
extremely common, both in practice and in theory. Over the past decade, there has been numer-
ous attempts to meaningfully extend the indifferentiability framework to offline-online games,
however, they all ultimately met with little success.

In this work, our contribution is threefold. First, we propose an extension of the classical
indifferentiability framework, we refer to as offline-online-indifferentiability, that applies in the
context of attackers with an expensive offline phase (à la Ghoshal and Tessaro, CRYPTO ’23).
Second, we show that our notion lends itself to a natural and meaningful composition theorem for
offline-online security games. Lastly, as our main technical contribution, we analyze the offline-
online-indifferentiability of two classical variants of the Merkle-Damg̊ard hashing mechanism,
one where the key is fed only to the first block in the chain and the other where the key is fed to
each block in the chain. For both constructions, we prove a tight bound on their offline-online-
indifferentiability (i.e., an upper bound and an attack that matches it). Notably, our bound for
the second variant shows that the construction satisfies optimal offline-online-indifferentiability.

1 Introduction

A cryptographic hash function is an efficient mapping between arbitrary length inputs to a fixed
length digest. It is one of the most fundamental tools in applications of cryptography, underly-
ing numerous widely used cryptosystems. For example, it facilitates the hash-and-sign paradigm,
proofs-of-work for blockchains, and many more. While it is empirically believed that concrete
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cryptographic hash functions such as SHA-2 and SHA-3 satisfy various useful security properties,
formalizing this seems to be currently out of reach. Thus, in the context of provable security, cryp-
tographic hash functions are usually modeled as completely random functions, i.e., in the Random
Oracle Model (ROM) [BR93]. This allows us to analyze specific properties and argue about the
concrete security of systems that use them.

Since with the work of Hellman [Hel80] and Fiat and Naor [FN99], and even more so in recent
years, there have been significant efforts to extend various security guarantees of hash functions
beyond the uniform setting (for example, [Unr07, DGK17, CDG18, CDGS18, ACDW20, GLLZ21,
GLLZ21, GK23, AGL22, FGK22, FGK23]). Indeed, the uniform model assumes, in some sense, that
the adversary is “fixed” before the hash function and so it clearly does not apply to many real-world
applications. Thus, focus has shifted to analyzing analogous keyed constructions in a non-uniform
setting, where we consider adversaries that have gone through an expensive preprocessing stage.
Beyond being more realistic as an idea, it is widely accepted in the cryptography community that
non-uniformity is the “right” modeling of attackers, despite being overly conservative and including
potentially unrealistic attackers.

Unfortunately, we do not have sufficiently general systematic methods for analyzing crypto-
graphic constructions in models that allow preprocessing. Indeed, all the above-mentioned recent
works [DGK17, CDG18, CDGS18, ACDW20, GK23, AGL22, FGK22, FGK23] consider an attacker
with such a preprocessing phase but eventually analyze only a specific security property of a given
(keyed) construction. For instance, [ACDW20, GK23, AGL22, FGK22, FGK23] only consider col-
lision resistance. Unfortunately, these proofs are very complex and do not easily port to other
security properties (like one-wayness, pseudorandomness, unpredictability, and more). One could
ask whether it is possible to carry out a single analysis that will capture a (wide) class of security
properties simultaneously. Such a result would not only give a better understanding of the security
or weakness of a given hash function construction, but as we shall see, it is also inherent if we want
to apply composition and use these hash functions in larger systems.

The latter has been formalized in a number of frameworks, notably in the UC framework
of Canetti [Can01, Can20], the reactive systems framework of Backes, Pfitzmann and Waid-
ner [BPW04], and the indifferentiability framework of Maurer, Renner, and Holenstein [MRH04].
The latter is by now a standard methodology to study the soundness of cryptographic construc-
tions, particularly symmetric ones such as hash functions [CDMP05, BDPA08, RSS11] and block-
ciphers [CPS08, HKT11, ABD+13, DSSL16], in idealized models of computation. The indiffer-
entiability framework is extremely popular because it allows to argue the soundness of various
constructions that rely on compressing random functions. For concreteness, imagine a suggested
hash function construction Cπ : {0, 1}4n → {0, 1}n using an ideal random compressing function
π : {0, 1}2n → {0, 1}n. Intuitively, if Cπ is indifferentiable from a random oracle Π: {0, 1}4n →
{0, 1}n, then any cryptosystem that uses Cπ can be analyzed when Cπ is replaced by Π, which is
potentially much easier.

Unfortunately, as Riestenpart, Shacham, and Shrimpton [RSS11] pointed out, [MRH04]’s defi-
nition of indifferentiability does not generically capture security games where offline preprocessing
is allowed. In [RSS11]’s language, the framework of [MRH04] applies only to single-stage games,
but does not necessarily apply to two-or-more-stage games. Indeed, [RSS11] come up with con-
crete (and natural) multi-stage games where the indifferentiability composition theorem completely
fails. Notably, security games with an offline phase are inherently two-stage: first, the adversary
gets to see and somehow interact with the ideal object to produce an “advice”, and only later
the challenge is presented to the adversary and it needs to break the system in some way. Ri-
estenpart et al. [RSS11] go further and suggest a stronger definition of indifferentiability, called
reset-indifferentiability, that allows for composition even for multi-stage games. However, this no-
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tion is probably too strong because no variable-input-length hash function construction can fulfill
it [RSS11, LAMP12, DGHM13]. The challenge of obtaining a notion that is sufficient for games
that include an offline phase and achievable at the same time was tackled by several works (e.g.,
[MPS12, DGHM13, Mit14, DFMT20]); nevertheless, they all ultimately fall short of being gener-
ally applicable to offline-online games in a meaningful manner. We refer to Section 1.2 for further
details on the above attempts and how they compare to ours.

Recall, the indifferentiability of a construction Cπ from an ideal object Π allows us to analyze
the security of Cπ in some game by replacing it with the ideal object Π. In the offline-online
setting, analyzing an ideal object is extremely hard without reducing the problem to the analysis
of an online-only attacker against the ideal object. Indeed, the few cases that managed to analyze
ideal primitives (e.g., random oracles) without such a reduction in the offline-online setting are
extremely complicated [DGK17, GT23]. So, ideally, we would like to reduce the task of analyzing
a construction Cπ with respect to some offline-online game to the (much easier) task of analyzing
an ideal object Π but with respect to an online-only game. This, overall, will allow us to have
relatively simple and widely applicable analysis, at the expense of looser bounds.

This work. Our contribution is threefold:

� We propose an extension of the classical indifferentiability framework, we refer to as offline-
online-indifferentiability, that captures the “distance” between a given (keyed) construction
and an ideal primitive in the context of attackers with an expensive offline phase. Concretely,
our framework captures the offline-online tradeoffs model of Ghoshal and Tessaro [GT23],
wherein both the offline and the online phases have a bound on their query complexity
(unlike the time-space tradeoffs model in which there is a bound on the output size of the
offline phase).

� We show that offline-online-indifferentiability lends itself to a natural and meaningful com-
position theorem, capturing security games where attackers could have an expensive offline
phase. Remarkably, our composition theorem allows us to transform the analysis of an ad-
versary with an offline phase to one that is online-only.

� Lastly, we prove that several popular (keyed) hash function constructions satisfy our notion of
offline-online-indifferentiability. We complement our offline-online-indifferentiability bounds
with matching attacks.

1.1 Our Results in Detail

Indifferentiability formalizes a set of necessary and sufficient conditions for the construction Cπ to
securely replace its ideal counterpart Π in a wide range of environments. Roughly this is obtained
by requiring a simulator S for which the systems (Cπ, π) and (Π, SΠ) are indistinguishable. The
composition theorem proved by [MRH04] states that, if Cπ is indifferentiable from Π, then Cπ can
securely replace Π in arbitrary single-stage games.

The most common model for analyzing security in the presence of an expensive offline phase
is the so called (S, T )-model often referred to as “time-space tradeoffs”. In this model the offline
phase which has access to π is unbounded in queries or computational complexity, but is bounded
in its output size, denoted S. The online phase gets the S-sized output of the offline phase as well
as a challenge and needs to “break” the system while issuing at most T queries.

Considering such a setting in the context of indifferentiability is extremely challenging: imagine
that the offline adversary, based on π, generates some (structured) advice which the online phase
later utilizes. For indifferentiability, we would need to simulate the answers seen by the online
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attacker such that they are consistent with respect to the advice. It is not clear that a computa-
tionally bounded simulator can simulate such a distribution, even given the advice. This is mainly
due to the fact that, in the (S, T )-model, the offline attacker has unrestricted access to the ideal
object and so the S-sized output of this phase may be an arbitrary function of the correspond-
ing responses – with which a query-bounded simulator must be consistent. See Section 1.2 for a
discussion on prior attempts.

Offline-online time tradeoffs. We consider a slightly different yet naturally motivated secu-
rity game, called the (T1, T2)-model or “offline-online time tradeoffs,” where the offline phase is
bounded in queries rather than output size, a model that was recently put forward by Ghoshal and
Tessaro [GT23]. In this model, the goal is to understand the complexity of attacks that depend on
both offline and online time, where both the offline and online complexities are measured by the
number of queries to the given primitive. We emphasize that in this model, there is no limitation
on the amount of information conveyed from the offline phase to the online phase, but rather the
online phase gets “free” access to the query-answer transcript sequence of the offline phase. The
motivation behind the introduction of this model was capturing the actual feasibility of the of-
fline phase of the offline-online attacks, because for many of the attacks in the time-space tradeoff
model the offline phase is nearly infeasible. In this model, [GT23] study the security of salted hash
functions and most notably prove bounds on the pre-image and collision-resistance security of the
(2-block) Merkle-Damg̊ard construction, the most popular technique for keyed domain extension
for hash functions.

We call an attacker in our model a (T1, T2)-attacker to indicate that the offline phase is allowed
to perform T1 queries and the online phase is allowed to perform T2 queries. We say that a keyed
construction {Cπ

k }k is (T1, T2)-offline-online-indifferentiable from an ideal counterpart Π if there
is a simulator S such that for any (T1, T2)-adversary A = (A1,A2), it cannot distinguish between
b = 0 and b = 1 in the following game:

1. Generate the advice string τ , where

� real world (b = 0): τ ← Aπ
1 ;

� ideal world (b = 1): τ ← AS
1 .

2. Sample the challenge k← Samp(1n), where Samp(·) is a sampler.

3. Let A2 attack the scheme, where

� real world (b = 0): Output ACπ
k ,π

2 (τ, k);

� ideal world (b = 1): Output AΠ,SΠ(τ,k)
2 (τ, k).

The classical indifferentiability definition [MRH04] is a special case of this definition with τ and k
being empty (and so A1 does nothing). However, this definition is stronger (i.e., harder to satisfy
and captures a wider class of games) if τ and k are allowed to be non-empty.

If the best distinguisher for the above game has only ϵ probability of distinguishing the case of
b = 0 from b = 1, then we say that a construction {Cπ

k }k is (T1, T2, ϵ)-offline-online-indifferentiable
from Π. For such a construction, we prove a composition theorem saying that for any game
GCπ

(A) involving the construction Cπ, where Cπ is (T1, T2, ϵ)-offline-online indifferentiable from Π,
and for any (T1, T2)-offline-online adversary A = (A1,A2), there is a (0, T ′)-offline-online adversary

4



B = (B1,B2), where T ′ is roughly proportional to T2, such that

Pr

 τ ← Aπ
1

k←$ {0, 1}n

1←$ GCπ
k (ACπ

k ,π
2 (τ, k))

 ≤ Pr

 τ ← B1
k←$ {0, 1}n

1←$ GΠ(BΠ2 (τ, k))

+ ϵ .

In words, the above guarantee allows us to perform an analysis of the security of an idealized
game GCπ with Π as the ideal object, instead of Cπ, incurring an additive cost of at most ϵ
in the resulting adversarial advantage. Moreover, this analysis needs to only take into account
online-only adversaries because B1 does not have access to Π, thereby possibly making the required
analysis much simpler. This statement holds for all “offline-online” games. We refer to Definition 3
and Theorem 3.2 for the precise definition of offline-online-indifferentiability and the associated
composition theorem, respectively.

Our offline-online-indifferentiability bounds for Merkle-Damg̊ard. We prove offline-online-
indifferentiability bounds for the popular keyed version of the Merkle-Damg̊ard (MD) construction
which iterates an (idealized) basic compressing function in order to get a variable-input-length hash
function, operating on arbitrary longer input lengths. Precisely, the MD construction is defined
relative to a compressing function π : [N ]× [M ]→ [N ],1 and is defined as

MDπ(k, (α1, . . . , αℓ)) = π(MDπ(k, (α1, . . . , αℓ−1)), αℓ),

where MDπ(k, α) = π(k, α), and k ∈ [N ] and α, α1, . . . , αℓ ∈ [M ].2 The value k is referred to as a
key (sometimes also called IV or salt) and the following ℓ values are referred to as blocks.

To present our result, we consider the ℓ-block version of the above construction with prefix-free
message encoding, called ℓ-block-MD, where the number blocks that it can process is ℓ.3 We prove
the following offline-online-indifferentiability bound for this construction:

Theorem 1.1 (Informal and simplified; see Theorem 5.1). Let ℓ, T1, T2 ≥ 1. The ℓ-block-MD with
prefix-free message encoding is (T1, T2, ϵ)-offline-online-indifferentiable for

ϵ ≤ 3 · T1T2

N
+ 2 · T

2
2

N
.

Above, we assume T2 is the number of message blocks queried by the online phase of the
adversary, as opposed to just the number of queries.

Note that the bound above is meaningful and especially interesting when T1 ∈ [N1/2, N). In
particular, our bound shows that the MD construction remains somewhat secure even if the offline
phase can easily find collisions. We remark that for preimage-resistance and collision resistance, the
bounds of [GT23] are quantitatively better: namely, ignoring constants, for pre-image resistance
they prove a tight bound of T 2

1 /N
3 + T1T2/N

2 + T2/N and for collision resistance they prove a
bound of T 2

1 /N
7/3 + T1/N

5/4 + T1T2/N
3/2 + T 2

2 /N .
To complement the picture, we show that (essentially) each term in the above bound is necessary,

making the upper bound almost tight. Specifically, we show that for every ℓ, T1, T2 ≥ 1, there is a

1We use the notation [N ] to denote the set {1, 2, . . . , N} for a natural number N .
2We do not mention it here for simplicity of presentation, but in the technical sections, we consider constructions

where a prefix-free encoding is applied on the input before hashing it. This is used to prevent well-known length-
extensions attacks.

3In the technical part, we analyze a slightly stronger primitive where one is allowed to query MDπ with inputs
consisting of up to ℓ blocks (instead of exactly ℓ blocks) with prefix-free message encoding.
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(T1, T2)-adversary for ℓ-block-MD whose winning probability in the indifferentiability game is

ϵ ≥ max

{
T1T2

N
,
T 2
2

N

}
.

The second term is merely an (online-only) birthday attack and the first term is the more interesting
one, utilizing the offline phase. Obviously, the above attack is tight up to constants and an ℓ
multiplicative factor in both terms. We discuss the (somewhat artificial) reason for the ℓ factor in
Remark 6.3.

An optimally-secure construction. As mentioned, the second term in the indifferentiability
guarantee of the ℓ-block-MD construction comes from a birthday attack which seems unavoidable
for every construction. The more interesting and perhaps more significant term is the first one.
Indeed, the bound above is especially interesting when T1 ≫ N1/2 and in this case it is always
the case that T1T2 ≥ T 2

2 , thereby making the first term the dominant one. We ask whether the
T1T2/N term is necessary for every construction. To this end, we consider a variant of the MD
construction, called keyed-MD [GB08, FGK23], which is the same as the above MD, except that
the key k is fed into each block in the chain (rather than only to the first one). More precisely,
π : [N ]2 × [M ]→ [N ], and

MDπ(k, (α1, . . . , αB)) = π(k,MDπ(k, (α1, . . . , αB−1)), αB)

for k ∈ [N ] and α1, . . . , αB ∈ [M ].
This variant of MD has been recently studied in the context of (S, T )-attacks (with bounded

size advice) in [FGK23], where it was shown to be significantly more robust than the first (more
popular) variant of MD from above. We show that the ℓ-block version of keyed-MD is more secure
than MD even in our offline-online-indifferentiability setting. In particular, we show essentially
optimal security: the only ways to attack the indifferentiability of the construction are either by
guessing the key in the offline phase, or by performing a birthday attack in the online phase. In
other words, there is no “non-trivial” use of the offline phase.

Theorem 1.2 (Informal and simplified; see Theorem 5.3). Let ℓ, T1, T2 ≥ 1. The ℓ-block-keyed-MD
is (T1, T2, ϵ)-offline-online-indifferentiable for

ϵ ≤ 3 · T1

N
+ 2 · T

2
2

N
.

The second term is the same as in our bound for the first MD construction, coming from a
possible (online only) birthday attack. The main improvement in the bound for keyed-MD over the
one for MD is that we have a T1/N term instead of a T1T2/N term, thereby providing security for a
much larger range of parameters. For example, for T1 = N0.7 and T2 = N0.3, the MD construction
is broken with constant probability, whereas the keyed-MD construction still guarantees security,
except with ≈ N−0.3 probability.

It is not hard to see that this bound is essentially tight. Specifically, we show that for every
ℓ, T1, T2 ≥ 1, there is a (T1, T2)-adversary for ℓ-block-keyed-MD whose winning probability in the
indifferentiability game is

ϵ ≥ max

{
T1

N
,
T 2
2

N

}
.
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1.2 Related Work

The works of [MPS12, DGHM13, Mit14, DFMT20] all suggest various generalizations of the indif-
ferentiability framework and sometimes present an associated composition theorem and bounds on
existing constructions.

Mandal, Patarin, and Seurin [MPS12] considered a notion called sequential indifferentiability,
wherein the adversary has access to several oracles but there is a pre-defined sequence of allowed
calls to the oracles. Nevertheless, the query complexity of the adversary is measured as the total
number of queries made to all oracles together. This is the main point of difference from our
offline-online model in which the offline phase can support many more queries than the online
phase (which is the regime one cares about in the preprocessing setting). If not for this difference,
the offline-online model could be rephrased in the language of sequential indifferentiability (but
then bounds would be much less meaningful).

Demay et al. [DGHM13] suggested a variant of indifferentiability called resource-restricted indif-
ferentiability which lies somewhere in between plain indifferentiability and reset indifferentiability.
However, we are not aware of any meaningful positive results, not in constructions nor in compo-
sition (i.e., constructions that achieve any form of resource-restricted indifferentiability or security
games for which a resource-restricted construction allows composition).

Mittelbach [Mit14] (essentially) weakened the reset indifferentiability definition by changing
the order of quantifiers between the simulator and the distinguisher, allowing the simulator to run
and feed queries to the ideal object that are longer than the running time of the distinguisher.
While this relaxation allowed [Mit14] to prove bounds for various constructions and formalize a
corresponding composition theorem, it has caveats: (1) because the simulator’s running time is
unrealistically large, the resulting composition theorem is extremely weak and not so meaningful,
(2) their simulator needs to feed extremely long inputs to the ideal primitive, meaning that the
proof only works for hash functions that support unrealistically large input length, and (3) the
proven bounds are very weak, providing security guarantees only for attackers that have overall
sub-birthday complexity (which is typically a somewhat less interesting regime).

Dodis et al. [DFMT20] consider a strengthening of the indifferentiability framework, called
indifferentiability with auxiliary input, where it is assumed that the adversary has limited amount
of advice about the random oracle before the online phase begins (in which it can make a bounded
number of queries). They suggest a concrete notion that does not lend itself to a useful composition
theorem (in particular, the blow-up in the size of the advice is significant because they do not limit
the state size of the simulator), but otherwise they manage to prove an indifferentiability result for
constructions where every invocation of the random oracle is salted. Quantitatively, their bound
is not known to be tight (and we conjecture it is not),4 while our bounds are tight (see Section 6).
Overall, while they manage to prove a non-trivial result, it applies only to a particular class of
constructions (and not to classical ones like salted Merkle-Damg̊ard) and it is not very useful in
applications.

2 Technical Overview

In this section, we give an overview of the proof techniques we use to prove our concrete offline-
online indifferentiability bounds for Merkle-Damg̊ard (MD). Recall that the MD construction is

4We note that the bound they prove in the second part of their Theorem 3 is incorrect as stated. Specifically, the
second term of the bound should have a multiplicative T factor. The source of the error is in their application of
Theorem 5 from [CDGS18] where they miss the T term. While this is not directly related to our results, we wanted
to make a note of this.
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an iterative hashing mechanism that hashes messages of variable input length to a fixed output
length, given a randomly sampled key or salt. The underlying fundamental primitive for MD is
a compression function h : {0, 1}n × {0, 1}m → {0, 1}n which is modeled as a random oracle. In
order to hash a message M with respect to a key k ∈ {0, 1}n, M is first padded appropriately
so that its length is a multiple of m and then broken into blocks M1, . . . ,MB, each m bits long.
Then, y0 is set to k and for i = 1, 2, . . . , B, yi is computed as h(yi−1,Mi). The hash output is yB.
In this overview, we will only consider two-block MD, where the message M has bit-length 2m.
While in the technical section we consider the more general ℓ-block case, the proof overview for the
two-block case already highlights some of our main ideas.

In order to prove the offline-online indifferentiability of the two-block MD construction from a
random oracle Π : {0, 1}2m → {0, 1}n, we need to consider the following two worlds:

� Real world: In the offline phase, the adversary can issue queries to the random oracle h.
Then, a key k is chosen uniformly at random, and in the online phase, the adversary can issue
queries to MDh

k , the two-block MD construction using h with salt k.

� Ideal world: In the offline phase, the adversary can issue queries to the simulator S1. Then,
Π is chosen uniformly at random, and in the online phase, the adversary can issue queries to
Π and S2.

For an appropriately-defined simulator, we need to prove that these two worlds are indistinguishable
for any (T1, T2)-adversary, except with small probability. Recall that a (T1, T2)-adversary issues T1

queries to its oracles in the offline phase and T2 queries to its oracles in the online phase.
We define the simulator S = (S1,S2) as follows: S1 simply answers the queries of the adversary

uniformly at random (and consistently if a repeated query occurs), and storing the responses in a
table. S2, knowing k, checks at the beginning whether A1 had made any queries prefixed with k,
and simply aborts if that is the case. Otherwise, it answers the queries of the adversary uniformly
at random, keeping them consistent with the answers of S1, except for the following: If there is a
query on (x, y) such that there was a query on (k, z) earlier that it answered with x, then it answers
this query with Π(z, y). Observe that the number of queries issued by the simulator in the offline
and online phases is same as the number of queries issued by the offline and online phases of A,
i.e., the query complexity is preserved.

We need to prove that the adversary’s views in the two worlds mentioned above are indistin-
guishable except with small probability. For this, we consider a sequence of hybrid games, starting
with the real world and culminating in the ideal world. Since each two “adjacent” hybrid games
will be close, by a union bound we will be able to conclude that the first and last worlds (the real
and ideal, respectively) are close. Next, we present the main hybrids in the proof, noting that the
actual proof requires more intermediate steps that we skip for this overview (see Section 4 for the
full proof).

1. Hybrid 1: This hybrid simulates the real world to the adversary.

2. Hybrid 2: In this hybrid, the main changes compared to the previous hybrid are as follows.

� The random oracle query answers are lazily sampled.

� We introduce the following bad event: if the there is a MD query on (x, y), such that
(1) the value of the random oracle had not been already defined on (k, x), (2) the value
z is sampled as the value of the random oracle at that point, and (3) the value of the
random oracle at (z, y) is already defined. If the bad event happens, we resample the
value of the random oracle on (z, y).
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Hybrid 2 is identical to hybrid 1, except if the bad event happens. Notice that the bad event
happens only if on an MD query (x, y), the value of the random oracle at (k, x) is sampled to
be z such that the value of the random oracle on some point of the form (z, ∗) was defined
already. Since every MD query causes at most two new random oracle evaluations, for a given
MD query, this happens with probability at most (T1 + 2T2)/2

n. By a union bound over all
MD queries, one can distinguish this hybrid from the previous one with probability at most
(T1T2 + 2T 2

2 )/2
n.

3. Hybrid 3: In this hybrid, two types of bad events: 1)the sampled key k is such that the
offline phase of the adversary made a query prefixed with k 2) the lazily sampled value for
one of the two oracles is either an input salt or output of an offline query, or same as some
other sampled value. If the first type of bad event happens, the hybrid aborts. Further, the
answer of the MD queries are always freshly sampled. From the details of the hybrid, it is not
hard to see that this hybrid is identical to hybrid 2 unless the bad event happens. Further,
the probability that the bad event happens is at most T1/2

n + 2T1T2/2
n + 2T 2

2 /2
n because k

is sampled uniformly at random and there are T1 offline queries and at most T2 online queries
that came earlier.

4. Hybrid 4: This hybrid simulates the ideal world to the adversary. With the details that we
omit here, it is not hard to verify that the behavior of hybrids 3 and 4 are identical.

Putting it all together, we have that the adversary can distinguish the real and the ideal worlds
with probability at most T1/2

n + 3T1T2/2
n + 2T 2

2 /2
n ≤ 4T1T2/2

n + 2T 2
2 /2

n, as needed.

Tightness. We argue that this bound is (almost) tight. In the regime 1 ≤ T2 < 2n/2, the term
T1T2/2

n always dominates T1/2
n. We give the following attack that achieves advantage roughly

T1T2/2
n:

� Offline phase: adversary makes queries on T1 distinct salts.

� Online phase: given the salt k, the adversary makes T2 − 1 distinct queries on that salt. If
there is any query (say (k, x)) in the online phase such that the answer of the query (say z) is
same as one of the salts the adversary queried in the offline phase (say (z, w)), the adversary
queries (x,w) to the MD oracle to check if the answer is consistent with the answer of the
query on (z, w). If it is consistent, the adversary outputs “real”, and otherwise it says “ideal”.

Indeed, by definition, in the real world the answer will always be consistent. In the ideal world,
consistency will not be satisfied with overwhelming probability because the offline phase of the
simulator is independent of Π. Note that the adversary succeeds in making such an online query
with probability roughly T1T2/2

n. Finally, the tightness of the term T 2
2 /2

n can be shown by the
following (standard) birthday attack:

� Offline phase: do nothing.

� Online phase: given the salt k, the adversary makes a query on (k, b) for arbitrary b – say
the output is c. Now, it makes T2− 3 distinct queries on c until it finds x ̸= y such that (c, x)
and (c, y) have the same answer (which happens with probability roughly T 2

2 /2
n). Finally, the

adversary makes MD queries on (b, x) and (b, y). If the answers are consistent, the adversary
outputs “real”, and otherwise “ideal”.

Offline-online-indifferentiability for ℓ-block MD and keyed-MD. The proof for offline-online
indifferentiability for ℓ-block MD follows a very similar flow. The proof for ℓ-block keyed-MD is
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also similar to ℓ-block MD, with one crucial difference in the analysis. In the transition between
hybrids 1 and 2 described above, the probability that the bad event happens is T1T2/2

2n instead
of T1T2/2

n. This is true since for the bad event to happen at all, the adversary needs to make an
offline query on the correct salt which is sampled after the offline phase. Thus, redoing the analysis
with the above bound, the adversary can distinguish the real and the ideal worlds (in the 2-block
case) with probability roughly T1/2

n + T1T2/2
2n + 2T 2

2 /2
n ≤ 2T1/2

n + 2T 2
2 /2

n, as needed.

3 The Definition of Offline-Online Indifferentiability

Preliminaries. Let N = {0, 1, . . . } and [n] = {1, . . . , n} for n ∈ N. If x ∈ {0, 1}∗ is a string, then
|x| denotes its length in bits. If S is a set, then |S| denotes its size and S+ denotes the set of all lists
that have one or more elements of S. Fcs(D,R) denotes the set of all f such that f(·) is a function
from D to R. We regularly use pseudocode inspired by the code-based framework of [BR06]. If A
is an algorithm, then y ← AO1,...(x1, . . . ; r) denotes running A on inputs x1, . . . with coins r and
access to the oracles O1, . . . to produce output y. When the coins are implicit we write ←$ in
place of ← and omit r.

We let x←$D denote sampling x according to the distribution D. If D is a set, we overload
notation and let D also denote the uniform distribution over elements of D. The probability that
G outputs true is denoted Pr[G].

A cryptographic construction describes a cryptographic algorithm e.g., a hash function, an
encryption scheme, etc. A cryptographic construction might use another cryptographic object
(which may be another cryptographic construction or a cryptographic primitive) as a building
block in a black-box manner. In this case, we abstract it as an oracle-aided circuit that uses a
primitive π. We denote the oracle-aided circuit as C and use Cπ to denote the construction.

Constructions built from ideal primitives. We are interested in a special class of constructions
that depend on an ideal primitive, such as a random oracle, random permutation, ideal cipher, etc.
We model the ideal primitive π via a distribution I on a set of functions. For example, a random
oracle with (finite) domain D and range R would be modeled by the uniform distribution on the
set Fcs(D,R) of all functions mapping D to R.

Games with ideal primitives. A game G describes an environment with which an adversary A
can interact, and the combination of G and A results in a random experiment G(A) (we refer to
this as A “playing” the game G) which produces a Boolean output. We also denote this output
as G(A). An oracle game Gπ is one where both the adversary A and the game procedures are
given access to an oracle π, from a pre-specified set of possible functions π, which we refer to as
compatible with the game G. We denote by Gπ(Aπ) the experiment where A plays the game Gπ, and
is given access to the same π as the game. We overload notation and also use Gπ(Aπ) to denote the
random variable denoting the output. We say that an (oracle) game G is compatible with an ideal
primitive I, if the range of I is a subset of the compatible oracles for G. We say that construction
C is compatible with an ideal primitive I, if the range of I is a subset of the compatible objects
for C. For a construction compatible with I, we denote by GCπ

(Aπ,Cπ
) an oracle game G which is

compatible with I where the game can make queries to Cπ and the adversary can make queries to
both Cπ and π. Further, we use GCπ

k (Aπ,Cπ
(τ, k)) to denote that in this random experiment, the

adversary A when run has inputs τ and k.

Offline-online adversaries. As in [GT23], we define the notion of offline-online adversaries. An
offline-online adversary A is split into two parts, the offline adversary A1 and the online adversary
A2. In the offline stage, A1 is given access only to the ideal primitive oracle π. At the end of this
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stage, A1 outputs the entire transcript of its queries τ . Then, in the online stage, adversary A2 is
initialized with τ (and possibly other inputs) and given access to the oracle π and Cπ. Further, we
say that A is a (T1, T2)-adversary if A1 makes at most T1 queries and A2 makes at most T2 queries
to its oracles. We can assume without loss of generality that both A1 and A2 are deterministic
because we can fix the best possible randomness that maximizes the advantage of A.

As argued in [GT23], some games are more interesting than others in the context of offline-online
adversaries. As in that work, we will focus on salted cryptographic primitives I which permit an
additional input–called a salt–that is chosen in the online phase of an attack.

Defining indifferentiability against offline-online adversaries. We extend the notion of
indifferentiability [MRH04] to the context of offline-online adversaries. Recall that in the original
indifferentiability notion, saying that C that uses π is indifferentiable from an ideal object Π requires
having a real world where the adversary has access to the construction C and an oracle for the
ideal object π. In the ideal world, in contrast, the adversary has access to the ideal object oracle Π
and a simulator which provides the same interface as π but simulates it using Π. There are several
challenges in extending this meaningfully to the notion of an offline-online adversary. First, since
the adversary is two-stage, the simulator needs to be two-stage. So the following questions arise:
1) what state should the two simulator stages be allowed to share, and 2) do both of the simulator
stages have access to Π?

In order to answer these, we need to remember that the main goal of indifferentiability is to
show that for any adversary A playing a game where it has access to both C and π, there is an
adversary B that only has access to Π and has similar advantage. This allows for composition.
Moreover, if B is online-only, then the latter game is easier to analyze.

In the offline-online model, the offline stage of A outputs the entire query transcript that is sent
to the online phase of A. So, we similarly allow the first stage of the simulator to send over the
entire query transcript of the adversary A to the second stage. This means that the resulting B
does the same thing. As for the second question, since we aim for an online-only B, we allow only
the second stage of the simulator to access Π. Below, we state the formal definition of offline-online
indifferentiability.

Definition 3.1 ((T1, T2, T
′, ϵ)-offline-online-indifferentiability). Let Samp be a sampler that takes

as input a salt length λ, and outputs the salt according to some specific distribution. Let C be an
oracle-aided circuit, let I and I ′ be ideal primitives, and let S = (S1,S2) be a simulator. We define
the offline-online-indifferentiability advantage of an adversary A against C with respect to Samp, I
and S for λ ∈ N+ from I ′ as follows.

AdvI
′

C,Samp,I,S(A) :=

∣∣∣∣∣∣∣ Pr
π←$ I

 τ ← Aπ
1

k←$ Samp(1λ)

1←$ACπ
k ,π

2 (τ, k)

− Pr
Π←$ I′

 τ ← AS11
k←$ Samp(1λ)

1←$AΠ,SΠ2 (τ,k)
2 (τ, k)


∣∣∣∣∣∣∣

We say that C is (T1, T2, T
′, ϵ)-offline-online-indifferentiable from I ′ with respect to I,Samp if for

any (T1, T2)-adversary A there exists a (0, T ′)-simulator S such that AdvI
′

C,Samp,I,S(A) ≤ ϵ for all
sufficiently large λ ∈ N.

Comparison with other definitions. We briefly compare our definition of offline-online indif-
ferenitiability to prior attempts at similar definitions.

� Our definition is a generalization of the indifferenitiability definition of Maurer, Renner and
Holenstein [MRH04]. Specifically setting T1 = 0 recovers the definition and the composition
theorem of [MRH04].
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� Riestenpart et al [RSS11] formalized the notion of reset indifferentiability, a strengthening
of indifferentiability that enables an indifferentiability composition theorem covering multi-
stage security notions. However, they show that practical hash constructions cannot be reset
indifferentiable. Our indifferenitiability notion is incomparable to i.e., neither implied by nor
implies reset indifferenitiability.

� Mandal, Patarin, and Seurin [MPS12] considered a notion called sequential indifferentiability,
wherein the adversary has access to several oracles but there is a pre-defined sequence of
allowed calls to the oracles. While we can cast our indifferenitiability notion in this framework,
the query complexity of the adversary against sequential indifferentiability is measured as the
total number of queries made to all oracles together. This means that if we use sequential
indifferenitiability, all the bounds would be in terms of T1+T2. As such, one could not hope for
bounds which remain meaningful in regimes when T1 >> 2n/2 >> T2 for security properties
like collision-resistance. In fact for any preprocessing adversary, the regime of T1 >> 2n/2 is
highly realistic. Our work, unlike that of [MPS12], provides meaningful bounds in that regime.
Our indifferenitiability notion is incomparable to the notion of sequential indifferentiability,
because while our definition is more general for the specific setting of offline-online adversaries,
sequential indifferenitiability can capture more types of adversaries which have more than two
stages.

� Demay et al. [DGHM13] suggested a variant of indifferentiability called resource-restricted
indifferentiability which lies somewhere in between plain indifferentiability and reset indiffer-
entiability. However, this notion has only been used to prove impossibility results. Again,
resource-restricted indifferenitiability is incomparable to our notion of offline-online indiffer-
enitiability.

� Mittelbach [Mit14] weakened the reset indifferentiability definition by changing the order of
quantifiers between the simulator and the distinguisher, allowing the simulator to run and feed
queries to the ideal object that are longer than the running time of the distinguisher. Their
definition is also neither implied by, nor implies our notion of offline-online indifferentiability.

While the relaxation allowed [Mit14] to prove bounds for various constructions and formalize
a corresponding composition theorem, it suffers from the following caveats that our work does
not encounter.

– Their simulator they give in their proofs has unrealistically large running time, and
therefore the resulting composition theorem is extremely weak and not meaningful

– Further, their simulator in the proof needs to feed extremely long inputs to the ideal
primitive, meaning that the proof only works for hash functions that support unrealis-
tically large input length

– The bounds they prove are very weak, providing security guarantees only for attackers
that have overall sub-birthday complexity (which is typically a somewhat less interesting
regime). In contrast, we can prove guarantees against attackers that have offline running
time T1 >> 2n/2.

� Dodis et al. [DFMT20] consider a strengthening of the indifferentiability framework, called
indifferentiability with auxiliary input, where it is assumed that the adversary has limited
amount of advice about the random oracle before the online phase begins (in which it can
make a bounded number of queries). They suggest a concrete notion that does not lend itself
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to a useful composition theorem (in particular, because they do not limit the state-size of the
simulator in their notion, the blow-up in the size of the advice can significant).

Their indifferenitiability notion is not implied by, nor does it imply our definition of offline-
online indifferenitiability. However, in contrast to their work, since we limit the online queries
of the simulator and do not give the offline phase of the simulator access to the ideal object,
we get a meaningful composition theorem. Moreover, the bound they prove for their notion
is not known to be tight, while our bounds are tight. Overall, they manage to prove a non-
trivial result for constructions where every invocation of the random oracle is salted. Our
notion of offline-online indifferentiability does not impose such restriction on the construction
and unlike their notion, can be used to prove results for common constructions such that the
salted Merkle-Damg̊ard construction.

3.1 The Composition Theorem

Theorem 3.2. Let T1, T2, TC > 1 and let ϵ < 1. Let C be an oracle-aided construction, let I
and I ′ be ideal primitives and G be an oracle game such that C is compatible with I and G is
compatible with C and I ′. Let Samp be a sampler such that C is (T1, T2 + TC , T

′, ϵ)-offline-online-
indifferentiable from I ′ with respect to I,Samp. Then for every (T1, T2)-adversary A = (A1,A2)
we can construct a (0, T ′)-adversary B where for λ ∈ N∣∣∣∣∣∣ Pr

π←$ I

 τ ← Aπ
1

k←$ Samp(1λ)

1←$ GCπ
k (ACπ

k ,π
2 (τ, k))

− Pr
Π←$ I′

 τ ← B1
k←$ Samp(1λ)

1←$ GΠ(BΠ2 (τ, k))

∣∣∣∣∣∣ ≤ ϵ .

Proof. We first define the following adversary A′ = (A′1,A′2) against the offline-online indifferen-
tiability of C. A′1 is same as A1. A′2 gets the query transcript and the salt as input: it runs game
G, forwarding the game’s oracle queries to its first oracle. When G runs the adversary A2, A′2 starts
running A2 with its transcript and salt, answering A2’s queries to its own two oracles. It finally
outputs whatever the game outputs.

Let S be the (0, T ′) simulator for Cπ with respect to A,Samp guaranteed by the definition. We
next define the adversary B as follows: the adversary B1 runs A1 answering its oracle queries by
simulating S1 internally. The adversary B1 outputs τ , the output of A1. The adversary B2 which
has oracle access to Π and gets τ, a as input runs A2 with these inputs. For every query A2 makes
to Cπ

k , B2 forwards the query to Π and forwards the answers. For every π query made by A2,
B2 answers them by simulating S2 internally (it can do this because it has access to Π and the
transcript of queries τ).

It is easy to see that the adversary A′1, when given access to π and A′2 given access to Cπ
k , π

perfectly simulates the experiment on the left-hand side of the expression in the theorem statement
to A. From the description of B, it follows that the experiment where the adversary A′1, when
given access to S1 and A′2 given access to Π,SΠ2 is identical to the experiment on the right-hand
side of the expression in the theorem statement. Since A′ is a (T1, T2 + TC) adversary and C is
(T1, T2 + TC , T

′, ϵ)-indifferentiable from I ′ with respect to I, Samp, the claimed advantage bound
follows. Also the claims about the number of queries made by B follows from its description.
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4 Warm-up: Offline-Online Indifferentiability of 2-Block Merkle-
Damg̊ard

In this section, we give a warm-up formal proof of indifferentiability for 2-block Merkle-Damg̊ard (MD).
The 2-MD construction is defined relative to a compressing function π : {0, 1}n×{0, 1}m → {0, 1}n,
and is defined as

2-MDπ(k, (α1, α2)) = π(π(k, α1), α2),

where k ∈ {0, 1}n and α1, α2 ∈ {0, 1}m.

Theorem 4.1. Let C := 2-MD be the two-block Merkle-Damg̊ard construction. Let m,n ∈ N. Let
I be the uniform distribution on Fcs({0, 1}n × {0, 1}m, {0, 1}n). Let Samp be a sampler that takes
as input a salt length n, and outputs a string uniformly at random in {0, 1}n. Let I ′ be the uniform
distribution on Fcs(({0, 1}m)+, {0, 1}n). Then, there exists a (0, T2)-simulator S = (S1,S2) such
that for all (T1, T2)-adversaries A,

AdvI
′

C,Samp,I,S(A) ≤
T1

2n
+

3T1T2

2n
+

4T 2
2

2n
.

Proof. Recall that

AdvI
′

C,Samp,I,S(A) :=

∣∣∣∣∣∣∣ Pr
π←$ I

 τ ← Aπ
1

k←$ Samp(1n)

1←$A2-MDOπ
k ,π

2 (τ, k)

− Pr
Π←$ I′

 τ ← AS11
k←$ Samp(1n)

1←$AΠ,SΠ2 (τ,k)
2 (τ, k)


∣∣∣∣∣∣∣ .

We start by defining the simulator S below. The initialization procedure of S1 simply initializes a
table T to ⊥. S1 answers the queries by lazily sampling its answer. The initialization procedure of
S2 checks if there was a query made on k in the offline phase – if so, it simply aborts. To answer
a query, S2 checks if the query is prefixed by x1 such that there was an earlier query prefixed by
k that had answer x1, then it uses Π, otherwise answers by lazily sampling. It follows from the
description that the simulator makes no offline queries and at most T2 online queries.

Simulator S1
Procedure Init

T ← ⊥

Procedure Query(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Simulator SΠ2 (k, τ)

Procedure Init

If ∃x : T [k][x] ̸= ⊥:
Abort

Procedure Query(x1, x2)

If T [x1][x2] = ⊥:
If ∃y : T [k][y] = x1

T [x1][x2]← Π(y, x2)
Else T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

We now prove the advantage claim for S using a sequence of games. We first describe the game
hops at a high level. We start with the real world. As a first step, we will lazily sample the random
oracle. We then introduce the following bad event: if the there is a MD query on (x, y), such that
the value of the random oracle had not been already defined on (k, x), the value z is sampled as
the value of the random oracle at that point, and the value of the random oracle at (z, y) is already
defined. If the bad event happens, we resample the value of the random oracle on (z, y). Then,
we move to a game where we define two types of bad events: 1)the sampled key k is such that the
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offline phase of the adversary made a query prefixed with k 2) the lazily sampled value for one of
the two oracles is either an input salt or output of an offline query, or same as some other sampled
value. If the first type of bad event happens, the hybrid aborts. Further, the answer of the MD
queries are always freshly sampled. Finally, we move to the ideal world.

Concretely, we will define the games G0-G10 below and prove the following claims.

� Prπ←$ I

 τ ← Aπ
1

k←$ Samp(1n)

1←$A2-MDOπ
k ,π

2 (τ, k)

 = Pr [G0].

� Pr [G1] = Pr [G0].

� Pr [G2] = Pr [G1].

� Pr [G3] = Pr [G2] +
T1T2
2n +

T 2
2

2n .

� Pr [G4] = Pr [G3]

� Pr [G5] = Pr [G4].

� Pr [G6] = Pr [G5].

� Pr [G7] = Pr [G6].

� Pr [G8] ≤ Pr [G7] +
T1
2n + 2T1T2

2n +
T 2
2

2n .

� Pr [G9] = Pr [G8].

� Pr [G10] = Pr [G9].

� Pr [G10] = PrΠ←$ I′

 τ ← AS11
k←$ Samp(1n)

1←$AΠ,SΠ2 (τ,k)
2 (τ, k)

.
Putting this together, the claimed advantage bound follows. We now prove the claims.

Define game G0 as follows. In the game, the random oracle π is sampled, T, T ′ are initialized to
⊥ everywhere. Then the adversary A1 is run with oracle access to π, it outputs a state τ . A salt k
is sampled uniformly at random from {0, 1}n. The adversary A2 gets the salt as input, along with
access to oracles Oπ, 2-MDOπ

k . A2 returns a bit which is the output of the game. The oracle Oπ

simulates the random oracle π with additional bookkeeping. Similarly, the oracle 2-MDOπ
k is the

two-block MD construction with salt k and compression function π, with additional book-keeping
in T ′. It follows by inspection that

Pr
π←$ I

 τ ← Aπ
1

k←$ Samp(1n)

1←$A2-MDOπ
k ,π

2 (τ, k)

 = Pr [G0] .
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Game G0

π←$ I
T, T ′ ← ⊥
τ ← AOπ

1

k←$ Samp(1n)

b←$A2-MDOπ
k ,Oπ

2 (k, τ)
Return b

Oracle Oπ(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]← π(x1, x2)
Return T [x1][x2]

Oracle 2-MDOπ
k (x1, x2)

If T ′[x1][x2] ̸= ⊥:
Return T ′[x1][x2]

If T [k][x1] = ⊥:
T [k][x1]← π(k, x1)

y ← T [k][x1]
If T [y][x2] = ⊥:
T [y][x2]← π(y, x2)

T ′[x1][x2]← T [y][x2]
Return T ′[x1][x2]

We next move to game G1, where the random oracle π is lazily sampled. This does not change the
distribution of π, hence the output of the game. Therefore, we have that Pr [G1] = Pr [G0].

Game G1

T, T ′ ← ⊥
τ ← AOπ

1

k←$ Samp(1n)

b←$A2-MDOπ
k ,Oπ

2 (k, τ)
Return b

Oracle Oπ(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n
Return T [x1][x2]

Oracle 2-MDOπ
k (x1, x2)

If T ′[x1][x2] ̸= ⊥:
Return T ′[x1][x2]

If T [k][x1] = ⊥:
T [k][x1]←$ {0, 1}n

y ← T [k][x1]
If T [y][x2] = ⊥:
T [y][x2]←$ {0, 1}n

T ′[x1][x2]← T [y][x2]
Return T ′[x1][x2]

We move to game G2 where the only change compared to G1 is during a 2-MDO query on x1, x2 if
T [k][x1] = ⊥, and T [T [k][x1]][x2] ̸= ⊥, a flag bad is set to true. The introduction of this flag does
not alter the behavior of the game, hence Pr [G2] = Pr [G1].

Game G2

T, T ′ ← ⊥
τ ← AOπ

1

k←$ Samp(1n)

b←$A2-MDOπ
k ,Oπ

2 (k, τ)
Return b

Oracle Oπ(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle 2-MDOπ
k (x1, x2)

If T ′[x1][x2] ̸= ⊥:
Return T ′[x1][x2]

If T [k][x1] = ⊥:
T [k][x1]←$ {0, 1}n
If T [T [k][x1]][x2] ̸= ⊥ :
bad← true

y ← T [k][x1]
If T [y][x2] = ⊥:
T [y][x2]←$ {0, 1}n

T ′[x1][x2]← T [y][x2]
Return T ′[x1][x2]
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Game G3

T, T ′ ← ⊥
τ ← AOπ

1

k←$ Samp(1n)

b←$A2-MDOπ
k ,Oπ

2 (k, τ)
Return b

Oracle Oπ(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle 2-MDOπ
k (x1, x2)

If T ′[x1][x2] ̸= ⊥:
Return T ′[x1][x2]

If T [k][x1] = ⊥:
T [k][x1]←$ {0, 1}n
If T [T [k][x1]][x2] ̸= ⊥ :
bad← true
T [T [k][x1]][x2]←$ {0, 1}n

y ← T [k][x1]
If T [y][x2] = ⊥:
T [y][x2]←$ {0, 1}n

T ′[x1][x2]← T [y][x2]
Return T ′[x1][x2]

In game G3, T [T [k][x1]][x2] is resampled if bad is set. Since G2,G3 are identical-until-bad, using the
Fundamental Lemma of Game Playing [BR06], we have that

Pr [G3] ≤ Pr [G2] + Pr [G2 sets bad] .

Observe that bad is set in G2 only if the oracle 2-MDO is invoked on (x1, x2) such that T [k][x1] = ⊥
and the value of T [k][x1] sampled uniformly at random is such that T [T [k][x1]][x2] ̸= ⊥. This can
only happen if the sampled T [k][x1] is equal to some z such that T [z][x2] was already defined. Since
for every 2-MDO query, there are at most two new values of T that are defined, this happens with
probability at most (T1+2T2)/2

n for every 2-MDO query. Via a union bound over all 2-MD queries

Pr [G2 sets bad] ≤ T1T2

2n
+

2T 2
2

2n
.

Hence,

Pr [G3] ≤ Pr [G2] +
T1T2

2n
+

2T 2
2

2n
.

Game G4

T, T ′ ← ⊥
τ ← AOπ

1

k←$ Samp(1n)

b←$A2-MDOπ
k ,Oπ

2 (k, τ)
Return b

Oracle Oπ(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle 2-MDOπ
k (x1, x2)

If T ′[x1][x2] ̸= ⊥:
Return T ′[x1][x2]

If T [k][x1] = ⊥:
T [k][x1]←$ {0, 1}n
T [T [k][x1]][x2]←$ {0, 1}n

y ← T [k][x1]
If T [y][x2] = ⊥:
T [y][x2]←$ {0, 1}n

T ′[x1][x2]← T [y][x2]
Return T ′[x1][x2]

In game G4, we remove the bad flag, and after the check T [k][x1] = ⊥, we remove the check whether
T [T [k][x1]][x2] ̸= ⊥ and just always sample it. Note that this does not change behavior because in
game G3, it was resampled here if T [T [k][x1]][x2] ̸= ⊥ and sampled below if the check failed. Hence,
Pr [G4] = Pr [G3].
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Game G5

T, T ′ ← ⊥
τ ← AOπ

1

k←$ Samp(1n)

b←$A2-MDOπ
k ,Oπ

2 (k, τ)
Return b

Oracle Oπ(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle 2-MDOπ
k (x1, x2)

If T ′[x1][x2] ̸= ⊥:
Return T ′[x1][x2]

If T [k][x1] = ⊥:
T [k][x1]←$ {0, 1}n
T ′[x1][x2]←$ {0, 1}n
T [T [k][x1]][x2]← T ′[x1][x2]

y ← T [k][x1]
If T [y][x2] = ⊥:
T ′[x1][x2]←$ {0, 1}n
T [y][x2]← T ′[x1][x2]

Return T ′[x1][x2]

In game G5, instead of sampling T [T [k][x1]][x2] and later assigning it to T ′[x1][x2], we do it the
other way round. This does not change behavior and hence, Pr [G5] = Pr [G4].

Game G6

T, T ′ ← ⊥
τ ← AO1

π
1

k←$ Samp(1n)

b←$A2-MDOπ
k ,O

2
π

2 (k, τ)
Return b

Oracle O1
π(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle O2
π(x1, x2)

If T [x1][x2] = ⊥:
If ∃y : T [k][y] = x1:
If T ′[y][x2] = ⊥:
T ′[y][x2]←$ {0, 1}n

T [x1][x2]← T ′[y][x2]
Else T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle 2-MDOπ
k (x1, x2)

If T ′[x1][x2] ̸= ⊥:
Return T ′[x1][x2]

If T [k][x1] = ⊥:
T [k][x1]←$ {0, 1}n
T ′[x1][x2]←$ {0, 1}n
T [T [k][x1]][x2]← T ′[x1][x2]

y ← T [k][x1]
If T [y][x2] = ⊥:
T ′[x1][x2]←$ {0, 1}n
T [y][x2]← T ′[x1][x2]

Return T ′[x1][x2]
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Game G7

T, T ′ ← ⊥
τ ← AO1

π
1

k←$ Samp(1n)
If ∃x : T [k][x] ̸= ⊥

bad← true
V := {z : ∃(x, y) : T [x][y] = z or
∃(x, y) : T [z][y] = x}
b←$A2-MDOπ

k ,O
2
π

2 (k, τ)
Return b

Oracle O2
π(x1, x2)

If T [x1][x2] = ⊥:
If ∃y : T [k][y] = x1:
If T ′[y][x2] = ⊥:
T ′[y][x2]←$ {0, 1}n
If T ′[y][x2] ∈ V
bad← true

V ← V ∪ {T ′[y][x2]}
T [x1][x2]← T ′[y][x2]

Else
T [x1][x2]←$ {0, 1}n
If T [x1][x2] ∈ V

bad← true
V ← V ∪ {T [x1][x2]}

Return T [x1][x2]

Oracle 2-MDOπ
k (x1, x2)

If T ′[x1][x2] ̸= ⊥:
Return T ′[x1][x2]

If T [k][x1] = ⊥:
T [k][x1]←$ {0, 1}n
If T [k][x1] ∈ V
bad← true

V ← V ∪ {T [k][x1]}
T ′[x1][x2]←$ {0, 1}n
If T ′[x1][x2] ∈ V
bad← true

V ← V ∪ {T ′[x1][x2]}
T [T [k][x1]][x2]← T ′[x1][x2]

y ← T [k][x1]
If T [y][x2] = ⊥:
T ′[x1][x2]←$ {0, 1}n
If T ′[x1][x2] ∈ V
bad← true

V ← V ∪ {T ′[x1][x2]}
T [y][x2]← T ′[x1][x2]

Return T ′[x1][x2]
Oracle O1

π(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

In game G6, we separate the Oπ oracles given to A1 and A2. The Oπ oracle for A1 remains the
same. In the Oπ oracle for A2, we introduce a new condition if ∃y : T [k][y] = x1, then T [x1][x2] is
assigned T ′[y][x2] if T [x1][x2] was undefined. Notice that this does not change the distribution and
hence Pr [G6] = Pr [G5].

In game G7, we introduce several bad events. The bad event happens if the k sampled at the
beginning of the online phase is such that (k, ∗) had been queried to π by A1. The bad event also
happens if one of sampled values of T or T ′ collide with the input or output of one of the offline
queries or any of the other values of T , T ′ sampled in the online phase. Introduction of the bad
events does not change behavior, so Pr [G7] = Pr [G6].
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Game G8

T, T ′ ← ⊥
τ ← AO1

π
1

k←$ Samp(1n)
If ∃x : T [k][x] ̸= ⊥

bad← true
ABORT

V := {z : ∃(x, y) : T [x][y] =
z or ∃(x, y) : T [z][y] = x}
b←$A2-MDOπ

k ,O
2
π

2 (k, τ)
Return b

Oracle O1
π(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle O2
π(x1, x2)

If T [x1][x2] = ⊥:
If ∃y : T [k][y] = x1:
If T ′[y][x2] = ⊥:
T ′[y][x2]←$ {0, 1}n
If T ′[y][x2] ∈ V

bad← true
V ← V ∪ {T ′[y][x2]}

T [x1][x2]← T ′[y][x2]
Else
T [x1][x2]←$ {0, 1}n
If T [x1][x2] ∈ V
bad← true

V ← V ∪ {T [x1][x2]}
Return T [x1][x2]

Oracle 2-MDOπ
k (x1, x2)

If T ′[x1][x2] ̸= ⊥:
Return T ′[x1][x2]

T ′[x1][x2]←$ {0, 1}n
If T [k][x1] = ⊥:
T [k][x1]←$ {0, 1}n
If T [k][x1] ∈ V
bad← true

V ← V ∪ {T [k][x1]}
T ′[x1][x2]←$ {0, 1}n
If T ′[x1][x2] ∈ V
bad← true

V ← V ∪ {T ′[x1][x2]}
T [T [k][x1]][x2]← T ′[x1][x2]

y ← T [k][x1]
If T [y][x2] = ⊥:
T ′[x1][x2]←$ {0, 1}n
If T ′[x1][x2] ∈ V
bad← true

V ← V ∪ {T ′[x1][x2]}
T [y][x2]← T ′[x1][x2]

Return T ′[x1][x2]

In game G8, if the k sampled is such that the A1 had made a query on (k, ∗), the game aborts.
Further, in 2-MDO of G7, T

′[x1][x2] is always sampled uniformly at random if it is not defined when
bad is not set – this is because if the adversary makes queries T [k][x1] = y and T [y][x2] = z in order
then T ′[x1][x2] will have been set to z; on the other hand if those queries happened out of order,
bad would have been set. We observe that behavior in G8 is identical to G7 if bad is never set. This
is because if bad is never set G8 would never abort. Further, if none of the values of T, T ′ sampled
during the online phase are same as any of the input or answer of the offline queries or other values
sampled during the online phase and there is no offline query on k, whenever T ′[x1][x2] = ⊥, it is
always sampled uniformly at random in 2-MDO is G7, same as G8. Moreover, the probability that
bad is set in G7 is T1/2

n + T2(2T1 + T2)/2
n. Therefore,

Pr [G8] ≤ Pr [G7] + T1/2
n + T2(2T1 + T2)/2

n .

In game G9, we just clean up code and remove the bad events. This does not change behavior.
Hence, Pr [G9] = Pr [G8].

20



Game G9

T, T ′ ← ⊥
τ ← AO1

π
1

k←$ Samp(1n)
If ∃x : T [k][x] ̸= ⊥

ABORT
b←$A2-MDOπ

k ,O
2
π

2 (k, τ)
Return b

Oracle O1
π(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle O2
π(x1, x2)

If T [x1][x2] = ⊥:
If ∃y : T [k][y] = x1:
If T ′[y][x2] = ⊥:

T ′[y][x2]←$ {0, 1}n
T [x1][x2]← T ′[y][x2]

Else T [x1][x2]←$ {0, 1}n
Return T [x1][x2]

Oracle 2-MDOπ
k (x1, x2)

If T ′[x1][x2] ̸= ⊥:
Return T ′[x1][x2]

T ′[x1][x2]←$ {0, 1}n
Return T ′[x1][x2]

Finally in G10, we replace the lazy sampling of T ′ using a random oracle Π. This does not change
behavior and we have Pr [G10] = Pr [G9].

Game G10

T, T ′ ← ⊥
Π←$ Fcs({0, 1}2m, {0, 1}n)
τ ← AO1

π
1

k←$ Samp(1n)
If ∃x : T [k][x] ̸= ⊥:

ABORT
b←$A2-MDOπ

k ,O
2
π

2 (k, τ)
Return b

Oracle 2-MDOπ
k (x1, x2)

Return Π(x1, x2)

Oracle O1
π(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle O2
π(x1, x2)

If T [x1][x2] = ⊥:
If ∃y: T [k][y] = x1

T [x1][x2]← Π(y, x2)
Else T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

From the definition of the simulator S and G10, it follows from inspection that

Pr [G10] = Pr
Π←$ I′

 τ ← AS11
k←$ Samp(1n)

1←$AΠ,SΠ2 (τ,k)
2 (τ, k)

 .

This concludes the proof.

5 Offline-Online Indifferentiability of Merkle-Damg̊ard

In this section we prove our main offline-online indifferentiability bound for the classical MD con-
struction. Specifically, we consider the ℓ-block variant of MD, denoted ℓ-MD, where the message is
of length at most ℓ blocks, as follows. We also assume that the input is prefix free.5

ℓ-MDπ(k, (α1, . . . , αℓ′)) = π(ℓ-MDπ(k, (α1, . . . , αℓ′−1)), αℓ′),

where ℓ′ ≤ ℓ, π : {0, 1}n × {0, 1}m → {0, 1}n, ℓ-MDπ(k, α) = π(k, α), and k ∈ {0, 1}n and
α1, . . . , α2ℓ ∈ {0, 1}m.

5Namely, no input is a prefix of another input; this can be achieved by applying a prefix-free encoding to the input
before hashing it. Plain MD is known to not satisfy the classical notion of indifferenitiability (and therefore will not
satisfy our more general notion), and therefore we need to make this assumption.
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In the context of offline-online indifferentiability of ℓ-block MD, we define are more fine-grained
notion of offline-online adversaries. Namely, we say that a (T1, T2)-offline-online adversary is a
(T1, (T2,1, T2,2)) adversary if it makes T1 offline queries to its oracle, and in the online phase the
cumulative number of message blocks it makes to its first oracle is T2,1 and the total number of
queries it makes to its second oracle is T2,2, and T2 = T2,1 + T2,2, Our result is stated next.

Theorem 5.1. Let C := ℓ-MD be the ℓ-block Merkle-Damg̊ard construction with prefix-free message
encoding. Let m,n ∈ N. Let I be the uniform distribution on Fcs({0, 1}n × {0, 1}m, {0, 1}n). Let
Samp be a sampler that takes as input a salt length n, and outputs a string uniformly at random in
{0, 1}n. Let I ′ be the uniform distribution on Fcs(({0, 1}m)+, {0, 1}n). Then, there exists a (0, T2)
simulator S = (S1,S2) such that for every (T1, (T2)) adversary A

AdvI
′

C,Samp,I,S(A) ≤
T1

2n
+

2T1T2,1 + T1T2,2

2n
+

2T 2
2,1 + T 2

2,2 + 3T2,1T2,2

2n
.

Remark 5.2. We give a direct proof for the above theorem, following the high level idea of the
proof when ℓ = 2 in Section 4. We note, however, that an alternative route would be to apply
the composition theorem (Theorem 3.2) directly, but the resulting bound would be somewhat worse
(because we would need to apply a union bound over all possible lengths up to ℓ).

Proof. Assume (T1, T2)-adversary A is a (T1, T2,1, T2,2) adversary as defined above. Recall that

AdvI
′

C,Samp,I,S(A) :=

∣∣∣∣∣∣ Pr
π←$ I

 τ ← Aπ
1

k←$ Samp(1n)

1←$Aℓ-MDOπ
k ,π

2 (τ, k)

− Pr
Π←$ I′

 τ ← AS1
k←$ Samp(1n)

1←$AΠ,SΠ
2 (τ, k)

∣∣∣∣∣∣ .
The initialization procedure of S1 simply initializes a table T to ⊥. S1 answers the queries by lazily
sampling its answers. The initialization procedure of S2 checks if there was a query made on k in
the offline phase – if so, it simply aborts. To answer a query, S2 checks if there was a sequence of
queries (k, z1), (y1, z2), (y2, z3), . . . , (yt−1, zt−1) such that t ≤ ℓ, T [k][z1] = y1, ∀j ∈ {2, . . . , t − 1} :
T [yj−1][zj ] = yj and yt−1 = x1, then it uses Π, otherwise answers by lazily sampling. It follows from
the description that the simulator makes no offline queries and at most T2,2 ≤ T2 online queries.

Simulator S1
Procedure Init

T ← ⊥

Procedure Query(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Simulator SΠ2 (k, τ)

Procedure Init

If ∃x : T [k][x] ̸= ⊥:
Abort

Procedure Query(x1, x2)

If T [x1][x2] = ⊥:
If ∃y1, y2, . . . , yt−1, z1, z2, . . . , zt−1 : T [k][z1] = y1

and ∀j ∈ {2, . . . , t − 1} : T [yj−1][zj ] = yj and t ≤ ℓ
and zt = x1

T [x1][x2]← Π(z1, z2, . . . , zt−1, x2)
Else T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

We now prove the advantage claim for S using a sequence of games. Namely, we will define the
games G0,G1,G2,G3,G4,G5,G6,G7,G8,G9 below and prove the following claims.

� Prπ←$ I

 τ ← Aπ
1

k←$ Samp(1n)

1←$A2-MDOπ
k ,π

2 (τ, k)

 = Pr [G0].
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� Pr [G1] = Pr [G0].

� Pr [G2] = Pr [G1].

� Pr [G3] = Pr [G2] +
T1T2,1

2n +
T2,1T2,2+T 2

2,1

2n .

� Pr [G4] = Pr [G3]

� Pr [G5] = Pr [G4].

� Pr [G6] = Pr [G5].

� Pr [G7] ≤ Pr [G6] + T1/2
n + 2(T2,1 + T2,2)T1/2

n + (T2,1 + T2,2)
2/2n.

� Pr [G8] = Pr [G7].

� Pr [G9] = Pr [G8].

� Pr [G9] = PrΠ←$ I′

 τ ← AS11
k←$ Samp(1n)

1←$AΠ,SΠ2 (τ,k)
2 (τ, k)

.
Putting this together, we have that

AdvI
′

C,Samp,I,S(A) ≤
T1

2n
+

2T1T2,1 + T1T2,2

2n
+

2T 2
2,1 + T 2

2,2 + 3T2,1T2,2

2n
.

Now, using T2 = T2,1 + T2,2 we get that

AdvI
′

C,Samp,I,S(A) ≤
T1

2n
+

2T1T2

2n
+

2T 2
2

2n
.

This proves the theorem. We now prove all the claims.
Define game G0 as follows. In the game, the random oracle π is sampled, T, T ′ are initialized

to ⊥ everywhere. Then the adversary A1 is run with oracle access to π, it outputs a state τ . A
salt k is sampled uniformly at random from {0, 1}n. The adversary A2 gets the salt as input, along
with access to oracles Oπ, ℓ-MDOπ

k . A2 returns a bit which is the output of the game. The oracle
Oπ simulates the random oracle π with additional bookkeeping. Similarly, the oracle ℓ-MDOπ

k is
the ℓ-block MD construction with salt k and compression function π, with additional bookkeping
in T ′. It follows from inspection that

Pr
π←$ I

 τ ← Aπ
1

k←$ Samp(1n)

1←$Aℓ-MDOπ
k ,π

2 (τ, k)

 = Pr [G0] .

Game G0

π←$ I
T, T ′

1, T
′
2, . . . , T

′
ℓ ← ⊥

τ ← AOπ
1

k←$ Samp(1n)

b←$Aℓ-MDOπ
k ,Oπ

2 (k, τ)
Return b
Oracle Oπ(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]← π(x1, x2)

Return T [x1][x2]

Oracle ℓ-MDOπ
k (x1, x2, . . . , xt)

If T ′
t [x1] . . . [xt] ̸= ⊥

Return T ′
t [x1] . . . [xt]

y0 ← k
For i ∈ {1, . . . , t}:

If T [yi−1][xi] = ⊥
T [yi−1][xi]← π(yi−1,xi

)
yi ← T [yi−1][xi]

T ′
t [x1][x2] . . . [xt]← yt

Return T ′
t [x1][x2] . . . [xt]
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We next move to game G1, where the random oracle π is lazily sampled. This does not change the
distribution of π, hence the output of the game. Therefore, we have that Pr [G1] = Pr [G0].

Game G1

T, T ′
1, T

′
2, . . . , T

′
ℓ ← ⊥

τ ← AOπ
1

k←$ Samp(1n)

b←$Aℓ-MDOπ
k ,Oπ

2 (k, τ)
Return b

Oracle Oπ(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle ℓ-MDOπ
k (x1, x2, . . . , xt)

If T ′
t [x1][x2] . . . [xt] ̸= ⊥:

Return T ′
t [x1][x2] . . . [xt]

y0 ← k
For i ∈ {1, . . . , t}:
If T [yi−1][xi] = ⊥
T [yi−1][xi]←$ {0, 1}n

yi ← T [yi−1][xi]
T ′
t [x1][x2] . . . [xt]← yt

Return T ′
t [x1][x2] . . . [xt]

We move to game G2 where the only change compared to G1 is during an ℓ-MDO query on
x1, x2, . . . , xt if T [yi−1][xi] = ⊥, and T [T [yi−1][xi]][xi+1] ̸= ⊥, a flag bad is set to true. The in-
troduction of this flag does not alter the behavior of the game, hence Pr [G2] = Pr [G1].

Game G2

T, T ′
1, T

′
2, . . . , T

′
ℓ ← ⊥

τ ← AOπ
1

k←$ Samp(1n)

b←$Aℓ-MDOπ
k ,Oπ

2 (k, τ)
Return b

Oracle Oπ(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle ℓ-MDOπ
k (x1, x2, . . . , xt)

If T ′
t [x1][x2] . . . [xt] ̸= ⊥:

Return T ′
t [x1][x2] . . . [xt]

y0 ← k
For i ∈ {1, . . . , t}:

If T [yi−1][xi] = ⊥
T [yi−1][xi]←$ {0, 1}n
If T [T [yi−1][xi]][xi+1] ̸= ⊥
bad← true

yi ← T [yi−1][xi]
T ′
t [x1][x2] . . . [xt]← yt

Return T ′
t [x1][x2] . . . [xt]

In game G3, T [T [yi−1][xi]][xi+1] is resampled if bad is set. Since G2,G3 are identical-until-bad, using
the Fundamental Lemma of Game Playing [BR06], we have that

Pr [G3] ≤ Pr [G2] + Pr [G2 sets bad] .

Game G3

T, T ′
1, T

′
2, . . . , T

′
ℓ ← ⊥

τ ← AOπ
1

k←$ Samp(1n)

b←$Aℓ-MDOπ
k ,Oπ

2 (k, τ)
Return b

Oracle Oπ(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n
Return T [x1][x2]

Oracle ℓ-MDOπ
k (x1, x2, . . . , xt)

If T ′
t [x1][x2] . . . [xt] ̸= ⊥:

Return T ′
t [x1][x2] . . . [xt]

y0 ← k
For i ∈ {1, . . . , t}:
If T [yi−1][xi] = ⊥

T [yi−1][xi]←$ {0, 1}n
If T [T [yi−1][xi]][xi+1] ̸= ⊥
bad← true
T [T [yi−1][xi]][xi+1]←$ {0, 1}n

yi ← T [yi−1][xi]
T ′
t [x1][x2] . . . [xt]← yt

Return T ′
t [x1][x2] . . . [xt]
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Observe that bad is set in G2 only if the oracle ℓ-MDO is invoked on (x1, x2, . . . , xt) such that
T [yi−1][xi] = ⊥ and the value of T [yi−1][xi] sampled uniformly at random is such that T [T [yi−1][xi]][xi+1] ̸=
⊥. This can only happen if the sampled T [yi−1][xi] is equal to some z such that T [z][xi+1] was
already defined. For every ℓ-MDO query with i message blocks, there are at most i new values of
T that are defined. Since the total number of message blocks queried is T2,1, via a union bound
over all ℓ-MD queries and the all the iterations in a single query we have that

Pr [G2 sets bad] ≤ T2,1
T1 + T2,1 + T2,2

2n
=

T1T2,1

2n
+

T2,1T2,2 + T 2
2,1

2n
.

Hence,

Pr [G3] ≤ Pr [G2] +
T1T2,1

2n
+

T2,1T2,2 + T 2
2,1

2n
.

In game G4, we remove the bad flag, and after the check T [yi−1][xi] = ⊥, we remove the check
whether T [T [yi−1][xi]][xi+1] ̸= ⊥. Note that this does not change behavior because in game G3, it
was resampled here if T [T [yi−1][xi]][xi+1] ̸= ⊥ and sampled in the next iteration if the check failed
– now it is just always sampled in the next iteration Hence, Pr [G4] = Pr [G3].

Game G4

T, T ′
1, T

′
2, . . . , T

′
ℓ ← ⊥

τ ← AOπ
1

k←$ Samp(1n)

b←$Aℓ-MDOπ
k ,Oπ

2 (k, τ)
Return b

Oracle Oπ(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n
Return T [x1][x2]

Oracle ℓ-MDOπ
k (x1, x2, . . . , xt)

If T ′
t [x1][x2] . . . [xt] ̸= ⊥:

Return T ′
t [x1][x2] . . . [xt]

y0 ← k
For i ∈ {1, . . . , t}:
If T [yi−1][xi] = ⊥
T [yi−1][xi]←$ {0, 1}n

yi ← T [yi−1][xi]
T ′
t [x1][x2] . . . [xt]← yt

Return T ′
t [x1][x2] . . . [xt]

In game G5, we separate the Oπ oracles given to A1 and A2. The Oπ oracle for A1 remains the same.
In the Oπ oracle forA2, we introduce a new condition ∃y1, y2, . . . , yt−1, z1, z2, . . . , zt−1 : T [k][z1] = y1
and ∀j ∈ {2, . . . , t− 1} : T [yj−1][zj ] = yj and t ≤ ℓ and zt = x1 if T [x1][x2] was undefined. Observe
that because we use prefix-free MD, at most one set of yi’s will satisfy the stated condition. Notice
that this does not change the distribution and hence Pr [G5] = Pr [G4].

Game G5

T, T ′
1, T

′
2, . . . , T

′
ℓ ← ⊥

τ ← AO1
π

1

k←$ Samp(1n)

b←$Aℓ-MDOπ
k ,O

2
π

2 (k, τ)
Return b

Oracle O1
π(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle ℓ-MDOπ
k (x1, x2, . . . , xt)

If T ′
t [x1][x2] . . . [xt] ̸= ⊥:

Return T ′
t [x1][x2] . . . [xt]

y0 ← k
For i ∈ {1, . . . , t}:
If T [yi−1][xi] = ⊥
T [yi−1][xi]←$ {0, 1}n

yi ← T [yi−1][xi]
T ′
t [x1][x2] . . . [xt]← yt

Return T ′
t [x1][x2] . . . [xt]

In game G6, we introduce several bad events. The bad event happens if the k sampled at the
beginning of the online phase is such that (k, ∗) had been queried to π by A1. The bad event also
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happens if one of sampled values of T or T ′ collide with the input or output of one of the offline
queries or any of the other values of T , T ′ sampled in the online phase. Introduction of the bad
events does not change behavior, so Pr [G6] = Pr [G5].

Game G6

T, T ′
1, T

′
2, . . . , T

′
ℓ ← ⊥

τ ← AO1
π

1

k←$ Samp(1n)
If ∃x : T [k][x] ̸= ⊥

bad← true
V := {z : ∃(x, y) : T [x][y] = z or
∃(x, y) : T [z][y] = x}
b←$Aℓ-MDOπ

k ,O
2
π

2 (k, τ)
Return b

Oracle O1
π(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle O2
π(x1, x2)

If T [x1][x2] = ⊥:
If ∃y1, y2, . . . , yt−1, z1, z2, . . . , zt−1 : T [k][z1] = y1

and ∀j ∈ {2, . . . , t − 1} : T [yj−1][zj ] = yj and t ≤ ℓ
and zt = x1

If T ′
t [z1][z2] . . . [zt−1][x2] = ⊥

T ′
t [z1][z2] . . . [zt−1][x2]←$ {0, 1}n

If T ′
t [z1][z2] . . . [zt−1][x2] ∈ V

bad← true
V ← V ∪ {T ′

t [z1][z2] . . . [zt−1][x2]}
T [x1][x2]← T ′

t [z1][z2] . . . [zt−1][x2]
T [x1][x2]←$ {0, 1}n
If T [x1][x2] ∈ V
bad← true

V ← V ∪ {T [x1][x2]}
Return T [x1][x2]

Oracle ℓ-MDOπ
k (x1, x2, . . . , xt)

If T ′
t [x1][x2] . . . [xt] ̸= ⊥:

Return T ′
t [x1][x2] . . . [xt]

y0 ← k
For i ∈ {1, . . . , t}:

If T [yi−1][xi] = ⊥
T [yi−1][xi]←$ {0, 1}n

If T [yi−1][xi] ∈ V
bad← true

V ← V ∪ {T [yi−1][xi]}
yi ← T [yi−1][xi]

T ′
t [x1][x2] . . . [xt]← yt

Return T ′
t [x1][x2] . . . [xt]

In game G7, if the k sampled is such that the A1 had made a query on (k, ∗), the game aborts.
Further, in ℓ-MDO, T ′[x1][x2] . . . [xt] is always sampled uniformly at random if it is not defined.
We argue that the behavior in G7 is identical to G6 if bad is never set. In G6, if the ℓ-MDO oracle
is queried on inputs such that no input is a prefix of another, then the bad event happens only
if a freshly sampled T value collides with a T ′ or T value sampled earlier. As long as no two
intermediate or resultant evaluations of ℓ-MDO queries and the answer of O queries have the same
answer, bad is never set in game G6 and therefore, the transition to game G7 does not change
behavior. The guarantee that two intermediate or resultant evaluations of ℓ-MDO queries and the
answer of O queries have the same answer holds assuming we use prefix-free MD. Moreover, the
probability that bad is set in G6 is T1/2

n + (T2,1 + T2,2)(T1 + T2,1 + T2,2)/2
n. Therefore,

Pr [G7] ≤ Pr [G6] + T1/2
n + 2(T2,1 + T2,2)T1/2

n + (T2,1 + T2,2)
2/2n .
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Game G7

T, T ′
1, T

′
2, . . . , T

′
ℓ ← ⊥

τ ← AO1
π

1

k←$ Samp(1n)
If ∃x : T [k][x] ̸= ⊥

bad← true
ABORT

V := {z : ∃(x, y) : T [x][y] =
z or ∃(x, y) : T [z][y] = x}
b←$Aℓ-MDOπ

k ,O
2
π

2 (k, τ)
Return b

Oracle O1
π(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle O2
π(x1, x2)

If T [x1][x2] = ⊥:
If ∃y1, y2, . . . , yt−1, z1, z2, . . . , zt−1 : T [k][z1] = y1

and ∀j ∈ {2, . . . , t − 1} : T [yj−1][zj ] = yj and t ≤ ℓ
and zt = x1

If T ′
t [z1][z2] . . . [zt−1][x2] = ⊥

T ′
t [z1][z2] . . . [zt−1][x2]←$ {0, 1}n

If T ′
t [z1][z2] . . . [zt−1][x2] ∈ V

bad← true
V ← V ∪ {T ′

t [z1][z2] . . . [zt−1][x2]}
T [x1][x2]← T ′

t [z1][z2] . . . [zt−1][x2]
T [x1][x2]←$ {0, 1}n
If T [x1][x2] ∈ V

bad← true
V ← V ∪ {T [x1][x2]}

Return T [x1][x2]

Oracle ℓ-MDOπ
k (x1, x2, . . . , xt)

If T ′
t [x1][x2] . . . [xt] ̸= ⊥:

Return T ′
t [x1][x2] . . . [xt]

T ′
t [x1][x2] . . . [xt]←$ {0, 1}n

y0 ← k
For i ∈ {1, . . . , t}:
If T [yi−1][xi] = ⊥
T [yi−1][xi]←$ {0, 1}n

If T [yi−1][xi] ∈ V
bad← true

V ← V ∪ {T [yi−1][xi]}
yi ← T [yi−1][xi]

T ′
t [x1][x2] . . . [xt]← yt

T [yt−1][xt]← T ′
t [x1][x2] . . . [xt]

Return T ′
t [x1][x2] . . . [xt]

In game G8, we just clean up code and remove the bad events. This does not change behavior.
Hence, Pr [G8] = Pr [G7].

Game G8

T, T ′
1, T

′
2, . . . , T

′
ℓ ← ⊥

τ ← AO1
π

1

k←$ Samp(1n)
If ∃x : T [k][x] ̸= ⊥
bad← true
ABORT

V := {z : ∃(x, y) : T [x][y] =
z or ∃(x, y) : T [z][y] = x}
b←$Aℓ-MDOπ

k ,O
2
π

2 (k, τ)
Return b

Oracle O1
π(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle O2
π(x1, x2)

If T [x1][x2] = ⊥:
If ∃y1, y2, . . . , yt−1, z1, z2, . . . , zt−1 : T [k][z1] = y1 and

∀j ∈ {2, . . . , t − 1} : T [yj−1][zj ] = yj and t ≤ ℓ and
zt = x1

If T ′
t [z1][z2] . . . [zt−1][x2] = ⊥

T ′
t [z1][z2] . . . [zt−1][x2]←$ {0, 1}n

T [x1][x2]← T ′
t [z1][z2] . . . [zt−1][x2]

Else T [x1][x2]←$ {0, 1}n
Return T [x1][x2]

Oracle ℓ-MDOπ
k (x1, x2, . . . , xt)

If T ′
t [x1][x2] . . . [xt] ̸= ⊥:

Return T ′
t [x1][x2] . . . [xt]

T ′
t [x1][x2] . . . [xt]←$ {0, 1}n

Return T ′
t [x1][x2] . . . [xt]
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Finally, in G9, we replace the lazy sampling of T ′ using a random oracle Π. This does not
change behavior and we have Pr [G9] = Pr [G8].

Game G9

T, T ′
1, T

′
2, . . . , T

′
ℓ ← ⊥

τ ← AO1
π

1

k←$ Samp(1n)
If ∃y : T [k][y] ̸= ⊥

bad← true
ABORT

b←$Aℓ-MDOπ
k ,O

2
π

2 (k, τ)
Return b

Oracle O1
π(x1, x2)

If T [x1][x2] = ⊥:
T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle O2
π(x1, x2)

If T [x1][x2] = ⊥:
If y1, . . . , yt−1, z1, . . . , zt−1 : t ≤ ℓ and T [k][z1] = y1

and T [y1][z2] = y2, . . . , T [yt−2][zt−1] = yt−1 and
yt−1 = x1

T [x1][x2]← Π(z1, . . . , zt−1, x2)
Else T [x1][x2]←$ {0, 1}n

Return T [x1][x2]

Oracle ℓ-MDOπ
k (x1, x2, . . . , xt)

Return Π(x1, x2, . . . , xt)

From the definition of the simulator S and G9, it follows from inspection that

Pr [G9] = Pr
Π←$ I′

 τ ← AS11
k←$ Samp(1n)

1←$AΠ,SΠ2 (τ,k)
2 (τ, k)

 .

This concludes the proof.

5.1 Offline-Online Indifferentiability of Keyed Merkle-Damg̊ard

The keyed-MD construction is defined relative to a compressing function π : {0, 1}n × {0, 1}m →
{0, 1}n, and is defined as

keyed-MDπ(k, (α1, . . . , αℓ)) = π(k, keyed-MDπ(k, (α1, . . . , αℓ−1)), αℓ),

where keyed-MDπ(k, α) = π(k, 0n, α), and k ∈ {0, 1}n and α, α1, . . . , αℓ ∈ {0, 1}m.

Theorem 5.3. Let C := keyed-MD be the ℓ-block keyed Merkle-Damg̊ard construction. Let m,n ∈
N. Let I be the uniform distribution on Fcs({0, 1}n × {0, 1}n × {0, 1}m, {0, 1}n). Let Samp be a
sampler that takes as input a salt length n, and outputs a string uniformly at random in {0, 1}n.
Let I ′ be the uniform distribution on Fcs(({0, 1}m)+, {0, 1}n). Then, there exists a (0, T2)-simulator
S = (S1,S2) such that for every (T1, T2)-adversary A

AdvI
′

C,Samp,I,S(A) ≤
T1

2n
+

2T1T2

22n
+

2T 2
2

2n
.

Proof. [Sketch] The proof of this theorem is almost identical to that of the proof of Theorem 5.1,
with nearly identical hybrids, where the only difference being the analysis in the transition between
G2 and G3. In the probability calculation that Pr [G2 sets bad], we have that the expected number
of offline queries on (k, ∗) is T1/2

n, so the term T1T2/2
n in the bound is replaced by T1T2/2

2n

(which is better).
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6 Tightness of Offline-Online Indifferentiability Bounds

In this section, we demonstrate the tightness of the terms in our bounds proved in Theorems 4.1,
5.1 and 5.3.

Remark 6.1 (Tightness of Theorem 4.1.). In Theorem 4.1, for T2 ≥ 1, the term T1T2/2
n always

dominates T1/2
n. We give an attack in Theorem 6.2 that achieves the advantage roughly T1T2/2

n−
T/2n for any (0, T ) simulator. Now, for the simulator to be meaningful, T = O(T2) since otherwise
the resulting online-only adversary B in the composition theorem will make online queries much
larger than T2, thereby weakening the guarantee. Therefore, the attack achieves advantage roughly
T1T2/2

n against any meaning, meaning that term in our bound is tight. Further, for T2 ≥ T1, a
birthday attack for finding collisions achieves advantage T 2

2 /2
n, matching the bound.

Theorem 6.2. Let C be the two-block MD construction. Let I = Fcs({0, 1}n×{0, 1}n×{0, 1}m, {0, 1}n)
and I ′ = Fcs(({0, 1}m)+, {0, 1}n). Let Samp be the sampler that samples a uniformly random bit
string in {0, 1}n. There is a (T1, T2)-adversary A such that for any (0, T ) simulator S = (S1,S2)
we have that∣∣∣∣∣∣∣ Pr

π←$ I

 τ ← Aπ
1

k←$ Samp(1λ)

1←$ACπ
k ,π

2 (τ, k)

− Pr
Π←$ I′

 τ ← AS11
k←$ Samp(1λ)

1←$AΠ,SΠ2 (τ,k)
2 (τ, k)


∣∣∣∣∣∣∣ ≥

T1T2

2n
− T

2n
.

Proof. The adversary in A1 makes T1 queries on distinct salts to π. The adversary A2, on input
k, makes distinct queries of the form π(k, ∗). If the output of a query (k, b) is z such that (z, y)
was queried by A1 with answer w (for some y), the adversary queries Cπ

k (b, y) and returns 1 if the
answer is w and 0 otherwise.

First off it is easy to see that when interacting with π,Cπ
k , the probability of the adversary A2

outputting 1 is at least T1T2/2
n. This is because for every (z, y) that was queried by A1, the A2

succeeds in making a query (k, b) which has answer z with probability T2/2
n. Since all the queries

by A1 are on distinct salts, the probability that A2 makes a query (k, b) with answer z such that
(z, y) was queried by A1 is T1T2/2

n. Finally if the answer of the query on (z, y) was w, by definition
of two-block MD, Cπ

k (b, y) will return w, and A2 returns 1.
Now, consider the case when A1 interacts with S1 and A2 interacts with SΠ2 . If say A2 makes

a query (k, b) which is answered with z such that (z, y) was queried by A1 with answer w: the
probability that H(b, y) = w is at most T/2n because S1 which answered with w, is independent
of Π and S2 can make at most T queries. Therefore, the probability that the adversary outputs 1
is at most T/2n. Hence, the claimed advantage bound follows.

Remark 6.3 (Tightness of Theorem 5.1.). In Theorem 5.1, the term T1T2/2
n always dominates

T1/2
n. We give an attack in Theorem 6.2 that achieves advantage roughly T1T2/2

n for meaningful
simulators. This shows that the term 2T1T2/2

n is tight upto constant factors. Further, a birthday
attack for finding collisions achieves advantage T 2

2 /2
n, matching the last term bound when T2 is

defined as the total number of message blocks queried to the oracles by A2. Therefore, this bound
is tight.

Remark 6.4 (Tightness of Theorem 5.3.). In Theorem 5.3, the term T1/2
n would dominate

T1T2/2
2n because for T2 ≥ 2n/2 the bound is trivial. An attack with T1 offline queries and one

online query would simply make distinct queries on T1 different salts in the offline phase. If it
makes a query on the salt k that is sampled, the single online query to the construction would be
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enough to distinguish the real and ideal worlds because the simulator in the ideal world has no ac-
cess to Π in the offline phase. This attack has advantage T1/2

n and can be applied to any salted
construction. Further, a birthday attack for finding collisions achieves advantage T 2

2 /2
n, matching

the last term bound when T2 is defined as the total number of message blocks queried to the oracles
by A2. Therefore, this bound is tight.
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