
Improved Attacks for SNOVA by Exploiting
Stability under a Group Action

Daniel Cabarcas1 , Peigen Li2 , Javier Verbel3 , and
Ricardo Villanueva-Polanco3

1 Universidad Nacional de Colombia, Colombia
dcabarc@unal.edu.co

2 Beijing Institute of Mathematical Sciences and Applications, China
lpg22@bimsa.cn

3 Technology Innovation Institute, UAE
{javier.verbel,ricardo.polanco}@tii.ae

Abstract. SNOVA is a post-quantum digital signature scheme based
on multivariate polynomials. It is a second-round candidate in an ongo-
ing NIST standardization process for post-quantum signatures, where it
stands out for its efficiency and compactness. Since its initial submis-
sion, there have been several improvements to its security analysis, both
on key recovery and forgery attacks. All these works reduce to solving a
structured system of quadratic polynomials, which we refer to as SNOVA
system.
In this work, we propose a polynomial solving algorithm tailored for
SNOVA systems, which exploits the stability of the system under the
action of a commutative group of matrices. This new algorithm reduces
the complexity of solving SNOVA systems over generic ones. We show
how to adapt the reconciliation and direct attacks in order to profit from
the new algorithm. Consequently, we improve the reconciliation attack
for all SNOVA parameter sets with speedup factors ranging between 2
and 220. We also show how to use similar ideas to carry on a forgery
attack. In this case, we use experimental results to estimate its complex-
ity, and we discuss its impact. The empirical evidence suggests that our
attack is more efficient than previous attacks, and it takes some SNOVA
parameter sets below NIST’s security threshold.

Keywords: Cryptanalysis, SNOVA, stable ideals, post-quantum, multivariate.

1 Introduction

Digital signatures are essential to ensure the authenticity and integrity of dig-
ital communications. The security of widely used digital signature schemes is
threatened by quantum computers [16]. Post-quantum cryptography (PQC) is
an active area of research aiming at developing cryptographic algorithms that
are resilient against quantum attacks. In light of this, NIST has been leading
an effort to evaluate and standardize cryptographic algorithms capable of with-
standing quantum adversaries.

https://orcid.org/0000-0001-7849-407X
https://orcid.org/0000-0001-8219-079X
https://orcid.org/0000-0003-1388-6667
https://orcid.org/0000-0002-8682-4830

Following the success of its first PQC standardization process, in 2023 NIST
initiated a second call for submissions, focused on digital signatures. One promis-
ing candidate in this process is the SNOVA signature scheme [19], which builds
upon the Unbalanced Oil and Vinegar (UOV) signature scheme. SNOVA modi-
fies UOV’s structure to reduce the size of the public key and the speed of signing
while keeping UOV’s short signatures and fast verification. For example, at se-
curity level I, SNOVA can have 1000-byte public keys and 232-byte signatures,
while the speed of signing and verification are comparable to those of Dilithium,
one of the post-quantum signature schemes standardized by NIST. Due to its
efficiency and compactness, SNOVA offers an attractive option for real-world
applications.

The main concern about SNOVA is its security, which is the main focus of
this work. There have been several papers since the beginning of 2024 analyzing
SNOVA’s security from different perspectives. Since our work builds upon those
works, it is important to summarize their main findings.

Key-Recovery and reconciliation. In two independent but concurrent works,
Ikematsu-Akiyama [9] and Li-Ding [10] analyzed the security of SNOVA against
key-recovery attacks. Both works reached the same conclusion: All known key-
recovery attacks for SNOVA with parameters (v, o, l, q) can be seen as attacks
to a UOV signature scheme with lo2 equations and l(v + o) variables over Fq.
In particular, for the reconciliation attack, the attacker finds a solution of a
quadratic polynomial system of the form

xtΛ
(n)
Si PkΛ

(n)
Sj x = 0, ∀k = 1, . . . , o, and 0 ≤ i, j < l, (1)

where n = v + o, x ∈ Fln
q is a vector of variables, Pk ∈ Fln×ln

q is the public

key matrix, Λ
(n)
Si ∈ Fln×ln

q is a block-diagonal matrix with Si ∈ Fl×l
q along the

diagonal, and S ∈ Fl×l
q is a symmetric matrix with an irreducible characteristic

polynomial. Throughout this paper, we refer to any system whose quadratic part
has the form (1) as a SNOVA system. More recently, Nakamura, Tani, and Furie
also discuss a similar attack in [12].

Forgery Attacks. In a recent preprint, Beullens proposed a new forgery attack
on SNOVA [3]. The main observation is that the SNOVA public key has a similar
structure to MAYO’s [2]. Specifically, denoting by B(ui,uj) the bilinear map
associated with the SNOVA sequence defined by the public key, the SNOVA
public key can be written as

P(U) =

l∑
i=1

l∑
j=1

Ei,jB(ui,uj),

where U = [u1, . . . ,ul], ui ∈ Fnl
q , the Ei,j ∈ Fol2×ol2

q are block-diagonal matrices

with o copies of a matrix Ẽi,j ∈ Fl2×l2

q along the diagonal. Unlike MAYO, there

2

may be a nontrivial linear combination E of the matrices Ei,j with a rank defect.
Beullens uses this fact to speed up a forgery attack.

In a quick reaction to [3], and in order to mitigate the impact on the security
of SNOVA, the submitters have suggested two potential alternatives to update
the scheme [18]. At the time we drafted this manuscript, it was unclear how they
would update the NIST submission. We consider that analyzing the impact of
our attacks for those alternatives falls outside of the scope of this work, however,
we do take into account the new parameters proposed in [18] for the original
SNOVA scheme.

1.1 Our Contributions

The main contributions of this paper are a polynomial solving algorithm tailored
for SNOVA systems, the analysis of its complexity, and its impact on the security
of SNOVA. Our algorithm builds on the observation that the ideal I generated by

the quadratic part of Eq. (1) is Λ
(n)
Fq [S]-stable, meaning that, for every f ∈ I and

A ∈ Λ
(n)
Fq [S], f(Ax) belongs to I 4. In [7], Faugère and Svartz propose a variant

of the F5 algorithm to compute a Gröbner basis of a D-stable ideal, where D is
any commutative group of matrices. They provide an asymptotical analysis of
the complexity when the degree of the Macaulay matrix tends to infinity.

We adapt the ideas in [7] for SNOVA systems. Applying an appropriate
change of variables over a field extension to the ideal I, we obtain a stable
ideal under the action of a cyclic diagonal group of matrices. We show that
the resulting polynomial system has a multi-homogeneous structure. Unlike [7],
we propose an XL-like algorithm to solve the system and leverage the multi-
homogeneous structure. In addition, we provide a concrete and tight analysis of
our algorithm’s complexity, which is supported experimentally. Our complexity
estimates show that SNOVA systems can be solved faster than random quadratic
systems by a factor of about ql.

By using our new algorithm to solve SNOVA systems, we improve the rec-
onciliation attack in [9,10], with speedup factors ranging between 2 and 220.

We also show how to use the techniques developed for the new algorithm in
the forgery attack by Beullens [3]. In order to reduce the forgery of a message
msg to the problem of solving a SNOVA system, while maintaining the multi-
homogeneity of the lifted system, we leverage the low-rank of the matrix E in a
different way than Beullens does.

Instead of finding elements in the left kernel of E to obtain linear equa-
tions, we first bruteforce a value salt ∈ {0, 1}128 such that the target vector

z0 = Hash(msg∥salt) falls in the columns space of E, where Hash : {0, 1}∗ → Fol2

q

is a cryptographic hash function. We then use a basis of the affine subspace of
solutions to Ew = z0, to state the forgery as a system F(u) = w0 +Wy, which
is quadratic in u and linear in the coordinates y of the affine subspace. By lift-
ing this system via an appropriate change of variables, we arrive at a system

4 Λ
(n)

Fq [S] is the group given by all Fq-linear combinations of Λ
(n)

S0 , Λ
(n)

S1 . . . , Λ
(n)

Sl−1 .

3

whose quadratic part is multi-homogeneous. However, the system has a linear
part coming from the coordinates of y, so we cannot directly use the algorithm
to solve SNOVA systems. Instead, we present empirical evidence showing that
such a system can be solved faster than a random one using an out-of-the-box
Gröbner basis algorithm. We conjecture its complexity based on the experimen-
tal results. The experiments suggest that the actual complexity of an efficient
implementation is faster than Beullens’ and puts most parameter sets below the
security threshold defined by NIST. This is particularly relevant for parameters
with l = 4, since they allow the smallest keys and signatures, and they are not
significantly affected by the attack in [3].

This paper is organized as follows. Section 2 describes the SNOVA signature
scheme, some of the attacks, and a special XL algorithm for multi-homogeneous
systems. In Section 3.1, we describe some of the algebraic properties of SNOVA
systems. Section 4 introduces the proposed polynomial solving algorithm tailored
for SNOVA systems and gives a detailed analysis of its complexity. Section 5
presents our adaptation of the reconciliation and forgery attacks to profit from
the proposed algorithm and its impact on the security of SNOVA.

2 Preliminaries

2.1 Notation

In this paper, we use the following notation:

– v, o, q, l are positive integers defining the parameters of SNOVA.

– We set n = v + o and m = ol2.

– Fq denotes a finite field with q elements.

– Fnr×nc
q denotes the set of matrices of size nr × nc with entries in Fq.

– S ∈ Fl×l
q is symmetric with an irreducible characteristic polynomial.

– Fq[S] denotes the set {a0S0 + a1S + · · ·+ al−1S
l−1 : a0, . . . , al−1 ∈ Fq}.

– [k] denotes the set {1, . . . , k}.

– Λ
(n)
Q denotes the block-diagonal matrix with n copies ofQ along the diagonal.

2.2 The SNOVA Signature Scheme

SNOVA is a post-quantum digital signature scheme introduced by Wang, Tseng,
Kuan and Chou in [19] that aims to provide UOV-like signatures, but has a small
public key size. SNOVA is a second-round candidate in the on-ramp standard-
ization process led by NIST.

The public key in SNOVA is given by the quadratic map P = (P1, . . . ,Po) :

Fnl2

q → Fol2

q , where each Pk : Fnl2

q → Fl2

q is defined as

Pk(U) =

l2∑
α=1

Aα · U t
(
Λ
(n)
Qα,1

PkΛ
(n)
Qα,2

)
U ·Bα,

4

where U is a matrix of variables of size ln×l, and the matricesQα,1, Qα,2 ∈ Fq[S],
Aα, Bα ∈ Fl×l

q and Pk ∈ Fln×ln
q are public.

The secret key is given by an invertible matrix T ∈ (Fq[S])
n×n and matrices

F1, . . . , Fo ∈ Fln×ln
q such that

Pk = T tFkT, for each k ∈ [o],

and each Fk is of the form

Fk =

[
Fk,1 Fk,2

Fk,3 0

]
,

where Fk,1 ∈ Flv×lv
q , Fk,2 ∈ Flv×lo

q and Fk,3 ∈ Flo×lv
q .

A pair σ = (U, salt), with U ∈ Fln×n
q and salt ∈ {0, 1}128, is a valid signature

for a message msg ∈ {0, 1}∗ under the public key P if and only if P(U) =

Hash(msg∥salt), where Hash : {0, 1}∗ → Fol2

q is a cryptographic hash function.

Security parameters public key signature private key
level v o q l size size size

I
37 17 16 2 9826 124 60008
25 8 16 3 2304 165 37962
24 5 16 4 1000 248 34112

III
56 25 16 2 31250 178 202132
49 11 16 3 5990 286 174798
37 8 16 4 4096 376 128384

V
75 33 16 2 71874 232 515360
66 15 16 3 15188 381 432297
60 10 16 4 8000 576 389312

Table 1. Proposed parameters for SNOVA with corresponding signature and key sizes
in bytes [19].

Table 1 shows the latest parameters proposed by the SNOVA designers. Note
that the parameters for l = 2 shown in Table 1 do not match the original
parameters in the NIST submission, since the original ones were updated in
response to the attacks in [9,10]. The SNOVA scheme is still competitive and
it provides three parameter options for each security level, which yield different
public key and signature sizes. This feature gives this scheme flexibility and
adaptability to be used in diverse scenarios.

We remark that the SNOVA parameters with l = 4 appear to be a good
alternative to the standardized scheme FALCON, since they offer similar key
sizes and smaller signature sizes than FALCON. Furthermore, for the security
levels I, III, and V as specified by the NIST standardization call [14, Section
4B], SNOVA allegedly offers 143, 207, and 272 bits of security respectively.

5

2.3 Key Recovery Attacks

A key-recovery attack for SNOVA reduces to finding a basis to the secret space

O := {T−1 · (a1, . . . , aln)t ∈ Fln
q : a1 = a2 = · · · = alv = 0},

which has dimension lo [19]. In [9,10], it is shown that for any u,v ∈ O, we have

vt(Λ
(n)
Si−1PkΛ

(n)
Sj−1)u = 0, for each (i, k, j) ∈ [l]× [o]× [l]. (2)

The main goal of a key-recovery attack for SNOVA is to find at least one
nontrivial element in O. Once such an element is found, recovering a basis of O
is significantly easier than finding that first element in O.

In the reconciliation attack, one attempts to find a vector of the form u0 =
(u1, . . . , ulv, 0, . . . , 1)

t ∈ Fln
q such that

ut
0(Λ

(n)
Si−1PkΛ

(n)
Sj−1)u0 = 0, for each (i, k, j) ∈ [l]× [o]× [l]. (3)

Since O is a random vector space of dimension ol, we expect that such a u0 ∈ O
uniquely exists.

The quadratic system in (3) has l2o equation on lv variables. For all SNOVA
parameters, it holds that ol2 < lv [19]. Therefore, the system in (3) has an

expected number of O(qlv−ol2) solutions. In [9,10], the authors compute the
complexity of this attack by using the hybrid approach [1], assuming that solv-
ing an underdetermined system as in (3) is as hard as solving a random one.
However, in Section 4, we will introduce an algorithm that solves such systems
more efficiently than a generic algorithm.

2.4 Forgery Attacks

Given a public key P, an attacker forges a signature for a message msg ∈ {0, 1}∗
by finding U ∈ Rn and salt ∈ {0, 1}128 such that P(U) = Hash(msg||salt).

To the best of our knowledge, the most efficient forgery attack against SNOVA
was introduced by Beullens in [3]. The attack builds from the observation that,
with U = [u0|u1| · · · |ul−1] and each ui being vector of ln variables, the public
polynomials P(U) can be written as

P(U) =

l−1∑
i=0

l−1∑
j=0

Ei,jB(ui,uj),

where each Ei,j ∈ Fol2×ol2

q is a block-diagonal matrix that can be efficiently

computed from the public key, and B : Fnl
q × Fnl

q → Fol2

q is a bilinear map
defined by B(x,y) := (B1(x,y), . . . ,Bo(x,y)) and each

Bk(x,y) := (xtΛ
(n)
Si−1PkΛ

(n)
Sj−1y)

t
i,j∈[l],

where Pk ∈ Fln×ln
q and S ∈ F l×l

q are public matrices.

6

In [3], Beullens performs the change of variables u0 = u and ui = Λ
(n)
Ri

u+vi

for i = 1, . . . , l − 1, with Ri ∈ Fq[S], and vi ∈ Fln
q to obtain a public key P of

the form

E · F(u) +

l−1∑
i,i=0

Ei,j

(
B(Λ(n)

Ri
u,vj) + B(vi, Λ

(n)
Rj

u)
)
+

l−1∑
i,j=0

Ei,jB(vi,vj),

where F(u) = B(u,u), and E = Λ
(o)

Ẽ
∈ Fol2×ol2

q with Ẽ ∈ Fl2×l2

q depending on
the choice of R1, . . . , Rl−1.

Given an integer 1 ≤ r ≤ l2 Beullens’ attack works as follows. First, the
attacker bruteforces the Ri until finding a corresponding matrix Ẽ with rank
r. Next, the attacker finds a full rank matrix N ∈ Fp×l2

q , where p = o(l2 − r),
such that N · E = 0. Following that, it computes the p linear equations N · P.

Finally, the attacker finds a full rank matrix V ∈ F(l2−p)×l2

q whose rows are not
in the row space of N , and it computes the l2 − p quadratic equations V · P.
Thereafter, the attacker uses the p linear equations to replace p variables in the
quadratic ones to obtain a quadratic system of ol2 − p quadratic equations in
ln− p variables.

2.5 An XL-Like Algorithm for Multi-Homogeneous Systems

An important ingredient for our algorithm to solve SNOVA systems is an algo-
rithm that adapts XL for multi-homogeneous systems. Such algorithm has been
used for other attacks such as [15,2,11,13]. We describe here its main features
for completeness.

Definition 1 (Multi-homogeneous polynomials). Let P = (X1, . . . , Xl) be
a partition of the set X = {x1, . . . , xn}. We say a monomial m in X has multi-
degree (d1, . . . , dl) ∈ Zl

≥0 if the degree of m with respect to Xi equals di for each
i ∈ [l]. We say that a polynomial f in X is multi-homogeneous of multi-degree
d ∈ Zl

≥0 if each monomial in its support has multi-degree d. In the particular
case, l = 2, we use bi-degree and bi-homogeneous instead of multi-degree and
multi-homogeneous.

Let f1, . . . , fm ∈ Fq[x1, . . . , xn] be multi-homogeneous quadratic polynomi-
als. Like the XL algorithm, the special XL algorithm aims at finding a common
root of the fi. Unlike the XL, the special XL takes as input a multi-degree
(d1, . . . , dl) and is restricted to work with polynomials in ⟨f1, . . . , fm⟩ of multi-
degree (e1, . . . , el) ≤ (d1, . . . , dl), where ≤ means that ei ≤ di for each i ∈ [l].

In the bi-homogeneous case, i.e. l = 2, the special XL has been used to
estimate the complexity of some attacks in cryptography. See, for instance, the
RBS and intersection attacks on Rainbow (see [15, Sec. 5] [2, Sec. 6]).

In the case of bi-homogeneous (l = 2) quadratic polynomials, the complexity
analysis introduced in [15] suggests that for systems in n = n1 + n2 variables
with m1 equations of bi-degree (2, 0), m12 of bi-degree (1, 1) and m2 of bi-degree

7

(0, 2), the special XL algorithm is expected to effectively work on input bi-degree
(asol, bsol) if the coefficient of ta1t

b
2 in the series

(1− t21)
m1(1− t1t2)

m12(1− t22)
m2

(1− t1)n1+1(1− t2)n2+1
,

is nonnegative for some a ≤ asol and b ≤ bsol. Note that the series above is
also considered in [11] to analyze the complexity of the RSB attack on Rainbow.
In this case, the complexity of the special XL algorithm, in number of field
multiplications, is upper bounded by

3 ·max(n1, n2)
2 ·
[
M(asol, bsol)

]2
,

whereM(asol, bsol) is the number of monomials with bi-degree (a, b) ≤ (asol, bsol).
For general multi-homogeneous (l ≥ 2) quadratic systems, the complexity is up-
per bounded by

3 ·max(n1, . . . , nl)
2 ·
[
M(dsol)

]2
,

where dsol ∈ Zl
≥0, M(dsol) is the number of monomials with multi-degree

smaller than dsol, and there exists (d1, . . . , dl) ≤ dsol such that the coefficient
of td1

1 td2
2 · · · tdl

l in the series

∏m
k=1

(
1− t

d
(k)
1

1 t
d
(k)
2

2 · · · td
(k)
l

l

)
∏l

i=1(1− ti)ni+1
, (4)

is nonnegative, where
(
d
(k)
1 , d

(k)
2 , . . . , d

(k)
l

)
is the multi-degree of fk and ni is

the size of Xi. Note that the series in Eq. (4) was used in [13] to estimate the
complexity of the Kipnis-Shamir attack to the MinRank problem.

3 SNOVA Sequences and Ideals

We start by defining a SNOVA sequence.

Definition 2 (SNOVA sequences and ideals). Let o, n, l be positive inte-
gers. A SNOVA sequence is a tuple of ol2 quadratic polynomials in the variables
x1, . . . , xln given by

xt(Λ
(n)
Si−1PkΛ

(n)
Sj−1)x, for some (i, k, j) ∈ [l]× [o]× [l] (5)

where x = (x1, . . . , xln)
t, Pk ∈ Fln×ln

q , and S ∈ F l×l
q is as in the description of

SNOVA. We define a SNOVA ideal as an ideal generated by a SNOVA sequence.

According to Section 2, whether we perform a forgery attack or a key-recovery
attack against SNOVA, we note that we need to handle a SNOVA sequence.

8

3.1 Λ
(n)
Fq[S]-Stable Ideals

This section examines some algebraic properties of SNOVA ideals. In particular,
here we show that these ideals are stable under the action of a subgroup of

matrices denoted by Λ
(n)
Fq [S].

We use the following definition from [7].

Definition 3 (G-stable ideals). An ideal J ⊆ Fq[x1, . . . , xn] is said to be
stable under a finite matrix group G ⊆ GLn(Fq) if for all f ∈ J and G ∈ G, we
have fG ∈ J , where fG(x) := f(Gx).

Faugère and Svartz [7] have explored the problem of computing a Gröbner
basis of stable ideals in general. Most of the results in this section, up to The-
orem 1, are adaptations from [7], specifically for the case of a SNOVA system.
The remainder of the section, starting in Corollary 1, presents new material,
including the observation in Proposition 1.

As in the description of SNOVA, here S ∈ Fl×l
q is a symmetric matrix with

irreducible characteristic polynomial, and we define

Λ
(n)
Fq [S] :=

{
Λ
(n)
Q ∈ Fln×ln

q : Q ∈ Fq[S] \ {0}
}
.

It is easy to see that SNOVA ideals are Λ
(n)
Fq [S]-stable.

Proposition 1. Let C ∈ Fln×ln
q , x = (x1, . . . , xln)

t and F be a sequence of l2

quadratic polynomials defined by

xt(Λ
(n)
Si CΛ

(n)
Sj)x = 0, for each i, j = 0, . . . , l − 1.

Then, for any f ∈ F and A ∈ Fq[S], it holds that fΛ
(n)
A ∈ SpanFq

(F). Conse-

quently, SNOVA ideals are Λ
(n)
Fq [S]-stable.

Proof. Suppose f(x) = xt(Λ
(n)
Si CΛ

(n)
Sj)x ∈ F and A =

∑l−1
h=0 αhS

h ∈ Fq[S].
Then,

fΛ
(n)
A (x) = xtΛ

(n)
A

(
Λ
(n)
Si CΛ

(n)
Sj

)
Λ
(n)
A x

= xt

(
l−1∑
h=0

αhΛ
(n)

Sh

)
Λ
(n)
Si CΛ

(n)
Sj

(
l−1∑
h=0

αhΛ
(n)

Sh

)
x

=

l−1∑
i=0

l−1∑
j=0

αi,jx
tΛ

(n)
Si CΛ

(n)
Sj x ∈ SpanFq

(F)

for some αi,j ∈ Fq. Immediately, it follows that ⟨F ⟩ is Λ
(n)
Fq [S]-stable. Since

SNOVA ideals are generated by several sequences, such as F , each associated

with an independent matrix P , they are therefore Λ
(n)
Fq [S]-stable. ⊓⊔

9

Note that Λ
(n)
Fq [S] is cyclic but not a diagonal matrix group over the base field.

The goal of the following lemma is to describe a matrix P over a field extension
Fql that allows us to transform a SNOVA ideal into one that is stable under the
action of a cyclic and diagonal matrix group, see Proposition 3.

Let τ : Fql → Fql denote the Frobenius map. Abusing notation, we will also
denote by τ the function that applies the Frobenius map component-wise to a
vector or matrix.

Lemma 1. The matrix S is diagonalizable on an l-extension of Fq. Specifically,
if λ ∈ Fql is an eigenvalue of S and ξ ∈ Fl

ql its corresponding eigenvector,

P :=
[
ξ τ(ξ) · · · τ l−1(ξ)

]
∈ Fl×l

ql
(6)

is non-singular and P−1SP is diagonal.

Proof. It suffices to prove that the columns of P are eigenvectors corresponding
to distinct eigenvalues. Since the entries of S are in Fq, for a ∈ {0, . . . , l − 1},

Sτa(ξ) = τa(Sξ) = τa(λξ) = λqaτa(ξ),

thus λqa ∈ Fql \Fq is an eigenvalue of S, corresponding to the eigenvector τa(ξ).

Let us show that λqi = λqj implies i ≡ j (mod l). By [17, Theorem 19.1.], the

polynomial xql −x is square-free since xql −x and its derivative qlxql−1−1 = −1
are relatively prime. For a contradiction, suppose λqi = λqj with i < j and let f
be the characteristic polynomial of S. Then λqj is a root of f with multiplicity
at least 2 and (x− λqj)2 divides f . Since f is a monic irreducible polynomial of

degree l, f divides xql − x [17, Theorem 19.10.] which would imply xql − x is

not square-free, contradicting the fact that xql − x is square-free. It follows that

λq0 , . . . , λql−1

are l distinct eigenvalues of S. ⊓⊔

We can then diagonalize every matrix in Λ
(n)
Fq [S] to construct a cyclic matrix

group.

Proposition 2. The matrix group D := {Λ(n)
P−1MΛ

(n)
P : M ∈ Λ

(n)
Fq [S]} is a cyclic

diagonal group which is generated by a diagonal matrix Λ
(n)
Q ∈ Fln×ln

ql
, where

Q = diag
(
β, βq, . . . , βql−1) ∈ Fl×l

ql
for some β ∈ Fql .

Proof. Let ξ ∈ Fl
ql be an eigenvector of S with corresponding eigenvalue λ ∈ Fql .

For any nonzero A = a0S
0 + a1S + · · ·+ al−1S

l−1 ∈ Fq[S],

AP = P · diag
(
λA, τ(λA), . . . , τ

l−1(λA)
)

(7)

where λA = a0 + a1λ+ · · ·+ al−1λ
l−1. Therefore, P−1AP is a diagonal matrix.

LetB be a generator of the multiplicative group Fq[S]
×. Clearly, Λ

(n)
P−1Λ

(n)
B Λ

(n)
P

is a generator of D and ξ is an eigenvector of B. Let β ∈ Fql be the eigenvalue
of B associated with ξ. Then, P−1BP = diag

(
β, τ(β), . . . , τ l−1(β)). Therefore,

Λ
(n)
P−1Λ

(n)
B Λ

(n)
P = Λ

(n)
Q , where Q = diag

(
τ0(β), . . . , τ l−1(β)

)
. ⊓⊔

10

Applying an appropriate change of variable to the ideal I, yields a stable
ideal under the action of a cyclic diagonal group.

Proposition 3. Let S ∈ Fl×l
q be a symmetric matrix with irreducible character-

istic polynomial. If J ⊂ Fq[x1, . . . , xln] is Λ
(n)
Fq [S]-stable, then there exist a matrix

P ∈ Fl×l
ql

such that the ideal

JΛ
(n)
P :=

{
fΛ

(n)
P : f ∈ J

}
⊆ Fql [x1, . . . , xln] (8)

is D-stable, where D is the diagonal group of matrices defined as in Proposition 2.

Proof. Let P be a matrix defined as in Lemma 1 and D is the diagonal group of

matrices defined as in Proposition 2. Let f ∈ J , g = fΛ
(n)
P ∈ JΛ

(n)
P , M ∈ Λ

(n)
Fq [S],

and D = Λ
(n)
P−1MΛ

(n)
P ∈ D. Then,

gD(x) = g(D · x) = f(Λ
(n)
P ·D · x) = f(M · Λ(n)

P · x) = fM (Λ
(n)
P · x).

Since J is Λ
(n)
Fq [S]-stable, then fM ∈ J , and gD = (fM)Λ

(n)
P ∈ JΛ

(n)
P . Therefore

JΛ
(n)
P is D-stable. ⊓⊔

The group action of the cyclic diagonal group induces a new degree, namely
D-degree, on Fql [x1, . . . , xnl] that is compatible with the usual degree.

Definition 4 (D-degree). Let β, Q = diag
(
β, βq, . . . , βql−1) ∈ Fl×l

ql
and D =

⟨Λ(n)
Q ⟩ be as in Proposition 2. For a monomial µ = xα1

1 · · ·xαnl

nl in Fql [x1, . . . , xnl],
we have

µΛ
(n)
Q = (βx1)

α1 · · · (βql−1

xl)
αl(βxl+1)

αl+1 · · · (βql−1

xln)
αln

= β
∑l

j=1 qj−1·
∑n

i=1 α(i−1)·l+jµ.

Then, we define the D-degree of µ as

degD(µ) =

l∑
j=1

qj−1 ·
n∑

i=1

α(i−1)·l+j mod ql − 1.

Remark 1 (D-degrees as multi-degrees in Zl
≥0). Consider the partition P =

(X1, . . . , Xl) of the set X = {x1, . . . , xnl}, where Xr = {xr, xl+r, · · · , x(n−1)l+r}
for each r ∈ [l]. On the one hand, for any x ∈ X, degD(x) = qr−1 if and
only if x ∈ Xr. On the other hand, the multi-degree of x ∈ Xr with respect
to the partition P is the canonical vector er ∈ Zl

≥0. This establishes a one-to-
one correspondence of D-degrees of linear monomials and their corresponding
multi-degrees with respect to P . Similarly, for quadratic monomials xixj , with
xi ∈ Xr1 and xj ∈ Xr2 , the multi-degree is given by er1 + er2 ∈ Zl

≥0 while

degD(xixj) = q(r1−1) + q(r2−1) mod ql − 1 .

11

Example 1. With l = 2 and q > 2, there are exactly three nonzero D-degrees
for quadratic polynomials in x1, . . . , xln. For example, if q = 16, these are 2, 17,
and 32. For any i, j = 1, . . . , ln, we have

degD(xixj) =

 2 if i ≡ j ≡ 1 mod l
17 if i ̸≡ j mod l
32 if i ≡ j ≡ 0 mod l

With n = 2, the variables are x1, x2, x3, x4 and the quadratic monomials of each
D-degree and its corresponding multi-degrees in Zl

≥0 are given in the Table 2.

D-degree Multi-degree Monomials

2 (2,0) x2
1, x1x3, x

2
3

17 (1,1) x1x2, x1x4, x2x3, x3x4

32 (0,2) x2
2, x2x4, x

2
4

Table 2. Correspondence of D-degrees and multi-degrees of quadratic polynomials for
n = 2 and l = 2.

It readily follows that the multi-degree induces a grading on Fql [x1, . . . , xnl].

Definition 5 (Grading). Let R be a ring, G an abelian group, and R =
⊕i∈GRi a direct sum decomposition of an abelian group. R is graded (G-graded)
if RiRj ⊂ Ri+j for all i, j ∈ G.

It is also easy to see that the multi-degree refines the usual degree. We can
then refer to the multi-homogeneous components of a polynomial.

Definition 6. A polynomial f in Fql [x1, . . . , xnl] is said to be multi-homogeneous
if all its monomials have the same multi-degree.

Example 2. For l = 4, the multi-homogeneous components of the polynomial

x1x2+x3x4+xl+1xl+2+xl+3xl+4+· · ·+x(n−2)l+1x(n−2)l+2+x(n−1)l+3x(n−1)l+4.

are
x1x2 + xl+1xl+2 + · · ·+ x(n−1)l+1x(n−1)l+2

and
x3x4 + xl+3xl+4 + · · ·+ x(n−1)l+3x(n−1)l+4.

Definition 7. An ideal J ⊂ Fql [x1, . . . , xln] is said to be multi-homogeneous if
for any polynomial f ∈ J , all its multi-homogeneous components are in J .

The following theorem was proven by Faugère and Svartz [7] using termi-
nology of D-degrees and for generic D-stable ideal. Here, we rewrite it using
multi-degrees for the case D ideal generated by quadratic polynomials.

12

Theorem 1. Let Q = diag
(
β, βq, . . . , βql−1) ∈ Fl×l

ql
and D = ⟨Λ(n)

Q ⟩ be as in
Proposition 2. An ideal J generated by quadratic polynomials is D-stable if and
only if J is multi-homogeneous.

Proof. (⇐) Suppose J is a multi-homogeneous ideal and g = h1 + · · ·+ he ∈ J ,
where the hi are the multi-homogeneous components of g. Now, for each hi it
holds that, for some λ ∈ Fql ,

h
Λ

(n)
Q

i = λ · hi.

Since J is multi-homogeneous, we obtain that h
Λ

(n)
Q

i ∈ J . Therefore,

gΛ
(n)
Q = h

Λ
(n)
Q

1 + · · ·+ h
Λ

(n)
Q

e ∈ J.

(⇒) Fix a quadratic generator g ∈ J . For each r1, r2 ∈ [l], let hr1,r2 be the
multi-homogeneous component of g of multi-degree er1 + er2 ∈ Zl

≥0. Note that

h
Λ

(n)
P

r1,r2 = βd(r1,r2) · hr1,r2 ,

where d(r1, r2) := qr1−1 + qr2−1. Set D = {d(r1, r2) : r1, r2 ∈ [l]} and e = ql − 1.
For each i = 0, . . . , e−1, define hi = 0 if i /∈ D, otherwise define hd(r1,r2) = hr1,r2 .
Therefore, 

g

gΛ
(n)
Q

...

g(Λ
(n)
Q)e−1

 =


1 1 · · · 1
1 β · · · βe−1

...
...

...
...

1 βe−1 · · · β(e−1)(e−1)




h0

h1

...
he−1

 , (9)

and since J is stable under D, then g(Λ
(n)
Q)d ∈ J , for each d = 0, . . . , e − 1.

Note that the matrix of (9) is a Vandermonde matrix V = [β(i−1)(d−1)]1≤i,d≤e.
It is known that det(V) =

∏
1≤i<d≤e(β

d−1 − βi−1) ̸= 0, since β is of order e.
Therefore, V is nonsingular, and each homogeneous component is in J . ⊓⊔

Corollary 1. Let Q = diag
(
β, βq, . . . , βql−1) ∈ Fl×l

ql
and D = ⟨Λ(n)

Q ⟩ be as in

Proposition 2. Let g1, . . . , gs ∈ Fql [x1, . . . , xnl] be quadratic polynomials such that
⟨g1, . . . , gs⟩ is a D-stable ideal and

g
Λ

(n)
Q

i ∈ SpanFq
(g1, . . . , gs), for each i ∈ [s]. (10)

Then,
SpanF

ql
(g1, . . . , gs) = SpanF

ql
(H),

where H = {h(r1,r2)
i : i ∈ [o], r1, r2 ∈ [l]} and h

(r1,r2)
i denotes the multi-

homogeneous component of gi of multi-degree er1+er2 . Consequently, if g1, . . . , gs
are linearly independent, then there is an invertible B ∈ Fs×s

q and polynomials

h̃1, . . . , h̃s ∈ H such that

(g1, . . . , gs)
t = B · (h̃1, . . . , h̃s)

t,

13

Proof. We set e = ql−1, V = SpanF
ql
(g1, . . . , gs), and W = SpanF

ql
(H). Clearly,

V ⊂ W, so we focus on proving that W ⊂ V.
By Eq. (9) in Theorem 1, for any i ∈ [s], we obtain that

{h(r1,r2)
i : r1, r2 ∈ [l]} ⊂ SpanF

ql
(g

Λ
(n)
Q

i , . . . , g
Λ

(n)
Q

i).

By hypothesis in Eq. (10), we obtain H ⊂ SpanFq
(g1, . . . , gs). Therefore, W ⊂ V.

⊓⊔

3.2 Distribution of the Basis of Multi-Homogeneous Components

In this section, we demonstrate that after the change of variables defined by the

matrix Λ
(n)
P , a SNOVA ideal is generated by multi-homogeneous polynomials, as

shown in Proposition 4, with the number of polynomials at each multi-degree
precisely determined, as detailed in Theorem 2.

Proposition 4. Let P be a matrix of eigenvectors of S, as described in Lemma 1,

and Q = diag
(
β, βq, . . . , βql−1) ∈ Fl×l

ql
and D = ⟨Λ(n)

Q ⟩ as in Proposition 2. Let

F = (f1, . . . , fol2) ∈ Fq[x1, . . . , xln] be a SNOVA sequence. Hence, if we set

H = {h(r1,r2)
i : i ∈ [o], r1, r2 ∈ [l]}, then

SpanF
ql
(f

Λ
(n)
P

1 , . . . , f
Λ

(n)
P

ol2) = SpanF
ql
(H),

where h
(r1,r2)
i denotes the multi-homogeneous component of f

Λ
(n)
P

i of multi-degree
er1 +er2 . Consequently, if f1, . . . , fol2 are linearly independent, then there exists

an invertible block-diagonal matrix B ∈ Fol2×ol2

q with blocks of size l2 × l2 and

multi-homogeneous polynomials h̃1, . . . , h̃ol2 ∈ H such that

(f
Λ

(n)
P

1 , . . . , f
Λ

(n)
P

ol2)t = B · (h̃1, . . . , h̃ol2)
t,

Proof. Suppose Λ
(n)
Q = Λ

(n)
P−1Λ

(n)
A Λ

(n)
P , where A ∈ Fq[S]. By Proposition 1,

fΛ
(n)
A ∈ SpanFq

(F) for each f ∈ F .

First, we prove the case o = 1. Set m = l2, for any i ∈ [m], it follows that(
f
Λ

(n)
P

i

)Λ
(n)
Q

=

(
f
Λ

(n)
P

i

)Λ
(n)

P−1Λ
(n)
A Λ

(n)
P

= f
Λ

(n)
A Λ

(n)
P

i

= (a1f1 + · · ·+ amfm)
Λ

(n)
P

= a1f
Λ

(n)
P

1 + · · ·+ amf
Λ

(n)
P

m ∈ SpanF
ql
(f

Λ
(n)
P

1 , . . . , f
Λ

(n)
P

m),

where a1, . . . , am ∈ Fq satisfy that f
Λ

(n)
A

i = a1f1 + · · · + amfm. Hence, for the
case o = 1, our result follows directly from Corollary 1.

14

The case o > 1 follows from the fact that a SNOVA sequence F with ol2

polynomials can be written as F = (F1, . . . , Fo), where each Fi is a SNOVA
sequence with the same number of variables and l2 polynomials. Indeed, to
simplify the notation, we set

G = (G1, . . . , Go), where Gi = F
Λ

(n)
P

i for each i ∈ [o]. (11)

Above we proved that, for each i ∈ [o], there are multi-homogenous polynomials

h
(1,1)
i , . . . , h

(l,l)
i such that

SpanFq
(Gi) = SpanF

ql
(h

(1,1)
i , . . . , h

(l,l)
i).

Moreover, if the polynomials in Fi are linearly independent, then there is an
invertible matrix Bi ∈ Fl2×l2

q such that

Fi = Bi · (h̃i,1, . . . , h̃i,l2)
t.

Thus, SpanF
ql
(G) = SpanF

ql
(h

(1,1)
1 , . . . , h

(l,l)
o). Moreover, if the polynomials in

F are linearly independent, then the invertible block-diagonal matrix B =
diag(B1, . . . , Bo) ∈ Fol2×ol2

q satisfies that G = B · (h̃1,1, . . . , h̃o,l2)
t. ⊓⊔

Now, given r1, r2 ∈ [l], we focus on determining the dimension of the Fql

vector space generated by all the multi-homogeneous components of multi-degree
er1 + er2 of the polynomials in a SNOVA sequence after the change of variables

defined by Λ
(n)
P , that is, G in Eq. (11). More precisely, with the notation as in

Proposition 4, we want to determine the dimension of

Hr1,r2 := SpanF
ql
(h

(r1,r2)
1 , h

(r1,r2)
2 , . . . , h

(r1,r2)
ol2).

We will prove that

dim(Hr1,r2) ≤

{
o if r1 = r2,

2o otherwise.
(12)

An equality in the above equation implies the following theorem.

Theorem 2. Let P be a matrix of eigenvectors of S, as described in Lemma 1,

and Q = diag
(
β, βq, . . . , βql−1) ∈ Fl×l

ql
and D = ⟨Λ(n)

Q ⟩ as in Proposition 2. Let

F = (f1, . . . , fol2) ∈ Fq[x] be a SNOVA sequence. Suppose we have an equality
in (12). Then, the vector space

SpanF
ql
(f

Λ
(n)
P

1 , . . . , f
Λ

(n)
P

ol2)

has a basis G of multi-homogeneous polynomials with the following distribution
of multi-degrees:

– For each r ∈ [l], G contains o polynomials of multi-degree 2er.

15

– For each r1 ̸= r2 ∈ [l], G contains 2o polynomials of multi-degree er1 + er2 .

Proof. By Proposition 4, SpanF
ql
(f

Λ
(n)
P

1 , . . . , f
Λ

(n)
P

ol2) = SpanF
ql
(h

(1,1)
1 , . . . , h

(l,l)
ol2),

where h
(r1,r2)
i denotes the multi-degree er1 + er2 homogeneous component of

f
Λ

(n)
P

i . Hence, we can write

SpanF
ql
(f

Λ
(n)
P

1 , . . . , f
Λ

(n)
P

ol2) = SpanF
ql
(H1,1 ∪H1,2 ∪ · · · ∪ Hl,l),

where Hr1,r2 = SpanF
ql
(h

(r1,r2)
1 , h

(r1,r2)
2 , . . . , h

(r1,r2)
ol2).

Now, assuming the equality in (12), we obtain that, for each r ∈ [l], the vector

space Hr,r is generated by o polynomials, namely h̃
(r,r)
1 , . . . , h̃

(r,r)
o of multi-degree

2er. Likewise, for each r1 ̸= r2 ∈ [l], Hr1,r2 is generated by 2o polynomials,

namely h̃
(r1,r2)
1 , . . . , h̃

(r1,r2)
2o of multi-degree er1 +er2 . Finally, define G as the set

that contains all the h̃
(r1,r2)
i polynomials for i ∈ [o] and r1, r2 ∈ [l]. ⊓⊔

Remark 2. We have experimentally verified that the inequality in (12) holds as
an equality with overwhelming probability, i.e. with a value very close to 1.

We now focus on proving the statement in Eq. (12). A lifted SNOVA sequence
G consisting of ol2 polynomials is the aggregation of o lifted SNOVA sequences
G1, . . . , Go, each containing l2 equations. Therefore, it suffices to prove Eq. (12)
for the case o = 1.

Let F be a SNOVA sequence with l2 polynomials, given by

xtΛ
(n)
Si CΛ

(n)
Sj x

for i, j ∈ {0, . . . , l − 1}.
Let λ ∈ Fql be the eigenvalue of S and P ∈ Fl×l

ql
be as in Lemma 1. Addi-

tionally, suppose fi,j(x) = xtΛ
(n)
Si CΛ

(n)
Sj x. Then,

f
Λ

(n)
P

i,j (x) = xtΛ
(n)
P tSiCΛ

(n)
SjPx,

P tSi = diag(λi·q0 , . . . , λi·ql−1

)P t and SjP = diag((λj·q0 , . . . , λj·ql−1

)P , so that

with Λ
(n)
P t CΛ

(n)
P = [ti,j]i,j∈[ln] ∈ Fln×ln

ql
, we can write

gi,j(x) := f
Λ

(n)
P

i,j (x) =
∑

a,b∈{0,...,n−1}

∑
r1,r2∈[l]

λi·qr1−1+j·qr2−1

· tal+r1,bl+r2xal+r1xbl+r2 ,

where x = (x1, . . . , xln).
As we saw in Remark 1, the multi-degree of a quadratic monomial is the

sum to two canonical vectors er1 + er2 ∈ Zl
≥0. Assuming h

(r1,r2)
i,j denotes the

multi-homogeneous component of gi,j of multi-degree er1 + er2 , we can write

gi,j =
∑

r1,r2∈[l]

h
(r1,r2)
i,j and Hr1,r2 =

{
h
(r1,r2)
i,j : i, j ∈ {0, . . . , l − 1}

}
.

16

For each r ∈ [l],

h
(r,r)
i,j = λ(i+j)·qr−1

·
n−1∑
a=0

n−1∑
b=0

tal+r,bl+rxal+rxbl+r = λ(i+j)·qr−1

h
(r,r)
0,0 .

Thus, SpanF
ql
(Hr,r) = SpanF

ql
(h

(r,r)
0,0), which implies dim(Hr,r) ≤ 1.

Likewise, given r1 ̸= r2 ∈ [l], for each i, j ∈ {0, . . . , l − 1}, we can write

h
(r1,r2)
i,j = ĥ

(r1,r2)
i,j + h̃

(r1,r2)
i,j ,

where

ĥ
(r1,r2)
i,j := λi·qr1−1+j·qr2−1

·
n−1∑
a=0

n−1∑
b=0

tal+r1,bl+r2xal+r1xbl+r2 ,

and

h̃
(r1,r2)
i,j = λi·qr2−1+j·qr1−1

·
n−1∑
a=0

n−1∑
b=0

tal+r2,bl+r1xal+r1xbl+r2 .

Thus, SpanF
ql
(Hr1,r2) = SpanF

ql
(ĥ

(r1,r2)
0,0 , h̃

(r1,r2)
0,0), which implies dim(Hr1,r2) ≤

2. This finalizes the proof of (12) for the case o = 1.

4 Solving SNOVA Systems

Now we focus on the complexity of solving SNOVA systems, i.e. systems over
Fq[x1, . . . , xln] of the form

xt
(
Λ
(n)
Si−1PkΛ

(n)
Sj−1

)
x = z

(i,j)
k , for (i, k, j) ∈ [l]× [o]× [l], (13)

where x = (x1, . . . , xln)
t, Pk ∈ Fln×ln

q is a matrix, and Λ
(n)
A and S ∈ Fl×l

q are as
in the description of SNOVA.

In the homogeneous case, i.e. z
(i,j)
k = 0, if ln ≤ l2o, there is a naive way to

improve generic solving algorithms. As observed in [10], in this case, if there is a

solution s to the SNOVA system, then Λ
(n)
Si s is also a solution for each i ∈ [l−1].

Hence, there is either no solution or an l-dimensional vector space of solutions
due to the fact that each Pk has a UOV-like structure. In this scenario, one can
remove l variables and search for a solution of the form (x1, . . . , xln−l, 1, 0, . . . , 0).
Thus, the complexity of solving the SNOVA system would be at least O(ql) times
faster than a random quadratic system with the same dimensions. This approach
is less effective when ln > l2o, because we can only specialize ln− l2o variables
for free in the random case.

The algorithm we propose in this section improves the naive approach in
both the underdefined (ln > l2o) and the overdefined cases (ln ≤ l2o). We focus
on estimating the speed up in the underdefined case, because all the proposed
parameters for SNOVA fall into this case, see Table 1.

17

4.1 Solving the System of Homogeneous Components

As we will explain in Section 4.2, our strategy to solve underdefined SNOVA
systems reduces to solving a multi-homogeneous system. We start by explaining
how to solve such a system. More precisely, it is a system of m = l2o equations

h
(1,1)
1 (x̃) = w

(1,1)
1 , h

(1,2)
1 (x̃) = w

(1,2)
1 , . . . , h(l,l)

o (x̃) = w(l,l)
o , (14)

over Fql [x̃1,1, x̃2,1, . . . , x̃l,n] with the following properties:

1. Every polynomial h
(i,j)
k (x̃) is multi-homogeneous with respect to the parti-

tion of the variables x̃1, x̃2, . . . , x̃l, where x̃r := (x̃r,1, . . . , x̃r,n).

2. For each r ∈ [l], the o polynomials h
(r,r)
1 , . . . , h

(r,r)
o have multi-degree 2er,

where ei ∈ Fl
q is the r-th canonical vector, that is, they only involve variables

from xr := (xr,1, . . . , xr,n).

3. For each r1 ̸= r2 ∈ [l], the 2o polynomials h
(r1,r2)
1 , . . . , h

(r1,r2)
o , h

(r1,r2)
1 , . . . , h

(r1,r2)
o

have multi-degree er1 +er2 , that is, they are bilinear in the sets xr1 and xr2 .

We aim at finding a solution to Eq. (14) in the big field that corresponds to
a solution in the small field. Assuming that the system is underdefined, i.e. ln >
l2o, we can “guess” ln − l2o variables for “free”. We then sample k entries in
the small field and lift them to k/l entries in the big field, which we use to
partially evaluate the polynomials and try to solve the resulting system. If we
find a solution for the remaining variables corresponding to a vector in the small
field, we are done; otherwise, we sample again. The following steps precisely
describe the algorithm, which is parameterized by a nonnegative integer k that
is a multiple of l.

1. Sample (sol2+1, . . . , sln)
t ∈ F(n−ol)l

q .

2. Sample (sol2−k+1, . . . , sol2)
t ∈ Fk

q and compute

s̃2 := Λ
(n−ol+ k

l)

P−1 · (sol2−k+1, . . . , sln)
t.

3. Use the XL algorithm 5 as described in Section 2.5 to find s̃1 ∈ Fol2−k
ql

such

that 6

h1(s̃1, s̃2) = w1, . . . , hm(s̃1, s̃2) = wm.

If no solution is found, go back to Step 2.

4. Set s = Λ
(n)
P (s̃t1, s̃

t
2)

t. If s ∈ Fln
q , output s. Otherwise, go to Step 2.

5 It might be possible to achieve similar performance using other Groebner basis al-
gorithms. For example, one could use Faugere’s F4 with a monomial ordering com-
patible with the multi-degree and design a criterion to pick S-polynomials based on
the multi-degree. However, the complexity analysis of the XL approach is cleaner.

6 We abuse notation by enumerating the h
(r1,r2)
k as h1, . . . , hm.

18

Note that, if s̃2 is part of a solution that corresponds to a vector in the small
field, since the system h1(y, s̃2) = w1, . . . , hm(y, s̃2) = wm is overdefined, one
expects it to have only a few solutions, hence we expect to find s̃1 by solving
such a partially evaluated system only a few times.

The number of Fql -multiplications of the algorithm described above is upper
bounded by

min
k∈[ol2], l|k

qk · 3
(
ol − k

l

)2
·
[
M(dsol)

]2
, (15)

where dsol ∈ Zl
≥0 minimizes M(dsol), which is the number of monomials of

multi-degree smaller than dsol, and there exists (d1, . . . , dl) ≤ dsol such that the
coefficient of td1

1 td2
2 · · · tdl

l in the series∏
1≤i<j≤l

(
1− titj

)2o ·∏l
i=1

(
1− t2i

)o∏l
i=1(1− ti)ol−k/l+1

(16)

is nonnegative.
In order for (16) to accurately predict the corank of the Macaulay matrix,

we need to make genericity assumptions akin to Assumptions 1 and 2 in [15].
Although it is outside of the scope of this paper to formulate or test such assump-
tions, we have run the algorithm for several random instances to check whether
the submatrix of the Macaulay matrix produced in Step 3 has the corank pre-
dicted by (16). The results are presented towards the end of Section 4.2 (see
Table 3), and they suggest that the prediction is accurate with high probability.

4.2 Solving Underdefined SNOVA Systems

To simplify the notation, let us write the SNOVA system given in Eq. (13) as

f1(x1, . . . , xln) = z1, . . . , fol2(x1, . . . , xln) = zol2 .

By using Theorem 2, we transform this system into a multi-homogeneous system
of the form (14) over the extension field and use the procedure described in
Section 4.1 to find a solution that corresponds to a solution in the small field.
The following steps precisely describe the algorithm, which is parameterized by
a nonnegative k multiple of l.

1. For each i ∈ [ol2], compute f
Λ

(n)
P

i , where P is the matrix of eigenvectors of
S, as described in Lemma 1.

2. Compute a basis (h
(1,1)
1 , h

(1,2)
2 , . . . , h

(l,l)
o) ⊂ H of the vector space spanned

by the f
Λ

(n)
P

i , where H is the set of multi-homogeneous components of the

f
Λ

(n)
P

i . By Proposition 4, such a basis exists.

3. Compute the invertible matrix B ∈ Fm×m
ql

such that

(f
Λ

(n)
P

1 , . . . , f
Λ

(n)
P

m)t = B · (h(1,1)
1 , h

(1,2)
1 , . . . , h(l,l)

o)t,

and define (w1,1,1, . . . , wl,l,o)
t = B−1(z1, . . . , zol2)

t.

19

4. Use the algorithm described in Section 4.1 to find s ∈ Fln
q such that

h
(1,1)
1 (Λ

(n)
P−1s) = w1,1,1, . . . , h

(l,l)
o (Λ

(n)
P−1s) = wl,l,o. (17)

5. Output s.

In Theorem 2, we showed that the system Eq. (17) satisfies the first three
properties of the system described in Section 4.1 with high probability. Hence, it
is correct to apply the algorithm described in Section 4.1 to solve the system at
Step 4. Moreover, we expect such an algorithm to successfully output a solution
s ∈ Fln

q because after each specialization of the last ln − ol2 variables to any
vector (sol2+1, . . . , sln), the specialized SNOVA system

fi(x1, . . . , xol2 , sol2+1, . . . , sln) = zi, for each i ∈ [ol2].

has one solution s1, . . . , sol2 ∈ Fol2

q with high probability, since it is a well-defined

system. In such a case, the vector s̃ = Λ
(n)
P−1 · (s1, . . . , sln)t is a solution to the

system in Eq. (17).

We performed experiments to verify that the series in (16) accurately predicts
the corank of the Macaulay matrix in the modified XL algorithm. We did this
for several random systems and random SNOVA public keys with a planted
solution. Table 3 summarizes the experimental results. One can see that in every
experiment and for both systems, the corank of the Macaulay matrix matches
the corank predicted by (16). Note that a negative coefficient in (16) points to
the target multi-degree, where the Macaulay matrix is full rank and corresponds
to a corank 1 when the system has a solution.

The complexity of the algorithm described above is clearly dominated by the
complexity of step 4. Hence, we use the complexity formula given in Eq. (15) to
estimate the complexity of solving underdefined SNOVA systems.

Fig. 1 shows bit complexity estimates of the algorithm presented in this
section to solve underdefined SNOVA systems with l(o + v) variables and ol2

equations over F16, where v is chosen in the same regime of the parameters
proposed for SNOVA, see Table 1. For comparison, we include the bit complexity
estimates of solving random quadratic systems of the same dimensions.

The estimates for SNOVA systems are computed using Eq. (15). In this
case, for every F16l -multiplication we assign a cost of 2(log2(16

l))2 + log2(16
l)

bit operations. For a random system, we found that the best strategy for the
specific regime of parameters is to fix the ln − ol2 extra variables and then use
the hybrid-XL algorithm. These complexity estimates are computed using the
MQEstimator [6], which assigns a cost of 2(log2 16)

2+log2(16) bit operations per
F16-multiplication. From our estimates, we observe that solving an underdefined
SNOVA system is easier than its corresponding random version by a factor of
O
(
ql
)
. For example, for (l, o) = (5, 4), the SNOVA systems are 22 bits easier,

while for (l, o) = (4, 6), (3, 10), and (2, 18) the differences are 15, 10, and 5,
respectively.

20

Parameters target corank sequences
v o q l k multi-degree

7 2 16 3 9 [2, 1, 1]
srs: 12, 12, 12, 16, 8, 16, 16,−16
rdm: 12, 12, 12, 16, 8, 16, 16, 1
sno: 12, 12, 12, 16, 8, 16, 16, 1

4 1 16 4 8 [1, 1, 1, 1]
srs: 7, 7, 7, 9, 7, 7, 9, 7, 9, 9,−15
rdm: 7, 7, 7, 9, 7, 7, 9, 7, 9, 9, 1
sno: 7, 7, 7, 9, 7, 7, 9, 7, 9, 9, 1

15 5 16 2 6 [4, 2]
srs: 31, 54, 168, 31, 168, 366, 80, 330, 360, 160, 480,−45
rdm: 31, 54, 168, 31, 168, 366, 80, 330, 360, 160, 480, 1
sno: 31, 54, 168, 31, 168, 366, 80, 330, 360, 160, 480, 1

7 4 16 3 15 [2, 2, 2]

srs: 32, 56, 192, 32, 192, 540, 56, 192, 56, 320, 832, 192, 832,
1248, 32, 192, 540, 192, 832, 1248, 540, 1248,−1920

rdm: 32, 56, 192, 32, 192, 540, 56, 192, 56, 320, 832, 192,
832, 1248, 32, 192, 540, 192, 832, 1248, 540, 1248, 1

sno: 32, 56, 192, 32, 192, 540, 56, 192, 56, 320, 832, 192, 832,
1248, 32, 192, 540, 192, 832, 1248, 540, 1248, 1

15 3 16 2 4 [3, 2]
srs: 12, 19, 30, 12, 30, 9, 20, 28,−45
rdm: 12, 19, 30, 12, 30, 9, 20, 28, 1
sno: 12, 19, 30, 12, 30, 9, 20, 28, 1

4 2 16 4 16 [2, 1, 1, 1]

srs: 21, 21, 21, 65, 21, 21, 65, 21, 65, 65, 73, 13, 45, 45, 89,
45, 89, 89,−175

rdm: 21, 21, 21, 65, 21, 21, 65, 21, 65, 65, 73, 13, 45, 45, 89,
45, 89, 89, 1

sno: 21, 21, 21, 65, 21, 21, 65, 21, 65, 65, 73, 13, 45, 45, 89,
45, 89, 89, 1

Table 3. Experimental results to test the effectiveness of our algorithm for solving
underdefined SNOVA systems. Each block of three rows corresponds to one parameter
set. The target multi-degree is the optimal that allows to solve the system according to
(16). The three corank sequences are the coefficients of (16) (srs), the corank sequence
of a random system (rdm), and the corank sequence of a random SNOVA public key
(sno). All sequences are sorted in graded lexicographic order starting from a sequence
whose entries sum two and ending at the target multi-degree.

5 Attacking the Original Version of SNOVA

5.1 Improved Reconciliation Attack

The reconciliation attack is a key-recovery attack for SNOVA that involves find-
ing a vector in the secret space O that is a solution of an underdefined SNOVA
system with ln variables and ol2 equations. For more details, see Section 2.3.

Our improved reconciliation attack consists of repeatedly applying the algo-
rithm in Section 4.2 by systematically sampling all possible vectors at Steps 1
and 2 in the subroutine described in Section 4.1.

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20

40

60

80

100

120

140

160

180

200

220

240

o

lo
g
2
(#

g
a
te
s)

Random (l = 2) SNOVA (l = 2)

Random (l = 3) SNOVA (l = 3)

Random (l = 4) SNOVA (l = 4)

Random (l = 5) SNOVA (l = 5)

Fig. 1. Comparison of the bit complexity of solving underdefined random systems and
SNOVA systems.

For all SNOVA parameters, it holds that ol2 < lv [19], therefore, the system

in Eq. (3) is expected to have O(qlv−ol2) solutions. However, only one solution

lies in the secret space O. After sampling (sol2+1, . . . , sln)
t ∈ F(n−ol)l

q in Step 1,
we can obtain a solution using the algorithm in Section 4.2 if one exists. However,
the solution in secret space O appears with probability qol

2−lv. Therefore, we
expect to iterate at most qlv−ol2 times in Step 1 of the subroutine. Consequently,
the complexity of our reconciliation attack is given by qlv−ol2 multiplied by the
complexity of one iteration of the algorithm to solve SNOVA systems. That is,
the complexity of our reconciliation attack, as the number of Fql -multiplications,
is given by

qlv−ol2 · min
k∈[ol2], l|k

qk · 3
(
ol − k

l

)2
·
[
M(dsol)

]2
, (18)

where dsol ∈ Zl
≥0 minimizes M(dsol), which is the number of monomials of

multi-degree smaller than dsol, and there exists (d1, . . . , dl) ≤ dsol such that the
coefficient of td1

1 td2
2 · · · tdl

l in the series (16) is nonnegative.

Table 4 shows the bit complexity estimates of our improved reconciliation
attack compared with the state-of-the-art [9,10,12]. Hence, our newly proposed
attack improves over previous reconciliation attacks against SNOVA.

22

Security parameters previous best our
level v o q l reconciliation attack attack

I
37 17 16 2 197 195
25 8 16 3 196 187
24 5 16 4 269 252

III
56 25 16 2 289 288
49 11 16 3 438 424
37 8 16 4 387 367

V
75 33 16 2 379 378
66 15 16 3 574 560
60 10 16 4 695 675

Table 4. Bit complexities of our reconciliation attack compared with the previous best
reconciliation attack for SNOVA.

5.2 A New Forgery Attack

In this section, we describe a new forgery attack against SNOVA, which uses
some ideas introduced in [3] and exploits the multi-homogeneous structure of
the lifted SNOVA sequence.

The new attack starts from the following observation, described in Section 2.4
and introduced in [3]. With U = [u0| · · · |ul−1] and Ri ∈ Fq[S], after the change

of variables u0 = u and ui = Λ
(n)
Ri

u for i ∈ [l − 1], a public key P will have the
form

E · F(u), (19)

where E = Λ
(o)

Ẽ
, and Ẽ ∈ Fl2×l2

q is public and depends on the choice ofR1, . . . , Rl−1.
Our goal is to invert the above public key exploiting both a potential rank

defect of E and the multi-homogeneous structure of the sequence H(v) = B−1 ·
F(Λ

(n)
P v), which is obtained by performing the change of variables given by v =

Λ
(n)
P−1u with B as in Theorem 2 and P as in Lemma 1. Note that if we substitute p

variables by linear equations as in [3], we loose the multi-homogeneous structure.
In order to preserve as much as possible the multi-homogeneous structure of

the system, we are forced to use the rank defect of E in a different way to the one
proposed by Beullens [3]. We bruteforce the salt so that z0 = Hash(msg∥salt) ∈
Fol2

q falls into the column space of E. Then a solution to E · F(u) = z0 can be
obtained by finding u such that F(u) belongs to the affine subspace of solutions
to Ew = z0, which we describe using a particular solution w0 and a basis W .
The resulting system F(u) = w0 + Wy is quadratic in u and linear in the
coordinates of the affine subspace y. We can then do the change of variables

v = Λ
(n)
P−1u to expose the multi-homogeneous structure of the system and solve

in the extension field.
We now describe in detail our proposed forgery attack. Given 1 ≤ r ≤ l2, an

attacker performs the following steps:

23

1. Bruteforce R1, . . . , Rl−1 ∈ Fq[S] until finding a matrix E of rank or ≤ ol2 in
Eq. (19).

2. Repeatedly sample salt ∈ {0, 1}128 until z0 = Hash(msg∥salt) ∈ Fol2

q falls
into the column space of E, with Hash as in Section 2.2.

3. Solve a linear system to find w0 ∈ Fol2

q such that z0 = Ew0.

4. Find a full-rank matrix W ∈ Fol2×p
q , with p := o(l2−r), such that E ·W = 0.

5. Build the quadratic system

w0 = F(u) +W · y, (20)

where the variables are the coordinates of u and y.

6. In Eq. (20), perform the change of variables u = Λ
(n)
P v and multiply by the

matrix B−1 to obtain

w̃0 = H(v) + W̃ · y, (21)

where w̃0 = B−1w0 ∈ Fol2

ql and W̃ = B−1W ∈ Fol2×p
ql

.

7. Find (s,a) ∈ Fln
q × Fp

q such that (Λ
(n)
P s,a) ∈ Fnl

ql × Fp
q is a solution to the

system in Eq. (21).

8. Output a forged signature σ = (U, salt) to the message msg, where U =

[s|Λ(n)
R1

s| · · · |Λ(n)
Rl−1

s].

Remark 3. If the rank r of Ẽ at Step 1 of the forgery attack described above
is too small, then it might be possible we cannot find value salt satisfying the
requirements at Step 2. We expect to find such a value salt whenever o · (l2 −
r) log2(q) ≤ 128.

Remark 4. Even though the system in Eq. (20) has the same size as the one in
[3] 7, our attack leads to the system Eq. (21), which has a multi-homogeneous
quadratic part. This is obtained at the price of finding a particular salt in the
first step of the attack.

The complexity of our forgery attack, namely Cforge, is dominated by the
sum of the complexity of finding salt at Step 2 and the complexity Csolve of
solving the quadratic system given in Eq. (21). That is,

Cforge = b · q(l
2−r)·o · l6 + Csolve, (22)

7 Indeed, first we select a number of p quadratic equations such that its corresponding
set of homogeneous linear components in the coordinates of y are linearly indepen-
dent. We use these equations to eliminate the variables in y from the rest of the
ol2 − p equations. Since we have added a total of p = o(l2 − r) new variables, we
can specialize the same number of coordinates of u, which yields a set of ol2 − p
quadratic equations in ln− p variables.

24

where b := 2(log2 q)
2 + log2 q indicates the bit complexity of performing one

Fq-multiplication.
Note that the system in Eq. (21) has ol2 equations and ln+p variables, so the

attacker can specialize up to ln+p−ol2 variables and still expect a solution to the
system. For a random system, if the attacker specializes ln−ol2+k ≥ ln−ol2+p
variables, we expect a solution with probability qp−k, hence he must try qk−p

values in order to expect a solution. In order to preserve the multi-homogeneous
structure, we choose k to be a multiple of l greater or equal to p and specialize
ln−ol2+k variables. More precisely, the attacker runs the following steps, similar
to the algorithm described in Section 4.2:

1. Sample (sol2−k+1, . . . , sln)
t ∈ F(n−ol)l+k

q and compute

ṽ2 := Λ
((n−ol)+ k

l)

P−1 · (sol2−k+1, . . . , sln)
t;

2. Solve the system of equations

w̃0 = H(x̃1, ṽ2) + W̃ · y, (23)

for (x̃1,y) ∈ Fol2−k
ql

× Fp
q ; if no solution is found, go back to Step 1.

3. Set s = Λ
(n)
P (x̃t

1, ṽ
t
2)

t. If s ∈ Fln
q , output s. Otherwise, go to Step 1.

We propose two ways to solve the system in Eq. (23). In the case of p = 0, i.e.
r = l2, we use the multi-homogeneous XL algorithm from Section 2.5. On the
other hand, if p > 0, i.e. r = l2, we cannot directly use the multi-homogeneous XL
algorithm because the polynomials in (23) are not multi-homogeneous. However,
they do have a special structure that we can use to estimate the complexity of
solving the system. Each polynomial in (23) is quadratic. Its quadratic part is
multi-homogeneous and only involves variables from x̃1. It follows that the first
fall degree is bounded from above by Dh

md :=
∑l

i=1 di, where d1, . . . , dl ∈ Z≥0

are such that [t(d1,...,dl)]H(t1, . . . , tl) < 0 with

H(t1, . . . , tl) :=

∏
1≤i<j≤l

(
1− titj

)2o ·∏l
i=1

(
1− t2i

)o∏l
i=1(1− ti)ol−k/l

. (24)

One may be tempted, as it is common in the literature, to estimate that the
solving degree of a Gröbner Basis algorithm is close to the first fall degree, see
e.g. [5]. Such estimates are reasonable for regular or semi-regular sequences, but
in general, the two degrees can be far away, see e.g. [4]. Since the polynomials
in (23) are not regular and have a lot of structure, we performed experiments to
estimate the complexity of solving such a system using a Gröbner basis algorithm
such as F4 [8]. We observed that the solving degree in most cases was equal to
the degree predicted by the series that accumulates the corank for smaller multi-
degrees, namely

H ′(t1, . . . , tl) :=
H(t1, . . . , tl)∏l

i=1(1− ti)
. (25)

25

We will call this degree Dmd :=
∑l

i=1 di, where d1, . . . , dl ∈ Z≥0 are such that
[t(d1,...,dl)]H ′(t1, . . . , tl) < 0. In all the experiments we ran, the first fall degree
was bounded from above by Dh

md, and in most cases, the solving degree was
less or equal to Dmd. Hence, the rows and columns of the largest matrix in the
Gröbner basis computation were bounded by(

ol2 − k + p+Dmd

Dmd

)
. (26)

Parameters
eqns vars Dh

md Dmd Dff Dsol D
h
reg Dregl o r p k

2 8 1 24

24*

32

32 3 3 3 6 23 27
26 30 2 3 2 3 15 17
28* 28 2 2 2 3 12 13
30 26 2 2 2 2 10 11

2 8 2 16

18*

32

30 4 4 4 5 15 17
20 28 3 4 3 4 12 13
22 26 3 3 3 3 10 11
24 24 3 3 3 3 8 9
26 22 2 3 2 3 7 8
28 20 2 2 2 2 6 6
30 18 2 2 2 2 5 6

3 3 5 12

15

27

24 3 4 3 4 11 12
18 21 3 3 3 3 8 9
21 18 2 3 2 3 6 7
24 15 2 2 2 2 5 5

3 3 6 9

15

27

21 3 4 3 4 8 9
18 18 3 3 3 3 6 7
21 15 2 3 2 3 5 5
24 12 2 2 2 2 4 4

3 4 5 16
21

36
31 4 4 4 4 12 13

24 28 3 4 3 3 10 10

Table 5. Experimental results to test the validity of the complexity bound of our
forgery attack in the non-homogeneous case. Each row corresponds to one experiment
where we generate a random SNOVA key for a parameter set and run the forgery attack
described in Section 5.2. The column Dmd is our theoretical upper bound for the first
degree based on Eq. (24), Dmd is as defined in (25). The next two columns report the
first fall and the solving degree of the F4 algorithm while solving Eq. (21). Vars and
eqns give the total number of variables and equations of each system and Dh

reg, Dreg

are the degree of regularity of a semi-regular sequence of that size in the homogeneous
and non-homogeneous cases.

Tables 5 and 6 compare our theoretical estimates for the first fall and solving
degree with the experimental results. The few cases in which the solving degree

26

was greater than Dmd, are marked with a *. Notice that these are cases in
which the number of variables is very close to the number of variables. The table
also presents the number of rows and columns of the system and the degree
of regularity for a semi-regular sequence of this size. The large gap between
the solving degree and the degree of regularity shows that the Gröbner basis
algorithm indeed takes advantage of the multi-homogeneous structure of the
system.

Fig. 2 compares the complexity estimates of the Gröbner step with the com-
plexity observed in experiments solving that step. The experimental cost is the
number of clock cycles used by the F4 implementation of Magma, and it is
obtained using the function ClockCycles(). The theoretical estimates are cal-
culated as the complexity of performing Gaussian elimination in a matrix of size
given by Eq. (26), where ω is the linear algebra constant.

Table 7 shows the estimated complexity of our approach in comparison to [3].
The estimates of our approach sum the cost of steps 1, 2 and 6, which dominate
the complexity of the attack. The estimates for Step 1 are taken from [3]. The
estimates for Step 2 are computed as indicated in Eq. (22). We estimate the
complexity of Step 6 as the cost of solving a linear system over Fql of the size
given by (26). We present two estimates with different linear algebra constants
ω = 2 and ω = 2.81 to illustrate the complexity range depending on the im-
plementation. The experiments we presented in Fig. 2 suggest that the actual
complexity of an efficient implementation is closer to the values estimated with
ω = 2. In that case, our attack is always faster than Beullens’ and puts most
parameter sets below the security threshold defined by NIST. This is particu-
larly relevant for parameters with l = 4, since they allow the smallest keys and
signatures, and they are not significantly affected by the attack in [3].

27

18 20 22 24 26
20

30

40

50

k

lo
g
2
(c
o
st
)

l = 2, q = 16, o = 8, r = 2

21 24 27 30 33

20

30

40

50

k

lo
g
2
(c
o
st
)

l = 3, q = 16, o = 4, r = 5

12 16 20 24
20

30

40

50

60

70

k

lo
g
2
(c
o
st
)

l = 4, q = 16, o = 2, r = 11

Theory (w = 2.81)
Theory (w = 2)
Experimental

Fig. 2. Complexity of the Gröbner basis computation step; Theory vs Practice.

28

Parameters
eqns vars Dh

md Dmd Dff Dsol D
h
reg Dregl o r p k

3 4 5 16
27

36
25 3 3 3 3 8 8

30 22 2 3 2 3 6 7
33 19 2 2 2 2 5 5

3 4 6 12

21

36

27 4 4 4 4 9 10
24 24 3 4 3 3 7 8
27 21 3 3 3 3 6 6
30 18 2 3 2 2 5 5
33 15 2 2 2 2 4 4

4 2 11 10

12

32

30 5 7 5 7 15 17
16 26 4 5 4 5 10 11
20 22 3 4 3 4 7 8
24 18 3 3 3 3 5 6
28 14 2 3 2 2 4 4

4 2 12 8

16

32

24 4 5 4 4 8 9
20 20 3 4 3 3 6 6
24 16 3 3 3 3 5 5
28 12 2 3 2 2 3 4

28 35 4 5 4 5 10 11
4 3 11 15 32 48 31 3 4 3 4 8 9

36 27 3 3 3 3 6 7

28 32 4 5 4 4 9 9
4 3 12 12 32 48 28 3 4 3 4 7 7

36 24 3 3 3 3 6 6

4 5 11 25 56 80 49 4 4 4 4 10 11

Table 6. Experimental results to test the validity of the complexity bound of our
forgery attack in the non-homogeneous case. Each row corresponds to one experiment
where we generate a random SNOVA key for a parameter set and run the forgery attack
described in Section 5.2. The column Dmd is our theoretical upper bound for the first
degree based on Eq. (24), Dmd is as defined in (25). The next two columns report the
first fall and the solving degree of the F4 algorithm while solving Eq. (21). Vars and
eqns give the total number of variables and equations of each system and Dh

reg, Dreg

are the degree of regularity of a semi-regular sequence of that size in the homogeneous
and non-homogeneous cases.

29

Parameters
attack in [3]

our attack
v o q l r w = 2.81 w = 2

3 137 145 109
37 17 16 2 2 97 N.A. N.A.

1 45 N.A. N.A.

7 150 171 123
25 8 16 3 6 130 131 110

5 112 142 142

13 167 184 139
24 5 16 4 12 156 166 125

11 145 155 117

3 189 205 149
56 25 16 2 2 132 N.A. N.A.

1 68 N.A. N.A.

7 194 216 158
49 11 16 3 6 169 N.A. N.A.

5 143 N.A. N.A.

13 253 264 199
37 8 16 4 12 235 250 185

11 218 N.A. N.A.

3 240 N.A. N.A.
75 33 16 2 2 167 N.A. N.A.

1 88 N.A. N.A.

7 253 276 206
66 15 16 3 6 221 N.A. N.A.

5 187 N.A. N.A.

13 307 347 256
60 10 16 4 12 285 N.A. N.A.

11 264 N.A. N.A.

Table 7. Bit complexity estimates of the new forgery attack against SNOVA in Sec-
tion 5.2. N.A. indicates that our algorithm is not expected to work for the particular
parameters, as explained in Remark 3. Beullens’ attack cost is taken from [3].

30

References

1. Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach for solv-
ing multivariate systems over finite fields. Journal of Mathematical Cryptology,
3(3):177–197, 2009.

2. Ward Beullens. Improved cryptanalysis of UOV and Rainbow. In Anne Canteaut
and François-Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT
2021, pages 348–373, Cham, 2021. Springer International Publishing.

3. Ward Beullens. Improved cryptanalysis of SNOVA. Cryptology ePrint Archive,
Paper 2024/1297, 2024.

4. Alessio Caminata and Elisa Gorla. Solving degree, last fall degree, and related
invariants. Journal of Symbolic Computation, 114:322–335, 2023.

5. Jintai Ding and Dieter Schmidt. Solving Degree and Degree of Regularity for Poly-
nomial Systems over a Finite Fields, pages 34–49. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

6. Andre Esser, Javier Verbel, Floyd Zweydinger, and Emanuele Bellini. Sok: Cryp-
tographicestimators – a software library for cryptographic hardness estimation. In
Proceedings of the 19th ACM Asia Conference on Computer and Communications
Security, ASIA CCS ’24, page 560–574, New York, NY, USA, 2024. Association
for Computing Machinery.

7. Jean-Charles Faugère and Jules Svartz. Gröbner bases of ideals invariant under a
commutative group: the non-modular case. In Proceedings of the 38th International
Symposium on Symbolic and Algebraic Computation, ISSAC ’13, page 347–354,
New York, NY, USA, 2013. Association for Computing Machinery.

8. Jean-Charles Faugére. A new efficient algorithm for computing gröbner bases (f4).
Journal of Pure and Applied Algebra, 139(1):61–88, 1999.

9. Yasuhiko Ikematsu and Rika Akiyama. Revisiting the security analysis of SNOVA.
Proceedings of the 11th ACM Asia Public-Key Cryptography Workshop, 2024.

10. Peigen Li and Jintai Ding. Cryptanalysis of the SNOVA signature scheme. In
International Conference on Post-Quantum Cryptography, pages 79–91. Springer,
2024.

11. Shuhei Nakamura, Yasuhiko Ikematsu, Yacheng Wang, Jintai Ding, and Tsuyoshi
Takagi. New complexity estimation on the Rainbow-Band-Separation attack. The-
oretical Computer Science, 896:1–18, 2021.

12. Shuhei Nakamura, Yusuke Tani, and Hiroki Furue. Lifting approach against the
SNOVA scheme. Cryptology ePrint Archive, Paper 2024/1374, 2024.

13. Shuhei Nakamura, Yacheng Wang, and Yasuhiko Ikematsu. A new analysis
of the Kipnis-Shamir method solving the minrank problem. IEICE Transac-
tions on Fundamentals of Electronics, Communications and Computer Sciences,
E106.A(3):203–211, 2023.

14. National Institute of Standards and Technology. Call for additional digital signa-
ture schemes for the post-quantum cryptography standardization process. NIST
Web Page, 2022. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/

documents/call-for-proposals-dig-sig-sept-2022.pdf.

15. Ray Perlner and Daniel Smith-Tone. Rainbow band separation is better than we
thought. Cryptology ePrint Archive, Paper 2020/702, 2020.

16. Peter W Shor. Algorithms for quantum computation: discrete logarithms and fac-
toring. In Proceedings 35th annual symposium on foundations of computer science,
pages 124–134. Ieee, 1994.

31

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf

17. Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, 2005. https://shoup.net/ntb/ntb-v2.pdf.

18. Lih-Chung Wang, Chun-Yen Chou, Jintai Ding, Yen-Liang Kuan, Jan Adriaan
Leegwater, Ming-Siou Li, Bo-Shu Tseng, Po-En Tseng, and Chia-Chun Wang. A
note on the SNOVA security. Cryptology ePrint Archive, Paper 2024/1517, 2024.

19. Lih-Chung Wang, Po-En Tseng, Yen-Liang Kuan, and Chun-Yen Chou. A simple
noncommutative UOV scheme. Cryptology ePrint Archive, Paper 2022/1742, 2022.

32

https://shoup.net/ntb/ntb-v2.pdf

	Improved Attacks for SNOVA by Exploiting Stability under a Group Action

