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Abstract

We present an efficient Publicly Verifiable Fully Homomorphic Encryption scheme that, along with
being able to evaluate arbitrary boolean circuits over ciphertexts, also generates a succinct proof of
correct homomorphic computation. Our scheme is based on FHEW proposed by Ducas and Micciancio
(Eurocrypt’15), and we incorporate the GINX homomorphic accumulator (Eurocrypt’16) for improved
bootstrapping efficiency. In order to generate the proof efficiently, we generalize the widely used Rank-1
Constraint System (R1CS) to the ring setting and obtain Ring R1CS, to natively express homomorphic
computation in FHEW.

In particular, we develop techniques to efficiently express in our Ring R1CS the “non-arithmetic”
operations, such as gadget decomposition and modulus switching used in the FHEW construction. We
further construct a SNARG for Ring R1CS instances, by translating the Ring R1CS instance into a
sum-check protocol over polynomials, and then compiling it into a succinct non-interactive proof by
incorporating the lattice-based polynomial commitment scheme of Cini, Malavolta, Nguyen, and Wee
(Crypto’24). Putting together, our Publicly Verifiable FHE scheme relies on standard hardness assump-
tions about lattice problems such that it generates a succinct proof of homomorphic computation of
circuit C in time O(|C|2 · poly(λ)) and of size O(log2 |C| · poly(λ)). Besides, our scheme achieves the
recently proposed IND-SA (indistinguishability under semi-active attack) security by Walter (EPrint
2024/1207) that exactly captures client data privacy when a homomorphic computation can be verified.

1 Introduction
Fully Homomorphic Encryption (FHE) allows a party to perform arbitrary computation over encrypted data
without knowing the underlying secret key. Ever since the discovery of the bootstrapping blueprint by Gentry
in 2009 [Gen09], there has been a tremendous amount of research in FHE, establishing solid security foun-
dation [BV11a, BV11b, Bra12, BGV12] and also making FHE schemes concretely efficient [BGV12, DM15a,
CGGI20a, CKKS17]. Nowadays, FHE is not just a theoretican’s powerful tool, but it has reached the point
being practical for real world applications. Various FHE schemes have been developed into efficient and versa-
tile software libraries to support communication efficient secure computation[MW16] and privacy-preserving
applications such as Private Information Retrieval [ACLS18, GH19], Private Set Intersection [CLR17], and
Private ML training and inference [JVC18, Lau22], just to name a few.

As a powerful encryption scheme, semantic security [GM84, BDJR97] or equivalently, IND-CPA security
is the gold standard for exact FHE schemes. In the context of secure computation, IND-CPA security models
a passive adversary who can influence the input choices of honest parties as well as observe the messages
sent from honest parties. However, FHE itself alone is usually not enough to build a complete solution for
secure computation, as it provides only confidentiality of the underlying data. When encrypted data is ho-
momorphically processed by a second party, the data owner must either trust the homomorphic computation
is carried out exactly as prescribed, or the data processor must offer certain integrity guarantee for the data
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owner to verify. Unlike standard encryption schemes, the perfectly malleable nature of FHE is sometimes
at odds with the traditional integrity notions: for example, it is impossible for FHE schemes to achieve the
IND-CCA2 security, which is the standard active security notion for encryption schemes. More precisely,
what differentiates FHE from the normal encryption schemes is the ability to perform computation over ci-
phertexts; thus, integrity for FHE schemes requires the data processor to certify homomorphic computation
rather than just ciphertexts.

Verifying homomorphic computation is not a new topic. A straightforward solution could be to perform
the underlying plaintext computation and cross-check against the homomorphic computation result, but this
is hardly interesting as it defeats the need of homomorphic computation, and sometimes it is even infeasible
to compute over plaintext data that belong to multiple parties. The more general problem of Verifiable
Computation has been studied in a series of works [GKR08, GGP10, GKP+13, PHGR13, FGP14, BCFK21],
which allows anyone to verify faster than recomputation that a predefined computation is done as specified.
Despite being asymptotically efficient, even with the improved construction in [GNS23] that targets the ring
structure, the concrete efficiency is still far from satisfactory when applying the VC constructions to verify
FHE computation.

In the context of secure computation, a standard approach is to equip an FHE scheme with a Zero-
Knowledge Proof system to generate a succinct proof of the homomorphic computation [DPSZ12, BCS19].
In the last several years, a lot of progress has been made in building efficient proof systems such as SNARK,
SNARG, Proof Carrying Data structure, etc. There are now succinct proof systems for general arithmetic
circuits with concretely efficient verifiers. Consequently, these SNARK-like proof systems have been used
to build secure and robust protocols against active adversaries [FNP20, BCFK21, ACGSV23, ABPS24a,
GNS23, VKH23, TW24]. Still, most of them are designed for arithmetic circuits over certain finite fields, as
they typically rely on Schwartz-Zippel lemma over fields to achieve succinctness. Supporting field arithmetic
is usually sufficient for general purpose computation, but as FHE schemes typically are defined over certain
commutative ring, performance of these proof systems would suffer when applied to proving FHE computa-
tion due to the mismatch between the algebraic structures used by the proof systems and the FHE schemes.
Although ring arithmetic and FHE computation can be emulated using finite fields, such an approach blows
up the constraints used to express homomorphic computation, resulting in a very slow prover. As an ex-
ample of such inefficiency, recently Thibault and Walter [TW24] used the plonky2 SNARK system to prove
correctness of a single bootstrapping operation for TFHE, and their prover time was about 20 minutes. As
the native encoding space of plonky2 is a 64-bit prime field whereas TFHE bootstrapping operations are
typically defined over a polynomial ring of degree up to 211 and a 64 bits modulus, the inefficiency stems
from emulating polynomial operations using a large number of field operations.

Proving correct homomorphic computation can also be done using the “MPC approach” [Sma24], namely
requiring multiple distrusted parties to perform the same homomorphic computation, and then taking a
majority vote on their output. As homomorphic computations are performed in parallel on these parties, such
a solution has the benefit of maintaining the efficiency of FHE-based protocols while being relatively simple.
However, this approach requires honest majority over at least three servers to execute the homomorphic
computation, which is sometimes an infeasible setting or could be difficult to arrange.

Efficiency considerations in vFHE. Our goal in this work is to design efficient FHE and proof systems
such that the combined cryptosystem can evaluate arbitrary computation on encrypted data and, at the
same time, generate a succinct proof for anyone to verify that the homomorphic computation is performed
as claimed. We focus on single-server solutions, in which the party that performs homomorphic computation
generates proof attesting to the correct homomorphic circuit evaluation. Following [VKH23], we call such a
cryptosystem the Verifiable Fully Homomorphic Encryption, or vFHE for short. For a vFHE system to be
efficient, we consider three subgoals:

1. The FHE scheme itself must be efficient.

2. There must be a representation, such as R1CS or QAP, that can efficiently describe primitive operations
in the FHE scheme as constraints native to the proof system.
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3. To complete the picture, there must also exist a proof system that can efficiently generate a proof for
the representation in the previous step, and at the same time, the proof itself must be succinct and
efficient to verify. Furthermore, the verification should ideally be carried out using only public data.

1.1 Our Contribution
We put the above principles to work, and we present an efficient public verifiable FHE scheme. Our FHE
scheme is built on FHEW [DM15a], supporting efficient bootstrapping and hence homomorphic computation
on arbitrary boolean circuits. The core contribution in our work is a ring R1CS system that can natively
express FHEW operations over both Zq and the quotient ring RQ = Z/(Q,XN + 1) for N being a power
of two and certain integer modulus Q. By utilizing a recent polynomial commitment scheme [CMNW24a]
over RQ and adopting SPARTAN [Set20] to this ring setting, we build a SNARG system that can efficiently
generate proofs of correct homomorphic computation in our FHE scheme. Note that we consider the setting
where the circuit to be evaluated under FHE is public; thus the homomorphic processor does not have any
private data to protect with, and so a SNARG system is sufficient without requiring knowledge extractors
(i.e., SNARKs) nor requiring zero-knowledge. Furthermore, our SNARG is publicly verifiable, and so anyone
with the output ciphertext-proof pair (ct, π) of the evaluation procedure can verify whether the ciphertext
ct is indeed the result of applying the desired circuit on the input ciphertext.

Theorem 1.1. Assuming standard hardness results about LWE, RLWE, and SIS, there exists a publicly
verifiable Fully Homomorphic Encryption (pvFHE) scheme that satisfies IND-SA security. When evaluating
a boolean circuit C, the scheme has the following efficiency characteristics:

• Preprocessing. Preprocessing runs in time O
(
|C|2 · poly(λ)

)
.

• Evaluation. Homomorphic evaluation uses O(|C| · poly(λ)) time.

• Proof generation. The proof can be generated within time O(|C|2·poly(λ)) and is of size O
(
log2 |C| · poly(λ)

)
.

• Encryption and decryption. The encryption and decryption run in time poly(λ).

• Verification. The verification can be done in time O (log |C| · poly(λ)).

The proof and verification are about the homomorphic evaluation of C, which involves complex computa-
tion. We show how to efficiently express the correctness of the homomorphic evaluation of C as a ring R1CS
instance, which is a generalization of R1CS to the ring setting. The ring R1CS expression is efficient in the
sense that its size (i.e., number of constraints and variables) roughly equals the number of ring operations
used in the evaluation procedure.

Towards linear-time preprocessing and proof generation. In our construction, the running time
of preprocessing and proof generation is quadratic in |C|. This slowdown comes from using polynomial
commitment, as we need to commit to a polynomial with O(log2 |C|) variables. This issue also arises
in SPARTAN, and is resolved by utilizing the sparsity of the R1CS matrices. Therefore, reducing the
preprocessing and proof generation to linear time appears achievable by adapting SPARTAN’s proof to
rings. We leave it as an open problem for future work.

1.2 Technical overview
We first observe that existing efficient instantiations of FHE schemes, including BGV, B/FV, CKKS, FHEW,
and TFHE, are almost all relying on the Ring Learning With Errors (RLWE) problem, and in particular,
their most efficient instantiations are over power-of-two cyclotomic rings R = Z[X]/(XN+1) and its quotient
ring RQ = R/(Q · R) for an integer modulus Q. With a properly chosen Q, polynomial arithmetic over RQ

can be performed in O(N) time, while a single polynomial can encode O(N) plaintext values. These FHE
schemes can be categorized into RLWE schemes such as BGV, B/FV, and CKKS, and FHEW-like schemes
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such as FHEW and TFHE. In RLWE schemes, ciphertexts are tuples of polynomials, and homomorphic
operations including bootstrapping procedures are defined directly over polynomials. Although they have a
unified algebraic structure in theory, bootstrapping or even homomorphic multiplication is quite complicated,
and their practical instantiations are commonly defined over a hierarchy of polynomial rings with different
moduli, with frequent modulus switching to avoid exponential noise growth. On the other hand, FHEW-like
schemes use plain LWE ciphertexts over Zq to encrypt small scalars, while the ring RQ is used to define
efficient bootstrapping procedures. Unlike RLWE schemes, in practice FHEW-like schemes only use a very
small number of algebraic structures, and can be implemented in a simple and modular way.

FHEW. We choose FHEW for its simplicity and practical efficiency. The basic form of the FHEW scheme
encrypts a boolean value in a LWE ciphertext (⃗a, b = 〈⃗a, s⃗〉+e+mq/4) (mod q) under a secret vector s⃗ ∈ Zn

q ,
where q is a power of two. The LWE encryption natively supports homomorphic addition. More advanced
boolean gates such as NAND are homomorphically computed through programmable bootstrapping utilizing
the ring RQ = ZQ/(X

N +1) where N = q/2. Notice that the LWE decryption algorithm first computes the
linear function b−〈⃗a, s⃗〉 over the secret s⃗, and then it invokes modular reduction to remove noise and recover
the underlying plaintext value. Since N = q/2, polynomial multiplication over RQ also performs modular
reduction but “on the exponent”. To take advantage of such algebraic structure of R, the LWE ciphertext
(⃗a, b) is homomorphically converted to a RLWE ciphertext encrypting the underlying boolean value m as a
monomial Xm, and a series of key-switching operations called “blind rotations” are performed on such RLWE
ciphertext to homomorphically compute the LWE decryption algorithm. The resulting RLWE ciphertext is
then key-switched again into a LWE ciphertext, which is finally converted back to the desired modulus q to
finish the bootstrapping operation. Since the blind rotations essentially computes a lookup table of size q,
we can adjust the blind rotation keys to homomorphically compute a desired boolean function during the
bootstrapping operation.

Notably, FHEW bootstrapping (and hence homomorphic gate computation) can be performed entirely
in a single ring RQ, and it involves mostly arithmetic operations in RQ with some exceptions below, which
we call non-ring operations.

• Gadget decomposition. This is used in key-switching operations to reduce the accumulated noises.
Specifically, a ciphertext component c is decomposed into a sequence, or digits, d0, . . . , dk−1 over a
gadget base B such that c =

∑k−1
i=0 diB

i (mod Q).

• Modulus switching. This is used to convert a LWE ciphertext modulo Q to modulo q < Q. Specifically,
all ciphertext components are divided by Q/q over the reals and rounded to the nearest multiple of q.

• Blind rotation. This is used to multiply an encrypted polynomial by an encrypted power of X. In
the implementation of blind rotation, one needs to (1) compute Xα given α ∈ Zq and (2) extract the
coefficients of some polynomial in RQ. Neither operation can be directly expressed in terms of ring
arithmetic.

In addition, homomorphic addition and subtraction is natively performed by arithmetic operations in Zq,
which can be easily embedded into RQ. Thus, we aim to design a ring rank-one constraint system
(ring R1CS) that can natively describe arithmetic operations in RQ, and at the same time, can efficiently
express gadget decomposition and modulus switching using short expressions.

Ring R1CS. Ring R1CS is a generalization of R1CS by considering constraints on a ring (which is RQ in
our case) instead of a field. Ring arithmetic operations directly translate to constraints; the challenge is to
express the correctness of non-ring operations as constraints. We achieve this by expressing the correctness of
non-ring operations as a set of ring arithmetic constraints. We use gadget decomposition to demonstrate our
idea. The major non-ring operation in gadget decomposition is to decompose a number a ∈ ZQ into digits
d0, . . . , dℓ ∈ {0, 1}, where ℓ = blogQc, such that a =

∑ℓ
i=0 di2

i. To express this operation, we introduce
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variables y, x0, . . . , xℓ taking values in RQ and consider the following constrains:

(i) y =

ℓ∑
i=0

xi2
i and (ii) ∀i ∈ [ℓ] xi · xi = xi. (1)

Observe that when (ii) are satisfied, the values assigned to x0, . . . , xℓ must be either 0 or 11, and then (i)
forces the value y to equal a. Such constraints easily translate to ring R1CS. Another notable feature of
eq. (1) is these constraints force y to be a constant polynomial in RQ. This is useful for expressing other
non-ring operations as ring arithmetic constraints, even if the value of x0, . . . , xℓ are not needed sometimes.

SNARG for ring R1CS. We construct an SNARG for ring R1CS instances by extending the framework
from [Set20] to the ring setting. In this construction, each cryptographic component originally designed for
finite fields is replaced with its ring-based counterpart. At the core of our construction is the sum-check
protocol, which we extend to handle polynomials over rings. Given a ring R and a polynomial g over ring
R[X1, X2, · · · , Xn], the sum-check protocol proves claims of the form K =

∑
b1∈{0,1} · · ·

∑
bn∈{0,1} g(b1, . . . , bn).

The protocol is adapted to ensure completeness and soundness within the ring with a sufficiently large ex-
ceptional set E ⊆ R, and soundness is proven using generalized Schwartz-Zippel (lemma 2.3). Next, we show
how to translate ring R1CS instances to a sum-check instance over ring polynomials. This transformation
allows us to use the sum-check protocol to verify R1CS satisfiability by checking whether a specific sum of
ring polynomials evaluates to zero. The exceptional set E and generalized Schwartz-Zipple continue to play
crucial roles in maintaining soundness throughout this process. Finally, by using polynomial commitments
and Fiat-Shamir transformation in the random oracle model (ROM), we achieve succinctness and convert
the sum-check protocol into a non-interactive argument. Using a polynomial commitment scheme specifically
tailored for multilinear polynomials over rings [CMNW24b], our SNARG achieves both succinct proof size
and sublinear verification time.

1.3 Related works
Ganesh, Nitulescu, and Soria-Vazquez [GNSV23] proposed Quadratic Ring Programs (QRP) to express
ring arithmetic and designed a SNARK for QRPs. However, when applying the SNARK to FHE, they
assumed the evaluation algorithm does not involve modulus switching or rounding operations, meaning that
bootstrapping is not supported. The scheme in [ABPS24b] can theoretically handle bootstrapping, but they
express operations of the evaluation algorithm as field arithmetic and then use (plain) R1CS and existing
SNARGs in a black-box way. This is precisely the overhead we aim to eliminate.

2 Preliminary
Notations. Let Z denote the set of integers and Fn denote the unique (up to isomorphic) finite field with n

elements. We identify elements in Zq by their representatives in (−q/2, q/2]. For x ∈ Zq, let bxep
def
=

⌊
x · pq

⌉
denote the rounding of x to Zp. For a set S, we use ← to denote sampling from a distribution or choosing
an element from a set uniformly at random. For a function ν : N→ [0, 1], we write ν = negl(λ) if for every
c ∈ N, ν(λ) ≤ 1/(cλc) for sufficiently large λ. PPT stands for probabilistic polynomial time.

2.1 Ring Theory Background
Definition 2.1 (Exceptional set). Let R be a ring and let E = {e1, . . . , en} ⊂ R. We say that E is an
exceptional set if ∀i 6= j, ei − ej ∈ R∗, where R∗ denotes the set of the units of the ring R.

1This is true in RQ but non-trivial as there are many zero-divisors in RQ.
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Galois ring. Let p be a prime and let s, d be positive integers. Let f(X) ∈ Zps [X] be a monic, irreducible
polynomial of degree d. The structure of the quotient ring Zps [X]/(f) is independent of the choice of f
and is determined up to isomorphic solely by p, s, d. This ring is referred to as Galois ring of characteristic
ps and degree d, denote this ring by Gal(ps, d). Galois rings have many nice properties due to their special
algebraic structure. Here, we list some useful properties of R = Zps [X]/(f).

1. (p) is the only maximal ideal of R and R/(p) ∼= Fpd .

2. R has an exceptional set of size pd.

Remark 2.2. For Q ∈ N with prime decomposition Q = pr11 · · · p
rk
k , by Chinese Remainder Theorem we

have
ZQ[X]/(f) ∼= (Zp

r1
1
[X]/(f))× · · · × (Zp

rk
k
[X]/(f)).

Consequently, ZQ[X]/(f) has an exceptional set of size (p1 · · · pk)d. More generally, if f = f1 · · · ft where
f1, . . . , ft are irreducible and coprime, then ZQ[X]/(f) has an exceptional set of size (p1 · · · pk)

∏
i∈[t] deg(fi).

Lemma 2.3 (Generalized Schwartz-Zippel Lemma [BCPS18]). Let R be a ring and let E ⊆ R be a finite
exceptional set. Let f ∈ R[X1, . . . , Xn] be a non-zero polynomial in n variables and denote by deg(f) the
degree of f . Then Pr

e←En
[f(e) = 0] ≤ deg(f)

|E| .

2.2 (Ring) LWE Encryption Schemes
Plain LWE. Let q, t be two moduli. Let χ be a sub-Gaussian error distribution with variance σ2, and let
Bχ > 0 be an error bound such that Pre←χ [|e| < Bχ] ≥ 1 − negl(λ). We start with the basic LWE-based
symmetric-key encryption that encrypts a message m ∈ Zt as follows.

• LWE.KeyGen(1λ) 7→ s ∈ Zn
q : Choose secret key s ← Zn

q uniformly at random. Alternatively, s ←
{−1, 0, 1}n is also admissible.

• LWE.Enc(s,m ∈ Zt) 7→ (a ∈ Zn
q , b ∈ Zq): Sample a← Zn

q , e← χ and output (a, 〈a, s〉+ e+ bmq/te).

• LWE.Dec(s, (a, b)) 7→ m ∈ Zt : Output b(t/q) · (b− 〈a, s〉)e mod t.

Given c = (a, b) ∈ Zn+1
q , t ∈ Z, we write c ∈ LWEq,t

s (m) if

m = LWE.Dec(s, c) = b(t/q) · (b− 〈a, s〉)e mod t.

For c ∈ LWEq,t
s (m), we define its error as

Errq,ts (c;m)
def
= b− 〈a, s〉 −mq/t.

We may omit the superscript q, t if it is clear in the context. Moreover, given an error bound B, we write
c ∈ LWEq,t

s (m;B) if
c ∈ LWEq,t

s (m) and |Errs(c;m)| ≤ B.

Clearly, if c is output by Enc(s,m), then c ∈ LWEq,t
s (m;Bχ) with overwhelming probability (over the ran-

domness of Enc).

Ring LWE. Let N be a power of 2 and Q > 0 be an integer modulus; let R def
= Z[X]/(XN + 1) be the

2N -th cyclotomic ring, and let RQ
def
= ZQ[X]/(XN +1) be a quotient ring. We consider the Ring-LWE based

symmetric encryption scheme with a plaintext space Rt = Zt[X]/(XN + 1) for integer 0 < t < Q.

• RLWE.KeyGen(1λ) 7→ s ∈ RQ: Sample secret key s← χN .
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• RLWE.Enc(s,m ∈ Rt) 7→ (a, b) ∈ R2
Q: Sample a ← RQ, e ← χN and output (a, as + e + m̃), where

m̃ = bQ/t ·me ∈ RQ.

• RLWE.Dec(s, (a, b)) 7→ m ∈ Rt : Output b(t/Q) · (b− as)e.

Similar to plain LWE, we write c = (a, b) ∈ RLWEQ,t
s (m) if

m = RLWE.Dec(s, c) = b(t/Q) · (b− as)e ,

and define Errq,ts (c;m)
def
= b− as− (Q/t) ·m.

Both LWE and RLWE are linearly homomorphic. That is,

1. if c1 ∈ RLWEs(m1), c2 ∈ RLWEs(m2), Err(c1 + c2;m1 +m2) = Err(c1;m1) + Err(c2;m2);

2. if µ ∈ Rq and c ∈ RLWEs(m), then Err(µ · c;µ ·m) = µ · Err(c;m).

Analogous statements hold for LWE.

Gadget RLWE. When multiplying an RLWE ciphertext by a scalar µ ∈ RQ, the error term scales with µ,
which could be too large if the norm of µ is too large. To address this issue, we decompose µ under some base
B and define a ‘gadget version’ of RLWE, denoted by RLWE′, as follows. Also, due to this decomposition,
we no longer need to round to Rt.

• RLWE′.KeyGen(1λ) 7→ s ∈ RQ: Sample secret key s← χN .

• RLWE′.Enc(s,m ∈ RQ) 7→ (a, b) ∈ R2
Q: Output

C := (c1, . . . , cℓ) =

(
a1 · · · aℓ
b1 · · · bℓ

)
∈ R2×ℓ

Q ,

where ℓ = dlogB Qe, and c⊤i = (ai, bi)← RLWE.Enc(s,Bi−1m) for all i ∈ [ℓ].

• RLWE′.Dec(s,C) 7→ m ∈ RQ : Let ci denote the i-th column of C. For each i ∈ [ℓ], compute
βi := RLWE.Dec(s, ci). Recover γ1 = (m mod B) from β1, then recover γ2 = m mod B2 from β′2 =

β2 −Bℓ−2 · γ1 and so on. Output m =
∑ℓ−1

i=0 γiB
i.

Remark 2.4. Let g = (1, B,B2, . . . , Bℓ−1). Then the output of RLWE′.Enc(s,m) can be equivalently written
as

C := (c1, . . . , cℓ) =

(
a1 · · · aℓ
b1 · · · bℓ

)
+mg,

where ai ←RQ, ei ← χN , b := as+ e for i ∈ [ℓ], namely, each (ai, bi) is an RLWE sample.

Analogously, we write C ∈ RLWE′
Q
s (m) if m = RLWE′.Dec(s,C). RLWE′.Enc supports multiplication by

µ ∈ RQ, denoted by �:

µ� (c1, . . . , cℓ)
def
=

ℓ∑
i=1

µi−1 · ci ∈ RLWEs(µm),

where µ =
∑ℓ−1

i=0 µiB
i, (c1, . . . , cℓ) ∈ RLWE′s(m). The noise grows by a factor of B, which is independent of

µ.
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Ring GSW scheme. RLWE′ can be further extended to a scheme that supports homomorphic multi-
plication between ciphertexts. The resulting scheme is a variant of Gentry-Sahai-Waters (GSW) scheme
[GSW13].

• RGSW.KeyGen(1λ) 7→ s ∈ RQ: Choose secret key s ∈ RQ uniformly at random.

• RGSW.Enc(s,m ∈ RQ) 7→ C ∈ R2×2ℓ
Q : Sample ai ←RQ, ei ← χN for i ∈ [2ℓ] and output

C =

(
a1 · · · a2ℓ
b1 · · · b2ℓ

)
+m(I2 ⊗ g) ∈ R2×2ℓ

Q ,

where bi := ais+ei. According to remark 2.4, C can be equivalently generated as C := (C1,C2) where

C1 ← RLWE′.Enc(s,−sm) and C2 ← RLWE′.Enc(s,m). (2)

• RGSW.Dec(s,C ∈ R2×2ℓ
Q ) 7→ m ∈ RQ : Because of eq. (2), the RGSW decryption algorithm simply

output RLWE′.Dec(s,C2), where C2 is the rightmost ℓ columns of C.

Write C ∈ RGSWQ
s (m) if m = RGSW.Dec(s,C). We define a multiplication operation (♦) between an

RLWE ciphertext c = (a, b) ∈ RLWEs(m1) and an RGSW ciphertext C = (C1|C2) ∈ RGSWs(m2) as follows;
the result is an RLWE ciphertext.

c♦C def
= a�C1︸ ︷︷ ︸
∈RLWE′

s(−asm2)

+ b�C2︸ ︷︷ ︸
∈RLWE′

s(bm2)

= RLWEs(−asm2 + bm2)

= RLWEs((b− as)m2)

= RLWEs(m1m2 + Errs(c;m1) ·m2).

The noise term is small as long as m2 is small; typically we have m2 = ±Xv for some v, and thus
‖Errs(c;m1) ·m2‖ = ‖Errs(c;m1)‖. Moreover, (♦) can be extended to multiplication between RGSW ci-
phertexts C1 and C2:

C1♦C2
def
= (c⊤1 ♦C2, . . . , c

⊤
2ℓ♦C2),

where ci is the i-th column of C1, which is an RLWE ciphertext.

2.3 Polynomials and Low-degree Extentions
We defer readers to appendix A for more details.

2.4 Polynomial commitment for multilinear polynomials over ring
We adopt the definitions of polynomial commitments from [Set20]. We also borrow their notations but
modify the definitions into ring versions. Denoted by R[µ] the set of multilinear polynomials where the
coefficients are elements of the ring R, and the number of variables is µ.

Definition 2.5. A polynomial commitment scheme for multilinear polynomials over ring R consists of four
algorithms (PC.Setup,PC.Commit,PC.Open,PC.Eval) with the following syntax.

• pp ← PC.Setup(1λ, d): Takes as input a security parameter λ and the number of variables in a multi-
linear polynomial µ, and outputs public parameters pp.

• (C, S)← PC.Commit(pp;G): Takes as input a µ-variate multilinear polynomial G ∈ R[µ], and outputs
a public commitment C and a secret opening hint S.

• b ← PC.Open(pp, C,G, S): Verifies the opening of the commitment C to the polynomial G ∈ R[µ]
using the opening hint S, and outputs b ∈ {0, 1}.
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• b ← PC.Eval(pp, C, r, v, d;G,S): An interactive public-coin protocol between a PPT prover P and
verifier V. Both V and P hold a commitment C, the number of variables µ, a scalar v ∈ R, and an
evaluation point r ∈ Rµ. P additionally knows the polynomial G ∈ R[µ] and its secret opening hint
S. P attempts to convince V that G(r) = v. At the end of the protocol, V outputs b ∈ {0, 1}.

The following properties are required.

• Completeness. For any µ-variate multilinear polynomial G ∈ R[µ],

Pr

[
PC.Eval(pp, C, r, v, µ;G,S) = 1
∧v = G(r)

∣∣∣∣ pp← PC.Setup(1λ, µ),
(C,S)← PC.Commit(pp;G)

]
≥ 1− negl(λ).

• Binding. For any PPT adversary A and size parameter µ ≥ 1,

Pr

b0 = b1 6= 0 ∧G0 6= G1

∣∣∣∣∣∣∣∣
pp← PC.Setup(1λ, µ),
(C,G0, G1, S0, S1) = A(pp),
b0 ← PC.Open(pp, C,G0, S0),
b1 ← PC.Open(pp, C,G1, S1)

 ≤ negl(λ).

• Hiding. The scheme provides hiding commitments if, for all PPT adversaries A = (A0,A1),∣∣∣∣∣∣∣∣∣∣
1− 2Pr

b = b̄

∣∣∣∣∣∣∣∣∣∣
pp← PC.Setup(1λ, µ),
(G0, G1, st) = A0(pp),
b← {0, 1},
(C, S)← PC.Commit(pp, Gb),
b̄ = A1(C, st)


∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

If the above holds for all algorithms, then the commitment is statistically hiding.

3 Security Definitions
3.1 Fully Homomorphic Encryption
Definition 3.1 (Symmetric Fully Homomorphic Encryption (FHE)). Let M, C, and F be the plaintext
space, ciphertext space, and function family, respectively. A symmetric Fully Homomorphic Encryption
(FHE) scheme FHE for F consists of four algorithms:

• FHE.KeyGen(1λ) 7→ (sk, ek): It generates a secret key sk and an evaluation key ek.

• FHE.Enc(sk,m) 7→ c ∈ C: It takes a secrect key sk and a message m ∈ M, and outputs a ciphertext
c ∈ C.

• FHE.Eval(ek, f, (c1, . . . , ct)) 7→ c̃ ∈ C: It takes as input an evaluation key ek, a function f ∈ F , and a
tuple of ciphertexts (c1, . . . , ct) ∈ Ct, and returns a ciphertext c̃ ∈ C.

• FHE.Dec(sk, c) 7→ m ∈M: It takes as input a secret key sk and a ciphertext c ∈ C, a message m ∈M.

In this paper, we represent the functions as boolean circuits, i.e., F is the set of all boolean circuits. We
consider only exact FHE scheme, which must satisfy the following correctness requirement.

Definition 3.2 (Correctness). A FHE scheme FHE is correct if for all message m1, . . . ,mt ∈M and for all
secret key (sk, ek) in the support of FHE.KeyGen, with overwhelming probability it holds that

FHE.Dec(sk,FHE.Eval(ek, f, (c1, . . . , ct))) = f(m1, . . . ,mt),

where ci ← FHE.Enc(sk,mi).
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Definition 3.3 (IND-CPA Security). A symmetric FHE scheme FHE is IND-CPA secure if for all PPT
adversaries A it holds that∣∣∣∣∣∣2 ·Pr

b 6= b′

∣∣∣∣∣
(sk, ek)← FHE.KeyGen(1λ)

b← {0, 1}
b′ ← AO

Encsk(·)
b ,O

Evalek(·)
b (·)

− 1

∣∣∣∣∣∣ = negl(λ),

where OEncsk
b (·) and OEvalek

b (·) is defined in fig. 1.

OEncsk
b (m0,m1)

1 : c← FHE.Enc(sk,mb)

2 : S[i]← (m0,m1, c)

3 : i← i+ 1

4 : return (c, i)

OEvalek
b (f, I = (i1, . . . , ik))

1 : c← FHE.Eval(ek, f, S[i1].c, . . . , S[ik].c)

2 : m̃0 := f(S[i1].m0, . . . , S[ik].m0)

3 : m̃1 := f(S[i1].m1, . . . , S[ik].m1)

4 : S[i]← (m̃0, m̃1, c)

5 : i← i+ 1

6 : return (c, i)

Figure 1: Oracles defining IND-CPA security for FHE.

3.2 Succint Non-Interactive Argument
Definition 3.4 (Succint Non-Interactive Argument (SNARG)). A succinct non-interactive argument ΠSNARG =
(Gen,Prove,Verify) for an NP relation R is a tuple of algorithms with the following syntax.

• Gen(1λ) 7→ crs: It takes as input a security parameter λ ∈ N and outputs a common reference string
crs.

• Prove(crs, x, w) 7→ π: It takes as input common reference string crs, a statement x, and a witness w,
and outputs a proof π when (x,w) ∈ R.

• Verify(crs, x, π) 7→ {acc, rej}: It takes as input common reference string crs, a statement x, and a proof
π, and outputs either acc (accept) or rej (reject).

The following security properties are required.

• Completeness. For all (x,w) ∈ R,

Pr

[
Verify(crs, x, π) = acc

∣∣∣∣∣ crs← Gen(1λ)
π ← Prove(crs, x, w)

]
= 1.

• Soundness. For all PPT adversary A,

Pr

[
x /∈ LR ∧ Verify(crs, x, π) = acc

∣∣∣∣ crs← Gen(1λ)
(x, π)← A(crs)

]
= negl(λ).

• Succinctness. We say that the SNARG is succinct if the running time of Verify and the proof size are
poly(λ, log |x|, log |w|).
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3.3 Public Verifiable Fully Homomorphic Encryption
Our goal is to build a verifiable FHE scheme by augmenting an IND-CPA secure FHE scheme with a
SNARG system, such that anyone can verify that a homomorphically evaluated ciphertext is indeed the
result of applying FHE.Eval on the intended input ciphertexts. Formally, we capture this idea in the following
construction.

Construction 3.5 (Verifiable FHE). Let FHE be an exact FHE scheme, and let Π be a SNARG for all NP
language. Consider the following construction of vFHE.

• KeyGen(1λ) 7→ (sk, ek, crs): It generates a key pair (sk, ek)← FHE.KeyGen(1λ), and a common reference
string crs← Π.Gen(1λ).

• Enc(sk,m) 7→ ct: It encrypts a message m into a ciphertext ct← FHE.Enc(sk,m).

• Eval(ek, f, (ct1, . . . , ctt)) 7→ (ct, π): It computes ct← FHE.Eval(ek, f, (ct1, . . . , ctt)) and records the wit-
ness w for the correct computation, and then generates a proof π ← Π.Prove(crs, x, w) for a statement
x expressing ct = FHE.Eval(ek, f, (ct1, . . . , ctt)). 2

• Dec(sk, ct, f, (ct1, . . . , ctt), π) 7→ m/⊥: If Π.Verify(crs, x, π) = acc, where x is the statement ct =
FHE.Eval(ek, f, (ct1, . . . , ctt)), returns m = FHE.Dec(sk, ct); otherwise, return ⊥.

Note that in verifiable FHE, the decryption algorithm now takes as input a circuit f and input ciphertexts
ct1, . . . , ctt of a homomorphic computation. This is needed to invoke the SNARG verifier to check if the
ciphertext ct is indeed the result of applying f on the input ciphertexts. To rule out trivial verifiable FHE
schemes, we require vFHE to have succinct ciphertexts and decryption algorithm, that is, the running time
of vFHE.Dec should be poly(λ, log(|f |), log(|ct|)).

For security, we consider the following Indistinguishable under Semi-Active attack (IND-SA) security
proposed by Walter [Wal24].

Definition 3.6 (IND-SA Security [Wal24]). A symmetric FHE scheme FHE is semi-actively secure if, for
all probabilistic polynomial-time (PPT) adversaries A, it holds that∣∣∣∣∣∣Pr

b = b′

∣∣∣∣∣
(sk, ek)← FHE.KeyGen(1λ)

b← {0, 1}
b′ ← AOEncsk(·),O

Evalek(·)
b ,ODecsk(·)(ek)

− 1

2

∣∣∣∣∣∣ = negl(λ),

where OEncsk and O
Evalek(·)
b are the same as in fig. 1, and ODecsk is defined in alg. 1. Note that all three oracles

share the same state S.

Algorithm 1: Decryption oracle ODecsk
b (c, f, {ij}j∈[ℓ])

1 if ∃ij /∈ S then return ⊥;
2 m0 ← f(S[i1].m0, . . . , S[il].m0),m1 ← f(S[i1].m1, . . . , S[il].m1);
3 if m0 = m1 then return FHE.Decsk(c, f, (S[i1].c, . . . , S[il].c));
4 else return ⊥;

As mentioned in [Wal24], the IND-SA security definition has some similarities compared with IND-CPAD

security3 from [LM21]; but distinctly, an IND-SA adversary can submit any ciphertext to the decryption
oracle ODecsk , which is much stronger than an IND-CPAD adversary.

Lemma 3.7 (Verifiable FHE security ([Wal24], Lemma 6)). If FHE is IND-CPA secure exact FHE scheme,
then construction 3.5 is IND-SA secure.

2Typically, w consists of intermediate results involved in the computation.
3Note that IND-CPAD is equivalent to IND-CPA for exact encryption schemes.
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4 Efficiently Representing FHE Evaluations as Ring R1CS
In order to use SNARG to prove correctness of homomorphic computation, one needs to express the com-
putation in some intermediate representation for which SNARG can be constructed. A commonly used
intermediate representation is R1CS.

In this section, we shall devise an ‘R1CS friendly’ FHE scheme. That is, the computation of the homo-
morphic evaluation can be efficiently expressed as R1CS. We first generalize R1CS to the ring setting, as
most FHE-related computations are based on ring arithmetic. This saves the overhead caused by translating
ring arithmetic, which abounds in existing efficient FHE schemes, into field arithmetic that are underlying
typical SNARGs.

Definition 4.1. A ring R1CS instance is a tuple x = (R,A,B,C, io,m, n) consisting of the following data:

• a commutative, unital ring R and two parameters m,n ∈ N;

• matrices A,B,C ∈ Rℓ×m where each matrix has at most n non-zero entries;

• a vector io ∈ R|io| denoting the public input and output of the instance, where m ≥ |io|+ 1.

x is said to be satisfiable if there exists a witness vector w ∈ Rm−|io|−1 such that (A · z) ◦ (B · z) = (C · z),
where z

def
= (io, 1, w), (·) is the matrix-vector product, and (◦) is the entry-wise product.

Remark 4.2. For presentation simplicity, we assume A,B,C as square matrices (i.e., ℓ = m) throughout
the paper.

Roadmap. Section 4.1 presents an FHEW-like FHE scheme that allows efficient bootstrapping. Section 4.2
addresses the main difficulty to express homomorphic evaluation as ring R1CS: dealing with the ‘non-ring’
operations. Section 4.3 presents our complete scheme for expressing homomorphic evaluation into ring R1CS.

4.1 An FHE Scheme
Let Q, q > 0 be integer moduli where Q > q and q is a power of 2. Write ℓ

def
= blogQc. Let RQ

def
=

ZQ[X]/(XN + 1) with N being a multiple of q/2, and WLOG we assume N = q/2 in this section. We
augment the plain LWE scheme (with a ternary secret key) into an FHE scheme using the FHEW framework.
Specifically, we shall design another algorithm FHE.EvalGate that homomorphically evaluates a boolean gate;
it has the following syntax.

• FHE.EvalGate(ek, c1.c2, op) 7→ c′: On input an evaluation key ek, two ciphertexts c1, c2 ∈ Zn+1
q , and

an operation op ∈ {AND,OR,NAND,NOR,XOR,XNOR}, it outputs c′ ∈ Zn+1
q .

The evaluation key ek is additionally generated in KeyGen: Another secret key z ∈ RQ is chosen according
to RLWE.KeyGen and is appended to sk; and ek consists of n ciphertexts ct1, . . . , ctn ∈ Zn+1

q where cti is an
encryption of si under key z.

The correctness requires that if c1 ∈ LWEq,t
s (m1;Bχ), c ∈ LWEq,t

s (m2;Bχ) for some messages m0,m1 ∈
{0, 1}, then c ∈ LWEq,t

s (m′;Bχ) for m′
def
= m0 op m1. Note that this evaluation algorithm incorporates a

bootstrapping procedure to ‘refresh’ the ciphertext so that the error bound does not change. This is done by
a technique called programmable bootstrapping in [DM15b], which enables one to evaluate a function and
bootstrap (to reduce the error bound) at the same time.

The evaluation algorithm uses a cryptographic accumulator ACC. Let f : Zq → Zq be a fixed function
and let z ∈ RQ be a fixed key. ACCf stores a value in Zq and is comprised of four algorithms —

• ACCf .Init(b): Initialize the stored value to be b.

• ACC.Enc(z, µ ∈ {−1, 0, 1}): On input key z ∈ RQ and µ, output an encryption of µ.
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• ACC.Update(α, ct): On input α ∈ Zq and a ciphertext ct ← ACC.Enc(z, µ), the stored value is added
by αµ.

• ACCf .Extract: Output an ciphertext c ∈ LWEQ,4
z (f(v);BACC), where v is the current stored value and

z
def
= (z0,−zN−1, . . . ,−z1).

The encryption and update procedure is independent of the choice of f .

FHEW accumulators. For the encryption and update procedure, we adopt the design used in GINX
[GINX16] and TFHE [CGGI20b], which, indicated by practical test results [MP21], is more friendly to
ternary secret key distribution. The scheme is shown in fig. 2. It is required that f satisfies

f(v + (q/2)) = −f(v). (3)

ACCf .Init(b)

1 : m(X) :=

N−1∑
i=0

f(b− i) ·Xi

2 : c := (0,m)

ACC.Enc(z, µ ∈ {−1, 0, 1})
1 : Write µ = µ1 − µ2 where µ1, µ2 ∈ {0, 1}
2 : C1 ← RGSW.Enc(z, µ1)

3 : C2 ← RGSW.Enc(z, µ2)

4 : return ct := (C1,C2)

ACC.Update(α, ct)

1 : Parse ct = (C1,C2)

2 : c← c+ (Xα − 1)(c ⋄C1)

3 : c← c+ (X−α − 1)(c ⋄C2)

ACCf .Extract

1 : Parse c = (a, b)

2 : a := (a0, . . . , aq/2−1) ∈ ZN
Q

3 : return (a, b0)

Figure 2: FHEW accumulator. The value v ∈ Zq is stored as a RLWE ciphertext c ∈ RLWEz(m), where
m(X) =

∑q/2−1
i=0 f(v − i) ·Xi carries information about v.

ACCf .Extract returns a ciphertext w.r.t key z, and we want to convert it into a ciphertext w.r.t key s.
Such a procedure is called key switching. After key switching, we get a ciphertext ĉ w.r.t. key s; however,
the modulus is Q instead of q, that is, ĉ ∈ Zn+1

Q . We apply another procedure called modulus switching to
address this issue. The two procedures depicted in what follows are similar to those in [DM15b].

For each op ∈ {AND,OR,XOR,NAND,XOR,NOR}, we can choose a fop that satisfies eq. (3) and realizes
the desired operation (see [MP21], Table 1, Page 15).

Key switching. In KeyGen, we generate the following key-switching key Kz→s, where z = (z0,−zq/2−1, . . . ,−z1).

• KeySwitchGen(z ∈ ZN
Q , s ∈ Zn

Q): Output Kz→s = (ki,j,v)i∈[N ],j∈{0}∪[k],v∈{0,1}, where

ki,j,v := 〈s,a〉+ e+ vzi · 2j where a← Zn
Q, e← χ.

• KeySwitch(Kz→s = (ki,j,v)i∈[N ],j∈{0}∪[k],v∈{0,1}, c): Parse c = (a, b) and decompose each ai as ai =∑k
j=0 aij · 2j . Output (0, b)−

∑
i,j ki,j,ai,j

.

The key switching key Kz→s is also published as part of ek. The final key generation algorithm
FHE.KeyGen(1λ) is shown in fig. 3.
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1. Choose secret key s← {−1, 0, 1}n , z0, . . . , zN−1 ← χ.

2. Set z(X) := z0 + z1X + · · ·+ zN−1X
N−1 ∈ RQ, z := (z0,−zN−1, . . . ,−z1).

3. Generate Kz→s ← KeySwichGen(z, s).

4. For i ∈ [n], generate cti ← ACC.Enc(z, si).

5. Output sk = (s, z), ek =
(
Kz→s, (cti)i∈[n]

)
.

Figure 3: The FHE key generation algorithm FHE.KeyGen.

Modulus switching. Given a ciphertext (a, b) ∈ Zn+1
Q , we can apply the rounding function b·eq : ZQ →

Zq, x 7→ bq · x/Qe to each coordinate to get

ModSwitchQ→q(a, b)
def
= (ba1eq , . . . , baneq , bbeq) ∈ Zn+1

q .

Putting all these components together, our FHE.EvalGate algorithm is shown in alg. 2.

The complete FHE scheme. Since FHE.EvalGate does not increase the ciphertext error, one can evaluate
any boolean circuit gate-by-gate. That is, based on FHE.EvalGate we can easily construct an FHE evaluation
algorithm FHE.Eval that evaluates any boolean circuit. Then we have a complete FHE scheme FHE =
(FHE.KeyGen, FHE.Enc,FHE.Dec,FHE.Eval): FHE.KeyGen is shown in fig. 3; FHE.Enc and FHE.Dec are the
same as LWE.Enc and LWE.Dec; FHE.Eval uses FHE.EvalGate (alg. 2) to evaluate the given circuit gate-by-
gate.

Algorithm 2: The evaluation algorithm FHE.EvalGate for a single gate
Input: ek =

(
Kz→s, (cti)i∈[n]

)
, c1, c2 ∈ Zn+1

q , op ∈ {AND,OR,NAND,NOR,XOR,XNOR}.
Output: A new ciphertext c′

1 if op ∈ {XOR,XNOR} then c := 2(c1 − c2) ;
2 else c := c1 + c2 ;
3 Parse c = (a, b);
4 ACCfop .Init(b);
5 for i = 1, . . . , n do
6 ACC.Update(−ai mod q, cti);
7 c̃ := ACCfop .Extract;
8 return c′ := ModSwitchQ→q (KeySwich(Kz→s, c̃))

4.2 Expressing Non-Ring Operations as Ring R1CS
Our goal is to express the computation of FHE.Eval, our FHE evaluation algorithm, as a Ring R1CS instance
over the ring RQ = ZQ[X]/(XN +1). If an operand lies in Zq or ZQ, we can naturally view it as a constant
polynomial in RQ; for example, a ∈ Zn

q is viewed as a member of Rn
Q, where each coordinate is a constant

polynomial ai. Most operations easily translate to arithmetic in RQ. However, FHE.Eval, which consists of a
series of invocations of FHE.EvalGate, involves some operations that are not ring arithmetic operations. We
first summarize those ‘non-ring’ operations.

1. Bit decomposition and indexing. In key switching, we need to decompose ai ∈ ZQ in to (aij ∈
{0, 1})j∈{0}∪[k] such that ai =

∑k
j=0 aij2

j . Moreover, we choose ki,j,aij
depending on the decomposed

bit aij ∈ {0, 1}.
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2. Rounding. In modulus switching, we need to compute the rounding function b·eq : ZQ → Zq, x 7→
bq · x/Qe.

3. Given a constant α ∈ Zq, compute Xα. This happens in ACCf .Update.

4. Extracting the coefficients of a polynomial. In ACCf .Extract, given (a, b) ∈ R2
Q, we need to extract the

coefficients (a0, . . . , aN , b0) ∈ ZN+1
Q .

As long as we manage to express the above operations as rank-one constraints over RQ, we can express the
computation of FHE.EvalGate (and thus FHE.Eval) as a ring R1CS instance. In fact, it suffices to express
these operations as ring arithmetic constraints, formalized below.
Definition 4.3 (Ring arithmetic constraints). For three variables or constants x1, x2, x3 taking values in
ring R, a ring arithmetic constraint on x1, x2, x3 requires either x3 = x1 + x2 or x3 = x1 · x2. We say a
set of ring arithmetic constraints are satisfiable if there exists an assignment to the variables such that all
constraints are satisfied.
Lemma 4.4 (From ring arithmetic constraints to rank-one constraints, folklore). Let x1, . . . , xs be variables
and xs+1, . . . , xt be constants taking values in ring R. Let S be a set of ring arithmetic constraints on them,
i.e., each member in S a ring arithmetic constraint on xi, xj , xk for some i, j, k ∈ [t]. Then there exist
A,B,C ∈ R|S|×t such that for all w ∈ Rs,

Az ◦Bz = Cz ⇐⇒ all constraints in S are satisfied by setting xi = wi for i ∈ [s],

where z = (w, xs+1, . . . , xt) ∈ Rt. Moreover, each matrix A,B,C has at most 2 non-zero entries in each
row.

Bit decomposition and indexing. We start with bit decomposition.
Lemma 4.5 (Bit decomposition as ring arithmetic constraints). Let y, x0, x1, . . . , xℓ be variables tak-
ing values in RQ. There exist a set of NBitDecomp = (3ℓ + 4) ring arithmetic constraints, denoted by
BitDecomp(y;x0, . . . , xℓ), such that if all the constraints are satisfied, then xi ∈ {0, 1} for all i = 0, 1, . . . , ℓ

and y =
∑ℓ

i=0 xi2
i.

Proof. Consider the following ring arithmetic constraints:

(1) ∀i ∈ {0} ∪ [ℓ], xi · xi = xi; (2) y =

ℓ∑
i=0

xi2
i.

Here, (2) can be divided into 2ℓ + 3 ring arithmetic constraints with the same satisfiability by introducing
additional variables y0, . . . , yℓ, z0, . . . , zℓ and constants 1, 2, . . . , 2ℓ. Specifically, (2) is equivalent to (i) y0 = 0
and (ii) for i = 0, . . . , ℓ, zi = xi · 2i, yi = yi−1 + zi, renaming y by yℓ. To satisfy constraints in (1), it must
be that x0, . . . , xℓ ∈ {0, 1} by the claim below.

Claim 4.6 (Proven in appendix C.1). For z ∈ RQ, if z2 = z then z ∈ {0, 1}.

Therefore, BitDecomp(y;x1, . . . , xℓ) is satisfied if and only if (x0, . . . , xℓ) is the binary decomposition of y.
Moreover, these constraints easily translate to R1CS as they only involve arithmetic operations over RQ.

Indexing can be easily done once we have the decomposed bits.
Lemma 4.7 (Indexing as ring arithmetic constraints). Let x,w0, w1 be variables taking values in RQ.
There exist a set of NIndex = 4 ring arithmetic constraints, denoted by Index(y;x,w0, w1), such that if all the

constraints are satisfied, then y =

{
w0 if x = 0

w1 if x = 1
.

Proof. The constraint is y = (1 − x)w0 + xw1. Note that x could potentially take values other than 0 and
1. But if x also appears as one of the variables in BitDecomp that represents a bit, then it must be 0 or 1,
and the indexing will be correct.
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Rounding. For rounding operation on x ∈ RQ, where Q = 2ℓ + δ for some δ > 0, we first observe that we
can express the function x 7→

⌊
x2−ℓ

′
⌋

efficiently for ℓ′ ≤ ℓ: it is essentially taking the highest (ℓ− ℓ′) bits of
x, which can be done using bit decomposition. Formally, we have

Lemma 4.8 (Rounding as ring arithmetic constraints). Assume Q = 2ℓ + δ for some ℓ, δ > 0. Let ℓ′ ∈ [ℓ]
and x, y be variables taking values in RQ. There exist a set of NRounding = NBitDecomp + 3(ℓ − ℓ′ + 1) ring
arithmetic constraints, denoted by Roundingℓ′(y;x), such that if all the constraints are satisfied, then x, y are
constant polynomials and y =

⌊
x · 2−ℓ′

⌋
.

Proof. Consider the following constraints on variables x, x0, . . . , xℓ, y:

(1) BitDecomp(x;x0, . . . , xℓ); (2) y =

ℓ−ℓ′∑
i=0

xi+ℓ′2
i.

It is straightforward to see that if all constraints are satisfied, then x is a constant polynomial and y =⌊
x · 2−ℓ′

⌋
.

Remark 4.9. If Q/q is a power of 2, say, Q = q · 2ℓ′ , we have

bqx/Qe =
⌊
x · 2−ℓ

′
⌉
=

⌊
x · 2−ℓ

′
+ 0.5

⌋
=

⌊
(x+ 2ℓ

′−1) · 2−ℓ
′
⌋
.

Hence, lemma 4.8 is sufficient to express the function b·eq in this case. For modulus switching w.r.t non-
power-of-two Q = 2ℓ + δ, where δ > 0 is small, we can compute x 7→

⌊
xq/2ℓ

⌋
in ModSwitchQ→q instead

of x 7→ bxq/Qe. This allows us to still use lemma 4.8 to express ModSwitchQ→q as ring R1CS constraints
while keeping the modulus switching error relatively small. This modification has no noticeable effect on
correctness and security. See appendix B for details.

Computing Xα given α ∈ Zq. We use a strategy similar to the fast exponentiation algorithm.

Lemma 4.10 (α 7→ Xα as ring arithmetic constraints). Let α, y be variables taking values in RQ. There
exist a set of NXPow = NBitDecomp+5(ℓ+1)+1 ring arithmetic constraints, denoted by XPow(y;α), such that
if all the constraints are satisfied, then α is a constant polynomial and y = Xα.

Proof. We use additional variables α, x0, . . . , xℓ, y0, . . . , yℓ. Consider the following constraints:

(1) BitDecomp(α;x0, . . . , xℓ);

(2) y0 = 1;

(3) ∀i ∈ {0} ∪ [ℓ], yi = xi ·X2i · yi−1 + (1− xi) · yi−1.

Whenever these constraints are satisfied, it is easy to prove by induction that yi = X
∑i

j=0 xj2
j

; hence we
have yℓ = Xα.

Extracting coefficients of a polynomial in RQ. Note that, as a byproduct, if BitDecomp(y;x0, . . . , xℓ)
is satisfied, y must be a constant polynomial. We can utilize the property to make a constraint like ‘the
value of y must be a constant polynomial. Using this trick, we have

Lemma 4.11 (Extracting coefficients as ring arithmetic constraints). Let a, y0, . . . , yN−1 be variables taking
values in RQ. There exist a set of NCoeff = N · NBitDecomp + 2N ring arithmetic constraints, denoted by
Coeff(a, y0, . . . , yN−1), such that if all the constraints are satisfied, then y0, . . . , yN−1 are constant polynomial
and a = y0 + y1X + · · ·+ yN−1X

N−1.
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Proof. Let a, (yi, xi,0, xi,1, . . . , xi,ℓ−1)i=0,1,...,N−1 be variables. Consider the following two sets of constraints

(1) a = y0 + y1X + · · ·+ yN−1X
N−1;

(2) for i = 0, 1, . . . , N − 1,BitDecomp(yi;xi,0, xi,1, . . . , xi,ℓ−1).

When the second set of constraints is satisfied, each yi must be a constant. Meanwhile, the first set of
constraints forces y0, . . . , yN−1 to be the coefficients of a.

4.3 Expressing Homomorphic Evaluation as Ring R1CS
We state the main theorem of this section below. The proof is readily obtained by combining results in
section 4.3 and section 4.2 and is deferred to appendix C.1.

Theorem 4.12 (FHE evaluation as ring R1CS). Assume Q = 2ℓ + δ for ℓ, δ > 0 where δ is some small
constant. Let FHE = (FHE.KeyGen,FHE.Enc, FHE.Dec,FHE.Eval) be as defined in section 4.1. For all
evaluation key ek, boolean circuit C, and ciphertexts c1, . . . , ct, there exists a ring R1CS instance x =
(RQ, io, A,B,C, m̃, ñ) with m̃ = O (|C| · (q + n) logQ) , ñ = 2m̃ such that

x is satisfiable ⇐⇒ FHE.Eval(ek, c1, . . . , ct) = c̃,

where (ek, c1, . . . , ct, c̃) is included in io. Moreover, x can be constructed in time O(m̃).

Correctness and security. Our variant of FHEW scheme differs from the typical FHEW instantiations
in that the RLWE modulus Q is not an NTT-friendly prime (the exact requirement on Q will become clear
after introducing the concrete instantiation of our SNARG system), and that the ModSwitchQ→q computes
a flooring function instead of rounding. Although Q does not permit NTT over RQ, polynomial operations
can still implemented with comparable efficiency, e.g. by lifting to a ring with slightly larger, NTT-friendly
modulus. As for security, our variant achieves semantic security under the similar (R)LWE assumptions as in
FHEW except with ternary LWE secret. More details and parameter settings are presented in appendix B.

Theorem 4.13. Under the standard LWE and RLWE assumptions, and assume circular security of LWE
encryptions, the scheme described in Sec 4.1 is an FHE with IND-CPA security.

5 SNARGs for Ring R1CS
In this section, we construct an SNARG for ring R1CS instances. Our SNARG is directly based on ring
arithmetic, avoiding the overhead of translating ring arithmetic into field arithmetic. Inspired by SPARTAN
[Set20], we follow its design and adapt it to the ring setting, systematically replacing each component with
its ring-based counterpart. We also borrows some notations from them.

Roadmap. Section 5.1 generalize the famous sum-check protocol to ring polynomials. Section 5.2 shows
how to translate an ring R1CS instance into a sum-check statement about a ring polynomial. Section 5.3
uses cryptographic tools to compile sum-check protocol into a non-interactive one with succinct proof.

5.1 Sum-Check Protocol for Ring Polynomials
Let R be a ring and E ⊆ R be an exceptional set of R. Let g ∈ R[X1, . . . , Xn] be a degree-d polynomial
whose coefficients lie in R. In fig. 4, we construct an interactive proof for claims in the following form:

K =
∑

b1∈{0,1}

· · ·
∑

bn∈{0,1}

g(b1, . . . , bn). (4)

In what follows, we prove completeness and soundness of this protocol.
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1. V’s round. If n = 1, check whether g(0) + g(1) = K. If so, accept; otherwise, reject. If n ≥ 2,
require P to send a univariate polynomial h1 ∈ R[X1] defined as follows:

h1(X1)
def
=

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(X1, b2, . . . , bn).

2. P’s round. Send some polynomial p1. The honest prover shall send h1 defined as above.

3. V’s round. On receiving a degree-d polynomial p1, reject if p1(0) + p1(1) 6= K. Otherwise, choose
an element r1 ∈ E uniformly at random and send it to P, then recursively use the same protocol
to check

p1(r1) =
∑

b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(r1, b2, . . . , bn).

Figure 4: Sum-check protocol for ring.

Theorem 5.1. The protocol in fig. 4 for the statement in eq. (4) satisfies the following properties.

• Completeness. If K =
∑

b1∈{0,1} · · ·
∑

bn∈{0,1} g(b1, . . . , bn) holds and the prover is honest, then the
verifier will accept with probability 1.

• Soundness. If K 6=
∑

b1∈{0,1} · · ·
∑

bn∈{0,1} g(b1, . . . , bn), then the verifier V will reject with probability
at least 1− nd

|E| .

Proof. We prove soundness here and leave the proof of completeness to appendix C.2. We prove by induction
on n.

- Base case. For n = 1, we have g(0) + g(1) 6= K, so the verifier always rejects.

- Inductive step. The provers first message is the polynomial p1. If p1 ≡ h1, then we have

p1(0) + p1(1) = h1(0) + h1(1) =
∑

b1∈{0,1}

 ∑
b2··· ,bn∈{0,1}

g(b1, · · · , bn)

 6= K.

So the verifier always rejects in this case. If p1 6≡ h1, by the Generalized Schwartz-Zippel Lemma
(lemma 2.3), we have Pr

r1←E
[p1(r1) = h1(r1)] ≤ d

|E| . On the event that p1(r1) 6= h1(r1), the recursive

sumcheck p1(r1)
?
=

∑
b2,··· ,bn g(r1, b2, · · · , bn) is over a false statement, with n − 1 variables. By

induction hypothesis, the verifier accepts the recursive sumcheck with probability at most (n−1)d
|E| . By

a union bound, we have

Pr[V accepts] ≤ Pr[p1(r1) = h1(r1)] +Pr[V accepts | p1(r1) 6= h1(r1)]

≤ d

|E|
+

(n− 1)d

|E|
=

nd

|E|
.
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5.2 Translating Ring-R1CS into Sum-Check Instance of Polynoamials over Ring
Theorem 5.2. For any Ring-R1CS instance x = (R,A,B,C, io,m, n), there exists a family G of degree-3
multivariate polynomials over the ring R such that

• If x is satisfiable, then Prg←G [
∑

x∈{0,1}s g(x) = 0] = 1.

• If x is not satisfiable, then Prg←G [
∑

x∈{0,1}s g(x) = 0] ≤ ϵ.

where s = dlogme and ϵ = logm
|E| .

Proof. We begin by interpreting the matrices A,B,C ∈ Rm×m in the Ring-R1CS instance as functions
A(x, y), B(x, y), C(x, y) : {0, 1}s × {0, 1}s → R, where we write indices in [m] as binary strings in {0, 1}s.
Then, we consider multilinear extensions of these functions, denoted Ã(x, y), B̃(x, y), C̃(x, y) : Rs×Rs → R.
Similarly, we interpret z = (io, 1, w) ∈ Rm as a function z(y) : {0, 1}s → R and consider its multilinear
extension z̃(y) : Rs → R. Now, we define the function

F̃io(x) :=

 ∑
y∈{0,1}s

Ã(x, y) · z̃(y)

 ◦
 ∑

y∈{0,1}s
B̃(x, y) · z̃(y)

−
 ∑

y∈{0,1}s
C̃(x, y) · z̃(y)


By the definition of SatRingR1CS, it is immediate that (x, w) ∈ SatRingR1CS if and only if F̃io(x) = 0 for
all x ∈ {0, 1}s. Since F̃io(·) is a low-degree polynomial over a ring R in s variables, the verifier V can check
if

∑
x∈{0,1}s

F̃io(x) = 0 using the Ring Sum-Check protocol. However, this sum being zero does not guarantee

that F̃io(x) = 0 for all x ∈ {0, 1}s, as cancellations might occur between terms. Similar to [BFL91, Set20],
we consider

Pio(t) :=
∑

x∈{0,1}s
F̃io(x) · eq(t, x),

where eq(t, x) =
∏s

i=1(tixi + (1 − ti)(1 − xi)). This polynomial satisfies Pio(t) = F̃io(t) for all t ∈ {0, 1}s,
meaning that F̃io(·) is zero on the Boolean hypercube if and only if Pio(·) is a zero-polynomial. Thus,
checking if Pio(t) = 0 at a random t ∈ Es is sufficient for verifying F̃io(·) is zero everywhere. This introduces
a soundness error, which is negligible for sufficiently large exceptional set E. We formally formulate it in the
following lemma.

Lemma 5.3. If F̃io(x) 6= 0 for some x ∈ {0, 1}s, then Prt∈Es [Pio(t) = 0] ≤ logm
|E| .

Proof of lemma 5.3. If there exists an x ∈ {0, 1}s such that F̃io(x) 6= 0, then Pio(t) is not a zero polynomial.
By lemma 2.3, the probability that Pio(t) = 0 for a randomly chosen t ∈ Es is at most d

|E| , where d is the
degree of the polynomial Pio(t). In this case, the degree d = s = logm.

Now, given a Ring-R1CS instance x = (R,A,B,C, io,m, n), we define

G def
= {gio,t(x)}t∈Es where gio,t(x)

def
= F̃io(x) · eq(t, x).

Each gio,t(x) is a degree-3 polynomial in s = logm variables because F̃io(x) has degree 2 and eq(t, x) has
degree 1 in x. Recall that

x is satisfiable ⇐⇒ ∀x ∈ {0, 1}s F̃io(x) = 0 ⇐⇒ ∀t ∈ Es Pio(t) = 0.

Hence, if x is satisfiable, then
∑

x∈{0,1}s gio,t(x) = 0 for every t. If x is not satisfiable, then by lemma 5.3 we

have Prt←Es

[∑
x∈{0,1}s gio,t(x) = 0

]
≤ logm
|E| . This finishes the proof of theorem 5.2.
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5.3 Compiling Sum-Check Protocol into SNARG
The sum-check protocol can be complied into a non-interactive one with succinct proof in two steps:

1. First, we use a polynomial commitment to design an interactive argument with succinct communication
(theorem 5.4), extending techniques in [Set20] to the ring setting.

2. Then, we apply Fiat-Shamir transformation to obtain a non-interactive argument in the random oracle
model (ROM).

Theorem 5.4. Given a polynomial commitment scheme for multilinear polynomials over a ring R, there
exists a public-coin succinct interactive argument for Ring-R1CS instances.

Similar to [Set20], the proof involves constructing a public-coin succinct interactive argument. It builds
on theorem 5.2, which states that verifying an R1CS instance’s satisfiability can be done by checking if the
sum equals zero. To evaluate, the verifier needs to calculate eq(t, rx) and F̃io(rx), where the former can be
evaluated efficiently in O(logm) time, and the later requires calculating Ã(rx, y), B̃(rx, y), C̃(rx, y), Z̃(rx, y)
for all y. This would require communication proportional to the size of the witness, which is not desirable
for efficiency.

Adopted from [Set20], we follow their solution but replace every components they used with their ring-
counterparts i.e., the sum-check protocol over ring, a randomized mini protocol over ring, and a polynomial
commitment over ring. Let F̃io(rx)

def
= Â(rx)·B̂(rx)−Ĉ(rx), where Â(rx)

def
=

∑
y∈{0,1}s Ã(rx, y)·Z̃(y), B̂(rx)

def
=∑

y∈{0,1}s B̃(rx, y) · Z̃(y), Ĉ(rx)
def
=

∑
y∈{0,1}s C̃(rx, y) · Z̃(y). The prover can make new claims to the verifier

that Â(rx) = vA, B̂(rx) = vB , Ĉ(rx) = vC . The verifier then computes gio,t(rx) = (vA · vB − vC) · ẽq(rx, t)
and verifies whether gio,t equals to K or not. Also, the verifier still needs to verify the prover’s claims:
Â(rx) = vA, B̂(rx) = vB , and Ĉ(rx) = vC . Rather than running three separate sum-check protocols, we
adopt the technique in [Set20, CFS17, WTS+18] to merge these claims into a single claim.

• The verifier V samples rA, rB , rC ∈ R and computes c = rA ·vA+rB ·vB+rC ·vC . V uses the sum-check
protocol with P to verify if rA · Â(rx) + rB · B̂(rx) + rC · Ĉ(rx) = c. Expanding this, we have∑

y∈{0,1}s

(
rA · Ã(rx, y) · Z̃(y) + rB · B̃(rx, y) · Z̃(y) + rC · C̃(rx, y) · Z̃(y)

)
=

∑
y∈{0,1}s

Mrx(y),

where Mrx(y) is an s-variate polynomial of degree at most 2 in each variable.

Lemma 5.5. If Â(rx) 6= vA ∨ B̂(rx) 6= vB ∨ Ĉ(rx) 6= vC , then

Pr
rA,rB ,rC

[
rA · Â(rx) + rB · B̂(rx) + rC · Ĉ(rx) = c

]
≤ 1

|E|
,

where c
def
= rA · vA + rB · vB + rC · vC .

Proof. The key observation is that both sides of the equation are polynomials of degree at most 1 in rA, rB , rC ,
since the terms rA · Â(rx), rB · B̂(rx), rC · Ĉ(rx) are linear in rA, rB , rC respectively. Since at least one of
the statements of Â(rx) 6= vA, B̂(rx) 6= vB , Ĉ(rx) = vC is true by assumption, the resulting polynomial is
non-zero. In this case, we can apply the Generalized Schwartz-Zippel lemma (lemma 2.3).

Upon completion of the second instance of the sum-check protocol, the verifier needs to compute Mrx(ry)

for ry. Mrx(ry) = rA · Ã(rx, ry) + rB · B̃(rx, ry) + rC · C̃(rx, ry), while the only term in Mrx(ry) depending
on the provers witness is Z̃(ry). The verifier evaluates Z̃(ry) by first splitting ry into its first element ry[0]
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and the remaining elements ry[1..]. Using the multilinear polynomial formula, the verifier computes Z̃(ry)
as a weighted sum

Z̃(ry) = (1− ry[0]) · z̃(ry[1..]) + ry[0] · (̃io, 1)(ry[1..]),

where ry[1..] refers to the slice of ry excluding the first element. The subfunctions z̃ and (io, 1) are evaluated
recursively based on ry[1..], allowing the verifier to efficiently compute Z̃(ry).

Till now, we have an argument with succinct size, but the verifier still needs linear verification cost
(i.e., O(n)) when evaluating Ã, B̃, C̃. To achieve sub-linear verification cost, we introduce a setup step
for the verifier with access to the non-io parts of an R1CS instance x = (R,A,B,C, io,m, n): During the
setup, the verifier performs an encoding algorithm Encode. The algorithm Encode(ppcc, (A,B,C)) generates
commitments for Ã, B̃, and C̃ using the commitment scheme PC.Commit with the public parameters ppcc,
and outputs the commitments (CA, CB , CC). Here, ppcc ← PC.Setup(1λ, 2 logm), where PC is a polynomial
commitment scheme for multilinear polynomials.

We review the whole process and efficiency in appendix D, assuming a polynomial commitment scheme
for multilinear polynomials.

Proof of theorem 5.4. Since RQ contains an exceptional set E of size at least 2N = 2poly(λ), the completeness
of our interactive argument follows from the completeness of both the sum-check protocol and the underlying
polynomial commitment scheme. Soundness follows from that of the polynomial commitment scheme.

Finally, because our protocol is public-coin, it can be converted to a non-interactive form in the random
oracle model using the Fiat-Shamir transform [FS86]. Thus, we have a succinct non-interactive argument
for R1CS.

Instantiation of polynomial commitment. There are many multilinear polynomial commitment schemes
over fields that meet the requirements in [Set20]. However, to the best of our knowledge, only one work,
[CMNW24b], focuses on the ring we prefer.

Lemma 5.6 (Lattice-based multilinear polynomial commitment over ring [CMNW24b]). Let λ be the
security parameter and Q be a modulus such that Q ≡ 5 (mod 8). Consider the function class F =
RQ[X1, . . . , Xs], namely, multilinear polynomials in s variables with coefficeints in RQ. Assume the hardness
of the SIS problem4. Then, there exists a functional commitment scheme for multilinear polynomials over
the ring RQ with the following efficiency characteristics:

Commitment size Opening size Prover time Verifier time
O(s · poly(λ)) O

(
s2 · poly(λ)

)
2s · poly(λ) s · poly(λ)

By instantiating theorem 5.4 with the polynomial commitment scheme described in lemma 5.6 and
applying the Fiat-Shamir transform [FS86], we get a lattice-based SNARG for ring R1CS.

Theorem 5.7 (SNARG for Ring-R1CS). Let λ be the security parameter and Q a modulus. Let m be the
number of variables in ring R1CS and s = dlogme. Given a polynomial commitment scheme for multilinear
polynomials in RQ[X1, . . . , Xs] (e.g., the one in lemma 5.6), the instantiated SNARG for ring R1CS instance
x = (RQ, io, A,B,C,m, n) achieves the following efficiency characteristics:

Preprocessing and prover time Verivier time Proof size
O
(
(n+m2) · poly(λ)

)
O(logm · poly(λ)) O

(
(logm)2 · poly(λ)

)
Proof. The security of succinct interactive arguments follows by theorem 5.4 and binding and hiding prop-
erties of the polynomial commitment lemma 5.6. By applying Fiat-Shamir transform, we have succinct
non-interactive interactive arguments (SNARGs). Next, we analyze the efficiency.

4Parameters of SIS problem can be found in Section 5.3 in [CMNW24b].
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• Proprocessign and prover time. The prover’s total computation time consists of O(n · poly(λ)) for the
sum-check and O(m2 · poly(λ)) for committing to and evaluating the multilinear polynomials Ã, B̃,
and C̃ over 2s variables, where 22s = m2. Thus, the total time used is O

(
(n+m2) · poly(λ)

)
, where

the committing phase in done in preprocessing of the SNARG.

• Verifier time. The verifier’s computation time includes O(logm · poly(λ)) for participating in the
sum-check protocols, O(logm · poly(λ)) for performing polynomial evaluations using the commitment
scheme, and additional O(logm · poly(λ)) time for operations like computing eq(rx, t). So, the total
verifier time is O(logm · poly(λ)).

• Proof size. The proof size comprises commitments to polynomials O(logm · poly(λ)), openings dur-
ing polynomial evaluations O(logm · logm · poly(λ)), and communication during sum-check proto-
cols O(logm · poly(λ)). The dominant term is from the openings, leading to a total proof size of
O
(
(logm)2 · poly(λ)

)
.

6 Publicly Verifiable Fully Homomorphic Encryption
Proving the main theorem. Piecing everything together, we get a publicly verifiable Fully Homomorphic
Encryption.

Proof of theorem 1.1. Let FHE be the FHE scheme described in section 4.1, and let ΠSNARG be the SNARG
construction in theorem 5.7. Since FHE is IND-CPA secure (theorem 4.13), plugging it along with ΠSNARG

into construction 3.5 yields a verifiable FHE scheme vFHE (by lemma 3.7). We note that since ΠSNARG is
publicly verifiable, so is vFHE.

We derive the efficiency of vHFE from theorem 4.12 and theorem 5.7. Consider evaluating a boolean
circuit C on ciphertexts c1, . . . , ct, generating the proof, and verifying the proof. Let M

def
= |C|(q+ n) logQ.

By construction, FHE.Eval uses O(M · poly(λ)) ring operations in RQ. By theorem 4.12, the correctness
of the computation can be expressed by an R1CS instance x = (RQ, A,B,C, m̃, ñ) with m̃ = O(M), ñ =
2m̃ = O(M). By theorem 5.7, we have the following efficiency characteristics modulo the time needed for a
single-ring operation:

• SNARG preprocessing time. The preprocessing of the SNARG runs in time O
(
M2 · poly(λ)

)
.

• Prover time and proof size. The proof can be generated in time O(M2·poly(λ)) and is of size O
(
(logM)2 · poly(λ)

)
.

• Verifier time. The proof can be verified in time O(logM · poly(λ)).

Since q, n, logQ are polynomial in λ, we conclude that the efficiency of vFHE is as stated in the theorem.
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A Polynomials and Low-degree Extentions
Definition A.1 (Multivariate and multilinear polynomials). A multivariate polynomial is a polynomial
with more than one variable; if it has only one variable, it is called a univariate polynomial. A multivariate
polynomial is called a multilinear polynomial if the degree of the polynomial in each variable is at most one.

Definition A.2 (Low-degree polynomial over a ring). A multivariate polynomial G over a ring R is called
a low-degree polynomial if the degree of G in each variable is exponentially smaller than |R|.

Definition A.3 (Low-degree extensions (LDEs) over a ring). Suppose g : {0, 1}m → R is a function
that maps m-bit elements to elements of a ring R. A polynomial extension of g is a low-degree m-variate
polynomial g̃(·) over R such that g̃(x) = g(x) for all x ∈ {0, 1}m.
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Definition A.4 (Multilinear polynomial extension (MLE) over a ring). A multivariate polynomial is called
a multilinear extension if the degree of each variable in g̃(·) is at most one. Given a function Z : {0, 1}m → R,
the multilinear extension of Z(·) is the unique multilinear polynomial Z̃ : Rm → R computed as

Z̃(x1, . . . , xm) =
∑

e∈{0,1}m
Z(e) ·

m∏
i=1

(ei · xi + (1− ei) · (1− xi)) =
∑

e∈{0,1}m
Z(e) · ẽq(x, e)

where

ẽq(x, e) =

m∏
i=1

(ei · xi + (1− ei) · (1− xi)).

which is the MLE of the function eq(x, e) = 1 if e = x; otherwise, eq(x, e) = 0. Moreover, for all r ∈ Rm,
Z̃(r) can be computed in O(2m) operations in R.

B Correctness, Error Bounds, and Security of the FHE Scheme
We follow the Homomorphic Encryption Standard [ACC+18] and use uniform ternary LWE and RLWE
secret keys. Furthermore, we sample error terms from a discrete Gaussian with standard deviation σ = 3.19.
Each key switching operation introduces an additional error with variance σ2

ks = σ2Nk.
For modulus switching, we assume Q = 2ℓ + δ for some small δ such that δ · q < Q. Then our variant of

modulus switching computing bqx/2ℓc differs from bqx/Qc by at most 1, and hence each modulus switching
introduces an error with variance σ2

ms = 2(
√
N/2 + 1)/3 and σ2

MS = 2(
√
n/2 + 1)/3.

In addition, the error introduced by GINX accumulator has variance

σ2
acc = 4/3knNσ2.

Putting together, the error after bootstrapping has variance

σ2
bst =

q

Qks
(
Q2

ks

Q2
σ2
acc + σ2

MS + σ2
ks) + σ2

ms.

We assume the ℓ∞-norm of the refreshed error is bounded by 12σbst.
To set concrete parameters, we can set LWE parameters n = 1024 and q = 1024, RLWE parameters

N = 211 and Q = 253 + 5 5. These parameters have at least 128 bits of security according to Lattice
Estimator [APS15].

C Missing Proofs
C.1 From FHE to Ring R1CS
Lemma C.1 (The claim in the proof of lemma 4.5). For z ∈ RQ, if z2 = z then z ∈ {0, 1}.

Proof. We will use the following lemma.

Lemma C.2 (Lemma 14.5 in [Wan11]). Let R = Gal(ps, d) and let g be a polynomial over Zps . Let
(·) : R → R/(p), α 7→ α + (p) be the natural homomorphism. Suppose that g has a root β ∈ R/(p) and that
g′(β) 6= 0. Then there exists a unique root α ∈ R of the polynomial g such that α = β.

Let g(X)
def
= X2 −X ∈ ZQ[X]. g has two roots

{
0, 1

}
in RQ/(p) ∼= FN . Note that if γ is a root of g in

RQ, then γ must be a root of g, meaning that γ ∈
{
0, 1

}
. By lemma C.2, since g′(0) = −1 6= 0. α = 0 is

the unique root of g in RQ satisfying α = 0; similar for 1.
5For the polynomial commitment (lemma 5.6) to work, it is required that Q ≡ 5 mod 8.
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Theorem C.3 (Theorem 4.12 restated). Suppose that Q = 2ℓ + δ for some small constant δ, and let
FHE = (FHE.KeyGen,FHE.Enc,FHE.Dec, FHE.Eval) be as defined in section 4.1. For all evaluation key ek,
boolean circuit C, and ciphertexts c1, . . . , ct, there exists a ring R1CS instance x = (RQ, io, A,B,C, m̃, ñ)
with

m̃ = O (|C| · (q + n) logQ) , ñ = 2m̃

such that

x is satisfiable ⇐⇒ FHE.Eval(ek, c1, . . . , ct) = c̃,

where (ek, c1, . . . , ct, c̃) is part of io. Moreover, x can be constructed in time O(m̃).
Proof. Recall that FHE.Eval simply invokes FHE.EvalGate (alg. 2) to evaluate C on input (c1, . . . , ct) gate
by gate. Each invocation of FHE.EvalGate consists of the following operations.

• Ring arithmetic operation (i.e., normal addition and multiplication in RQ). This appears in many steps,
but mainly in the n invocations of ACC.Init and ACC.Update. ACC.Init uses q ring operations and each
invocation of ACC.Update uses O(logQ) ring operations. Therefore, there are NRingOp = O(q+n logQ)
ring operations.

• Non-ring operations.

– KeySwitch uses bit decomposition N = q/2 times and indexing N logQ times.
– Each invocation of ACC.Update computes α 7→ Xα 2n times.
– ModSwitch computes the rounding function (n+ 1) times.
– ACC.Extractf extracts the coefficients of 2 polynomials.

The correctness of a ring arithmetic operation directly translates into a ring arithmetic constraint. As for
non-ring operations, by lemma 4.5, lemma 4.7, lemma 4.8 6, lemma 4.10, and lemma 4.11, the correctness
of these operations can be translated into

NNonRing = N ·NBitDecomp +N logQ ·NIndex + n · 2n ·NXPow

+ (n+ 1) ·NRounding + 2 ·NCoeff

= O ((q + n) logQ)

ring arithmetic constraints. Therefore, for each gate, we have a set of NGate = (NRingOp + NNonRing) =
O((q + n) logQ) ring arithmetic constraints that capture the correct computation of FHE.EvalGate.

The constraints of each gate can be merged as follows.

1. For the input and output io′
def
= (ek, c1, . . . , ct, c̃) ∈ R|io

′|
Q , introduce |io′| constant variables.

2. Merge the variables that represent the same value in the circuit.
Then, we get a set S of ring arithmetic constraints such that

• S captures the correct computation of FHE.Eval. That is,

S is satisfiable ⇐⇒ FHE.Eval(ek, c1, . . . , ct) = c̃.

• |S| ≤ |C| ·NGate = |C| ·O((q + n) logQ).
By lemma 4.4, S can be translate into a ring R1CS instance x = (RQ, io, A,B,C, m̃, ñ) such that

• m̃ = |S| = |C| ·O((q + n) logQ), ñ = 2m̃;

• x is satisfiable if and only if S is satisfiable;

• io′ is part of io. (This is because io could contains some other constants.)
This finishes the proof.

6To apply lemma 4.8 for rounding operations, Q must be close to some power of two (see remark 4.9), which is assumed in
the statement of the theorem.
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C.2 SNARG
Lemma C.4 (Completeness of sum-check protocol in theorem 5.1). Consider the protocol in fig. 4 for the
statement in eq. (4).

If K =
∑

b1∈{0,1} · · ·
∑

bn∈{0,1} g(b1, . . . , bn) holds and the prover is honest, then the verifier will accept
with probability 1.

Proof. We prove by induction on n:

- Base case. For n = 1, we have g(0) + g(1) = K, so the verifier always accepts.

- Inductive step. The provers first message is the polynomial h1, which satisfies

h1(0) + h1(1) =
∑

b1∈{0,1}

 ∑
b2··· ,bn∈{0,1}

g(b1, · · · , bn)

 = K.

Furthermore, by definition of h1, we have h1(r1) =
∑

b2··· ,bn∈{0,1} g(r1, b2, · · · , bn). Hence, the recursive
sum check is over a correct statement with only n−1 variables. By the induction hypothesis, the verifier
always accepts.

D Whole process of compiling Sum-Check Protocol into SNARG
Assuming that there exists a polynomial commitment scheme for multilinear polynomials (PC.Setup,PC.Commit,
PC.Open,PC.Eval).

• (ppcc, pp)← Setup(1λ): Invoke ppcc ← PC.Setup(1λ, 2 logm). Invoke pp← PC.Setup(1λ, logm).

• (CA, CB , CC)← Encode(ppcc, (A,B,C)

(CA, SA)← PC.Commit(ppcc, Ã)

(CB , SB)← PC.Commit(ppcc, B̃)

(CC , SC)← PC.Commit(ppcc, C̃)

• b← 〈P(w),V(r)〉(R,A,B,C, io,m, n):

1. P: (C, S)← PC.Commit(pp, z̃) and send C to V.
2. V: t ∈ Rlogm and send t to P.
3. Let T1 = 0, µ1 = logm, l1 = 3.
4. V: Sample rx ∈ Rµ1 .
5. First sum-check: K ← 〈PSC(Gio, t),VSC(rx)〉(µ1, l1, T1).
6. P: Compute vA = A(rx), vB = B(rx), vC = C(rx); send (vA, vB , vC) to V.
7. V: Abort with b = 0 if K 6= (vA · vB − vC) · eq(rx, t).
8. V: Sample rA, rB , rC ∈ R and send (rA, rB , rC) to P.
9. Let T2 = rA · vA + rB · vB + rC · vC , µ2 = logm, l2 = 2.

10. V: Sample ry ∈ Rµ2 .
11. Second sum-check : K ← 〈PSC(Mrx),VSC(ry)〉(µ2, l2, T2).
12. P: v ← z̃(ry[1..]) and send v to V.
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13. bK ← 〈PC.EvalP(z̃, S),PC.EvalV(r)〉(pp, C, ry, v, µ2).
14. V: Abort with b = 0 if bK = 0.

15. V: vZ ← (1− ry[0]) · z̃(ry[1..]) + ry[0] · (̃io, 1)(ry[1..]).

16. P: Compute v1 ← Ã(rx, ry), v2 ← B̃(rx, ry), v3 ← C̃(rx, ry). Send (v1, v2, v3) to V.
17. V:

b1 ← 〈PC.EvalP(Ã,⊥),PC.EvalV(r)〉(ppcc, CA, (rx, ry), v1, 2 logm)

b2 ← 〈PC.EvalP(B̃,⊥),PC.EvalV(r)〉(ppcc, CB , (rx, ry), v2, 2 logm)

b3 ← 〈PC.EvalP(C̃,⊥),PC.EvalV(r)〉(ppcc, CC , (rx, ry), v3, 2 logm)

18. V: Abort with b = 0 if b1 = 0 ∨ b2 = 0 ∨ b3 = 0.
19. V: Abort with b = 0 if K 6= (rA · v1 + rB · v2 + rC · v3) · vZ .
20. V: Output b = 1.

Efficiency. The sum-check protocol in our interactive argument involves several multilinear polynomials.
Using prior methods [Set20, Tha13, XZZ+19] for a linear-time prover, the costs are:

• Prover:

(i) O(n · poly(λ)) for the sum-check instances;
(ii) cost of PC.Commit and PC.Eval for a logm-variate polynomial z̃(·).

• Verifier:

(i) O(logm · poly(λ)) for the sum-check instances;
(ii) cost of PC.Eval for a logm-variate polynomial;
(iii) Sublinear in O(n) for checking the commitments CA, CB , CC corresponds to a polynomial that

evaluates to v1, v2, v3 at point (rx, ry) using PC.Eval.

• Communication:

(i) O(logm · poly(λ)) for the sum-checks;
(ii) size of the commitment to z̃(·) and communication in PC.Eval for z̃(·).
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