
Masking Gaussian Elimination at Arbitrary Order
with Application to Multivariate- and Code-Based PQC

Quinten Norga1 , Suparna Kundu1 , Uttam Kumar Ojha2, Anindya
Ganguly3, Angshuman Karmakar3 , and Ingrid Verbauwhede1

1 COSIC, KU Leuven, Belgium
{firstname}.{lastname}@esat.kuleuven.be
2 Indian Statistical Institute Kolkata, India⋆⋆

uttamkumarojha1729@gmail.com
3 Indian Institute of Technology Kanpur, India

{anindyag, angshuman}@cse.iitk.ac.in

Abstract. Digital signature schemes based on multivariate- and code-
based hard problems are promising alternatives for lattice-based signa-
ture schemes, due to their small signature size. Gaussian Elimination
(GE) is a critical operation in the signing procedure of these schemes.
In this paper, we provide a masking scheme for GE with back substi-
tution to defend against first- and higher-order attacks. To the best of
our knowledge, this work is the first to analyze and propose masking
techniques for multivariate- or code-based DS algorithms.
We propose a masked algorithm for transforming a system of linear equa-
tions into row-echelon form. This is realized by introducing techniques for
efficiently making leading (pivot) elements one while avoiding costly con-
versions between Boolean and multiplicative masking at all orders. We
also propose a technique for efficient masked back substitution, which
eventually enables a secure unmasking of the public output. All novel
gadgets are proven secure in the t-probing model. Additionally, we eval-
uate the overhead of our countermeasure for several post-quantum candi-
dates and their different security levels at first-, second-, and third-order,
including UOV, MAYO, SNOVA, QR-UOV, and MQ-Sign. Notably, the
operational cost of first-, second-, and third-order masked GE is 2.3×
higher, and the randomness cost is 1.2× higher in MAYO compared to
UOV for security levels III and V. In contrast, these costs are similar
in UOV and MAYO for one version of level I. We also show detailed
performance results for masked GE implementations for all three secu-
rity versions of UOV on the Arm Cortex-M4 and compare them with
unmasked results. Our masked implementation targeting UOV parame-
ters has an overhead of factor 15.1×, 15.2×, and 15.4× compared to the
unprotected implementation for NIST security level I, III, and V.

Keywords: Post-Quantum Cryptography · Masking · Gaussian Elimi-
nation · Digital Signatures · UOV

⋆⋆ Part of this work was completed while the author was at COSIC, KU Leuven.

https://orcid.org/0000-0003-0983-5664
https://orcid.org/0000-0003-4354-852X
https://orcid.org/0000-0003-2594-588X
https://orcid.org/0000-0002-0879-076X

1 Introduction

The National Institute of Standards and Technology (NIST) published the first
set of Post-Quantum Cryptographic (PQC) standards in August 2024 [34,33,35].
Three of the four selected cryptographic schemes are based on hard lattice prob-
lems. To diversify their portfolio and avoid the dependency on a single hard
problem, NIST announced another process [31] to standardize additional post-
quantum Digital Signature (DS) schemes. The submitted schemes are designed
from various hard problems, such as code-based, hash-based, and multivariate
quadratic (MQ) system-based cryptography. Recently, NIST announced that 14
out of 40 initial candidates advanced to the second round [32]. Among the se-
lected submissions, four signatures are from MQ-based cryptography and use
the hash-and-sign paradigm. These schemes mainly rely on the computational
hardness of solving multivariate quadratic systems, a problem known to be NP-
complete [27]. The Unbalanced Oil and Vinegar (UOV) signature scheme is one
of the oldest and well studied multivariate construction [28].

Gaussian Elimination (GE) is a key component of the signing procedure in many
of the schemes selected for the second round of NIST PQC DS on-ramp [32],
used for finding the unique solution of a system of linear equations. All MQ-
based signature schemes, such as (i) UOV [8], (ii) MAYO [7], (iii) SNOVA [41],
(iv) QR-UOV [20], (v) MQ-Sign [39], (vi) PROV [23], (vii) VOX [13], (viii)
TUOV [19], (ix) VDOO [21], and (x) IPRainbow [9] rely on GE during signing.
Recently it has also been used in some code-based (CB) signature schemes such
as Wave [2]. As the secret key is used during the signing and the GE procedure,
it is a potential target for side-channel attacks.

Side-Channel Analysis (SCA) attacks can have severe impacts on cryptographic
implementations, and post-quantum schemes are equally vulnerable [40,26,24].
SCA attacks extract secret data of the mathematically secure cryptographic al-
gorithm from the cryptographic device by observing the computation and its
physical behavior. Such attacks can be prevented by ensuring that any compu-
tation in the cryptographic algorithm is independent of any secret variables.

Masking [10] is a provably secure widely used countermeasure of such attacks
[38,18,29]. Various SCAs have been demonstrated on the UOV-based signature
schemes in the literature [1,42,36]. However, there is almost no research on coun-
termeasures for MQ and CB digital signature schemes, including UOV, to pre-
vent potential SCAs. Even more so, no specialized gadgets for the GE operation,
a critical and costly component during signing, have been proposed.

Contributions. We propose first- and higher-order masked algorithms for solv-
ing a system of linear equations using (masked) Gaussian elimination with back
substitution (SecRowEch & SecBackSub), a critical component in MQ and CB
signature schemes. We formally prove their security in the t-probing model
and analyze the complexity. Our techniques and implementations are highly
parametrizable and can be extended to other schemes that rely on GE to solve

2

a system of linear equations. We propose masked gadgets for the following sub-
operations in Section 3:

– For efficiently solving the linear system, it needs to be in row-echelon form.
We propose masked gadgets for making the pivot element non-zero, by se-
curely adding different rows to the pivot-row if it is zero. The conditional
addition does not reveal the pivot element itself by relying on a secure non-
zero check.

– Subsequently, the pivot coefficient needs to be reduced to value one. As di-
rectly computing its inverse would require unmasking the pivot element, our
approach is based on switching masking representations for computing its
multiplicative inverse. Our approach is efficient as it exploits the multiplica-
tive masking representation for share-wise multiplication.

– Finally, we devise an efficient masked gadget for back substituting the linear
equations. We propose unmasking the final output early and partitioned to
minimize the amount of masked operations. Intuitively, an output variable is
unmasked once it is computed and its public representation used to compute
other output variables.

We formally prove the t-order security of all proposed (sub-)gadgets in the t-
probing model. We apply our techniques on several promising, UOV-based DS
schemes (UOV, MAYO, SNOVA, QR-UOV &MQ-Sign) and compare their oper-
ation and randomness cost for masking the GE with back substitution, at first-,
second-, and third-order. We analyze and show how their parameter choices
impact the cost of masking the GE operation in Table 2 (see Section 4). We
provide an arbitrary-order masked implementation (Arm M4 C code4) of our
masked GE and evaluate the performance of our methods for UOV parameters
on an Arm Cortex-M4 processor. Our first-order masked implementations of GE
show an overhead of factor 15.1×, 15.2×, and 15.4× compared to the unmasked
GE for UOV-I, UOV-III, and UOV-V, respectively. The most expensive steps
for masking GE are ensuring the pivot element is non-zero and the full reduction
to row-echelon form (see Section 5).

2 Preliminaries

2.1 Notation

We denote a finite field with q elements by Fq, with q always a positive integer. F∗q
is used to present Fq \{0}. All the polynomials, vectors, and matrices are defined
over Fq (or F∗q). We used lower-case letters to denote field elements/coefficients
(e.g., x), bold lower-case letters to denote vectors (e.g., b), and bold upper-case
letters to denote matrices (e.g., PPP). Please note that all the vectors are in column

form and PPPT represents the transposition of a matrix PPP. The assignment of a
variable is written as := and x ← A denotes sampling an element uniformly

4 https://github.com/KULeuven-COSIC/Masking-Gaussian-Elimination

3

https://github.com/KULeuven-COSIC/Masking-Gaussian-Elimination

random from set A and assignment to variable x. All logarithms are in base 2.
We denote the selection of coordinates in a vector and matrix as b[j] and PPP[j,k].
The selection of a specific bit of a field element x is denoted by x[i]. A sequence
of n variables (x1, · · · , xn) (e.g., shares of variable x) is represented as (xi)1≤i≤n
or in short as (xi) if the sequence length is obvious from context.

2.2 Gaussian Elimination

Gaussian elimination, xxx ← Gaussian Elimination(AAA,b), is an old technique
to solve a linear system of the form AAAx = b, where AAA ∈ Fm×m

q and vector
b ∈ Fm

q are given. Let us assume that TTT = [AAA | b]. In Line 4 of Algorithm 1, it
is attempted to make the pivot element TTT[j,j] non-zero by adding the following
rows if it is zero. In Line 8, it is checked if the pivot is still a non-zero pivot,
and else the computation is aborted as the matrix AAA is not invertible in this
case (Line 16). Subsequently, in Line 11, each current row element is multiplied
with the inverse of the pivot element, making the pivot TTT[j,j] = 1. The loop in
Line 13-14 subtracts a scalar multiple of row j from all rows below the current
pivot row, making the elements below the pivot zero. Finally, to find x, Line 18
back-substitutes the variables into the system of equations.

Algorithm 1: Gaussian Elimination [8,12]

Data: Linear equation AAAx = bbb, where matrix AAA ∈ Fm×m
q and vector b ∈ Fm

q

Result: Unique x ∈ Fm
q such that AAAx = b

1 TTT := [AAA | b] /* TTT ∈ Fm×(m+1)
q */

2 for j = 1 upto m do
3 ## Try to make pivot TTT[j,j] non-zero
4 for k = j + 1 upto m do
5 if TTT[j,j] == 0 then
6 TTT[j,j:m+1] = TTT[j,j:m+1] +TTT[k,j:m+1]

7 ## Check if pivot is non-zero
8 if TTT[j,j] ̸= 0 then

9 ## Multiply row j with the inverse of its pivot

10 p := TTT[j,j]
−1

11 TTT[j,j:m+1] = p ·TTT[j,j:m+1]

12 ## Subtract scalar multiple of row j from the rows below
13 for k = j + 1 upto m do
14 TTT[k,j:m+1] = TTT[k,j:m+1]−TTT[k,j] ·TTT[j,j:m+1]

15 else return ⊥
16 for j = m downto 2 do
17 for k = 1 upto j do
18 TTT[k,m+1] = TTT[k,m+1] +TTT[j,k] ·TTT[j,m+1]

19 return xxx := TTT[:,m+1]

4

2.3 Masking to Thwart SCA Attacks

Masking [10] is a well-known countermeasure against side-channel attacks. Here
the sensitive variables x are split into multiple, randomized shares (x1, . . . , xn).
As a result, an attacker who does not have access to all shares (xi) does not learn
anything about the secret variable x. The relation between x and its shares
(x1, . . . , xn) is some group operation that changes depending on the masking
methods. The most utilized masking method in the literature is Boolean mask-
ing, where x = x1+ · · ·+xn and the addition is a simple XOR (⊕). In this work,
we also use multiplicative masking, where x = x1 ⊗ x2 · · · ⊗ xn and ⊗ denotes a
multiplication between two elements of Fq.

To argue about the security level of a masked implementation and its attackers,
Ishai et al. [25] introduced the t-probing model. It assumes an adversary can
probe up to t variables during a cryptographic computation. An implementation
is t-probing secure if any t intermediate values leak no information about the
unshared secret and thus can be simulated without the knowledge of this secret.
In order to simplify the theoretical security analysis of a larger masked algorithm,
they can be broken down into smaller functions (i.e., gadgets). To prove the
probing security of the composition of multiple gadgets, several security notions
were introduced in [3]. Below, we recall these security notions as presented in [38].

Definition 1 (t-(Strong-)Non-Interference (t-(S)NI) security [3]). A gad-
get with one output sharing and mi input shares is t-Non-Interference (t-NI)
(resp. t-Strong Non-Interference (t-SNI)) secure if any set of at most t1 probes
on its internal wires and t2 probes on wires from its output sharings such that
t1 + t2 ≤ t can be simulated with t1 + t2 (resp. t1) shares of each of its mi input
sharings.

We recall two extensions of the above-mentioned security notions. Firstly, for
the secure unmasking of a shared variable, we rely on the free-t-SNI notion, as
introduced in [16]. It is a stronger notion than t-SNI: all output shares, except
one, can be perfectly simulated (using fresh randomness). As a result, all output
shares of a gadget can be simulated using the encoded (e.g. unmasked) value of
the output of that gadget.

Definition 2 (free-t-Strong-Non-Interference (free-t-SNI) security [16]).
A gadget with output sharing (bi) and n input shares (mi) is free-t-SNI secure
if for any set of at most t1 probes on its internal wires such that t1 ≤ t, there
exists a subset I of input indices with |I| ≤ t1, such that the t1 intermediate
variables and the output shares b|I can be perfectly simulated from m|I , while for
any O ⊊ [1, n] \I the output variables in b|O are uniformly and independently
distributed, conditioned on the probed variables and c|I .

Secondly, we rely on the extended t-NIo notion from [4], which allows for public
outputs. Here, certain intermediate values in an algorithm are made public and

5

thus are accessible to attackers. As a result, the simulator can also access the
distribution of these intermediate values, to ensure successful simulation of the
full gadget.

Definition 3 (t-Non-Interference with public outputs (t-NIo) security
[4]). A gadget with public output b and mi input sharings is t-Non-Interference
with public outputs (t-NIo) secure if any set of at most t1 probes on its internal
wires such that t1 ≤ t can be simulated with t1 shares of each of its mi input
sharings and b.

In Section 3, we formally prove our algorithms to be t-NI or t-SNI secure with
n = t+ 1 shares via simulation.

3 Masked Gaussian Elimination with Back Substitution

We now describe a method for solving a system of linear equations using GE
and back substitution in a masked manner. Our approach is generic and can
be applied at first- and higher-order. The main algorithms are the conversion
of a matrix to its row-echelon form (SecRowEch, Algorithm 6) and the back
substitution (SecBackSub, Algorithm 7).

First, in Sections 3.1 - 3.5, we introduce several novel masked gadgets that are
used as subroutines in the main algorithms, including:

– SecCondAdd: conditional addition of two Boolean shared vectors (rows). This
allows us to securely add two rows together, only if the pivot element of the
first row is zero, without directly revealing any information about the pivot.

– SecScalarMult: multiplication of a (Boolean) shared vector with a multi-
plicative shared scalar. This allows us to multiply a row with the masked
pivot of a different row, without unmasking and revealing the scalar value.

– B2Minv: Boolean to multiplicative inverse mask conversion, which allows us
to make a pivot element one by multiplying the row with its inverse, so
efficient back substitution can subsequently be performed.

All components are put together to achieve fully masked GE with back substi-
tution in Sections 3.6 - 3.7. Table 1 gives an overview of all the used gadgets
in this work, including gadgets from previous works. We also include a short
description of the computed functionality and the assumed security properties.

Methodology. All novel gadgets are described by a t-order algorithm (n =
t + 1 shares) and accompanied with a detailed description. We also prove the
t-(S)NI security in the probing model of all algorithms/gadgets. The proofs are
simulation-based: we show how probes on intermediate and output variables in
the algorithms can be perfectly simulated with only a limited number of input
shares. For algorithms that are composed of smaller gadgets, we rely on the t-
(S)NI properties of the sub-gadgets. By iterating over all possible intermediate

6

Table 1: Overview of used gadgets in this work, with n = t+ 1 shares.

Algorithm Description Security Reference

Refresh Refresh of Boolean masking t-NI [3,6] & Alg. 8
StrongRefresh Strong refresh of Boolean masking t-SNI [3] & Alg. 9
FullAdd Refresh and combine Boolean shares t-NI [15,4] & Alg. 10
B2M Boolean to multiplicative mask conversion t-SNI [22,30] & Alg. 12
B2Minv Boolean to multiplicative inverse conversion t-SNI Algorithm 5
SecMult Multiplication of Boolean shares t-SNI [25,3]
SecNonzero Nonzero check of Boolean shares t-SNI [11] & Alg.11
SecCondAdd Secure conditional addition t-SNI Algorithm 2
SecScalarMult Masked scalar multiplication t-SNI Algorithm 3
SecMultSub Masked multiplication and subtraction t-NI Algorithm 4
SecRowEch Matrix conversion to row echelon form t-NIo Algorithm 6
SecBackSub Masked back substitution with public output t-NIo Algorithm 7

(and output) variables of each sub-gadget, starting at the output and moving
to the input of the algorithm, all required probes for simulation are summed.
Crucially, the set of probes required from the input shares of a t-SNI gadget is
independent from the amount of probes on its output shares.

3.1 Masked Conditional Addition

The conditional addition of two Boolean shared row vectors (xi) and (yi) is
described in Algorithm 2. Depending on the condition, represented by a Boolean
shared bit (bi), the result s = x+y or s = x is computed (Line 3) and returned.
For each coefficient in the vector, the shared term that is added to (x[j]i) is
computed using the SecAND gadget (Line 2). This gadget can be seen as a specific
invocation of the SecMult gadget for GF(2) (bit-wise logical AND).

Algorithm 2: SecCondAdd

Data: 1. A Boolean sharing (xi) of a (row) vector x ∈ Fl
q .

2. A Boolean sharing (yi) of a (row) vector y ∈ Fl
q .

3. A Boolean sharing (bi) of a coefficient (bit) b.

Result: A Boolean sharing (si) of the vector s = x + b · y ∈ Fl
q

1 for j = 1 upto l do

2 (a[j]i) := SecAND((y[j]i), (b
[w:1]
i)) /* extend b to w = ⌈log(q)⌉ bits */

3 (s[j]i) := (x[j]i + a[j]i)
4 (s[j]i) = StrongRefresh((s[j]i))

5 return (si)

3.1.1 Complexity
Here, we discuss the run-time complexity (number of operations) and random-
ness complexity of the SecCondAdd operation. We follow the approach proposed

7

in [14,38]. We denote the run-time and randomness complexity of an opera-
tion Operation by TOperation and ROperation, respectively. We also assume that
the run-time cost of random number generation is unit time and operands are
w = ⌈log(q)⌉ bits wide.

TSecCondAdd(n, l) = l · (TSecAND(n) + n+ TStrongRefresh(n))

= l · (7n
2 − 5n

2
+ n+

3n2 − 3n

2
) = (5n2 − 3n)l ,

RSecCondAdd(n, l, w) = l · (RSecAND(n,w) + 0 +RStrongRefresh(n,w))

= l · ((n
2 − n

2
· w) + (

n2 − n

2
· w)) = (n2 − n)lw .

3.1.2 Security
We now show Algorithm 2 to be t-SNI secure with n = t+1 shares. This means it
provides resistance against an adversary with t probes and allows the algorithm
to be used in larger compositions.

Lemma 1. The gadget SecCondAdd (Algorithm 2) is t-SNI secure.

Proof. We first show that a single iteration j is t-SNI secure, which is shown in
an abstract diagram in Figure 1. Apart from the gadgets listed in Table 1, we
model the share-wise addition on Line 3 as t-NI (G2). An adversary can probe
each gadget (Gi) internally or at its output. The number of internal and output
probes for each gadget is denoted as tGi

and oGi
, respectively. The total number

of probes tA2
and output shares |O| of (an iteration of) Algorithm 2 are:

tA2 =

3∑
i=1

tGi +

2∑
i=1

oGi , |O| = oG3 .

We show that all internal and output probes can be perfectly simulated with
≤ tA2

input shares. Firstly, to simulate the internal and output probes on gadget
G3, only tG3

shares of the output of G2 are required. This is a direct result of
the t-SNI property of G3: the simulation of a t-SNI gadget can be performed
independent of the number of probed output shares, stopping the propagation
of output probes to the input. Secondly, the simulation of the probes on gadgets
G1-G2 requires tG1

+ tG2
+ oG2

shares of inputs (xi), (yi) and (bi), as G2 is t-NI
secure. Due to the t-SNI property of gadget G1, tG1

input shares are required
to simulate tG1 intermediate probes and oG1 output shares. Finally, we sum
up the required shares of the inputs for the simulation of all gadgets |I|. As
|I| = tG1

+ tG2
+ oG2

+ tG3
≤ tA2

and independent from |O|, iteration j of
Algorithm 2 is t-SNI.

Now we remark that each iteration j is independent and can be executed in
parallel, meaning that an adversary who places t probes across all iterations can
simulate them with no more number of input shares. All gadgets can thus be
summarized into a single gadget (across iterations), meaning the entire loop is
t-SNI.

8

(y[j]i)

(bi)

(x[j]i)

G1

SecAND
G2

+
G3

StrongRefresh
(s[j]i)

Fig. 1: An abstract diagram of an iteration j in SecCondAdd (Algorithm 2). The
t-NI gadgets are depicted with a single border, the t-SNI gadgets with a double
border.

3.2 Masked Scalar Multiplication

The SecScalarMult gadget is described in Algorithm 3. The operation is used
to multiply one row-vector (x) of a matrix with a non-zero scalar value (p), its
pivot-element. It computes the multiplication y = p ·x, with one Boolean shared
operand (xi) and a multiplicative shared operand (pi). The end-result is also
Boolean shared, as is preferred for succeeding operations.

Our approach does not rely on first converting both operands to the same sharing
type. The conversion of (xi) to the multiplicative domain (B2M) would allow for
simple share-wise computation of the multiplication, but would require another
conversion back (M2B). The conversion of pi to the Boolean domain (M2B) would
result in the requirement for SecMult for the multiplication, which has a higher
cost than SecScalarMult.

Algorithm 3: SecScalarMult

Data: 1. A Boolean sharing (xi) of vector x ∈ Fl
q .

2. A multiplicative sharing (pi) of a coefficient p ∈ Fq .

Result: A Boolean sharing (yi) of the vector y = p · x ∈ Fl
q

1 (yi) := (xi)
2 for j = 1 upto n do
3 for k = 1 upto l do
4 (y[k]i) = (pj · y[k]i)
5 (y[k]i) = Refresh((y[k]i))

6 return (yi)

We propose to perform the multiplication on one Boolean shared and multiplica-
tive shared operand. The multiplicative shares are multiplied with all shares of
the first operand, one share at a time (Line 2-5). To ensure no shares of (pi)
are re-combined during the computation, a mask refreshing is used after each
multiplication (Line 5).

9

3.2.1 Complexity
The run-time and randomness complexity of SecScalarMult are:

TSecScalarMult(n, l) = n · l · (n+ TRefresh(n)) = (5n2 − 3n)l ,

RSecScalarMult(n, l, w) = n · l · (0 +RRefresh(n,w)) = (n2 − n)lw .

3.2.2 Security
We now show that SecScalarMult is t-SNI secure with n = t + 1 shares. This
means it provides resistance against an adversary with t probes and allows the
algorithm to be used in larger compositions.

Lemma 2. The gadget SecScalarMult (Algorithm 3) is t-SNI secure.

Proof. Before proving that the entire (outer) loop is t-SNI secure (Line 2-5), we
show that the inner loop (Line 3-5) is t-NI secure, and its operations can be
modeled as single t-NI gadgets. This follows directly from each iteration being
independent and assumed to be executed in parallel (on individual coefficients).
As a result, we can summarize the operations in the inner loop into single t-NI
gadgets G1 (share-wise multiplication) and G2 (Refresh), which operate on the
entire vector.

Figure 2 depicts an abstract diagram of a single iteration j in Algorithm 3. Since
there are n iterations, an adversary cannot place probes in at least one iteration,
which we refer to as j∗. We first consider the case where an adversary places
all probes after or at the output of iteration j = j∗. As shown in [6], any set
of output shares of Refresh with size ≤ n− 1 is uniformly distributed (Lemma
1). Thus, all probes can be perfectly simulated with fresh randomness, including
the outputs of the entire gadget.

(yi)

pj

G1

·
G2

Refresh
(yi)

Fig. 2: An abstract diagram of an iteration j in SecScalarMult (Algorithm 3).
The t-NI gadgets are depicted with a single border.

We now show that when an adversary places t probes before j∗, these can be
simulated with no more number of shares of input (xi) and (pi). If the share-wise
multiplication (G1) and/or refresh (G2) is probed, all probes (across iterations)
can be simulated with the same (or fewer) number of input shares of (xi). Now we
determine the amount of shares of (pi) required to simulate all possible probes.
If all t probes are placed in a single iteration j = j

′
, only pj′ is required for

successful simulation. If G2 (Refresh) in successive iterations j = j
′ − 1 and

j = j
′
are probed, only pj′ is required for simulation. And finally, if probes

10

are placed in non-consecutive iterations of G2, no shares of (pi) are required.
The simulation is sound as the outputs of the Refresh gadget are uniformly
random, and any such combination of probes can be perfectly simulated with
fresh randomness. We now remark that the size of the required set of shares of
(pi) never exceeds the number of placed probes. In conclusion, as the output
of the entire loop can be perfectly simulated without any input shares and the
required set of input shares of all intermediate probes is less or equal to the
amount of placed probes, the entire algorithm is t-SNI.

3.3 Masked Multiplication and Subtraction

The SecMultSub gadget (Algorithm 4) is used to first multiply a Boolean shared
(row-)vectors (xi) with a Boolean shared coefficient (ci). For this, we rely on the
SecMult gadget (Line 2). We do not convert to the multiplicative domain, as
the coefficients can be zero and thus would require handling the zero-problem as
discussed in [22,30]. The result of the multiplication is subsequently subtracted
from a second Boolean shared vector (yi) in Line 3.

Algorithm 4: SecMultSub

Data: 1. Two Boolean sharings (xi), (yi) of vector x, y ∈ Fl
q .

2. A Boolean sharing (ci) of a coefficient c ∈ Fq .

Result: A Boolean sharing (zi) of the vector z = x ∗ c + y ∈ Fl
q

1 for j = 1 upto l do

2 (t[j]i) := SecMult((x[j]i), (ci)) /* ti ∈ Fl
q */

3 (z[j]i) := (y[j]i − t[j]i)

4 return (zi)

3.3.1 Complexity
The run-time and randomness complexity of SecMultAdd are:

TSecMultAdd(n, l) = l · (TSecMult(n) + n) =
7n2 − 3n

2
· l ,

RSecMultAdd(n, l, w) = l · (RSecMult(n,w) + 0) =
n2 − n

2
· lw .

3.3.2 Security
We now show that Algorithm 4 is t-NI secure with n = t+1 shares. This means it
provides resistance against an adversary with t probes and allows the algorithm
to be used in larger compositions.

Lemma 3. The gadget SecMultSub (Algorithm 4) is t-NI secure.

11

(x[j]i)

(ci)

(y[j]i)

G1

SecMult
G2

− (z[j]i)

Fig. 3: An abstract diagram of an iteration j in SecMultSub (Algorithm 4). The
t-NI gadgets are depicted with a single border and the t-SNI gadgets with a
double border.

Proof. Figure 3 depicts a single iteration j in SecMultSub. We model the SecMult
gadget as G1 and the share-wise subtraction as t-NI gadget G2. An adversary
can probe intermediate values of both gadgets tGi and the ouput of G1 (oG1).
The total number of adversary probes in an iteration of Algorithm 4 is

tA4
=

2∑
i=1

tGi
+ oG1

.

We now show that all probes in iteration j can be simulated with no more number
of shares of the inputs (|I|) of the iteration: |I| ≤ tA4

. If that is the case, and
an adversary can place t probes across different (independent) iterations, those
can still be simulated with no more number of input shares. Due to the t-NI
property of G2 and t-SNI security of G1, it follows directly that |I| = tG1 + tG2 ,
and Lemma 4 is proven. As t-SNI security allows to simulate the intermediate
and output probes of a gadget with a number of input shares, independent from
the amount of probed output shares. Finally, as each iteration j is independent
and can be executed in parallel, we can summarize the gadgets in each iteration
as a single gadget across all iterations. As a result, the entire loop is t-NI.

3.4 Boolean to Multiplicative Inverse Conversion

We now introduce a method for converting from a Boolean to a multiplicative
inverse masked representation (Algorithm 5). In order to make a pivot element in
a matrix one, as required for it to be in the row-echelon form, we multiply it with
its inverse. As the computation of an inverse prefers multiplicative masking, the
Boolean shared input (xi) is first converted to a multiplicative sharing (mi) (Line
1). We rely on the Boolean to multiplicative conversion proposed in [22], which
is recalled in Section 3.5. Finally, in Line 2, a share-wise inversion is performed.

3.4.1 Complexity
The run-time and randomness complexity of B2Minv are:

TB2Minv(n) =
5n2 − 5n+ 4

2
, RB2Minv(n,w) =

n2 − n

2
· w .

12

Algorithm 5: B2Minv

Data: A Boolean sharing (xi) of a coefficient x ∈ F∗
q

Result: A multiplicative inverse sharing (pi) such that x−1 =
n∏

i=1
pi

1 (mi) := B2M((xi))

2 (pi) := (m−1
i) /* multiplicative inverse */

3 return (pi)

3.4.2 Security
We now show that Algorithm 5 is t-SNI secure with n = t + 1 shares. As a
result, it provides resistance against an adversary with t probes and allows the
algorithm to be used in larger compositions.

Lemma 4. The gadget B2Minv (Algorithm 5) is t-SNI secure.

Proof. B2M is a t-SNI Boolean to multiplicative conversion, as in [30] (Appendix
A.2). The multiplicative inversion on Line 2 can be modeled as a t-NI gadget,
as it is performed share-wise. Logically, it follows that Algorithm 5 is t-SNI
secure.

3.5 Auxiliary Gadgets

Before discussing our approach to masking the Gaussian elimination and back
substitution, we first recall several auxiliary gadgets (see Appendix A). We refer
to their original work for details on complexity and security.

Refresh & StrongRefresh. Both types of mask refresh gadgets are used through-
out this work and recalled in Algorithm 8 & 9. Both were introduced in [3]
(Algorithm 4a & 4b) and proven to be t-NI and t-SNI in [6] and [3], respectively.

FullAdd. We use Algorithm 10 for the secure share recombination. It consists of
two steps: the strong mask refreshing and the share combination (unmasking).
In the context of secure unmasking, a strong refresh refers to a free-t-SNI mask
refreshing. It is shown in [17] that the StrongRefresh gadget satisfies the free-
t-SNI notion. Thanks to the free-SNI notion, all outputs (yi) are simulatable if
the simulator is given the unmasked value y. As a result, we can recombine the
output shares of the gadget (Line 2) while ensuring all intermediate variables
can be perfectly simulated.

In contrast, without a free-t-SNI gadget in Line 1, the simulation would not
be sound. Placing an intermediate probe in the unmasking would require all
its input shares for simulation. A t-NI refresh means that to simulate all of its
output shares, one would require all input shares, which doesn’t allow us to
prove the probing security of the full circuit. The free-t-SNI refresh allows us to
simulate all of its output shares (and all intermediate variables of the subsequent
unmasking) using all but one of its inputs and the encoded value y, which is made
public.

13

As shown in [18,17], the FullAdd gadget satisfies the t-NIo definition when the
output y is made public. Or, to prove the probing security of a composed circuit,
the full gadget can be modeled as t-NI if the simulator has knowledge of the
encoded output y.

SecNonzero. The gadget is recalled in Algorithm 11, as introduced in [11]. We
refer to the original work for the proof of its t-SNI security and Appendix B for
the complexity analysis. The algorithm checks if a Boolean shared operand (xi)
is non-zero, if unmasked, and returns the result as a single Boolean shared bit
(bi).

B2M. Finally, we also recall the B2M conversion as proposed in [22] (AMtoMM) in
Algorithm 12. Its t-SNI security is proven in [30] (Appendix A.2). Intuitively,
the algorithm sequentially replaces each Boolean share xi by a multiplicative
one (zi).

3.6 Masked Row Echelon Conversion

A critical step in multivariate-based post-quantum signature schemes, including
UOV, is solving a system of linear equations. In this (and the next) section, we
propose a method for solving a Boolean shared set of linear equations ((TTTi) =
[AAAi | bi]) using masked Gaussian elimination. Our strategy consists of reducing
a shared matrix, containing the set of equations, to its (masked) row echelon
form using (SecRowEch). Subsequently, solving the system the system requires
performing masked back substitution (SecBackSub).

An important step in the computation is the (repeated) checking if the matrix TTT
is invertible, as this leads to a unique solution. We propose an efficient approach,
which relies on verifying if pivot elements are (non-)zero in a masked manner.
Note that we do not leak (unmask) the pivot element itself, but securely compute
and reveal if it is zero (or not). Leaking that the matrix is not invertible is not
an issue for security, as the matrix is discarded and the algorithm is re-started
in this case. We now discuss the four steps of gadget SecRowEch in detail.

Step 1: try to make pivot TTT[j,j] non-zero. As each pivot element (and the
rest of the row) is multiplied with its inverse, in order to make it one (row echelon
form), it needs to be non-zero. If the selected pivot element is zero (SecNonzero
& SecNOT5), one of r rows below is added to the ‘pivot-row’ j using SecCondAdd

to make it non-zero, all in the masked domain (Line 7). One needs to iterate
over all rows to ensure there are no timing side-channel leakages.

Step 2: check if pivot TTT[j,j] is non-zero. A masked non-zero check is
performed on the pivot element (Line 9), resulting in a Boolean masked bit (ti).
This value is securely unmasked (FullAdd) and made public in Line 10: if the
pivot is still zero the computation is terminated (cj == 0).

5 (yi) =SecNOT((xi)) = ¬x1 + · · ·+ xn

14

Algorithm 6: SecRowEch

Data: 1. A Boolean sharing (AAAi) of matrix AAA ∈ Fm×m
q

2. A Boolean sharing (bi) of the vector b ∈ Fm
q

Result: Masked conversion to row echelon form or ⊥
1 (TTTi) := [AAAi | bi] /* TTTi ∈ Fm×(m+1)

q */

2 for j = 1 upto m do
3 ## Try to make pivot (TTT[j,j]) non-zero
4 for k = j + 1 upto m do
5 (zi) := SecNonzero((TTT[j,j]i))
6 (zi) = SecNOT((zi))
7 (TTT[j,j:m+1]i) = SecCondAdd((TTT[j,j:m+1]i), (TTT[k,j:m+1]i), (zi))

8 ## Check if pivot is non-zero
9 (ti) := SecNonzero((TTT[j,j]i))

10 c[j] := FullAdd((ti))
11 if c[j] ̸= 0 then

12 ## Multiply row j with the inverse of its pivot
13 (pi) := B2Minv((TTT[j,j]i))
14 (TTT[j,j:m+1]i) = SecScalarMult((TTT[j,j:m+1]i), (pi))

15 ## Subtract scalar multiple of row j from the rows below
16 for k = j + 1 upto m do
17 (si) := StrongRefresh((TTT[k,j]i))
18 (TTT[k,j:m+1]i) = SecMultSub((TTT[j,j:m+1]i), (TTT[k,j:m+1]i), (si))

19 else return ⊥
20 return ((AAAi), (bi))

Step 3: make pivot TTT[j,j] = 1. If the pivot element is non-zero, all elements of
its row (TTT[j,:]i) are multiplied with the inverse of the pivot in a masked fashion.
We rely on the B2Minv gadget: the pivot element is first converted from its
Boolean shared form to a multiplicative sharing, which allows us to compute its
multiplicative inverse easily (Line 13). As a result, the SecScalarMult gadget
operates on a Boolean shared variable and multiplicative shared scalar (Line 14).
We note that we do not need to represent a zero coefficient in the multiplicative
domain (zero-problem, see [22,30]) as the computation is aborted before in that
case.

Step 4: make elements below pivot TTT[j,j] zero. Finally, for each of the
k = m− j rows below the ‘pivot-row’ (Line 16-18), the element below the pivot
is made zero (column j). Using the SecMultSub gadget in Line 18, the pivot-
row j is subtracted TTT[k,j] times from each row k below the pivot, in the masked
domain.

3.6.1 Complexity
The run-time and randomness complexity of SecRowEch are:

15

TSecRowEch(n,m) =
m2 −m

2
· (((5n2 + 2n− 1) + ⌈log(w + 1)⌉ · (5n2 − n+ 2)) + 1)

+
2m3 + 3m2 +m

6
· (5n2 − 3n) +m · ((5n2 + 2n− 1)

+ ⌈log(w + 1)⌉ · (5n2 − n+ 2)) +m · 3n
2 − n− 2

2
+m

+m · 5n
2 − 5n+ 4

2
+

m2 + 3m

2
· (5n2 − 3n) +

m2 −m

2
·

3n2 − 3n

2
+

2m3 + 3m2 +m

6
· 7n

2 − 3n

2
,

RSecRowEch(n,m,w) =
m2 −m

2
· ⌈log(w + 1)⌉2 − ⌈log(w + 1)⌉

2
· (n2 − n)

+
2m3 + 3m2 +m

6
· (n2 − n)w +m · ⌈log(w + 1)⌉2 − ⌈log(w + 1)⌉

2
·

(n2 − n) +m · (n
2 − n)w

2
+m · n

2 − n

2
· w +

m2 + 3m

2
·

(n2 − n)w +
m2 −m

2
· (n

2 − n

2
· w) + 2m3 + 3m2 +m

6
·

n2 − n

2
· w .

More details on the computation are provided in Appendix C.

3.6.2 Security
We now argue about the first- and high-order security of Algorithm 6 by proving
it to be t-NIo secure with n = t + 1 shares and public output c. This means it
provides resistance against an adversary with t probes and allows the algorithm
to be used in larger compositions.

Lemma 5. The gadget SecRowEch (Algorithm 6) is t-NIo secure with public
output c.

Proof. We prove the security of Steps 1 through 4 from their composition of
smaller gadgets in Appendix D. Step 1 and 3 can be modeled as t-SNI gadgets,
while Step 2 is t-NIo with public output c[j] and Step 4 is t-NI (Figure 4). We now
prove the larger composition (Algorithm 6) to be t-NIo. An abstract diagram of
an iteration j is shown in Figure 4, constructed from Step 1 - 4. We now show
that a single (outer) loop is t-NI secure if the value c[j] is given to the simulator.
This is a direct result of each step achieving at least t-NI security and being
composed as in Figure 4 and all public outputs being securely recombined. This
means all probes in a single iteration j can be simulated with no more number of
shares of (TTTi). It is clear that if an adversary can place t probes across different
iterations, these can also be simulated with no more number of input shares if
c is given to the simulator. As a result, the entire gadget SecRowEch is t-NIo
secure when c is public.

16

(TTTi) Step 1

Step 2

Step 3

Step 4

c[j]

(TTTi)

Fig. 4: An abstract diagram of a single iteration j of SecRowEch (Algorithm 6).
The t-NI gadgets are depicted with a single border and the t-SNI gadgets with
a double border.

3.7 Masked Back Substitution with Public Output

The second and final step in solving a system of linear equations (AAAx = b),
is performing back substitution on a system (e.g., matrix) in row-echelon form
([AAAi | bi]) and is Boolean shared. We propose to compute the unique solution x
as a public output, with a secure recombination of the shares.

Algorithm 7: SecBackSub

Data: 1. A Boolean sharing (AAAi) of matrix AAA ∈ Fm×m
q

2. A Boolean sharing (bi) of the vector b ∈ Fm
q .

Result: Unique, public solution x ∈ Fm
q such that AAAx = b

1 for j = m downto 2 do
2 x[j] = FullAdd((b[j]i))
3 for k = 1 upto j − 1 do
4 (b[k]i) := (b[k]i + x[j] ·AAA[k,j]i)

5 x[1] = FullAdd((b[1]i))
6 return x

More precisely, the system is solved by moving from the final row (m) to the
first one, as in typical back substitution. Firstly, the solution of the current row
x[j] = (b[j]i) is securely unmasked. Secondly, all the elements above in column j
of (AAAi) are made zero, by (securely) multiplying all its elements (AAA[1:j−1,j]i) with
the solution x[j]. As the multiplier is unmasked, the operation can be performed
share-wise. For each row, that result is subtracted from the element in vector b,
share by share. Finally, this process is repeated for all rows except the first one,
which can be directly solved and unmasked.

17

3.7.1 Complexity
The run-time and randomness complexity of SecBackSub are:

TSecBackSub(n,m) = (m− 1) · TFullAdd(n) + (
m(m− 1)

2
· 2n) + TFullAdd(n)

=
3

2
n2m− 3

2
mn−m+m2n ,

RSecBackSub(n,m,w) = (m− 1) ·RFullAdd(n,w) + 0 +RFullAdd(n,w)

=
(n2 − n)mw

2
.

3.7.2 Security
We now argue about the first- and high-order security of Algorithm 7 by proving
it to be t-NIo secure with n = t + 1 shares and public output x. This means it
provides resistance against an adversary with t probes and allows the algorithm
to be used in larger compositions.

Lemma 6. The gadget SecBackSub (Algorithm 7) is t-NIo secure with public
output x.

Proof. We first show that a single iteration j is t-NIo secure with output x[j],
of which an abstract diagram is shown in Figure 5. We model the extraction of
element j and column j from vector (bi) and matrix (AAAi) as t-NI gadgets G1-G2

and G3, respectively. We also model the loop of share-wise multiplications and
additions in Line 3-4 as a single t-NI gadget, which can be trivially shown as the
operations are performed share by share and each iteration is independent. As a
result, the iterations are assumed to be executed in parallel, and we summarize
them into a single gadget G5. An adversary can probe the intermediate values
tGi and output shares oGi of each gadget Gi, except the outputs of the entire
gadget. The total number of probes in Algorithm 7 is defined as:

tA7
=

5∑
i=1

tGi
+

4∑
i=1

oGi

To prove Lemma 6, we show that the internal and output probes of each gadget
in Algorithm 7 can be perfectly simulated with ≤ tA7

input shares. As t-NI
security implies that the simulation of internal and output probes of a gadget
Gi requires a corresponding number of shares of its input. From this, it is clear
that on a matrix/vector-level, the probes cannot be perfectly simulated as there
are duplicate entries in the sum (2 · tG5 of (bi)). To overcome this issue, we
model gadget G5 to operate on individual entries in row/column vectors rather
than on the complete variables. As a result, to simulate tG5

intermediate values
requires tG5

shares of element j and elements [1 : j−1]. As the coefficients inside
a column/row are independent, the simulation succeeds. Following the flow from
the output to the inputs, all probes required for simulation are summed up. We

18

(bi)

(AAAi)

G1

[j]

G2

[1:j-1]

G3

[:,j]

(b[j]i)

(b[1:j−1]i)

(AAA[:,j]i)

G4

FullAdd
x[j]

G5

Loop

(+,*)

(b[1:j−1]i)

Fig. 5: An abstract diagram of a single iteration j of SecBackSub (Algorithm 7).
The t-NI gadgets are depicted with a single border, the t-SNI gadgets with a
double border.

determine the set of shares of the inputs |I|, required for simulating the entire
algorithm. As |I| = tG1 +oG1 + tG2 +oG2 + tG3 +oG3 + tG4 +oG4 + tG5 ≤ tA7 , the
iteration j is t-NI. We have shown that all t probes placed by an adversary in a
single iteration j can be simulated with no more number of shares of inputs (AAAi)
and (bi). As a result, all probes across different iterations can also be simulated
with no more number of input shares.

4 Application to Different Digital Signature Schemes

This section discusses the operational and randomness cost of the masked Gaus-
sian elimination on multivariate- and code-based digital signatures. In total,
we observed that at least the following ten UOV-based digital signatures use
some variant of Gaussian elimination: UOV, MAYO, SNOVA, QR-UOV, MQ-
Sign, PROV, VOX, TUOV, VDOO, IPRainbow, and WAVE. In between these
schemes, UOV, MAYO, SNOVA, and QR-UOV have advanced to the second
round of the NIST additional digital signature standardization procedure [32],
and MQ-Sign is a second-round candidate for the Korean PQC standardiza-
tion procedure [37]. Therefore, we have restricted our cost analysis to these five
multivariate-based digital signature candidates in this work. As seen from the
complexity analysis in Section 3, the cost of the masked Gaussian elimination
mainly depends on the dimension of the matrix AAA (m), the width of the modulus
q (w), and the number of shares (n).

We present a cost analysis of the five selected schemes in Table 2. We have
used the parameters of the corresponding scheme in the run-time and random-
ness complexity equations to calculate the expected arithmetic operational and
randomness cost of the masked Gaussian elimination for each scheme, respec-
tively. It can be seen from the table that the effect of the matrix dimension
m and the share count n is much more potent in operation and randomness
costs than the width of the modulus q. For instance, in the two versions of UOV
for the NIST security level I, the operational cost of masked GE in UOV-Ip
(m = 44 & q = 256) is 2.9× less compared to UOV-Is (m = 64 & q = 16) for
first-, second-, and third-order masking. The randomness cost of GE in UOV-Ip
is 1.5× less compared to UOV-Is for first, second, and third-order masking. Due
to similar reasons, the operational cost of first-, second-, and third-order masked

19

Table 2: Cost estimation of masked Gaussian elimination to different digital sig-
nature schemes. Here, m represents the dimension of the matrix AAA, q represents
the modulus, and n represents the number of masking shares.

Scheme Operations Randomness
Parameters (x1000) (KB)Scheme

NIST
Security
Level q m n = 2 n = 3 n = 4 n = 2 n = 3 n = 4

256 44 105 260 482 742 2226 4452
I

16 64 300 747 1392 1112 3336 6671
III 256 72 428 1065 1986 3146 9437 18873

UOV
[8]

V 256 96 985 2459 4590 7360 22079 44158
I 16 64 300 747 1392 1112 3336 6671
III 16 96 973 2434 4546 3680 11040 22079

MAYO
[7]

V 16 128 2263 5670 10597 8638 25914 51827
7 100 1084 2717 5076 3102 9306 18612

31 60 249 619 1155 1147 3441 6881
31 70 388 968 1806 1806 5417 10834

I

127 54 184 457 852 1175 3524 7048
7 140 2922 7333 13712 8431 25292 50584

31 87 730 1825 3407 3432 10295 20590
31 100 1097 2744 5125 5184 15550 31100

III

127 78 531 1327 2476 3472 10415 20829
7 190 7217 18131 33918 20942 62825 125650

31 114 1610 4032 7533 7646 22937 45873
31 120 1872 4689 8761 8904 26710 53419

QR-UOV
[20]

V

127 105 1265 3166 5914 8373 25119 50237
16 68 357 890 1660 1329 3987 7974
16 72 421 1051 1961 1573 4719 9437I
16 80 572 1428 2666 2147 6439 12877
16 100 1097 2744 5125 2147 6439 12877
16 99 1065 2664 4976 4031 12093 24186III
16 128 2263 5670 10597 8638 25914 51827
16 132 2477 6209 11604 9465 28395 56789
16 135 2647 6634 12400 10119 30356 60712

SNOVA
[41]

V
16 160 4369 10959 20489 16773 50317 100634

I 256 46 119 294 547 845 2534 5068
III 256 72 428 1065 1986 3146 9437 18873

MQ-Sign
[39]

V 256 96 985 2459 4590 7360 22079 44158

GE is 2.3× higher, and the randomness cost is 1.2× higher in MAYO compared
to UOV for III and V, both security levels.

As the modulus q in QR-UOV is prime, we considered the next closest power-of-
two integer as the modulus during the complexity cost analysis of masked Gaus-
sian elimination on QR-UOV. However, the actual cost is likely to be higher be-
cause a masked prime modulus reduction is often more expensive than a masked
power-of-two modulus reduction. We can also observe from Table 2 that the
operational and randomness costs of masked GE in QR-UOV and SNOVA even
vary hugely for the same security level. In fact, two NIST security level III vari-
ants ((i) m = 87 & q = 31, and (ii) m = 78 & q = 127) of QR-UOV are cheaper
to protect than a NIST security level I variant (m = 100 & q = 7) of QR-UOV.
We conclude that the main contributors to operational and randomness cost in
masked GE with back substitution are matrix dimension m and masking order
t = n− 1.

20

5 Implementation Results

In this section, we discuss our software (C, M4) implementation of the gadgets
introduced in Section 3 and evaluate their performance for different UOV pa-
rameter sets and sharing degrees. The performance results are obtained from
running our code6, which we make publicly available, on the STM32Discovery
board, containing an STM32 Arm Cortex-M4 microcontroller. We use the on-
chip TRNG for on-the-fly randomness generation, which is included in the total
cycle count. Below, we discuss and show results for practically relevant security
orders (n = 2, 3, 4), but our implementation could be scaled up to arbitrary
order. We emphasize that our implementation is only a proof-of-concept. Mit-
igation of micro-architectural leakages and optimized masked implementations
are beyond the scope of this work and left as future work.

Table 3: Detailed performance overview (cycle counts ×1000) of masked Gaus-
sian Elimination (n = 2, 3, 4) for UOV-I, -III, -V on Arm Cortex-M4.

Masked
Scheme Operation Umasked

1st-order 2nd-order 3rd-order
GE (Total) 1034 15649 (15.1×) 39587 (38.3×) 69186 (66.9×)
SecRowEch 999 15575 (15.6×) 39469 (39.5×) 69021 (69.1×)
Step 1 80 1998 (25×) 5642 (70.5×) 9901 (123.8×)
Step 2 39 108 193
Step 3 598 1335 2426
Step 4 12938 32383 56498

UOV-I

(m=44
q=256)

SecBackSub 32 74 (2.3×) 118 (3.7×) 164 (5.1×)
UOV-III GE (Total) 4117 62680 (15.2×) 157901 (38.4×) 275768 (67×)
UOV-V GE (Total) 9336 143361 (15.4×) 360590 (38.6×) 1025942 (109.9×)

5.1 Case Study: UOV

Table 3 shows the performance results (clock cycles) of our masked implemen-
tation for all three UOV security levels and scaled to first-, second- and third-
masking order. We include the performance numbers of the unmasked UOV ref-
erence code [8], of the supported parameter sets. We repeat that the randomness
generation overhead is included in the benchmarking results. The full masked
GE operation results in about 15.1/15.2/15.4× overhead for 2 shares at NIST
security level I/III/V. As expected, the performance overhead increases signif-
icantly for higher-order protected implementations. Our second-order masked
implementation has overhead factor 38.3/38.4/38.6× for UOV-I, -III and -V,
respectively. The third-order implementation has an overhead of 66.9-109.9× for
different NIST security levels. The main contributor to the cycle count is the
conversion to row-echelon form, more specifically, Steps 1 and 4 (∼ 95%). At all
protection orders, the repeated execution of SecMultSub and SecCondAdd are
the main bottlenecks and good targets for future optimizations.

6 arm-none-eabi-gcc v10.3.1

21

We observe that the masked implementation of Step 1, which makes the pivot
element non-zero, has an overhead of ∼ 25/70/124× for 2/3/4 shares. The au-
thors of UOV propose an optimization for the iteration of conditional additions
(Algorithm 1), which we also implemented. Instead of iterating over all rows
below the current pivot row (up to m), the UOV submission describes iterat-
ing over (and conditionally adding) only a few rows below the pivot row. The
exact amount depends on the parameter selection but ensures a sufficiently low
probability of the pivot element being non-zero. We encourage other UOV-like
candidates to explore similar optimizations, which will lead to more efficient
(masked) implementations of GE with back substitution.

6 Conclusions

In this work, we presented first- and higher-order masked algorithms for Gaus-
sian elimination with back substitution: SecRowEch & SecBackSub. We analyze
several novel multivariate- and code-based PQC schemes and show that GE is
a critical operation for solving a system of linear equations and requires side-
channel protection. Our SecCondAdd gadget allows us to make a pivot element
nonzero by conditionally adding other rows in the matrix without revealing if it
is zero. We rely on the SecScalarMult gadget to efficiently multiply a matrix
row with the (masked) inverse of its pivot element to make the pivot element
one. Our approach only requires a single mask conversion. For the same masking
order, the matrix dimension m is the main contributor to operation and random-
ness cost in masked GE. The MAYO scheme has a larger m compared to UOV,
and as a result, the GE is 2.3× and 1.2× more expensive to mask. Future work
includes analysis of reduced iteration counts in the GE, as proposed in the UOV
specification, for other PQC DS candidates. We implement our algorithms in
C for arbitrary protection orders and parameter sets of different PQC schemes.
We also evaluate its performance on Arm Cortex-M4 platforms. In future work,
a complete masking and hardening against physical attacks for all mentioned
schemes can be constructed using the methods proposed in this work.

Acknowledgements. This work was partially supported by Horizon 2020 ERC
Advanced Grant (101020005 Belfort), Horizon Europe (101070008 ORSHIN),
CyberSecurity Research Flanders with reference number VOEWICS02, BE QCI:
Belgian-QCI (3E230370) (see beqci.eu), and Intel Corporation. Anindya Ganguly
is supported by TCS research fellowship. The work of Angshuman Karmakar is
supported by the Research-I foundation from Infosys, the Initiation grant from
IIT Kanpur, and the Google India research fellowship.

References

1. Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., Stöttinger, M.: Separat-
ing oil and vinegar with a single trace side-channel assisted kipnis-shamir attack
on UOV. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(3), 221–245 (2023).
https://doi.org/10.46586/TCHES.V2023.I3.221-245

22

https://doi.org/10.46586/TCHES.V2023.I3.221-245

2. Banegas, G., Carrier, K., Chailloux, A., Couvreur, A., Debris-Alazard, T., Ga-
borit, P., Karpman, P., Loyer, J., Niederhagen, R., Sendrier, N., Smith, B., Tillich,
J.: Wave specification document (2023), https://csrc.nist.gov/csrc/media/

Projects/pqc-dig-sig/documents/round-1/spec-files/wave-spec-web.pdf

3. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub,
P.Y., Zucchini, R.: Strong non-interference and type-directed higher-order
masking. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) ACM CCS 2016. pp. 116–129. ACM Press (Oct 2016).
https://doi.org/10.1145/2976749.2978427

4. Barthe, G., Beläıd, S., Espitau, T., Fouque, P.A., Grégoire, B., Rossi, M., Tibouchi,
M.: Masking the GLP lattice-based signature scheme at any order. In: Advances
in Cryptology–EUROCRYPT 2018: 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29-
May 3, 2018 Proceedings, Part II 37. pp. 354–384. Springer (2018)

5. Barthe, G., Fong, N., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.Y.: Advanced
probabilistic couplings for differential privacy. In: Weippl, E.R., Katzenbeisser, S.,
Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 55–67. ACM Press
(Oct 2016). https://doi.org/10.1145/2976749.2978391

6. Bettale, L., Coron, J.S., Zeitoun, R.: Improved high-order conversion from boolean
to arithmetic masking. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems pp. 22–45 (05 2018). https://doi.org/10.46586/tches.v2018.i2.22-
45

7. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.J.: Mayo specification
document (2023), https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/
documents/round-1/spec-files/mayo-spec-web.pdf

8. Beullens, W., Chen, M.S., Ding, J., Gong, B., Kannwischer, M.J., Patarin,
J., Peng, B.Y., Schmidt, D., Shih, C.J., Tao, C., Yang, B.Y.: Uov: Unbal-
anced oil and vinegar algorithm specifications and supporting documentation ver-
sion 1.0 (2023), https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/

documents/round-1/spec-files/UOV-spec-web.pdf

9. Cartor, R., Cartor, M., Lewis, M., Smith-Tone, D.: Iprainbow. In: Cheon, J.H.,
Johansson, T. (eds.) Post-Quantum Cryptography - 13th International Work-
shop, PQCrypto 2022, Virtual Event, September 28-30, 2022, Proceedings. Lec-
ture Notes in Computer Science, vol. 13512, pp. 170–184. Springer (2022).
https://doi.org/10.1007/978-3-031-17234-2 9

10. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Wiener, M. (ed.) Advances in Cryptology —
CRYPTO’ 99. pp. 398–412. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

11. Chen, K.Y., Chen, J.P.: Masking floating-point number multiplication and ad-
dition of falcon: First-and higher-order implementations and evaluations. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2024(2), 276–
303 (2024)

12. Chou, T., Kannwischer, M.J., Yang, B.: Rainbow on cortex-m4. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 650–675 (2021).
https://doi.org/10.46586/TCHES.V2021.I4.650-675

13. Cogliati, B., Faugère, J., Fouque, P., Goubin, L., Larrieu, R., Macario-Rat, G.,
Minaud, B.: Vox specification document (2023), https://csrc.nist.gov/csrc/
media/Projects/pqc-dig-sig/documents/round-1/spec-files/vox-spec-

web.pdf

23

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/wave-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/wave-spec-web.pdf
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978391
https://doi.org/10.46586/tches.v2018.i2.22-45
https://doi.org/10.46586/tches.v2018.i2.22-45
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/mayo-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/mayo-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
https://doi.org/10.1007/978-3-031-17234-2_9
https://doi.org/10.46586/TCHES.V2021.I4.650-675
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/vox-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/vox-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/vox-spec-web.pdf

14. Coron, J.S.: High-order conversion from Boolean to arithmetic masking. In: Fis-
cher, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 93–114. Springer,
Cham (Sep 2017). https://doi.org/10.1007/978-3-319-66787-45

15. Coron, J.S., Großschädl, J., Vadnala, P.K.: Secure conversion between boolean and
arithmetic masking of any order. In: International Workshop on Cryptographic
Hardware and Embedded Systems. pp. 188–205. Springer (2014)

16. Coron, J.S., Spignoli, L.: Secure wire shuffling in the probing model. In: Malkin, T.,
Peikert, C. (eds.) Advances in Cryptology – CRYPTO 2021. pp. 215–244. Springer
International Publishing, Cham (2021)

17. Coron, J.S., Gérard, F., Montoya, S., Zeitoun, R.: High-order polynomial
comparison and masking lattice-based encryption. IACR Transactions on
Cryptographic Hardware and Embedded Systems pp. 153–192 (11 2022).
https://doi.org/10.46586/tches.v2023.i1.153-192

18. Coron, J.S., Gérard, F., Trannoy, M., Zeitoun, R.: Improved gadgets for the high-
order masking of dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(4),
110––145 (Aug 2023). https://doi.org/10.46586/tches.v2023.i4.110-145

19. Ding, J., Gong, B., Guo, H., He, X., Jin, Y., Pan, Y., Schmidt,
D., Tao, C., Xie, D., Yang, B.Y., Zhao, Z.: Tuov: Specification docu-
ment v1.0 (2023), https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/
documents/round-1/spec-files/TUOV-spec-web.pdf

20. Furue, H., Ikematsu, Y., Hoshino, F., Takagi, T., Yasuda, K., Miyazawa,
T., Saito, T., Nagai, A.: QR-UOV specification document (2023), https:

//csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-

1/spec-files/qruov-spec-web.pdf
21. Ganguly, A., Karmakar, A., Saxena, N.: VDOO: A short, fast, post-quantum mul-

tivariate digital signature scheme. In: Chattopadhyay, A., Bhasin, S., Picek, S., Re-
beiro, C. (eds.) Progress in Cryptology - INDOCRYPT 2023 - 24th International
Conference on Cryptology in India, Goa, India, December 10-13, 2023, Proceed-
ings, Part II. Lecture Notes in Computer Science, vol. 14460, pp. 197–222. Springer
(2023). https://doi.org/10.1007/978-3-031-56235-8 10

22. Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side channel anal-
ysis with additive and multiplicative maskings. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Berlin, Heidelberg (Sep / Oct
2011). https://doi.org/10.1007/978-3-642-23951-916

23. Goubin, L., Cogliati, B., Faugère, J., Fouque, P.A., Larrieu, R., Macario-
Rat, G., Minaud, B., Patarin, J.: Prov specification document (2023), https:

//csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-

1/spec-files/prov-spec-web.pdf
24. Guerreau, M., Martinelli, A., Ricosset, T., Rossi, M.: The hidden par-

allelepiped is back again: Power analysis attacks on falcon. IACR
Trans. Cryptogr. Hardw. Embed. Syst.s 2022(3), 141–164 (Jun 2022).
https://doi.org/10.46586/tches.v2022.i3.141-164

25. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Advances in Cryptology-CRYPTO 2003: 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003. Pro-
ceedings 23. pp. 463–481. Springer (2003)

26. Ito, A., Ueno, R., Homma, N.: On the success rate of side-channel attacks on
masked implementations: Information-theoretical bounds and their practical usage.
In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Commu-
nications Security. p. 1521–1535. CCS ’22, Association for Computing Machinery,
New York, NY, USA (2022). https://doi.org/10.1145/3548606.3560579

24

https://doi.org/10.1007/978-3-319-66787-4_5
https://doi.org/10.46586/tches.v2023.i1.153-192
https://doi.org/10.46586/tches.v2023.i4.110-145
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/TUOV-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/TUOV-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/qruov-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/qruov-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/qruov-spec-web.pdf
https://doi.org/10.1007/978-3-031-56235-8_10
https://doi.org/10.1007/978-3-642-23951-9_16
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/prov-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/prov-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/prov-spec-web.pdf
https://doi.org/10.46586/tches.v2022.i3.141-164
https://doi.org/10.1145/3548606.3560579

27. Johnson, D.S., Garey, M.R.: Computers and Intractability: A Guide to the Theory
of NP-completeness. WH Freeman (1979)

28. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) Advances in Cryptology — EUROCRYPT ’99. pp. 206–222.
Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

29. Kundu, S., D’Anvers, J., Beirendonck, M.V., Karmakar, A., Verbauwhede, I.:
Higher-order masked saber. In: Galdi, C., Jarecki, S. (eds.) Security and Cryptogra-
phy for Networks - 13th International Conference, SCN 2022, Amalfi, Italy, Septem-
ber 12-14, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13409, pp.
93–116. Springer (2022). https://doi.org/10.1007/978-3-031-14791-3 5

30. Mathieu-Mahias, A., Quisquater, M.: Mixing additive and multiplica-
tive masking for probing secure polynomial evaluation methods. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 175–208 (2018).
https://doi.org/10.13154/tches.v2018.i1.175-208

31. NIST: Call for additional digital signature schemes for the post-quantum
cryptography standardization process (2022), https://csrc.nist.gov/csrc/

media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-

2022.pdf, accessed: 2024-10-30
32. NIST: Ir 8528: Status report on the first round of the additional digital sig-

nature schemes for the nist post-quantum cryptography standardization pro-
cess. Tech. rep., U.S. Department of Commerce, Washington, D.C. (2024).
https://doi.org/10.6028/NIST.IR.8528

33. NIST: Module-lattice-based digital signature standard. Tech.
rep., U.S. Department of Commerce, Washington, D.C. (2024).
https://doi.org/10.6028/NIST.FIPS.204

34. NIST: Module-lattice-based key-encapsulation mechanism standard.
Tech. rep., U.S. Department of Commerce, Washington, D.C. (2024).
https://doi.org/10.6028/NIST.FIPS.203

35. NIST: Stateless hash-based digital signature standard. Tech. rep., U.S. Department
of Commerce, Washington, D.C. (2024). https://doi.org/10.6028/NIST.FIPS.205

36. Park, A., Shim, K.A., Koo, N., Han, D.G.: Side-channel attacks on
post-quantum signature schemes based on multivariate quadratic equations.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 500–523 (Aug 2018).
https://doi.org/10.13154/tches.v2018.i3.500-523

37. Quantum-Resistant Cryptography Research Group: Kpqc competition round 2
(2024), https://www.kpqc.or.kr/competition_02.html, accessed: 2024-10-30

38. Schneider, T., Paglialonga, C., Oder, T., Güneysu, T.: Efficiently masking bi-
nomial sampling at arbitrary orders for lattice-based crypto. In: Public-Key
Cryptography – PKC 2019: 22nd IACR International Conference on Practice
and Theory of Public-Key Cryptography, Beijing, China, April 14-17, 2019,
Proceedings, Part II. p. 534–564. Springer-Verlag, Berlin, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-17259-6 18

39. Shim, K.A., Kim, J., An, Y.: Mq-sign: A new post-quantum signature scheme
based on multivariate quadratic equations: Shorter and faster (2023), https://
www.kpqc.or.kr/images/pdf/MQ-Sign.pdf

40. Ulitzsch, V.Q., Marzougui, S., Tibouchi, M., Seifert, J.P.: Profiling side-channel
attacks on Dilithium. In: Smith, B., Wu, H. (eds.) Selected Areas in Cryptography.
pp. 3–32. Springer International Publishing, Cham (2024)

41. Wang, L.C., Chou, C.Y., Ding, J., Kuan, Y.L., Li, M.S., Tseng, B.S.,
Tseng, P.E., Wang, C.C.: Snova specification document (2023), https:

25

https://doi.org/10.1007/978-3-031-14791-3_5
https://doi.org/10.13154/tches.v2018.i1.175-208
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://doi.org/10.6028/NIST.IR.8528
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.13154/tches.v2018.i3.500-523
https://www.kpqc.or.kr/competition_02.html
https://doi.org/10.1007/978-3-030-17259-6{_}18
https://www.kpqc.or.kr/images/pdf/MQ-Sign.pdf
https://www.kpqc.or.kr/images/pdf/MQ-Sign.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SNOVA-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SNOVA-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SNOVA-spec-web.pdf

//csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-

1/spec-files/SNOVA-spec-web.pdf

42. Yi, H., Nie, Z.: Side-channel security analysis of UOV signature for cloud-
based internet of things. Future Gener. Comput. Syst. 86, 704–708 (2018).
https://doi.org/10.1016/J.FUTURE.2018.04.083

A Auxiliary Algorithms

Algorithm 8: Refresh, from [5]

Data: A Boolean sharing (xi) of x ∈ Fq

Result: A Boolean sharing (yi) of y ∈ Fq such that
n∑

i=1
yi =

n∑
i=1

xi

1 (yi) := (xi)
2 for i = 2 upto n do
3 r ← Fq

4 y1 = y1 + r
5 yi = yi − r

6 return (yi)

Algorithm 9: StrongRefresh, from [5]

Data: A Boolean sharing (xi) of x ∈ Fq

Result: A Boolean sharing (yi) of y ∈ Fq such that
n∑

i=1
yi =

n∑
i=1

xi

1 (yi) := (xi)
2 for i = 1 upto n do
3 for j = i + 1 upto n do
4 r ← Fq

5 yi = yi + r
6 yj = yj − r

7 return (yi)

Algorithm 10: FullAdd, from [15,4]

Data: A Boolean sharing (yi)

Result: Unmasked value y such that y =
n∑

i=1
yi

1 (ai) := StrongRefresh((yi)) /* free-t-SNI */
2 y := a1 + · · ·+ an

3 return y

26

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SNOVA-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SNOVA-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SNOVA-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SNOVA-spec-web.pdf
https://doi.org/10.1016/J.FUTURE.2018.04.083

Algorithm 11: SecNonzero, from [11]

Data: 1. A Boolean sharing (xi) of a coefficient x ∈ Fq .
2. Parameter w = ⌈log(q)⌉

Result: One-bit Boolean sharing (bi) such that
n∑

i=1
bi = 0⇔

n∑
i=1

xi = 0

1 (ti) := (xi)
2 len := w/2
3 while len ≥ 1 do

4 (li) := StrongRefresh((t
[2len:len]
i))

5 (ri) := (t
[len:1]
i)

6 (ti) = SecOR((li), (ri)) /* [11] */
7 len = len≫ 1

8 return (t
[1]
i)

Algorithm 12: B2M, from [22]

Data: A Boolean sharing (xi) of a coefficient x ∈ Fq

Result: A multiplicative sharing (mi) such that
n∑

i=1
xi =

n∏
i=1

mi

1 m1 := x1

2 for j = 2 upto n do
3 mj ← Fq

4 m1 = m1 ∗mj

5 for k = 2 upto n− j + 1 do
6 r ← Fq

7 xk = mj ∗ xk

8 ## Refresh additive share
9 xk = xk + r

10 m1 = m1 + xk

11 xk = r

12 xn−j+2 = xn−j+2 ∗mj

13 m1 = m1 + xn−j+2

14 mj = m−1
j

15 return (mi)

27

B Complexity Analysis of SecNonzero

The run-time and randomness complexity of SecNonzero (Alg. 11) are:

TSecNonzero(n) = n+ 1 + w · (TStrongRefresh(n) + n+ TSecOR(n) + 1)

= n+ 1 + (⌈log(w + 1)⌉ − 1) · (3n
2 − 3n

2
+ n+ (2n+ TSecAnd(n) + 1) + 1)

= n+ 1 + (⌈log(w + 1)⌉ − 1) · (3n
2 − 3n

2
+ n+ (2n+

7n2 − 5n

2
+ 1) + 1)

= (5n2 + 2n− 1) + ⌈log(w + 1)⌉ · (5n2 − n+ 2) ,

RSecNonzero(n,w) =

(⌈log(w+1)⌉−1)∑
len=1

·(RStrongRefresh(n, len) +RSecOR(n, len))

=

(⌈log(w+1)⌉−1)∑
len=1

·((n
2 − n

2
· len) +RSecAnd(n, len))

=

(⌈log(w+1)⌉−1)∑
len=1

·(n
2 − n

2
+

n2 − n

2
) · len

=
⌈log(w + 1)⌉2 − ⌈log(w + 1)⌉

2
· (n2 − n) .

C Complexity Analysis of SecRowEch

The run-time and randomness complexity of SecRowEch (Alg. 6) are:

TSecRowEch(n,m) =
m2 −m

2
· (TSecNonzero(n) + TSecNOT(n)) +

2m3 + 3m2 +m

6
·

TSecCondAdd(n, 1) +m · TSecNonzero(n) +m · TFullAdd(n) +m

+m · TB2Minv(n) +
m2 + 3m

2
· TSecScalarMult(n, 1) +

m2 −m

2
·

TStrongRefresh(n) +
2m3 + 3m2 +m

6
· TSecMultAdd(n, 1)

=
m2 −m

2
· (((5n2 + 2n− 1) + ⌈log(w + 1)⌉ · (5n2 − n+ 2)) + 1)

+
2m3 + 3m2 +m

6
· (5n2 − 3n) +m · ((5n2 + 2n− 1)+

⌈log(w + 1)⌉ · (5n2 − n+ 2)) +m · 3n
2 − n− 2

2
+m

+m · 5n
2 − 5n+ 4

2
+

m2 + 3m

2
· (5n2 − 3n) +

m2 −m

2

· 3n
2 − 3n

2
+

2m3 + 3m2 +m

6
· 7n

2 − 3n

2
,

28

RSecRowEch(n,m,w) =
m2 −m

2
· (RSecNonzero(n,w) +RSecNOT(n,w))

+
2m3 + 3m2 +m

6
·RSecCondAdd(n, 1, w) +m·

RSecNonzero(n,w) +m ·RFullAdd(n,w) +m ·RB2Minv(n,w)

+
m2 + 3m

2
·RSecScalarMult(n, 1, w) +

m2 −m

2
·

RStrongRefresh(n,w) +
2m3 + 3m2 +m

6
·RSecMultAdd(n, 1, w)

=
m2 −m

2
· ⌈log(w + 1)⌉2 − ⌈log(w + 1)⌉

2
· (n2 − n)

+
2m3 + 3m2 +m

6
· (n2 − n)w +m · ⌈log(w + 1)⌉2 − ⌈log(w + 1)⌉

2
·

(n2 − n) +m · (n
2 − n)w

2
+m · n

2 − n

2
· w +

m2 + 3m

2
·

(n2 − n)w +
m2 −m

2
· (n

2 − n

2
· w) + 2m3 + 3m2 +m

6
·

n2 − n

2
· w .

D Security Proofs of Step 1-4 of Algorithm 6

Step 1 (G1 - G6, t-SNI, Fig. 6): we first show that a single iteration of the
loop (Line 4-7) is t-SNI secure. We model the extraction of rows j and k (and
elements within that row) from matrix TTT as t-NI gadgets G1 - G3. This is trivial
to show as selected rows from the matrix pass through and the rest is discarded.
The SecNonzero and SecNOT operations are modeled as t-SNI and t-NI gadgets
G4 and G5, respectively. The SecCondAdd operation is modeled as t-SNI gadget
G6, operating on rows j and k. An adversary can probe each gadget Gi internally
tGi

and at the output oGi
. The total number of probes in Step 1 is defined as

tS1
and the output shares as |O|, with

tS1
=

6∑
i=1

tGi
+

5∑
i=1

oGi
, |O| = oG6

We now show that the internal and output probes of each gadget in Step 1
can be perfectly simulated with ≤ tS1

input shares. To simulate the internal
and output probes of G6, tG6

shares of each of its inputs are required. Gadget
G4 is t-SNI and stops the propagation of probes to the input: only tG4

shares
of the output of G3 are required. The internal probes and output shares of
gadgets G1 and G2 can be simulated with a corresponding number of shares
of the input (TTTi), which is a problem as the required input shares is (tG1 +
oG1

+ tG2
+ oG2

+ tG3
+ oG3

+ tG4
+ 2 · tG6

). It is clear that on a variable-level
the probes cannot be perfectly simulated, which is why all gadgets work on a
matrix row (or element) level. As such, each of these gadgets only requires the
shares of a specific row of the input. And because the rows are independent, tG6

29

shares of row k and tG6
shares of row j are required, and thus the simulation

succeeds. For the entire composition, the required set of shares of the input is
|I| = tG1 + oG1 + tG2 + oG2 + tG3 + oG3 + tG4 + tG6 , which is independent from
|O|. As a result, each iteration is t-SNI secure, and as a result, the whole loop
(Step 1) is too.

(TTTi)
G1

[j,:]
(TTT[j,:]i)

G2

[k,:]
(TTT[k,:]i)

G3

[:,j]
(TTT[j,j]i)

G4

SecNonzero

G5

SecNOT

G6

SecCondAdd
(TTT[j,:]i)

Fig. 6: An abstract diagram of a single iteration k of Step 1 in SecRowEch (Al-
gorithm 6). The t-NI gadgets are depicted with a single border and the t-SNI
gadgets with a double border. Probes are defined at the row/column and element
level (and not matrix-level) to ensure sound simulation.

Step 2 (G7 - G9, t-NIo, Fig. 7): we model the extraction of element j
from a matrix-row as t-NI gadget G7. As can be seen in the abstract diagram,
SecNonzero is the t-SNI gadget G8 and FullAdd is t-NI secure G9. It is clear
from its chained structure that the full Step 2 is t-NI secure if c[j] is given to the
simulator.

(TTT[j,:]i)
G7

[:,j]
(TTT[j,:]i)

G8

SecNonzero

G9

FullAdd
c[j]

Fig. 7: An abstract diagram of Step 2 in SecRowEch (Algorithm 6). The t-NI
gadgets are depicted with a single border and the t-SNI gadgets with a double
border.

Step 3 (G10 - G12, t-SNI, Fig. 8): initially, the pivot is extracted from row
j of matrix (TTTi), which we model as t-NI gadget G10. The t-SNI operations
B2Minv and SecScalarMult are modeled as gadgets G11 and G12, respectively.
An adversary can probe the intermediate values tGi and output shares oGi of

(TTT[j,:]i)
G10

[:,j]
(TTT[j,:]i)

G11

B2Minv

G12

SecScalarMult
(TTT[j,:]i)

Fig. 8: An abstract diagram of Step 3 in SecRowEch (Algorithm 6). The t-NI
gadgets are depicted with a single border, the t-SNI gadgets with a double bor-
der.

each gadget Gi. The total number of possible probes in Step 3 is defined as tS3

30

and its output shares as |O|, with

tS3 =

12∑
i=10

tGi +

11∑
i=10

oGi , |O| = oG12

We now show that the internal and output probes of each gadget in Step 3 can be
perfectly simulated with ≤ tS3

input shares. To simulate the tG12
intermediate

values and oG12
output shares of G12, only tG12

shares of the input (TTT[j,:]i)
and the output of G11 are required. For G11 too, the t-SNI property allows to
simulate all probes with only tG11 of its input. The simulation of tG10 + oG10

probes on G10 requires the same amount of shares from its input. We now sum
the required shares of the input |I| that are required to simulate all probes on
the gadgets in Step 3. As |I| = tG10

+ oG10
+ tG11

+ tG12
≤ tS3

and independent
of |O|, Step 3 is t-SNI.

Step 4 (G13 - G16, t-NI, Fig. 9): we first show that a single iteration k of the
loop (Line 17-20) is t-NI secure. The extraction of row k and its coefficient j from
matrix (TTTi) are modeled as t-NI gadgets G13 & G14. We model StrongRefresh
as t-SNI gadget G15 and the t-NI secure SecMultSub as G16. An adversary can

(TTTi)

(TTT[j,:]i)

G13

[k,:]
(TTT[k,:]i)

G14

[:,k]
(TTT[k,k]i)

G15

StrongRefresh

G16

SecMultSub
(TTT[k,:]i)

Fig. 9: An abstract diagram of a single iteration k of Step 4 in SecRowEch (Al-
gorithm 6). The t-NI gadgets are depicted with a single border and the t-SNI
gadgets with a double border.

probe both intermediate values tGi
and output shares oGi

of each gadget Gi.
The total number of probes in this step tS4 is defined as:

tS4
=

16∑
i=13

tGi
+

15∑
i=13

oGi

We now show that all probes on intermediate values and output shares of each
gadget in Step 4 can be perfectly simulated with ≤ tS4 shares of both inputs.
Simulating tG16

probes in G16, requires tG16
probes of the output of G15, input

(TTT[j,:]i) and (TTT[k,:]i). Gadget G15 stops the propagation of probes from the output
to the input, as it is t-SNI. Starting at the output of Step 4 and following the
flow through all gadgets towards the input, all probes are summed (|I|). As
|I| = tG13 + oG13 + tG14 + oG14 + tG15 + tG16 ≤ tS4 shares of both inputs are
required for simulation of an iteration k in Step 4, it is t-NI secure. As each
iteration is independent and computing a single row k, they can be assumed
to be executed in parallel. As a result, we can summarize the gadgets in each
iteration as single gadgets across all iterations. This means the entire loop is
t-NI.

31

	c Masking Gaussian Elimination at Arbitrary Order with Application to Multivariate- and Code-Based PQC

