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Abstract. Shoup and Smart (SS24) recently introduced a lightweight
asynchronous verifiable secret sharing (AVSS) protocol with optimal re-
silience directly from cryptographic hash functions (JoC 2024), offer-
ing plausible quantum resilience and computational efficiency. However,
SS24 AVSS only achieves standard secrecy to keep the secret confiden-
tial against n/3 corrupted parties if no honest party publishes its share.
In contrast, from “heavyweight” public-key cryptography, one can realize
so-called high-threshold asynchronous verifiable secret sharing (HAVSS),
with a stronger high-threshold secrecy to tolerate n/3 corrupted parties
and additional leaked shares from n/3 honest parties. This raises the fol-
lowing question: can we bridge the remaining gap to design an efficient
HAVSS using only lightweight cryptography?

We answer the question in the affirmative by presenting a lightweight
HAVSS with optimal resilience. When executing across n parties to share
a secret, it attains a worst-case communication complexity of Õ(λn3)
(where λ is the cryptographic security parameter) and realizes high-
threshold secrecy to tolerate a fully asynchronous adversary that can con-
trol t = ⌊n−1

3
⌋ malicious parties and also learn t additional secret shares

from some honest parties. The (worst-case) communication complexity of
our lightweight HAVSS protocol matches that of SS24 AVSS—the state-
of-the-art lightweight AVSS without high-threshold secrecy. Notably, our
design is a direct and concretely efficient reduction to hash functions in
the random oracle model, without extra setup assumptions like CRS/PKI
or heavy intermediate steps like hash-based zk-STARK.

Keywords: Asynchronous Verifiable Secret Sharing · Lightweight Cryp-
tography · High-threshold Secrecy · Asynchronous Multi-party Protocol
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1 Introduction

Asynchronous Verifiable Secret Sharing (AVSS) is a two-phase multi-party pro-
tocol: During its sharing phase, a designated dealer can confidentially distribute a
secret across an asynchronous network of n participants; Following that, another
reconstruction phase can be initiated, allowing the honest parties to collectively
recover the secret, unanimously. 6 AVSS is a fundamental primitive with numer-
ous applications in asynchronous distributed protocols, including consensus [14,
19, 1, 28], distributed random beacon [8, 24], distributed key generation [3, 35, 2,
23, 20, 31], and multi-party computation [36, 41, 40, 18, 29, 30].

AVSS is known to tolerate at most t < n/3 malicious parties, analogy to
that either liveness or safety could be violated in asynchronous broadcast proto-
cols when t ≥ n/3. 7 Nevertheless, like many high-threshold cryptosystems [13,
39], AVSS has also been studied for enhanced high-threshold secrecy, aiming to
preserve the confidentiality of secret, even if ℓ − t honest parties have already
published their secret shares [22, 2, 6, 35, 11]. Here ℓ represents the reconstruc-
tion threshold, typically corresponding to the degree of secret sharing, and ℓ
can be at most 2t in AVSS with an optimal resilience of t < n/3, meaning an
optimally resilient AVSS can tolerate a few additional leaked shares from (ℓ− t)
honest parties alongside t malicious parties. Such high-threshold AVSS (HAVSS)
provides stronger secrecy than normal AVSS that merely provides a lower re-
construction threshold ℓ = t, making it essential in certain applications. One
example is to realize high-threshold asynchronous coin-tossing [13], making the
adversary learn the flipped coins as late as possible and thus rendering simpler
design of asynchronous Byzantine agreement protocols [12, 25, 4, 32, 37].

Table 1. Comparison of high-threshold ACSS (HAVSS) protocols †

Protocols Resilience (t <) Comm. Setup Assumption

CKLS02 [11] n/4 O(λn3) secure channel DL
KMS20 [35] n/3 O(λn4) PKI+secure channel DL
HAVEN [6] n/3 Õ(λn2) secure channel DL+ROM
Bingo [2] n/3 O(λn2) CRS+secure channel q-SDH+AGM
DXR21 [21] n/3 O(λn2) PKI+auth channel DDH+ROM
DXT+23 [22] n/3 O(λn2) PKI+auth channel DDH+ROM

This work n/3 Õ(λn3) secure channel ROM
† We consider the case n ≤ O(λ), as following the standard cryptographic practice [12,
19]. Here λ is the cryptographic security parameter and usually is several hundred.

6 Note that the reconstruction phase of AVSS can be defined as: for ℓ-degree secret
sharing, any (ℓ+1)-sized subset of honest parties can recover the unique secret. Such
AVSS has an alias Asynchronous Complete Secret Sharing (ACSS). Looking ahead,
resilience-optimal high-threshold AVSS inherently is ACSS, so we ignore the differ-
ence in the paper unless otherwise specified.

7 Note that AVSS implies asynchronous reliable broadcast (RBC) when executing its
two phases sequentially, so AVSS has a resilience of t < n/3, same to that of RBC.
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Limitations of existing HAVSS protocols. As illustrated in Table 1, all ex-
isting HAVSS protocols are constructed from public-key cryptography (PKC).
Cachin et al. [12] gave the first HAVSS construction adapted from the classic
Pedersen VSS [38], but the HAVSS design only tolerates n/4 malicious parties.
Kokoris-Kogias et al. [35] designed the first optimal-resilience HAVSS protocol,
but with O(λn4) communication complexity. The study also introduces the idea
of using an asymmetric bivariate polynomial (where one dimension has degree t
and the other dimension has degree 2t) for implementing HAVSS, in combination
with polynomial commitment scheme (PCS). Following the idea of using bivari-
ate polynomial, Alhaddad et al. [6] and Abraham et al. [2] proposed a couple
of communication-efficient HAVSS protocols HAVEN and Bingo, respectively.
Bingo [2] reduces the communication overhead of HAVSS to O(λn2), by lifting
the succinct and homomorphic KZG polynomial commitment [34] to support bi-
variate polynomial. HAVEN [6] uses a particularly tailored bivariate polynomial
to hide the secret, but still relies on the homomorphism of PKC-based PCS to
reduce communication complexity.

Another straightforward idea for implementing HAVSS in the PKC setting
is letting the dealer reliably broadcast a (non-interactive) public verifiable se-
cret sharing (PVSS) transcript. Here PVSS enables a dealer to generate a single
transcript encrypting each participant’s secret share using the party’s public
key, along with a zk-proof attesting that any ℓ + 1 subset of those shares can
reconstruct a unique secret. Das et al. [21, 23] demonstrated a couple of instan-
tiations of the idea using SCRAPE PVSS [15] and Paillier cryptosystem based
PVSS [27]. Very recently, Das et al. [22] improved the approach to obtain a new
way to implement HAVSS: the dealer, instead of directly broadcasting PVSS
(which might have high computing cost), first distributes secret shares along
with a PCS committing these shares as evaluations of a 2t-degree polynomial,
then it solicits signatures on the PCS from sufficient parties. The final transcript
to broadcast becomes the PCS, the set of valid signatures, and the encryption
of secret shares (with proofs attesting the encrypted shares are committed to
PCS). This novel method only avoids costly PVSS but still requires other PKC
primitives like PCS and verifiable public key encryption.

If our goal is simply building HAVSS in the “minicrypt” world, without em-
phasizing concrete efficiency, an immediate “approach” seems to adapt the ex-
isting HAVSS protocols into the hash-only setting, by employing hash-based zk-
STARK [9] to replace their current PKC components. To imagine the theoretic
feasibility, consider the next implementation of hash-based bivariate PCS: (i) use
n Merkle trees to commit n univariate polynomials of the first variable, and use
another n Merkle trees to commit n univariate polynomials of the second vari-
able, (ii) leverage hash-based STARK to prove that all committed n2 points are
consistent evaluations of the same bivariate polynomial with specified degrees
for each variable, then (iii) use 2n Merkle tree roots and the above STARK
proof as bivariate polynomial commitment, and for a certain point, use the cor-
responding Merkle paths of two associated Merkle trees as the evaluation proof.
One can straightly replace the bivariate PCS in Bingo with the above scheme,
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resulting in a literally hash-based HAVSS. However, different from SS24 AVSS
with a direct reduction to hash functions, the above “solution” uses an expensive
intermediate step of zk-STARK, introducing significant proving overhead (for
complicated statements) and compromising the critical concrete efficiency.

Given the fact that there still lacks concretely efficient construction of HAVSS
using only “lightweight” cryptography, we are asking the following questions:

Can we design an efficient high-threshold AVSS with optimal resilience,
directly from lightweight cryptography like hash functions?

Our contribution. We answer the above question in the affirmative, by present-
ing a lightweight HAVSS protocol with a direct reduction to the cryptographic
hash function. Particularly, our contribution is three-fold:

– As Table 1 illustrates, we construct a lightweight protocol for HAVSS with
quasi-cubic word communication, directly using only cryptographic hash
functions in the random oracle model, in the presence of a pair-wise secure
communication channel between each two honest parties without other setup
assumptions like CRS or PKI. The communication complexity of HAVSS
protocol matches that of the state-of-the-art lightweight AVSS protocol with-
out high-threshold secrecy i.e. SS24 AVSS [40] (when sharing a single secret).
In addition, the sharing phase of our design can also attain quasi-quadratic
word communication complexity in the normal case when the dealer is hon-
est. Our HAVSS protocol also achieves optimal resilience, tolerating t < n/3
malicious parties, and has a best-possible reconstruction threshold of ℓ = 2t.

– As Fig.1 illustrates, at the heart of our design, it is a new technique called
distributed high-degree check (DHDC), enabling the distributed parties to
check that the dealer has shared a 2t-degree polynomial across the network.
Looking ahead, DHDC lets the dealer encode the 2t-degree polynomial into
a bivariate polynomial with asymmetric t and 2t degrees for each variable.
Then, every party verifies: (i) the dealer uses the probabilistic low-degree
checking technique from [40] to commit univariate polynomials with degree
up to t to Merkle trees,8 and (ii) an exclusive 2t-degree univariate polynomial
(sent from the dealer) has a correct degree, and all its points are consistent
with Merkle trees committing the t-degree univariate polynomials. As long as
t+1 honest parties complete the above checks, a unique 2t-degree polynomial
can be fixed, cf. the next Section for a brief overview of our technique.

– To showcase the usefulness of DHDC method, we further simplify the idea to
construct a generic HAVSS compiler that can be instantiated from (almost)

8 Note that the probabilistic low-degree checking (PLDC) [40] does not generate a
cryptographic zk-proof ensuring that a Merkle tree committing the evaluations of a
polynomial with degree t, it rather lets every party perform some local check of its
exclusive local share, such that a unique t-degree polynomial can be fixed by t + 1
honest parties who hold shares passing PLDC, see § 3 for a brief review of PLDC.
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any t-degree AVSS. 9 This framework lets the dealer execute a batch of n
AVSS instances, where each AVSS distributes a t-degree univariate poly-
nomial derived from the bivariate polynomial with asymmetric degrees. As
such, each party subsequently can obtain n evaluations associated with its
exclusive 2t-degree univariate polynomial (from n AVSS instances), and lo-
cally check whether the degree is not larger than 2t. Once a distributed voting
process can assert that t+1 honest parties complete the local degree check,
the bivariate polynomial shared by the dealer is thus fixed. When using some
state-of-the-art batch t-degree AVSS [41, 2, 22] to instantiate our framework,
it can realize (batch) HAVSS protocols with (amortized) quadratic word
communication complexity per shared secret.
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Fig. 1. Overview of our DHDC method. Note that evaluations in the red regions are
sufficient to reconstruct the whole bivariate polynomial.

2 Technical Overview

Here we brief our key technique to overcome the challenge of designing a con-
cretely efficient HAVSS from only lightweight cryptography.

Challenge of lightweight HAVSS: degree check of shared polynomials.
Following many successful HAVSS designs using PKC primitives [35, 6, 2], we
also would like to borrow the idea of performing 2t-degree secret sharing in
aid of a bivariate polynomial ϕ(X,Y ). More specifically, the two variables play
different roles. The part of the first variable has a higher 2t-degree, and can
be used to encode the secret to enforce a high threshold of reconstructing the
secret. The part of the second variable has a lower t-degree, which further shares
9 To be more precise, we require an ACSS with a slight enhancement that enables

a participant to verifiably transfer a reconstructed secret to the whole network—a
requirement can be met by all ACSS protocols, possibly with minor modifications.
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the 2t-degree shares, enabling the participants to recover the desired high-degree
secret shares more easily. Previous works heavily rely on polynomial commitment
scheme to securely implement the idea of using the bivariate polynomial for
HAVSS. In particular, given a commitment of polynomial ϕ, parties can verify
both the degree of ϕ and certain evaluations of ϕ. However, it is difficult to realize
the functionality using only hash functions; for example, one can use a Merkle
tree to commit the evaluations of ϕ, but it wouldn’t enable the verification of
correct degree, unless we seek heavy intermediate primitives like zk-STARK.

Probabilistic low-degree check (PLDC) and its limitation. Recently, At-
apoor et al. [7] and Shoup and Smart [40] independently presented a probabilistic
low-degree check (PLDC) method to verify the correct degree of a t-degree poly-
nomial committed to a Merkle tree. The idea stems from a key observation: if we
linearly combine two polynomials of degree t, the resulting polynomial should be
of the same degree. Shoup and Smart leverage this idea to construct a t-degree
AVSS protocol. For completeness, we briefly recall the PLDC method of Shoup
and Smart hereunder, in the context of SS24 AVSS: 10

1. Dealer D holds a t-degree polynomial ϕ which should be of degree t and want
to share it among n parties. The goal of D is to convince parties ϕ has the
right degree without leaking secret ϕ(ω0). To this end, D randomly samples
another polynomial ϕ̂ of the same degree, and uses a Merkle tree to commit
ϕ using ϕ̂ as blinding randomness. D then derives a challenge θ from the
Merkle tree commitment through the Fiat-Shamir heuristic in the random
oracle [26]. After that, D computes polynomial f = ϕ + θϕ̂ and publishes
the commitment and f . Besides, each party will also receive their exclusive
shares of ϕ and ϕ̂ along with corresponding Merkle proofs.

2. After receiving the above information from D, each party Pi will make two
verifications: (i) Pi checks if its shares xi and yi are consistent with the
commitments by checking Merkle proofs; (ii) it checks if f(ωi) = xi + θyi.
If both verifications pass, Pi is a party receiving valid shares. As proven
in [40], once there are t + 1 honest parties receiving valid shares, there is
only a negligible probability, such that another honest party might receive
valid shares that are not consistent with other t + 1 honest parties’ valid
shares, i.e., interpolating the valid shares of any t + 1 honest parties must
return the unique t-degree polynomial with an overwhelming probability.

3. Finally, the distributed parties follow the protocol flow of Bracha’s reliable
broadcast [10] to count if there are t+1 honest parties receiving honest shares,
thus deciding an output in an AVSS execution. The remaining subtlety to
handle is that only t + 1 honest parties may receive valid shares, and the
other honest parties might receive invalid shares, due to the influence of a
malicious dealer and asynchronous network. Therefore, a complaint phase is

10 Note that Shoup and Smart [40] also give a batched version of the above PLDC idea,
enabling parties to check the degrees of multiple t-degree polynomials at the same
time. We re-introduce its non-batch version for presentation simplicity. We also refer
interested readers to Section 5 of SS24 [40] for more details.
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also designed in SS24 to enable the honest parties receiving invalid shares
to generate a proof transcript convincing other honest parties to publish the
secret of a corrupted dealer using their valid shares.

Clearly, the above PLDC approach only works for the degree test of t-degree
polynomials, and it cannot directly meet our requirement of ensuring that the
dealer commits a 2t-degree polynomial. This is because its key assurance that
“the valid shares of any t+1 honest parties must fix the unique polynomial” would
be breached if the committed polynomial is 2t-degree. If we directly apply LPDC
to our setting of 2t-degree verifiable secret sharing, the protocol might never
output, as we need to ensure all honest parties receive valid shares to ensure the
committed polynomial has the correct 2t-degree. This clearly requires waiting
for all vote messages from honest parties, which is impossible in asynchrony, as
the adversary can always delay up to t honest parties to let the other honest
nodes proceed without the involvement of these delayed parties.

Our distributed high-degree check (DHDC) approach. We propose the
distributed high-degree check (DHDC) technique to resolve this problem of
checking the correct degree of some committed 2t-degree polynomial. Our ap-
proach encodes the to-be-shared 2t-degree polynomial using a bivariate polyno-
mial (as Fig.1 illustrates), and stems from a basic fact that: given (t+1)×(2t+1)
evaluations of a bivariate polynomial (as exemplified by evaluations in the red
regions of Fig.1), we can interpolate a unique bivariate polynomial ϕ(X,Y ) with
degrees no more than t in X and no more than 2t in Y . If we can fix such a grid
of evaluations received by honest parties, we can bind a bivariate polynomial.
Now, the challenge is reduced to how to fix a (t + 1) × (2t + 1) grid of valid
evaluations received by the honest parties.

Notably, a seemingly viable idea of letting the dealer prove that all column
polynomials are of degree t and all row polynomials are of degree 2t is infeasible,
as PLDC are not applicable to prove 2t-degree polynomials, causing a circu-
lar problem of checking another 2t-degree polynomial while sharing a 2t-degree
polynomial. Fortunately, we realize a way to break the circular situation: it is
unnecessary to make all parties check the degree of all 2t-degree row polynomi-
als, conditioned that if we already leverage PLDC to verify the t-degree of all
n column polynomials; and actually, we only need to fix t + 1 row polynomials
with the correct degree 2t, after verifying the correct degree of column poly-
nomials. This can be done by letting every party locally check the degree of its
exclusive 2t-degree row polynomial (and also verify this polynomial’s evaluations
are correctly committed to column polynomials’ commitments used by PLDC),
and then, if both verifications pass, participants perform a distributed voting
phase following Bracha’s reliable broadcast structure, thus collectively fixing a
bivariate polynomial (which further fixes the to-be-shared 2t-degree polynomial).

After adding a complaint stage to help the honest parties receiving incor-
rect row polynomials and a reconstruction phase to correct up to t malicious
shares, we finally realize a lightweight HAVSS protocol with direct reduction to
cryptographic hash functions, cf. Section 4 for details of our construction.
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Simplifying DHDC technique towards a generic HACSS compiler. Fur-
thermore, we note that PLDC is not the only option for verifying the degree of
all column polynomials in DHDC. As Fig. 2 illustrates, the effect of batched
PLDC can also be realized by a batch of t-degree AVSS (particularly ACSS)
protocols. Since t-degree AVSS inherently guarantees the correct degree of the
shared polynomial, they can effectively be used to verifiably share all t-degree
column polynomials in the DHDC approach. Once all t-degree column polyno-
mials are correctly shared, every party can simultaneously obtain all evaluations
of its row polynomials, and locally check whether it has a correct degree not
larger than 2t, such that the honest parties can follow the structure of Bracha’s
reliable broadcast to vote whether there are t + 1 honest parties receive valid
row polynomials. If the voting phase completes, a bivariate polynomial is thus
fixed, ensuring the unique to-be-shared 2t-degree polynomial.

Building on the idea, we give a generic compiler that transforms any t-degree
ACSS into 2t-degree HAVSS, cf. Section 5 for the framework’s details.
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Fig. 2. Overview of our generic HAVSS framework.

3 Preliminaries and Problem Formulation

Notations. We use [n] to denote the set {1, ..., n} and let {Pi}i∈[n] denote the
set of participants. The security parameter is denoted by λ, and ϵ(λ) represents
a negligible function in λ. We write ZN := Z/NZ and ZN [X]t for polynomi-
als of degree t in the variable X and with coefficients in ZN . In the same way,
ZN [X,Y ]t,v denotes bivariate polynomials with degree t in X and degree v in Y .
Let set (ω1, ..., ωn) ∈ Zn

N denotes the coordinates where to evaluate univariate
polynomials. Thus, for a bivariate polynomial ϕ(X,Y ) in ZN [X,Y ]t,v, we would
consider its n×n evaluations at these points {(ωi, ωj)}i,j∈[n]. For all evaluations
in ϕ(X,Y ) with the same coordinate in X, they can be interpolated to a poly-
nomial in ZN [Y ]v. We write ϕ(ωi, Y ) for it. We also write ϕ(X,ωi) similarly for
the other variable.
System and threat model. We adopt a widely adopted asynchronous message-
passing model with up to t < n/3 Byzantine corruption, where n represents the
number of participants. Every pair of parties is connected by a secure com-
munication channel, ensuring both confidentiality and authenticity of messages



Resilience-Optimal Lightweight HAVSS 9

transmitted between honest parties. Messages can be arbitrarily delayed by the
adversary, but would eventually be delivered without tampered. We do not con-
sider other setup assumptions like PKI, CRS, or DKG. Following standard cryp-
tographic practices from the seminal work of Cachin et al. [12], the adversary A
is assumed to be probabilistic polynomial-time (PPT) bounded, and it is con-
sidered the number of participants n ≤ O(λ) (also assumed by SS24 [40]). Same
to SS24 [40], we consider a static adversary who decides t malicious parties to
corrupt before the start of protocol execution, throughout the paper. 11

Reliable Broadcast (RBC) is an asynchronous protocol with a designed sender
and can simulate an ideal broadcast channel in a point-to-point network. A secure
RBC protocol satisfies the following properties.
• Agreement : the outputs of any two honest parties are the same.
• Validity : if the sender is honest, all honest parties will eventually output the

sender’s input.
• Totality : if an honest party outputs, all honest parties will eventually output.

High-threshold asynchronous verifiable secret sharing (HAVSS) is a
two-phase asynchronous protocol with a designed dealer D. Syntactically, HAVSS
consists of a Share phase and a Reconstruction phase: the dealer shares an input
secret s across the participants in the Share phase, and the participants can
subsequently recover the shared secret in the Reconstruction phase. A HAVSS
protocol shall satisfy the following properties with all but negligible probability:
• Correctness:

– Conditioned that D is honest, all honest parties will eventually output
in the Share phase.

– If D is honest with taking secret s as input, then once all honest parties
participate in the Reconstruction phase, they can eventually recover the
same secret s.

– If some honest parties output in the Reconstruction phase, their outputs
shall be the same secret.

• Termination:
– If an honest party outputs in the Share phase, all honest parties will

eventually output in the Share phase.
– All honest parties will eventually output a secret if they all terminate in

the Share phase and activate the Reconstruction phase.

• Completeness: If some honest party outputs in the Share phase, there must
exist a fixed secret s′, such that each honest party will eventually output a
2t-degree share of it in the Share phase.

• Secrecy : It is computationally infeasible for the adversary to learn any bit
of information about an honest dealer’s input secret s, before t + 1 honest
parties activate the Reconstruction phase.

11 Note that we speculate that our HAVSS could be resistant to adaptive corruptions
in the random oracle model, though we only claim its static security.
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4 Our Lightweight HAVSS Protocol

In this section, we present our new lightweight HAVSS protocol that is directly
built from hash functions. As aforementioned, our HAVSS can share a 2t-degree
secret, thus with a reconstruction threshold ℓ = 2t. For ease of description, we
would divide the sharing phase of our HAVSS protocol into two stages—the
normal-case stage and the complaint stage, where the honest parties will skip
the later complaint stage if the dealer D is honest. We also thoroughly analyze
our design by presenting detailed security proof in Appendix A.

4.1 Sharing Phase

In the following, we present our the sharing phase of lightweight HAVSS con-
struction. For ease of read, its sharing phase protocol will be presented in three
parts: (i) the dealer’s code, (ii) the normal-case stage, and (iii) the complaint
stage. Here the complaint stage could be skipped if the dealer is honest.

Note that our protocol only uses one cryptographic primitive—hash function
H (modeled as random oracle). For convenience, we use specific notations to de-
note the interfaces of Merkle tree, which nevertheless is still built from only hash
functions. We let MerkleBuild({(x1, r1), (x2, r2), · · · , (xn, rn)}) → mt to denote
the function computes a Merkle tree committing {x1||r1, x2||r2, · · · , xn||rn}, let
mt.root to denote the root of Merkle tree mt, and let MerkleVerify denote the
function to verify an element is indeed committed to a given Merkle tree root
using a Merkle proof (a.k.a. Merkle branch, consisting the minimum number of
hash values to enable one recompute the Merkle tree root with a leaf element).

Sharing phase of dealer. The detailed description of the dealer’s execution
during the sharing phase is shown in Figure 3. After receiving an input secret
s ∈ F to be shared, the dealer D follows our DHDC methodology (cf. Section 2
for the technique’s overview) to prepare the messages to be sent as follows.

D first uniformly samples two bivariate polynomials ϕ and ϕ̂, where ϕ is
from ZF [X,Y ]2t,t such that ϕ(ω0, ω0) = s and ϕ̂ is from ZF [X,Y ]n,t (this can be
done by uniformly sampling n univariate t-degree polynomials) (lines 1-2). Note
that, ϕ̂ is used to Then, D can compute row polynomials αi = ϕ(X,ωi) and
α̂i = ϕ̂(X,ωi) for every i ∈ [n], as while as column polynomials βi = ϕ(ωi, Y )

and β̂i = ϕ̂(ωi, Y ) (lines 4-5). For each pairing of column polynomials βi and
β̂i , D builds a Merkle tree mti for ((βi(ω1), β̂i(ω1), ..., (βi(ωn), β̂i(ωn)) with root
mti.root (line 6). Here mti.root is the commitment for all evaluations of βi and β̂i

under coordinates (ω1, ..., ωn). D then builds another tree mt for ({mti.root}i∈n)
with root mt.root. The root mt.root corresponds to the commitment of all evalu-
ations of all column polynomials at coordinates (ω1, ..., ωn), and thus we can let
H return a series of random challenges (θ

(i)
1 )i∈[n] for PLDC, using the commit-

ment mt.root (line 9). D then computes challenge polynomial g for degree check
by linearly combining {βi}i∈[n] with β̂0 (line 10).

D then broadcasts (g , {mti.root}i∈n) to all parties via RBC (line 11). After
that, for each party Pi, D sends the i-th row polynomial αi along with Merkle



Resilience-Optimal Lightweight HAVSS 11

Sharing phase of HAVSS for dealer D

// Upon receiving an input secret s to be shared
1: uniformly sample ϕ(X,Y ) with degree 2t in X and t in Y s.t. ϕ(ω0, ω0) = s

2: uniformly sample ϕ̂(X,Y ) with degree n in X and t in Y
3: for all i ∈ [n] do
4: αi ← ϕ(X,ωi) , α̂i ← ϕ̂(X,ωi)

5: βi ← ϕ(ωi, Y ) , β̂i ← ϕ̂(ωi, Y ) ▷ αi(ωj) = βj (ωi)

6: mti ← MerkleBuild({(βi(ωj), β̂i(ωj))}j∈[n])

7: α̂0 ← ϕ̂(X,ω0) , β̂0 ← ϕ̂(ω0, Y )
8: mt← MerkleBuild(mt1.root, ...,mtn.root)

9: compute challenge (θ
(i)
1 )i∈[n] ← H(mt.root)

10: compute g ← β̂0 +
∑

i∈[n] θ
(i)
1 βi

11: reliably broadcast (g , {ri|ri = mti.root}i∈[n])
12: for all i ∈ [n] do
13: send Send(αi , α̂i , {πcol(ki)}k∈n) to Pi

14: πcol(ki) is the Merkle proof attesting that βk (ωi)||β̂k (ωi) is the i-th leaf
committed to the Merkle tree root rk

Fig. 3. Our HAVSS protocol: the part of dealer in the sharing phase.

proofs for all its evaluations (lines 12-14). Note that the Merkle proof for an
evaluation is simply the path of hash values to attest that it is the i-th leaf of a
corresponding Merkle tree committing some column polynomial.

Sharing phase of receiving parties (normal-case stage). Figure 4 shows
the normal stage of the receiving parties’ execution during the sharing phase. We
will divide the description into the following steps based on the message types.
Step 1 (lines 1-12):

Upon receiving (g , {ri}i∈n) from D via RBC, each party Pj first check whether
the degree of g is no greater than t, respectively. After that, Pj can compute the
challenges {θ(k)1 }k∈[n] in the same way with D (lines 2-3). Then, the party Pj

waits for receiving the Send(αj , α̂j , {πcol(kj)}k∈n) message from D, and performs
the following DHDC verifications (lines 4-7):

• The degrees of αj and α̂j are both no greater than 2t;
• For each k ∈ [n], πcol(kj) is a valid Merkle proof attesting that αj (ωk)||α̂j (ωk)

is the k-th leaf committed to Merkle tree root rk;
• Conduct the PLDC verification for all committed t-degree column polyno-

mials: g(ωj) = α̂j (ω0) +
∑

k∈[n] θ
(k)
1 αj (ωk).

If all the above DHDC checks can pass, Pj receives a valid Send message
from the dealer. Then, for each i ∈ [n], Pj sends Echo message containing
αj (ωi) and α̂j (ωi) to Pi along with their Merkle proofs (lines 11-12).
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Sharing phase (normal-case) of HAVSS for each receiving party Pj

pointsβ,j ← ∅, pointsβ̂,j ← ∅, Πcol(j) ← ∅, Πrow(j) ← ∅
rowReady ← false , colReady ←⊥ , compReady ←⊥ , rowSet← ∅ , shares← ∅
// Handle Send message

1: wait until receiving (g , {rk}k∈[n]) from D, where g ∈ ZF [Y ]t
2: r ← MerkleBuild({rk}k∈[n])

3: calculate challenge {θ(k)1 }k∈[n] ← H(r)
4: upon receiving the first Send(αj , α̂j , {πcol(kj)}k∈n) message from D, do
5: if the degrees of αj and α̂j are both no greater than 2t then
6: if for each k ∈ [n], MerkleVerify(αj (ωk), α̂j (ωk), πcol(kj), rk) = true then
7: if g(ωj) = α̂j (ω0) +

∑
k∈[n] θ

(k)
1 αj (ωk) then ▷ checks for DHDC

8: rowReady ← true
9: pointsα,j ← {αj (ωi)i∈[n]} , pointsα̂,j ← {α̂j (ωi)i∈[n]}

10: Πrow(j) ← {πcol(kj)}k∈n

11: for all k ∈ [n] do
12: send Echo(αj (ωk), α̂j (ωk), πcol(kj)) to Pk

// Handle Echo message
13: upon receiving Echo(αk (j), α̂k (j), πcol(jk)) for the first time from Pk do
14: if MerkleVerify(βj (ωk), β̂j (ωk), πcol(jk), rj) = true then
15: pointsβ,j ← pointsβ,j ∪ βj (ωk) , pointsβ̂,j ← pointsβ̂,j ∪ β̂j (ωk)
16: Πcol(j) ← Πcol(j) ∪ πcol(jk)

17: upon |pointsβ,j | = t+ 1 and |pointsβ̂,j | = t+ 1 do
18: βj

′ ← Interpolatet(pointsβ,j) , β̂′
j ← Interpolatet(pointsβ̂,j)

19: rj
′ ← MerkleBuild(βj

′, β̂′
j )

20: if rj = rj
′ then colReady ← true else colReady ← false

21: upon |pointsβ,j | = 2t+ 1 and |pointsβ̂,j | = 2t+ 1 do
22: multicast Done()

// Handle Done message
23: upon receiving Done() from t+ 1 distinct parties do
24: multicast Done() if haven’t sent
25: upon receiving Done() from n− t distinct parties do
26: wait until colReady ̸=⊥
27: if colReady = true then output Output1(βj , β̂j , {ri}i∈[n])
28: if colReady = false then
29: multicast Complain(pointsβ,j , pointsβ̂,j ,Πcol(j))

Fig. 4. Our HAVSS protocol: the part of the normal-case stage in the sharing phase.

Step 2 (lines 13-22):
Upon receiving an Echo message, Pj first checks if the contained evaluations

are consistent with rj (line 14). We call a Echo message valid if it passes this
check. Upon receiving t+1 valid Echo messages, Pj can interpolate its column
polynomials βj

′ and β̂′
j (line 18). Pj then check if βj

′ is consistent with rj (lines
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19-20). We call this column polynomial valid if it passes this check, and whether
it’s valid is the condition whether Pj sends a Complain message in complaint
stage. Upon receiving 2t + 1 Echo messages, Pj can ensure that at least t + 1
honest parties have corresponding valid row polynomials. A Done message is
multicast to notify others of this (lines 21-22).

Step 3 (lines 23-29):
Upon receiving t+1 Done messages, Pj will forward it if it hasn’t sent one.

Upon receiving 2t+1 Done messages, Pj can ensure that all honest parties will
eventually obtain 2t + 1 Done messages. Here it can output its secret share if
βj and β̂j are valid (line 27). Note that the evaluation of βj at ω0 is Pj ’s secret
Share. And Pj will output βj (ω0) here.

Note if Pj interpolates some column polynomials inconsistent with Merkle
trees when receiving n− t Done messages, it will multicast Complain message
to request assistance from others (lines 28-29). The Complain message contains
evaluations received for its column polynomials along with corresponding Merkle
proofs. We will continue to explain how to handle Complain messages in Fig.5.

Complaint stage of the sharing phase. Figure 5 illustrates the complaint
stage to handle the bad case that some honest party fails to recover a valid
column polynomial (which is supposed to encode the 2t-degree secret share).

Sharing phase (complaint stage) of HAVSS for each receiving party Pj

// As continuation of Fig. 4
1: upon receiving Complain(pointsβ,k, pointsβ̂,k,Πcol(k)) first time from Pk do
2: if compReady = false then
3: if MerkleVerify(pointsβ,k, pointsβ̂,k,Πcol(k), rk) = true then
4: βk

′ ← Interpolatet(pointsβ,k) , β̂′
k ← Interpolatet(pointsβ̂,k)

5: r′ ← MerkleBuild(βk
′, β̂′

k )
6: if r′ ̸= rk then
7: compReady = true
8: if rowReady = true then
9: reliably broadcast (αj , α̂j ,Πrow(j)) as sender of ReliableBroadcastj

10: upon compReady = true do
11: upon ReliableBroadcastk output (αk , α̂k ,Πrow(k)) do
12: if MerkleVerify(αk , α̂k ,Πrow(k), {rl}l∈[n]) = true then
13: if the degree of αk is no greater than 2t then
14: if g(ωk) = α̂k (ω0) +

∑
i∈[n] θ

(i)
1 αk (ωi) then

15: rowSet← rowSet ∪ αk

16: upon |rowSet| = t+ 1 do
17: ϕ′ ← Interpolate2t,t(rowSet)
18: output Output2(ϕ′(ωj , ω0), ϕ

′(ω0, ω0))

Fig. 5. Our HAVSS protocol: the part of complaint stage of the sharing phase.
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A Complain message is valid, if it carries a sufficient number of polynomial
evaluations that are committed to Merkle trees but their interpolations cannot
recover the same Merkle tree roots (lines 3-6). Upon receiving the first valid
Complain message, Pj checks if it has received valid row polynomials from
D. If so, it will invoke an RBC to reliably broadcast row polynomials along
with their Merkle proofs (line 9). We call such a reliable broadcast instance
assistant reliable broadcast (assisRBC). Note that if honest parties participate
in all possible assisRBCs without a sanity check, the adversary can waste their
communication through assisRBCs. To address this problem (and preserve a lower
communication cost during the normal case with an honest dealer), Pj will
respond for assisRBC only after receiving a valid Complain message (line 10).
Clearly, an assisRBC instance in the complaint stage is similar to the Send
message in the normal-case stage, and Pj conducts the same checks on the
outputs of assisRBCs as to the Send message (lines 11-15). An assisRBC is said
valid if its output passes all checks specified by lines 11-15. Pj will store all
valid outputs of assisRBC instances. Once receiving t + 1 valid assisRBCs, Pj

can interpolate a bivariate polynomial ϕ′ (line 17). The final output share of
Pj therefore becomes ϕ′(ωj , ω0) (line 18). Note that the secret ϕ′(ω0, ω0) is also
returned as part of the output, which later will be used by the reconstruction
phase.

Reconstruction phase of HAVSS for each party Pj

shares← ∅,coms← ∅
1: upon output Output1(βj , β̂j , {ri}i∈[n]) in sharing stage do
2: multicast Share(βj , β̂j )
3: shares← shares ∪ βj (ω0)
4: coms← coms ∪ {ri}i∈[n]

5: upon output Output2(ϕ′(ωj , ω0), ϕ
′(ω0, ω0)) in sharing stage do

6: output ϕ′(ω0, ω0)

7: upon receiving Share(βk , β̂k ) first time from Pk do
8: if the degrees of βk and β̂k don’t exceed t then
9: r′ ← MerkleBuild(βk , β̂k )

10: if r′ = coms[k] then
11: shares← shares ∪ βk (ω0)

12: upon |shares| = 2t+ 1 do
13: α0 ← Interpolate2t(shares)
14: output α0 (ω0)

Fig. 6. Our HAVSS protocol: the part of reconstruction phase.
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4.2 Reconstruction Phase

Figure 6 shows the details of the reconstruction phase. After activating recon-
struction, Pj will multicast the column polynomials βj and β̂j through Share
message if it has obtained valid ones during the earlier sharing phase (lines 1-2).
A Share message is valid if its column polynomials are consistent with the cor-
responding commitment and of the correct degree (t) (lines 7-11). There are two
paths to reconstruct the final secret. Firstly, if Pj can gather 2t+1 valid shares,
it then interpolates a 2t-degree polynomial α0

′. And the secret s is α0 (ω0) (lines
12-14). But, if some honest parties obtain invalid polynomials, Pj may never be
able to collect enough valid Share messages. So we need a second output path
in the malicious case. As earlier described in Fig. 5, all parties can recover the
secret in the Complain stage in case of a malicious dealer, thus ensuring that
they can directly output the secret here (lines 5-6).

4.3 Complexity Analysis

We now analyze the communication complexity of our HAVSS protocol. The
communication complexity is defined as the expected number of bits sent by
honest parties. We classify the possible executions of the sharing phase into two
categories: “normal case” and “bad case”. The classification is based on whether
any honest party receives a valid Complain message. We also separately ana-
lyzed the communication complexity of the reconstruction phase. We use m to
denote the bit length of a field element, which essentially corresponds to a sta-
tistical security parameter. Thus, the size of a polynomial is O(nm). We use the
reliable broadcast protocol in [21], which achieves a communication complexity
of O(n|M |+ λn2), where |M | is the size of the input.

Normal case of sharing: In “normal case”, honest parties only participate
in reliable broadcast protocol led by the dealer in the normal case. The input
contains two polynomials and n hashes with a total complexity of O(nm+ nλ).
Thus, the communication complexity of this reliable broadcast is O(n2m+λn2).
The Send message contains two polynomials and n Merkle proofs. Thus, the
cost on it is O(n2m + λn2 log n). The Echo message contains two evaluations
and one Merkle proof and the cost is O(n2m+λn2). The Done message can be
asymptotically ignored as it contains only a single bit. The total communication
complexity of the normal case is thus O(n2m+ λn2 log n).

Recall that the statistical security parameter m approximates O(λ) to ensure
the security of PLDC (if n ≤ O(λ), cf. SS24 for the parameter choice [40]), this
finally rendering a normal-case communication complexity of O(λn2 log n).

Bad case of sharing: The additional cost of “bad case” comes from the com-
plaint stage. There might be at most n parties broadcasting their row polyno-
mials by invoking assisRBC. The input contains two polynomials and n Merkle
proofs. Thus, the cost of n assisRBC instances is O(n3m + λn3 log n). Adding
this to the cost of normal case, the total communication cost of the “bad case”
becomes O(n3m+ λn3 log n), which is O(λn3 log n) for properly chosen m.



16 Cheng et al.

Reconstruction: As aforementioned, all honest parties may multicast their col-
umn polynomials here, bringing a cost of transmitting O(n3m) bits (essentially
O(λn3)), which still corresponds to cubic word complexity.

4.4 Security Analysis

Here we brief the security intuition of our lightweight HAVSS protocol, while
deferring the detailed proof to Appendix A:

– For Correctness: If when D is honestly executing, it is trivial to see that all
evaluations will be correctly computed and committed to some broadcasted
Merkle trees. Thus, all honest parties can successfully finish protocol and
reconstruct the same s as D, unless the binding of Merkle tree is breached.
In addition, if two honest parties reconstruct conflicting secrets, DHDC thus
fails, which can only be caused by two bad events: (i) the breach of com-
mitment’s binding or (ii) the statistical error of PLDC. Both of them have
negligible probability of happening.

– For Termination: When D is honest, it is trivial to see that all honest par-
ties would output during the normal-case stage. Otherwise, in the presence
of some probably malicious dealer, if some honest parties output in the com-
plaint stage, the rest honest parties will also do so, as a result of using RBC
to broadcast messages triggering the complaint-stage output.

– For Completeness: The DHPC mechanism ensures that a bivariate polyno-
mial ϕ′ from ZF [X,Y ]2t,t is fixed once an honest party finishes it. Honest
parties can detect whether their shares are consistent with ϕ′. Thus, com-
pleteness property can be held.

– For Secrecy: As we model the hash function as a random oracle, the com-
mitment for each evaluation is hiding, because we use a randomly sampled
polynomial to mask the main bivariate polynomial (encoding s). Thus, leaks
no bit of information to the adversary even if s has low entropy.

5 A Generic Framework for Resilience-Optimal HAVSS

In this section, we will introduce our generic compiler for instantiating 2t-degree
HAVSS from any t-degree AVSS (or simply referred to as AVSS throughout the
section, as long as there is no confusion with HAVSS). As Fig 2 illustrates, the
HAVSS framework is inspired by the DHDC method of our lightweight HAVSS
construction, which leverages each party’s local degree check and conducts a
distributed voting process to verify the correct 2t-degree of at least t + 1 rows
of a bivariate polynomial, such that fixing the bivariate polynomial (if all its
columns have also been verified to have correct t-degree).

An inspiration of simplifying distributed high-degree checking (DHDC).
When applying the DHDC technique to implement our lightweight HAVSS, we
need an additional complaint stage to enable all honest parties to recover their
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shares if needed. This is because we leverage LPDC for verifying the t-degree
of column polynomials, which cannot prevent the dealer from committing an
incorrect column with a higher degree, thus requiring some honest parties to
ask for recovering the correct columns with t-degree in the bad case. The com-
plaint stage not only complicates the protocol, making it harder to parse and
understand, but also introduces a significant cubic communication overhead.

A key simplification realized by us is that: we can simply let the dealer invoke
an AVSS protocol (with completeness property) to distribute each column poly-
nomial, thus avoiding the extra complaint stage and realizing a much simpler
protocol structure for HAVSS. Moreover, to avoid the communication blow-up
of executing n concurrent AVSS protocols, the dealer can also invoke a batch
AVSS protocol [2, 22, 5, 40, 41] for efficiency, such that it can distribute n column
polynomials simultaneously while preserving an asymptotic communication com-
plexity same to that of sharing a single secret.

Preparing AVSS with minor modification. Our HAVSS framework requires
an extra interface and property to the t-degree AVSS — verifiable secret transfer-
ability, to facilitate the reconstruction of the high-threshold secret. This property
can be informally stated as follows:

– Verifiable secret transferability : A desired AVSS protocol should allow parties
to verify the validity of the secret s′ recovered through individual reconstruc-
tion. Specifically, all parties can extract some information called Context
after sharing phase of this AVSS protocol, and the designated party who
reconstructs s′ can extract some additional information called Proof after
individual reconstruction. There also exists a function SecretVerify to verify
whether s′ is the valid secret or not, using Proof and Context. Assuming s be
the secret reconstructed from the original reconstruction phase of this AVSS
protocol, there should be:

Pr[s ̸= s′|SecretVerify(s′,Context,Proof) = true] ≤ ϵ(λ).

The above small change can be accommodated by all AVSS protocols with at
most minor modifications. If we use PCS-based AVSS, the polynomial commit-
ment and its evaluation proofs can meet the requirement. For AVSS protocols
that don’t rely on PCS [40, 33], a generic approach to amendment them is intro-
ducing signatures on secret shares during reconstruction, assuming extra PKI
setup, such that a sufficient number of secret shares with valid signatures can
be the proof for secret’s correctness.

Construction of the generic HAVSS framework. The resulting HAVSS
framework is described in Fig. 7, as a compiler executing the following steps to
translate any AVSS (possibly with our minor modifications) into HAVSS.

– Sharing phase (t-degree sharing stage, lines 1-10): The dealer D first samples
a bivariate polynomial ϕ(X,Y ) with ϕ(ω0, ω0) = s to encode the input secret.
Then n row and n column polynomials can be derived. For each column
polynomial, D invokes an AVSS instance to share it. After all AVSS instances
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are terminated, each party Pi can get n evaluations of ϕ(X,ωi) for X chosen
among {ωj}j∈[n], and Pi can extract {Contextj}j∈[n] helping to verify the
validity of ϕ(ωj , ω0) for each j ∈ [n] (here ϕ(ωj , ω0) is the secret shared by
each t-degree AVSS instance). Then, each party Pi checks if n evaluations
received from n AVSS instances lie on some polynomial ϕ(X,ωi) of degree
no more than 2t.

– Sharing phase (2t-degree share output stage, lines 11-23): After that, a two-
round vote is executed by following the structure of Bracha’s broadcast. Be-
sides, for each i ∈ [n], each honest party Pj will send shareij := ϕ(ωi, ωj) (its
share received from i-th AVSS instance) to Pi. The completeness property
enables Pi to interpolate sharei := ϕ(ωi, ω0) through online error correction
(OEC) [17]. It is worth noting that if the underlying AVSS provides an in-
terface to verify shares, OEC can be avoided. Pi then outputs its 2t-degree
share sharei along with ContextSet := {Contextj}j∈[n], and a Proof for the
correctness of its share.

– Reconstruction phase (lines 101-108): Upon initiating the reconstruction
phase with (sharei,ContextSet,Proofi)—the output from the sharing phase,
Pi will multicast sharei along with corresponding proof Proofi (line 102).
Upon receiving the pair (sharej ,Proofj) from Pj , Pi verifies its validity using
the SecretVerify function. If SecretVerify(sharej ,ContextSet.Contextj ,Proofj)
returns true, Pi stores sharej (lines 103-105). Once Pi has collected 2t + 1
valid shares, it can interpolate to reconstruct a polynomial ϕ(X,ω0) of degree
2t, and subsequently retrieve the secret ϕ(ω0, ω0).

Exemplary instantiation of a (batch) HAVSS protocol. Here we present
an exemplary instantiation using our generic framework to compile a state-of-
the-art batch AVSS protocol hbACSS [41] into a batch HAVSS protocol.

We begin with hbACSS1 using KZG PCS, and apply a small modification of
replacing Merkle tree in its asynchronous verifiable information dispersal com-
ponent with vector commitment scheme [16], such that the resulting batch AVSS
can share n2 secrets using O(λn3) bits, thus realizing an amortized O(λn) com-
munication overhead per secret. 12 We then prepare the interface of verifiable
secret transferability in hbACSS as follows:

– For Context, every party can simply use KZG polynomial commitment, which
is reliably broadcasted by the dealer and commits the t-degree polynomial
encoding the secret s as zero-point evaluation.

– For Proof, once some party Pi interpolates the t-degree polynomial encoding
the secret s, it then computes it as an evaluation proof attesting that s is the
zero-point evaluation of the polynomial committed to KZG commitment.

12 Note that the batch size of n2 used in hbACSS is caused by a specific communication
wasting attack. If the particular attack is not admissible by adversaries, we can use
a smaller batch O(n) to achieve an amortized O(λn) communication per secret.
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Generic HAVSS Compiler

Sharing Phase:
// For dealer D who has an input secret s to be shared

1: uniformly sample ϕ(X,Y ) with degree 2t in X and t in Y s.t. ϕ(ω0, ω0) = s
2: for all i ∈ [n] do
3: βi ← ϕ(ωi, Y )
4: invoke an AVSS instance to share polynomial βi

// For party Pi

5: upon all AVSS instances terminated, and get share set RShares ←
{shareji}j∈[n] and context set ContextSet← {Contextj}j∈[n] do

6: αi ← Interpolate(RShares)
7: if the degree of αi doesn’t exceed 2t then
8: multicast Vote1()
9: for all j ∈ [n] do

10: send shareji to Pj

11: ready ← false , CShares← ∅
12: upon receiving shareij from Pj do
13: CShares← CShares ∪ shareij
14: if |CShares| ≥ 2t+ 1 and ready = false then
15: try to interpolate ϕ(ωi, Y ) from CShares using OEC
16: if OEC succeeds then
17: let sharei := ϕ(ωi, ω0), ready ← true, extract Proofi for sharei ▷ The

specific method for extracting the proof depends on AVSS.
18: upon receiving Vote1() from n− t distinct parties do
19: multicast Vote2() if haven’t sent
20: upon receiving Vote2() from t+ 1 distinct parties do
21: multicast Vote2() if haven’t sent
22: upon receiving Vote2() from n− t distinct parties and get sharei do
23: output (sharei,ContextSet,Proofi)

Reconstruction Phase:
// For party Pi with (sharei,ContextSet,Proofi) obtained from sharing phase

101: shares← ∅
102: multicast Share(sharei,Proofi)
103: upon receiving Share(sharej ,Proofj) from Pj do
104: if true← SecretVerify(sharej ,ContextSet.Contextj ,Proofj) then
105: shares← shares ∪ sharej

106: upon |shares| = 2t+ 1 do
107: ϕ(X,ω0)← Interpolate2t(shares)
108: output ϕ(ω0, ω0)

Fig. 7. Our generic framework of constructing 2t-degree HAVSS from t-degree AVSS.

Given the above modified hbACSS variant, we can instantiate a batch HAVSS
protocol using it. When the dealer D receives a batch of n secrets, it samples n
random bivariate polynomials with asymmetric t and 2t degrees, and lets each
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secret be encoded as one bivariate polynomial’s zero-point evaluation. Since a bi-
variate polynomial can derive n t-degree univariate polynomials, the dealer thus
can invoke a hbACSS1 instance to verifiably share all n2 t-degree univariate poly-
nomials derived from n bivariate polynomials. The participants can subsequently
follow our HAVSS framework to share n input secrets, by explicitly dividing the
n2 t-degree univariate polynomials into n groups (where each group consists of n
univariate polynomials related to one bivariate polynomial and encodes an input
secret to be shared).

Complexity analysis. The communication cost of our framework mainly comes
from three parts: a batch of AVSS to share t-degree polynomials, OEC to ob-
tain the 2t-degree secret shares, and a Bracha-style voting. The cost of the last
two parts is at most O(λn2) per HAVSS input secret. When using some state-
of-the-art batch AVSS [2, 22, 5, 41] to instantiate the sharing stage of t-degree
polynomials, the communication complexity of sharing n t-degree polynomials
becomes O(λn2), amortizedly. Further considering that n t-degree polynomials
are required to be shared for each HAVSS input secret, the amortized commu-
nication overhead thus becomes O(λn2) per HAVSS input secret. 13

Security analysis. The security of our HAVSS framework mostly inherits the
security of the underlying t-degree AVSS, as our framework itself only adds a
few degree checks and voting steps atop it (which are cryptographic-free). We
provide the security intuition of this simple framework below.

– For Termination: As termination and completeness held by underlying AVSS,
if some honest party outputs, it must have terminated in all AVSS instances.
Thus, all honest parties will eventually output in all AVSS instances, further
ensuring all honest parties have the correct 2t-degree secret share for s. The
voting phase itself also ensures that once an honest party outputs, all others
will do so. Thus, all honest parties will eventually output.

– For Correctness: With correctness satisfied by the underlying AVSS protocol,
secrets of all underlying AVSS instances are consistent with ϕ(X,ω0). Thus,
they will reconstruct the secret ϕ(ω0, ω0) identical to the dealer’s input.

– For Completeness: Let ϕ′(X,Y ) be the bivariate polynomial interpolated
from all column polynomials shared by n underlying AVSS. The completeness
of the underlying AVSS ensures that all column polynomials {ϕ′(ωi, Y )}i∈[n]

have degrees no more than t. Besides, the voting phase of our framework
ensures that at least t+1 row polynomials (ϕ′(X,ωi)) have degrees no more
than 2t. Thus, ϕ′(X,Y ) has degree no more than 2t on X. Since all shares
of s are evaluations of ϕ′(X,ω0), the completeness property therefore holds.

– For Secrecy: In our framework, the adversary will learn t row polynomials
and t column polynomials from ϕ(X,Y ). Upon t honest leaked their shares
of s to the adversary, it can learn another t column polynomials. The secrecy

13 For example, if we use hbACSS [41] to instantiate our HAVSS framework, the result-
ing HAVSS can share n secrets by O(λn3) bits; if we use Bingo [2] as the underlying
AVSS instantiation, our HAVSS framework can share 1 secret by O(λn2) bits.
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of the underlying AVSS ensures that the adversary learns nothing about the
rest n− 2t column polynomials except their own evaluations. In conclusion,
for the bivariate polynomial ϕ(X,Y ) with 2t degree on X and t degree on
Y , giving t row polynomials and 2t column polynomials on it leaks nothing
about the secret. Thus, the secrecy property holds.
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A Security Proof of Our Lightweight HAVSS

The security of our HAVSS protocol is captured by the following main theorem.

Theorem 1. Our HAVSS protocol satisfies correctness, secrecy, completeness,
and termination properties against any PPT adversary corrupting up to t < n/3
parties as aforementioned, assuming the random oracle model and the existence
of pair-wise asynchronous secure channel between any two honest parties.

We validate the statement by proving the following lemmas.
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Lemma 1. In our HAVSS protocol, once t+1 parties received valid Send mes-
sages, let ϕ(X,Y ) denote the bivariate polynomial interpolated by their row poly-
nomials. The probability that there exists another party, whose row polynomial
passes the check but doesn’t lie on ϕ, is negligible, under the assumption that
2n/|ZN | is negligible14.

Proof. The formal proof of this lemma can be seen in [40]. We only show intuition
here. It’s clear that this lemma holds when the dealer is honest. So, we only
consider the case with a corrupted dealer. Assuming the corrupted dealer can
break this lemma. It means that there exists some column polynomials whose
degrees are higher than t. We consider the probability of obtaining a polynomial
of degree less than t from randomly linearly combing n t-degree polynomials. If
all the coefficients for liner combine are uniformly and independently randomly
sampled from ZN , the probability is 1/ZN . The factor 2n is because the corrupted
dealer can decide which subset (with size no more than t+1) will have valid row
polynomials.

Lemma 2. Our HAVSS protocol satisfies the termination property.

Proof. We first discuss the case that an honest party outputs in Share stage. As
shown in Algorithm 4 and 5, there are two ways to output in Share stage. If it
outputs Output1, at least t + 1 honest party must have sent Vote messages.
Since honest parties will forward Vote messages upon receiving t + 1 ones, all
honest parties will eventually receive n− t Vote messages. We then show that
all honest parties will receive enough valid Echo messages in this case. Since
honest parties can receive n−t Vote messages eventually, there must be at least
one honest party who has received at least 2t+1 valid Echo messages in which
at least t+1 from honest parties. Thus, all honest parties will eventually receive
at least t+ 1 valid Echo messages. Depending on whether the column polyno-
mials they interpolate are valid, all honest parties will either output Output1
or multicast a Complain message. For those honest parties who multicast a
Complain message, it is clear that their Complain messages are valid for all
honest parties. It has been reasoned that there are at least t+ 1 honest parties
who have valid row polynomials. Thus, there will be at least assisRBC instances
lead by these t+1 honest parties, which will ensure that all honest parties even-
tually obtain at least t + 1 valid row polynomials. All honest parties thus can
interpolate a bivariate polynomial through them. The evaluation on (ω0, ω0) of
it is the secret. They can then output Output2. Thus, once an honest party
outputs in Share stage, all honest parties will eventually output either Output1,
Output2, or both in the Share stage.

We then consider the case that all honest parties participate in Reconstruction
stage. They must have output in Share stage. Because the honest parties may
have two possible outputs during Share stage, we further divide the potential
scenarios into two categories. Firstly, if all honest parties output Output1,
14 To let 2n/|ZN | negligible, |ZN | typically could be 22n, indicating that a statistically

security parameter m (i.e. the bit length of ZN elements) approximates 2n.
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they will all multicast their column polynomials, and they can thus interpolate
a bivariate polynomial through them. They then output the secret which is the
evaluation on (ω0, ω0) of this polynomial. Secondly, some honest parties only
output Output2. As we reasoned in the last case, all honest parties will output
Output2 in Share stage which contains the final secret, and thus they will all
output in Reconstruction stage.

Lemma 3. Our HAVSS protocol satisfies the correctness property.

Proof. We first consider the case that the dealer D is honest, who samples a
bivariate polynomial ϕ in which s = ϕ(ω0, ω0). Following the protocol, all hon-
est parties will obtain valid Send messages, and thus will multicast valid Echo
messages. They can gather enough Echo messages from honest parties to inter-
polate their valid column polynomials. If not, there must be an Echo message
that contains wrong evaluations but passes the check. This implies that the ad-
versary finds a collision for the hash function. More clearly, we use the root
of a Merkle tree to commit the evaluations. If the adversary can forge a valid
Echo message, it implies that it finds a collision during the Merkle path, which
violates the assumption of collision resistance property of hash function H. All
honest parties thus can be guaranteed to gather 2t+ 1 valid Echo messages to
interpolate their column polynomials, and thus multicast Vote messages, which
also means that they can gather at least 2t + 1 Vote messages then. At this
point, all honest parties meet the condition to output Output1.

Immediately following the above analysis, honest parties are guaranteed to
output Output1. And they thus will transmit valid Share messages, which
ensures all honest parties gather enough shares to reconstruct the secret once
they all participate in Reconstruction stage. Similar to the above, we shall prove
that the adversary can’t forge a valid Share message. The proof is also similar,
as the forge of a Share message also breaks the assumption of collision resistance
property of hash function H. Thus, they will all output the same secret to the
dealer.

Finally, we prove that honest parties who output in Reconstruction stage
always output equally. As the above lemma showed, once an honest party outputs
the secret, so will the others. Since our protocol has two methods to deliver the
secret, we categorize the possible scenarios into three types: these two honest
parties output all by gathering enough Share messages, all by complaint phase,
or both. We proof that separately.

– For the first case, if they output differently, the polynomial ϕ D committed
must have a degree higher than 2t on X, as the adversary can’t forge a
Share message. Recalling the Share stage, t + 1 honest parties must have
received valid row polynomials if any honest party output in Reconstruction
stage. Let ϕ′ be the bivariate polynomial we interpolate from these t + 1
row polynomials (we actually can obtain two bivariate polynomials, but we
here only consider the one with the secret on it). It’s fairly easy to see
that ϕ′ has the right degrees on X and Y . Thus, there must be an index
k, such that ϕ(ωk, Y ) don’t match with ϕ′(ωk, Y ). There are two possible
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scenarios here: first, ϕ(ωk, Y ) and ϕ(ωk, Y ) are different but with the same
degree; second, ϕ(ωk, Y ) has a higher degree. For the first scenario, it claims
that the adversary finds some collisions and opens the commitment to two
different polynomials, which is against our assumptions. For the second, it
can’t be accepted by honest parties as they will check its degree first. Thus,
there can’t be a column polynomial mismatching with ϕ′, but accepted by
honest parties. So, honest parties who output in this way will always output
the same.

– For the second case, they both output by complaint phase. Assuming that in
this case, two honest parties Pi and Pj have different outputs. As shown in
Algorithm 5, they compute the secret by interpolating a bivariate polynomial
from at least t + 1 valid outputs of assisRBCs (similarly to the above, we
only consider the polynomial with the secret on it). Using ϕ′ to denote the
bivariate polynomial of Pi, and ϕ′′ for Pj . As the reliable broadcast protocol
ensures that all honest parties output equally, once ϕ′ and ϕ′′ are different,
there must be an assisRBC instance whose output lies on ϕ′′, but not ϕ′. It
means that the row polynomials contained in this output can pass degree
check but are inconsistent with other t+1 ones, which are against lemma 1.
Thus, honest parties who output in this way will always output the same.

– For the third case, they output in different ways. Following our protocol,
once some honest parties are outputting the secret, there must be at least
t + 1 honest parties who have received valid Send messages. Let ϕ′ be the
bivariate polynomial interpolated from row polynomials contained in these
Send messages. As we analyzed in the first two cases, regardless of how
honest nodes output, their outputs are consistent with ϕ′.

Lemma 4. Our HAVSS protocol satisfies the completeness property.

Proof. The termination property of our protocol guarantees that once an honest
party outputs in Share stage, so will all other honest parties. Meanwhile, there
must be at least t+1 honest parties who have received valid Send messages. Let
ϕ′ be the bivariate polynomial interpolated from row polynomials contained in
these Send messages. We have proved in lemma 3 that any column polynomial
contained in a valid Share message is consistent with ϕ′. Thus, for honest parties
who output Output1, their shares are consistent with ϕ′. We have also proved
in lemma 3 that all honest parties who output Output2 will interpolate the
same polynomial as ϕ′. So, once an honest party outputs in Share stage, so will
others. And all honest parties’ shares are consistent with ϕ′.

Lemma 5. Our HAVSS protocol satisfies the secrecy property.

We prove the secrecy of our HAVSS protocol by showing that the adversary’s
views are indistinguishable in the real-world execution and the ideal-world exe-
cution (where the ideal-world simulator illustrated as Fig. 8 takes as input only
admissible leakage of the bivariate polynomial and thus no bit of secret can be
learned by the adversary there). The indistinguishability of the two worlds can
be seen through the following sequence of games.



28 Cheng et al.

Input: n, t, C ⊂ [n] with |C| = t to denote the set of corrupted parties, HC ⊂
[n] \ C with |HC | = t to denote the set of honest parties leaking their column
polynomials to the adversary, {(ϕ(X,ωi)}i∈C , and {(ϕ(ωi, Y )}i∈C0 where C0 =
C ∪ HC .

1. Uniformly sample a new secret s′ and calculate polynomial ϕ′(X,Y ) ∈
ZF [X,Y ]2t,t, s.t.:
– For each i ∈ C, αi

′ = ϕ′(X,ωi) = ϕ(X,ωi) = αi ;
– For each i ∈ C0, βi

′ = ϕ′(ωi, Y ) = ϕ(ωi, Y ) = βi .
– ϕ′(ω0, ω0) = s′

2. Uniformly sample ϕ̂′(X,Y ) from ZF [X,Y ]n,t.
3. For each i ∈ [n], mti ← MerkleBuild({(βi

′(ωj), β̂
′
i(ωj))}j∈[n]). Compute

mt← MerkleBuild(mt1.root, ...,mtn.root). Compute challenge (θ
′(i)
1 )i∈[n] ←

H(mt.root). Compute g ′ ← β̂′
0 +

∑
i∈[n] θ

′(i)
1 βi

′.
4. Simulate the dealer D by (i) broadcasting {mti.root}i∈[n] and g′, and (ii)

sending ϕ′(X,ωi), ϕ̂′(X,ωi) and corresponding Merkle proofs to each Pi.
5. Simulate the rest transcripts of honest parties sent in HAVSS by following

the protocol.

Fig. 8. Simulator for the secrecy of our HAVSS protocol.

– Game 0. Real-world execution.
– Game 1. Same as Game 0, except that all honest parties are simulated

and honestly follow the protocol specification. Let ϕ(X,Y ) and ϕ̂(X,Y ) de-
note the bivariate polynomials sampled by the simulated dealer during the
execution, where ϕ(ω0, ω0) encodes the input secret. Game 0 and Game 1
are indistinguishable, as the simulated honest parties in Game 1 would send
messages having a distribution identical to those messages sent by the honest
parties in Game 0.

– Game 2. Same as Game 1, except that the simulator executes the steps
illustrated in Fig.8 to simulate the behaviors of honest parties to interact
with the adversary. Essentially, it replaces ϕ with ϕ′ to encode another ran-
domness (likely) different from the dealer’s genuine input secret. Game 2
and Game 1 are computationally indistinguishable because:
• Since ϕ′ and ϕ̂′ all have correct degrees and the simulator honestly follows

the protocol to simulate the execution of the dealer and honest parties
in the rest, all messages sent by the simulator can pass the adversary’s
verification.

• Let HR = [n]/C0 denote the set of honest parties who do not leak
their secret shares to the adversary. For each i ∈ HR and j ∈ [n]/C,
H(βi(ωj), β̂i(ωj) and H(βi

′(ωj), β̂
′
i(ωj) are indistinguishable for the hid-

ing of commitment scheme (used for compute Merkle tree leaves), if we
model the hash function as a random oracle and β̂i(ωj) and β̂′

i(ωj) are
randomly sampled.
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• For each i ∈ HR, the adversary only holds t evaluations of both β̂i and
β̂′
i both with a degree of t. Thus, the adversary learns nothing about

β̂i(ωj) and β̂′
i(ωj), for each i ∈ HR and j ∈ [n]/C.

For each i ∈ [n]/C, the adversary only holds 2t evaluations of both α̂i

and α̂′
i . Because the dealer has public challenge polynomials g in Game

1 and g ′ in Game 2, for each α̂i(ω0) and α̂′
i(ω0), we have:

∗ α̂i(ω0) = g(ωi)−
∑

k∈[n] θ
(k)
1 αi(ωk)

∗ α̂′
i(ω0) = g ′(ωi)−

∑
k∈[n] θ

′(k)
1 αi

′(ωk)

So, if the secret of HAVSS has low entropy, the distribution for α̂i(ω0)
and α̂′

i(ω0) are concentrated, indicating low entropy. However, even if we
let the adversary learn the exact values of α̂i(ω0) and α̂′

i(ω0), nothing
leaked for α̂i(ωj) and α̂′

i(ωj) for each j ∈ HR, because α̂i and α̂′
i are all

n-degree polynomials.
Thus, for both ϕ and ϕ′, the adversary doesn’t have enough evaluations
to reconstruct the secrets s and s′.


