
Critical Rounds in Multi-Round Proofs:
Proof of Partial Knowledge, Trapdoor Commitments, and

Advanced Signatures

Masayuki Abe1, David Balbás2,3, Dung Bui4, Miyako Ohkubo5,
Zehua Shang6, Akira Takahashi7, and Mehdi Tibouchi1

1 NTT Social Informatics Laboratories, Japan
2 IMDEA Software Institute, Spain

3 Universidad Politécnica de Madrid, Spain
4 IRIF, Université Paris Cité, France

5 NICT, Japan
6 Kyoto University, Japan

7 J.P. Morgan AI Research & AlgoCRYPT Center of Excellence, USA

Abstract. Zero-knowledge simulators and witness extractors, initially developed for proving
the security of proof systems, turned out to be also useful in constructing advanced protocols
from simple three-move interactive proofs. However, in the context of multi-round public-coin
protocols, the interfaces of these auxiliary algorithms become more complex, introducing a
range of technical challenges that hinder the generalization of these constructions.
We introduce a framework to enhance the usability of zero-knowledge simulators and witness
extractors in multi-round argument systems for protocol designs. Critical-round zero-knowledge
relies on the ability to perform complete zero-knowledge simulations by knowing the challenge of
just one specific round in advance. Critical-round special soundness aims to address a stringent
condition for witness extraction by formalizing it to operate with a smaller tree of transcripts
than the one needed for extended extraction, which either outputs the intended witness or solves
the underlying hard problem in an argument system. We show that these notions are satisfied
by diverse protocols based on MPC-in-the-Head, interactive oracle proofs, and split-and-fold
arguments.
We demonstrate the usefulness of the critical round framework by constructing proofs of partial
knowledge (Cramer, Damgård, and Schoenmakers, CRYPTO’94) and trapdoor commitments
(Damgård, CRYPTO’89) from critical-round multi-round proofs. Furthermore, our results imply
advancements in post-quantum secure adaptor signatures and threshold ring signatures based
on MPC-in-the-Head, eliminating the need for (costly) generic NP reductions.

Keywords: Multi-Round Proofs, Critical Round, Composition, Proofs of Partial Knowledge,
Trapdoor Commitment, MPC-in-the-Head, Adaptor Signatures, Threshold Ring Signatures



Table of Contents

Critical Rounds in Multi-Round Proofs: Proof of Partial Knowledge, Trapdoor Commitments,
and Advanced Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Masayuki Abe, David Balbás, Dung Bui, Miyako Ohkubo, Zehua Shang, Akira Takahashi,
and Mehdi Tibouchi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Technical Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 The Critical Round Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Multi-Round Proof of Partial Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Trapdoor Commitment and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Public-Coin Proof System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Trapdoor Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Critical-Round Zero-Knowledge and Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Instantiations of Critical Round Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Multi-Round Proof of Partial Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Suppressing Exponential Blow-up via Multi-Round Share-then-Hash . . . . . . . . . . . . . . . 23

6 Trapdoor Commitment from Multi-Round Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7 Applications to Advanced Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.1 Adaptor signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 Threshold ring signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A Composition of Multi-Round Protocols via CDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.1 Monotone Access Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.2 Secret Sharing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.3 Insecurity of Naïve Multi-Round CDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

B Composition of Multi-Round Protocols via Share-then-Hash . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
B.1 Extending Predicate Special Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
B.2 Analysis of Share-then-Hash in the Predicate Special Soundness Framework . . . . . . . . . 36

C Other Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
C.1 Relations to Other Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

D Critical Rounds in the KKW Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
D.1 KKW Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
D.2 Critical Round in KKW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

E More Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
E.1 Accumulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
E.2 Trapdoor Commitments with Flexible Trapdoor Allocation . . . . . . . . . . . . . . . . . . . . . . . 48



1 Introduction

Public-coin three-move proofs form a foundational building block in cryptographic protocol design. In
such a protocol, a prover aims to convince a verifier of a statement x by first sending a commitment a,
receiving a random challenge c, and responding with a message z. The canonical notions of security
for these protocols are special soundness (SS), which enables witness extraction from two accepting
transcripts (a, c, z) and (a, c′, z′) for c 6= c′, and special honest-verifier zero-knowledge (SHVZK),
which ensures that a valid-looking transcript can be simulated when the verifier’s challenger c is fixed
in advance. Three-move protocols are ubiquitous in cryptography, underpinning applications such as
identification schemes, signature schemes, and zero-knowledge proofs.

Recent developments have extended this design paradigm to multi-round public-coin protocols,
where transcripts are of the form (x, a, c1, z1, . . . , cµ, zµ) and where each challenge ci is sampled in
round i. The classical notion of special soundness [Cra96] generalizes naturally to the (k1, . . . , kµ)-
special soundness framework [ACK21,AFR23], in which knowledge extraction is guaranteed given
ki distinct accepting responses to different challenges at each round i, or in other words, given a
so-called accepting tree of transcripts. For arguments based on computational hardness assumptions,
(computational) special soundness [AFR23] is defined with respect to an extended tree of transcripts:
given such a tree of accepting transcripts, the extended extractor either outputs a witness for the
original relation or solves a related hard problem. A corresponding extension of SHVZK also holds
in this setting, where knowledge of the full challenge sequence (c1, . . . , cµ) enables simulation of an
accepting transcript.

These properties are sufficient to instantiate non-interactive zero-knowledge (NIZK) proofs and
signature schemes via the Fiat-Shamir paradigm [FS87], where challenges are deterministically derived
from prior transcript data through a random oracle. The multi-round analogue remains secure in the
Fiat-Shamir setting: one can rewind the protocol at each round by programming the random oracle
(to construct a tree required by special soundness), and simulate all challenges in advance (to rely
on SHVZK). However, there are other natural applications where three-move protocols are used but
their multi-round analogues either fail to apply or incur fundamental limitations. We examine two
examples below.

Proof of Partial Knowledge. Composing proof protocols is a powerful technique for demonstrating
partial knowledge of witnesses for compound statements. Consider, for example, a disjunctive state-
ment A ∨ B, where the prover knows a witness for A but not for B. The prover wishes to convince
the verifier that the disjunction holds, without revealing which statement it can actually prove. The
Cramer-Shoenmakers-Damgård (CDS) composition [CDS94] achieves this with three-move protocols.
The core idea is to treat the challenge c sent from the verifier as a secret to be shared between the
two statements. The prover can then answer any challenge cA for A using its witness, while for B,
it can simulate the proof by running the zero-knowledge simulator with a fixed challenge share cB in
advance. When the verifier provides the actual challenge c, the prover completes the shares by setting
cA := c⊕ cB . This allows the prover to compute the response zA for challenge cA using its witness for
A, while also using the pre-computed simulation (aB , zB) for the fixed challenge cB . This observation
naturally extends to composing statements following any monotone functions efficiently computable
with monotone span programs (MSP) [CDM00].

One could naïvely extend the CDS approach to multi-round protocols (a, c1, z1, . . . , cµ, zµ) as
follows. Standard SHVZK simulation for multi-round protocols typically requires the simulator to
know all future challenges (c1, . . . , cµ) in advance. If a prover tries to simulate the proof for B
in a multi-round composition, it would need to fix the entire sequence of challenges (cB1 , . . . , c

B
µ )

beforehand. The challenges for the A part (cA1 , . . . , c
A
µ ) would then be derived from the verifier’s

actual challenges (c1, . . . , cµ) and the fixed B-challenges using the share completion mechanism in
each round. However, it is well known in the literature that such a straightforward generalization
of CDS gives rise to an insecure protocol due to the following “cross attack” on the (knowledge)
soundness of the composition [KLP22,FGQ+23,GHAKS23,ABO+24]. Essentially, the naïve multi-
round version of CDS allows a cheating prover to fix the challenges for the A-part in some of the
rounds and for the B-part in the others, thereby preventing a knowledge extractor from building
a full tree of transcripts through rewinding (see also Appendix A.3 for details). While previous
works [KLP22,FGQ+23,GHAKS23,ABO+24] have addressed this issue in clever ways, these methods
still fall short of matching the original CDS composition: they support only less expressive access

3



structures and rely on additional assumptions (see Table 1 and Appendix 1.1 for details). As such,
composing multi-round protocols while preserving the full potential of the original CDS composition
remains an open question.

Trapdoor Commitments. Another simple yet surprising example are trapdoor commitment (TDC)
schemes [Dam90,Fis01], which allow a committer to commit to a message m and open it to any
different message m′ (i.e. equivocate it) only if it knows a trapdoor td. A trapdoor commitment
can be constructed from a public-coin three-move protocol Π as follows. The commitment key is an
instance x, and the trapdoor is a witness w such that R(x,w) = 1 for some hard relation R. To
commit to a message m, the committer runs the zero-knowledge simulator of Π using m as a fixed
challenge, obtaining a and z. The committer sends com := a as a commitment, which is hiding due to
SHVZK of Π, and sends open = (m, z) to open it, which can be verified by running the verification
algorithm of Π. Finally, to equivocate a on m′ with the knowledge of a witness w, the committer
simply runs the honest prover of Π to obtain z′ such that (x, a,m′, z′) is a valid transcript. Binding
follows from the special soundness of Π. Given two openings (m, z) and (m′, z′) such that m = m′,
one can simply run the extractor on the two transcripts to obtain a witness w such that R(x,w) = 1.
Note that the extractor can be used as a building block in other protocols as it runs given two valid
openings in an offline manner, i.e., without rewinding the adversary. This property is called offline
trapdoor extractability.

A central question in extending this construction to the multi-round case is: “Where and how
should the committed message m be embedded?” If we embed m as the i-th round challenge, the
committer still needs to select all the remaining challenges, as otherwise it would not be able to run
the zero-knowledge simulator. But in this case, it does not seem possible to rewind the prover to
obtain a full tree of transcripts, and let alone achieving the offline witness extraction.

The Challenge. The failures in extending these constructions to the multi-round case seem to stem
from two broad issues. First, the standard notion of SHVZK requires the zero-knowledge simulator to
fix all challenges in advance, which significantly restricts flexibility in protocol design. This limitation
becomes particularly evident when the simulator must be invoked as a component within other
protocols, rather than being used solely in the security proof. Second, the requirement to extract
a full tree of transcripts that branches at every round to satisfy (k1, . . . , kµ)-SS seems also very rigid,
as it hinders rewinding techniques when used in combination with zero-knowledge simulation.

These observations raise the following questions: Can we identify a more flexible characterization
of multi-round public-coin protocols that enables applications beyond the current scope of (k1, . . . , kµ)-
SS and SHVZK? And in particular, can such a framework capture efficient protocols already in use,
thereby extending their utility to applications traditionally limited to the three-move setting?

1.1 Our Contributions

In this paper, we advance the study of multi-round public-coin proofs by introducing critical rounds,
both from a zero-knowledge and from a special soundness perspective, and by analyzing their impli-
cations. We expand on these below and introduce further details, intuition, and (informal) theorem
statements in the technical overview in Section 2.

1. Study of Critical Round Protocols. We introduce and formalize critical round zero-knowledge
(CRZK), where there exists a (critical) round i∗zk such that the transcript can be simulated only
by knowing the challenge at round i∗zk. We also introduce critical round special soundness (CRSS),
which is met by protocols in which the extractor only needs a sub-tree of the (extended) ~k-special
soundness tree to retrieve a valid witness. The critical round here is the first branching round i∗ss
in the sub-tree of transcripts.
The relation between CRZK and CRSS is crucial for the security and efficiency of applications,
with specific properties requiring a specific relation between i∗zk and i∗ss. Understanding this inter-
play allows us to design protocols that balance generality and security according to the desired
application.
We then show that the critical-round framework captures important design paradigms, such
as those based on MPCitH and IOPs. We prove that the first MPCitH protocol with prepro-
cessing, also known as the KKW protocol [KKW18], satisfies these notions. We also capture

4



Scheme
Underlying Protocol Composed Protocol

Composition Extra
Assumptions# of

Rounds Soundness ZK # of
Rounds Soundness ZK

CDS94 [CDS94,CDM00] 3 2-SS (S)HVZK 3 2-SS (S)HVZK MSP -
FGQRW23 [FGQ+23] 2µ+ 1 RBRS HVZK 1 CS HVZK 1-out-of-n NPROM, CRS

Speed-Stacking [GHAKS23] 2µ+ 1 CS EHVZK 2µ+ 1 CS EHVZK t-out-of-n NIPBC(CRS)
ABORST24 [ABO+24] 2µ+ 1 ~k-SS HVZK 2µ+ 1 ~k-SS SHVCZK mNC1 DualCom

MR-CDS (Sec.5) 2µ+ 1 ~k-SS CR(S)HVZK 2µ+ 1 ~k′-SS CR(S)HVZK MSP(const. n) -
MR-StH (App.B) 2µ+ 1 ~k-SS CR(S)HVZK 2µ+ 1 (~k′,Φ)-PSS CR(S)HVZK MSP CRH

Table 1. Multi-round composition methods. Legend: x-(C)SS: (Computational) x-Special Soundness, RBRS:
Round-by-Round Soundness, CS: Computational Soundness. (S/E)HV(C)ZK: (Special/Enhanced) Honest
Verifier (Computational) ZK. PSS: Predicate Special Soundness. CRH: Collision-Resistant Hash Function.

several popular protocols including PlonK [GWC19], Bulletproofs [BBB+18] and compressed Σ-
protocols [AF22].

2. Multi-Round Proof of Partial Knowledge. We show that multi-round proofs with the CRZK prop-
erty are amenable to secure construction of multi-round proofs of partial knowledge via a gener-
alization of the CDS composition, essentially by limiting the application of the CDS technique
to the critical round. Compared to existing approaches to multi-round composition, our result
supports more expressive access structures than simple disjunctions and thresholds, while intro-
ducing no or mild extra assumptions. We give a comparison to other multi-round compositions
in Table 1 to show that our composition (Section 5) is as powerful as the original CDS while
preserving the zero-knowledge property. While our resulting protocols are relatively simple, the
analysis of their knowledge soundness turns out to be surprisingly delicate, due to parameter
degradation unique to multi-round protocols. To address this challenge, we provide two flavors
of multi-round composition: (1) Multi-Round CDS, supporting a constant number of statements
with no extra assumptions, and (2) Multi-Round Share-then-Hash, enabling the composition of a
polynomial number of statements assuming the existence of a collision-resistant hash. The latter
can be viewed as the first multi-round generalization of the Share-then-Hash (StH) technique by
Abe et al. [AAB+20] that we manage to realize without random oracles, improving on the original
scheme.

3. Trapdoor Commitments from Critical-Round Protocols. We present a transformation from critical-
round proofs to (offline witness extractable) trapdoor commitment schemes which also relies on
the properties of critical rounds. These results enable new recipes for the instantiation of the
primitives, such as within the MPCitH framework with preprocessing [KKW18]. An advantage of
this approach is that one can instantiate universal trapdoor commitments, i.e., where the relation
can belong to any NP language L, while using protocols that are efficient in practice. We also
construct an accumulator that binds multiple messages into a single string.

4. Further Applications. As further applications worth mentioning, our result unlocks MPCitH-based
instantiations of (1) post-quantum threshold ring signatures and (2) post-quantum adaptor signa-
tures for arbitrary one-way relations. These follow the frameworks from [HS20,LTZ24], that con-
struct these advanced signatures from trapdoor commitments that allow to embed an instance of
a particular NP relation to the commitment key. We obtain them solely from (practically efficient)
MPCitH, answering the open question posed in both works. Notably, our result circumvents the
overhead of generic NP reductions.

Critical Round Zero-Knowledge. There exist multiple notions in the literature that are closely related
to our notions of CRZK. One of the closest relations to CRZK is k-zero-knowledge in [GKK+22,DG23],
which is a similar concept that is formulated for compiled non-interactive protocols via the Fiat-Shamir
transformation. Therefore, it is formalized in the programmable random oracle model. This notion
was originally developed to compensate for the absence of rewinding and challenge programmabil-
ity in simulation-extractable SNARKs [CHM+20,GWC19,Set20,BBB+18]. One can see CRZK as a
generalization and refinement of k-zero knowledge for interactive protocols.

Notions of Special Soundness. Since its introduction for Σ-protocols [Cra96], special soundness has
been extended to capture a variety of public-coin proof protocols. To handle parallel soundness ampli-
fication of k-special sound protocols, [AAB+21] relaxes the extractor so it works only for transcripts

5



that satisfy a predicate. The works in [AF22,AFR23] formalize a multi-round generalization of (possi-
bly computational) special soundness, known as (k1, . . . , kµ)-special soundness. This concept is then
extended to manage erroneous transcripts in several ways: almost special soundness in [BF23] pro-
vides a framework to analyze protocols based on deterministic commitments, whose opening gets
checked probabilistically through a random challenge. predicate special soundness in [AAB+24] uses
predicates over challenges in each round; adaptive special soundness [AKLY24] conceptualizes a use-
ful challenge subspace with respect to a set of transcripts available in each state of the extractor;
statistical special soundness in [ABO+24] allows a statistical error over all challenges in a tree of
transcripts; and G-soundness [DFMS22] broadly describes conditions under which the extractor func-
tions. While our formulation of CRSS departs from (k1, . . . , kµ)-special soundness, it could also start
from those variations, with the drawback that their predicate-relative representations are considerably
more complex.

Compositions of Proofs. There are many composition methods for three-move proofs in the literature,
e.g., [CDS94,CPS+16a,CPS+16b,AAB+20,AAB+21,ACF21,ZLH+22,GGHAK22,ABFV22,ABF+24]. The
CDS composition is the most powerful in terms of the expressiveness of the composition and the gen-
erality of the underlying protocols, as it enables arbitrary access structures represented by monotone
span programs [CDM00]. [AAB+20] extends the underlying protocol to k-special sound ones for k > 2
using so-called Share-then-Hash technique, which is emploied with refined security analysis in this pa-
per. Other methods focus on reducing communication complexity or providing additional properties,
such as delayed input.

In Table 1, we overview compositions for multi-round protocols. While most of these three-move
compositions do not extend to multi-round protocols, Speed-stacking in [GHAKS23] is a multi-round
extension of Stacking-Σ [GGHAK22] for three-move compositions. It employs a non-interactive par-
tially binding commitment scheme (NIPBC) that is available in the common reference string (CRS)
model making the composed protocol computationally sound. The composition in [FGQ+23] trans-
forms round-by-round sound multi-round protocols into a non-interactive argument system in the non-
programmable random oracle model (NPROM) and the CRS model. The composition in [ABO+24]
supports compositions in monotone NC1 (mNC1) and preserves the soundness of the underlying pro-
tocols. It however uses a dual-mode commitment scheme (DualCom) and results in computational
zero-knowledge protocols.

Trapdoor commitments and their applications. The idea of constructing a commitment scheme from
a three-move public-coin poofs dates back to [Dam90]. There are three-move honest verifier zero-
knowledge protocols for NP-complete languages, e.g., [Blu86,GMW91,HV20], that fit the generic
construction of TDC, but none of them are practical. On the other hand, there is currently no known
method to construct TDCs from more practical multi-round proof systems for NP.

As mentioned before, recent applications of trapdoor commitment include constructions of ad-
vanced signature schemes such as threshold ring signatures [HS20] and adaptor signatures [LTZ24].
Simultaneously with our work, [CLTZ24] presents an alternative approach from MPCitH to adaptor
signatures. Their scheme incorporates extractable commitments as an additional building block.

2 Technical Overview

We present a technical overview of our contributions. We start by introducing the intuition behind
our notions of critical round zero-knowledge and critical round special soundness. Then, we present
the main insights of our two primary use-cases for these notions: multi-round protocol composition
for proofs of partial knowledge and trapdoor commitments.

2.1 The Critical Round Framework

Critical Round Zero-Knowledge. Traditional formulations of honest-verifier zero-knowledge in the
multi-round setting require the simulator to fix all verifier challenges in advance. In our notion of
critical round special honest-verifier zero-knowledge (CRSHVZK, Definition 8), simulation is enabled
by fixing in advance only a single challenge in a designated critical round i∗zk. That is, the simulator re-
ceives ci∗zk as the only challenge fixed in advance, and generates a transcript (a, c1, z1, . . . , ci∗zk , . . . , cµ, zµ)

6



that is indistinguishable from an honestly generated one. Precisely, our notion enforces that the sim-
ulator can be decoupled into two (stateful) subroutines: SimA and SimZ. SimA generates the initial
message: on input the critical round challenge ci∗zk , it outputs a. SimZ generates the remaining prover
messages sequentially: on input an arbitrary challenge ci, it outputs the i-th round message zi.

We remark that there exist notions in the literature that are closely related to CRZK, especially
k-zero-knowledge in [GKK+22,DG23]. This is a similar concept that is formulated for compiled non-
interactive protocols via the Fiat-Shamir transformation (in the programmable random oracle model).
One can see CRZK as a generalization and refinement of k-zero knowledge for interactive protocols.

Critical Round Special Soundness. As a generalization of special soundness for Σ-protocols, µ-round
multi-round proofs often satisfy (h1, . . . , hµ)-special soundness, requiring the existence of a successful
knowledge extractor taking a tree of transcripts as input. However, when the (h1, . . . , hµ)-special
soundness is only computational, the guarantee is that the knowledge extractor outputs either a
solution to some computationally hard relation Rhd or a valid witness for NP relation R. As observed
in the analysis of real-world protocols, a (h1, . . . , hµ)-tree T is often redundant when it comes to
knowledge extraction for R only. That is, only a partial tree of transcripts T ∗ would be sufficient
for extracting a candidate of witness of R. For instance, if the protocol has a typical commit-and-
prove structure, a (k1, . . . , kµ)-subtree T ∗ of (h1, . . . , hµ)-tree T may be sufficient to fully open the
commitment containing a candidate witness w′ for R, while the validity of w′ is guaranteed only if
the outer tree does not define two distinct openings of the commitment (i.e., a solution to binding
relation Rhd).

We formalize this intuition by formally identifying T ∗ as a critical subtree of extended tree T .
A (k1, . . . , kµ)-tree T ∗ is such that ki ≤ hi for every i ∈ [µ] and that begins branching at some
earliest round i∗ss. In essence, the (k1, . . . , kµ) critical tree is sufficient to obtain a witness, and the
(h1, . . . , hµ)-tree guarantees that the witness is indeed valid. We illustrate this in Figure 1.

We then define our critical-round special soundness notion by requiring the existence of a critical-
round extractor. Following the framework in [AFR23], we define an extended extractor ExExt for
extended special soundness (Definition 9) that outputs either a valid witness for relation R or a
solution to external hardness assumption Rhd . Given a valid extended tree of transcripts T , ExExt
succeeds with probability 1. 8 The critical-round extractor CrExt is then defined as a refinement of
ExExt that operates on the critical sub-tree T ∗. We say that the protocol has CRSS if the following
condition is satisfied: as long as successful ExExt does not output a solution to Rhd on T as input,
CrExt always succeeds in obtaining valid w for R on receiving the corresponding critical subtree T ∗ of
T . As we shall see soon in our trapdoor commitments, this refinement becomes crucial for applications
where the protocol explicitly requires a minimal tree of transcripts sufficient for witness extraction.

Instantiations of Critical Rounds in Real-World Protocols. Our definitions are useful insofar as they
align with how simulators and extractors are defined for some practical proof systems. In Section 4, we
show that many existing proof paradigms including MPCitH and IOP-based proofs can be captured by
our framework. Our most relevant instantiation, particularly well-suited for applications, are critical
rounds in the MPCitH with preprocessing paradigm [KKW18]. Surprisingly, this protocol even admits
different critical-round characterizations as stated below (see Section 4 for details).

Theorem 2 (simplified). The 5-move interactive honest-verifier zero-knowledge proof in [KKW18]
is:

– CRSHVZK at round i∗zk = 1 or at round i∗zk = 2.
– ~k-CRSS where i∗ss = 1, ~k = (2, 1) or where i∗ss = 2, ~k = (1, 2).

This implies that the MPCitH protocol provides flexibility in its integration into upper-level protocol
designs according to their requirements.

For IOP-based proofs, a prominent example is the Plonk protocol [GWC19], where the verifier
ultimately evaluates all the polynomial commitments sent by the prover on a single evaluation point
z, which is the fourth-round challenge in the protocol. As observed in prior work [GKK+22], the
knowledge of this challenge in advance suffices to simulate the remainder of the transcript, without
8 Witness extraction under computational assumptions has been discussed in several works,

e.g., [DG23,LPS24,GOP+25]. They typically involve computationally bounded adversaries, while our defi-
nition ensures that the extended extractor always succeeds.

7



Critical sub-tree T ∗

a

z
(1)
1

z
(11)
2

z
(111)
3

c
(111)
3

z
(112)
3

c
(112)
3

c
(11)
2

z
(12)
2

z
(121)
3

c
(121)
3

z
(122)
3

c
(122)
3

c
(12)
2

c
(1)
1

z
(2)
1

z
(21)
2

z
(211)
3

c
(211)
3

z
(212)
3

c
(212)
3

c
(21)
2

z
(22)
2

z
(221)
3

c
(221)
3

z
(222)
3

c
(222)
3

c
(22)
2

c
(2)
1

Fig. 1. (2, 2, 2)-SS tree T and critical sub-tree T ∗ for a three-round (seven-move) protocol that is (1, 2, 2)-
CRSS at round i∗ss = 2, which is the first branch in T ∗.

requiring knowledge of other challenges. As we argue in Proposition 1, Plonk admits a CRSHVZK
simulator at i∗zk = 4. Besides, we extend the analysis in [LPS24] to argue that Plonk also satisfies CRSS
at round i∗ss = 4. Following a similar analysis, we capture Bulletproofs [BBB+18] and compressed Σ-
protocols [AF22] in our framework.

2.2 Multi-Round Proof of Partial Knowledge

Composition from Critical Round Protocols. Our work introduces a general framework for securely
composing multi-round interactive proofs in the plain model for proving partial knowledge. This
framework is presented in Section 5, with an extension via the Share-then-Hash technique analyzed
in Section B. As recalled in the introduction, a naïve CDS composition quickly runs into soundness
problems. Our critical round framework provides a path forward. The crucial insight lies in the
properties of CRZK. Recall that a CRZK protocol has a designated critical round i∗zk and a simulator
split into (SimA, SimZ). SimA generates the first message a needing only the critical challenge ci∗zk
in advance. Importantly, the stateful SimZ generates subsequent responses zi sequentially, taking the
actual verifier challenge ci for round i as input at that round. This structure allows us to adapt the
CDS strategy effectively:

1. Non-Critical Rounds (i 6= i∗zk): For rounds other than the critical one, the prover receives the
verifier’s challenge ci. For the statement it holds a witness for (say A), it computes the response
zAi honestly using the real prover algorithm ZA. For the statement it is simulating (say B), it uses
the stateful simulator SimZB with input ci to compute the response zBi . This is possible because
SimZ operates round-by-round after seeing the challenge.

2. Critical Round (i = i∗zk): This round mirrors the logic of the original 3-move CDS. To simulate
the B part, the prover must run SimAB , which requires fixing the critical challenge cBi∗zk

in advance.
The prover samples this value. When the verifier sends the actual challenge ci∗zk for this round,
the prover uses Complete algorithm of the secret sharing scheme, along with the pre-sampled cBi∗zk

,
to determine the necessary challenge cAi∗zk

for the A part. It then computes zAi∗zk
honestly using ZA

and the witness for A, and use SimZB (with the state from SimAB) to compute zBi∗zk
for the fixed

challenge cBi∗zk
.

This approach circumvents the soundness issue previously described. The prover is no longer
required to fix all challenges for the simulated part upfront. The dynamic nature of SimZ handles the
non-critical rounds, while the secret sharing scheme applied only at the critical round i∗zk ensures the
binding property, analogous to the 3-move case. Therefore, the prover cannot mix-and-match fixed
challenges across rounds to defeat the extractor. Our full construction, Πcds (Figure 3), which we
call MR-CDS, formalizes this approach for general access structures represented by monotone span
programs.

8



Security of Composed Critical Round Protocols. While MR-CDS is conceptually as simple as the
original CDS, we encounter several issues when analyzing the special soundness. In the case of dis-
junctive statement A ∨ B, the high-level goal of the analysis is to determine a (k′1, . . . , k

′
µ)-tree of

transcripts T cds for Πcds in such a way that T cds contains at least one (k1, . . . , kµ)-tree T , enabling
extraction of witness for either A or B. Since secret-sharing of challenge happens in the critical round
i∗zk, Πcds can preserve the parameters for rounds i > i∗zk. In the critical round i∗zk, however, distinct
challenges (viewed as a reconstructed secret) only guarantee distinct challenges in either of the shares;
for ci∗zk = cAi∗zk

⊕ cBi∗zk
and ĉi∗zk = ĉAi∗zk

⊕ ĉBi∗zk
, we have that cAi∗zk 6= ĉAi∗zk

or cBi∗zk 6= ĉBi∗zk
. While MR-CDS preserves

the special soundness parameter k′i∗zk
= ki∗zk when ki∗zk = 2, it generally grows exponentially with the

number of composed protocols n at the critical round i∗zk if ki∗zk > 2. Indeed, the exponential growth of
k′i∗zk

limits the practical composition of a polynomial number of protocols. To address this limitation,
we generalize the Share-then-Hash method proposed in [AAB+20]. Instead of using the secret shares
directly as challenges in the critical round for simulated proofs, our multi-round Share-then-Hash
(MR-StH) proof (Πsth in Figure 3), computes the challenges as cji∗zk

← H(. . . , sj) for j ∈ [n], where
H : {0, 1}∗ → Ci∗zk is a collision-resistant hash function, each sj is a share of the i∗zk-th round challenge
s ∈ S sent by the verifier, and the secret domain S is chosen to be larger than the original challenge
space Ci∗zk . Soundness analysis for MR-StH again introduces a non-trivial technical challenge. Indeed,
the original StH for Σ-protocols [AAB+20] is only known to satisfy somewhat non-standard statistical
special soundness, where witness extraction succeeds with overwhelming probability given a tree of
transcripts produced by an adversary responding to uniformly sampled challenges. However, in the
multi-round setting, the relationship between this notion and more standard soundness definitions –
such as Fiat-Shamir knowledge soundness – remains unclear. To address this, we conduct the analysis
of our multi-round StH within the predicate special soundness (PSS) framework recently introduced
by Aardal et al. [AAB+24]. This framework enables a rigorous soundness analysis, bringing the de-
pendence of k′i∗zk down to linear in n, while pushing the exponential term into the numerator of the
final knowledge error. The latter can be suppressed by appropriately choosing the size of the share
domain S as a denominator. As such, our multi-round StH supports polynomial-size compositions.
As [AAB+24] shows PSS implies Fiat-Shamir knowledge soundness in the random oracle model, we
can then conclude that MR-StH is suitable for practical applications.

Finally, in both MR-CDS and MR-StH, the parameter k′i for rounds i < i∗zk grows linearly with
n, reflecting the possibility that the extractor might encounter different qualified sets in an access
structure Γ along different branches of the execution tree of transcripts leading up to the critical
round. We highlight that showing this linear loss for an arbitrary monotone access structure Γ is
also non-trivial. A naïve analysis would require observing every possible qualified set in the access
structure ki times, leading to an exponential loss in k′i depending on the size of minimal qualified
sets.

We state a simplified version of our result below. For details, we refer the readers to Section 5 and
Appendix B.
Theorem 3 & 4 (simplified). Let {Πj}j∈[n] be (2µ+1)-move public-coin proof protocols, each being
~k-SS and CRZK at the same critical round i∗zk. Let Γ be a monotone access structure. MR-CDS
composition Πcds

Γ of {Πj}j∈[n] for Γ is ~k′-SS and CRZK, where
1. For round i > i∗zk, k′i = ki;
2. For round i = i∗zk, k′i = (ki − 1)n + 1;
3. For round i < i∗zk, k′i = n(ki − 1) + 1.

Additionally assuming H : {0, 1}∗ → Ci∗zk is a collision-resistant hash function, MR-StH composition
Πsth

Γ of {Πj}j∈[n] for Γ is (~k′,Φ)-predicate-special-sound where k′i∗zk
= n(ki∗zk−2)+2 and k′i for i 6= i∗zk

are the same as those of Πcds
Γ .

The result on StH applies to composition of protocols with varying critical rounds, special sound
parameters, and challenge spaces. If each composed protocol has critical round ijzk, then one can
set i∗zk = maxj i

j
zk and introduce dummy rounds before round ijzk for each j ∈ [n]; If each protocol

has a special soundness parameter kji , then one can set ki = maxj k
j
i and consider every protocol

(k1, . . . , kµ)-special sound; If each protocol has a challenge space Cji∗zk , then one can use CRH Hj :

{0, 1}∗ → Cji∗zk for each j ∈ [n]. Thus, our result allows composition of protocols with diverse structures,
as long as each of them has a critical round.

9



2.3 Trapdoor Commitment and Applications

Our second main application is the construction of trapdoor commitment schemes from critical round
multi-round protocols. Recall from the introduction the construction of a trapdoor commitment from
a three-move protocol Π. Now, consider an attempt to generalize this construction to the case when
Π is a multi-round protocol which is (h1, . . . , hµ)-special sound. The committer must first find a
(deterministic) encoding of m into challenges c1, . . . , cµ. Then, it runs the zero-knowledge simulator
to get a and z1, . . . , zµ. In the binding game, the adversary will open the commitment a with distinct
messages m and m′, producing two accepting transcripts (a, c1, z1, . . . , cµ, zµ) and (a, c′1, z

′
1, . . . , c

′
µ, z
′
µ)

that branch at the first round i such that ci 6= c′i. To reduce such an adversary to (h1, . . . , hµ)-special
soundness, we need to build a tree of transcripts that branches in every round. However, this does
not seem possible as all challenges are under the control of the adversary. One can try to involve a
random oracle in encoding m into c1, . . . , cµ in a Fiat-Shamir style, but this strategy does not seem
to help either. The reason is that the random oracle must be programmed in the committing phase
and it results in different commitment a.

Trapdoor Commitment from a Critical Round Protocol. Our solution essentially consists of leveraging
the critical round framework to be able to use the Fiat-Shamir transformation in a more flexible way.
Let Π be CRZK at round i∗zk such that the simulator only needs to know the challenge ci∗zk in advance.
Then, we can construct our trapdoor commitment scheme by fixing m = ci∗zk and using Fiat-Shamir
to compute the remaining challenges. In more detail, given (x,m) as input, the committer:

– Fixes ci∗zk = m and runs the zero-knowledge simulator of Π to obtain a.
– Computes ci = Hi(x, a, z1, c1, . . . , zi−1) for i 6= i∗zk, and where zi is also obtained by running the

simulator.
– The commitment is the transcript up to round i∗zk given by com := (a, z1, . . . , zi∗zk−1).
– The opening is the remaining part of the transcript, given by open := (zi∗zk , . . . , zµ).

To equivocate the commitment, one simply computes the honest proof for a different message
m′ 6= m.

Hiding and equivocability follow from the zero-knowledge property of Π as in the three-move case.
For binding, consider an adversary that outputs com := (a, z1, . . . , zi∗zk−1) and openings open, open′

to two distinct messages m,m′. Thus, the outputs of the adversary can be seen as two full transcripts
with the same prefix up to zi∗zk−1, this is,

(x, a, c1, z1, . . . , zi∗zk−1,m, zi∗zk , . . . , cµ, zµ)

(x, a, c1, z1, . . . , zi∗zk−1,m
′, z′i∗zk , . . . , c

′
µ, z
′
µ).

In the special soundness language, this means that the two transcripts form a subtree with a single
branch up to round i∗zk−1 and two branches at round i∗zk. With this construction, how can we use the
adversary to extract a witness for the relation R, leveraging special soundness? The answer is that if
Π is CRSS at round i∗ss = i∗zk with branching factor ki∗ss = 2, then we can simply rewind the adversary
after round i∗ss to obtain the remaining part of the tree of transcripts. To obtain the missing branches,
one needs to use a programmable random oracle. Note, however, that programmability is not needed
in the first i∗ss− 1 rounds. We picture the construction, as well as the extraction strategy, in Figure 2,
where each of the branches correspond to one opening. We also introduce a simplified statement of
our main result below. For details, we refer the readers to Section 6.
Theorem 5 (simplified). Let Π be a (2µ+1)-move public-coin proof protocol for a one-way relation
R that is CRZK at round i∗zk, and ki∗zk = 2. Then, our construction is a trapdoor commitment scheme
that is hiding and equivocal, and binding in the programmable random oracle model.

Clearly, not all multi-round protocols that can be captured by the CRSS and CRZK framework
satisfy the requirements of Theorem 5.9 However, as we introduced above, the KKW protocol does
satisfy these requirements in any of its two variants. Hence, our construction yields a universal (i.e.,
for any NP relation) trapdoor commitment scheme from MPCitH which only requires the usage of
an MPCitH zero-knowledge simulator, yielding a (potentially practical) post-quantum construction
of a trapdoor commitment scheme.
9 In Section E, we generalize the above construction to work for ki∗

zk
> 2, although the opening size degrades

linearly with ki∗
zk

.

10



Commitment com

a

z1

z2

z3

c3 = H(x, a, z1,m, z2)

m

z′2

z′3

c′3 = H(x, a, z′1,m
′, z′2)

m′

c1 = H(x, a)

Fig. 2. Visualization of a trapdoor commitment with two openings to m,m′ from a three-round protocol that
is CRSS and CRZK at round i∗zk = i∗ss = 2. Dashed arrows and circles can be obtained via rewinding by
programming the random oracle H.

Applications. Our universal trapdoor commitment can be used for the construction of threshold ring
signatures [HS20] and universal adaptor signatures [LTZ24]. For the latter, the trapdoor commitment
must satisfy a stronger offline trapdoor extractability, which requires the existence of a straight-line
extractor that, given only two transcripts encoding two distinct messages m and m′, outputs a witness
w. CRSS is essential for this application as it allows for running an extractor on a subtree T ∗ which,
in this case, must be constructed entirely from these two transcripts without rewinding (having a two-
tined fork shape). This requirement is satisfied by our trapdoor commitment scheme from MPCitH.

3 Preliminaries

3.1 Notation

Throughout the paper, we use sans-self for algorithms. Sets are denoted by calligraphic letters. Entities
such as a prover, a verifier, and an adversary are denoted by capital letters. Some exceptions may be
used for better readability.

We use notation x ←$ D as sampling from a probability distribution D. If D is a set, then we
assume elements from the set are sampled uniformly. A sequence of values from 1 to n (inclusive) is
denoted using [n].

3.2 Public-Coin Proof System

We follow the definitions of [ACK21]. Let R : X × W → {0, 1} be a binary relation defined over
instances X and witnessesW. Language LR associated by R is LR := {x ∈ X | ∃w ∈ W : R(x,w) = 1}.
By LRW , we denote set LRW := {(x,w) | R(x,w) = 1}. LR(λ) (LRW (λ), resp.) denotes a subset of
LR (LRW , resp.) whose instance x is limited to λ bits. An interactive proof system Π for relation R
is a pair of interactive algorithms, prover P and verifier V , where a witness w is given to P as private
input and instance x is given to both P and V as common input, and V outputs b ∈ {0, 1} at the
end of the execution. By 〈P (w), V 〉(x)→ b we denote an execution of the algorithms. A transcript of
a protocol execution consists of x, b, and all content of input and output communication tapes of V .
It is (perfectly) complete if, for any (x,w) ∈ LRW , 〈P (w), V 〉(x)→ 1.

Definition 1 (Public-Coin Proof Protocol). A (2µ + 1)-move public-coin proof protocol for
relation R is a set of probabilistic polynomial-time algorithms A, Z, V and efficiently and uniformly
sampleable space {Ci}i∈[µ] that constitutes an interactive proof system (P, V ) that:

Step 1: P runs (st1, a)← A(x,w) and sends a to V .
Step 2i: V uniformly choose ci from Ci and send it to P .

Step 2i+ 1: P runs (sti+1, zi)← Z(sti, ci) and sends zi to V .
Final: V runs V(x, a, c1, z1, . . . , cµ, zµ)→ b and outputs b.

11



A transcript (a, c1, z1, . . . , cµ, zµ) with respect to instance x is accepting if V(x, a, c1, z1, . . . , cµ, zµ) =
1. The protocol has µ rounds, each of them consisting of a prover message followed by a verifier chal-
lenge.

Definition 2 (Tree of Transcripts [ACK21]). A (k1, . . . , kµ)-tree is a directed tree where every
node at depth i (1 ≤ i ≤ µ) has exactly ki outgoing edges. (k1, . . . , kµ)-tree of transcripts for a
(2µ + 1)-move public-coin proof protocol is a set of

∏µ
i=1 ki transcripts that can be represented by a

(k1, . . . , kµ)-tree in the following manner. Every path of the tree corresponds to a transcript in a way
that the i-th response from the prover and the i-th challenge from the verifier is assigned to the i-th
node and the i-th edge from the top, respectively. Challenges assigned on a set of edges from a node
must be pairwise distinct. A tree of transcripts is called accepting if every transcript in the tree is
accepted.

We introduce some useful notations related to the tree of transcript. Let T be a (k1, . . . , kµ)-tree
of transcripts and τ := (a, c1, z1, . . . , cµ, zµ) be a transcript. By τ ∈ T , we mean that τ is on a path of
T . Every node in depth i is indexed by id := (1, j1, . . . , ji−1) ∈ 1× [k1]× · · · × [ki−1]. The root node
is at depth 1 and indexed by (1). As every node except for the root node has only one incoming edge,
every edge is represented by the same index as its destination node. By path(T, id) we denote the
path from the root to node id. A partial transcript assigned on path(T, id) is denoted by trans(T, id).
By chal(T, id), we denote a set of challenges assigned to outgoing edges from node id. The partial
transcript of τ up to the i-th round is denoted by prefix(τ, i) := (a, c1, z1, . . . , ci, zi). Below, we present
definitions of soundness and zero-knowledge. Additional basic notations can be found in Section C.

Definition 3 (Knowledge Soundness). An interactive proof system for relation R is knowledge
sound with knowledge error εks if there exists an expected polynomial-time algorithm Extks called an
extractor that, for every algorithm P ∗, every x ∈ {0, 1}λ, and aux ∈ {0, 1}∗,

Pr[w ← Ext
P∗(aux)
ks (x) : R(x,w) = 1] ≥ Pr[〈P ∗(aux), V 〉(x) = 1]− εks(λ)

poly(λ)
.

It is shown in [ACK21] that (k1, . . . , kµ)-Special Soundness, as defined below, implies knowledge
soundness.

Definition 4 ((k1, . . . , kµ)-Special Soundness [ACK21]). A (2µ + 1)-move public-coin proof
protocol is (k1, . . . , kµ)-special sound (SS for short) if there exists a polynomial-time algorithm that,
given any accepting (k1, . . . , kµ)-tree of transcripts, outputs w that satisfies R(x,w) = 1.

In the three-move case, the concept of special honest verifier zero-knowledge illustrates that having
prior access to the challenge is sufficient to simulate the prover without requiring the witness. This
idea extends naturally to the multi-round scenario, where having all challenges in advance enables
simulation. Formally:

Definition 5 (Special Honest-Verifier Zero-Knowledge). A (2µ+ 1)-round public-coin proof
protocol is special honest-verifier zero-knowledge if there exists a polynomial-time algorithm Sim that,
for any (x,w) ∈ LRW and ci ∈ Ci for i ∈ [µ], distribution of (a, c1, z1, . . . , cµ, zµ) generated as
(a, z1, . . . , zµ) ← Sim(x, c1, . . . , cµ) and that of (a′, c1, z

′
1, . . . , cµ, z

′
µ) generated as (st1, a

′) ← A(x,w)
and (sti+1, z

′
i)← Z(sti, ci) for i from 1 to µ are indistinguishable.

3.3 Trapdoor Commitments

Trapdoor commitments are a type of commitment schemes where, if P knows a trapdoor, they can
open a commitment to any message. Without the knowledge of the trapdoor, however, P can only
open the commitment to reveal the originally committed message, preserving binding. In other words,
the commitment is only binding if the trapdoor is not known to P . A trapdoor commitment scheme
has four properties: completeness, hiding, binding, and equivocability. We formalize these properties
below, following [CV05].

Definition 6 (Trapdoor Commitment Scheme). A trapdoor commitment scheme is a tuple of
five algorithms T D = (Gen,Com,TCom,Equiv,Ver) for a message space M such that:

12



Gen(1λ)→ (ck, td) : On input the security parameter λ, Gen(1λ) returns a commitment key ck and a
trapdoor td.

Com(ck,m)→ (com, open) : On input a commitment key ck and a message m ∈ M, Com(ck,m)
outputs a commitment com and an opening open.

TCom(ck, td)→ (com, st) : On input a commitment key ck and a trapdoor td, TCom(ck, td) outputs
a commitment com and a state st.

Equiv(m, st)→ open : On input a message m ∈ M and a state st, Equiv(m, st) outputs an opening
open.

Ver(ck, com,m, open)→ 0/1 : On input a commitment key ck, a commitment com, a message m, and
an opening open, Ver(ck, com,m, open) outputs 1 (accept) or 0 (reject).

Moreover, these algorithms must satisfy the following properties:
Completeness. For any m ∈M,

Pr

[
Ver(ck, com,m, open) = 1

∣∣∣∣ (ck, td)← Gen(1λ)
(com, open)← Com(ck,m)

]
= 1

Binding. A trapdoor commitment scheme is computationally binding if for any PPT adversary A,

Pr

 Ver(ck, com,m, open) = 1
∧ Ver(ck, com,m′, open′) = 1
∧ m 6= m′

∣∣∣∣∣∣
(ck, td)← Gen(1λ)
(com,m, open,m′,
open′)← A(ck)

 ≤ negl(λ)

If the property holds for any (even computationally unbounded) adversary A, then the scheme is
statistically binding.

Hiding. A trapdoor commitment is computationally (resp. statistically) hiding if for any PPT (resp.
unbounded) adversary A, and for every m,m′ ∈M,∣∣∣∣Pr [1← A(ck, com)

∣∣∣∣ (ck, td)← Gen(1λ)
(com, open)← Com(ck,m)

]
− Pr

[
1← A(ck, com)

∣∣∣∣ (ck, td)← Gen(1λ)
(com, open)← Com(ck,m′)

]∣∣∣∣ ≤ negl(λ).

Equivocability. A trapdoor commitment is computationally (resp. statistically) equivocable if for
any m ∈M the following distributions are computationally (resp. statistically) indistinguishable:{

(ck, com, open,m) :
(ck, td)← Gen(1λ)
(com, open)← Com(ck,m)

}
and (ck, com, open,m) :

(ck, td)← Gen(1λ)
(com, st)← TCom(ck, td)
open← Equiv(st,m)

 .

We also introduce a property called trapdoor extractability, for which one can extract a valid
trapdoor from any adversary that breaks binding. It is easy to see that trapdoor extractability implies
binding. To define this property, we need to assume the existence of a trapdoor-checking function ft
such that ft(ck, td) = 1 if and only if td is a valid trapdoor for ck. We also define a stronger notion
that captures offline extraction, where the extractor Extoff has no access to the adversary and thus is
required to extract a trapdoor solely from the given openings. On the other hand, the online notion
captures a much weaker guarantee requiring the existence of a non-black-box extractor.
Definition 7 (Trapdoor extractability). A trapdoor commitment scheme is trapdoor extractable
if for any PPT adversary A, there exists a polynomial-time extractor Ext such that

Pr


ft(ck, td

′) = 0
∧ Ver(ck, com,m, open) = 1
∧ Ver(ck, com,m′, open′) = 1
∧ m 6= m′

∣∣∣∣∣∣∣∣
(ck, td)← Gen(1λ)
(com,m, open,m′,
open′)← A(ck)
td′ ← Ext(ck, com,m, open,m′,
open′)

 ≤ negl(λ)

Besides, we say that a trapdoor commitment is offline trapdoor extractable if there exists an
offline polynomial-time extractor Extoff such that for any PPT adversary A, the above probability is
negligible.

13



4 Critical-Round Zero-Knowledge and Soundness

4.1 Definitions

Recall that the most general form of multi-round zero-knowledge simulator as shown in Definition 5
takes all challenges (c1, . . . , cµ) as input. Here, we formalize a stronger notion where the entire simu-
lation is possible by knowing only the challenge in the critical round.

Definition 8 (Critical-Round (Special) Honest Verifier Zero-Knowledge). A (2µ + 1)-
move public-coin proof protocol is critical-round special honest verifier zero-knowledge (CRSHVZK
for short) at round i∗zk if there exists a set of polynomial-time algorithm (SimA,SimZ) that:

– SimA takes x and ci∗zk ∈ Ci∗zk as input, and outputs (st1, a) where st1 is a state information and a
is a prover’s message at step 1.

– SimZ takes sti and ci ∈ Ci, and outputs (sti+1, zi) where sti+1 is an updated state, and zi is a
prover’s response for step 2i+ 1.

– For any (x,w) ∈ LRW and ci ∈ Ci for i ∈ [µ], distribution of (a, c1, z1, . . . , cµ, zµ) gener-
ated as (st1, a) ← SimA(x, ci∗zk) and (sti+1, zi) ← SimZ(sti, ci) for i from 1 to µ, and that of
(a′, c1, z

′
1, . . . , cµ, z

′
µ) generated as (st1, a

′)← A(x,w) and (sti+1, z
′
i)← Z(sti, ci) for i from 1 to µ

are indistinguishable.

As a weaker variant, if in the above definition SimA only takes x as input, and outputs (st1, a, ci∗zk),
we call it critical-round honest verifier zero-knowledge (CRHVZK for short) at round i∗zk.

In Appendix C.1, we discuss how our CRZK definition is related to other notions such as k-zero
knowledge [GKK+22,DG23] and k-special unsoundness [AFK23,BGTZ23].

For an argument system based on hardness assumptions, special soundness is defined with respect
to an extended relation. Namely, given a tree T of accepted transcripts, the extended extractor either
outputs a witness for the original relation R or provides a solution to a hard problem. We thus have
the following definition for the extended special soundness. Let Rhd be a relation for a hardness
assumption where for instance y and solution s, it outputs Rhd(y, s) = 1. It is assumed that given y
generated by an instance generator, finding s is hard. A particular example is that y is a hash function
chosen uniformly from a family of hash functions and s = (s1, s2) is a collision that y(s1) = y(s2).

Definition 9 (Extended ~h-Special Soundness). A (2µ+ 1)-move public-coin argument system
for relation R is extended ~h-special sound (~h-ExSS for short) for hardness assumption on Rhd if there
exists a polynomial time algorithm, ExExt, that, given an instance y and x, an ~h = (h1, . . . , hµ)-tree
of accepting transcripts T , outputs either s satisfying Rhd(y, s) = 1 or w satisfying R(x,w) = 1 with
probability 1.

However, in this scenario, the extended tree T would contain more branches than necessary for
computing the witness. It may also be the case that the tree building requires programming random
oracles which is not feasible in the protocol. Witness extraction is often performed in a real protocol
whereas breaking the hardness assumption is not. Therefore, separately handling witness extraction
from the extended extractor allows us to identify tighter conditions for the witness extraction to work
and to make it executable within the protocol construction. This is analogous to the critical-round
zero-knowledge, where the zero-knowledge simulator is designed to be useful in the real protocol run.

Definition 10 (Critical-Round Special Soundness). A (2µ+1)-move public-coin proof protocol
Π for a relation R is ~k-critical-round special sound (CRSS for short) at round i∗ss ∈ [µ + 1] if the
following properties hold:

– It is extended ~h-special sound for hardness assumption on Rhd ,
– there exists a polynomial time algorithm CrExt that, for any extended tree of transcripts T from

which ExExt outputs w (but not s) and for every ~k = (k1, . . . , kµ)-subtree T ∗ of T , outputs w
satisfying R(x,w) = 1 with probability 1, given x and T ∗ as input, and

– i∗ss is the earliest round where ki ≥ 2, i.e., ki∗ss ≥ 2 and ki = 1 for all i < i∗ss.

14



We show that CRSS implies knowledge soundness. In Theorem 1, we compute the probability that
a critical tree T ∗ with uniformly sampled challenges belongs to an extended tree T from which ExExt
outputs w but not s. By definition 10, this means CrExt(x,T ∗) outputs a witness. Furthermore, if Rhd

is hard to solve and the number of possible critical trees is sufficiently large, then given a critical tree
T ∗ with uniformly sampled challenges, CrExt(x,T ∗) outputs a witness with overwhelming probability.

Theorem 1 (Knowledge Error of Critical-Round Special Soundness). Let Π be a (2µ+1)-
move public coin ~k-CRSS protocol (Definition 10). For any statement x, hard instance y, for any
adversary A, and for any extended tree T extracted from A such that ExExt(x,T ) = (w, s), let ε be
the fraction of trees T such that Rhd(y, s) = 1, i.e., such that extended extraction solves Rhd . Then,
for any statement x, first transcript message a, and for any PPT adversary A with non-negligible
success probability δ, the following holds:

Pr



T ∗ is a (k1, . . . , kµ)-tree
of accepting transcripts
∧
(
∀i ∈ [µ− 1],∀id ∈

#   »

[ki],

chal(T ∗, id) = {cid||j}j∈[ki+1]

)
∧ root(T ∗) = a
∧ R(x,w) = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
∀i ∈ [µ],∀id ∈

#   »

[ki], cid ←$ Ci
T ∗ ← A(x, a, {cid}id∈ #    »

[kµ]
)

w ← CrExt(x,T ∗)


≤ εcrss,

where
#   »

[ki] = 1 × [k1] × · · · × [ki] and εcrss =
∏

i∈[µ](hi−ki+1)
∏i−1

j=1
kj

δ
∏

i ki ·
∏

i

(|Ci|
ki

)∏i−1
j=1

kj
+ ε ·

∏
i∈[µ]

(
hi

ki

)∏i−1
j=1 kj . In particu-

lar, if both ε and
(
δ
∏

i ki ·
∏

i

(|Ci|
ki

)∏i−1
j=1 kj

)−1
are negligible, then CrExt succeeds with overwhelming

probability.

Proof. Without loss of generality, fix the statement x, hard instance y and first message a. Given a
critical (k1, . . . , kµ)-tree of accepting transcripts T ∗, it must match one of the following cases:

– Case 1: There exists an extended tree T such that T ∗ ⊂ T
∧
ExExt(x,T ) = (w, s)

∧
R(x,w) =

1
∧
Rhd(y, s) = 0. This is, the extended extractor outputs a valid witness for R and not a solution

for Rhd . In this case, CrExt(x,T ∗) = w
∧

R(x,w) = 1 with probability 1 due to Definition 10,
which specifies that CrExt extracts w if ExExt outputs w (and not s for Rhd).

– Case 2: There exists an extended tree T such that T ∗ ⊂ T
∧

ExExt(x,T ) = (w, s)
∧

Rhd(y, s) = 1.
This is, the extended extractor outputs a solution to the hard relation Rhd (it might also be that
R(x,w) = 1, but the primary concern here is the solution to Rhd).

– Case 3: For any extended tree T such that ExExt(x,T ) = (w, s)
∧
(R(x,w) = 1 ∨ Rhd(y, s) = 1),

it holds that T ∗ 6⊂ T . In this scenario, T ∗ is not a subtree of any extended tree from which ExExt
could successfully extract a witness for R or a solution for Rhd .

We compute the probability that given a T ∗ with challenges sampled uniformly at random such
that CrExt(x,T ∗) is supposed to output a valid witness w, then T ∗ belongs to Case 1, denoted by
Pr[Case 1].

We denote by M the total number of all accepting critical (k1, . . . , kµ)-trees T ∗, and by N the
total number of all accepting extended (h1, . . . , hµ)-trees T . The success probability δ of an adversary
in constructing accepting transcripts affects the number of such trees. Specifically, if an adversary can
only successfully complete a fraction δ of transcripts, the number of fully accepting trees is scaled with
a δK factor, where K denotes the number of leaf nodes. For a (k1, . . . , kµ)-tree, K =

∏
i∈[µ] ki. Given

that the number of all possible trees with challenges sampled uniformly at random from challenge
space is

∏
i

(|Ci|
ki

)∏i−1
j=1 kj , we have M = δ

∏
i ki ·

∏
i

(|Ci|
ki

)∏i−1
j=1 kj . Similarly, N = δ

∏
i hi ·

∏
i

(|Ci|
hi

)∏i−1
j=1 hj .

We first compute the fraction of critical trees T ∗ in Case 3 among all possible T ∗s. A T ∗ is in
Case 3 if it cannot be part of any T from which ExExt extracts a witness or a hard solution. The
number of such "isolated" T ∗s must be small, since a full extended tree T can be composed by enough
number of critical trees T ∗. Let M3 be the maximum number of T ∗s that are in Case 3. We have
Pr[Case 3] = M3

M and
M3 <

∏
i∈[µ]

(hi − ki + 1)
∏i−1

j=1 kj .

15



Next, we compute the fraction of T ∗s as parts of an extended tree T leading to extracting a
solution for Rhd (Case 2) among all T ∗s not in Case 3. Assume that a fraction ε of all possible
extended trees T will have the extractor ExExt output a solution s for Rhd(y, s) = 1. Let NH be the
number of such T s. We have NH = εN .

Let M2 be the number of T ∗s such that T ∗ ⊂ T for some T where ExExt(x,T ) = (w, s) ∧
Rhd(y, s) = 1. The number of distinct T ∗s that can be formed as subtrees of a single T is at most∏

i∈[µ]
(
hi

ki

)∏i−1
j=1 kj . Let this factor be KS =

∏
i∈[µ]

(
hi

ki

)∏i−1
j=1 kj . Hence, an upper bound on the number

of T ∗s that could fall into Case 2, denoted by M2, is:

M2 ≤ NH ·KS = εN ·KS .

Let M¬3 be the number of T ∗s that are not in Case 3. These are the T ∗s that are subtrees of at
least one T where ExExt successfully extracts either a witness for R or a solution for Rhd . We argue
that M¬3 > N . Notice that two different extended trees T will have at least one different critical
sub-tree T ∗. This implies that the collection of all T ∗s that are parts of any of these N extended
trees must number at least N . Thus, M¬3 satisfies M¬3 > N .

The probability that a T ∗ (which is not in Case 3) exists in an extended tree leading to extracting
a solution for Rhd is Pr[Case 2 | Not Case 3]. We have

Pr[Case 2 | Not Case 3] ≤ M2

M¬3
<

εN ·KS

N
= ε ·KS = ε ·

∏
i∈[µ]

(
hi

ki

)∏i−1
j=1 kj

.

The probability that a uniformly sampled T ∗ results in CrExt(x,T ∗) outputting a valid witness
w for R (and not a solution for Rhd) is Pr[Case 1]. This occurs if T ∗ is not in Case 3, and, given it’s
not in Case 3, it does not fall into Case 2.

Pr[Case 1] = Pr[Not Case 2 | Not Case 3] · Pr[Not Case 3]
= (1− Pr[Case 2 | Not Case 3]) · (1− Pr[Case 3])

≥
(
1− M2

M¬3

)
·
(
1− M3

M

)
.

Thus, the probability that CrExt(x,T ∗) yields a witness w with R(x,w) = 1 (implying it’s Case 1) is:

Pr
T∗←${T∗}

[
w ← CrExt(x,T ∗)
∧R(x,w) = 1

]
≥
(
1− M3

M

)(
1− M2

M¬3

)
> 1− M3

M
− M2

M¬3

> 1−
∏

i∈[µ](hi − ki + 1)
∏i−1

j=1 kj

δ
∏

i ki ·
∏

i

(|Ci|
ki

)∏i−1
j=1 kj

− ε ·
∏
i∈[µ]

(
hi

ki

)∏i−1
j=1 kj

.

Finally, if ε and 1/M = 1/(δ
∏

i ki ·
∏

i

(|Ci|
ki

)∏i−1
j=1 kj

) is negligible, then the above event happens with
overwhelming probability.

In Appendix C.1, we discuss how our CRZK definition is related to other notions such as k-zero
knowledge [GKK+22,DG23] and k-special unsoundness [AFK23,BGTZ23]. We also discuss possible
relaxations of CRSS.

4.2 Instantiations of Critical Round Proofs

MPC-in-the-Head based Proofs. We cast the honest-verifier zero-knowledge proof in [KKW18]
(denoted by KKW) and formally prove that their 5-move protocol satisfies CRZK and CRSS. We
note that many other multi-round protocols that follow the MPCitH with preprocessing paradigm
also fall into this class, including (but not limited to) [KKW18,BN20,KZ22,FJR22].

In the KKW framework, the prover runs an MPC protocol that evaluates a boolean circuit C on
an input w (witness), commits to the views of all parties, and then opens all-but-one of these views to

16



the verifier. This MPC protocol 1) is secure against semi-honest all-but-one corruptions, hence there
exists a simulator Simp that outputs simulated consistent views of n−1 parties, and 2) is executed in
a deterministic manner by using a preprocessing material sampled independently of the witness w. To
prevent the prover from cheating in the preprocessing phase, the prover follows the cut-and-choose
paradigm, i.e., first generates and commits to m executions of the preprocessing stage, and later opens
all of them except one (corresponding to a verifier’s challenge). The unopened material is used for
executing the MPC protocol later on.10

In Theorem 2, we show that KKW is flexible and can be analyzed as (1) CRZK at either i∗zk = 1
or i∗zk = 2, and (2) CRSS also at either i∗ss = 1 or i∗ss = 2. The formal proof is shown in Theorem 8
together with the detailed description of the KKW framework in Section D.

Theorem 2. Given the 5-move interactive honest-verifier zero-knowledge proof in [KKW18] (denoted
as KKW), assuming that the hash function used is collision-resistant and the commitment scheme
used is computationally binding and hiding, then KKW is flexible and can be:

– Critical-round special honest-verifier zero-knowledge at round i∗zk = 1 or at round i∗zk = 2.
– ~k-critical-round special sound where i∗ss = 1, ~k = (2, 1) or where i∗ss = 2, ~k = (1, 2).

Let (a, c1, z1, c2, z2) be a transcript of the KKW protocol. We provide the intuition behind the
formal proof (in Theorem 8) of the flexibility property of KKW with respect to CRSS and CRZK.

CRSS. We prove that KKW satisfies CRSS for both i∗ss = 1 and i∗ss = 2 by first constructing an
extended extractor ExExt for each of the cases to show that KKW is extended (2, 2)-special sound.
From ExExt, we then construct an extractor CrExt that, given access to an accepting prover, extracts
a valid witness (and not a solution of Rhd breaking commitment binding or hash function collision
resistance) from a subtree of transcripts, while ensuring that this is defined according to the CRSS
definition. Given an accepting (2, 2)-tree of transcripts T ,

– We construct a different extractor ExExt for each case, requiring only two transcripts:
• (a, c1, z1, ∗, ∗) and (a, c′1, z

′
1, ∗, ∗) in the first case, where i∗ss = 1,

• or (a, c1, z1, c2, z2) and (a, c1, z1, c
′
2, z
′
2) in the second case, where i∗ss = 2.

The extractor ExExt successfully extracts a unique value w with probability 1. Moreover, this
extracted w is indeed a valid witness. Otherwise, using another accepted transcript, ExExt relies
on the following properties:
• the parties’ views (broadcast messages) are committed in the third move via a hash function,

and
• all states are committed in the first move using a hash function and a commitment scheme,

to either output a collision in the hash function H or two distinct inputs that break the binding
property of the commitment scheme.

– Therefore, for both cases, given a deterministic tree T , the extractor CrExt is constructed in the
same way as ExExt, stopping as soon as it obtains w. Since ExExt succeeds on extracting a valid
witness from T , it follows that w is a valid witness.

CRZK. We prove that KKW is CRZK at either i∗zk = 1 or i∗zk = 2 by constructing two simulators
(SimA,SimZ) that simulate the real execution.

– For i∗zk = 1, SimA(x, c1) → (st1, a) takes the first-round challenge c1 as input. For i∗zk = 2,
SimA(x, c2)→ (st1, a) instead takes the second-round challenge c2 as input. In both cases, SimZ
uses SimA’s output along with c1 and c2 to complete the simulation of the real transcripts.

– The construction of SimA also differs in each case. For i∗zk = 1, since SimA knows the challenge
c1, it simulates the c1-th preprocessing step by emulating the auxiliary values aux to ensure the
correctness of the MPC output. On the other hand, for i∗zk = 2, SimA knows the index of all-but-
one party in the MPC protocol, allowing it to use the MPC simulator to simulate the views of
the remaining party.

10 This cut-and-choose strategy receives several optimizations, e.g. [BN20]. Their zero-knowledge simulation
strategy exploited in our analysis remains unchanged.

17



IOP-based Proofs. For SNARKs based on IOPs [RRR16,BCS16] and polynomial IOPs [BFS20],
the proof of knowledge soundness does not involve building a tree of transcripts as in the KKW
framework. Rather, it often relies on the extractability of a polynomial commitment scheme, which is
usually proven in the algebraic group model or relies on knowledge assumptions where no rewinding
of the adversary is required. In these cases, the knowledge extractor can be naturally adjusted to
the algebraic group model (AGM) or to extra assumptions such that it is given additional auxiliary
information (e.g., the algebraic representations of all group elements) extracted from the adversary.
The shape of the extended tree of transcripts T for extended ~h-special soundness is related to the
polynomial evaluation checks and batching operations which usually rely on the statistical soundness
of the Schwartz-Zippel lemma. These protocols can be regarded as (1, . . . , 1)-CRSS with critical round
i∗ss = µ+1. Jumping ahead, i∗ss = µ+1 requires some care within our applications as it causes i∗ss 6= i∗zk.
To avoid reliance on the AGM, in some cases, one can analyze the interactive proof systems underlying
these SNARKs in the standard model.

Plonk. Plonk [GWC19] is a SNARK that is built by compiling a multi-round polynomial IOP via the
Fiat-Shamir transform, where the polynomial oracles are instantiated with the KZG polynomial com-
mitment scheme [KZG10]. At a high level, the prover first commits to several polynomials encoding the
witness values, and then proves circuit satisfiability via multiple polynomial checks. In the standard
model, a recent work by Lipmaa, Parisella, and Siim [LPS24] characterizes Plonk as a computation-
ally (i.e., extended) ~h-special-sound five-round protocol. 11 Concretely, they obtain that for an upper
bound of n circuit gates, Plonk is extended ~h-special-sound for ~h = (3n+1, 3n+1, 3, 4n+21, 6). We ex-
tend their analysis by noticing that their extractor is guaranteed to work (either by extracting a valid
witness or by breaking the binding of the polynomial commitment scheme) given a (1, 1, 1, 4n+21, 6)
subtree of transcripts T ∗ of the extended special sound tree of transcripts T . Therefore, five-round
Plonk satisfies CRSS where i∗ss = 4. A drawback is that k4 grows linearly with the witness size, which
reduces the efficiency of our applications.

For CRZK, the main observation is that the first three responses of the Plonk prover consist of
commitments to various polynomials, (primarily as part of batching techniques) whereas the fourth
and the fifth prover responses contain only evaluations and opening proofs. All the polynomial evalua-
tions used by the verifier are carried out at the same evaluation point, z, which is the fourth challenge
sent by the verifier. Hence, it is possible to simulate an entire transcript by knowing only z in advance.
This observation, albeit with the different purpose of showing simulation extractability, was done
in [GKK+22]. One caveat is that, to enable this simulation strategy without any simulation trapdoor,
the KZG polynomial commitments need to be randomized as pointed out by [KPT23] – we refer to
their work for details. Overall, we conclude:

Proposition 1. The 5-round Plonk protocol described in [LPS24] satisfies ~k-CRSS for i∗ss = 4 in the
standard model, where ~k = (1, 1, 1, 4n+21, 6). In the AGM, Plonk is ~k-CRSS for a final round i∗ss = 6,
where ~k = ~1. Moreover, Plonk satisfies critical-round zero knowledge at round i∗zk = 4.

Bulletproofs and Compressed Σ-protocols. Another prominent example of a multi-round proof
is Bulletproofs [BCC+16,BBB+18], a widely used transparent proof system secure under the discrete
logarithm assumption. In Bulletproofs, the prover commits to a length d witness and then reduces the
proving statement to another one of length d/2. After log d rounds, the prover opens the commitments
and the verifier can check the satisfiability of the relation.

For CRZK, [DG23] proves the 3-ZK notion [GKK+22] of the protocols12, As their simulator works
by obtaining the third round challenge x as input and then the following rounds can be simulated
sequentially, their analysis directly implies CRZK at round i∗zk = 3. As such, the following statements
hold:

Proposition 2. Bulletproofs for aggregate range proof (BP-ARP) [BBB+18] is a (2µ+ 1)-move pro-
tocol where µ = 4+ dlog(`d)e, ` is the number of aggregated commitments, and d is the maximum bit
11 We note that Plonk is usually regarded as a four-round protocol, but the first round is divided into two in

their analysis.
12 In [DG23], they call it 2-ZK grouping the first two challenges y, z together as a single round. In this work,

we view them as challenges from two separate rounds so that the number of rounds matches the dimension
of the special soundness parameter ~k.

18



length of the committed values. It is ~k- special sound, where ~k = (`d, ` + 2, 3, 2, 7, . . . , 7). Moreover,
BP-ARP is CRZK at round i∗zk = 3 from [DG23, Lemma 6.4].

Proposition 3. Bulletproofs for arithmetic circuit satisfiability proof (BP-ACS) is a (2µ + 1)-move
protocol where µ = 4 + dlog(`)e and ` is the number of multiplication gates in the circuit. It is ~k-
special sound, where ~k = (`,Q+1, 7, 2, 7, . . . , 7), and Q is the number of linear constraints. Moreover,
BP-ACS is CRZK at round i∗zk = 3 from [DG23, Lemma C.2].

A close variant of Bulletproofs is compressed Σ-protocols [AF22]. As their special HVZK simulator
only requires knowing the first round challenge in advance and then it can produce a transcript
honestly while receiving the following challenges, we observe that i∗zk = 1. We thus get the following
statement:

Proposition 4. The compressed Σ-protocol for discrete logarithm relation [AF22] is a (2µ+1)-move
protocol where µ = dlog(n+ 1)e + 1 and n is the number of group generators. It is ~k-special sound,
where ~k = (2, 2, 3, . . . , 3). Moreover, it is CRZK at round i∗zk = 1 from [AF22, Theorem 3].

5 Multi-Round Proof of Partial Knowledge

5.1 Construction

In this section, our goal is to build a proof system for a logically composed relation using proof
systems for atomic relations in a black-box manner. We assume the reader is familiar with the
concept of monotone access structures (Section A.1) and semi-smooth secret sharing schemes (Sec-
tion A.2). These relations can be logically composed using a monotone access structure Γ . That is,
given n public-coin protocols Πj for relation Rj , we define a composed protocol Πcds

Γ for relation
RΓ ((x

1, . . . , xn), (w1, . . . , wn)) that outputs 1 if and only if ∃A ∈ Γ, ∀j ∈ A, Rj(xj , wj) = 1. Thus,
the prover will know valid witnesses for some of the relations (generating qualified transcripts) and
will need to simulate the remaining non-qualified transcripts. In brief, given multi-round proofs that
are special sound and CRSHVZK at critical round i∗zk = i∗, the prover in our composition follows the
3-move CDS composition framework as below:

– For steps 2i+1 (i 6= i∗), the prover simulates the non-qualified transcripts and honestly generates
the qualified ones based on the challenge sent by the verifier at step 2i.

– For step 2i∗ + 1 at the critical round, the prover samples the critical-round challenges of non-
qualified transcripts in advance. After receiving the challenge from the verifier, the prover com-
pletes the remaining challenges for the qualified transcripts via the share completion algorithm
of SSSΓ∗ .

Our MR-CDS composition, Πcds
Γ , is presented in Fig. 3. The private input to the prover algorithm is

a set of witnesses {wj}j∈A that A ∈ Γ . The ingredients of our protocol include a semi-smooth secret
sharing scheme SSSΓ∗ over secret domain S and n CRSHVZK protocols {Πj}j∈[n] at critical round
i∗. Note that efficient SSSΓ∗ exists for any Γ ∗ (and thus Γ ) that is recognized by monotone span
program [CDM00]. For simplicity, we assume that the share domain of SSSΓ∗ matches the challenge
space Ci∗ for Πcds

Γ , while this restriction becomes superfluous for our MR-StH composition, Πsth
Γ ,

presented in Section 5.3. Following [CDS94], if challenges are longer than shares, one can simply take
the first appropriate number of bits of the challenge to be the corresponding share. The completion
process can be also postprocessed by simply copying the bits of the shares and padding with random
bits to define the corresponding challenges.

5.2 Security

To illustrate the intuition, we first informally discuss the security of Πcds
Γ when i∗ = i∗zk = 1 and

ki∗ = 2. Completeness of Πcds
Γ follows by inspection: since Πj for j ∈ [n] are complete and CRSHVZK,

Vj always accepts. Moreover, the share completion property of SSSΓ∗ guarantees CheckSharesΓ∗

always outputs 1. CRSHVZK of Πcds
Γ is also straightforward. One can construct a simulator, which,

instead of running an honest prover algorithm, executes CRHVZK simulators for all j ∈ [n] on input

19



Composition Compiler Πsth
Γ and Πcds

Γ .

Statement: ~x = {xj}j∈[n].

Witness: {wj}j∈A such that A ∈ Γ and Rj(xj , wj) = 1, ∀j ∈ A.

Step 1 : Prover computes as follows:
− Sample {sj}j∈Ā ← DĀ.

− for all j ∈ Ā : Compute cji∗ = H(Γ, ~x, j, sj); Set cji∗ = sj ;
Simulate (stj1, a

j)← SimAj(xj , cji∗).

− for all j ∈ A : Compute (stj1, a
j)← Aj(xj , wj ; rj).

− Send {aj}j∈[n] to the verifier.
Repeat the following for i = 1, . . . , µ :

Step 2i (i 6= i∗) : Verifier samples ci ←$ Ci and sends ci to the prover.
Step 2i∗ : Verifier samples s←$ S and sends s to the prover.
Step 2i+ 1 (i 6= i∗) : Prover computes as follows:
− for all j ∈ Ā : Compute (stji+1, z

j
i )← SimZj(stji , ci).

− for all j ∈ A : Compute (stji+1, z
j
i )← Zj(stji , ci).

− Send {zji }j∈[n] to the verifier.
Step 2i∗ + 1 : Prover computes as follows:
− Compute {sj}j∈A ← CompleteΓ∗(s, {sj}j∈Ā).

− for all j ∈ Ā : Compute (stji∗+1, z
j
i∗)← SimZj(stji∗ , c

j
i∗).

− for all j ∈ A : Compute cji∗ = H(Γ, ~x, j, sj); Set cji∗ = sj ;
Compute (stji∗+1, z

j
i∗)← Zj(stji∗ , c

j
i∗).

− Send {zji∗ , s
j}j∈[n] to the verifier.

Verification : Verifier computes as follows:

− for all j ∈ [n] : Compute cji∗ = H(Γ, ~x, j, sj); Set cji∗ = sj ;
− for all j ∈ [n] : assert Vj(xj , πj = (aj

1, c
j
1, z

j
1, . . . , c

j
µ, z

j
µ)) = 1,

where cji := ci for i 6= i∗;

− assert CheckSharesΓ∗(s, {sj}j∈[n]) = 1.

Fig. 3. Our multi-round composition Πcds
Γ (MR-CDS) and Πsth

Γ (MR-StH) with critical round i∗ = i∗zk. The
code highlighted in solid box is only executed by Πcds

Γ , while the code in dashed box is only executed by
Πsth

Γ , respectively. Πcds
Γ assumes Ci∗ to be identical to the share space of the secret sharing scheme SSSΓ∗ .

Πsth
Γ relies on a collision-resistant hash H : {0, 1}∗ → Ci∗ .

{cji∗}j∈[n] = {sj}j∈[n] ← ShareΓ∗(s). The perfect hiding and share completion properties of SSSΓ∗

guarantee that {sj}j∈[n] is identically distributed in real and simulated transcripts.
To prove ~k′-SS of Πcds

Γ from ~k-SS of Πj , we need to carefully set the parameters ~k′. Since any
~k′-tree of transcripts for Πcds

Γ can be decomposed into n individual trees T j for Πj , we can conclude
the existence of a valid extractor for Πcds

Γ by showing the existence of some A ∈ Γ such that for all
j ∈ A, T j contains a ~k-tree of accepting transcripts. We split the analysis of k′i into two cases: 1)
i > i∗, and 2) i = i∗. In Case 1, as all T j for j ∈ [n] have identical challenges in the corresponding
edges in depth i, we can simply set k′i = ki. Case 2 boils down to showing that two distinct critical-
round challenges s and ŝ (used as secrets of SSSΓ∗) result in a subset of decomposed trees {T j}j∈A
for some A ∈ Γ , where each T j has distinct challenges cji∗ and ĉji∗ in the corresponding edges in depth
i∗. This follows from the “consistency testing” property of SSSΓ∗ (Appendix A.2) and the analysis is
essentially identical to [CDS94].

Although the analysis of the above cases is rather simple, we will encounter some subtleties when
it comes to more general cases.

20



Extension ki∗ > 2: First, we need to set k′i∗ = (ki∗ − 1)n + 1 to retain the analysis of Case 2 when
ki∗ > 2. This parameter adjustment is tight; with a set of ki∗ − 1 pairwise distinct challenges for each
j ∈ [n], there can be at most (ki∗ − 1)n pairwise distinct reconstructed secrets corresponding to the
challenges of the composed protocol Πcds

Γ . Consequently, to obtain ki∗ pairwise distinct challenges for
some j, we must set k′i∗ > (ki∗ − 1)n. As this translates to the knowledge error including an additive
term (ki∗−1)n/|S|, Πcds

Γ supports composition of a constant number of instances if the secret domain
S coincides with the share domain Ci∗ . We address this limitation in Section 5.3.

Extension i∗ = i∗zk > 1: In the composition illustrated in Fig. 3, the critical round i∗ refers
specifically to the zero-knowledge critical round i∗zk relative to the CRSHVZK simulator. We show an
arbitrary choice of i∗zk is possible, while a careful analysis of SS parameters ~k′ is necessary. If i∗ > 1,
the branches in round i < i∗ may obtain potentially different qualified sets A1, . . . , Ak′

i
∈ Γ defined

by k′i sub-trees. To collect ki pairwise distinct challenges for all j in a fixed qualified set A, one might
naively set k′i = |Γ | ·ki to account for every potential qualified set ki times. However, through a more
refined analysis, it can be shown that k′i = nki for all i < i∗ are sufficient.

In Theorem 3, we present the security of Πcds
Γ in its most general form, encompassing all the above

extensions. We then introduce a series of remarks, followed by the theorem proof.

Theorem 3 (MR-CDS Composition: Πcds
Γ ). For each j ∈ [n], consider a (2µ+ 1)-move public-

coin proof protocol Πj for relation Rj. If SSSΓ∗ is a semi-smooth perfect secret sharing scheme over
domain S for access structure Γ ∗, and every Πj is ~k-SS and CRSHVZK at round i∗ = i∗zk, then,
protocol Πcds

Γ is a (2µ+1)-move proof system for relation RΓ ((x
1, . . . , xn), (w1, . . . , wn)) that outputs

1 if and only if ∃A ∈ Γ, ∀j ∈ A, Rj(xj , wj) = 1. It is complete, ~k′-SS and CRSHVZK at round i∗,
where

1. For i > i∗, k′i = ki;
2. For i = i∗, k′i = (ki − 1)n + 1;
3. For i < i∗, k′i = n(ki − 1) + 1.

Remark 1. This theorem gives us an interesting insight. When k∗i = 2 and i∗ = 1, we have k′i = ki for
all i, i.e., the shape of the tree preserves. Thus MR-CDS is closed for such protocols. This observation
suggests that, for the purpose of composition, it is advantageous to consider the KKW protocol with
i∗ = 1 rather than i∗ = 2 (see Theorem 2 for the critical-round flexibility of KKW).

Remark 2. Theorem 3 is also useful even if each protocol is Extended ~h-Special Sound. The protocol
Πj for relation Rj with ~h-ExSS on hardness assumption Rj

hd can be viewed as a ~h-SS protocol
for relation R̄j that outputs 1 if and only if Rj(x,w) = 1 ∨ Rj

hd(y, u) = 1. Therefore, we obtain a
composed protocol for relation R̄Γ ((x

1, y1, . . . , xn, yn), (w1, u1, . . . , wn, un)) that outputs 1 if and only
if ∃A ∈ Γ, ∀j ∈ A, R̄j((xj , yj), (wj , uj)) = 1. This essentially means that for every instance j ∈ A, a
cheating prover must know either witness wj or a solution uj to the hard problem. Assuming that
every Rj

hd is computationally hard relation, one can then conclude the argument of knowledge of Πcds
Γ

for relation RΓ .

Example Instantiations. We illustrate the simplest case, compressed Σ-protocols. Since i∗ = i∗zk = 1

and ki∗ = 2 from Proposition 4, we can conclude ~k′ = ~k from Theorem 3 if n protocols are composed.
Given Proposition 2, the composition of n BP-ARP protocols gives rise to CRSHVZK at round i∗zk = 3

and ~k′-CRSS, where ~k′ = (n`d, n(` + 2), 2n + 1, 2, 7, . . . , 7). Similarly, Proposition 3 reveals that the
composition of n BP-ACS protocols gives rise to CRSHVZK at round i∗zk = 3 and ~k′-SS, where
~k′ = (n`, n(Q+ 1), 6n + 1, 2, 7, . . . , 7).

We prove Theorem 3 below.

Proof. Completeness. It directly follows from the completeness and critical-round special honest
verifier zero-knowledge of Πj . We note that CompleteΓ∗ works for the set Ā of shares {sj}j∈Ā since
Ā /∈ Γ ∗ when A ∈ Γ .

Critical-Round Special Honest Verifier Zero-Knowledge. Consider the following simulator for
Πcds

Γ that proceeds as follows, given as input {xj}j∈[n] ∈ LRΓ
, {ci}i 6=i∗ and s:

1. Compute {cji∗}j∈[n] = {sj}j∈[n] ← ShareΓ∗(s)

21



2. For all j ∈ [n]: (stj1, aj)← SimAj(xj , cji∗)

3. For all i ∈ [µ− 1] and j ∈ [n]: (stji+1, z
j
i )← SimZj(stji , c

j
i ), where cji = ci if i 6= i∗

4. Output ({aj}j∈[n], {ci}i∈[µ]\{i∗}, {zji }i∈[µ],j∈[n], s, {sj}j∈[n])

The perfect hiding and share completion properties of SSSΓ∗ imply that the distribution of {sj}j∈[n]
generated as above is identical to that of a real transcript. Since {xj}j∈[n] ∈ LRΓ

, for j ∈ Ā, the
simulator generates aj , zji exactly as a real prover; for j ∈ A, the distribution of aj , zji output by
CRSHVZK simulators for Πj is indistinguishable with the one generated by a real prover. Grouping
Step 1-2 together as SimA and Step 3 as SimZ, respectively, the above algorithm is indeed a valid
CRSHVZK simulator.

As in [CDS94], if SSSΓ∗ additionally has smoothness, one can obtain a variant of Theorem 3 in
which CRSHVZK is replaced by non-special CRHVZK. To do so, we can modify Step 1 of Fig. 3 so
that prover instead samples independent and uniformly random shares sj = cji∗ for j ∈ Ā. Clearly,
this modification allows the invocation of non-special simulators for Πj as they output uniformly
random challenges in the critical round i∗. Note that the resulting simulator for Πcds

Γ is also non-
special because all challenges in round i∗ must be sampled internally by the underlying non-special
simulators for Πj .

Special Soundness. The proof can be viewed as a generalization of [CDS94]. However, we must
carefully choose the special soundness parameters for Πcds

Γ in such a way that the corresponding tree
of accepting transcripts contains a well-structured tree for every j ∈ A ∈ Γ from which the extractor
Extj for Πj can successfully extract witness for xj . We construct an efficient extractor Extcds that
determines some A ∈ Γ and then internally runs sub-extractors {Extj}j∈A to output a valid set of
witnesses w = {wj}j∈A, given as input any ~k′-tree T cds of accepting transcripts.

We first recall the structure of the tree T cds for Πcds
Γ . Each path in T cds defines a transcript

({aj}j∈[n], {ci}i∈[µ]\{i∗}, {zji }i∈[µ],j∈[n], s, {s
j}j∈[n])

which can be decomposed into n individual transcripts:

{(aj , {ci}i∈[µ]\{i∗}, cji∗ , {z
j
i }i∈[µ])}j∈[n]

where cji∗ = sj and cji∗ = sj for j ∈ [n]. Thus, T cds can also be decomposed into n individual trees,
T 1, . . . , Tn, where every path of T j is derived from decomposition of the corresponding path in T cds.
We first observe the following properties:

1. In non-critical rounds i 6= i∗, the challenges in the decomposed trees T j for j ∈ [n] remain the
same as the corresponding challenges in T cds.

2. In round i∗, the shares sj in the decomposed trees T j for j ∈ [n] pass the consistency check
performed by CheckSharesΓ∗ with respect to the corresponding challenge s in T cds.

Case 1: i∗ < i ≤ µ. We first prove the following statement: if i∗ < i ≤ µ, then for every j ∈ [n], the
corresponding decomposed tree T j has ki pairwise distinct challenges at round i. This is straight-
forward: as every set of edges in depth i of T cds are labeled by ki pairwise distinct challenges, the
corresponding edges in T j have the same property.

Case 2: i = i∗. Next, we prove the following statement: if k′i∗ = (ki∗−1)n+1, then for any (1, . . . , 1, k′i∗ ,
ki∗+1, . . . , kµ)-subtree T cds

i∗ for Πcds
Γ , there exists A ∈ Γ such that for every j ∈ A, the corresponding de-

composed subtree T j
i∗ contains a (1, . . . , 1, ki∗ , . . . , kµ)-subtree T̃ j

i∗ for statement xj . We first denote by
s` the `th challenge for round i∗ in T cds

i∗ , where s` for ` ∈ [k′i∗ ] are pairwise distinct. Moreover, {sj`}j∈[n]
denotes a set of shares reconstructing to s` in T cds

i∗ . Then we have that CheckSharesΓ∗(s`, {sj`}j∈[n]) = 1
for every ` ∈ [k′i∗ ]. We show that, for every B ∈ Γ ∗, there exists j ∈ B such that at least ki∗ ele-
ments of {sj`}`∈[k′

i∗ ]
are pairwise distinct. Assume for contradiction that there exists B̃ ∈ Γ ∗ such

that for every j ∈ B̃ at most ki∗ − 1 elements of {sj`}`∈[k′
i∗ ]

are pairwise distinct. By the consistency
testing property of SSSΓ∗ (see Appendix A.2), however, it must be that RecΓ∗({sj`}j∈B̃) = s` for
every ` ∈ [k′i∗ ]. As the output of RecΓ∗ can take at most (ki∗ − 1)|B̃| distinct values and |B̃| ≤ n, it
contradicts the fact that {s`}`∈[k′

i∗ ]
are pairwise distinct when k′i∗ = (ki∗ − 1)n + 1.

22



Finally, let A =
⋃

B∈Γ∗ JB , where JB denotes a set of j ∈ B such that at least ki∗ elements of
{sj`}`∈[k′

i∗ ]
are pairwise distinct. As each JB is guaranteed to be non-empty, we have that A ∩B 6= ∅

for every B ∈ Γ ∗, which implies A ∈ Γ by Proposition 5. Thus, for each j ∈ A ∈ Γ , one can derive
from T j

i∗ a (1, . . . , 1, ki∗ , . . . , kµ)-subtree T̃ j
i∗ of accepting transcripts for statement xj .

Case 3: i < i∗. We prove the following statement: if k′i = n(ki− 1)+1 for i < i∗, k′i∗ = (ki∗ − 1)n+1 ,
then for any (1, . . . , 1, k′i, . . . , k

′
i∗ , ki∗+1, . . . , kµ)-subtree T cds

i for Πcds
Γ , there exists A ∈ Γ such that for

every j ∈ A, the corresponding decomposed subtree T j
i contains a (1, . . . , 1, ki, . . . , ki∗ , ki∗+1, . . . , kµ)-

subtree T̃ j
i for statement xj . Before delving into details, we first sketch the proof strategy for i = i∗−1

(the proof for i < i∗ − 1 can be made iteratively). By the analysis of Case 2, we have that, for each
` ∈ [k′i∗ ], the `-th (1, . . . , 1, k′i∗ , ki∗+1, . . . , kµ)-subtree determines some access structure A` ∈ Γ . As
A`’s might be potentially distinct from each other, to obtain a well-structured upper-level subtree,
we need to determine some ˆ̀∈ [k′i∗−1] in such a way that for every j ∈ Aˆ̀, there are at least ki∗−1
subtrees that determine access structures having j as a member. We stress that the extracted subtrees
{T̃ j

i∗−1}j∈Aˆ̀
as a result may potentially contain different sets of level i∗− 1 challenges for each j. For

instance, if Aˆ̀= {1, 2} and ki∗−1 = 2, then it could be that T̃ 1
i∗−1 for statement x1 has its level i∗− 1

challenges labeled by c1 and c2, while T̃ 2
i∗−1 for statement x2 has the challenges labeled by c3 and c4,

respectively.
More formally, we first denote by c` the `th challenge for round i = i∗ − 1 in T cds

i for ` ∈ [k′i].13

Then for each ` ∈ [k′i], T cds
i defines the corresponding (1, . . . , 1, k′i∗ , ki∗+1, . . . , kµ)-subtree T cds

i∗,` of T cds
i .

By the analysis of Case 2, T cds
i∗,` defines some qualified set A` ∈ Γ such that for every j ∈ A`, the

corresponding decomposed subtree T j
i∗,` contains a (1, . . . , 1, ki∗ , . . . , kµ)-subtree T̃ j

i∗,` for statement
xj . Now we show that there exists ˆ̀∈ [k′i] such that, for all j ∈ Aˆ̀, the number of A` containing j

is at least ki. That is, let Lj = {` ∈ [k′i] : j ∈ A`} for j ∈ [n], we prove ∃ˆ̀∈ [k′i] such that ∀j ∈ Aˆ̀,
|Lj | ≥ ki. Assume for contradiction that ∀ˆ̀ ∈ [k′i], ∃jˆ̀ ∈ Aˆ̀ such that |Ljˆ̀| ≤ ki − 1. Consider the
union of all such sets L =

⋃
ˆ̀∈[k′

i]
Ljˆ̀. Observe that for each ˆ̀ ∈ [k′i] and jˆ̀ ∈ Aˆ̀, we have ˆ̀ ∈ Ljˆ̀.

Thus, it must be that |L| ≥ k′i = n(ki− 1)+1. However, since each Ljˆ̀ has cardinality at most ki− 1,
we have |L| = |

⋃
ˆ̀∈[k′

i]
Ljˆ̀| ≤ |

⋃
jˆ̀∈[n] Ljˆ̀| ≤ n(ki − 1), which leads to contradiction.

Since each A` is associated with pairwise distinct c`’s, we obtain a (1, . . . , ki∗−1, ki∗ , . . . , kµ)-
subtree T̃ j

i for every j ∈ Aˆ̀. Applying the above argument iteratively for i = i∗ − 1, . . . , 1, we prove
the statement for Case 3.

Extractor. Combining Case 1-3 above, there exists A ∈ Γ such that for every j ∈ A, the corresponding
decomposed tree T j contains a ~k-tree T̃ j for Πj . The extractor Extcds then simply runs sub-extractors
Extj on T̃ j to extract witnesses for all j ∈ A. As Πj is ~k-SS, every Extj always succeeds in extracting
witness.

5.3 Suppressing Exponential Blow-up via Multi-Round Share-then-Hash

To support polynomial-size compositions, we generalize the Share-then-Hash method with the help
of a collision resistant hash function (CRH) H : {0, 1}∗ 7→ Ci∗ . We present MR-StH composition,
Πsth

Γ , formally in Fig. 3 alongside Πcds
Γ . The only modification is that the prover is now required to

obtain challenges cji∗ ← H(. . . , sj), instead of setting cji∗ = sj . Unlike the CDS composition, MR-StH
allows for a secret sharing scheme with larger domains than the challenge space Ci∗ . Thus, one can
compensate for the exponential blowup in the numerator by setting |S| � (ki∗ − 1)n. As sketched
in Section 2.2, the knowledge soundness of Πsth

Γ is analyzed within the predicate special soundness
framework of [AAB+24] (recalled in Appendix B.1), instead of the standard special soundness notion.
We state the following theorem whose formal analysis is deferred to Appendix B.

Theorem 4 (MR-StH Composition: Πsth
Γ ). For each j ∈ [n], consider a (2µ+ 1)-move public-

coin proof protocol Πj for relation Rj. If SSSΓ∗ is a semi-smooth perfect secret sharing scheme over
domain S for access structure Γ ∗, H : {0, 1}∗ 7→ Ci∗ is a collision-resistant hash function, and every
13 Note that we are abusing the notation here, because the `th challenge for round i should be technically

denoted by ci,` following the protocol description. We drop the subscript i for readability since we focus
on the ith round when proving Case 3.

23



Gen: Given 1λ as input, compute (x,w)←$ LRW (λ). Commitment key is x, and w is a trapdoor.
Com: Given (x,m) as input, compute (st1, a) ← SimA(x,m) and (sti+1, zi) ← SimZ(sti, ci) for

i = 1, . . . , µ where

ci :=


Hi(x, a, z1, . . . , zi−1) (i < i∗zk)
m (i = i∗zk)
Hi(x, a,m, z1, . . . , zi−1) (i > i∗zk).

(1)

Output com := (a, z1, . . . , zi∗
zk
−1) and open := (zi∗

zk
, . . . , zµ).

TCom: Given (w, x) as input, compute (st1, a) ← A(x,w) and (sti+1, zi) ← Z(sti, ci) for i =
1, . . . , i∗zk − 1 for ci as in (1).
Output com := (a, c1, z1, . . . , ci∗

zk
−1, zi∗

zk
−1) and sti∗

zk
.

Equiv: Given (sti∗
zk
,m), compute (sti+1, zi)← Z(sti, ci) for i = i∗zk, . . . , µ for ci following (1). Output

open := (zi∗
zk
, . . . , zµ).

Ver: Given x, com, m, and open as input, parse them into (x, a, z1, . . . , zµ). Compute each ci as
in (1) and output V(x, a, c1, z1, . . . , cµ, zµ).

Fig. 4. Trapdoor commitment scheme KΠi∗
zk

.

Πj is ~k-SS and CRSHVZK at round i∗ = i∗zk, then, protocol Πsth
Γ is a (2µ+1)-move proof system for

relation RΓ ((x
1, . . . , xn), (w1, . . . , wn)) that outputs 1 if and only if ∃A ∈ Γ, ∀j ∈ A, Rj(xj , wj) = 1.

It is complete, (~k′,Φ)-predicate-special-sound for ~k′ = (k′1, . . . , k
′
µ) and a predicate system Φ, and

CRSHVZK at round i∗, where

1. For i > i∗, k′i = ki and Φchal
i,` for each ` ∈ [k′i] always outputs 1;

2. For i = i∗, k′i = τ ≥ n(ki − 2) + 2 and Φchal
i,` (t1, . . . , t`−1, s`) for each ` ∈ [k′i] return 1 if (2) is

satisfied, and 0 otherwise;
3. For i < i∗, k′i = n(ki − 1) + 1 and Φchal

i,` for ` ∈ [k′i] always outputs 1.

Plugging Theorem 4 and the analysis of failure density (Lemma 2) into the general theorem on Fiat-
Shamir knowledge soundness established by [AAB+24] (recalled in Theorem 6) results in the following
corollary. The last term in the knowledge error essentially quantifies the probability that a uniformly
sampled s ∈ S (i.e., the i∗zk-th round challenge) falls into a “bad” set of secrets that could cause
extraction to fail.

Corollary 1. The Fiat-Shamir-transformed version of Πsth
Γ is adaptively knowledge sound in the

random oracle model with knowledge error

2(Q+ 1)

 ∑
i∈[µ]\{i∗zk}

k′i − 1

|Ci|
+

(k′i∗zk
− 1) · 2n · (ki∗zk − 1)n

|S|


where Q is the number of random oracle queries made by a cheating prover.

6 Trapdoor Commitment from Multi-Round Protocol

Given a (2µ + 1)-move public-coin proof protocol, Πi∗zk
= (A,Z,V,SimA,SimZ), for relation R that

is CRZK at round i∗zk, and hash functions Hi : {0, 1}∗ → Ci, we construct a trapdoor commitment
scheme K = (Gen,Com,TCom,Equiv,Ver) as illustrated in Figure 4. For simplicity, we assume that
the message space M = Ci∗zk .

Theorem 5. KΠi∗
zk

in Figure 4 constitutes a trapdoor commitment scheme with the following proper-
ties:

– It is hiding and equivocal if Πi∗zk
is CRSHVZK at round i∗zk.

– It is binding and trapdoor extractable if
• Πi∗zk

is perfectly complete,
• Πi∗zk

is (extended) ~k-SS with ki∗zk = 2,

24



• Relation R is one-way,
• Hi is a programmable random oracle.

– It is offline trapdoor extractable if, additionally, Πi∗zk
is ~k′-CRSS with i∗zk = i∗ss, ki∗zk = k′i∗zk

, and
k′i = 1 for all i ∈ [µ] \ i∗zk.

Proof. (Correctness) It holds directly from the perfect completeness of Πi∗zk
and the critical-round

zero-knowledge at round i∗zk.
(Hiding Property) It is proved by a game transition argument. We begin with the left term of the
hiding definition in Definition 6;

P0 := Pr
[
1← A(ck, com) | (ck, td)← Gen(1λ), (com, open)← Com(ck,m)

]
= Pr

1← A(x, (a, z1, . . . , zi∗zk−1))
∣∣∣∣∣∣
(x,w)← LRW (1λ),
(st1, a)← SimA(x,m),
∀i ∈ [µ], (sti+1, zi)← SimZ(sti, ci)


where ci is computed following (1). We then modify the game by replacing the zero-knowledge simu-
lator with a real prover algorithm.

P1 := Pr

1← A(x, (a, z1, . . . , zi∗zk−1))
∣∣∣∣∣∣
(x,w)← LRW (1λ),
(st1, a)← A(x,w),
∀i ∈ [µ], (sti+1, zi)← Z(sti, ci)


Then |P0−P1| is bound by the zero-knowledge error, say εcrzk, as in Definition 8. Finally, we make it
back to the simulation as follows.

P2 = Pr

1← A(x, (a, z1, . . . , zi∗zk−1))
∣∣∣∣∣∣
(x,w)← LRW (1λ),
(st1, a)← SimA(x,m′),
∀i ∈ [µ], (sti+1, zi)← SimZ(sti, ci)


Again, |P1−P2| is upper bound by εcrzk. Since P2 is the same as the right term of the hiding definition,
we obtain P0 − P2 ≤ 2εcrzk as a bound for the hiding property that is negligible as εcrzk is negligible
by assumption.
(Equivocability) It holds due to CRSHVZK of Πi∗zk

since the equivocability game in Definition 6 is
exactly the same as the CRSHVZK game in Definition 8.
(Binding and Trapdoor Extractability) LetA be a successful adversary that opens a commitment in two
ways with probability εbin. Precisely, given the commitment key x, it outputs (com,m0, open0,m1, open1)
such that m0 6= m1, m0,m1 ∈ Ci∗zk , and Ver(com,mj , openj) = 1 for j ∈ {0, 1}. For simplicity, we as-
sume that all the challenge spaces Ci are identical and represent each Hi using a single random oracle
H. Overall structure of the proof follows that of the Fiat-Shamir security originally from [AFK23].

Given A as a black-box, we construct B that breaks the one-wayness of R. It constructs a ~k-
tree of transcripts by running the tree builder T0, as illustrated in Figure 5. B simulates H by lazy
sampling. Whenever H receives a fresh query, B returns a random value. By (in, out)→ H, we denote
programming H as out = H(in). If T0 outputs v = 1 with a tree of transcripts tr0, B gives tr0 to the
extractor. Although tr0 will contain challenges at round i∗zk, i.e., messages chosen by A, the extractor
Ext outputs a witness (or ExExt may output a solution to the hard problem instead) by definition of
(extended) ~k-SS regardless of what the messages are as long as they are pairwise distinct to form a
valid tree for ki∗zk = 2.

The recursive tree builder Ti is essentially the same as the one in [AFK23] for the multi-round Fiat-
Shamir security. However, there are notable differences due to the adversary A playing the binding
game rather than the standard Fiat-Shamir security game as in [AFK23].

– Parallel Tree Building: A outputs two transcripts, (com,m0, open0) and (com,m1, open1), branch-
ing at round i∗zk. Both of them must be included in the tree since the self-chosen values m0 and m1

could represent the only challenges at round i∗zk for which A is successful. Therefore, Ti>i∗zk
must

construct sub-trees for both branches (com,m0) and (com,m1) in parallel, as described in Step
2 of the case i > i∗zk in Figure 5. Within each sub-tree construction, at most one of the sub-trees
returned from the descending builder Ti+1 will match the intended branch.
Ti∗zk only needs to combine the two sub-trees into a single structure. The ancestor builders Ti<i∗zk−1
remain consistent with the original builders outlined in [AFK23].

25



(In case of abort, return with v = 0.)

Case 0 ≤ i < i∗zk:
1. Run Ti+1 → (I, tri+1, v). Abort if v = 0.
2. Initialize used := {H(Ii)} and tri := {tri+1}.
3. Repeat the following until |tri| = ki happens:

• If |used | = |Ci|, abort.
• Sample c ← Ci \ used , and program as (Ii, c) → H. Update used ← used ∪ {c}. Run
Ti+1 → (I ′, tr′i+1, v

′).
• If I ′i = Ii and v′ = 1, update tri ← tri ∪ tr′i+1.

4. Return (I, tri, 1).

Case i = i∗zk:
1. Run Ti+1 → (I(0), tr

(0)
i+1, I

(1), tr
(1)
i+1, v).

2. Set I := I(0) and tri := (tr
(0)
i+1, tri+1

(1)).
3. Return (I, tri, v).

Case i∗zk < i < µ:
1. Run Ti+1 → (I(0), tr

(0)
i+1, I

(1), tr
(1)
i+1, v). Abort if v = 0.

2. Do this step for b = {0, 1}:
• Initialize used := {H(I

(b)
i )} and tr

(b)
i := {tr(b)i+1}.

• Repeat the following until |tr(b)i | = ki happens:
∗ If |used | = |Ci|, abort.
∗ Sample c ← Ci \ used , and program as (Ii, c) → O. Update used ← used ∪ {c}. Run
Ti+1 → (I ′

(0)
, tr′

(0)
i+1, I

′(1), tr′
(1)
i+1, v

′).
∗ If v′ = 1 and I

(b)
i = I ′

(b′)
i for either b′ = 0 or b′ = 1, update tr

(b)
i ← tr

(b)
i ∪ tr′

(b′)
i+1.

3. Return (I(0), tr
(0)
i , I(1), tr

(1)
i , 1).

Case i = µ:
1. Run A → (com,m0, open0,m1, open1). If Ver(x, com,m0, open0) = 1,

Ver(x, com,m1, open1) = 1, and m0 6= m1, set v = 1. Set v = 0, otherwise.
2. For com = (a, z1, . . . , zi∗

zk
−1) and open0 = (zi∗

zk
, . . . , zµ), let I

(0)
0 = (a) and I

(0)
j = (a, z1, . . . , zj)

for j = 1, . . . , µ. Define I(0) := (I
(0)
0 , . . . , I

(0)
µ ) and tr

(0)
µ := (com,m0, open0). Define I(1) and

tr
(1)
µ in the same manner regarding com and open1.

3. Return (I(0), tr
(0)
µ , I(1), tr

(1)
µ , v).

Fig. 5. Tree builder Ti with binding adversary A.

– Self-Chosen Challenges: In round i∗zk, the challenges m0 and m1 are selected by A. But this is
not essentially different from chosing them uniformly and consider the case that A succeeds. The
process of constructing the sub-tree for i > i∗zk is analogous to allowing the adversary to choose
the initial message a in the top tree. Consequently, the challenge m is included as a part of
input to Hi>i∗zk

. If A selects m0 and m1 such that tree building fails, it subsequently reduces the
success probability of A, as demonstrated in Proposition 2 of [AFK23]. Furthermore, since the
sub-extractor Ti∗zk succeeds with the same probability as Ti∗zk−1, it can be considered merged into
Ti∗zk−1 when analyzing the bounds.

From Proposition 2 in [AFK23], the probability that T0 returns v = 1 is at least

εbin − (Q+ 1)θ

1− θ

where θ = 1−
∏

i∈[µ]\i∗zk
(1− ki−1

|Ci| ). The expected number of invocations to A is at most ξ+Q · (ξ− 1)

where ξ =
∏

i∈[µ]\i∗zk
ki.

Since the above actually extracts a witness (in the case of extended SS, under the relevant hardness
assumption), the trapdoor extractability is proved as well.
(Offline Trapdoor Extractability) First observe that the adversary here is the same as the one in the
binding game. Then, recall that we assumed that Πi∗zk

is CRSS whose tree of transcripts where i∗zk is the

26



first and the only branching round. Therefore, a valid collision (com,m0, open0,m1, open1) constitutes
a CRSS tree of transcript. As it is obtained by running the adversary with uniformly chosen challenges,
the resulting CRSS tree is a uniformly sampled one from the distribution of subtrees of the extended
SS trees built from the binding-game adversary where the challenges in the i∗zk are chosen by the
adversary. Then, from Theorem 1, we can conclude that the given extractor CrExt outputs a witness
on the tree except for a negligible probability.

In summary, TDC is realizable if ki∗zk ≤ 2 no matter where i∗ss is, and it is additionally offline
extractable if the CRSS tree of transcripts satisfies i∗zk = i∗ss and i∗zk is the only branching round.
KKW fits to these conditions and we can instantiate our TDC from it. We expect that natural
MPCitH variations can also be seen as i∗zk = i∗ss = µ.

7 Applications to Advanced Signatures

This section presents additional applications to advanced signatures, other applications including ac-
cumulators and trapdoor commitments with flexible trapdoor allocation are found in Section E. While
they can almost be seamlessly derived from the previous sections and existing generic constructions,
it is worthwhile to mention them in order to illustrate the significant influence that critical-round
protocols exert on cryptographic protocol design.

Previous works [HS20,LTZ24] pose the open question of constructing post-quantum trapdoor
commitments for adaptor signatures (AS) and threshold ring signatures (TRS) without the overhead
of generic NP reductions, specifically asking about instantiations from MPCitH. We resolve this by
instantiating their generic compilers with our (standard) trapdoor commitment from Theorem 5,
which meets all required properties and can be built from MPCitH via Theorem 2.

7.1 Adaptor signatures

Adaptor signatures were introduced by Poelstra [Poe17] and formalized in [AEE+21] [DOY22,GSST24],
as a useful trick available to Schnorr signatures. An adaptor signature scheme is defined with respect
to a one-way NP relation LRW with instance-witness pairs (x,w) ∈ LRW ⇐⇒ R(x,w) = 1, and a
digital signature scheme. A signer who holds a secret key sk can pre-sign a message m with respect
to instance x, obtaining a so-called pre-signature σ̄. Later, σ̄ can be adapted to a standard signature
σ by some party that knows the witness w. Finally, from a pre-signature σ̄ and the signature σ, it is
possible to extract a valid witness w such that R(x,w) = 1.

A recent work by Liu, Tzannetos, and Zikas [LTZ24] introduces a generic construction of witness-
hiding AS from any digital signature scheme and any hiding and offline trapdoor extractable trapdoor
commitment scheme. Their AS achieves post-quantum security if both the signature scheme and
the trapdoor commitment are also post-quantum secure. They instantiate the latter14 for any NP
relation via the three-move interactive protocol for graph hamiltonicity, at the cost of a large practical
overhead.

Applying Theorem 2 to the compiler in [LTZ24] actually yields adaptor signatures from MPC in
the head with reasonable practical parameters. Signature size is dominated by the MPCitH protocol
for the one-way function that parametrizes the trapdoor commitment, and by the size of a standard
signature scheme. For example, if the one-way relation is instantiated by a block cipher such as
LowMC [ARS+15], an instantiation building upon the Picnic signature scheme [CDG+20,KZ20] yields
adaptor signature sizes on the order of 30 KB (for the lowest security level).

7.2 Threshold ring signatures

(t,N)-threshold ring signatures (TRS) [BSS02] allow a set of t signers among a “ring” of N participants
to jointly produce a signature σ on a message m. Given a ring of users R = {R1, . . . , RN} where each
Ri owns a pair of keys (ski, pki), TRS guarantee that 1) the t signers remain anonymous within the
14 More precisely, they instantiate a weaker variant of trapdoor commitments that they call trapdoor commit-

ments with specific adaptable message (TC-am), and which they show to be sufficient for their application.

27



set of public keys (pk1, . . . , pkN ), and 2) if an adversary corrupts less than t parties from the ring,
then it is hard for the adversary to forge a valid signature σ.

The work of Haque and Scafuro [HS20] builds TRS from any trapdoor commitment and Shamir’s
secret sharing. The trapdoor commitment needs to satisfy binding, hiding, and trapdoor indistin-
guishability (which is in turn implied by our notion of equivocability). As in the previous case, they
achieve a post-quantum secure TRS by instantiating their trapdoor commitment from the interactive
protocol for graph hamiltonicity.

8 Conclusion

Based on the observation that the roles of each round differ in multi-round protocols, we introduced
the novel notions of CRZK and CRSS and demonstrated their usefulness. Several open questions
remain:

– We observed that some multi-round proof protocols that utilize the witness in only one round can
admit a CRZK simulator. Could this observation be extended into a more general theorem?

– Are the blow-ups of k′i for rounds i ≤ i∗ inherent in MR-CDS and MR-StH compositions in
Section 5?

Acknowledgements

This work was partially done while Dung Bui and David Balbás were doing an internship at NTT
Social Informatics Laboratories.
David Balbás is supported by the PICOCRYPT project that has received funding from the Eu-
ropean Research Council (ERC) under the European Unions Horizon 2020 research and innovation
programme (Grant agreement No. 101001283), partially supported by projects PRODIGY (TED2021-
132464B-I00) and ESPADA (PID2022-142290OB-I00) funded by MCIN/AEI/10.13039/501100011033/
and the European Union NextGenerationEU / PRTR, and partially funded by Ministerio de Univer-
sidades (FPU21/00600).
Zhiyu Peng’s participation in the early stages of this work is appreciated. We also thank Miguel
Ambrona for useful comments about Plonk, and Marius Aardal and Sebastian Kolby for helpful
discussions regarding the predicate special soundness framework of [AAB+24].
This paper was prepared in part for information purposes by the Artificial Intelligence Research group
of JPMorgan Chase & Co and its affiliates (JP Morgan), and is not a product of the Research De-
partment of JP Morgan. JP Morgan makes no representation and warranty whatsoever and disclaims
all liability, for the completeness, accuracy or reliability of the information contained herein. This
document is not intended as investment research or investment advice, or a recommendation, offer or
solicitation for the purchase or sale of any security, financial instrument, financial product or service,
or to be used in any way for evaluating the merits of participating in any transaction, and shall
not constitute a solicitation under any jurisdiction or to any person, if such solicitation under such
jurisdiction or to such person would be unlawful.

References

AAB+20. M. Abe, M. Ambrona, A. Bogdanov, M. Ohkubo, and A. Rosen. Non-interactive composition of
sigma-protocols via share-then-hash. In Advances in Cryptology – ASIACRYPT 2020, Part III,
Lecture Notes in Computer Science 12493, pages 749–773, Daejeon, South Korea, December 7–11,
2020. Springer, Cham, Switzerland.

AAB+21. M. Abe, M. Ambrona, A. Bogdanov, M. Ohkubo, and A. Rosen. Acyclicity programming for
sigma-protocols. In TCC 2021: 19th Theory of Cryptography Conference, Part I, Lecture Notes
in Computer Science 13042, pages 435–465, Raleigh, NC, USA, November 8–11, 2021. Springer,
Cham, Switzerland.

AAB+24. M. A. Aardal, D. F. Aranha, K. Boudgoust, S. Kolby, and A. Takahashi. Aggregating falcon
signatures with LaBRADOR. In Advances in Cryptology – CRYPTO 2024, Part I, Lecture
Notes in Computer Science 14920, pages 71–106, Santa Barbara, CA, USA, August 18–22, 2024.
Springer, Cham, Switzerland.

28



AABN02. M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to signatures via the
Fiat-Shamir transform: Minimizing assumptions for security and forward-security. In Advances
in Cryptology – EUROCRYPT 2002, Lecture Notes in Computer Science 2332, pages 418–433,
Amsterdam, The Netherlands, April 28 – May 2, 2002. Springer, Berlin, Heidelberg, Germany.

ABF+24. G. Avitabile, V. Botta, D. Friolo, D. Venturi, and I. Visconti. Compact proofs of partial knowledge
for overlapping CNF formulae. To appear in Journal of Cryptology, 2024.

ABFV22. G. Avitabile, V. Botta, D. Friolo, and I. Visconti. Efficient proofs of knowledge for threshold rela-
tions. In ESORICS 2022: 27th European Symposium on Research in Computer Security, Part III,
Lecture Notes in Computer Science 13556, pages 42–62, Copenhagen, Denmark, September 26–30,
2022. Springer, Cham, Switzerland.

ABO+24. M. Abe, A. Bogdanov, M. Ohkubo, A. Rosen, Z. Shang, and M. Tibouchi. CDS composition of
multi-round protocols. In Advances in Cryptology - CRYPTO 2024 - 44th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings, Part IX,
Lecture Notes in Computer Science 14928, pages 391–423. Springer, 2024.

ACF21. T. Attema, R. Cramer, and S. Fehr. Compressing proofs of k-out-of-n partial knowledge. In
Advances in Cryptology – CRYPTO 2021, Part IV, Lecture Notes in Computer Science 12828,
pages 65–91, Virtual Event, August 16–20, 2021. Springer, Cham, Switzerland.

ACK21. T. Attema, R. Cramer, and L. Kohl. A compressed Σ-protocol theory for lattices. In Advances in
Cryptology – CRYPTO 2021, Part II, Lecture Notes in Computer Science 12826, pages 549–579,
Virtual Event, August 16–20, 2021. Springer, Cham, Switzerland.

AEE+21. L. Aumayr, O. Ersoy, A. Erwig, S. Faust, K. Hostáková, M. Maffei, P. Moreno-Sanchez, and
S. Riahi. Generalized channels from limited blockchain scripts and adaptor signatures. In
Advances in Cryptology – ASIACRYPT 2021, Part II, Lecture Notes in Computer Science 13091,
pages 635–664, Singapore, December 6–10, 2021. Springer, Cham, Switzerland.

AF22. T. Attema and S. Fehr. Parallel repetition of (k1, . . . , kµ)-special-sound multi-round interac-
tive proofs. In Advances in Cryptology – CRYPTO 2022, Part I, Lecture Notes in Computer
Science 13507, pages 415–443, Santa Barbara, CA, USA, August 15–18, 2022. Springer, Cham,
Switzerland.

AFK22. T. Attema, S. Fehr, and M. Klooß. Fiat-shamir transformation of multi-round interactive proofs.
In TCC 2022: 20th Theory of Cryptography Conference, Part I, Lecture Notes in Computer Sci-
ence 13747, pages 113–142, Chicago, IL, USA, November 7–10, 2022. Springer, Cham, Switzer-
land.

AFK23. T. Attema, S. Fehr, and M. Klooß. Fiat-shamir transformation of multi-round interactive proofs
(extended version). Journal of Cryptology, 36(4):36, October 2023.

AFR23. T. Attema, S. Fehr, and N. Resch. Generalized special-sound interactive proofs and their knowl-
edge soundness. In TCC 2023: 21st Theory of Cryptography Conference, Part III, Lecture Notes
in Computer Science 14371, pages 424–454, Taipei, Taiwan, November 29 – December 2, 2023.
Springer, Cham, Switzerland.

AKLY24. T. Attema, M. Klooß, R. W. F. Lai, and P. Yatsyna. Adaptive special soundness: Improved
knowledge extraction by adaptive useful challenge sampling. Cryptology ePrint Archive, Paper
2024/2038, 2024.

ARS+15. M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers for MPC
and FHE. In Advances in Cryptology – EUROCRYPT 2015, Part I, Lecture Notes in Computer
Science 9056, pages 430–454, Sofia, Bulgaria, April 26–30, 2015. Springer, Berlin, Heidelberg,
Germany.

BBB+18. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs
for confidential transactions and more. In 2018 IEEE Symposium on Security and Privacy, pages
315–334, San Francisco, CA, USA, May 21–23, 2018. IEEE Computer Society Press.

BCC+16. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge arguments for
arithmetic circuits in the discrete log setting. In Advances in Cryptology – EUROCRYPT 2016,
Part II, Lecture Notes in Computer Science 9666, pages 327–357, Vienna, Austria, May 8–12,
2016. Springer, Berlin, Heidelberg, Germany.

BCS16. E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive oracle proofs. In TCC 2016-B: 14th
Theory of Cryptography Conference, Part II, Lecture Notes in Computer Science 9986, pages
31–60, Beijing, China, October 31 – November 3, 2016. Springer, Berlin, Heidelberg, Germany.

Bd94. J. C. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative to digital
sinatures (extended abstract). In Advances in Cryptology – EUROCRYPT’93, Lecture Notes
in Computer Science 765, pages 274–285, Lofthus, Norway, May 23–27, 1994. Springer, Berlin,
Heidelberg, Germany.

BF23. B. Bünz and B. Fisch. Multilinear schwartz-zippel mod N and lattice-based succinct arguments.
In TCC 2023: 21st Theory of Cryptography Conference, Part III, Lecture Notes in Computer
Science 14371, pages 394–423, Taipei, Taiwan, November 29 – December 2, 2023. Springer, Cham,
Switzerland.

29



BFS20. B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK compilers. In Advances
in Cryptology – EUROCRYPT 2020, Part I, Lecture Notes in Computer Science 12105, pages
677–706, Zagreb, Croatia, May 10–14, 2020. Springer, Cham, Switzerland.

BGTZ23. A. R. Block, A. Garreta, P. R. Tiwari, and M. Zając. On soundness notions for interactive oracle
proofs. Cryptology ePrint Archive, Report 2023/1256, 2023.

BL90. J. C. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In Advances in
Cryptology – CRYPTO’88, Lecture Notes in Computer Science 403, pages 27–35, Santa Barbara,
CA, USA, August 21–25, 1990. Springer, New York, USA.

Blu86. M. Blum. How to prove a theorem so no one else can claim it. In The International Congress
of Mathematicians (ICM), 1986, 1986.

BN20. C. Baum and A. Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits and
their application to lattice-based cryptography. In PKC 2020: 23rd International Conference
on Theory and Practice of Public Key Cryptography, Part I, Lecture Notes in Computer Science
12110, pages 495–526, Edinburgh, UK, May 4–7, 2020. Springer, Cham, Switzerland.

BP97. N. Bari and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without
trees. In Advances in Cryptology – EUROCRYPT’97, Lecture Notes in Computer Science 1233,
pages 480–494, Konstanz, Germany, May 11–15, 1997. Springer, Berlin, Heidelberg, Germany.

BSS02. E. Bresson, J. Stern, and M. Szydlo. Threshold ring signatures and applications to ad-hoc groups.
In Advances in Cryptology – CRYPTO 2002, Lecture Notes in Computer Science 2442, pages
465–480, Santa Barbara, CA, USA, August 18–22, 2002. Springer, Berlin, Heidelberg, Germany.

CCH+19. R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, R. D. Rothblum, and D. Wichs.
Fiat-Shamir: from practice to theory. In 51st Annual ACM Symposium on Theory of Computing,
pages 1082–1090, Phoenix, AZ, USA, June 23–26, 2019. ACM Press.

CDG+20. M. Chase, D. Derler, S. Goldfeder, J. Katz, V. Kolesnikov, C. Orlandi, S. Ramacher, C. Rech-
berger, D. Slamanig, X. Wang, et al. The picnic signature scheme. Submission to NIST Post-
Quantum Cryptography project, 2020.

CDM00. R. Cramer, I. Damgård, and P. D. MacKenzie. Efficient zero-knowledge proofs of knowledge
without intractability assumptions. In PKC 2000: 3rd International Workshop on Theory and
Practice in Public Key Cryptography, Lecture Notes in Computer Science 1751, pages 354–372,
Melbourne, Victoria, Australia, January 18–20, 2000. Springer, Berlin, Heidelberg, Germany.

CDS94. R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In Advances in Cryptology – CRYPTO’94, Lecture Notes in
Computer Science 839, pages 174–187, Santa Barbara, CA, USA, August 21–25, 1994. Springer,
Berlin, Heidelberg, Germany.

CHM+20. A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. P. Ward. Marlin: Preprocessing
zkSNARKs with universal and updatable SRS. In Advances in Cryptology – EUROCRYPT 2020,
Part I, Lecture Notes in Computer Science 12105, pages 738–768, Zagreb, Croatia, May 10–14,
2020. Springer, Cham, Switzerland.

CLTZ24. M. Ciampi1, X. Liu, I. Tzannetos, and V. Zikas. Universal adaptor signatures from blackbox
multi-party computation. Cryptology ePrint Archive, Paper 2024/1773, 2024.

CPS+16a. M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi, and I. Visconti. Improved OR-composition
of sigma-protocols. In TCC 2016-A: 13th Theory of Cryptography Conference, Part II, Lecture
Notes in Computer Science 9563, pages 112–141, Tel Aviv, Israel, January 10–13, 2016. Springer,
Berlin, Heidelberg, Germany.

CPS+16b. M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi, and I. Visconti. Online/offline OR com-
position of sigma protocols. In Advances in Cryptology – EUROCRYPT 2016, Part II, Lecture
Notes in Computer Science 9666, pages 63–92, Vienna, Austria, May 8–12, 2016. Springer, Berlin,
Heidelberg, Germany.

Cra96. R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, Uni-
versity of Amsterdam, November 1996.

CV05. D. Catalano and I. Visconti. Hybrid trapdoor commitments and their applications. In ICALP
2005: 32nd International Colloquium on Automata, Languages and Programming, Lecture Notes
in Computer Science 3580, pages 298–310, Lisbon, Portugal, July 11–15, 2005. Springer, Berlin,
Heidelberg, Germany.

Dam90. I. Damgård. On the existence of bit commitment schemes and zero-knowledge proofs. In Ad-
vances in Cryptology – CRYPTO’89, Lecture Notes in Computer Science 435, pages 17–27, Santa
Barbara, CA, USA, August 20–24, 1990. Springer, New York, USA.

DFMS22. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Online-extractability in the quantum random-
oracle model. In Advances in Cryptology – EUROCRYPT 2022, Part III, Lecture Notes in
Computer Science 13277, pages 677–706, Trondheim, Norway, May 30 – June 3, 2022. Springer,
Cham, Switzerland.

DG23. Q. Dao and P. Grubbs. Spartan and bulletproofs are simulation-extractable (for free!). In
Advances in Cryptology – EUROCRYPT 2023, Part II, Lecture Notes in Computer Science
14005, pages 531–562, Lyon, France, April 23–27, 2023. Springer, Cham, Switzerland.

30



DOY22. W. Dai, T. Okamoto, and G. Yamamoto. Stronger security and generic constructions for adaptor
signatures. In Progress in Cryptology - INDOCRYPT 2022: 23rd International Conference in
Cryptology in India, Lecture Notes in Computer Science 13774, pages 52–77, Kolkata, India,
December 11–14, 2022. Springer, Cham, Switzerland.

FGQ+23. P.-A. Fouque, A. Georgescu, C. Qian, A. Roux-Langlois, and W. Wen. A generic transform from
multi-round interactive proof to NIZK. In PKC 2023: 26th International Conference on Theory
and Practice of Public Key Cryptography, Part II, Lecture Notes in Computer Science 13941,
pages 461–481, Atlanta, GA, USA, May 7–10, 2023. Springer, Cham, Switzerland.

FHJ20. M. Fischlin, P. Harasser, and C. Janson. Signatures from sequential-OR proofs. In Advances
in Cryptology – EUROCRYPT 2020, Part III, Lecture Notes in Computer Science 12107, pages
212–244, Zagreb, Croatia, May 10–14, 2020. Springer, Cham, Switzerland.

Fis01. M. Fischlin. Trapdoor commitment schemes and their applications, 01 2001.
FJR22. T. Feneuil, A. Joux, and M. Rivain. Syndrome decoding in the head: Shorter signatures from

zero-knowledge proofs. In Advances in Cryptology – CRYPTO 2022, Part II, Lecture Notes in
Computer Science 13508, pages 541–572, Santa Barbara, CA, USA, August 15–18, 2022. Springer,
Cham, Switzerland.

FS87. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Advances in Cryptology – CRYPTO’86, Lecture Notes in Computer Science 263,
pages 186–194, Santa Barbara, CA, USA, August 1987. Springer, Berlin, Heidelberg, Germany.

GGHAK22. A. Goel, M. Green, M. Hall-Andersen, and G. Kaptchuk. Stacking sigmas: A framework to
compose Σ-protocols for disjunctions. In Advances in Cryptology – EUROCRYPT 2022, Part II,
Lecture Notes in Computer Science 13276, pages 458–487, Trondheim, Norway, May 30 – June 3,
2022. Springer, Cham, Switzerland.

GHAKS23. A. Goel, M. Hall-Andersen, G. Kaptchuk, and N. Spooner. Speed-stacking: Fast sublinear zero-
knowledge proofs for disjunctions. In Advances in Cryptology – EUROCRYPT 2023, Part II, Lec-
ture Notes in Computer Science 14005, pages 347–378, Lyon, France, April 23–27, 2023. Springer,
Cham, Switzerland.

GKK+22. C. Ganesh, H. Khoshakhlagh, M. Kohlweiss, A. Nitulescu, and M. Zajac. What makes fiat-
shamir zkSNARKs (updatable SRS) simulation extractable? In SCN 22: 13th International
Conference on Security in Communication Networks, Lecture Notes in Computer Science 13409,
pages 735–760, Amalfi, Italy, September 12–14, 2022. Springer, Cham, Switzerland.

GMW91. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity for all
languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.

GOP+22. C. Ganesh, C. Orlandi, M. Pancholi, A. Takahashi, and D. Tschudi. Fiat-shamir bullet-
proofs are non-malleable (in the algebraic group model). In Advances in Cryptology – EU-
ROCRYPT 2022, Part II, Lecture Notes in Computer Science 13276, pages 397–426, Trondheim,
Norway, May 30 – June 3, 2022. Springer, Cham, Switzerland.

GOP+25. C. Ganesh, C. Orlandi, M. Pancholi, A. Takahashi, and D. Tschudi. Fiat-shamir bulletproofs
are non-malleable (in the random oracle model). J. Cryptol., 38(1):11, 2025.

GSST24. P. Gerhart, D. Schröder, P. Soni, and S. A. K. Thyagarajan. Foundations of adaptor signatures.
In Advances in Cryptology – EUROCRYPT 2024, Part II, Lecture Notes in Computer Science
14652, pages 161–189, Zurich, Switzerland, May 26–30, 2024. Springer, Cham, Switzerland.

GW11. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In 43rd Annual ACM Symposium on Theory of Computing, pages 99–108, San
Jose, CA, USA, June 6–8, 2011. ACM Press.

GWC19. A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over Lagrange-bases
for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report
2019/953, 2019.

HS20. A. Haque and A. Scafuro. Threshold ring signatures: New definitions and post-quantum security.
In PKC 2020: 23rd International Conference on Theory and Practice of Public Key Cryptography,
Part II, Lecture Notes in Computer Science 12111, pages 423–452, Edinburgh, UK, May 4–7, 2020.
Springer, Cham, Switzerland.

HV20. C. Hazay and M. Venkitasubramaniam. On the power of secure two-party computation. Journal
of Cryptology, 33(1):271–318, January 2020.

IKOS07. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure multiparty
computation. In 39th Annual ACM Symposium on Theory of Computing, pages 21–30, San Diego,
CA, USA, June 11–13, 2007. ACM Press.

KKW18. J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowledge with appli-
cations to post-quantum signatures. In ACM CCS 2018: 25th Conference on Computer and
Communications Security, pages 525–537, Toronto, ON, Canada, October 15–19, 2018. ACM
Press.

KLP22. A. Kim, X. Liang, and O. Pandey. A new approach to efficient non-malleable zero-knowledge. In
Advances in Cryptology – CRYPTO 2022, Part IV, Lecture Notes in Computer Science 13510,
pages 389–418, Santa Barbara, CA, USA, August 15–18, 2022. Springer, Cham, Switzerland.

31



Kol24. D. Kolonelos. Succinct Cryptographic Commitments with Fine-Grained Openings for Decentral-
ized Environments. PhD thesis, Universidad Politécnica de Madrid, 2024.

KPT23. M. Kohlweiss, M. Pancholi, and A. Takahashi. How to compile polynomial IOP into simulation-
extractable SNARKs: A modular approach. In TCC 2023: 21st Theory of Cryptography Con-
ference, Part III, Lecture Notes in Computer Science 14371, pages 486–512, Taipei, Taiwan,
November 29 – December 2, 2023. Springer, Cham, Switzerland.

KZ20. D. Kales and G. Zaverucha. Improving the performance of the Picnic signature scheme. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020(4):154–188, 2020.

KZ22. D. Kales and G. Zaverucha. Efficient lifting for shorter zero-knowledge proofs and post-quantum
signatures. Cryptology ePrint Archive, Report 2022/588, 2022.

KZG10. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their
applications. In Advances in Cryptology – ASIACRYPT 2010, Lecture Notes in Computer Science
6477, pages 177–194, Singapore, December 5–9, 2010. Springer, Berlin, Heidelberg, Germany.

LPS24. H. Lipmaa, R. Parisella, and J. Siim. On knowledge-soundness of plonk in ROM from falsifiable
assumptions. Cryptology ePrint Archive, Paper 2024/994, 2024.

LTZ24. X. Liu, I. Tzannetos, and V. Zikas. Adaptor signatures: New security definition and a generic con-
struction for NP relations. In Advances in Cryptology - ASIACRYPT 2024 - 30th International
Conference on the Theory and Application of Cryptology and Information Security, Kolkata, In-
dia, December 9-13, 2024, Proceedings, Part II, Lecture Notes in Computer Science 15485, pages
168–193. Springer, 2024.

Poe17. A. Poelstra. Scriptless scripts, 2017. https://download.wpsoftware.net/bitcoin/wizardry/
mw-slides/2017-03-mit-bitcoin-expo/slides.pdf.

RRR16. O. Reingold, G. N. Rothblum, and R. D. Rothblum. Constant-round interactive proofs for
delegating computation. In 48th Annual ACM Symposium on Theory of Computing, pages 49–62,
Cambridge, MA, USA, June 18–21, 2016. ACM Press.

Set20. S. Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In Ad-
vances in Cryptology – CRYPTO 2020, Part III, Lecture Notes in Computer Science 12172,
pages 704–737, Santa Barbara, CA, USA, August 17–21, 2020. Springer, Cham, Switzerland.

Sha79. A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.
Ste06. J. Stern. A new paradigm for public key identification. IEEE Trans. Inf. Theor., 42(6-

P1):17571768, sep 2006.
ZLH+22. G. Zeng, J. Lai, Z. Huang, Y. Wang, and Z. Zheng. DAG-Σ: A DAG-based sigma protocol for

relations in CNF. In Advances in Cryptology – ASIACRYPT 2022, Part II, Lecture Notes in
Computer Science 13792, pages 340–370, Taipei, Taiwan, December 5–9, 2022. Springer, Cham,
Switzerland.

A Composition of Multi-Round Protocols via CDS

A.1 Monotone Access Structure

First we recall the definition of the monotone access structure from [CDS94].

Definition 11 (Monotone Access Structure [CDS94]). An access structure Γ ⊂ 2M defined
over a set M is called a monotone access structure if for all A ∈ Γ and for all B ⊃ A it holds that
B ∈ Γ . Sets in Γ are called authorized sets, and sets not in Γ are called unauthorized sets.

Definition 12 (Dual Structure [CDS94]). Let Γ be an access structure defined over a set M . If
A ⊆M , then Ā denotes the complement of A in M . Now Γ ∗, the dual access structure is defined as
follows:

A ∈ Γ ∗ ⇔ Ā /∈ Γ .

The dual Γ ∗ of a monotone access structure is also monotone, and satisfies (Γ ∗)
∗
= Γ .

We also recall the following proposition from [CDS94].

Proposition 5 ([CDS94]). Let Γ be monotone. A set is qualified in Γ if and only if it has a
non-empty intersection with every qualified set in Γ ∗.

32

https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf


A.2 Secret Sharing Scheme

A semi-smooth perfect secret sharing scheme [CDS94], SSSΓ , over domain S and access structure Γ
over a set M consists of four polynomial-time algorithms, Share, Rec, CheckShares and Complete that:

ShareΓ (s)→ {sj}j∈M : is a probabilistic algorithm that takes secret s ∈ S and outputs shares
{sj}j∈M . Let D(s) the distribution of outputs from ShareΓ (s).

RecΓ ({sj}j∈A)→ s : is a reconstruction algorithm that takes a qualified set of shares {sj}j∈A, A ∈ Γ ,
and recovers secret s ∈ S.

CheckSharesΓ (s, {sj}j∈M ) : is a share verification algorithm that takes secret s and all shares {sj}j∈M ,
returns 1 or 0.

CompleteΓ (s, {sj}j∈A) : takes shares of a non-qualified set of shares {sj}j∈A for A /∈ Γ and secret s,
and outputs {sj}j∈Ā that {sj}j∈M constitute a complete set of shares of s.

It provides the following properties:

Correctness. For all s ∈ S, {sj}j∈M ← ShareΓ (s), and A ∈ Γ , it holds that s← Rec({sj}j∈A).
Perfect hiding. For any A /∈ Γ , s ∈ S, and {sj}j∈M ← ShareΓ (s), the distribution of {sj}j∈A ,

denoted by DA, is independent of s.
Consistency testing. CheckSharesΓ (s, {sj}j∈M ) returns 1 if and only if, for all A ∈ Γ , RecΓ ({sj}j∈A) =

s.
Share completion. For any A /∈ Γ , s ∈ S, {sj}j∈A ←$ DA, and {sj}j∈Ā ← CompleteΓ (s, {sj}j∈A),

it holds that 1← CheckSharesΓ (s, {sj}j∈M ) and {sj}j∈M are distributed according to D(s).

Efficient SSSΓ exists for Γ being a threshold structure [Sha79], monotone circuit [BL90], and
monotone span program [CDM00]. If, for every non-qualified set A /∈ Γ , DA equals uniform distribu-
tion over the corresponding share domain, then it is called a smooth perfect secret sharing scheme.
Shamir’s secret sharing scheme for threshold structures is an example [Sha79].

A.3 Insecurity of Naïve Multi-Round CDS

We describe CDS composition [CDS94] in a general form for 2µ + 1-move protocols. It matches the
original composition when µ = 1. We warn that the protocol is not sound for µ ≥ 2 and k(> 3)-
special sound as mentioned earlier, and we only introduce it to establish notation and illustrate the
problematic of the naïve composition.

Let Πj be a (2µ+1)-move public-coin proof protocol for relation Rj with a tuple of three algorithms
(Aj ,Zj ,Vj) (Definition 1), and (xj , wj) be a pair of instance and witness satisfying Rj(xj , wj) = 1.
Let Γ be a monotone access structure over [n], and RΓ ((x

1, . . . , xn), (w1, . . . , wn)) be a compound
relation that returns 1 if and only if there exists A ∈ Γ that Rj(xj , wj) = 1 for all j ∈ A. We denote
the special honest verifier zero-knowledge simulator of Πj by Simj . Given Πj for j ∈ [n], an access
structure Γ , and a semi-smooth secret sharing scheme SSSi,Γ∗ over a secret domain Si and a share
domain Ci for i ∈ [µ], a naïve CDS composition constructs Prover and Verifier as follows where steps
2i and 2i+ 1 are repeated for i ∈ [µ]:

Πcds′

µ,Γ (Prover({xj}j∈[n], {wj}j∈A),Verifier({xj}j∈[n])):

Step 1. For each i ∈ [µ], Prover samples {cji}j∈Ā ← DĀ. Then Prover calls the special honest
verifier zero-knowledge simulator (aj , {zji }i∈[µ]) ← Simj(xj , {cji}i∈[µ]). For those j ∈ A,
Prover commits to aj by running aj ← Aj(xj ; rj). Prover sends {aj}j∈[n] to Verifier.

Step 2i. Verifier samples ci
$←− Si, and sends it to Prover.

Step 2i+ 1. Prover completes shares by {cji}j∈[n] ← Completei,Γ∗(ci, {cji}j∈Ā), and computes zji ←
Zj(xj , wj , {cjm}m∈[i]; rj) for all j ∈ A. It then sends {cji , z

j
i }j∈[n] to Verifier.

Step final. Verifier runs Vj(xj , aj , {cji}i∈[µ], {z
j
i }i∈[µ]) for j ∈ [n] and CheckSharesi,Γ∗(ci, {cji}j∈[n])

for i ∈ [µ], and outputs 1 if all outputs are 1, outputs 0, otherwise.

33



It is shown in [CDS94] that, if every Πj is a 3-move public-coin proof protocol that is 2-special
sound and honest verifier zero-knowledge, and Γ admits a smooth perfect secret sharing scheme, then
the above protocol Πcds′

1,Γ is a Σ-protocol for relation RΓ . If every Πj is honest verifier zero-knowledge,
the above can be augmented to accept an access structure Γ that admits a smooth secret sharing
scheme. It is done by modifying the prover’s first step in a way that it first runs an HVZK simulator
to directly obtain challenge cji for j ∈ Ā.

When µ ≥ 2, however, Πcds′

µ,Γ is not sound anymore. Consider a simple disjunctive access structure
Γ = {{A}, {B}, {A,B}}. A cheating prover who knows witnesses for both A and B could strategically
decide, round by round, whether to fix the challenge for the A-part or the B-part. For example, it
might fix cA1 and cB2 . When an extractor tries to rewind this prover to get a full tree of transcripts
(required for multi-round special soundness), it immediately fails. Rewinding on challenge c1 would
never change cA1 (it was fixed by the prover), and rewinding on c2 would never change cB2 . Consequently,
a complete extraction tree for either A or B cannot be formed, breaking the soundness of the protocol.

B Composition of Multi-Round Protocols via Share-then-Hash

To support the composition of an arbitrary polynomial number of instances, we generalize the Share-
then-Hash method proposed in [AAB+20] with the help of a collision resistant hash (CRH) H :
{0, 1}∗ 7→ Ci∗ . Intuitively, rather than straightly use sampled values sj as challenges cji∗ = sj for
simulated transcripts, the prover is now required to obtain challenges cji∗ ← H(Γ, ~x, j, sj) from the
hash function.

The incorporation of CRH into protocol design introduces an inherent risk of extraction failure
due to the adversary’s potential successful guess and the hash collisions. Conversely, the security loss
associated with perfect composition - previously exponential in nature - can be substantially reduced
to a polynomial factor. To accommodate this probabilistic limitation while maintaining security guar-
antees, we adapt the predicate special soundness framework proposed in [AAB+24] and recall its
relation to Fiat-Shamir knowledge soundness. Our composition with Share-then-Hash is presented in
Figure 3. The security of the protocol is stated in Theorem 4.

B.1 Extending Predicate Special Soundness

We first recall the notations from [AAB+24].

Definition 13 (Set of Partial Accepting Trees). Let µ, k1, . . . , kµ ∈ N and let Π = (P, V ) be a
(2µ + 1)-move public-coin proof for a relation R. Additionally, let m ∈ [µ] and ` ∈ [km]. Let Cm be
the m-th challenge set.

– We define Tµ+1 be the set of possible accepting transcripts for Π.
– We define T(`)

m+1 be the set of possible accepting (1, . . . , 1, `, km+1, . . . , kµ)-trees of transcripts for
Π, and denote Tm = T(km)

m+1, i.e., the set of possible accepting (1, . . . , 1, km, . . . , kµ)-trees. For each
tree t ∈ T(`)

m+1, t can be parsed as a tuple of ` sub-trees t = (t1, . . . , t`) ∈ T`
m+1.

– For t ∈ Tm+1, we define trunk(t) to be the prefix (a, c1, z1, . . . , cm, zm) shared by all the transcripts
in t, and chali(t) for i ∈ [m] to be the i-th challenge ci ∈ Ci shared by the transcripts.

– Let C(`)m be the set of tuples (c1, . . . , c`) ∈ Cm with ci1 6= ci2 for all i1 6= i2. These are all the
combinations of m-th challenges that may occur in T(`)

m+1.

To extend the notion of special soundness, [AAB+24] introduced challenge predicates for a set
of challenges. Intuitively, their challenge predicate checks whether a subset of challenges defining
branches in the same level satisfies desired properties for extracting witness. In slightly more detail,
the `-th challenge predicate on each level takes the first ` − 1 challenges c1, . . . , c`−1, and checks
that the current challenge c` falls in a “good” domain of challenges determined by the first ` − 1
challenges. While this definition was sufficient for analyzing lattice-based proof systems in [AAB+24],
it turns out that the analysis of Share-then-Hash demands challenge predicates with a different format
of inputs. Looking ahead, a set of good challenges for Share-then-Hash is determined by the first
` − 1 responses z1, . . . , z`−1 following the challenges c1, . . . , c`−1. We therefore generalize the notion
of challenge predicates in such a way that they take subtrees t1, . . . , t`−1 as input, encompassing

34



response-dependent good challenge domains.15 Although the analysis of Share-then-Hash does not
require entire subrees, we provide a more general form of definition.16 Furthermore, while [AAB+24]
required every predicate to be efficiently computable, their knowledge extractor for Fiat-Shamir-
transformed protocols [AAB+24, Appendix H, Extractor 1] in fact only needs the ability to check
whether a chain of level m predicates Φchal

m,1, . . . , Φ
chal
m,km

simultaneously output 1 on a fixed set of
subtrees. Therefore, we limit the computability requirement to a chain of predicates, rather than
assuming every predicate is efficiently checkable. The definition below is of independent interest and
may enable the analysis of other multi-round protocols with more complex extraction criteria.

Definition 14 (Generalized Challenge Predicates). Let m ∈ [µ] and ` ∈ [km]. A generalized
challenge predicate on level m for the `-th challenge is a deterministic function Φchal

m,` : T(`−1)
m+1 ×

Cm → {0, 1}, where the first input is assumed to be empty if ` = 1. We say that a chain of level m
challenge predicates is efficiently checkable if there exits a polynomial-time algorithm that, on input
(t1, . . . , tkm

) ∈ Tm, checks whether there exists ` ∈ [km] such that Φchal
m,`(t1, . . . , t`−1, c`) = 0.

Definition 15 (Failure Density of Generalized Challenge Predicates). Let m ∈ [µ] and
` ∈ [km]. Define a set of good subtrees

GoodTreem,`−1 =
{
(t1, . . . , t`−1) ∈ T(`−1)

m+1

∣∣∣ ∀i ∈ [`− 1] : Φchal
m,i(t1, . . . , ti−1, ci) = 1

}
using the shorthand ci = chalm(ti). For fixed ` − 1 subtrees in T(`−1)

m+1 , consider the set of bad `-th
challenges such that Φchal

m,` fails,

BadChalm,`(t1, . . . , t`−1) =
{
c ∈ Cm \ {c1, . . . , c`−1}

∣∣ Φchal
m,`(t1, . . . , t`−1, c) = 0

}
.

The challenge predicate Φchal
m,` has failure density pchalm,` if it always holds that |BadChalm,`(t1, . . . , t`−1)| ≤

pchalm,`|Cm| for all (t1, . . . , t`−1) ∈ GoodTreem,`−1.

In the following, we adapt the predicate system of [AAB+24] with generalized challenge predicates,
while omitting commitment predicates.

Definition 16 (System of Predicates). A predicate system Φ for a (k1, . . . , kµ)-tree structure
is a collection of predicates for each level in the tree. The m-th level has km challenge predicates
Φchal
m,1, . . . , Φ

chal
m,km

. We recursively define a series of predicate Φm for m ∈ [µ + 1], describing whether
a partial tree of transcripts satisfies the predicate system. For a single accepting transcript t ∈ Tµ+1

we let Φµ+1(t) = 1. For all larger subtrees t = (t1, . . . , tkm
) ∈ Tm for some m ∈ [µ], then Φm(t) = 1

if and only if ∧
`∈[km]

(
Φm+1(t`) = 1 ∧ Φchal

m,`(t1, . . . , t`−1, c`) = 1
)
.

For notational convenience, we let Φ = Φ1.

Definition 17 (Predicate Special Soundness). Let Π = (P, V ) be a 2µ+ 1-message public-coin
argument for a relation R. We say that Π is (~k,Φ)-predicate-special-sound for ~k = (k1, . . . , kµ) and
a predicate system Φ if there exists a polynomial time algorithm which given a statement x and a
~k-tree of accepting transcripts t for this statement with Φ(t) = 1 always outputs a witness w such that
R(x,w) = 1.

Adapting Theorem 5.1 of [AAB+24], we immediately obtain the following theorem on Fiat-Shamir
knowledge soundness.
15 We remark the idea here is similar in spirit to the useful challenge structure of Attema et al. [AKLY24],

where a set of useful challenges are determined with respect to a sequence of transcripts that have been
found.

16 It is more general in the sense that one can always define a predicate that examines part of the subtree
relevent to determination of good challenges.

35



Theorem 6 ([AAB+24] (adapted)). Let Π = (P, V ) be a (~k,Φ)-predicate-special-sound argu-
ment for a relation R with the corresponding failure density {pchalm,`}m∈[µ],`∈[km]. If a chain of level
m challenge predicates Φchal

m,1, . . . , Φ
chal
m,km

is efficiently checkable for all m ∈ [µ], then the Fiat-Shamir
transformation FS[Π] is adaptively knowledge sound for the relation R with knowledge error

2(Q+ 1)

µ∑
i=1

max

(
ki − 1

|Ci|
,

ki∑
`=1

pchali,`

)
,

where Q is the number of random oracle queries made by the prover. The number of times that the
knowledge extractor invokes the prover is in expectation at most K +Q(K − 1), where K =

∏µ
i=1 ki.

Remark 3. While our generalized challenge predicate now takes subtrees as inputs instead of in-
dividual challenges, this modification does not affect the knowledge error analysis of [AAB+24].
This is because their extractor [AAB+24, Appendix H, Extractor 1]—which is itself adapted from
[AFK22]—always obtains the first `− 1 subtrees (each containing one challenge in the current level)
in a depth-first manner before sampling `-th challenge. Thus, the extractor’s failure probability can
be conditioned on the existing `− 1 subtrees rather than on `− 1 individual challenges.

B.2 Analysis of Share-then-Hash in the Predicate Special Soundness Framework

To see why we need generalized challenge predicates, we first sketch the special soundness proof of
Share-then-Hash. As in the proof of multi-round CDS, we set k′i = ki for i > i∗ and k′i = n(ki− 1)+1
for i < i∗ while parameterizing the number of critical round branches by k′i∗ = τ ≥ n(ki∗−2)+2. Now,
consider the set Ti∗ of possible (1, . . . , 1, k′i∗ , . . . , k

′
µ)-trees for the protocol Πsth

Γ . Fix a subtree t =

(t1, . . . , tτ ) ∈ Ti∗ , where the i∗-th level challenge-response of each t` is denoted by (s`, {zj` , s
j
`}j∈[n]).

(Note we omit the subscript i∗ here.) Essentially, for witness extraction to succeed, we require that (1)
CheckSharesΓ∗(s`, {sj`}j∈[n]) = 1 for all ` = 1, . . . , τ , and (2) for all B ∈ Γ ∗, there exists j ∈ B such
that |{sj1, . . . , sjτ}| ≥ ki∗ . (1) is already satisfied for any accepting transcript. Once (2) is satisfied,
we can then rely on Proposition 5 to show the existence of a qualified set A ∈ Γ by setting A =⋃

B∈Γ∗{j ∈ B : |{sj1, . . . , sjτ}| ≥ ki∗}. This implies that for each j ∈ A, one can find at least ki∗
distinct shares out of τ branches. Assuming collision-resistance of the hash function H, we can then
conclude that there are at least ki∗ distinct challenges for each j ∈ A. In what follows, we formally
define Φchal

i∗,1, . . . , Φ
chal
i∗,τ such that (2) is satisfied if they all output 1.

Generalized Challenge Predicates and Failure Densities Let us denote a set Sj
` = {sj1, . . . , s

j
`} of j-th

shares for given subtrees (t1, . . . , t`) ∈ T(`)
i∗+1, and RecΓ∗({Sj

`}j∈B) as a shorthand for {RecΓ∗({sj}j∈B)}sj∈Sj
`
.

Intuitively, this denotes a set of secrets reconstructed from every possible combination of |B| shares
chosen from

∏
j∈B Sj

` . It is then easy to see that |RecΓ∗({Sj
`}j∈B)| =

∏
j∈B |S

j
` |. We now define the

following generalized challenge predicates:

– For ` = 1, Φchal
i∗,`(s`) returns 1 for any s` ∈ S

– For 1 < ` ≤ k′i∗ , where k′i∗ = τ ≥ n(ki∗ − 2) + 2, Φchal
i∗,`(t1, . . . , t`−1, s`) returns 1 if the following

conditions are satisfied and returns 0 otherwise:

∀B ∈ Γ ∗ :
(
∃j ∈ B : |Sj

`−1| ≥ ki∗
)
∨ s` /∈ RecΓ∗({Sj

`−1}j∈B) (2)

Before proving predicate special soundness, we prove the following utility lemma. By Lemma 1,
it is also easy to see that a chain of the above predicates is efficiently checkable. That is, given
(t1, . . . , tτ ) ∈ Ti∗ , one can efficiently check if there exists a failing predicate by checking {j ∈ [n] :
|Sj

τ | ≥ ki∗} ∈ Γ .

Lemma 1. Let (t1, . . . , tτ ) ∈ Ti∗ be a (1, . . . , 1, τ, ki∗+1, . . . , kµ)-tree of accepting transcripts and let
τ ≥ n(ki∗ − 2) + 2. If Φchal

m,`(t1, . . . , t`−1, s`) = 1 for all ` ∈ [τ ], where s` is the i∗-th round challenge
of t`, then there exists a qualified set A ∈ Γ such that for all j ∈ A, |Sj

τ | ≥ ki∗ .

Proof. Let {sj`}j∈[n] be a set of shares that reconstructs to the critical-round challenge s` in t`. Since
each t` is accepting, we have that CheckSharesΓ∗(s`, {sji}j∈[n]) = 1 for every ` ∈ [τ ]. We show that, for

36



every B ∈ Γ ∗, there exists j ∈ B such that |Sj
τ | ≥ ki∗ . If the predicate Φchal

i∗,` outputs 1 by satisfying the
first condition of (2) for some `, then this statement is trivially true. Suppose the predicate outputs
1 by satisfying the second condition of (2) for all ` ∈ [τ ]. For any ` > 1 and B ∈ Γ ∗, we have that
s` = RecΓ∗({sj`}j∈B) by the consistency testing property of SSSΓ∗ . If s` /∈ RecΓ∗({Sj

`−1}j∈B), then it
must be that sj` /∈ Sj

`−1 for some j ∈ B. Thus we guarantee that the sum
∑

j∈B |S
j
` | is monotonically

increasing with respect to `. Since
∑

j∈B |S
j
1| = |B|, we have that∑

j∈B
|Sj

τ | ≥ |B|+ τ − 1.

Thus, by setting |B| + τ − 1 ≥ |B|(ki∗ − 1) + 1, we can guarantee that for any B ∈ Γ ∗, there exists
some j ∈ B such that |Sj

τ | ≥ ki∗ . Since |B| ≤ n, we can set τ ≥ n(ki∗ − 2) + 2.
Finally, let A =

⋃
B∈Γ∗ JB , where JB denotes a set of j ∈ B such that |Sj

τ | ≥ ki∗ . As each JB
is guaranteed to be non-empty, we have that A ∩ B 6= ∅ for every B ∈ Γ ∗, which implies A ∈ Γ by
Proposition 5.

Next, we find the failure density of the above predicates.

Lemma 2. The level i∗ challenge predicates pchali∗,1, . . . , p
chal
i∗,k′

i∗
have the following failure densities:

pchali∗,` =

{
0 if ` = 1
2n·(ki∗−1)n

|S| if 1 < ` ≤ k′i∗

Proof. The case ` = 1 is trivial. For 1 < ` ≤ k′i∗ , we first fix ` − 1 “good” subtrees (t1, . . . , t`−1) ∈
GoodTreei∗,`−1. If Φchal

i∗,`−1 outputs 1 by meeting the first condition of (2) for some B ∈ Γ ∗, then the
subsequent Φchal

i∗,` always outputs 1 for the same B regardless of s`. Thus, to find the uppder bound on
the size of bad challenges, we assume that for all B ∈ Γ ∗, s`−1 /∈ RecΓ∗({Sj

`−2}j∈B). By the definition
of Φchal

i∗,`, we have that

|BadChali∗,`(t1, . . . , t`−1)|

≤
∑

B∈Γ∗

∣∣∣{s ∈ S | (∀j ∈ B : |Sj
`−1| ≤ ki∗ − 1) ∧ s ∈ RecΓ∗({Sj

`−1}j∈B)
}∣∣∣

≤
∑

B∈Γ∗

(ki∗ − 1)|B| ≤ 2n · (ki∗ − 1)n.

Thus, we obtain the failure density pchali∗,` = 2n · (ki∗ − 1)n/|S|.

Analysis of Predicate Special Soundness We are now ready to prove our main result, Theorem 4.

Proof. Completeness. It directly follows from the completeness and critical-round special honest
verifier zero-knowledge of Πj . We note that CompleteΓ∗ works for the set Ā of shares {sj}j∈Ā since
Ā /∈ Γ ∗ when A ∈ Γ .

Critical-Round Special Honest Verifier Zero-Knowledge. Consider the following simulator for
Πsth

Γ that proceeds as follows, given as input {xj}j∈[n] ∈ LRΓ
, {ci}i 6=i∗ and s ∈ S:

1. Compute {sj}j∈[n] ← ShareΓ∗(s)

2. For all j ∈ [n]: cji∗ = H(Γ, ~x, j, sj) and (stj1, a
j)← SimAj(xj , cji∗)

3. For all i ∈ [µ] and j ∈ [n]: (stji+1, z
j
i )← SimZj(stji , c

j
i ), where cji = ci if i 6= i∗

4. Output ({aj}j∈[n], {ci}i∈[µ]\{i∗}, {zji }i∈[µ],j∈[n], {sj}j∈[n], s)

The perfect hiding and share completion properties of SSSΓ∗ imply that the distribution of {sj}j∈[n]
generated as above is identical to that of a real transcript. Since {xj}j∈[n] ∈ LRΓ

, for j ∈ Ā, the
simulator generates aj , zji exactly as a real prover; for j ∈ A, the distribution of aj , zji output by
CRSHVZK simulators for Πj is indistinguishable with the one generated by a real prover. Grouping
Step 1-2 together as SimA and Step 3 as SimZ, respectively, the above algorithm is indeed a valid
CRSHVZK simulator.

37



Predicate Special Soundness. The proof can be viewed as generalization of [CDS94]. However, we
must carefully choose the special soundness parameters for Πsth

Γ in such a way that the corresponding
tree of accepting transcripts contains a well-structured tree for every j ∈ A ∈ Γ from which the
extractor Extj for Πj can successfully extract witness for xj . We construct an efficient extractor
Extsth that determines some A ∈ Γ and then internally runs sub-extractors {Extj}j∈A to output a
valid set of witnesses w = {wj}j∈A, given as input any ~k′-tree T sth of accepting transcripts.

We first recall the structure of the tree T sth for Πsth
Γ . Each path in T sth defines a transcript

({aj}j∈[n], {ci}i∈[µ]\{i∗}, {zji }i∈[µ],j∈[n], s, {s
j}j∈[n])

which can be decomposed into n individual transcripts:

{(aj , {ci}i∈[µ]\{i∗}, cji∗ , {z
j
i }i∈[µ])}j∈[n]

where cji = ci for i 6= i∗ and cji∗ = H(Γ, ~x, j, sj) for j ∈ [n]. Thus, T sth can also be decomposed
into n individual trees, T 1, . . . , Tn, where every path of T j is derived from decomposition of the
corresponding path in T sth. We first observe the following properties:

1. In non-critical rounds i 6= i∗, the challenges in the decomposed trees T j for j ∈ [n] remain the
same as the corresponding challenges in T sth.

2. In round i∗, the shares sj in the decomposed trees T j for j ∈ [n] pass the consistency check
performed by CheckSharesΓ∗ with respect to the corresponding secret s in T sth.

The analyses of Case 1 (i∗ < i ≤ µ) and Case 3 (i < i∗) are identical to those of Theorem 3.
To prove Case 2 (i = i∗), we show the following statement: if k′i∗ = τ ≥ n(ki∗−2)+2, then for any

(1, . . . , 1, k′i∗ , ki∗+1, . . . , kµ)-subtree T sth
i∗ = (t1, . . . , tk′

i∗
) for Πsth

Γ such that Φchal
i∗,`(t1, . . . , t`−1, s`) = 1

for ` = 1, . . . , k′i∗ , there exists A ∈ Γ such that for every j ∈ A, the corresponding decomposed subtree
T j
i∗ contains a (1, . . . , 1, ki∗ , . . . , kµ)-subtree T̃ j

i∗ for statement xj . By Lemma 1, we have that there
exists A ∈ Γ such that for all j ∈ A, the corresponding shares sj1, . . . , s

j
k′
i∗

are pairwise distinct. Thus,
assuming that the outputs cji∗,` of the hash function H(Γ, ~x, j, sj`) never collide for distinct inputs, for
each j ∈ A ∈ Γ , one can derive from T j

i∗ a (1, . . . , 1, ki∗ , . . . , kµ)-subtree T̃ j
i∗ of accepting transcripts

for statement xj .

Extractor. Combining Case 1-3 above, there exists A ∈ Γ such that for every j ∈ A, the corresponding
decomposed tree T j contains a ~k-tree T̃ j for Πj . The extractor Extsth then simply runs sub-extractors
Extj on T̃ j to extract witnesses for all j ∈ A. As Πj is ~k-SS, every Extj always succeeds in extracting
witness.

C Other Definitions

Definition 18 (Honest-Verifier Zero-Knowledge). An interactive proof system is honest-verifier
zero-knowledge if there exists a polynomial-time algorithm Sim (simulator) that, for any (x,w) ∈ LRW ,
distribution of outputs from Sim(x) and that of transcripts observed in 〈P (w), V 〉(x) are indistinguish-
able.

For more notation related to the (k1, . . . , kµ)-tree of transcripts T . Outside the notations intro-
duced in Section 3.2, some extra notations are introduced below to support other definitions. By
nonleaves(T ), we denote all node indices of T except for the leaves. Let nodes(T, i) denote the set of
node indices in depth i of T , e.g., nodes(T, 2) = {(1, 1), (1, 2), . . . , (1, k1)}. For every Ci and ki > 1,
we denote sets of pairwise distinct ki challenges by

Cdiski
:= {(c1, . . . , cki

) | ∀j, `(6= j) ∈ [ki], (cj , c`) ∈ Ci × Ci, cj 6= c`}.

Let pnum(T, i) denote the number of parent nodes at level i, i.e., pnum(T, i) =
∏i

j=1 kj−1 for k0 = 1.

38



Definition 19 (Statistical (k1, . . . , kµ)-Special Soundness [ABO+24]). A (2µ + 1)-round
public-coin proof protocol is statistical (k1, . . . , kµ)-special sound with knowledge error εstss if there
exists a polynomial-time algorithm Ext such that for any adversary A, it holds that:

Pr


T is a (k1, . . . , kµ)-tree
of accepting transcripts
∧
(
∀i ∈ [µ− 1],∀id ∈

#   »

[ki],

chal(T , id) = {cid||j}j∈[ki+1]

)
∧ R(x,w) = 0

:
∀i ∈ [µ],∀id ∈

#   »

[ki], cid ←$ Ci
(x,T )← A({cid}id∈ #    »

[kµ]
)

w ← Ext(x,T )

 ≤ εstss,

where
#   »

[ki] = 1× [k1]× · · · × [ki]. A tree of transcript is called “bad” if the extractor fails.

It is stressed that error bound εstss is independent of messages from the prover. It is shown
in [ABO+24] that, a parallel repetition of (k1, . . . , kµ)-special sound protocol results in a statistical
(k1, . . . , kµ)-special sound protocol with negligible statistical soundness error. They also showed that
it constitutes a proof of knowledge system.

Definition 20 (Round-by-Round Soundness [CCH+19,FGQ+23]). Let Π = (A,Z,V) be
(2µ + 1)-move public-coin proof protocol. We say that Π is round-by-round sound if, there exists a
“doomed set” D ∈ {0, 1}∗ such that,

– If x /∈ L, then (x,∅) ∈ D, where ∅ denotes the empty transcript.
– For all (2`)-move partial transcript τ = (a, c1, z1, . . . , z`−1, c`), such that (x, τ) ∈ D, for all next

message z` given by the prover, there exists a negligible function negl(·) such that

Pr
c`+1←C`+1

[(x, τ, z`, c`+1) /∈ D] ≤ negl(λ).

– For any x, any (2µ)-move partial transcript τ and any last prover message zµ, if (x, τ) ∈ D then
V (x, τ, zµ) = 0.

A Σ-protocol [Cra96] is a three-move public-coin proof protocol that is 2-special sound and special
honest verifier zero-knowledge. The 2-special soundness implies optimal soundness defined as follows.

Definition 21 (Optimal Soundness [FHJ20]). A three-move public-coin proof protocol for re-
lation R is optimally sound if, for any x /∈ LR, and a ∈ {0, 1}∗, there exists at most one challenge
c ∈ C that there exists z that V(x, a, c, z) = 1 holds.

Definition 22 (Predicate Special Soundness [AAB+24]). Let Π = (P,V) be a 2µ+ 1-message
public-coin argument of knowledge for a relation RPP. We say that Π is (K,Φ)-predicate-special sound
for K = (k1, · · · ,kµ) and a predicate system Φ if there exists a polynomial time algorithm which given
a statement x and a K-tree of transcripts for this statement with Φ(t) = 1 always outputs a witness
w such that w ∈ RPP(x).

Definition 23 (G-soundness [DFMS22]). Let G ⊆ 2C be increasing. For a non-empty G, a (2`+
1)-move identification protocol Π is called G-sound if there exists a probabilistic polynomial time
algorithm ExtG that takes as input

– a public key pk generated by Keygen, and
– a set T of transcripts whose
• first message are the same, that is, ∀t, t′ ∈ T , t<1 = t′<1,
• challenge sequences c(t), t ∈ T form a set {c(t), t ∈ T } ∈ G,
• transcripts pass verification, that is, ∀t̂ ∈ T , VrtΠ(pk, t̂) = 1,

and outputs a secret key sk such that (sk, pk) ∈ Keygen. We say G is an extraction structure for
Π.

Definition 24 (Special Unsoundness [AFK23,BGTZ23]). Let Π = (P,V) be (2µ + 1)-move
public-coin proof protocol, and let (`1, . . . , `µ) ∈ Nµ. We say that Π has (`1, . . . , `µ)-special unsound-
ness if there exists a dishonest prover A of the following form and, so that in the execution with V
and input x the following holds:

39



– A starts off in active mode, which is so that in every round i, when A sends the message mi,
there exists a subset Li ⊆ Ci such that |Li| = `i (defined as a function of the state of A at that
point) such that if the subsequent challenge ci is in Li, then A switches into passive mode.

– If A switches into passive mode, then it remains in passive mode until the end of the protocol, and
V accepts at the end of the protocol.

Definition 25 (k-Zero Knowledge [GKK+22,DG23]). Let Π = (P, V ) be a (2µ + 1)-move
public-coin interactive proof protocol with HVZK simulator Sim, and k ∈ [µ]. Let ΠFS be its associated
FS-transformed NIZK. We say ΠFS satisfies (perfect) k-zero knowledge ( k-ZK) if there exists a zero-
knowledge simulator SimFS,k that only needs to program the random oracle in round k, and whose
output is identically distributed to that of honestly generated proofs.

Following the literature [AABN02,GOP+22,DG23], we exploit the concept of min-entropy to rep-
resent the likelihood of the first message a of an interactive protocol taking on some fixed value.

Definition 26 (Min-entropy of first message). Let λ be a security parameter and language LR

be an NP language associated by R. Consider a pair (x,w) ∈ R and let Π = (P, V ) be a multi-round
interactive proof. Let Coin(λ) be the set of coins used by the prover and A(·) the algorithm that outputs
the first message from P . Consider the set A(x,w) = {A(x,w; r) : r ←$ Coin(λ)}, i.e. the set of all
possible first round messages associated to (x,w). The min-entropy function associated to Π is defined
as

ζ(λ) = min
(x,w)

(− log2 η(x,w)) ,

where the minimum is taken over all possible (x,w) drawn from R, and η(x,w) is the maximum
probability that a first message takes on a particular value, i.e.,

η(x,w) = max
a∈A(x,w)

(Pr [A(x,w; r) = a | r ←$ Coin(λ)]).

We say Π = (P, V ) has sufficient min-entropy if ζ(λ) is super-logarithmic in λ.

C.1 Relations to Other Notions

In this section, we compare CRZK with related notions, including its reduction to k-zero knowledge
and its implication of k-special unsoundness.

CRZK leads to k-zero knowledge. We recap the notion of k-zero-knowledge (Definition 25) that was
first introduced in [GKK+22] and formalized in [DG23]. Informally, an interactive proof is k-zero-
knowledge if there exists a zero-knowledge simulator SimFS that only needs to program the random
oracle in round k, and whose transcript is indistinguishable from honestly generated ones, stated as
follows:

Theorem 7. Let Π be a (2µ+1)-move public-coin proof protocol which is critical-round special honest
verifier zero-knowledge at round i∗zk and has sufficient min-entropy (Definition 26). Let ΠFS be the
corresponding non-interactive proof protocol via Fiat-Shamir transform. Then ΠFS is k-zero knowledge
with k = ki∗zk .

Proof. (Sketch) We construct a simulator, SimFS, that fulfills requirements in [DG23], as follows:

1. Given statement x as input, sample ci∗zk ←$ Ci∗zk and obtain (st1, a)← SimA(x, ci∗zk).
2. Query the random oracle and get ci = H(x, a, z1, . . . , zi−1) for all i 6= i∗zk. Specially if i = 1, get

c1 = H(x, a).
If i = i∗zk, reprogram H(x, a, z1, . . . , zi∗zk−1) := ci∗zk .
SimFS aborts if H(x, a, z1, . . . , zi∗zk−1) has already been defined.

3. Obtain (sti+1, zi)← SimZ(sti, ci).

Since Π has sufficient min-entropy, the probability that SimFS aborts in Step 2 is negligible. The
distribution of (a, c1, z1, . . . , cµ, zµ) is indistinguishable from that of honestly generated transcripts
due to the critical-round special honest verifier zero-knowledge property.

40



k-CRZK and k-special unsoundness. Our k-CRZK implies k-special unsoundness [AFK23,BGTZ23]
at the critical round i∗zk for languages that constitute a hard subset membership problem [GW11].
Special unsoundness (Definition 24) claims the ability of a cheating prover to convince the verifier
of a false statement if the challenge sent by the verifier is a bad challenge at certain round. We can
build the cheating prover by running the k-CRZK simulator on k − 1 preselected challenges. If the
verifier "unluckily" sends one of these k − 1 challenges at the critical round, the cheating prover is
able to behave honestly in the remaining rounds. Due to the hardness of the subset membership
problem with respect to the concerned language, the CRZK simulator works on false statements as
required. The reverse implication does not generally hold since special unsoundness does not concern
the output distribution of the cheating prover.

D Critical Rounds in the KKW Framework

D.1 KKW Framework

We succinctly describe the KKW framework that follows the MPCitH paradigm [IKOS07]. In this
framework, the prover runs an MPC protocol that evaluates a boolean circuit C on an input w,
commits to the views of all parties, and then opens all-but-one of these views to the verifier. The
protocol relies on an XOR-based n-out-of-n secret sharing scheme; we denote shares of value a by JaK.
This MPC protocol, in the preprocessing model, is secure against semi-honest all-but-one corruptions.
The protocol can be summarized as follows:

– For each wire α of circuit C, let zα ∈ {0, 1} be the wire value. Each party holds a share JλαK of
a random value λα along with a masked value ẑα := zα + λα.

– The shares JλαK are generated independent with the witnness w in the preprocessing phase. A
gate is defined by an input wire α, β, and an output wire γ. For an XOR gate parties can locally
compute the share of output wire Jλα⊕βK = JλαK ⊕ JλβK, while for a multiplication gate, each
party are given Jλα·βK with the help of a auxiliary value that is given to n-th party and computed
by (

∑n
i=1JλαK) · (

∑n
i=1JλβK)−

∑n−1
i=1 Jλα·βKi.

– The set of shares {JλαK}α∈C is generated by each i-th party in the preprocessing phase using a
random seed referred to as statei. For 1 ≤ i ≤ n − 1, i-th party also uses statei to generate the
share of Jλα·βK, while n-th party uses auxiliaries auxn as its shares.

– The masked shares {ẑα} of input wire of circuit and broadcast messages (denoted by msgsi) of
each of the parties allow for a deterministic online phase of the MPC protocol.

Next, we describe the resulting MPCitH protocol. To prevent the prover from cheating in the prepro-
cessing phase, the prover must first generate and commit to m executions of the preprocessing stage,
and later open all of them except one (corresponding to a verifier’s challenge). The unopened material
is used for executing the MPC protocol later on. For clarity, we will omit the random coins of the
commitment scheme in the description below. We assume that whenever a commitment is opened,
the corresponding random coins are provided to the verifier. This results in a 5-move protocol as
described below:

1. First, prover runs m independent executions of the preprocessing phase as follows. Prover samples
m random values {seedj}j∈[m]. Then each seedj is used to generate the set of {seedj,i}i∈[n] together
with randomness values (we omit these values for simplicity). For each j ∈ [m], computing auxj,n
as described above, defining statej,i := seedj,i for i ∈ [n − 1] and statej,n := seedj,n‖auxj,n. Later,
prover commits to each state as comj,i = Com(statej,i), each seedj as hj = H(comj,1, . . . , comj,c).
Prover then sends h := H(h1, . . . , hm) to verifier.

2. Verifier asks prover to open m − 1 of the preprocessing material, i.e., all except for the c1-th
instance, where c1 ←$ [m].

3. Prover uses the unopened preprocessing material seedc1 to get {statec1,i}i∈[n] and uses them to
deterministically simulate the execution of MPC protocol. Finally, prover computes the masked
values {ẑα} for the input wires (based on w and {statec1,i}i∈[n]) and the broadcast messages from
parties during execution {msgsi}i∈[n].
Prover sends {seed}j 6=c1 as the opening of all-but-one c-th processing materials and {ẑα}, h′ :=
H(msgs1, . . . ,msgsn) to verifier.

41



4. Verifier asks prover to open the views of all parties except for the c2-th party in the simulation of
the MPC protocol, where c2 ←$ [n].

5. Prover opens the views by sending {statec1,i}i6=c2 along with comc1,c2 ,msgsc2 that can be used to
verify the correctness of the MPC execution.

Finally, the verifier:

– For i 6= c2, uses statec1,i to compute comc1,i and then combines these with comc1,c2 to compute
hc1 = H(comc1,1, . . . , comc1,n).

– For j 6= c1, uses {seed}j 6=c1 to compute {hj}j 6=c1 . Then, uses hc1 to check whether h = H(h1, . . . , hm),
otherwise outputting reject.

– From {ẑα}, {statec1,i}i 6=c2 ,msgsc2 , simulates the MPC protocol to get {msgsi}i6=c2 and the output
bit b. If b = 0 then it outputs reject.

– Checks whether h′ 6= H(msgs1, . . . ,msgsn) and outputs reject, otherwise accepts.

D.2 Critical Round in KKW

Theorem 8. Given the 5-move interactive honest-verifier zero-knowledge proof in [KKW18] (denoted
as KKW), assuming that the hash function used is collision-resistant and the commitment scheme
used is computationally binding and hiding, then KKW is flexible and can be:

– Critical-round special honest-verifier zero-knowledge at round i∗zk = 1 or at round i∗zk = 2.
– ~k-critical-round special sound where i∗ss = 1, ~k = (2, 1) or where i∗ss = 2, ~k = (1, 2).

Proof. We prove the flexibility property of KKW with respect to CRSS and critical-round HVZK.
Specifically, we prove that KKW satisfies CRSS for both i∗ss = 1 and i∗ss = 2 by first constructing an
extractor ExExt to show that KKW is extended (2, 2)-special sound. From ExExt, we then construct an
extractor CrExt that, given access to a valid proof transcript, extracts a valid witness (not the solution
of Rhd) while ensuring that the tree of transcripts is defined according to the CRSS definition. For
critical-round HVZK, we construct a pair of simulators (SimA,SimZ) that simulate the real execution
in both cases, thereby satisfying the required indistinguishability conditions. We denote a transcript
of KKW protocol by (a, c1, z1, c2, z2).

CRSS.
Given an extended (2, 2)-tree of transcripts T with four accepting transcripts that belong to T , our
goal is to show that there exists an extended extractor ExExt that can either extract an actual witness,
or find a collision on the commitment scheme or the hash function. For each case, we construct ExExt
as below.
Case 1: i∗ss = 1,~k = (2, 1). To see this, we note that the prefix (a, c1, z1) where c1 ∈ [m] commits to
all m executions of the preprocessing phase {seedj}j∈[m] and then opens all of them except for the
c1-th. Given a transcript (a, c1, z1, c2, z2), we now bulid an extractor ExExt as follows:

– From the transcript (a, c′1, z
′
1, ∗, ∗) of the tree where c1 6= c′1, it allows ExExt to get c1-th values

of preprocessing seedc1 . From seedc1 , ExExt computes {statec1,i}i∈[n].
– We note that z1 includes the masked values {ẑα} for the input wires that is computed from w

and {statec1,i}i∈[n]. From {statec1,i}i∈[n] and then together with {ẑα}, ExExt effectively computes
a witness w.

We show that C(w) = 1, i.e., ExExt successes in extracting the witness or finds a collision in com-
mitments and hash function. Consider another transcript (a, c1, z1, c

′
2, z
′
2) having the same prefix

(a, c1, z1) and c2 6= c′2.

– From c2 6= c′2 and (z2, z
′
2), ExExt learns all {statec1,i}i∈[n] along with (comc1,c2 , msgsc2 , comc1,c′2

,msgsc′2).
– We highlight that as h is fixed in round 1, and as {ẑα}, h′ (the commitment of {msgsi}i∈[n])

are fixed in round 3, then all {statec1,i,msgsi}i∈[n] obtained in the two accepted transcripts are
consistent with an honest execution of MPC protocol unless there is a break in the binding of the
commitment scheme or the collision resistance of H. And in that case, ExExt outputs the collision
as a solution to Rhd .

42



Case 2: i∗ss = 2,~k = (1, 2). Given an accepted transcript (a, c1, z1, c2, z2), the extractor ExExt works as
follows:

– From z1, ExExt learns {seedj}j 6=c1 , h
′ and {ẑα}.

– Consider another transcript (a, c1, z1, c
′
2, z
′
2) with the same prefix (a, c1, z1) and c2 6= c′2 since

c2 6= c′2 then from z′2, ExExt learns all {statec1,i}i∈[n]. We note that, ExExt also learns (comc1,c2 ,
msgsc2) because they are included inside of z2.

– From {statec1,i}i∈[n], ExExt learns the value λα as the masks of each input wire, therefore from
{ẑα}, ExExt can effectively compute a witness w.

As in the first case, we argue that C(w) = 1. To prove this, we need to show that each {statec1,i}i∈[n]
are generated honestly from a seed seedc1 obtained during the preprocessing phase. ExExt does the
following:

– Consider another accepting transcript (a, c′1, z′1, ∗, ∗) of T where c1 6= c′1. As c1 6= c′1, the extractor
ExExt can recover seedc1 from z′1, as this value was generated honestly in the preprocessing phase.

– Given seedc1 , ExExt computes {statec1,i}i∈[n], which must be consistent with the values outputted
in the fifth move, z2. If this consistency fails, it would imply either a break in the binding property
of the commitment scheme or a collision in the hash function H. In such a case, as a solution
to Rhd , the extractor would output either a hash collision or the inputs required to break the
commitment scheme, since all states are committed using a fixed value a := h.

Constructing CrExt. In both cases, CrExt is implicit in the construction of ExExt. In fact, conditioned
on successful ExExt not outputting a solution to Rhd , from any (2, 1)-subtree or (1, 2)-subtree of
an extended tree T , one can extract witness without any failure. Observe that, given a tree T , the
extractor ExExt only requires two transcripts,

– (a, c1, z1, ∗, ∗) and (a, c′1, z
′
1, ∗, ∗) as in the first case i∗ss = 1,

– or (a, c1, z1, c2, z2) and (a, c1, z1, c
′
2, z
′
2) as in the second case i∗ss = 2,

to extract a unique value w. The probability that ExExt successfully extracts w is 1. Moreover, this
extracted w is indeed a valid witness; otherwise, using another accepted transcript, ExExt would
output either a collision of the hash function H or two distinct inputs breaking the binding property
of the commitment scheme.

Therefore, given a deterministic tree T , the extractor CrExt is constructed in the same way as
ExExt, stopping as soon as it obtains w. Since ExExt succeeds with T , it follows that w is a valid
witness.

Critical-round HVZK.
Case 1: i∗zk = 1. The critical-round special HVZK at i∗zk = 1 is proven by constructing two simulators
(SimA(x, c1),SimZ) as follows,

– SimA(x, c1)→ (st1, a): For a known first-round challenge c1, the SimA does as follows:
For all j ∈ [m], SimA generates honestly as an honest prover to get all m preprocessing materials
including seedj , {seedj,i}i∈[n], auxj,n, defines statej,i := seedj,i for i ∈ [n − 1] and statej,n :=
seedj,n‖auxj,n.
For j = c1, SimA samples uniformly {ẑα} as masked value of input wire of circuit C. Together
with {statec1,i}i∈[n], SimA executes the MPC protocol until the reconstruction output step. At
this step Sim learns the shares of output wire JbKi of all i-th party (i ∈ [n]), Sim then defines an
auxiliary value auxb such that JbKi ⊕ auxb = 1.
SimA redefines the auxc1,n as before, except that the auxiliary value corresponding to the last
multiplication gate of C is now defined by XORing with auxb and statec1,n is redefined as
seedc1,n‖auxc1,n using new value of auxc1,n.
Next, the SimA computes each value hj for j ∈ [m] as the honest prover would. Finally, the SimA
computes h = H(h1, . . . , hm) honestly. Output st1 := ({statej,i}j∈[m],i∈[n], {ẑα}) and a := h.

– SimZ(st1, c1) → (z1, st2). To simulate the third message, SimZ starts by retrieving the states
from st1. Then, it executes honestly online phase of MPC protocol to get the broadcast messages
{msgsi}i∈[n] using {statec1,i}i∈[n]. Finally, it computes h′ = H(msgs1, . . . ,msgsn) from the state.
Output st2 := (st1, {msgsi}i∈[n]) and z1 := ({seedj}j 6=c1 , h

′, {ẑα}).

43



– SimZ(st2, c2)→ z2: To simulate the fifth message, from st2, simply output, as the honest prover
would do.
Output z2 := ({statec1,i}i6=c2 , comc1,c2 ,msgsc2).

Correctness. We first show that the transcript {seedc1,i}i∈[n], {ẑα}, auxc1,n produced by the simulator
allows the MPC protocol to output 1. We focus on the last multiplication gate of circuit C, where
random shares are assigned to this gate. Denote the shares of its input wires as JλαK and JλβK, while
the shares of the output wire are Jλα·βK. For i ∈ [n − 1], the i-th party generates Jλα·βKi from the
random seed {seedc1,i}, and the n-th party uses auxc1,n to define its share. By the way the auxiliary
value is defined for this gate in SimA, the n-th party gets Jλα·βKn ⊕ auxb. Therefore, after all parties
broadcast their shares and reconstruct them, they obtain a value ẑγ = zγ ⊕ λγ ⊕ auxb (λγ is the
masked value for this wire).

The online phase continues until all parties reconstruct the circuit’s output. We note that after
executing the last multiplication gate to obtain ẑγ , auxc1,n is no longer used, and there are no broadcast
messages from the parties until the final step of reconstructing the mask of the output value b, since
the {ẑα} of addition gates can be computed locally. Therefore, auxb is xored into all {ẑα} of the gates
that is after the last multiplication gate.

For the step of reconstructing the output of the circuit, every party outputs JbKi ⊕ auxb = 1.

Indistinguishability. We then prove that the transcripts produced by the simulators (a, c1, z1, c2, z2)
are computationally indistinguishable from those generated during actual protocol executions with
an honest verifier.
We observe that z1 := ({seedj}j 6=c1 , h

′, {ẑα}) is indistinguishable from the real protocol since {seedj}j 6=c1 , ẑα
are sampled uniformly as in the real protocol, and h′ is computed by executing the MPC protocol
honestly from seedc1 and auxc1,n. We note that although SimA emulates auxc1,n, in this round, the
verifier does not have any information about seedc1 or auxc1,n.
Turning to z2 := ({statec1,i}i 6=c2 , comc1,c2 ,msgsc2), we first note that comc1,c2 is computed exactly
according to the protocol description, ensuring consistency with the initial message a := h. We now
argue that even though SimA emulates auxc1,n, the values ({statec1,i}i 6=c2 ,msgsc2) remain indistin-
guishable from their real values in the actual protocol.

– If c2 = n, then {statec1,i}i 6=n are indeed sampled randomly as in the honest execution.
– If c2 6= n, the verifier knows statec1,n = seedc1,n‖auxc1,n but does not know seedc1,c2 . Consequently,

the verifier cannot verify whether auxc1,n was honestly generated by checking the correctness of
the masked value shares for the final multiplication gates.

Moreover, the simulated values ensure that the MPC output is 1, and all broadcast messages {msgsi}i∈[n]
are computed honestly following MPC protocol’s description. Therefore, ({statec1,i}i6=c2 ,msgsc2) re-
main indistinguishable from the real values.
Case 2: i∗zk = 2.

The CRSHVZK property at i∗zk = 2 is proven by constructing two simulators (SimA(x, c2),SimZ).
We build these simulators based on the semi-honest security of the MPC protocol, for which there
exists a simulator Sim that outputs simulated consistent views of n − 1 parties, i.e., all except for
the c2-th party, as follows. Sim starts by sampling {statei}i 6=c2 , {ẑα},msgsc2 and uses these sampled
values to simulate the online phase of the MPC protocol until the reconstruction output step. At this
step Sim learns the shares of output JbKi of i-th party (i 6= c2), Sim then defines a JbKp such that
⊕JbKi = 1, appends JbKp into msgsc2 and gets a new broadcast message msgsc2 . Therefore, we can
modify Sim syntactically by redefining its input to be a set of {statei}i 6=c2 , {ẑα} that are sampled
randomly in advance, such that Sim({statei}i 6=c2 , {ẑα})→ msgsc2 .

Now, we define the simulators (SimA,SimZ) as follows, for challenges c1 ←$ [m], c2 ←$ [n].

– SimA(x, c2) → (st1, a): For a known second-round challenge c2, the simulator does as follows.
First, SimA chooses uniform seeds as the honest prover would do, obtains seedj for j ∈ [m] and
from seedj computes honesly {seedj,i}i∈[n]. Then, for each j ∈ [m], SimA computes auxj,n from
{seedj,i}i∈[n−1]. SimA defines statej,i = seedj,i for all i ∈ [n − 1] and statej,n := seedj,n‖auxj,n,
and samples {ẑj,α}j∈[m] honestly.
Then, SimA runs the MPC simulator Sim({statej,i}j∈[m],i6=c2 , {ẑj,α}j∈[m])→ {msgsj,c2}j∈[m]. This
is done m times to simulate m independent preprocessing phases. Next, the SimA computes each

44



value hj for j ∈ [m] as the honest prover would. Finally, the SimA computes h = H(h1, . . . , hm)
honestly.
Output st1 := ({statej,i}j∈[m],i6=c2 , {ẑj,α}j∈[m], {msgsj,c2}j∈[m]) and a := h.

– SimZ(st1, c1)→ (z1, st2): To simulate the third message, SimZ starts by retrieving the states from
st1. Then, it computes the remaining msgsc1,i honestly for every i 6= c2. Finally, it computes
h′ = H(msgsc1,1, . . . ,msgsc1,n) from the state.
Output st2 := {st1,msgsc1,c2} and z2 := ({seedj}j 6=c1 , h

′, {ẑc1,α}).
– SimZ(st2, c2)→ z2: To simulate the fifth message, simply output, as the honest prover would do,

the MPC simulation corresponding to the c1-th preprocessing phase except for the view of c2-th
party.
Output z2 := ({statec1,i}i6=c2 , comc1,c2 ,msgsc1,c2).

Due to the security of the MPC protocol against all-but-one corruption, it is easy to see that by
a standard hybrid argument, the transcripts produced by the simulator (a, c1, z1, c2, z2) are compu-
tationally indistinguishable from those generated during actual protocol executions with an honest
verifier.

E More Applications

E.1 Accumulators

An accumulator, also known as a set commitment, is a succinct primitive that allows one to commit
to a set of elements S = {x1, . . . , xt} and then produce a short proof of membership for any xi ∈
S [Bd94,BP97]. We introduce a definition below, following the syntax in [Kol24].

Definition 27 (Accumulator). A (static) accumulator with domain M is a tuple of algorithms
(Gen,Accum,WitGen,Ver) with the following syntax:

Gen(1λ)→ ck : On input the security parameter λ and an upper bound for the set size n, Gen(1λ)
returns a commitment key ck.

Accum(ck, S)→ (com, st) : On input a commitment key ck and a set S ⊂ M, Accum(ck, S) outputs
a commitment com and a state st.

WitGen(ck, st,m)→ π : On input a commitment key ck, a state st and a value m, WitGen(ck, st,m)
outputs a membership proof π.

Ver(ck, com,m, π)→ 0/1 : On input a commitment key ck, a commitment com, a message m, and
an opening proof π, Ver(ck, com,m, π) outputs 1 (accept) or 0 (reject).

Moreover, these algorithms should satisfy the following properties:

Completeness. For any S ⊂M such that |S| ≤ n and for any m ∈ S,

Pr

Ver(ck, com,m, π) = 1

∣∣∣∣∣∣
ck ← Gen(1λ, n)
(com, st)← Com(ck, S)
π ←WitGen(ck, st,m)

 = 1.

Soundness. For any PPT adversary A,

Pr

 Ver(ck, com,m∗, π∗) = 1
∧ m∗ 6∈ S∗

∣∣∣∣∣∣∣∣
ck ← Gen(1λ, n)
S∗ ← A(ck)
(com, st)← Com(ck, S∗)
(m∗, π∗)← A(ck, com, st)

 ≤ negl(λ).

Succinctness. Both com and π have size bounded by O(λ, polylog(n)). The running time of Ver is
also bounded by O(λ, polylog(n)).

To construct our accumulators, we describe a slightly stronger variation of CRZK which requires
a simulator that takes k − 1 possible challenges for the critical round. We introduce it below.

45



Definition 28 (Critical-Round k-Special Honest Verifier Zero-Knowledge). A (2µ + 1)-
move public-coin proof protocol is critical-round k-special honest verifier zero-knowledge (k-CRSHVZK
or simply k-CRZK for short) at round i∗zk if there exists a set of polynomial-time algorithm (SimAX,SimZX)
that:

– SimAX takes x and (c
(1)
i∗zk

, . . . , c
(k−1)
i∗zk

) ∈ Ck−1i∗zk
as input, and outputs (st1, a) where st1 is a state

information and a is a prover’s message at step 1.
– SimZX takes sti and ci ∈ Ci, and outputs (sti+1, zi) where sti+1 is an updated state, and zi is a

prover’s response for step 2i+ 1.
– For any (x,w) ∈ LRW , ci ∈ Ci for i ∈ [µ] \ {i∗zk}, (c

(1)
i∗zk

, . . . , c
(k−1)
i∗zk

) ∈ Ck−1i∗zk
, and any ci∗zk ∈

(c
(1)
i∗zk

, . . . , c
(k−1)
i∗zk

), distribution of (a, c1, z1, . . . , cµ, zµ) generated as (st1, a)← SimAX(x, c
(1)
i∗zk

, . . . , c
(k−1)
i∗zk

),
(sti+1, zi) ← SimZX(sti, ci) for i from 1 to µ, and that of (a′, c1, z

′
1, . . . , cµ, z

′
µ) generated as

(st1, a
′)← A(x,w) and (sti+1, z

′
i)← Z(sti, ci) for i from 1 to µ are indistinguishable.

Construction of an Accumulator. We generalize our construction of a trapdoor commitment scheme
(Figure 4) to construct an accumulator ACCΠi∗ from a (2µ+ 1)-move public-coin proof protocol Πi∗

that is critical-round ki∗ -special honest verifier zero knowledge and critical-round special sound at
round i∗ss = i∗zk = i∗ and where ki∗ ≥ 3. Our accumulator scheme requires that the maximum size of
n that is supported by Gen(1λ, n) is bounded by the parameter B = ki∗ − 1 that depends on Πi∗ . We
present our construction in Figure 6.

Recall that critical-round ki∗ -special HVZK (Definition 28) requires that there exists a zero-
knowledge simulator (st1, a)← SimZX(x, c

(1)
i∗ , . . . , c

(k−1)
i∗ ) where each c

(j)
i∗ ∈ Ci∗ , i.e., that takes ki∗ −1

challenges to simulate the first message of the protocol a.17 A peculiar consequence is that the mes-
sage space M ⊂ Ci∗ must be a proper subset such that |M| ≤ |Ci∗ | − B. This is necessary for the
proof of soundness to go through. The reason is that a commitment to S always needs to be simulated
based on B challenges, and if |S| < B, the challenges not in S cannot be part of the message space to
guarantee that the extraction of a complete tree of transcripts is successful. Hence, we need to “taint”
B values from Ci∗ , which will be used in the simulation but cannot be part of the message space.

Theorem 9. The construction ACCΠi∗ in Figure 6 constitutes an accumulator if Πi∗ is a perfectly
complete and critical-round ki∗-special honest verifier zero-knowledge interactive proof at round i∗zk =
i∗. It is binding if G and H are non-programmable and programmable random oracles, respectively,
relation R is one-way, and Πi∗ is ~k-critical-round special sound at round i∗ss = i∗ for which ki∗ ≥ 3.

Proof. One can see by inspection that the construction satisfies correctness if n ≤ B. The construction
also satisfies succinctness as both com and π are independent of n and therefore of size O(λ).

For soundness, let A be an adversary against accumulator soundness with non-negligible success
probability. We will show how to use A as a black box to construct an adversary B that breaks
the one-wayness of the relation R. For this, it suffices to show that B can use A to obtain a valid
(1, . . . , 1, ki∗ , . . . , kµ)-subtree of transcripts T ∗ contained in the extended special soundness tree T .
The proof follows a similar strategy as the proof of Theorem 5, so we skip some technical details.

The reduction B is given a challenge instance x and access to a non-programmable random oracle
G. B also simulates the programmable random oracle H for A. As in the previous proof, B forwards
all queries of A to G, behaving transparently, and follows a lazy (uniformly random) simulation
strategy for H. B sets up the soundness game for A by setting ck = x. Then, A(ck) outputs a set
S = {m1, . . . ,mt} ⊂ M such that t ≤ n.

Next, B runs (com, st) ← Com(ck, S) where com = (a, c1, z1, . . . , ci∗−1, zi∗−1). Then, it runs
(m∗, π∗) ← A(ck, com, st) which returns a valid proof π∗ for a message m∗ 6∈ S, which B parses as
π∗ = (m∗, z∗j , c

∗
j+1, . . . , c

∗
µ, z
∗
µ). Note that m∗ ∈ {mt+1, . . . ,mki∗−1} is not valid since mt+1, . . . ,mki∗−1

are out of the message space. Recall that the goal of B is to obtain a (1, . . . , 1, ki∗ , . . . , kµ) tree
of transcripts. For this, note that B can simulate ki∗ − 1 valid sub-trees that start at level i∗ by
simply running (sti+1, zi+1)← SimZX(sti, ci+1) for all the required branches and their corresponding
challenges, where at level i∗ it sets c

(j)
i∗ = mj for every j = 1, . . . , ki∗ − 1 (recall that the accumulator

17 One example of such protocol is the three-move Stern Σ-protocol [Ste06], which is trivially 3-critical at its
only round.

46



Set up.
• Let Πi∗ = (A,Z,V,SimAX,SimZX) be a (2µ+ 1)-move public-coin proof for relation R that is (1)

ki∗ -CRSHVZK at round i∗zk = i∗, and (2) ~k-CRSS at round i∗ss = i∗ where ki∗ ≥ 3.
• Let B = ki∗ − 1 and Ci∗ be the challenge space of Πi∗ at the i∗-th round.
• Let the message space M⊂ Ci∗ be a proper subset such that |M| ≤ |Ci∗ | −B.
• Let G and H be two hash functions.

Construction.
Gen: Given 1λ and a size bound n as input, check whether n ≤ B and otherwise abort. Sample an

instance (x,w)←$ LRW (λ). The commitment key is ck := x.
Accum: Given (ck, S) as input, parse ck = x and S = (m1, . . . ,mt). Abort if t > n, otherwise do:

• If t < B, choose B − t arbitrary elements mt+1, . . . ,mB ∈ Ci∗ \M.
• Compute (st1, a)← SimAX(x,m1, . . . ,mB).
• For i = 1, . . . , i∗ − 1, do

ci := G(x, a, c1, z1, . . . , ci−1, zi−1) (3)

and (sti+1, zi)← SimZ(sti, ci).
• For i = i∗ and for j = 1, . . . , t, do c

(j)
i := mj and (st

(j)
i+1, z

(j)
i )← SimZX(sti, c

(j)
i ).

• For i = i∗ + 1, . . . , µ and j = 1, . . . , t, do

c
(j)
i := H(x, a, c1, z1, . . . , c

(j)
i−1, z

(j)
i−1) (4)

and (st
(j)
i+1, z

(j)
i )← SimZX(st

(j)
i , c

(j)
i ).

• Output com := (a, c1, z1, . . . , ci∗−1, zi∗−1) and
st :=

{
mj , z

(j)
i∗ , c

(j)
i∗+1, z

(j)
i∗+1, . . . , c

(j)
µ , z

(j)
µ

}
j=1,...,t

.
WitGen: Given (ck,m, st) as input, check whether m = mj for some mj ∈ st, and otherwise abort.

Then, parse st to output πj = (mj , z
(j)
i∗ , c

(j)
i∗+1, z

(j)
i∗+1, . . . , c

(j)
µ , z

(j)
µ ).

Ver: Given (ck, com, m, π) as input, parse them into (x, a, c1, z1, . . . , cµ, zµ) with ci∗ := m.
Check if every ci satisfies the relations in (3) and (4), and output V(x, a, c1, z1, . . . , cµ, zµ).

Fig. 6. Accumulator ACCΠi∗ .

st contains messages m1, . . . ,mt,mt+1, . . . ,mki∗−1, where S = {m1, . . . ,mt} and mt+1, . . . ,mki∗−1 6∈
M).

Therefore, to get a valid CRSS tree of transcripts T ∗, B only needs one additional sub-tree that
starts at level i∗. The missing sub-tree can be obtained by setting c

(ki∗ )
i∗ = m∗ and by rewinding A

while reprogramming the random oracle H to provide distinct (uniformly random) challenges at every
iteration, following the same steps as in the proof of Theorem 5.

It remains to show that the tree of transcripts satisfies the conditions of Definition 10. This again
follows as in the previous proof, as it is obtained by running the adversary with uniformly chosen
challenges. Then, from Theorem 1, we conclude that the CRSS extractor CrExt outputs a witness from
T ∗ with non-negligible probability. Thus, once T ∗ is obtained, B runs w ← CrExt(T ) and returns w.

Trapdoor Commitment from ki∗ ≥ 2. Inspired by our accumulator, we present a feasibility result to
show how to build a trapdoor commitment scheme if Πi∗ is CRZK and CRSS with ki∗ ≥ 2 at the
critical round, generalizing the ki∗ ≤ 2 result from earlier sections. The idea is to extend the openings
of the trapdoor commitment scheme to include t = dki∗/2e transcripts (branching at level i∗) in the
opening information. Then, any adversary who breaks commitment binding provides ki∗ transcripts
branching at level i∗, and security follows via a rewinding argument as in the previous constructions.

We also need that all challenges at level i∗ are distinct. For this, we use an encoding γ :M→ Cti∗
such that for any element c ∈ Ci∗ , there exists at most one element m ∈ M such that c ∈ γ(m).
Intuitively, this condition ensures that any challenge c ∈ Im(γ) is associated to a unique m ∈M. We
describe the commit and verify algorithms in more detail:

Com(ck,m): Start by computing (st1, a) ← SimAX(x, γ(m)). Without loss of generality, we assume
the simulator takes t challenges; it can just use elements of Ci∗ \ Im(γ) if more are required.

– For i = 1, . . . , i∗ − 1, compute ci and zi as in Figure 6.

47



– For i = i∗ and for j = 1, . . . , t, do c
(j)
i := γ(m)j . and (st

(j)
i+1, z

(j)
i )← SimZX(sti, c

(j)
i ).

– For all remaining i = i∗+1, . . . , µ and j = 1, . . . , t, compute the challenges c
(j)
i and messages

z
(j)
i as in Figure 6.

Output:

com := (a, c1, z1, . . . , ci∗−1, zi∗−1),

open :=
{
γ(m)j , z

(j)
i∗ , c

(j)
i∗+1, z

(j)
i∗+1, . . . , c

(j)
µ , z(j)µ

}
j=1,...,t

.

Ver(ck, com,m, open): Check the validity of every ci until round i∗−1 as in Figure 6. Then, compute
c
(j)
i∗ := γ(m)j for j = 1, . . . , t and check the validity of every c

(j)
i for j = i∗ + 1, . . . , µ. Finally,

check that
V(x, a, c1, z1, . . . , c

(j)
i , z

(j)
i , . . . , c

(j)
µ , z

(j)
µ ) = 1 for every j = 1, . . . , t.

E.2 Trapdoor Commitments with Flexible Trapdoor Allocation

Observe that the MR-CDS composition in Section 5.2 is closed for some class of protocols, i.e., the
resulting proof is also critical-round zero-knowledge. Thus, it can be seamlessly combined with our
construction of the trapdoor commitment scheme in Section 6.

This modular construction allows for flexible trapdoor setup regarding a monotone access structure
of one’s interest. For instance, by combining proofs for statements A and B into A ∨ B using the
composition, and using the composed critical-round proof system to build the commitment scheme,
we obtain a trapdoor commitment scheme that is equivocal only if the committer knows a witness for
either A or B. One could alternatively base the construction on a critical-round proof system for NP.
However, this modular approach is particularly advantageous when the underlying relation can be
decomposed into sub-relations that each admit efficient critical-round proofs, such as KKW protocols
or standard sigma-protocols. This enables more efficient and flexible instantiations of the trapdoor
commitment scheme, tailored to the structure of the specific relations involved.

48


	Critical Rounds in Multi-Round Proofs:  Proof of Partial Knowledge, Trapdoor Commitments, and Advanced Signatures
	Introduction
	Our Contributions
	Technical Overview
	The Critical Round Framework
	Multi-Round Proof of Partial Knowledge
	Trapdoor Commitment and Applications
	Preliminaries
	Notation
	Public-Coin Proof System
	Trapdoor Commitments
	Critical-Round Zero-Knowledge and Soundness
	Definitions
	Instantiations of Critical Round Proofs
	Multi-Round Proof of Partial Knowledge
	Construction
	Security
	Suppressing Exponential Blow-up via Multi-Round Share-then-Hash
	Trapdoor Commitment from Multi-Round Protocol
	Applications to Advanced Signatures
	Adaptor signatures
	Threshold ring signatures


	Conclusion


	Composition of Multi-Round Protocols via CDS
	Monotone Access Structure
	Secret Sharing Scheme
	Insecurity of Naïve Multi-Round CDS
	Composition of Multi-Round Protocols via Share-then-Hash
	Extending Predicate Special Soundness
	Analysis of Share-then-Hash in the Predicate Special Soundness Framework
	Other Definitions
	Relations to Other Notions
	Critical Rounds in the KKW Framework
	KKW Framework
	Critical Round in KKW
	More Applications
	Accumulators
	Trapdoor Commitments with Flexible Trapdoor Allocation









