
Ciphertext-Policy ABE from Inner-Product FE

Ahmad Khoureich Ka

Université Alioune Diop de Bambey, Senegal
ahmadkhoureich.ka@uadb.edu.sn

Abstract. The enormous potential of Attribute-Based Encryption
(ABE) in the context of IoT has driven researchers to propose pairing-
free ABE schemes that are suitable for resource-constrained devices. Un-
fortunately, many of these schemes turned out to be insecure. This fact
seems to reinforce the point of view of some authors according to which
instantiating an Identity-Based Encryption (IBE) in plain Decisional
Diffie-Hellman (DDH) groups is impossible. In this paper, we provide a
generic AND gate access structured Ciphertext-Policy ABE (CP-ABE)
scheme with secret access policy from Inner-Product Functional Encryp-
tion (IPFE). We also propose an instantiation of that generic CP-ABE
scheme from the DDH assumption. From our generic CP-ABE scheme we
derive an IBE scheme by introducing the concept of Clustered Identity-
Based Encryption (CIBE). Our schemes show that it is indeed possible
to construct practical and secure IBE and ABE schemes based on the
classical DDH assumption. An implementation of our CIBE in Python
using the Charm framework is available on GitHub [21].

Keywords: Identity-Based Encryption, Attribute-Based Encryption, Inner-
Product Functional Encryption, Decisional Diffie-Hellman.

1 Introduction

Attribute-Based Encryption (ABE) is an asymmetric encryption primitive that
allows decryption of the ciphertext if and only if an access policy is satisfied
[15,32,6]. The access policy considered as a predicate P (·) is defined on attributes
which can be any element that can be used to identify a user. We distinguish two
types of ABE. On one side, Key-Policy ABE (KP-ABE) schemes where the access
policies are embedded in keys and the set of attributes S is in the ciphertext
and on the other side, Ciphertext-Policy ABE (CP-ABE) schemes in which the
access-policy P (·) is integrated into the ciphertext and keys are associated to
sets of attributes. In either cases decryption is possible only if P (S) = 1.

ABE has a wide range of applications including social applications [34], e-
health systems [27], access control in cloud computing [41,26]. However, ABE
has difficulty penetrating the world of resource-constrained IoT devices be-
cause lightweight schemes have the reputation of presenting crippling security
flaws [16,17,35] and available secure ABE schemes are resource-intensive. ABE
schemes proven secure are based on bilinear pairing [2,31,19] or lattices [11,37,18]
and suffer either of large decryption key size or being slow for encryption or

https://orcid.org/0000-0001-6719-7395


2 A. K. Ka

decryption. Suitable ABE schemes for lightweight devices [28,29,40,35] exploit
classical security assumption like RSA or the Decisional Diffie-Hellman (DDH),
hence their generic name of pairing-free ABE. The discovery of security vulner-
abilities in many of those schemes is not surprising to some authors [9,30] since
they conjectured (the impossibility conjecture) that designing Identity-Based En-
cryption (IBE) schemes (a particular version of ABE [16] introduced by Shamir
in 1984 [33]) that rely on trapdoor permutations or the DDH assumption in
a black box manner is impossible. Furthermore, Herranz [17] has claimed that
there are many chances that an ABE scheme that works in classical settings
(RSA or pairing-free discrete logarithm) is not secure.

1.1 Our Contributions

We provide a generic construction of AND gate access policy CP-ABE from
Inner-Product Functional Encryption (IPFE). IPFE has various useful applica-
tions including the computation of weighted mean over encrypted data [1], the
construction of trace-and-revoke systems [3], the construction of non-zero inner
product encryption [23], the construction of decentralized ABE against bounded
collusion [39] and the construction of message selection functional encryption
allowing decryption of selected portions of a ciphertext [22].

Our construction is a secret access policy CP-ABE scheme. Although the
ciphertext hides the message and the encryption policy, our CP-ABE scheme is
not attribute-hiding in the sense of Katz et al. [24], because an adversary can
succeed the indistinguishability experiment where it is asked to guess which of
the tuples (m0, p0), (m1, p1) was encrypted (mi is the message and pi is the
encryption policy). Therefore, our scheme is a secret access policy CP-ABE and
has a large policy space. This makes collusion and exhaustive-search attacks
infeasible.

From our generic CP-ABE scheme we derive a Small Identity Space IBE (SIS-
IBE) that can issue only ℓ− 1 secret keys where ℓ is the functionality parameter
of the underlying IPFE. We introduce the concept of Clustered IBE (CIBE) to
convert our SIS-IBE scheme to a large identity space IBE scheme.

By providing an instantiation of our CP-ABE scheme from the DDH-based
IPFE of [4], we show that it is possible to construct practical and secure ABE
and IBE schemes based on the DDH assumption (contradicting the impossibility
conjecture [9,30,16]).

1.2 Organization

The rest of this paper is organized as follows. In section 2 we summarize related
work. Section 3 presents the basic knowledge related to IPFE and CP-ABE. Sec-
tion 4 presents the construction of our generic CP-ABE scheme from IPFE, its
security analysis and an instantiation from the DDH assumption. A comparison
with other schemes is also performed in this section. In section 5, we study a
special case of our generic CP-ABE scheme and derive from it a generic IBE



Ciphertext-Policy ABE from Inner-Product FE 3

scheme with the introduction of the notion of clustered identity-based encryp-
tion. Section 6 concludes this work.

2 Related work.

The enormous potential of attribute-based encryption in the context of IoT has
motivated researchers to propose pairing-free ABE schemes suitable for resource-
constrained devices. Unfortunately, many of those schemes turned out to be
insecure. CP-ABE schemes in [12,38] avoid bilinear pairing by using scalar mul-
tiplication on elliptic curves but they are found vulnerable against collusion
attacks [36]. Odelu et al. have proposed two CP-ABE schemes [28,29] one based
on RSA and the other using elliptic curve cryptography for encryption and de-
cryption. Sadly, an explicit attack against these two schemes has been successful
[16]. The KP-ABE scheme proposed in [40] has its proof of security based on
the Elliptic Curve Decisional Diffie-Hellman (ECDDH) assumption instead of
Bilinear Diffie–Hellman (BDH) assumption, but it seems that the security proof
is incorrect since it has been shown in [35] that an adversary can decrypt a ci-
phertext which does not satisfy the access policy of his decryption key. In [35] an
improvement of [40] is proposed but it has been shown in [17] that the proposal
is vulnerable to a key-recovery attack. All these failures tend to reinforce the im-
possibility conjecture [9,30,17] that says that designing secure IBE schemes that
rely solely on the hardness of the Diffie-Hellman Problem is impossible. However,
attacks against the impossibility conjecture debuted with the work of Döttling
and Garg [13] who proposed a construction of IBE under DDH using Garbled
Circuits. More recently, Blazy and Kakvi [7] provided a construction of IBE
similar to that of Döttling and Garg based on Witness Encryption [14] instead
of garbled circuits. Unfortunately, these schemes are inefficient and therefore do
not completely contradict the impossibility conjecture.

In section 4.2, we show that it is indeed possible to construct a secure and
efficient CP-ABE scheme based on the classical DDH assumption.

3 Preliminaries

3.1 Inner-Product Functional Encryption

Inner-Product Functional Encryption allows a recipient who has a secret key
derived from a vector x to obtain from the encryption of a vector y the inner
product ⟨x,y⟩ and nothing more. Abdalla et al. are the first to formalize the
notion of IPFE [1].

In this work, we only consider IPFE schemes which allow the computation
of inner products in the ring R = Z or R = Zq for some prime q. The syntax of
IPFE and its INDistinguishability under Chosen Plaintext Attack (IND-CPA)
security are given in Appendix A.

Various instantiations of IPFE from standard assumptions such as the De-
cisional Diffie-Hellman, the Learning-With-Errors (LWE), and the Decisional



4 A. K. Ka

Composite Residuosity (DCR) are available in the literature [1,4,10]. Our generic
constructions can benefit from them.

3.2 Ciphertext-policy ABE

A Ciphertext-Policy ABE allows a recipient who has a secret key associated with
a set of attributes S to correctly decrypt a ciphertext integrating an access policy
P if and only if S satisfies P. In this work, we restrict ourselves to access policies
that consist of a single AND gate (a single subset of the attribute universe). In
this case, S satisfies P if and only if S contains P. The syntax of CP-ABE and
its indistinguishability-based security are given in Appendix B.

3.3 Identity Based Encryption

Identity Based Encryption was introduced by Shamir in 1984 [33]. IBE is an
attractive Public Key Encryption (PKE) primitive since there is no need to tie a
random public key to the owner’s identity using a certificate management system
(as in traditional PKE) because in IBE the user’s identity is his or her public
key. An IBE scheme [8,33] consists of a set-up algorithm which initializes all
system parameters, a key generation algorithm which computes user’s private
key from a string representing his or her identity, an encryption and decryption
algorithm.The syntax of IBE and its indistinguishability-based security are given
in Appendix C.

4 Construction of CP-ABE from IPFE

To prevent collusion attacks, our construction is a secret access policy CP-ABE
scheme. We use IPFE as building blocks. Let ℓ be the functionality param-
eter of that IPFE. We denote by [ℓ] the set of integers {1, . . . , ℓ}. Let the
attribute space be Z∗

q × [ℓ] for some prime q. Our construction operates on
sets of attributes that has at most a cardinality of ℓ where the second coor-
dinates of the attributes are distinct. A set of attributes S can be represented
as a vector S ∈ Zℓ

q. For example, if ℓ = 5, we represent the set of attributes
S = {(12, 3), (25, 5)} as S = (0, 0, 12, 0, 25). The algorithm for converting a set
of attributes S = {(ai, bi)}ni=1 ∈ (Z∗

q × [ℓ])n where n ≤ ℓ to a vector S ∈ Zℓ
q is

defined as follow:

Algorithm toV ector(S)
Set S = (s1, . . . , sℓ) ∈ {0}ℓ
For each (ai, bi) ∈ S do sbi = ai EndFor
Return S

Given a ringR which is either Z or Zq, we denote the coordinate-wise product
of two vectors x and y in Rℓ by x⊙ y = (x1y1, . . . , xℓyℓ) ∈ Rℓ.



Ciphertext-Policy ABE from Inner-Product FE 5

Now, we describe the construction of our generic AND gate secret access
policy CP-ABE scheme from stateful IPFE. The stateless version where the un-
derlying IPFE computes inner products in Z is syntactically identical but do not
require a stateful key generation algorithm.

Setup(1λ, 1ℓ). Given as input the security parameter λ and the functionality
parameter ℓ of the underlying IPFE, this algorithm performs the following steps:

1. Choose a cyclic group G of prime order q > 2λ with generator g.
2. Call IPFE.Setup(1λ, 1ℓ) to obtain a master secret key msk and a master

public key mpk.

KeyGen(msk, st, S). Given as input the master secret key msk, the internal state
st used by the underlying stateful IPFE and a set of attributes S ∈ (Z∗

q × [ℓ])n

where n ≤ ℓ, this algorithm performs the following steps:

1. Convert the set of attributes S to a vector S = (s1, . . . , sℓ) ∈ Zℓ
q,

2. Call IPFE.KeyGen(msk, st,S) to obtain a secret key skS and an updated
state st. Notice that in our scheme, S is considered secret and is therefore
included in skS .

3. Return (skS , st).

Encrypt(mpk,P,m). Given as input the master public key mpk, a secret access
policy consisting of a set of attributes P ∈ (Z∗

q× [ℓ])n where n ≤ ℓ and a message
m ∈ G, this algorithm performs the following steps:

1. Convert the access policy P to a vector P = (p1, . . . , pℓ) ∈ Zℓ
q,

2. Choose a random vector r = (r1, . . . , rℓ) ∈ (Z∗
q)

ℓ.
3. Set y = P ⊙ r = (p1r1, . . . , pℓrℓ).
4. Compute c1 = mg⟨P ,y⟩.
5. Compute c2 ← IPFE.Encrypt(mpk,y).
6. Return the ciphertext C = (c1, c2).

Decrypt(mpk, skS , C). Given as input the master public key mpk, a secret key
skS and a ciphertext C = (c1, c2), this algorithm performs the following steps:

1. Compute σ = IPFE.Decrypt(mpk, skS , c2).
2. Return the plaintext m = c1/g

σ.

Correctness. We recall that in an AND gate access policy CP-ABE scheme, S
satisfies P if S ⊇ P meanning that for all i ∈ [ℓ] if pi ̸= 0 then si = pi. Therefore,
S ⊇ P ⇐⇒ S ⊙ P = P ⊙ P . The correctness of the scheme follows from the
observation that:

σ = IPFE.Decrypt(mpk, skS , c2)

= IPFE.Decrypt(mpk, skS , IPFE.Encrypt(mpk,y))

= ⟨S,y⟩ = ⟨S,P ⊙ r⟩ = ⟨S ⊙ P , r⟩ = ⟨P ⊙ P , r⟩ = ⟨P ,P ⊙ r⟩
= ⟨P ,y⟩

Therefore, c1/gσ = c1/g
⟨P ,y⟩ = m.



6 A. K. Ka

4.1 Security

We recall that in our setting the encryptor keeps secret the access policy and the
set of attributes associated with a secret key is also secret. These requirements
are necessary to ensure that collusion attacks are infeasible. If the access policy
is known, the adversary can find vectors that do not satisfy the access policy but
for which there exists a linear combination that does satisfy it. The adversary
can make queries for secret keys associated to these vectors. By decrypting c2
(the IPFE component of the ciphertext) with each of these secret keys and
summing the set of obtained numbers, the adversary recovers the secret ⟨P ,y⟩
used to mask the plaintext. The same reasoning applies when the set of attributes
associated with a secret key that can decrypt the ciphertext is discovered. With
these requirements in mind, the security of the underlying IPFE scheme reduces
to the security of our CP-ABE scheme.

Theorem 1. If the underlying IPFE scheme is IND-CPA secure, then our CP-
ABE scheme is also IND-CPA secure. (The proof is presented in Appendix D)

4.2 Instantiation from the DDH Assumption

We present an instantiation of our generic CP-ABE scheme from the DDH-based
IPFE scheme of [4] (that we denote IPFE-DDH) described in Appendix E. We
consider a modification of the decryption algorithm of IPFE-DDH that returns
Ex = g

⟨x,y⟩
1 , thus avoiding the computation of the discrete logarithm logg1(Ex)

that is too expensive. That modification is denoted Decrypt⋆ to avoid confusion.
The KeyGen algorithm of this instantiation proceeds exactly as in the generic
construction in Section 4. Therefore, we only present algorithms (or steps) that
change.

Setup(1λ, 1ℓ)

2. Call IPFE-DDH.Setup(1λ, 1ℓ) to obtain the master secret key msk and a
master public key mpk = (G, g1, g2, {hi}ℓi=1).

Encrypt(mpk,P,m)

4. Compute c1 = mg
⟨P ,y⟩
1 .

Decrypt(mpk, skS , C)

1. Compute ρ = IPFE-DDH.Decrypt⋆(mpk, skS , c2)
2. Return the plaintext m = c1/ρ.

4.3 Theoretical Evaluation

We do a theoretical comparison of our DDH-based CP-ABE scheme with other
schemes such as FAME [2], FABEO [31] and Easy-ABE [19]. All these schemes
are pairing based ABE schemes. This comparison is made only on AND gate
access policies (the only one supported by our scheme). FAME and FABEO
support access policies described by boolean formulas that are convertible into
Monotone Span Programs (MSPs). An MSPs consists of a matrix M and a



Ciphertext-Policy ABE from Inner-Product FE 7

mapping π that assigns each row of M to an attribute. For many ABE schemes, it
is required that π be injective we say that those schemes have one-use restriction.
Techniques [25] to avoid the one-use restriction can be used but lead to a less
efficient scheme [31]. Easy-ABE does not use MSPs (therefore does not suffer
from the one-use restriction), it derives from the boolean formula consisting of
AND/OR gates the collection of authorized sets of attributes and then converts
each authorized set into a bit string using the universe of attributes. In this
comparison (see Tables 1, 2, 3), we use the one-use restriction versions of FAME
and FABEO.

Some may think that comparing our CP-ABE scheme against pairing based
CP-ABE ones supporting more complex policies is unfair. Nonetheless, this com-
parison gives a glimpse of the behavior of our scheme in the setting of AND gate
access policy.

Table 1. Number of group operations used for key generation. T denotes the number
of attributes input to the KeyGen algorithm, ℓ is the functionality parameter of the
DDH-based IPFE.

Key generation
G1 or Zq for our G2

Scheme Mul Exp Hash Exp
FAME 8T + 9 9T + 9 6(T + 1) 3
FABEO 1 T + 2 T + 1 1

Easy-ABE 1 2 1 1
Our 2ℓ − − −

Table 2. Number of group operations used for encryption and decryption. n1, n2 are
the number of rows and columns of the MSPs in FAME and FABEO, I is the number
of attributes used in decryption, m is the number of attribute strings of the access
policy in Easy-ABE, ℓ is the functionality parameter of the DDH-based IPFE.

Encryption Decryption
G1 G2 G1 GT

Scheme Mul Exp Hash Exp Mul Exp Mul Pairing
FAME 12n1n2 + 6n1 6n1 6(n1 + n2) 3 6I + 3 − 6 6
FABEO n1 2n1 n1 + 1 2 2I − 3 3

Easy-ABE 1 m+ 2 m 1 − − 1 2
Our 2ℓ+ 1 2ℓ+ 3 − − ℓ+ 2 ℓ+ 2 − −

4.4 Experimental Evaluation

We implemented our DDH-based CP-ABE scheme using the Charm 0.5 frame-
work [5]. The implementations of FAME [2], FABEO [31] and Easy-ABE [19]
are taken from github [20]. All the schemes are run on an Ubuntu 22.04 desktop
computer with an Intel Core i5-4590S CPU and 8GB RAM. The pairing based
schemes (FAME, FABEO, Easy-ABE) use the MNT224 curve and our scheme
uses the group G1 of MNT224 of the Charm framework.



8 A. K. Ka

Table 3. Size of keys and ciphertexts. T denotes the number of attributes input to the
KeyGen algorithm, n1 is the number of rows of the MSPs in FAME and FABEO, m is
the number of attribute strings of the access policy in Easy-ABE, ℓ is the functionality
parameter of the DDH-based IPFE.

Storage cost
Key size Ciphertext size

Scheme G1 or Zq for our G2 G1 G2

FAME 3(T + 1) 3 3n1 3
FABEO T + 1 1 n1 2

Easy-ABE 1 1 m+ 1 1
Our ℓ+ 2 − ℓ+ 3 −

The experiments are carried out for the four algorithms of each scheme. For
FAME, FABEO and Easy-ABE, we use AND gate access policies of the form
”1 AND 2 AND ... AND N” where attributes are in [N ] for N ∈ {10, 20, . . . , 100}
as in [2,31,19]. For our DDH-based CP-ABE scheme we use the same form of
access policies but attributes are big integers randomly picked from the integer
group ZR of the Charm framework. Indeed, the size of the numbers used as
attributes has an effect on the execution times of our scheme. and has no effect
on the other schemes. Results are obtained by averaging over 20 executions.
Figure 1 shows how the running times of the setup, key generation, encryption,
and decryption algorithms scale with the size of the access policy or the number
of attributes.

The setup algorithm of our scheme depends on the supported number of
attributes. (figure 1.a) that is the functionality parameter ℓ of the underlying
DDH-based IPFE. For AND gate access policies of size ℓ = 100 the setup time
of our DDH-based CP-ABE is around 137ms whereas it is constant (indepen-
dent of the number of supported attributes) for the other schemes. For FAME,
FABEO and Easy-ABE the setup time is approximately 25ms, 11ms and 17ms
respectively.

The key generation algorithm of our DDH-based CP-ABE also coincides
with that of the underlying DDH-based IPFE. The running time for generating a
secret key with 100 attributes is 0.2ms for our scheme whereas it is approximately
682ms, 80ms and 6ms for FAME, FABEO and Easy-ABE respectively (see figure
1.b). It is worth noting that for the experiment we have not implement a stateful
key generation algorithm but a stateless one. The low execution time of the key
generation algorithm of our DDH-based CP-ABE comes from the fact that it
requires only multiplication operations (see table 1) which are far less expensive
than exponentiation.

Since the schemes operate in different plaintext spaces, we use them as key
encapsulation mechanism (KEM) so that they use the same set of bit strings as
plaintext space. Figure 1.c shows the running times when a random plaintext
of 16 bytes is encrypted. Easy-ABE has the lowest running time (8ms) because
for AND gate access policies a single authorized attribute string is input to
the encryption algorithm. For the other schemes, the execution time increases



Ciphertext-Policy ABE from Inner-Product FE 9

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100

T
im

e
(s

)

Supported number of attributes

(a) Setup

FAME
FABEO
EasyABE
Our

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

T
im

e
(s

)

Number of attributes

(b) Key generation

FAME
FABEO
EasyABE
Our

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

T
im

e
(s

)

Policy size

(c) Encryption

FAME
FABEO
EasyABE
Our

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 60 80 100

T
im

e
(s

)

Number of attributes

(d) Decryption

FAME
FABEO
EasyABE
Our

Fig. 1. Average running times for the setup, key generation, encryption and decryption
algorithms with AND gate access policies.

linearly with the number of attributes (the number of group operations is linear
with respect to the number of attributes see table 2). For 100 attributes the
running times are 530ms, 171ms and 137ms for FAME, FABEO and our scheme
respectively.

Figure 1.d shows decryption times. For our scheme, the decryption time in-
creases linearly with the number of attributes and reaches 67ms for 100 attributes
whereas it grows slowly for the other schemes (constant for Easy-ABE). This re-
sult is consistent with the data from table 2. For FAME, FABEO and Easy-ABE
the decryption times are 29ms, 14ms and 9ms respectively for 100 attributes.

From table 4 that gives the storage cost of the different schemes, we see
that only Easy-ABE does better than our scheme in the AND gate access policy
setting. This result is inline with table 3. Recall that for the evaluation of our
scheme we choose large integers as attributes in the access policy. Therefore, the
relatively large key size comes from this choice.



10 A. K. Ka

Table 4. Size of keys and ciphertexts for 100 attributes with the AND gate policy.
Ciphertext sizes are obtained by encrypting a random plaintext of 1024 bytes.

Storage cost (bytes)
Scheme Key size Ciphertext size
FAME 20800 23322
FABEO 7695 10300

Easy-ABE 435 2261
Our 6762 9050

5 The case n = ℓ in our CP-ABE scheme

In our CP-ABE construction, the AND gate access policy is a set of attributes,
P ∈ (Z∗

q× [ℓ])n where n ≤ ℓ. The case n = ℓ allows us to derive an Identity-Based
Encryption scheme that we construct in two stages. First we construct in section
5.1 a small identity space IBE that (to be secure) can only issue a small number
of secret keys. Next we overcome this limitation in section 5.2 by introducing
the notion of clustered IBE which consists of grouping many instances of our
small identity space IBE. The resulting scheme has a large id space and is secure
against adaptive chosen plaintext attacks.

5.1 Small ID Space Identity-Based Encryption

As its name suggests, this IBE scheme can only issue a small number of secret
keys. Therefore, the underlying IPFE does not need to be stateful since less than
ℓ (its functionality parameter) keys are produced.

Setup(1λ, 1ℓ). λ is the security parameter and ℓ is the functionality parameter of
the underlying IPFE. The setup algorithm performs the following steps:

1. Choose a cyclic group G of prime order q > 2λ with generator g.
2. Run (mpk,msk)← IPFE.Setup(1λ, 1ℓ).
3. Create a list L (initially empty) of vectors in (Z∗

q)
ℓ. L has a maximum ca-

pacity of ℓ− 1 vectors.
4. Define params = (G, g,mpk,L).

KeyGen(params,msk, ID). Given ID ∈ [ℓ − 1], this algorithm performs the fol-
lowing steps:

1. Check if the vector xID is in L. xID is the random vector in (Z∗
q)

ℓ associated
to ID.

2. If yes, run skxID
← IPFE.KeyGen(msk,xID) and return skxID

.
3. Otherwise:

3.1. Pick a random xID ∈ (Z∗
q)

ℓ such that the set of vectors {x}x∈L ∪ {xID}
is linearly independent, and add xID to L.

3.2. Run skxID
← IPFE.KeyGen(msk,xID) and return skxID

.



Ciphertext-Policy ABE from Inner-Product FE 11

Encrypt(params, ID,m). Given ID ∈ [ℓ− 1] and m ∈ G, this algorithm performs
the following steps:

1. Check if xID is in L.
2. If no then abort. We require that encryption is only possible for identities

for which a secret key is already produced.
3. Otherwise:

3.1. xID = (x1, . . . , xℓ) ∈ L.
3.2. Choose a random vector r = (r1, . . . , rℓ) ∈ (Z∗

q)
ℓ.

3.3. Set y = xID ⊙ r = (x1r1, . . . , xℓrℓ).
3.4. Compute c1 = mg⟨xID,y⟩.
3.5. Compute c2 ← IPFE.Encrypt(mpk,y).
3.6. Return the ciphertext C = (c1, c2).

Decrypt(params, skxID
, C). Given a secret key skxID

and a ciphertext C = (c1, c2)
this algorithm performs the following steps:

1. Compute σ = IPFE.Decrypt(mpk, skxID
, c2).

2. Return the plaintext m = c1/g
σ.

Security. Intuitively the restriction on the size of the identity space (ℓ − 1
identities corresponding to ℓ− 1 linearly independent vectors) guarantees to our
SIS-IBE scheme resistance against collusion attacks and prevents an adversary
to recover y from c2. Therefore, the security of the underlying IPFE scheme
reduces to the security of our SIS-IBE scheme.

Theorem 2. If the underlying IPFE scheme is IND-CPA secure, then our small
identity space IBE scheme is also IND-CPA secure. (The proof is presented in
Appendix F)

5.2 Clustered Identity-Based Encryption

Our SIS-IBE scheme can only support ℓ−1 identities where ℓ is the functionality
parameter of the underlying IPFE scheme. This limitation can be overcome by
grouping multiple instances of SIS-IBE. We call the resulting scheme a Clustered
Identity-Based Encryption. An implementation in Python is available on GitHub
[21]. Hereafter is a description of its construction.

Setup(1λ, 1ℓ). λ is the security parameter and ℓ is the functionality parameter of
the underlying IPFE. The setup algorithm performs the following steps:

1. Choose a cyclic group G of prime order q > 2λ with generator g.
2. Define two empty lists denoted MPK (of master public keys) and MSK (of

master secret keys).
3. Create a set of lists {Lα}α∈Z initially empty. Each Lα is initially empty and

has a maximum capacity of ℓ− 1 vectors.
4. Define params = (1λ, 1ℓ,G, g,MPK, {Lα}α∈Z).



12 A. K. Ka

KeyGen(params,MSK, ID). Given ID ∈ Z, this algorithm performs the following
steps:

1. Compute α = ⌊ ID
ℓ−1⌋ and β = ID mod (ℓ− 1).

2. Check if mskα is in MSK.
3. If no, run (mpkα,mskα)← IPFE.Setup(1λ, 1ℓ), add mpkα to MPK and mskα

to MSK.
4. Check if the vector xβ is in Lα.
5. If yes, run skxβ

← IPFE.KeyGen(mskα,xβ), set skxβ
= (skxβ

, α) and return
skxβ

.
6. Otherwise:

6.1. Pick a random xβ ∈ (Z∗
q)

ℓ such that the set of vectors {x}x∈Lα
∪ {xβ}

is linearly independent and add xβ to Lα.
6.2. Run skxβ

← IPFE.KeyGen(mskα,xβ), set skxβ
= (skxβ

, α) and return
skxβ

.

Note that the clusters are created by KeyGen. A cluster consists of a master
key pair (msk,mpk) and a set of ℓ − 1 linearly independent vectors. A given
ID in Z is mapped to a tuple (α,x) where x ∈ (Z∗

q)
ℓ is a vector of the cluster

numbered α.

Encrypt(params, ID,m). Given ID ∈ Z and m ∈ G, this algorithm performs the
following steps:

1. Compute α = ⌊ ID
ℓ−1⌋ and β = ID mod (ℓ− 1).

2. Check if xβ = (x1, . . . , xℓ) is in Lα.
3. If no then abort. We require that encryption is only possible for identities

for which a secret key is already produced.
4. Otherwise: (mpkα necessarily exists in MPK)

4.1. Choose a random vector r = (r1, . . . , rℓ) ∈ (Z∗
q)

ℓ.
4.2. Set y = xβ ⊙ r = (x1r1, . . . , xℓrℓ).
4.3. Compute c1 = mg⟨xβ ,y⟩.
4.4. Compute c2 ← IPFE.Encrypt(mpkα,y).
4.5. Return the ciphertext C = (c1, c2).

Decrypt(params, skx, C). Given a ciphertext C = (c1, c2) and a secret key skx
(containing α), this algorithm performs the following steps:

1. Compute σ = IPFE.Decrypt(mpkα, skx, c2).
2. Return the plaintext m = c1/g

σ.

Note that the master keys (MPK and MSK) of our CIBE grows linearly as
the number of clusters grows but the instantiation from the DDH assumption
(using a DDH based IPFE [4,10]) can give small and constant secret key sizes.



Ciphertext-Policy ABE from Inner-Product FE 13

Security. We state the IND-CPA security of our CIBE scheme by the following
theorem with an overview of its proof.

Theorem 3. If the underlying IPFE scheme is IND-CPA secure, then our clus-
tered IBE scheme is also IND-CPA secure.

Proof (overview). This theorem can be proved by reduction. One can convert
an instance of our CIBE scheme into an instance of the SIS-IBE scheme and
prove that an adversary attacking our CIBE scheme has the same advantage as
an adversary attacking our SIS-IBE scheme. Therefore, with theorem 2 one can
conclude with the statement of theorem 3.

By using a clustering technique, we converted our SIS-IBE scheme into a
scalable and much more efficient IBE scheme. To give an example, a SIS-IBE
scheme that can produce 10000 secret keys (ℓ = 10001) can be converted into a
clustered IBE consisting of 477 clusters each producing 21 secret keys (ℓ = 22).
In this context, the sizes of the master keys of the two schemes (SIS-IBE and
CIBE instantiated from the DDH assumption) are roughly the same but the
clustered IBE is scalable and provides a better user experience because it enjoys
a smaller secret key storage cost and its encryption and decryption processes are
much more efficient (Figures 1.c and 1.d give a glimpse of how the running times
for the encryption and decryption algorithms scale with ℓ).

6 Conclusion

We have used IPFE as building blocks to construct a generic secure AND gate
CP-ABE scheme. A practical implementation from the DDH assumption is
also provided. A theoretical and experimental evaluation of our proposal has
been done against efficient pairing based ABE schemes (FAME, FABEO and
Easy-ABE). From our generic CP-ABE construction we derived a clustered IBE
scheme. Although the latter scheme may suffer from large master keys (as the
number of clusters increases), on the user side a constant and small secret key
size can be enjoyed. Our results prove that it is possible to construct secure and
efficient ABE and IBE schemes from the DDH assumption, thereby contradicting
the impossibility conjecture.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) Public-Key Cryptography – PKC
2015. pp. 733–751. Springer Berlin Heidelberg (2015)

2. Agrawal, S., Chase, M.: FAME: Fast attribute-based message encryption. p.
665–682. CCS ’17, Association for Computing Machinery (2017), https://doi.
org/10.1145/3133956.3134014

https://doi.org/10.1145/3133956.3134014
https://doi.org/10.1145/3133956.3134014


14 A. K. Ka

3. Agrawal, S., Bhattacherjee, S., Phan, D.H., Stehlé, D., Yamada, S.: Efficient public
trace and revoke from standard assumptions: Extended abstract. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
p. 2277–2293. CCS ’17, Association for Computing Machinery (2017), https://
doi.org/10.1145/3133956.3134041

4. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) Advances
in Cryptology – CRYPTO 2016. pp. 333–362. Springer Berlin Heidelberg (2016)

5. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M.,
Rubin, A.D.: Charm: a framework for rapidly prototyping cryptosystems. Journal
of Cryptographic Engineering 3(2), 111–128 (2013). https://doi.org/10.1007/
s13389-013-0057-3

6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (SP ’07). pp. 321–334
(2007). https://doi.org/10.1109/SP.2007.11

7. Blazy, O., Kakvi, S.A.: Identity-based encryption in DDH hard groups. In: Batina,
L., Daemen, J. (eds.) Progress in Cryptology - AFRICACRYPT 2022. pp. 81–102.
Springer Nature Switzerland (2022)

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) Advances in Cryptology — CRYPTO 2001. pp. 213–229. Springer Berlin
Heidelberg (2001)

9. Boneh, D., Papakonstantinou, P., Rackoff, C., Vahlis, Y., Waters, B.: On the im-
possibility of basing identity based encryption on trapdoor permutations. In: 2008
49th Annual IEEE Symposium on Foundations of Computer Science. pp. 283–292
(2008). https://doi.org/10.1109/FOCS.2008.67

10. Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unrestricted
inner product functional encryption modulo p. In: Peyrin, T., Galbraith, S.D.
(eds.) Advances in Cryptology - ASIACRYPT 2018. Lecture Notes in Computer
Science, vol. 11273, pp. 733–764. Springer (2018), https://doi.org/10.1007/
978-3-030-03329-3_25

11. Dai, W., Doröz, Y., Polyakov, Y., Rohloff, K., Sajjadpour, H., Savaş, E., Sunar,
B.: Implementation and evaluation of a lattice-based key-policy ABE scheme.
IEEE Transactions on Information Forensics and Security 13(5), 1169–1184 (2018).
https://doi.org/10.1109/TIFS.2017.2779427

12. Ding, S., Li, C., Li, H.: A novel efficient pairing-free CP-ABE based on elliptic
curve cryptography for IoT. IEEE Access 6, 27336–27345 (2018). https://doi.
org/10.1109/ACCESS.2018.2836350

13. Döttling, N., Garg, S.: Identity-based encryption from the diffie-hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology – CRYPTO 2017.
pp. 537–569. Springer International Publishing (2017)

14. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applica-
tions. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of
Computing. p. 467–476. STOC ’13, Association for Computing Machinery (2013),
https://doi.org/10.1145/2488608.2488667

15. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security. p. 89–98. CCS ’06, Association
for Computing Machinery (2006), https://doi.org/10.1145/1180405.1180418

16. Herranz, J.: Attribute-based encryption implies identity-based encryption. IET
Information Security 11(6), 332–337 (2017). https://doi.org/10.1049/iet-ifs.
2016.0490

https://doi.org/10.1145/3133956.3134041
https://doi.org/10.1145/3133956.3134041
https://doi.org/10.1007/s13389-013-0057-3
https://doi.org/10.1007/s13389-013-0057-3
https://doi.org/10.1007/s13389-013-0057-3
https://doi.org/10.1007/s13389-013-0057-3
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1109/FOCS.2008.67
https://doi.org/10.1109/FOCS.2008.67
https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1109/TIFS.2017.2779427
https://doi.org/10.1109/TIFS.2017.2779427
https://doi.org/10.1109/ACCESS.2018.2836350
https://doi.org/10.1109/ACCESS.2018.2836350
https://doi.org/10.1109/ACCESS.2018.2836350
https://doi.org/10.1109/ACCESS.2018.2836350
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1049/iet-ifs.2016.0490
https://doi.org/10.1049/iet-ifs.2016.0490
https://doi.org/10.1049/iet-ifs.2016.0490
https://doi.org/10.1049/iet-ifs.2016.0490


Ciphertext-Policy ABE from Inner-Product FE 15

17. Herranz, J.: Attacking pairing-free attribute-based encryption schemes. IEEE Ac-
cess 8, 222226–222232 (2020). https://doi.org/10.1109/ACCESS.2020.3044143

18. Huang, B., Gao, J., Li, X.: Efficient lattice-based revocable attribute-based encryp-
tion against decryption key exposure for cloud file sharing. Journal of Cloud Com-
puting 12(1), 37 (Mar 2023). https://doi.org/10.1186/s13677-023-00414-w

19. Ka, A.K.: Easy-ABE: An easy ciphertext-policy attribute-based encryption. In:
Bella, G., Doinea, M., Janicke, H. (eds.) Innovative Security Solutions for Informa-
tion Technology and Communications. pp. 168–183. Springer Nature Switzerland
(2023)

20. Ka, A.K.: EasyABE github (2023), https://github.com/khoureich/EasyABE
21. Ka, A.K.: CIBE github (2024), https://github.com/khoureich/Clustered-IBE
22. Ka, A.K.: M-Sel: A message selection functional encryption from simple tools. In:

Manulis, M., MaimuŢ, D., Teşeleanu, G. (eds.) Innovative Security Solutions for
Information Technology and Communications. pp. 79–96. Springer Nature Switzer-
land (2024)

23. Katsumata, S., Yamada, S.: Non-zero inner product encryption schemes from var-
ious assumptions: LWE, DDH and DCR. In: Lin, D., Sako, K. (eds.) Public-Key
Cryptography – PKC 2019. pp. 158–188. Springer International Publishing (2019)

24. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) Advances in Cryptology
– EUROCRYPT 2008. pp. 146–162. Springer Berlin Heidelberg (2008)

25. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k-lin. In:
Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2019. pp.
3–33. Springer International Publishing (2019)

26. Li, J., Zhang, Y., Ning, J., Huang, X., Poh, G., Wang, D.: Attribute based encryp-
tion with privacy protection and accountability for cloudIoT. IEEE Transactions
on Cloud Computing 10(02), 762–773 (apr 2022)

27. Mishra, A.K., Mohapatra, Y.: Hybrid blockchain based medical data sharing
with the optimized CP-ABE for e-health systems. International Journal of In-
formation Technology 16(1), 121–130 (Jan 2024), https://doi.org/10.1007/
s41870-023-01625-9

28. Odelu, V., Das, A.K.: Design of a new CP-ABE with constant-size secret keys
for lightweight devices using elliptic curve cryptography. Sec. and Commun. Netw.
9(17), 4048–4059 (nov 2016). https://doi.org/10.1002/sec.1587

29. Odelu, V., Das, A.K., Khurram Khan, M., Choo, K.K.R., Jo, M.: Expressive
CP-ABE scheme for mobile devices in IoT satisfying constant-size keys and ci-
phertexts. IEEE Access 5, 3273–3283 (2017). https://doi.org/10.1109/ACCESS.
2017.2669940

30. Papakonstantinou, P.A., Rackoff, C.W., Vahlis, Y.: How powerful are the DDH
hard groups? Cryptology ePrint Archive, Paper 2012/653 (2012), https://eprint.
iacr.org/2012/653

31. Riepel, D., Wee, H.: FABEO: Fast attribute-based encryption with optimal se-
curity. p. 2491–2504. CCS ’22, Association for Computing Machinery (2022),
https://doi.org/10.1145/3548606.3560699

32. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) Ad-
vances in Cryptology – EUROCRYPT 2005. pp. 457–473. Springer Berlin Heidel-
berg (2005)

33. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) Advances in Cryptology. pp. 47–53. Springer Berlin Heidelberg
(1985)

https://doi.org/10.1109/ACCESS.2020.3044143
https://doi.org/10.1109/ACCESS.2020.3044143
https://doi.org/10.1186/s13677-023-00414-w
https://doi.org/10.1186/s13677-023-00414-w
https://github.com/khoureich/EasyABE
https://github.com/khoureich/Clustered-IBE
https://doi.org/10.1007/s41870-023-01625-9
https://doi.org/10.1007/s41870-023-01625-9
https://doi.org/10.1002/sec.1587
https://doi.org/10.1002/sec.1587
https://doi.org/10.1109/ACCESS.2017.2669940
https://doi.org/10.1109/ACCESS.2017.2669940
https://doi.org/10.1109/ACCESS.2017.2669940
https://doi.org/10.1109/ACCESS.2017.2669940
https://eprint.iacr.org/2012/653
https://eprint.iacr.org/2012/653
https://doi.org/10.1145/3548606.3560699


16 A. K. Ka

34. Shi, J., Yu, Q., Yu, Y., Wang, L., Zhang, W.: Privacy protection in social ap-
plications: A ciphertext policy attribute-based encryption with keyword search.
International Journal of Intelligent Systems 37(12), 12152–12168 (2022), https:
//onlinelibrary.wiley.com/doi/abs/10.1002/int.23080

35. Tan, S.Y., Yeow, K.W., Hwang, S.O.: Enhancement of a lightweight attribute-based
encryption scheme for the internet of things. IEEE Internet of Things Journal 6(4),
6384–6395 (2019). https://doi.org/10.1109/JIOT.2019.2900631

36. Tseng, Y.F., Huang, J.J.: Cryptanalysis on two pairing-free ciphertext-policy
attribute-based encryption schemes. In: 2020 International Computer Symposium
(ICS). pp. 403–407 (2020). https://doi.org/10.1109/ICS51289.2020.00086

37. Wang, G., Wan, M., Liu, Z., Gu, D.: Fully secure lattice-based ABE from noisy
linear functional encryption. In: Yu, Y., Yung, M. (eds.) Information Security and
Cryptology. pp. 421–441. Springer International Publishing (2021)

38. Wang, Y., Chen, B., Li, L., Ma, Q., Li, H., He, D.: Efficient and secure ciphertext-
policy attribute-based encryption without pairing for cloud-assisted smart grid.
IEEE Access 8, 40704–40713 (2020). https://doi.org/10.1109/ACCESS.2020.
2976746

39. Wang, Z., Fan, X., Liu, F.H.: FE for inner products and its application to decen-
tralized ABE. In: Lin, D., Sako, K. (eds.) Public-Key Cryptography – PKC 2019.
pp. 97–127. Springer International Publishing, Cham (2019)

40. Yao, X., Chen, Z., Tian, Y.: A lightweight attribute-based encryption scheme for
the internet of things. Future Generation Computer Systems 49, 104–112 (2015).
https://doi.org/10.1016/j.future.2014.10.010

41. Zhang, Y., Deng, R.H., Xu, S., Sun, J., Li, Q., Zheng, D.: Attribute-based encryp-
tion for cloud computing access control: A survey. ACM Comput. Surv. 53(4) (aug
2020), https://doi.org/10.1145/3398036

A Syntax of IPFE and its security definition

In the case where the key space is Zℓ
q, the IPFE scheme is stateful since it

must maintain the list of previously key queries as internal state to prevent an
adversary from having ℓ independent secret keys allowing to uncover the master
secret key [4].

A stateful IPFE scheme computing inner products in Zq consists of four
polynomial-time algorithms:

1. Setup(1λ, 1ℓ). Input: a security parameter λ and a functionality parameter
ℓ. Output: a master public key mpk and a master secret key msk.

2. KeyGen(msk, st,x). Input: the master secret key msk, an internal state st
and a vector x ∈ Zℓ

q. Output: a secret key skx.

3. Encrypt(mpk,y). Input: the master public key mpk and a vector y ∈ Zℓ
q.

Output: a ciphertext Cy.

4. Decrypt(mpk, skx, Cy). Input: the master public key mpk, a secret key skx
and a ciphertext cy. Output: the inner product ⟨x,y⟩ ∈ Zq.

For correctness, it is required that for all x ∈ Zℓ
q and all y ∈ Zℓ

q, we have
Decrypt(mpk, skx,Encrypt(mpk,y)) = ⟨x,y⟩ or ⊥ with negligible probability.

https://onlinelibrary.wiley.com/doi/abs/10.1002/int.23080
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.23080
https://doi.org/10.1109/JIOT.2019.2900631
https://doi.org/10.1109/JIOT.2019.2900631
https://doi.org/10.1109/ICS51289.2020.00086
https://doi.org/10.1109/ICS51289.2020.00086
https://doi.org/10.1109/ACCESS.2020.2976746
https://doi.org/10.1109/ACCESS.2020.2976746
https://doi.org/10.1109/ACCESS.2020.2976746
https://doi.org/10.1109/ACCESS.2020.2976746
https://doi.org/10.1016/j.future.2014.10.010
https://doi.org/10.1016/j.future.2014.10.010
https://doi.org/10.1145/3398036


Ciphertext-Policy ABE from Inner-Product FE 17

IND-CPA security. Indistinguishability under Chosen Plaintext Attack secu-
rity is defined via the following game:

1. Setup: the challenger C runs Setup(1λ, 1ℓ), obtains (msk,mpk) and gives mpk
to the adversary A.

2. Key query 1: the adversary A requests from C the secret keys associated
to vectors {xi}qi=1, q ∈ poly(λ) of its choice. These queries can be made
adaptively. For each xi, C runs KeyGen(msk, st,xi) and gives the result to
A.

3. Challenge: A outputs two messages y0 and y1 of the same length subject to
the restriction that ⟨x,y0⟩ = ⟨x,y1⟩ for all x queried during the phase Key
query 1. C randomly selects b ∈ {0, 1}, runs Encrypt(mpk,yb) and sends the
result to A.

4. Key query 2: key query 1 is repeated with the restriction that ⟨x,y0⟩ = ⟨x,y1⟩
for each query x.

5. Guess. A outputs a guess b′ of b and wins if b′ = b.

The advantage of an adversary A in this IND-CPA game is defined as

AdvIND-CPA
IPFE,A (λ) = Pr[b′ = b]− 1

2

Definition 1. An IPFE scheme is adaptively IND-CPA secure if for any poly-
nomial time adversary A, the function AdvIND-CPA

IPFE,A (·) is negligible.

B Syntax of CP-ABE and its security definition

A ciphertext-policy ABE scheme consists of four polynomial-time algorithms:

1. Setup(1λ). Input: the security parameter λ. Output: a master public key mpk
and a master secret key msk.

2. KeyGen(msk, S). Input: the master secret key msk and a set of attributes S.
Output: a secret key sk.

3. Encrypt(mpk,P,m). Input: the master public key mpk, an access policy P
and a message m. Output: a ciphertext C.

4. Decrypt(mpk,C, sk). Input: the master public key mpk, a ciphertext C and
a secret key sk. Output: the plaintext m or ⊥ meaning that C is malformed
or sk does not satisfy the access policy P.

IND-CPA security. Indistinguishability under chosen plaintext attack secu-
rity for CP-ABE is formally defined via the following game:

1. Setup: the challenger C runs Setup(1λ), obtains (msk,mpk) and gives mpk
to the adversary A.



18 A. K. Ka

2. Key query 1: A requests from C the secret keys associated to attribute sets
{Si}qi=1, q ∈ poly(λ) of its choice. These requests can be made adaptively.
For each Si, C runs KeyGen(msk, Si) and gives the result to A.

3. Challenge: A outputs two distinct messages m0, m1 of the same length
and an access policy P. The challenger randomly selects b ∈ {0, 1}, runs
Encrypt(mpk,P,mb) and sends the result to A.

4. Key query 2: key query 1 is repeated.

5. Guess. A outputs a guess b′ of b and wins if b′ = b.

It is required that no attribute set Si in the key query phases satisfies the
access policy P in the challenge phase. But when the CP-ABE scheme is a secret
access policy one as in our case, the restriction on the attribute sets queried by
the adversary is no longer necessary since the access policy is secret and chosen
by the challenger (the encryptor).

The advantage of an adversary A in this IND-CPA game is defined as

AdvIND-CPA
CPABE,A(λ) = Pr[b′ = b]− 1

2

Definition 2. A CP-ABE scheme is adaptively IND-CPA secure if for any poly-
nomial time adversary A, the function AdvIND-CPA

CPABE,A(·) is negligible.

C Syntax of IBE and its security definition

An identity-based encryption scheme consists of four polynomial-time algorithms:

1. Setup(1λ). Input: the security parameter λ. Output: a master secret key msk
and system parameters denoted by params.

2. KeyGen(params,msk, ID). Input: the system parameters params, the master
secret key msk and an identity ID ∈ Zq. Output: a secret key sk.

3. Encrypt(params, ID,m). Input: the system parameters params, an identity
ID ∈ Zq, and a message m. Output: a ciphertext C.

4. Decrypt(params, skID, C). Input: the system parameters params, a secret
key skID and a ciphertext C. Output: the plaintext m or ⊥ meaning that C
is malformed or is not obtained using ID.

IND-CPA security. Boneh et al. [8] defined IND-CPA security for IBE via
the following security game between an adversary A and a challenger C:

1. Setup: C runs Setup(1λ), obtains (params,msk) and gives params to A.

2. Key query 1: Adversary A requests from C the secret keys associated to iden-
tities {IDi}qi=1, q ∈ poly(λ) of its choice. These requests can be made adap-
tively. For each IDi, C runs KeyGen(params,msk, IDi) and gives the result
to A.



Ciphertext-Policy ABE from Inner-Product FE 19

3. Challenge: A outputs two distinct messages m0, m1 of the same length and an
identity ID⋆ subject to the restriction that no secret key has been previously
generated for it. C randomly selects b ∈ {0, 1}, runs Encrypt(params, ID⋆,mb)
and sends the result to A.

4. Key query 2: key query 1 is repeated with the restriction that IDi ̸= ID⋆.

5. Guess. A outputs a guess b′ of b and wins if b′ = b.

The advantage of an adversary A in this IND-CPA game is defined as

AdvIND-CPA
IBE,A (λ) = Pr[b′ = b]− 1

2

Definition 3. An IBE scheme is adaptively IND-CPA secure if for any polyno-
mial time adversary A, the function AdvIND-CPA

IBE,A (·) is negligible.

D Proof of Theorem 1

Assume there exists an IND-CPA adversary A that has non-negligible advantage
against our CP-ABE scheme. We show below how an adversary B would interact
with A in five phases to break the IND-CPA security of the underlying IPFE
scheme. Let C be the challenger of B.

1. Setup: C runs (msk,mpk) ← IPFE.Setup(1λ, 1ℓ) and gives mpk to B. The
latter chooses a cyclic group G of prime order q > 2λ with generator g and
gives to A the tuple (G, g,mpk).

2. Key query 1: A makes repeated secret key queries to B. When B receives one
of these requests associated with a set of attributes S ∈ (Z∗

q × [ℓ])n where
n ≤ ℓ, it does the following:
– converts S to a vector S = (s1, . . . , sℓ) ∈ Zℓ

q.

– sends to C a secret key request for S to obtain skS . By the way, C runs
skS ← IPFE.KeyGen(msk, st,S) to respond to this query.

– returns skS to A.

3. Challenge: A outputs two distinct messages m0, m1 ∈ G of the same length.
B chooses a vector P ∈ Zℓ

q and two random vectors r0, r1 ∈ (Z∗
q)

ℓ, computes
y0 = P ⊙r0, y1 = P ⊙r1 and sends y0,y1 as challenge messages to C. The
latter randomly selects b ∈ {0, 1}, computes c2 ← IPFE.Encrypt(mpk,yb)
and sends the result to B. Upon receiving c2, B chooses b′ ∈ {0, 1}, computes
c1 = mb′g

⟨P ,yb′ ⟩ and returns (c1, c2) to A as the challenge ciphertext.

4. Key query 2: Similar to Key query 1.

5. Guess. A outputs a guess b∗. B outputs the same guess as A.



20 A. K. Ka

When b = b′ adversary B simulates perfectly for A the challenger during a chosen
plaintext attack against our CP-ABE scheme. This happens with probability 1/2
since b is independent of b′. When b ̸= b′ B produces an invalid ciphertext and A
can do nothing but guess which of the two messages was encrypted. Therefore,
we have

AdvIND-CPA
CPABE,A = 2 · AdvIND-CPA

IPFE,B

Since the IPFE scheme is IND-CPA secure, AdvIND-CPA
IPFE,B is negligible. Thus, the

IND-CPA advantage of A against our CP-ABE scheme is negligible. This con-
cludes the proof.

E The DDH based IPFE scheme of Agrawal et al.

Setup(1λ, 1ℓ)

1. Choose a cyclic group G of prime order q > 2λ with generators g1, g2.
2. Choose 2 vectors u = (u1, . . . , uℓ)

R← Zℓ
q, v = (v1, . . . , vℓ)

R← Zℓ
q.

3. For each i ∈ [ℓ] compute hi = gui
1 · g

vi
2 .

4. Return msk = (u,v), mpk = (G, g1, g2, {hi}ℓi=1).

KeyGen(msk, st,x ∈ Zℓ
q). The internal state st contains at most ℓ tuples of the

form (zi, z
′
i, uzi

, vzi
) where (z′

i, uzi
, vzi

) are previously generated secret keys for
zi ∈ Zℓ

q. To generate the jth secret key, this algorithm does the following:

– checks if x is linearly independent of the zi’s:
If ∄ {γi}j−1

i=1 ∈ Zj−1 such that x =
∑j−1

i=1 γizi mod q then
set x′ = x, ux = ⟨u,x⟩, vx = ⟨v,x⟩ and add (x,x′, ux, vx) to st.

Else set
x′ =

∑j−1
i=1 γiz

′
i ∈ Zℓ, ux =

∑j−1
i=1 γiuzi

∈ Z and vx =
∑j−1

i=1 γivzi
∈ Z.

– returns skx = (x′, ux, vx).

Encrypt(mpk,y = (y1, . . . , yℓ) ∈ Zℓ
q)

1. Pick r
R← Z∗

q .
2. Compute C = gr1, D = gr2, {Ei = gyi

1 · hr
i }ℓi=1.

3. Return Cy = (C,D,E1, . . . , Eℓ).

Decrypt(mpk, skx = (x′, ux, vx), Cy)

x′ = (x′
1, . . . , x

′
ℓ) ∈ Zℓ

q

1. Compute Ex = (
∏ℓ

i=1 E
x′
i

i )/(Cux ·Dvx).
2. Return ⟨x,y⟩ = logg1(Ex).



Ciphertext-Policy ABE from Inner-Product FE 21

F Proof of Theorem 2

Assume there exists an IND-CPA adversary A that has non-negligible advantage
against our SIS-IBE scheme. We show below how an adversary B would interact
with A in five phases to break the IND-CPA security of the underlying IPFE
scheme. Let C be the challenger of B.

1. Setup: C runs (msk,mpk) ← IPFE.Setup(1λ, 1ℓ) and gives mpk to B. The
latter chooses a cyclic group G of prime order q > 2λ with generator g,
creates a list L (initially empty) of vectors in (Z∗

q)
ℓ that has a maximum

capacity of ℓ− 1 vectors, sets params = (mpk,G, g,L) and gives params to
A.

2. Key query 1: A makes repeated secret key queries associated to identities
{IDi}qi=1, q ≤ ℓ− 2 of its choice. Assume A does not make different queries
for the same ID. When B receives one of these requests associated to an
identity ID, it does the following:
– picks a random xID ∈ (Z∗

q)
ℓ such that the set of vectors {x}x∈L ∪ {xID}

is linearly independent, and adds xID to L (at any time A gets an update
on L).

– sends to C a secret key request for xID and obtains skxID
. By the way, C

runs skxID
← IPFE.KeyGen(msk,xID) to respond to this query.

– returns skxID
to A.

3. Challenge: A outputs two distinct messages m0, m1 ∈ G of the same length
and an identity ID⋆ that has not been associated to a query in the pre-
vious phase. B picks a random xID⋆ ∈ (Z∗

q)
ℓ such that the set of vec-

tors {x}x∈L ∪ {xID⋆} is linearly independent, chooses two random vectors
r0, r1 ∈ (Z∗

q)
ℓ, computes y0 = xID⋆ ⊙ r0, y1 = xID⋆ ⊙ r1 and sends y0,y1

as challenge messages to C. The latter randomly selects b ∈ {0, 1}, computes
c2 ← IPFE.Encrypt(mpk,yb) and sends the result to B. Upon receiving c2, B
chooses b′ ∈ {0, 1}, computes c1 = mb′g

⟨xID⋆ ,yb′ ⟩ and returns (c1, c2) to A as
the challenge ciphertext.

4. Key query 2: Similar to Key query 1 with identities IDi ̸= ID⋆. In total, A
makes at most ℓ− 2 key queries.

5. Guess. A outputs a guess b∗. B outputs the same guess as A.

When b = b′ adversary B simulates perfectly for A the challenger during a chosen
plaintext attack against our CP-ABE scheme. This happens with probability 1/2
since b is independent of b′. When b ̸= b′ B produces an invalid ciphertext and A
can do nothing but guess which of the two messages was encrypted. Therefore,
we have

AdvIND-CPA
SIS-IBE,A = 2 · AdvIND-CPA

IPFE,B

Since the IPFE scheme is IND-CPA secure, AdvIND-CPA
IPFE,B is negligible. Thus, the

IND-CPA advantage of A against our SIS-IBE scheme is negligible. This con-
cludes the proof.


	Ciphertext-Policy ABE from Inner-Product FE

