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Abstract—Homomorphic Encryption (HE) technology allows for pro-
cessing encrypted data, breaking through data isolation barriers and
providing a promising solution for privacy-preserving computation. The
integration of HE technology into Convolutional Neural Network (CNN)
inference shows potential in addressing privacy issues in identity verifi-
cation, medical imaging diagnosis, and various other applications. The
CKKS HE algorithm stands out as a popular option for homomaorphic
CNN inference due to its capability to handle real number computa-
tions. However, challenges such as computational delays and resource
overhead present significant obstacles to the practical implementation of
homomorphic CNN inference, largely due to the complex nature of HE
operations. In addition, current methods for speeding up homomorphic
CNN inference primarily address individual images or large batches of
input images, lacking a solution for efficiently processing a moderate
number of input images with fast homomorphic inference capabilities,
which is more suitable for edge computing applications. In response
to these challenges, we introduce a novel leveled homomorphic CNN
inference scheme aimed at reducing latency and improving throughput
using the CKKS scheme. Our proposed inference strategy involves
mapping multiple inputs to a set of ciphertext by exploiting the sliding
window properties of convolutions to utilize CKKS’s inherent Single-
Instruction-Multiple-Data (SIMD) capability. To mitigate the delay as-
sociated with homomorphic CNN inference, we introduce optimization
techniques, including mask-weight merging, rotation multiplexing, stride
convolution segmentation, and folding rotations. The efficacy of our
homomorphic inference scheme is demonstrated through evaluations
carried out on the MNIST and CIFAR-10 datasets. Specifically, results
from the MNIST dataset on a single CPU thread show that inference
for 163 images can be completed in 10.4 seconds with an accuracy
of 98.95%, which is a 6.9x throughput improvement over state-of-the-
art works. Comparative analysis with existing methodologies highlights
the superior performance of our proposed inference scheme in terms of
latency, throughput, communication overhead, and memory utilization.

Index Terms—Homomorphic encryption, CKKS, Convolutional Neural
Network, CNN Inference
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1 INTRODUCTION

ONVOLUTIONAL Neural Networks (CNN) [1] play a
Ccrucial role in facial recognition and medical image
diagnosis applications, which often involve sensitive per-
sonal data. However, the existence of data silos, caused by
security concerns among different data subjects and within
individual data subjects, obstructs the smooth sharing of
data and creates challenges in realizing the full potential of
data [2], [3]. As a result, protecting data privacy, preventing
unauthorized data exposure, and meeting the requirements
of applications have become significant obstacles [4], [5]. In-
tegrating homomorphic encryption (HE) technology [6] into
CNN inference can help maintain user data confidentiality
through encryption, thereby safeguarding user privacy. The
significance of data privacy and security has increased with
the rapid expansion of big data and artificial intelligence,
as operations like face recognition and the development of
large language models heavily rely on extensive training
data to improve their performance. Homomorphic encryp-
tion is a cryptographic technique that enables operations
on encrypted data without decryption. Several homomor-
phic encryption algorithms have been developed in recent
years, including YASHE [7], BGV [8], FV [9], TFHE [10],
and CKKS [11], [12]. Among these, the CKKS scheme is
notable for its incorporation of approximate computing
features based on the complexity of the Ring Learning With
Errors (RLWE) problem. This method maintains precision
by including a scaling factor and conducting a rescaling
operation on the ciphertext after multiplication to reduce
noise levels. CKKS's ability to handle real numbers makes
it well-suited for artificial intelligence and machine learning
applications. Moreover, the CKKS algorithm supports batch
encoding calculations for vectors, improving the efficiency
of homomorphic operations.

There is a growing demand in academia and industry
to enhance the implementation of homomorphic CNN in-
ference technology. A key challenge is the significant com-
putational delay associated with homomorphic CNN infer-
ence. CKKS homomorphic encryption transforms a single
floating-point number or integer into a set of polynomials
with numerous coefficients (2'2 to 216), resulting in compu-



tation latency over three orders of magnitude longer than
traditional calculations and leading to substantial storage
overhead. For example, Cryptonets [13] takes 250 seconds
for one homomorphic CNN inference compared to mil-
liseconds in non-encrypted operations. Thus, the pursuit of
homomorphic CNN inference with minimal latency, storage
overhead, and high throughput is crucial to enhance the
practicality and applicability of such technology in real-
world scenarios.

In previous studies, several optimizations have been pro-
posed for homomorphic CNN inference. Cryptonets [13] in-
troduced a method for CNN evaluation using homomorphic
encryption, where multiple inputs are combined into a sin-
gle ciphertext. However, this approach resulted in excessive
memory usage due to packing too many inputs together. In
contrast, LoLa [14] achieved lower latency in CNN evalua-
tions by encrypting only one input per ciphertext, thereby
reducing CKKS slot utilization. Falcon [15] improved la-
tency by implementing spectral inference techniques. While
LoLa and Falcon stack the same input multiple times in a
ciphertext to lower costs and enhance efficiency compared
to traditional vectorized methods [16]], [17], which are more
suitable for single input computations rather than efficient
for multi-input CNN inference.

As can be seen, current packing methods for speeding
up homomorphic CNN inference primarily address indi-
vidual images or large batches of input images. However,
an efficient solution for processing a moderate and vari-
able number of inputs with fast homomorphic inference
capabilities on edge computing platforms [18], [19] is still
lacking. Secure edge computing is a critical topic for real-
world applications and research [20], [21]. While cloud
computing can handle multiple data streams with abun-
dant resources, and Internet-of-Things (IoT) devices process
limited data with constrained resources, edge computing
bridges this gap by bringing enterprise applications closer
to data sources such as IoT devices or local edge servers.
These edge servers possess more resources than IoT devices
but fewer than cloud computing platforms. On the other
hand, prior studies on secure CNN inference [16], [22]
have overlooked scenarios involving multiple convolutions,
which is a significant limitation. These scenarios require
more communication overhead with data provider clients,
potentially exposing more security vulnerabilities.

Contributions: To address the requirement of efficient
HE CNN inference on edge computing, this paper intro-
duces a novel approach for enhancing efficient multiple-
input CNN inference within homomorphic encryption by
proposing a batch input image packing scheme that max-
imizes ciphertext slot utilization. The proposed design al-
lows for homomorphic computing without the extra need
for client communication. The key contributions of this
work are outlined as follows:

e A novel packing method is introduced to encode
and encrypt a moderate number of inputs for CNN,
achieving nearly 100% ciphertext slot utilization.
Additionally, a novel CNN model weight packing
strategy is proposed to align with the pattern of the
input packing scheme. This approach leverages ho-
momorphic rotations, additions, and multiplications
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to facilitate operations in the convolutional and full
connection layers.

e Several optimization techniques are presented to en-
hance the performance of homomorphic convolu-
tional layers for stride values of both 1 and greater
than 1. Methods including sliding windows rotated
ciphertext sharing, and stride convolution segmen-
tation are introduced to improve performance and
reduce memory overhead.

e An auto-compile tool is developed to streamline
the generation of the full connection layer packing,
ensuring that the data order aligns with the corre-
sponding encrypted outputs.

Through these optimizations, we achieve notable perfor-
mance improvements, high throughput, and reduced mem-
ory overhead on the MNIST and CIFAR-10 datasets, sur-
passing previous works by several orders of magnitude.
Paper Organization: The following paper is organized
as follows: Firstly, we provide a brief introduction to the
core operations of CKKS and CNN in Then,
details the proposed batch packing scheme for
inputs and the CNN model. The detailed computations of
homomorphic convolution, activation, and full connection

layer operations are presented in We present
the evaluation results and compare our work in

Finally, we conclude this paper in

2 PRELIMINARY

This section will elaborate on the mathematical aspects of
homomorphic operations in the CKKS scheme and convo-
lutional neural network.

2.1 CKKS

The CKKS scheme, introduced by Cheon et al. [11], is a type
of homomorphic encryption that facilitates approximate
arithmetic and processing of real numbers. In CKKS homo-
morphic computation, each plaintext encapsulates N/2 real
numbers before being encrypted into a ciphertext. In the
CKKS scheme, a ciphertext is represented as ¢ = (cg,c1) €
RZ, where Ry = Z4[X]/(X" + 1). Various homomorphic
operations denoted as f are executed on the ciphertext to
carry out specific computations on the data. Subsequently,
decryption and decoding processes are employed to retrieve
the processed data. This typical homomorphic computation

process is illustrated in

cvz Z[X]/(X" +1) (Z[X]/ (X" +1))?
data Encode plaintext Enerypt ciphertext
E—
m p ¢ = (cosc1)
f
\ 2
new data Decode [ €W plaintext Decrypt new ciphertext
m' = f(m) p' = f(p) ¢ = f(e)

cvz Z[X]/(X" +1) (Z[X]/ (X" +1))?

Fig. 1. CKKS homomorphic processing.



2.1.1 CKKS Homomorphic Addition and Multiplication

Additions and multiplications are the two basic homomor-
phic operations of CKKS. Given two plaintexts a and b,
CKKS homomorphic additions and multiplications satisfy
the following properties:

CKKS.ENC(a) + CKKS.ENC(b) ~ CKKS.ENC(a + b)

1
CKKS.ENC(a) - CKKS.ENC(b) ~ CKKS.ENC(a - b) @

In CKKS, after encryption, the ciphertexts consist of two
polynomials. In this case, one homomorphic addition con-
sists of two polynomial additions. However, homomorphic
multiplication is much more complex as a relinearization
operation is required. Both homomorphic addition and
multiplication would consume ciphertext level and increase
noise. The consumption of homomorphic multiplication is
much larger than that of homomorphic addition. Usually,
rescaling is required after homomorphic multiplication,
which would switch the ciphertext to the next ciphertext
level. When the ciphertext level decreases to 0, the ciphertext
can not be decrypted correctly. Therefore, in real-world
applications, one should ensure how many homomorphic
multiplications are required to design the CKKS modulus

properly.

2.1.2 CKKS Homomorphic Rotation

Rotation is to rotate the vector zg, 21, ...,zN/Q_l] e CN/2
homomorphically. When performing CKKS rotation by one
step, the resulting data will be [z1, 22, ..., 2n/2—1, 20]. In ho-
momorphic CNN inference, rotations are widely used since
there are many data permutations during the computation.
However, the complexity of rotation is much larger than that
of homomorphic additions and multiplications.

2.2 Convolutional Neural Network

CNN is a class of artificial neural networks that have be-
come dominant in various computer vision tasks [23]. The
CNN architecture includes several building blocks, includ-
ing convolutional layers, pooling layers, and full connection
layers. Advanced features of images are extracted through
operations such as the convolutional layer, pooling layer
and full connection layer, which have been implemented for
tasks such as classification, target detection, face recognition,
etc.

The convolutional layer is the most crucial part of CNN,
which gets the output by projecting the convolutional kernel
onto the input features for sliding window computation.
The operation of the convolutional layer is to perform an
element-wise product between each element of the convo-
lution kernel, and the input tensor is calculated at each
location of the tensor and summed to obtain the output
value in the corresponding position of the output tensor.
It can be represented as:

O(:c,y):ZZI(i+m,j+n)~K(m,n) ()

where O represents the output features, I represents the
input features and K represents the convolution kernel. The
role of the step size is to allow the convolution kernel to slide
how many columns to the right or how many rows down
at a time. A convolution with a step size of 1 is a normal
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convolution, and a convolution with a step size greater than
1 is called a stride convolution.

The pooling layer, also known as the downsampling
layer, reduces the size of the input features and retains
important information about the input features. Common
pooling operations in neural networks typically consist of
maximum pooling and average pooling. Maximum pooling
involves selecting the highest value within a specific local
area as the result, whereas average pooling computes the
mean value of the input characteristics in that region. When
the division step is eliminated, average pooling transforms
into sum pooling, leading to a reduction in computational
complexity. Sum pooling is often preferred in HE CNN
inference due to its straightforward nature, while maximum
pooling involves the additional overhead of comparing ci-
phertexts.

The Full Connection (FC) layer, also known as the
multilayer perceptron, is an important part of the CNN.
The FC layer receives the image features extracted by the
convolution or pooling layers and unfolds them into a one-
dimensional vector. Matrix multiplications are performed
on the flattened one-dimensional vector. The flattened op-
eration would require rotations when performed in encryp-
tion mode.

Activation layer are usually non-linear transformation
functions that act on the previous layer’s output to learn
more complex features and patterns. The rectified linear unit
(ReLU) is the most common nonlinear activation function.
However, it is hard to implement this function homomor-
phically, as it would be decomposed into large-order poly-
nomials, leading to large computation overhead and noise.

3 BATCH CNN PACKING SCHEME

In this section, we introduce the batch encoding scheme
for our high-throughput CNN inference method. Our goal
is to optimize the use of ciphertext slots while reducing
the required number of homomorphic operations. Our ap-
proach removes the need for client-side communication
during encrypted CNN inference by analyzing the output
data patterns of the convolutional layer and the requirement
for multiple convolutional layers.

Multiple Input images Cipertexts

(a, b, ¢, d,...) ctl=(a[1], b[1], ¢[1], d[1], ...
ct2=(af2], b[2], c[2], d[2], ..
ct3 =(a[3], b[3], c[3], d[3], ..

ctd = (a[4], b[4], c[4], d[4], ...

112 3 encode & encrypt
Tt ct5=(a[5], b[5], c[5], d[5], ...
T3 s [ ct6 = (a[6], b[6], c[6], d[6], ..

ct7=(a[7], b[7], ¢[7], d[7], ...
ct8 = (a[8], b[8], c[8], d[8], ..
ct9 = (a[9], b[9], c[9], d[9], ...

N

Fig. 2. The details of the full-ciphertext packing scheme.

3.1 Input Packing Scheme

Previous input packing schemes can be divided into two
kinds: one is to pack the same pixel of multiple image into



one ciphertext (full-ciphertext packing scheme), which will
produce many ciphertexts [13] (shown in[Figure 2); the other
is to pack one image into one ciphertext (one-ciphertext
packing scheme), where some pixel are replicated multiple
times to meet the computation requirements [14], [16], [22].
Our proposed image packing scheme is different from these
two approaches, where we also pack multiple images into
some ciphertexts but have fewer ciphertexts than the full-
ciphertext packing scheme.
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Fig. 3. Proposed input packing scheme.

Our image packing scheme is illustrated in
Assuming a convolutional kernel size of 3 x 3 and a stride

of 1, the 9 x 9 image is divided into groups labeled as V'1 to
V9. Pixels of the same color are paired with corresponding
pixels from the kernel and consolidated into a single vector.

In general, when dealing with an image of size ¢ x ¢ and
a convolutional kernel of size k x k, the image is segmented
into [i/k] sections. Pixels that interact with the same kernel
pixel are encoded into distinct vectors, resulting in a total of
k? vectors. For homomorphic encryption with a polynomial
size of N, a total of N/2 slots can be used to store data.
Therefore, the remaining N/2 — k? slots are repurposed
to accommodate more input images to maximize slot uti-
lization. Overall, our proposed image packaging method
can encode approximately |(N - k?)/(2i?)| images into
k? vectors. Subsequently, these vectors are encoded and
encrypted into k? ciphertexts for homomorphic encryption
CNN inference.

Our devised image packaging technique achieves close
to 100% utilization. In contrast, Lola [[14] demonstrates a
utilization rate of around 20% due to the use of the one-
ciphertext packing scheme. While Cryptonets [13] achieves
full utilization with the full-ciphertext packing scheme, it
generates i? ciphertexts, demanding much more memory
space.

3.2 Packing of Convolutional Kernel

When encrypting multiple images, the same processed pix-
els are combined into a single ciphertext. Therefore, to
match the computation, each convolutional kernel pixel is
replicated N/2 times to form a vector that is then converted
into plaintext. This approach maintains a slot utilization of
approximately 100%. The packing scheme of the convolu-
tional kernel is illustrated in [Figure 4, Consequently, a k x k
convolutional kernel is encoded and packed as k? plaintexts
for use in homomorphic convolutions. It is important to note
that in cases of multi-channel convolutions, each channel is
encoded into k? plaintexts.

V1=(wl,wl,.,wl,wl)

V2 =(w2, W2, W2, W2) ptl nuun
k V3= (W3, Wy W3, W3)
— VA= (o b v 2] [ [ ] ]
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V6 = (w6, w6,..., w6, W6 )
w7 [ w8 | w9
V7=(W7, Wlyeoy W7, W7 ) pt8 w8

V8= (w8, w8,..., w8, w7 ) ot !u

V9 = (w9, w9,..., w9, w9 )

Conv. kernel Vector groups ‘Weight plaintexts

Fig. 4. Convolutional kernel packing.

The first convolutional layer in the complete CNN model
is straightforward to pack, whereas the packing process for
the second convolutional layer differs slightly. To support
the second convolutional layer, it is essential to rotate the
results of the first convolution, thereby altering the order of
ciphertext pixels. During the execution of the second con-
volutional layer, certain pixels need to be masked through
multiplication with specific zero and one values, introduc-
ing additional noise. To circumvent this, the multiplication
for masking can be conducted prior to homomorphic en-
cryption, specifically by performing these operations with
the convolutional kernels of the second layer (referred to as
mask-weight merging). A comprehensive understanding of
this packing strategy is shown in As can be seen,
compared with [Figure 5[a), (b) can reduce one plaintext and
ciphertext multiplication, which avoids introducing addi-
tional noise. The only overhead is that the weight needs to
be masked initially, which is usually performed once as the
CNN model is prepared by edge computing devices.

Ciphertext ([t [ 4] 7 [28]a1]34]ss]s8]o1] [1]4]7 ]334 ]s5]s8]o1]
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Result ‘RI‘RZ‘ 0 ‘m“ks‘ 0 ‘R7‘RB‘ 0 ‘ Result

(a) (b)

Fig. 5. The details of mask-weight merging. (a) is the conventional
approach, and (b) merges the mask with the weight plaintext.

3.3 Packing of Full Connection Layer

The inputs to the full connection layer typically originate
from the convolutional and pooling layers. In scenarios
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Fig. 6. HE CNN computing flow. Inputs are packed and encrypted as several ciphertexts, and the CNN weights are packed and encoded as
plaintexts. All the inference operations are performed homomorphically to generate some output ciphertexts, which are further decrypted and

unpacked to some result vectors.

where data is unencrypted, these inputs need to be flattened
into a matrix for FC operations, necessitating rotations of the
input data. To streamline operations and improve efficiency,
a decision is made to execute FC operations directly on
the input ciphertext. As a result, special attention is paid
to encoding the weights of the FC Layer to align with
the multiplicand ciphertext. For optimization purposes, an
automatic processing tool is developed to assess compu-
tational patterns and produce corresponding FC packing
plaintexts for improved efficiency.

4 HIGH THROUGHPUT BATCH CNN INFERENCE
SCHEME

This section outlines the operational procedures of our
proposed homomorphic CNN inference, as illustrated in
Figure 6| Multiple images undergo mapping and encryption
into various ciphertexts based on Different
layers of the CNN model are translated into multiple plain-
texts, as expounded in [Subsection 3.2| and [Subsection 3.3|
The primary procedures of HE CNN inference involve HE
convolutions, HE poolings, activations, and HE full connec-
tions. Specifically, two types of convolutions are employed:
standard convolution with a stride of 1 (ordinary convolu-
tion) and convolution with a stride greater than 1 (stride
convolution). Subsequently, a comprehensive overview of
these HE operations will be provided.

4.1 Ordinary Convolution

In ordinary convolution, the convolutional kernel moves
from the top-left to the bottom-right corner of the input
image, multiplying with the respective pixels along the way
and summing up the results to generate a new output pixel.
With our proposed packing approach, the computations of
ordinary convolution is divided into three distinct types,
including Type-1, Type-2 and Type-3 convolution, which are
based on the rotation amounts and direction.

4.1.1 Type-1 convolution

Taking k = 3,7 = 9 as an example, the diagram illustrating
Type-1 convolution in demonstrates that this con-
volution can be executed without rotating the ciphertexts of
the input image. In Type-1 convolution, the image is divided
into ([i/k])? small maps, each containing k? pixels, aligning
with our input packing approach. As depicted in
(b), the image ciphertexts undergo multiplication with the
convolutional kernel and are then aggregated into a single
ciphertext. In homomorphic encryption, a rescaling step is
necessary for homomorphic multiplication. In our method,
rescaling occurs subsequent to accumulation, reducing the
need for k? — 1 rescaling operations and thereby boosting
performance. It is important to note that Type-1 convolution
constitutes just a segment of the complete ordinary convo-
lution process, with Type-2 and Type-3 convolutions being
applied subsequently.

4.1.2 Type-2 convolution

The specifics of Type-2 convolution are depicted in[Figure 8}
where the big map is shifted to the right by 1 pixel. Rotations
are necessary during convolution to align pixel positions
correctly. In this instance, ct1, ct4, and ct7 are rotated by 1.
Additionally, the plaintexts of the corresponding convolu-
tional kernels are adjusted and some slots are masked with
zeros to reflect the actual operations. To mitigate the impact
of irrelevant pixels, some plaintexts are masked. Rescalings
are also conducted following accumulations to reduce the
number of operations. The big map will be shifted by more
pixels to the right during the whole ordinary convolution.
When the big map is shifted by 2 pixels to the right, the
ciphertexts ct1, ct4, ct7, ct2, ct5, and ct8 are each rotated by
1. Notably, ciphertexts rotated by 1 (ct1, ct4, ct7) are utilized
in both scenarios, enabling their reuse to avoid redundant
calculations (termed rotation multiplexing). The situation
where the big map is shifted by 3 pixels to the right is
already addressed in Type-1 convolution.
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Fig. 7. Type-1 convolution (multiplication and addition operations are
performed without any rotations). The big map is the whole input feature
map.

Typically, the count of ciphertexts rotated by 1 is &k - ¢
when the big map is shifted by ¢ pixels (¢ < k). The rotated
ciphertexts in a right shift of ¢ are given by:

Rotation(cti.min, 1),0 <m<k—-1,1<n<t (3

Here, Rotation(ct, j) denotes the rotation of ct by j. Further-
more, the positions of slots masked as zeros are p - [i/k],
where 1 < p < k.

4.1.3 Type-3 convolution
The figure presented in illustrates a typical Type-3

convolution, involving the downward movement of the big
map by 1 unit. Just like in Type-2 convolution, rotations
and masking operations are necessary before conducting
homomorphic multiplications. Specifically, in this instance,
ctl, ct2, and ct3 undergo a rotation of 3 units. When the
big map is shifted downward by 2 units, ct1, ct2, ct3, ct4,
ctb, and ct6 are rotated by 3 units. Notably, to streamline
operations, the ciphertexts rotated by 3 units (ct1, ct2, and
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ct3) are recycled to minimize complexity, which is the case
of rotation multiplexing.

Generally, for a big map down-slided by t units, the
number of ciphertexts rotated by % units is k - t. This can
be expressed as follows:

Rotation(cty.pim, k), 1 <m <k, 1<n<t (4)

In this scenario, the slots masked as zeros amount to k2 — p,
where 0 <p <k —1.
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Comparison of convolutions with Lola.
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(b) HE convolution with right-slided by 1.

Fig. 8. Type-2 convolution (require rotations by 1). The big map is right-
slided by 1.

When the big map is shifted both to the right and down,
Type-2 and Type-3 convolutions are simultaneously applied.
It is important to note that there exist identical rotated
ciphertexts, which means rotation multiplexing can be uti-
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(b) HE convolution with down-slided by 1.

Fig. 9. Type-3 convolution (require rotations by 3). The big map is down-
slided by 1.

lized. The rotated ciphertexts during ordinary convolution
satisfy the following:

Rotation(cti.min, k+1),0<m<k—-2,1<n<k-1 (5

Throughout the entire ordinary convolution process,
Type-1, Type-2, and Type-3 convolutions are employed to-
gether. By referencing [Equation 3 [Equation 4, and |Equa-|
the total count of rotations during the whole ordinary
convolution process amounts to (3k —1)(k — 1) utilizing our
rotation multiplexing method. The comparison between our
approach and Lola in terms of rotation count, parallel level,
and slot utilization is depicted in [Table 1] Our proposed
packing and convolution method exhibits a reduced number
of rotation operations per input image and a higher rate of
slot utilization compared to Lola.

4.2 Stride Convolution

A convolution operation with a stride greater than 1 is
referred to as a stride convolution. depicts an
illustration of a stride-2 convolution, where only specific
parts of the convolutional kernel interact with certain image
pixels. By analyzing the computational patterns, this type

y 4 6 7 8 9
stride=2 /10/1{ 13 14]15 16 17 18
9 20 (21|22 23|24 25 26 27
2 3 33 34 35 36
wl [ w2 | w3
3273899 40 41 42 43 44 45
wd | ws 6
6 47 48 49 50 51 52 53 54
y% w9

1(3[5]|7]9]0 10 (12|14 (16 (18| 0
19|21 (23 (25(27| 0 28(30(32(34(36| 0
37(39 |41 (43|45 0 % wil (w3 + 46 (48 (50 (52 (54| 0 « w4 | w6
55(57(59|61(63|0 w7 | wo 64 (66|68 (70 (72| 0 oo
73(75(77|79 (81| 0 0ojojofo]ofo
0Ojo0fofO0|O0|O ofofofo|ofo

2(4(6|8([0]0 1|13 (15(17]| 0 | 0
20(22(24(26(0 |0 29 (31(33|35(/0 |0

+ 38|40 |42 (44| 0 (0 % w2 | 0 + 47149 |51 (53[0 (0 * ws| 0
56 (58 (60|62(0 |0 w8 [0 65 (6769|710 |0 oo
74|76 (78 (80| 0 | 0 LU IV A A
0Ojofojofofo o|lofofo|o|o0

Fig. 10. HE stride convolution with stride = 2. The whole operation is
split into four ordinary convolutions of smaller convolutional kernels.

of convolution can be broken down into four ordinary
convolutions, as shown in the same figure. Therefore, stride
convolution can be converted to several ordinary convolu-
tion so that the optimization technique of Type-1, 2, and
3 convolution can be utilized. When a stride convolution
serves as the initial layer of a CNN model, adjustments in
the image mapping scheme are necessary to align with the
decomposition outcomes and minimize additional rotations.

For a given stride value, denoted as s, the number
of ciphertexts aligning with the decomposition results is
approximately [k/s]? - s2, achieving a slot utilization rate
close to 100%. Additionally, exploiting the presence of zeros
in the decomposed convolutional kernel permits a further
reduction in computations by eliminating homomorphic
multiplications involving these zeros. This optimization not
only lowers the number of rotations but also reduces the
overall number of multiplications required.

A comparison in between ordinary convolution
and stride-2 convolution reveals the operational overhead
differences. Specifically, ordinary convolution necessitates
approximately four times more homomorphic multiplica-
tions and additions than stride-2 convolution, highlighting
the benefits of the proposed optimizations for stride convo-
lutions.

TABLE 2
Comparison of ordinary convolution and stride convolution.

stride 1 2
# of rotations Bk-1(k—-1) 3k(k —2)
# of multiplications E* K (k+1)%/4
# of additions k2 (k% —1) (k% —4)(k 4+ 1)%/4
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(b) HE FC.

Fig. 11. Full connection layer. Ciphertexts are multiple with plaintexts,
and folding rotation is performed to reduce the number of rotations.

4.3 Pooling Layer

In our proposed HE CNN inference scheme, sum pooling,
as in [24], [25], is utilized. The complexity of encrypted com-
parisons makes max pooling and other pooling methods
more challenging to implement. Just like convolution oper-
ations, the pooling layer involves sliding the feature maps.
Hence, the execution of sum pooling operations necessitates
comparable homomorphic rotations and additions.

4.4 Activation Layer

[15], [17], [26] have suggested the utilization of the square
activation function f(z) = z? to mimic non-linear oper-
ations. The square function necessitates a ciphertext that
undergoes homomorphic multiplication, thereby utilizing
a substantial multiplication level of the ciphertext. Despite
this, it is a crucial step as a non-linear layer plays a vital role
in obtaining favourable CNN outcomes. In alignment with
this notion, our design also adopts the square activation
function due to its simplicity and effectiveness in encrypted
computations.

4.5 Full Connection Layer

illustrates a segment of operations within the full
connection layer, where the input feature is derived from
preceding layers in the form of a 2-dimensional matrix. For
clarity, only a portion of the full connection operations is de-
picted, involving the multiplication of the input feature with
the FC weights, resembling a convolution process. In homo-
morphic encryption FC computations, the input feature is
typically not continuously maintained as ciphertext due to

prior convolutional procedures. As depicted in
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(b), the FC weights are encoded as plaintexts to align with
the pixel sequence using our auto-compile tool, followed by
homomorphic multiplications and accumulation. Further-
more, the resulting ciphertext from accumulation is rotated
to aggregate all slot values. A folding rotation strategy is
implemented to rotate and aggregate all slots, necessitating
approximately log, (V) rotations. This strategy can reduce
the number of rotations compared with applying the rota-
tions on ciphertexts directly. It is important to note that only
the ultimate result slot is of significance; the remaining slots
are deemed insignificant and are disregarded.

5 IMPLEMENTATIONS AND RESULTS

This section will present our implementation of convolution
neural networks on MINST [27]] and CIFAR-10 [28] datasets.
We carried out several experiments to prove the advantage
of our proposed methods in terms of throughput, perfor-
mance, and memory overhead under similar CNN accuracy.

TABLE 3
Convolution tasks setting and evaluation results in performance.

task#1 task#2 task#3 task#4
stride 1 2 1 2
input size 28 x 28 | 28 x 28 | 32 x32 | 32x 32
kernel size 5x%x5 5x5 3x3 3x3
additions (ms) 132 44 19 7
multiplications (ms) 357 102 37 19
rotations (ms) 1697 1093 432 247
total (ms) 2186 1239 488 273

5.1 Experimental Settings

We implemented the HE CNN inference with C++ based
on the homomorphic encryption library Microsoft SEAL
4.0 [29]. The CNN models are trained with Pytorch [30] and
reimplemented with C++ code for HE CNN inference. The
experiment running machine is Intel Core i5-10400 CPU@
2.90 GH z with 192 GB memory, and the operating system
is Windows 10 64-bit. It is noted that all the programs ran
with a single CPU thread rather than multiple threads. The
experimental results are compared with prior works that
have similar model accuracy.

5.2 Evaluations of Ordinary Convolution and Stride
Convolution

Four convolution tasks are set to evaluate the performance
of ordinary convolution and stride convolution, as de-
scribed in Note that 32 x 32 inputs are padded
zeros from 28 x 28 inputs. The evaluation results of different
numbers of operations are also presented in The
running time of homomorphic addition and multiplication
of stride-2 convolution (task#2, #4) are about 2 to 3x less
than ordinary convolution (task#1, #3). While the homo-
morphic rotation of stride-2 convolution is about 60% to
100% of ordinary convolution. Therefore, our proposed
scheme has a better performance in stride convolution. In
this case, the CNN model can be designed with a more
stride convolutional layer to enhance performance for the
HE CNN inference application.



TABLE 4
Evaluation results of two MNIST models.

MNIST model A MNIST model B
layer latency (ms) layer latency (ms)

CONV1 1921 CONV1 1956
ACT1 413 ACT1 412
FC1 7248 CONV2 4004
ACT2 516 ACT2 923
FC2 305 FC1 794
Total 10403 Total 8090

accuracy 98.95% accuracy 98.83%

5.3 Evaluation on MNIST

To prove the advantage of our proposed scheme, we trained
and implemented two CNN models on MNIST. The details
of the models are as follows:

e MNIST model A:

— CONV1I: 5 x 5 x 5 stride-2 convolutional layer
- ACT1I: square activation layer

— FC1: 980 x 100 full connection layer

— ACT2: square activation layer

— FC2:100 x 10 full connection layer

¢ MNIST model B:

— CONV1I: 5 x 5 x 5 stride-2 convolutional layer

- ACT1: square activation layer

- CONV2: 5 x 5 x 20 ordinary convolutional
layer

- ACT2: square activation layer

- FC1: 3920 x 10 full connection layer

Model A is designed with one convolutional layer, and
model B is designed with two convolutional layers to prove
the flexibility for supporting continuous convolutions of our
scheme. Stride-2 convolution is used for models A and B
and split into 4 ordinary convolutions. 5 x 5 convolutional
kernel are spilt into four 3 x 3 convolution kernels. On the
other hand, the 28 x 28 input feature (MNIST image size) is
split into four 14 x 14 new features. Therefore, each image
requires [14/3]? = 25 slots of one ciphertext. There are
a total of 4 x 3 x 3 = 36 ciphertexts and 36 convolution
kernel plaintexts. In MNIST CNN homomorphic inference,
the polynomial size is set to N = 8192, which provides
4096 ciphertext slots. The security level A is set to 128, with
moduli bits {40, 21, 21, 21, 21, 21, 21,40} to ensure 6 homo-
morphic multiplications. Since the number of slots is 4096,
the maximum number of images encoded and encrypted
in one ciphertext is [4096,/25| = 163 for both two models,
which is the parallel level of HE CNN inference.

In MNIST model A, the output of CONV1 has a dimen-
sion of 14 x 14 x 5 and is activated by the square function.
The results are multiple with FC1 weights and accumulated
as a1 x 100 vector. ACT2 and FC2 are performed to get the
final outputs (10 classes). In MNIST model B, the output of
CONVl1 is also 14 x 14 x 5. CONV2 produces a 14 x 14 x 20
result and FC1 reduces the dimension to 1 x 10. The detailed
latency of each layer of the two models is presented in
As can be seen, models A and B have similar accuracy,
but B is faster. The reason is that FC1 of MNIST model A
has 100 output channels, which requires more homomorphic
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rotations. Neither the least, our proposed scheme is able to
perform more than one convolution without decryption and
re-encryption.

5.3.1 Comparisons with Prior Works

To show the supremacy of our proposed scheme on MNIST,
we compare our results with state-of-the-art works [14],
[15], [17], [24], [31], [32] in terms of ciphertext size, memory
overhead, latency, throughput, and accuracy, as depicted in
As can be seen, the compared works have similar
model accuracy with our works. [24] used the full-ciphertext
packing scheme with 112 CPUs for acceleration. However,
the average throughput of one CPU is less than our work.
The other works applied the one-ciphertext packing scheme.
Due to their low slot utilization, their throughput is several
orders less than our work. Moreover, our works utilize
much less memory (less than 10 G B) for storing the encoded
CNN model plaintext.

5.4 Evaluation on CIFAR-10
The details of our CIFAR-10 model are as follows:

CONV1: 5 x 5 x 64 stride-2 convolutional layer
Dropoutl: drop-out layer with a probability of 0.25
ACT1: square activation layer

POOL1: 2 x 2 sum pooling layer

e CONV2: 3 x 3 x 64 ordinary convolutional layer

e ACT?2: square activation layer

o Dropout2: drop-out layer with a probability of 0.25
e FC1: 4096 x 128 full connection layer

e ACTS3: square activation layer

e FC2: 128 x 10 full connection layer

In CIFAR-10 model, the output of CONV1 has a dimension
of 16 x 16 x 64 and is activated by the square function.
During model training, the CONV1 results are dropped out
with a probability of 0.25. The dropout layers are only avail-
able during model training, and removed during model
inference. POOL1 is applied later to reduce the feature map
size to 8 x 8 x 64. The output of CONV2 has a dimension of
8 X 8 x 64 and the output of FC1 has a dimension of 128 x 1.
FC2 obtains a dimension of 128 x 1 input and produces 10x 1
output features. In CIFAR-10 CNN homomorphic inference,
the polynomial size is set to N = 16384, which provides
8192 ciphertext slots with a parallel packing of 227 images.
The detailed latency of each layer of the CIFAR-10 model is

presented in [Table 6|

5.4.1 Comparisons with Prior Works

We compare our CIFAR-10 model results with prior
works [14], [15], [17], as shown in Our CIFAR-10
model required more memory due to the larger CNN model
parameters. However, our throughput is much larger than
prior works, with a more than 36 x improvement. Neverthe-
less, it can be seen that our proposed scheme has relatively
small memory overhead and high throughput, which would
be good for edge computing applications. To prove the
advantage of our scheme, we additionally implemented the
SqueezeNet model for the CIFAR-10 dataset, which was
proposed from [33], the same as the model utilized in [17].
This model comprises one ordinary convolutional layer with



TABLE 5
Comparison with prior works on MNIST.
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message (M/ B) | memory (GB) latency (s) throughput (image/s) | model accuracy (%)
Lola [14] 51 32 16 0.06 98.95
nGraph-HE [24] 368 376 135 (with 112 CPUs) 60.6 98.95
EVA [17] 63 190 5.6 0.17 99.32
Falcon [15] 51 32 1.2 (with 8 CPUs) 0.83 98.95
Qin [31] - 16 110 0.01 98.7
SpENCNN [32] - 256 0.38 2.63 98.95
Our MNIST model A 36 5.9 10.4 15.6 98.95
Our MNIST model B 36 3.3 8.9 18.3 98.83
TABLE 6 [2] A.B. Patel, M. Birla, and U. Nair, “Addressing big data problem
Evaluation results of CIFAR-10 model. using hadoop and map reduce,” in 2012 Nirma University Inter-
national Conference on Engineering (NUiCONE). IEEE, 2012, pp.
layer latency (s) 1-5. e ) ) ) ) o
CONV1 109.6 [3] I Patel, “Bridging data silos using big data integration,” Interna-
ACT1 16.2 tional Journal of Database Management Systems, vol. 11, no. 3, pp.
: 01-06, 2019.
POOL1 36.5 g . . . . .
; [4] Z.Xiao and Y. Xiao, “Security and privacy in cloud computing,”
CONV2 423.3 IEEE communications surveys & tutorials, vol. 15, no. 2, pp. 843-859,
ACT2 10.7 2012.
FC1 79.1 [5] M. Zhou, R. Zhang, W. Xie, W. Qian, and A. Zhou, “Security and
ACT3 1.8 privacy in cloud computing: A survey,” in 2010 sixth international
FC2 0.8 conference on semantics, knowledge and grids. 1EEE, 2010, pp. 105—
Total 678.0 112.
accuracy 74.19% [6] M. Albrecht, M'. Chase, H: Chen, ] Ding, S. Goldwasser, S. Gor-
bunov, S. Halevi, J. Hoffstein, K. Laine, K. Lauter et al., “Homomor-
phic encryption standard,” Protecting privacy through homomorphic
. . . encryption, pp. 31-62, 2021.
a.kernel size of 3 servmg as the first layer, followed by f(')ur [7] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved se-
Fire modules, a conventional layer, and an average pooling curity for a ring-based fully homomorphic encryption scheme,” in
layer. The Fire modules are made up of two convolutional Cryptography and Coding: 14th IMA International Conference, IMACC
layers with a kernel size of 1 and one convolutional layer égg }C))gfozlrgl 6E4IK, December 17-19, 2013. Proceedings 14.  Springer,
with a kernel size of 3. For more details, readers can refer to [8] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully
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has a smaller memory overhead. When running with the tions on Computation Theory (TOCT), vol. 6, no. 3, pp. 1-36, 2014.
polynomial size of 16384, the number of parallel packing [9] ].Fan ar}d F.”Vercauteren, Somewhat practical fully homomorphic
! . 2 ok encryption,” Cryptology ePrint Archive, 2012.
mages 1s 8192/ (32/ 3] = 67, which indicates a smaller [10] L Chillotti, N. Gama, M. Georgieva, and M. Izabachene, “TFHE:
number of parallelism. As a result, the throughput of the fast fully homomorphic encryption over the torus,” Journal of
SqueezeNet model is lower than our proposed CIFAR-10 [11] Icrzjl’t"lg}?l% VOl-A33'I?0- LI\P/)IP- Iif_gll 22120{{ s o N
. . H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic
model but with better accuracy. On .the .Other hand, the encryption for arithmetic of approximate numbers,” in Advances
throughput of the SqueezeNet model is still several orders in Cryptology—ASIACRYPT 2017: 23rd International Conference on the
better than prior works, which shows the advantage of our Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part I 23.  Springer,
proposed method. 2017, pp. 409437,
[12] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full
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. Areas in Cryptography-SAC 2018: 25th International Conference, Cal-
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. . earning. , , pp. 812-821.
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Comparison with prior works on Cifar10.
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throughput (10~° - image/s)

model accuracy (%)

message (M B) | memory (GB) latency (s)
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