
Stealth and Beyond: Attribute-Driven
Accountability in Bitcoin Transactions

Alberto Maria Mongardini1⋆, Daniele Friolo1⋆, and Giuseppe Ateniese2

1 Department of Computer Science, Sapienza University of Rome, Rome, Italy
{mongardini, friolo}@di.uniroma1.it

2 Department of Computer Science, George Mason University, Fairfax, VA, USA
ateniese@gmu.edu

Abstract. Bitcoin enables decentralized, pseudonymous transactions,
but balancing privacy with accountability remains a challenge. This pa-
per introduces a novel dual accountability mechanism that enforces both
sender and recipient compliance in Bitcoin transactions. Senders are re-
stricted to spending Unspent Transaction Outputs (UTXOs) that meet
specific criteria, while recipients must satisfy legal and ethical require-
ments before receiving funds. We enhance stealth addresses by integrat-
ing compliance attributes, preserving privacy while ensuring policy ad-
herence. Our solution introduces a new cryptographic primitive, Identity-
Based Matchmaking Signatures (IB-MSS), which supports streamlined
auditing. Our approach is fully compatible with existing Bitcoin infras-
tructure and does not require changes to the core protocol, preserving
both privacy and decentralization while enabling transaction auditing
and compliance.

1 Introduction

Bitcoin has transformed financial transactions by enabling pseudonymous, de-
centralized exchanges without intermediaries. This model empowers users to
manage assets autonomously and conduct global transactions freely. However,
as cryptocurrency adoption grows, so too does the tension between privacy and
regulatory compliance—particularly with Anti-Money Laundering (AML) and
Know Your Customer (KYC) requirements. While Bitcoin offers pseudonymity,
its transparent public ledger exposes transaction histories to public scrutiny,
making it increasingly difficult to preserve user privacy while adhering to legal
standards.

To address privacy concerns, stealth addresses [14,25,30] were introduced.
These allow recipients to generate one-time-use addresses that are not directly
linked to their public Bitcoin addresses. This obfuscation ensures that third
parties cannot easily trace the recipient of a transaction, providing a layer of

⋆ A. M. Mongardini, D. Friolo —The work was carried out whilst the authors were
visiting George Mason University, Fairfax, VA, USA. The two authors contributed
equally.

privacy by breaking the linkability of transactions. Stealth addresses thus help
preserve recipient anonymity within Bitcoin’s inherently transparent system.

However, while stealth addresses enhance privacy, they fall short in address-
ing the equally critical need for accountability. They do not provide mechanisms
to ensure that transactions comply with legal or ethical standards, nor can they
enforce policy-based criteria in complex regulatory environments. For example:

– Donations to organizations in restricted regions: NGOs operating in
politically sensitive regions may need to ensure that donations come from
legitimate, legally compliant sources to avoid funding from illicit entities.
Traditional stealth addresses ensure donor privacy but lack the ability to
verify that the funds originate from vetted and legally approved sources.
This leaves the NGO vulnerable to unknowingly accepting illegal donations,
exposing it to serious legal risks.

– Compliance in cross-border remittances: Individuals sending remit-
tances across borders often face regulatory scrutiny, especially in cases in-
volving countries under sanctions or financial restrictions. For example, send-
ing funds to a sanctioned country could violate international regulations.
While stealth addresses can maintain privacy by hiding recipient details,
they provide no way to enforce compliance with such regulations, poten-
tially leading to unlawful transactions.

– Ensuring AML compliance for cryptocurrency exchanges: Cryp-
tocurrency exchanges must comply with AML/KYC regulations, which re-
quire them to validate the identities of both senders and recipients. Tradi-
tional stealth addresses obscure participants for privacy but do not allow for
built-in verification of AML/KYC compliance, leaving exchanges struggling
to balance regulatory adherence with user privacy.

– Private investments in regulated markets: Investors participating in
private transactions, such as venture capital investments or equity crowd-
funding, often require anonymity for various reasons (e.g., protecting strate-
gic financial interests). However, these transactions must comply with secu-
rities laws, which require verification of accredited investor status or legal
financial limits. Traditional stealth addresses provide anonymity but lack
mechanisms to ensure that only accredited or verified investors participate
in these transactions.

In response to these challenges, we propose an enhanced form of stealth ad-
dresses that goes beyond privacy protection to incorporate accountability. Our
solution integrates a novel cryptographic primitive (Identity-Based Matchmak-
ing Signatures) into stealth addresses, embedding compliance attributes directly
within the transaction. This ensures that both privacy and accountability are
preserved.

Specifically, our approach introduces a dual accountability mechanism:

1. Sender Accountability: The recipient can only spend funds if the sender
has met specific criteria, such as originating from a permitted country or
complying with AML regulations.

2

2. Recipient Accountability: The sender can ensure that the recipient sat-
isfies legal or ethical requirements, preventing the transfer of funds to sanc-
tioned or restricted entities.

Our solution integrates seamlessly with the existing Bitcoin infrastructure,
requiring no changes to the Bitcoin Core protocol. The only addition is a Certi-
fication Authority (CA), which issues compliance certificates to users, verifying
that both senders and recipients meet the necessary standards. The CA can be
implemented in centralized or decentralized formats, depending on the regula-
tory context or user preference.

Our contributions. This paper introduces a comprehensive framework for
enhancing accountability in Bitcoin transactions through the use of stealth ad-
dresses with attributes, underpinned by a novel cryptographic primitive, Identity-
Based Matchmaking Signatures (IB-MSS). Our key contributions are as follows:

– We introduce the IB-MSS primitive, which integrates dual accountability
attributes into stealth addresses for both the sender and the recipient. In-
spired by Matchmaking Encryption (ME) [6], where decryption requires both
parties’ attributes to satisfy each other’s policies, our IB-MSS adapts this
concept to signatures. This enables signature verification only when both
the sender’s and recipient’s attributes fulfill each other’s specified policies,
ensuring dual accountability.
Building upon non-interactive key distribution [20] and digital signature
schemes, we present the detailed construction of IB-MSS in Section 4.

– We explore the integration of a Certification Authority (CA) to validate
sender and recipient attributes. We discuss centralized and decentralized
implementations of this authority in Section 4.3.

– We provide, in Section 5, an implementation of stealth addresses with at-
tributes using IB-MSS and benchmark its performance. Our implementa-
tion is inspired by Cerulli et al.’s work on verifiably encrypted threshold key
derivation [10].

Moreover, in Section 2.1, we also introduce potential enhancements, such as
time-locked stealth addresses and stealth transactions with embedded messages.

1.1 Notation

Let N be the set of all natural numbers; for n ∈ N, we write [n] to denote the set
{1, . . . , n}. We use calligraphic letters to denote sets (such as X). Throughout
the paper, we use the abbreviation PPT to refer to probabilistic polynomial
time. Given a PPT algorithm A, we denote by A(x) the probability distribution
of the output of A when run on input x. If algorithm A has oracle access to a set
of oracles O, we denote by QO the set of queries made by A to an oracle O ∈ O.

We use the symbol := to assign the output value of the algorithm on the right-
hand side to the variable on the left-hand side. When x is chosen uniformly from

3

a set X , we write x←$ X . If A is an algorithm, we write y←$ A(x) to denote a
run of A on input x with output y and random tape r←$ {0, 1}λ.

We denote the security parameter by λ ∈ N, and an arbitrary positive poly-
nomial by poly(·). Every algorithm takes the security parameter λ as input (in
unary, i.e., 1λ). When an algorithm has multiple inputs, 1λ is typically omit-
ted. A function ν : N → R is called negligible if, for every positive polynomial
poly(·) and for all sufficiently large λ, it holds that ν(λ) ≤ 1

poly(λ) . We use negl(λ)

to denote an unspecified negligible function. In the remainder of the paper, we
consider the function e : G1 ×G1 → G2 as a type-1 pairing.

2 Stealth addresses

Bitcoin’s public ledger makes all transactions visible, exposing user activity to
analysis. This compromises the pseudonymity of traditional addresses, as they
can be traced back to individuals. Stealth addresses counter this by breaking the
visible link between sender and recipient.

Basic Stealth Address Protocol (BSAP) Introduced in 2011 [14], stealth
addresses create temporary, one-time-use public addresses to enhance transac-
tion privacy. For simplicity, we use multiplicative notation. Let G be a group of
prime order p with generator g. Alice (the sender) and Bob (the receiver) have
public/secret key pairs (pkA, skA) and (pkB, skB), where pkA = ga, pkB = gb,
skA = a, and skB = b for a, b←$ Zp. Using the Diffie-Hellman protocol, they
establish a shared secret k:

– k = H(gskAskB) = H(gab) = H(pkaB) = H(pkbA),
– Alice uses gk as the recipient’s address,
– Bob spends funds sent to gk using k as his private key.

While this protocol provides privacy by generating one-time-use addresses,
the static nature of the address reduces privacy over multiple transactions. Both
parties also share the ability to compute the private key, which limits security.

Improved Stealth Address Protocol (ISAP) Proposed in 2013 [25] and
adopted in Bitcoin in 2014 [30], ISAP improves upon BSAP by introducing
more dynamic addresses:

– Alice generates a fresh key pair (r,R), where R = gr and r←$ Zp. She
computes k = H(pkrB) = H(grb) = H(Rb),

– She computes Q = gk · pkB and creates a transaction with Q and embeds
R (either in OP RETURN or as part of the transaction signature’s random-
ness [34]) to ensure stealthiness,

– Bob monitors the blockchain for transactions containing R′, computes k′ =
H(R′b), and reconstructs the recipient address Q′ = gk

′ · pkB. If Q′ = Q, he
can spend the transaction using k′ + b.

4

While ISAP improves privacy by creating fresh addresses, Bob must use his
private spending key to monitor the blockchain, which introduces a security risk.
Although Bob does not directly share his private spending key with any third
party, actively using it for blockchain scanning increases the risk of exposure.
Indeed, repeated use of his sensitive key makes it vulnerable to potential threats
such as software bugs, memory leaks, or malware.

Dual Key Stealth Address Protocol (DKSAP) It mitigates ISAP’s secu-
rity concerns by introducing two separate key pairs for tracking and spending:

– Bob holds two key pairs: a tracking key pair (ptkB, stkB) with stkB = s and
ptkB = gs, and a spending key pair (pkB, skB),

– Alice generates (r,R) and computes k = H(ptkrB),
– She calculates Q = gk · pkB and creates a transaction with Q and R,
– Bob monitors the blockchain using the tracking key stkB to find R′, computes

k′ = H(R′s), and reconstructs Q′ = gk
′ · pkB. If Q′ = Q, Bob can spend the

transaction using his spending key.

By separating the tracking and spending keys, Bob can outsource transac-
tion monitoring without compromising his private spending key, enhancing both
security and privacy.

2.1 Enhancements of Stealth Addresses

While stealth addresses enhance privacy in Bitcoin, our work extends their func-
tionality with additional cryptographic features. In this subsection, we introduce
our enhancements to stealth addresses, which serve as an intermediate step to-
ward presenting our main contribution. We integrate concepts such as Identity-
Based Encryption (IBE) and time-lock mechanisms, enabling the inclusion of
hidden information within stealth addresses to support more advanced use cases.

A practical application of this is the creation of time-locked stealth trans-
actions, where cryptographic puzzles are embedded in the shared key k. These
puzzles ensure that the recipient can only spend the transaction after a certain
time has passed. For example:

k = H(pkrB, “101101”) = H(gbr, “101101”).

where pkB is the recipient’s public key, r is a random value chosen by the
sender, and gbr is the Diffie-Hellman shared key. The value “101101” serves as
a time-lock condition.

Unlike traditional time-lock methods, where the lock time is visible, this ap-
proach embeds the time constraint within the stealth address. Only the recipient,
who computes k, can identify the time-lock, preserving privacy while preventing
censorship due to visible lock times.

To further refine time control, we can use a puzzle based on repeated squar-
ing [24]:

5

H(pkrB, 2
e) = H(gbr, 2e),

where e = 2t mod ϕ(n), with t representing the desired lock time, and n = pq
being the product of two large primes p and q chosen by Alice. This ensures that
only after time t can the recipient unlock and spend the funds.

The same cryptographic puzzle string used in time-locked addresses can dou-
ble as a covert message, ensuring confidentiality. This dual-use of k for time-
locking and discreet communication allows only the intended recipient to decode
and access the message, such as “42”, for example:

k = H(pkrB, “42”) = H(gbr, “42”).

Incorporating IBE into k adds further flexibility by allowing identity-specific
transactions. In IBE, a sender encrypts data so that only a recipient matching
a specific identity (e.g., an email address) can decrypt it. The receiver needs a
decryption key tied to their identity, issued by a trusted authority.

In the Boneh-Franklin IBE scheme [8], the trusted authority generates a
decryption key for the identity id as H ′(id)s, where s is the authority’s secret
key. The sender, knowing the recipient’s identity id and the authority’s master
public key mpk = gs, encrypts the message as follows:

c = (gt,m⊕ e(H ′(id), gs)t),

where t is a random value. The recipient, with the decryption key H ′(id)s, can
retrieve the message m by using the pairing properties:

e(H ′(id)s, gt) = e(H ′(id), gs)t.

By adapting this IBE structure, the shared key k can be modified as follows:

k = H(pkrB, e(H
′(id), gs)r) = H(gbr, e(H ′(id)s, gr)).

This adaptation allows the sender to restrict the transaction to a specific
recipient identity, providing additional security and control. In the context of
IBE, the identity id can represent not just simple identifiers like email addresses,
but also complex attributes or conditions required for the recipient to access
the funds. For example, id could be defined as id = “manager∧ after Jan 2028”,
meaning the recipient must be a manager and can only access the funds af-
ter January 2028. In this case, the trusted authority issues the decryption key
only when both conditions are met. This attribute-based approach extends the
flexibility of stealth addresses, enabling conditional access based on roles, time
constraints, or other attributes, making them suitable for sophisticated use cases.

This solution requires no changes to Bitcoin’s Core or transaction structure.
The recipient runs a program, similar to current stealth address handling, to
identify transactions they can decrypt. The only addition is an external author-
ity for issuing decryption keys when the conditions are satisfied. This ensures
enhanced privacy and accountability without disrupting standard transaction
processes.

6

3 Related Works

Considerable progress has been made in formalizing stealth addresses and im-
plementing efficient solutions for Bitcoin and Ethereum.

Formalization. Stealth addresses have seen significant formalization efforts, be-
ginning with the work of Fleischhacker et al. [13], who introduced Digital Sig-
natures with Re-Randomizable Keys. This model established a strong unforge-
ability notion, allowing adversaries to query a key re-randomization oracle while
maintaining security.

Meiklejohn and Mercer [19] proposed stealth keys, where a shared secret and
nonce allow one-time public and private key derivation, with indistinguishability
guarantees between derived and freshly generated keys. Fauzi et al. [11] extended
this model to support Updatable Public Keys, ensuring that public keys could
be refreshed without revealing whether they were newly generated or updated,
further strengthening the privacy of stealth addresses.

Backes et al. [7] introduced Signatures with Flexible Keys, allowing users to
transform public keys into equivalent forms, while maintaining indistinguishabil-
ity, even when an adversary has access to the randomness used in key generation.

Liu et al. [16] identified a vulnerability in deterministic wallets that could
expose the master secret key if a single one-time key were compromised. They
proposed Key-Insulated and Privacy-Preserving Signatures (PDPKS) to address
key exposure risks. This work was extended by Pu et al. [23], who introduced
Stealth Signatures, providing stronger protection against key exposure and of-
fering a post-quantum secure construction. Our IB-MSS design builds on these
advancements, particularly the formalization of stealth addresses.

A recent approach to enhance recipient privacy is the Silent Payments pro-
tocol [15]. It operates similarly to stealth addresses but differs in how the one-
time-use address is constructed. Instead of using her private key skA, Alice uses
the private key corresponding to one of the UTXOs used in the payment. This
eliminates the need for the nonce R required in ISAP, ensuring that the stealth
address remains dynamic. While Silent Payments remove the need for R, the
recipient still needs to monitor the blockchain to identify transactions sent to
them. Like the original stealth address protocols, Silent Payments use the Diffie-
Hellman protocol. Thus, the enhancements we introduce in Sec. 2.1, as well as
the Accountable Stealth Address with Attributes protocol (Sec. 4), can also be
applied to Silent Payments.

Implementation. The development of stealth addresses for blockchains has also
progressed. Wahrstätter et al. [33] introduced the BaseSap protocol, designed
for programmable blockchains, using the Secp256k1 elliptic curve. Their imple-
mentation leverages view tags to optimize transaction parsing, enabling more
efficient handling of stealth addresses in decentralized applications.

Recent privacy-focused efforts, such as Privacy Pools by Buterin et al. [9],
proposed in response to sanctions on Tornado Cash [31], further highlight the
need for privacy-preserving systems that allow users to prove compliance with
legal frameworks. Privacy Pools aim to enable users to demonstrate that their

7

funds are not connected to illicit activities while maintaining privacy. However,
challenges in preventing illegal transactions through privacy tools remain [27].

4 Accountable Stealth Addresses with Attributes

Stealth addresses protect identities but cannot enforce who may pay whom. We
close that gap by folding a short attribute certificate—for instance “citizen of
X”—directly into the Diffie–Hellman-style secret that a stealth address already
uses. No extra bytes appear on–chain; the policy is evaluated inside the shared
secret k.

Running example. Bob accepts coins only from citizens of X, whereas Alice will
pay only citizens of Y . A certification authority (CA) issues long-lived credentials
CX = H1(X)s and CY = H1(Y)s, where s is the CA’s master secret and H1

hashes its input into the pairing group.

Creating the payment. Before funding the output, Alice computes

k = H2

(
e(CX , H1(Y))

)
and derives a one-time public key from k; the resulting script is an ordinary
SegWit OP 0 <20-byte hash> (P2WPKH).

Spending it. When Bob scans the chain, he evaluates

k = H2

(
e(H1(X), CY)

)
.

The two values coincide only if both policies hold; otherwise, the output is either
invisible (to Bob) or unspendable (to Alice).

Discouraging credential resale. A raw certificate such as H1(citizen of X)s is
portable. To curb resale, the CA can apply one of two off-chain restrictions that
leave the on-chain script unchanged:

– Hardware anchoring. The certificate is sealed in a “no-export” secure
element (e.g., FIDO2 token [18], Trusted Platform Module (TPM) [21], or
phone enclave [5,28]). The chip may also store a private NotAfter date and/or
a small usage counter; once either limit is reached, it refuses further calls.
Reselling, therefore, requires handing over the physical token, which stops
working after its internal quota or deadline.

– Optional time-window rotation. If hardware anchoring is unavailable,
the CA can simply re-publish the common “citizen-of-X” certificate on a
fixed schedule (e.g., once per month). A leaked key then dies automatically
when the window closes. This measure only shortens the resale lifetime; the
original owner could still leak the next month’s key, so it should be viewed
as a stop-gap rather than a complete anti-resale solution.

8

Formalization. The scheme instantiates an Identity-Based Matchmaking Stealth
Signature (IB-MSS), adapted from the stealth-signature framework of Pu et al. [23].
IB-MSS provides correctness, unlinkability and unforgeability, while the on-chain
transaction remains byte-for-byte identical to a standard SegWit P2WPKH out-
put.

4.1 Identity-Based Matchmaking Stealth Signatures

We define a new primitive called Identity-Based Matchmaking Stealth Signatures
(IB-MSS). In IB-MSS, a sender generates a one-time public key using a retrieval
key related to their identity, obtained from a Public Key Generator (PKG),
and coupled with the receiver’s identity. Symmetrically, the receiver can recover
the one-time secret key related to the same one-time public key by using their
retrieval key, also obtained from the PKG, and coupled with the sender’s identity.
The formalization of this concept is inspired by the former work on Matchmaking
Encryption by Ateniese et al. [6]. We follow a similar algorithmic structure.

We formalize two main properties: unforgeability and unlinkability. Unforge-
ability ensures that no external adversary can forge a signature verifiable from
such a one-time public key. Unlinkability ensures that no external adversary can
distinguish between a public key generated from a standard digital signature
scheme’s key generation algorithm and a one-time public key generated from
the IB-MSS, even if the respective one-time secret key is leaked.

The description of IB-MSS follows. We implicitly assume that all algo-
rithms after KGen and before Sign take mpk as input.

An IB-MSS scheme Π with message space M is composed of a tuple of al-
gorithms (MKGen,KGen,SKGen,RKGen,OPKGen,OSKGen,Sign,Vrfy), described
as follows:

MKGen(1λ): On input the security parameter 1λ, the randomized master key
generator outputs a master public key mpk, and a master secret key msk.

KGen(1λ): On input the security parameter 1λ, the randomized key generation
algorithm outputs a public/private key pair (pk, sk).

SKGen(msk, σ): On input the master secret key msk and a sender identity σ ∈
{0, 1}∗, the sender key generator outputs a sender retrieval key srk.

RKGen(msk, ρ): On input the master secret key msk and a receiver identity ρ ∈
{0, 1}∗, the receiver key generator outputs a receiver retrieval key rrk.

OPKGen(srk, pk, ρ): On input a sender retrieval key srk, the receiver public key
pk and a receiver identity ρ ∈ {0, 1}∗, the one-time public key generator
outputs a one-time public key opk.

OSKGen(opk, rrk, sk, σ): On input a one-time public key opk, a receiver retrieval
key rrk, a receiver secret key sk and a sender identity σ ∈ {0, 1}∗, the one-
time secret key generator outputs a one-time secret key osk, or ⊥ indicating
failure.

Sign(osk,m): On input a one-time secret key osk and a message m ∈ M, the
randomized signing algorithm outputs a signature τ .

9

Vrfy(opk,m, τ): On input a one-time public key opk, a message m ∈ M, and a
signature τ , the verification algorithm outputs 1 (valid) or 0 (invalid).

Definition 1 (Correctness). An Identity-Based Matchmaking Stealth Signa-
ture scheme is correct if, for every security parameter λ, every message m ∈M,
and every identities σ, ρ ∈ {0, 1}∗,

Pr

Vrfy(opk,m, τ) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(mpk,msk)←$ MKGen(1λ);
(pk, sk)←$ KGen(1λ);
srk := SKGen(msk, σ);
rrk := RKGen(msk, ρ);
opk := OPKGen(srk, pk, ρ);
osk := OSKGen(opk, rrk, sk, σ);
τ ←$ Sign(osk,m)

= 1.

Definition 2 (Unforgeability). An Identity-Based Matchmaking Stealth Sig-
nature scheme Π satisfies existential unforgeability w.r.t. chosen message attacks

if, for all valid PPT adversaries A, Pr
[
EUFCMAΠ

A (λ) = 1
]
≤ negl(λ).

Let O = {SKGen(msk, ·),RKGen(msk, ·),OSKGenO,SignO}. The experiment
proceeds as follows:

EUFCMAΠ
A (λ)

(mpk,msk)←$ MKGen(1λ)

(pk, sk)←$ KGen(1λ)

QSignO := ∅
QOSKGenO := ∅

(i∗,m∗, τ∗)←$ AO(mpk, pk)

(opk∗, osk∗, ·, σ∗, ρ∗) := QOSKGenO[i∗]

b0 := Vrfy(opk∗,m∗, τ∗) = 1

b1 := (i∗,m∗) /∈ QSignO

b2 := (opk∗, osk∗, true, σ∗, ρ∗) /∈ QOSKGenO

return b0 ∧ b1 ∧ b2

OSKGenO(opk, flag, σ, ρ)
rrk := RKGen(msk, ρ)

osk := OSKGen(opk, rrk, sk, σ)

if opk = pk then osk := sk

QOSKGenO := QOSKGenO ∪ {(opk, osk, flag, σ, ρ)}
if flag = true then return osk

else return 1

SignO(i,m)

(opk, osk) := QOSKGenO[i]

τ ←$ Sign(osk,m)

QSignO := QSignO ∪ {(i,m)}
return τ

The adversary A is valid if one of the following two conditions is satisfied:

– (Unforgeability w.r.t the attributes) for all σ ∈ QSKGen(msk,·), ρ ∈ QRKGen(msk,·),
and all (i,m) ∈ QSignO we have that, given QOSKGenO[i] = (·, ·, ·, σ′, ρ′), it
holds that σ′ ̸= σ, ρ′ ̸= ρ. Moreover, whenever (·, ·, ·, σ′, ρ′) ∈ QOSKGenO we
must have (·, ·, ·, ρ′, σ′) /∈ QOSKGenO.

– (Unforgeability w.r.t the public key) (·, ·, true, ·, ·) /∈ QOSKGenO.

10

Definition 3 (Unlinkability). An Identity-Based Matchmaking Stealth Sig-
nature scheme Π satisfies unlinkability if, for all valid PPT adversaries A =

(A0,A1), Pr
[
UNLINKΠ

A (λ) = 1
]
≤ 1

2 + negl(λ).

Let O = {SKGen(msk, ·),RKGen(msk, ·),OSKGenO,SignO}. UNLINKΠ
A (λ) fol-

lows:

UNLINKΠ
A (λ)

(mpk,msk)←$ MKGen(1λ)

(pk, sk)←$ KGen(1λ)

b←$ {0, 1}
QOSKGenO := ∅

(σ∗, ρ∗, st)←$ AO
0 (mpk, pk)

(opk0, osk0)←$ KGen(1λ)

srk := SKGen(msk, σ∗)

rrk := RKGen(msk, ρ∗)

opk1 := OPKGen(srk, pk, ρ∗)

osk1 := OSKGen(opk1, rrk, sk, σ
∗)

b′←$ AO
1 (opkb, st)

return b
?
= b′

OSKGenO(opk, flag, σ, ρ)
rrk := RKGen(msk, ρ)

osk := OSKGen(opk, rrk, sk, σ)

if opk = pk then osk := sk

if opk = opkb then osk := oskb

QOSKGenO := QOSKGenO ∪ {(opk, osk, flag, σ, ρ)}
if flag = true then return osk

else return 1

SignO(b∗, i,m)

if i = −1 then

τ ←$ Sign(oskb,m)

else

(opk, osk, ·, ·, ·) = QOSKGenO[i]

τ ←$ Sign(osk,m)

return τ

The adversary A is valid if one of the following two conditions is satisfied:

– (Unlinkability w.r.t. attributes) for all σ′ ∈QSKGen and ρ′ ∈QRKGen we have
σ′ ̸= σ∗ ̸= ρ′ and σ′ ̸= ρ∗ ̸= ρ′; additionally (·, ·, ·, σ∗, ρ∗) /∈ QOSKGenO and
(·, ·, ·, ρ∗, σ∗) /∈ QOSKGenO.

– (Unlinkability w.r.t. the public key) (·, ·, true, ·, ·) /∈ QOSKGenO.

4.2 IB-MSS from IB-NIKD

We now show how to instantiate IB-MSS from any Identity-Based Non-Interactive
Key Distribution (IB-NIKD) scheme as defined by Paterson and Srinivasan [20],
in combination with an EUF-CMA signature scheme where pk = gsk, g is a
generator of a group G of order q, and sk←$ Zq.

IB-NIKD Definition [20]. Let SHK be a shared key space. An IB-NIKD scheme
Π is a tuple of algorithms (Setup,Extract,SharedKey) described as follows:

Setup(1λ): On input the security parameter, this randomized algorithm outputs
a master public key mpk and a master secret key msk.

Extract(mpk,msk, id) : On input the master public key mpk, the master secret
key msk, and an identifier id ∈ {0, 1}∗, outputs a private key rkid.

11

SharedKey(mpk, rkidA , idB): On input the master public key mpk, a private key
rkidA , and an identifier idB ∈ {0, 1}∗, outputs a shared key k ∈ SHK.

Definition 4 (Correctness). An IB-NIKD is correct if, ∀idA, idB ∈ {0, 1}∗,

Pr[SharedKey(mpk, rkidA , idB) = SharedKey(mpk, rkidB , idA)] = 1,

where (mpk,msk)←$ Setup(1λ), rkidA ←$ Extract(mpk,msk, idA), and rkidB ←$ Extract
(mpk,msk, idB).

Definition 5 (IND-Security). An IB-NIKD scheme Π is IND-secure if, for

all valid PPT adversaries A, Pr
[
IND-SKA

Π(λ) = 1
]
≤ 1

2 + negl(λ).

Let O = {Extract(mpk,msk, ·),RevealO}. IND-SKA
Π(λ) follows:

IND-SKΠ
A (λ)

(mpk,msk)←$ Setup(1λ)

(idA, idB , st)←$ AO(mpk)

b←$ {0, 1}
rkidA ←$ Extract(mpk,msk, idA)

if b = 0

k = SharedKey(mpk, rkidA , idB)

else

k←$ SHK

b′←$ AO(mpk, idA, idB , k, st)

return b
?
= b′

RevealO(idA∗ , idB∗)

rkidA∗ ←$ Extract(mpk,msk, idA∗)

return SharedKey(mpk, rkidA∗ , idB∗)

The adversary A is valid if, for all id∗ ∈ QExtract(mpk,msk,·), id
∗ ̸= idA ∧ id∗ ̸= idB,

and (idA, idB) /∈ QRevealO and (idB , idA) /∈ QRevealO.

EUF-CMA Signature Scheme. A signature scheme is a tuple of algorithms Π =
(KGen,Sign,Vrfy) with message spaceM, described as follows:

KGen(1λ): On input the security parameter, outputs a verification key/signing
key pair (vk, sk).

Sign(sk,m): On input a signing key sk and a message m ∈M, outputs a signa-
ture τ .

Vrfy(vk,m, τ): On input a verification key vk and a message m ∈M, outputs 1
if the signature verifies, and 0 otherwise.

Definition 6 (Correctness). A signature scheme Π is correct if, for all m ∈
M, Pr[Vrfy(vk,m, τ) = 1], where (vk, sk)←$ KGen(1λ) and τ ←$ Sign(sk,m).

Definition 7 (EUF-CMA). A signature scheme Π is existentially unforgeable
under chosen message attacks if, for all valid PPT adversaries A,

Pr

[
Vrfy(vk,m, τ) = 1 ∧m /∈ QSign(sk, ·)

∣∣∣∣ (vk, sk)←$ KGen(1λ);
(m, τ)←$ ASign(sk,·)(vk)

]
≤ negl(λ).

12

Let ΠSIG be an EUF-CMA signature scheme with message spaceM, and assume
KGen(1λ) outputs (pk = gsk, sk←$ Zq), where G is a group of order q. Let ΠNIKD

be an Identity-Based Non-Interactive Key Distribution scheme with key space
SHK = Zq. We construct our IB-MSS scheme ΠIBMSS as follows:

MKGen(1λ): Output (mpk,msk)←$ ΠNIKD.Setup(1
λ).

KGen(1λ): Output (pk(= gsk), sk)←$ ΠSIG.KGen(1
λ).

SKGen(msk, id) and RKGen(msk, id): Output ΠNIKD.Extract(mpk,msk, id).
OPKGen(srk, pk, ρ): Set k = ΠNIKD.SharedKey(mpk, srk, ρ) and output gk · pk.
OSKGen(opk, rrk, sk, σ): Set k = ΠNIKD.SharedKey(mpk, rrk, σ). If gk+sk = opk,

output k + sk, else output ⊥.
Sign(osk,m): Output ΠSIG.Sign(osk,m).
Vrfy(opk,m, τ): Output ΠSIG.Vrfy(opk,m, τ).

In the following theorem, whose detailed proof appears in Appendix A, we
state that ΠIBMSS satisfies the security properties we require.

Theorem 1. Assuming that ΠNIKD is IND-secure and ΠSIG is EUF-CMA se-
cure, the IB-MSS scheme ΠIBMSS described above satisfies correctness, unforge-
ability, and unlinkability.

Proof (Sketch).
Unforgeability. The proof is divided into the two adversarial-validity sub-

cases. For the attribute subcase we introduce two hybrids Hyb0 and Hyb1. In
Hyb1, for a uniformly random query index i∗, the key pair (opki∗ , oski∗) is gen-
erated with ΠSIG.KGen(1

λ) instead of the SharedKey procedure. Hybrids Hyb0
and Hyb1 are indistinguishable by the IND security of ΠNIKD and the EUF-CMA
security of ΠSIG. Any successful forgery in Hyb1 therefore transfers to a forgery
against ΠSIG.

For the public-key subcase we give a direct reduction to the EUF-CMA se-
curity of ΠSIG (instantiated as Schnorr).

Unlinkability. For attributes, distinguishing the challenge bit would violate
the IND security ofΠNIKD. For the public-key branch we observe that (opk1, osk1)
can be generated by KGen; a hybrid argument shows the resulting public key
distribution is identical in both worlds.

Correctness follows immediately from the correctness of ΠNIKD (matching
shared keys) and ΠSIG (valid signatures).

4.3 Certification Authority

In our protocol, a Certification Authority (CA) ensures that participants com-
ply with specific regulations, such as AML/KYC requirements, while preserving
privacy. The CA facilitates secure generation of shared secrets between parties
based on certified attributes, enabling both privacy and regulatory compliance.
We examine two CA models: centralized and decentralized, both constructed
using our IB-MSS scheme instantiated from any IB-NIKD ΠNIKD (Section 4.2).

13

Centralized CA A centralized CA, such as a major exchange (e.g., Coinbase or
Kraken), performs Know Your Customer (KYC) procedures to verify user iden-
tities for compliance. The CA issues certificates that confirm specific attributes,
such as user identity or location, after users complete KYC.

Consider the case where Alice and Bob, both users of a centralized exchange
C, have completed KYC and now wish to transact. Alice must satisfy attribute
σ, and Bob must satisfy attribute ρ. The CA C operates as follows:

– C holds a master secret key msk and publishes a master public key mpk.
– Alice requests a private key (certificate) for her attribute σ, and C computes

DA = ΠNIKD.Extract(msk, σ), providing it to Alice.
– Bob similarly requests his certificate DB = ΠNIKD.Extract(msk, ρ) from C.

Decentralized CA In a decentralized setup, protocols like VetKeys [10], devel-
oped by DFINITY, enable secure key derivation and policy compliance without
relying on centralized authorities. VetKeys supports on-chain key derivation and
verification, allowing users to comply with policies through decentralized appli-
cations (DApps). The process, depicted in Fig. 1, proceeds as follows:

1) TKG() -> (tpk, tsk)

2) Tx = [tpk, id]U

Tx

3) Check if U allowed to k for id

4) EKDerive(mskI, id, tpk) -> eki
5) EKSVerify(mpkI, id, tpk, eki) -> 0/1

6) Combine(mpk, id, S, {mpkI,eki}i∈S) -> ek
7) EKVerify(mpk, id, tpk, ek) -> 0/1

ek

8) Recover(mpk, id, tsk,ek) -> k

Fig. 1. VetKeys scheme in the blockchain context.

– Alice generates a transport key pair (tpkA, tskA) and submits her transport
public key tpkA along with her policy attribute σ to a DApp D.

– The DApp verifies Alice’s compliance with the policy σ (e.g., using zero-
knowledge proofs or on-chain credentials).

– If compliant, the DApp nodes execute the VetKeys protocol to generate an
encrypted derived key ekA, which is stored on the blockchain.

– Alice retrieves ekA and, using her transport secret key tskA, recovers her
derived key DA = ΠNIKD.Extract(msk, σ).

– Bob similarly obtains his derived key DB = ΠNIKD.Extract(msk, ρ).

14

Shared Secret Computation In both centralized and decentralized CA mod-
els, Alice and Bob use their derived keys to compute a shared secret. They com-
pute the same one-time stealth address secret key osk usingΠNIKD.SharedKey(mpk,
DA, ρ) and ΠNIKD.SharedKey(mpk, DB , σ) respectively.

This ensures compliance and privacy in both models.

5 Implementation and Experiments

We aim to illustrate the practicality of our proposed approach within the Bitcoin
ecosystem, highlighting its capability to achieve transaction accountability while
preserving user privacy. To this end, we present a comprehensive performance
evaluation of our implementation, which is based on the instantiation of our IB-
MSS (Section 4.2) from the Sakai-Ohgishi-Kasahara [26] IB-NIKD and Schnorr
signatures [29]. We describe our instantiantion together with a detailed analysis
of parsing time costs in Bitcoin in Appendix B.

The proof of concept is implemented using Python 3.10.10, leveraging Charm
0.50 [3]. Our pairing-based scheme is instantiated using the SS512 curve.The
experiments were conducted on a machine equipped with an Intel Core i7-12700
CPU (2.10GHz) and 32GB of RAM, running ManjaroLinux 22.1.0. The source
code for our implementation is available on Anonymous GitHub [4].

Operation Minimum (ms) Average (ms) Maximum (ms)

Setup 1.228 1.250 1.298
SKGen 1.942 1.996 2.139
RKGen 1.951 1.995 2.155
Enc 1.741 1.823 1.916
RetrieveKey 1.738 1.762 1.911

Table 1. Time costs in milliseconds for computing cryptographic functions.

Table 1 shows the time costs (in milliseconds) of the primary cryptographic
operations. We conducted 100 independent runs for each operation, repeating
each experiment ten times to extract minimum, average, and maximum execu-
tion times. For the main cryptographic operations, such as Enc and RetrieveKey,
the average execution times were 1.823 ms and 1.762 ms, respectively.

To further demonstrate the feasibility of our protocol, we executed two ac-
countable stealth transactions on the Bitcoin Testnet. These transactions were
performed in both centralized [1] and decentralized [2] settings, using a modified
version of the VetKeys protocol for the decentralized scenario.

Our protocol ensures that no additional information is embedded in trans-
actions, making them indistinguishable from standard Bitcoin transactions. As
a result, the transaction fees remain equivalent to those of standard Pay-to-
Witness-Public-Key-Hash (P2WPKH) transactions. P2WPKH, introduced with

15

the Segregated Witness (SegWit) update through BIP141 [17], was chosen over
Pay-to-Public-Key-Hash (P2PKH) due to its lower transaction fees [12].

6 Conclusions and Open Problems

This paper introduced “stealth addresses with attributes,” an innovative exten-
sion of stealth address protocols that enhances accountability while preserving
privacy in Bitcoin transactions. By embedding compliance attributes into the
stealth address framework, we achieve both sender and recipient accountability
without compromising anonymity. The integration of Identity-Based Matchmak-
ing Signatures (IB-MSS) further ensures verifiable compliance within Bitcoin’s
existing infrastructure.

However, two main challenges remain. The first is the computational over-
head of parsing and verifying transactions with embedded attributes, which im-
pacts scalability as transaction volumes grow. Future work should focus on op-
timizing parsing and verification processes to handle larger loads efficiently. The
second challenge involves implementing practical and scalable zero-knowledge
proofs for recipient accountability within the IB-MSS framework. Addressing
this is essential to ensuring the protocol remains efficient and secure in real-
world applications.

References

1. Blockstream explorer (2023), https://blockstream.info/testnet/tx/
e65a99f0a260300c010270c35636d0497c2a89eb07bc04aa148fb71b076f1408

2. Blockstream explorer (2023), https://blockstream.info/testnet/tx/
b5e74da90c37fdfbaafc9afa6a845147cbff53ae9818d1426ffb27b16ab936f4

3. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green,
M., Rubin, A.D.: Charm: a framework for rapidly prototyping cryptosys-
tems. Journal of Cryptographic Engineering 3, 111–128 (2013), https://

api.semanticscholar.org/CorpusID:2876079
4. anonStealth: Accountable stealth transactions with attributes. https:

//anonymous.4open.science/r/Attribute-Driven-Accountability-in-
Bitcoin-Transactions-AD70/README.md (2023)

5. Apple: Secure Enclave (2025), https://support.apple.com/guide/security/
secure-enclave-sec59b0b31ff/web

6. Ateniese, G., Francati, D., Nuñez, D., Venturi, D.: Match me if you can: Match-
making encryption and its applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 701–731. Springer, Cham (Aug
2019). https://doi.org/10.1007/978-3-030-26951-7 24

7. Backes, M., Hanzlik, L., Kluczniak, K., Schneider, J.: Signatures with flexible pub-
lic key: Introducing equivalence classes for public keys. In: Peyrin, T., Galbraith,
S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 405–434. Springer,
Cham (Dec 2018). https://doi.org/10.1007/978-3-030-03329-3 14

8. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Berlin,
Heidelberg (Aug 2001). https://doi.org/10.1007/3-540-44647-8 13

16

https://blockstream.info/testnet/tx/e65a99f0a260300c010270c35636d0497c2a89eb07bc04aa148fb71b076f1408
https://blockstream.info/testnet/tx/e65a99f0a260300c010270c35636d0497c2a89eb07bc04aa148fb71b076f1408
https://blockstream.info/testnet/tx/b5e74da90c37fdfbaafc9afa6a845147cbff53ae9818d1426ffb27b16ab936f4
https://blockstream.info/testnet/tx/b5e74da90c37fdfbaafc9afa6a845147cbff53ae9818d1426ffb27b16ab936f4
https://api.semanticscholar.org/CorpusID:2876079
https://api.semanticscholar.org/CorpusID:2876079
https://anonymous.4open.science/r/Attribute-Driven-Accountability-in-Bitcoin-Transactions-AD70/README.md
https://anonymous.4open.science/r/Attribute-Driven-Accountability-in-Bitcoin-Transactions-AD70/README.md
https://anonymous.4open.science/r/Attribute-Driven-Accountability-in-Bitcoin-Transactions-AD70/README.md
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://doi.org/10.1007/978-3-030-26951-7_24
https://doi.org/10.1007/978-3-030-26951-7_24
https://doi.org/10.1007/978-3-030-03329-3_14
https://doi.org/10.1007/978-3-030-03329-3_14
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_13

9. Buterin, V., Illum, J., Nadler, M., Schär, F., Soleimani, A.: Blockchain privacy and
regulatory compliance: Towards a practical equilibrium. Available at SSRN (2023)

10. Cerulli, A., Connolly, A., Neven, G., Preiss, F.S., Shoup, V.: vetkeys: How a
blockchain can keep many secrets. Cryptology ePrint Archive (2023)

11. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: A new design
for anonymous cryptocurrencies. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019, Part I. LNCS, vol. 11921, pp. 649–678. Springer, Cham (Dec 2019).
https://doi.org/10.1007/978-3-030-34578-5 23

12. FixedFloat: Bitcoin address formats and performance comparison (2022), https:
//fixedfloat.com/en/blog/guides/bitcoin-address-formats

13. Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D.,
Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.)
PKC 2016, Part I. LNCS, vol. 9614, pp. 301–330. Springer, Berlin, Heidelberg (Mar
2016). https://doi.org/10.1007/978-3-662-49384-7 12

14. Forum, B.: Bytecoin (2011), https://bitcointalk.org/index.php?topic=
199.msg1670#msg1670

15. josibake: Silent payments (2023), https://github.com/bitcoin/bips/blob/
master/bip-0352.mediawiki

16. Liu, Z., Yang, G., Wong, D.S., Nguyen, K., Wang, H.: Key-insulated and privacy-
preserving signature scheme with publicly derived public key. In: IEEE EuroS&P.
pp. 215–230. IEEE (2019)

17. Lombrozo, E.: Segregated witness (consensus layer) (2015), https://github.com/
bitcoin/bips/blob/master/bip-0141.mediawiki#p2wpkh

18. Lyastani, S.G., Schilling, M., Neumayr, M., Backes, M., Bugiel, S.: Is fido2 the
kingslayer of user authentication? a comparative usability study of fido2 password-
less authentication. In: 2020 IEEE Symposium on Security and Privacy (SP). pp.
268–285. IEEE (2020)

19. Meiklejohn, S., Mercer, R.: Möbius: Trustless tumbling for transaction privacy.
PoPETs 2018(2), 105–121 (Apr 2018). https://doi.org/10.1515/popets-2018-
0015

20. Paterson, K.G., Srinivasan, S.: On the relations between non-interactive key dis-
tribution, identity-based encryption and trapdoor discrete log groups. Des. Codes
Cryptogr. 52(2), 219–241 (2009). https://doi.org/10.1007/S10623-009-9278-Y,
https://doi.org/10.1007/s10623-009-9278-y

21. Perez, R., Sailer, R., van Doorn, L., et al.: vtpm: virtualizing the trusted platform
module. In: Proc. 15th Conf. on USENIX Security Symposium. pp. 305–320 (2006)

22. Privacy, S.F.: View tags: How one byte will reduce monero wallet sync times by
40https://localmonero.co/knowledge/view-tags-reduce-monero-sync-time

23. Pu, S., Thyagarajan, S.A.K., Döttling, N., Hanzlik, L.: Post quantum fuzzy
stealth signatures and applications. In: Meng, W., Jensen, C.D., Cremers, C.,
Kirda, E. (eds.) Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2023, Copenhagen, Denmark, November 26-
30, 2023. pp. 371–385. ACM (2023). https://doi.org/10.1145/3576915.3623148,
https://doi.org/10.1145/3576915.3623148

24. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto (1996), https://people.csail.mit.edu/rivest/pubs/RSW96.pdf

25. van Saberhagen, N.: Cryptonote v 2.0 (2013), https://cryptonote.org/
whitepaper.pdf

26. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. The 2000
Symposium on Cryptography and Information Security pp. 26–28 (2000)

17

https://doi.org/10.1007/978-3-030-34578-5_23
https://doi.org/10.1007/978-3-030-34578-5_23
https://fixedfloat.com/en/blog/guides/bitcoin-address-formats
https://fixedfloat.com/en/blog/guides/bitcoin-address-formats
https://doi.org/10.1007/978-3-662-49384-7_12
https://doi.org/10.1007/978-3-662-49384-7_12
https://bitcointalk.org/index.php?topic=199.msg1670##msg1670
https://bitcointalk.org/index.php?topic=199.msg1670##msg1670
https://github.com/bitcoin/bips/blob/master/bip-0352.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0352.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki#p2wpkh
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki#p2wpkh
https://doi.org/10.1515/popets-2018-0015
https://doi.org/10.1515/popets-2018-0015
https://doi.org/10.1515/popets-2018-0015
https://doi.org/10.1515/popets-2018-0015
https://doi.org/10.1007/S10623-009-9278-Y
https://doi.org/10.1007/S10623-009-9278-Y
https://doi.org/10.1007/s10623-009-9278-y
https://localmonero.co/knowledge/view-tags-reduce-monero-sync-time
https://doi.org/10.1145/3576915.3623148
https://doi.org/10.1145/3576915.3623148
https://doi.org/10.1145/3576915.3623148
https://people.csail.mit.edu/rivest/pubs/RSW96.pdf
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf

27. Salvo, M.D.: Tornado cash user ’dusts’ hundreds of public wal-
lets—including celebs jimmy fallon, steve aoki and logan paul (2022),
https://decrypt.co/107090/tornado-cash-dusts-public-wallets-jimmy-
fallon-brian-armstrong-steve-aoki-logan-paul?amp=1

28. Samsung: Knox Vault (2025), https://docs.samsungknox.com/admin/
fundamentals/whitepaper/samsung-knox-mobile-security/system-security/

knox-vault/

29. Schnorr, C.: Efficient identification and signatures for smart cards. In: Brassard, G.
(ed.) Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings.
Lecture Notes in Computer Science, vol. 435, pp. 239–252. Springer (1989). https:
//doi.org/10.1007/0-387-34805-0 22, https://doi.org/10.1007/0-387-34805-
0 22

30. Todd, P.R.: Stealth addresses in bitcoin., https://github.com/bitcoin/bips/
blob/master/bip-0032.mediawiki

31. TREASURY, U.D.O.T.: U.s. treasury sanctions notorious virtual currency mixer
tornado cash (2022), https://home.treasury.gov/news/press-releases/jy0916

32. UkoeHB: Reduce scan times with 1-byte-per-output ’view tag’ (2020), https://
github.com/monero-project/research-lab/issues/73

33. Wahrstätter, A., Solomon, M., DiFrancesco, B., Buterin, V., Svetinovic, D.:
Basesap: Modular stealth address protocol for programmable blockchains. arXiv
preprint arXiv:2306.14272 (2023)

34. Wiki, B.: ECDH Addresses, https://en.bitcoin.it/wiki/ECDH address, [Online;
accessed 13-Jun-2023]

A Proof of Theorem 1

Proof. We will prove that the IB-MSS scheme ΠIBMSS satisfies correctness, un-
linkability, and unforgeability under the assumptions that ΠNIKD is IND-secure
and ΠSIG is EUF-CMA secure.
Correctness. By the correctness ofΠNIKD, for any sender identity σ and receiver
identity ρ, the shared keys computed by both parties are equal:

k = ΠNIKD.SharedKey(mpk, srk, ρ) + sk = ΠNIKD.SharedKey(mpk, rrk, σ) + sk,

where srk = ΠNIKD.Extract(mpk,msk, σ) and rrk = ΠNIKD.Extract(mpk,msk, ρ).
The one-time public and secret keys are then:

opk = gk · pk, osk = k + sk.

Since (opk, osk) is a valid key pair in ΠSIG, and ΠSIG is correct, any signature
τ = ΠSIG.Sign(osk,m) will verify:

ΠSIG.Vrfy(opk,m, τ) = 1,

for all messages m ∈M. Thus, the IB-MSS scheme is correct.
Unlinkability. Assume, for contradiction, that there exists a PPT adversary A
that can distinguish between a key pair generated by the IB-MSS scheme and a

18

https://decrypt.co/107090/tornado-cash-dusts-public-wallets-jimmy-fallon-brian-armstrong-steve-aoki-logan-paul?amp=1
https://decrypt.co/107090/tornado-cash-dusts-public-wallets-jimmy-fallon-brian-armstrong-steve-aoki-logan-paul?amp=1
https://docs.samsungknox.com/admin/fundamentals/whitepaper/samsung-knox-mobile-security/system-security/knox-vault/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/samsung-knox-mobile-security/system-security/knox-vault/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/samsung-knox-mobile-security/system-security/knox-vault/
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://home.treasury.gov/news/press-releases/jy0916
https://github.com/monero-project/research-lab/issues/73
https://github.com/monero-project/research-lab/issues/73
https://en.bitcoin.it/wiki/ECDH_address

random key pair with non-negligible advantage ϵ. We subdivide the proof into
two cases: when the adversary A is valid for unlinkability w.r.t. the attributes,
and when A is valid for unlinkability w.r.t. the public key.
Unlinkability w.r.t attributes We construct an adversary ANIKD that breaks the
IND-security of ΠNIKD:

1. Setup:
– ANIKD receives mpk from the IND-security challenger.
– Generate (pk, sk)←$ KGen(1λ).
– Forwards mpk to A.

2. Oracle Simulation:
– Key Generation (SKGen, RKGen): Use the extraction oracle to obtain

and return keys.
– One-Time Key Generation (OSKGenO):
• Upon receiving a tuple (opk, flag, σ, ρ) from A, query the RevealO
oracle with input (σ, ρ) to receive k. If opk ̸= gk · pk, set osk = ⊥,
else set osk := k + sk.
• If flag = true, return osk to A. Else, return 1 to A.

3. Challenge Phase:
– Adversary A outputs (σ∗, ρ∗, st).
– ANIKD sends (σ∗, ρ∗) to the IND-security challenger.
– Receives challenge key k∗ (either real or random).
– Sets osk∗ = k∗ and opk∗ = gosk

∗+sk.
– Provides (opkb, oskb, st) to A, where:
• If b = 0, (opkb, oskb) = (opk∗, osk∗).
• If b = 1, generate (opkb, oskb)←$ ΠSIG.KGen(1

λ).
4. Finalization:

– A outputs a guess b′.
– ANIKD outputs 0 if b′ = 0 (real shared key), else 1.

If A distinguishes between the cases with advantage ϵ, then ANIKD distin-
guishes whether k∗ is real or random with the same advantage, breaking the
IND-security of ΠNIKD.
Unlinkability w.r.t the public key. Let us consider the following hybrids:

H0(λ): The original game
H1λ): Same as the original, except that (opk1, osk1) is generated from KGen as

well.

It is straightforward to see that, without any knowledge of sk (which cannot
be guessed by the adversary for the discrete log), the pair gk+sk has the same
distribution of gsk for any k. Hence, the two hybrids are indistinguishable.

The proof follows directly from the indistinguishability of the two hybrids
since now opk0 and opk1 are generated independently using the same key gen-
eration algorithm with no input.
Unforgeability.Unforgeability ofΠIBMSS follows from the IND-security ofΠNIKD

and the EUF-CMA security ofΠSIG. We subdivide the proof into two cases: when
the adversary A is valid for unforgeability w.r.t. the attributes, and when A is
valid for unforgeability w.r.t. the public key.
Unforgeability w.r.t. the attributes. The proof proceeds via a hybrid argument.

19

H0(λ) This is the standard unforgeability game for ΠIBMSS.
H1(λ) Identical to H0(λ), except that for a random query i∗ to OSKGenO, the

key pair (opki∗ , oski∗) is generated using ΠSIG.KGen(1
λ) instead of using

SharedKey.

Suppose there exists an adversary A that can distinguish between H0 and H1

with non-negligible advantage ϵ. We construct an adversary ANIKD that breaks
the IND-security of ΠNIKD.

1. Initialization:
– Receive the master public key mpk from the IND-SK challenger and

forward it to A.
– InitializeQSignO := ∅,QOSKGenO := ∅, set j := 0, and initialize (pk, sk)←$ KGen(1λ).
– Choose a random index i∗ for a future OSKGenO query.

2. Oracle Simulations:

a. Key Generation Oracles (SKGen, RKGen):
For identity queries id, forward id to the Extract oracle and return the
private key rkid to A.

b. One-Time Key Generation Oracle (OSKGenO):
Upon receiving a query (opk, flag, σ, ρ) from A:
– Check if an entry (opk′, flag′, σ′, ρ′) exists in QOSKGenO with opk =

opk′, σ′ = σ and ρ′ = ρ. If it exists and flag = true, return osk to A if
opk ̸= pk. Else, set QOSKGenO = QOSKGenO ∪ {opk, osk, flag, σ, ρ} and
return osk to A if flag = true. Else, return 1 to A.

– Otherwise, increment j := j + 1.
– If j = i∗ (Challenge Query):
• Send (σ, ρ) as challenge identities to the IND-SK challenger.
• Receive the challenge shared key k.
• Set osk := k + sk.

– If j ̸= i∗:
• Compute rkσ←$ ΠNIKD.Extract(mpk,msk, σ).
• Compute osk := ΠNIKD.SharedKey(mpk, rkσ, ρ) + sk.
• Set opk := gosk

′+sk.
– gosk+sk ̸= opk output ⊥. Else, add (opk, osk, flag, σ, ρ) to QOSKGenO

and if flag = true output osk to A. Otherwise, output 1 to A.
c. Signing Oracle (SignO):

Upon receiving a query (i,m) from A:
– Retrieve (opki, oski) corresponding to the i-th query in QOSKGenO.
– If i ̸= i∗:
• Compute τ := ΠSIG.Sign(oski,m) and return τ to A.

– If i = i∗:
• Since A is valid, it does not query SignO on i∗.

3. Adversary’s Forgery:
If A outputs a valid forgery (i∗,m∗, τ∗):
– Verify if ΠSIG.Vrfy(opki∗ ,m

∗, τ∗) = 1.
– If valid: Output b′ = 0 (guessing k is real).

20

– Else: Output b′ = 1 (guessing k is random).

If k is real (as in H0), A can forge with probability ϵ, so ANIKD outputs b′ = 0
with probability related to ϵ.

If k is random (as inH1), forging under opk
′ requires breaking the EUF-CMA

security of ΠSIG, which is negligible. - Therefore, ANIKD distinguishes between the
two cases, breaking the IND-security of ΠNIKD.

Assuming A cannot distinguish between H0 and H1, any forgery under H1

can be used to break the EUF-CMA security of ΠSIG.

1. Constructing ASIG:
– Receives opk∗ from the EUF-CMA challenger.
– Generates (mpk,msk)← ΠNIKD.Setup(1

λ).
– Chooses σ∗ and ρ∗ not queried by A.
– Sets i∗ corresponding to (σ∗, ρ∗) and assigns opki∗ := opk∗.
– Simulates oracles as before, ensuring A does not receive signatures under

opki∗ .
2. Adversary’s Forgery:

– If A outputs a forgery (i∗,m∗, τ∗), ASIG outputs (m∗, τ∗) to the EUF-
CMA challenger.

If A can forge in H1, ASIG breaks the EUF-CMA security of ΠSIG.
Unforgeability w.r.t. the public key. Suppose there exists an adversary A that can
break Unforgeability w.r.t. the public key with non-negligible advantage ϵ. We
construct an adversary ASIG that breaks the EUF-CMA of ΠSIG. For the aim of
simplicity, we prove unforgeability assuming that ΠSIG is a Schnorr signature.

Therefore, the Unforgeability of ΠIB-MSS holds under EUF-CMA security of
the Schnorr signature scheme.

1. Initialization:
– Generate the (mpk,msk)←$ MKGen(1λ)
– Initialize QSignO := ∅, QOSKGenO := ∅, set j := 0.
– Receive pk from ASIG and forward it to A.
– Choose a random index i∗ for a future OSKGenO query.

2. Oracle Simulations:

a. Key Generation Oracles (SKGen, RKGen): Generate the sender and
retrieval keys using SKGen and RKGen.

b. One-Time Key Generation Oracle (OSKGenO): Upon receiving a
query (opk, flag, σ, ρ) from A:
– If an (opk′, flag′, σ′, ρ′) does not exists in QOSKGenO with opk = opk′,

σ′ = σ and ρ′ = ρ, set QOSKGenO := QOSKGenO ∪ {(opk, flag, σ, ρ)}.
– Otherwise, increment j := j + 1.
– Return 1 to A. For the validity of A no queries with flag = true are

admitted.
c. Signing Oracle (SignO):

Upon receiving a query (i,m) from A:

21

– Retrieve the tuple (opk, σ, ρ) corresponding to the i-th query in
QOSKGenO.

– If i ̸= i∗:
• Compute rkσ := Extract(mpk,msk, σ) and k := ΠNIKD.Extract(msk, rkσ, ρ).
• Query the signing oracle of ΠSIG with m and receive τ = (R, s)
back. Compute τ ′ := τ +H1(χ(R),m) · k and return τ ′ to A.

– If i = i∗:
• Since A is valid, it does not query SignO on i∗.

d. Adversary’s Forgery:
If A outputs a valid forgery (i∗,m∗, τ∗):

– Compute rkσ := Extract(mpk,msk, σ) and k := ΠNIKD.Extract(msk, rkσ, ρ).
– Retrieve the tuple (opk, σ, ρ) corresponding to the i-th query in
QOSKGenO.

– Parse τ∗ = (R, s) and compute τ := τ∗ −H(χ(R),m) · k.
– Send τ to ASIG and output what ASIG outputs.

It is clear from the malleability property of Schnorr signatures that by manip-
ulating the signature received from the signing oracle or the challenge signature
received by the adversary, it is always possible to produce a signature that ver-
ifies under the challenge public key pk. Hence, if A can forge a signature in the
unforgeability game, it breaks EUF-CMA security of the underlying Schnorr
signature scheme.

B Implementation Details

Our IB-MSS Instantiation. Let G1 and G2 be groups of prime order p and
let e : G1 ×G1→G2 be a bilinear pairing.

Model the hash functions H1 : {0, 1}∗ → G∗
1 and H2 : G2 → Z∗

p as ran-
dom oracles. Let χ : G∗

1 −→ {0, 1}∗ be an injective, efficiently computable
encoding that maps a group element to its canonical binary representation
(e.g., compressed-point encoding for elliptic-curve groups). The message space
is {0, 1}∗.

MKGen(1λ): Sample msk ← {0, 1}λ, choose generators g1 ∈ G1, g2 ∈ G2, and
set mpk=(G1,G2, p, g1, g2, g

msk
1). Output (mpk,msk).

KGen(1λ): Sample sk← Zp and output (pk = gsk1 , sk).
SKGen(msk, id) and RKGen(msk, id): Return H1(id)

msk.
OPKGen(srk, pk, ρ): Compute k := H2

(
e(srk, H1(ρ))

)
and output opk := g k

1 pk.

OSKGen(opk, rrk, sk, σ): Compute k := H2

(
e(H1(σ), rrk)

)
. If g k+sk

1 = opk output
osk := k + sk, else output ⊥.

Sign(osk,m): Sample r ← Zp, let R := g r
1 and c := H1

(
χ(R),m

)
, set s :=

r − c osk mod p, and output τ := (R, s).
Vrfy(opk,m, τ): Parse τ = (R, s), compute c := H1

(
χ(R),m

)
, and accept iff

R = g s
1 opk c.

22

Parsing Time Costs A crucial task for the recipient in our system is detect-
ing which transaction was sent to them. The recipient must parse through all
transactions, compute the stealth address using their secret key and the nonce
extracted from the transaction, and verify whether it matches one of the output
addresses. On average, this process requires 3.07 ms per transaction, based on
100 trials. This time consists of 0.31 ms to retrieve the transaction, 2.42 ms to
compute the shared secret, and 0.34 ms to derive and check the stealth address.
While this time is short for individual transactions, parsing a large volume of
transactions leads to a substantial increase in time.

To estimate the parsing time on the Bitcoin network, we analyzed confirmed
transactions from November 16, 2022, to November 16, 2023. As shown in Fig. 2,
the 75th percentile for confirmed transactions per day, week, and month are
462,392, 3,261,635, and 14,132,707, respectively. Based on these figures, the es-
timated parsing times would be 23.64 minutes for a day, 2.77 hours for a week,
and 12.04 hours for a month.

Day

200000

400000

600000

800000

Tr
an

sa
ct

io
ns

Week
0

1

2

3

4

5 1e6

Month

0.0

0.5

1.0

1.5

2.0

1e7

Fig. 2. Violin plot depicting the daily, weekly, and monthly confirmed Bitcoin trans-
actions between November 16, 2022, and November 16, 2023.

One method to reduce parsing time is the use of view tags, as in Monero [32].
A view tag is a small identifier derived from the shared secret and embedded
in the transaction data. This allows the recipient to quickly determine whether
a transaction belongs to them without performing the full stealth address com-
putation. This technique can reduce parsing time by 40% [22]. However, in our
protocol, including view tags would reveal part of the shared secret, compromis-
ing the stealthiness of the transaction, which is a key feature of our design.

Another approach to reduce the recipient’s computational load is to use the
DKSAP protocol. By sharing a secret scanning key with a server, the recip-
ient can delegate transaction monitoring. The server continuously scans the
blockchain for relevant transactions, which significantly reduces the computa-
tion required on the recipient’s side.

In some cases, the sender can also provide specific details, such as the trans-
action ID or date. This narrows down the range of transactions the recipient

23

needs to check, making the parsing process faster by limiting the search to a
smaller set of transactions.

24

	Stealth and Beyond: Attribute-Driven Accountability in Bitcoin Transactions

