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Abstract. The Supersingular Isogeny Diffie-Hellman (SIDH) scheme is
a public key cryptosystem that was submitted to the National Institute
of Standards and Technology’s competition for the standardization of
post-quantum cryptography protocols. The private key in SIDH consists
of an isogeny whose degree is a prime power. In July 2022, Castryck
and Decru discovered an attack that completely breaks the scheme by
recovering Bob’s secret key, using isogenies between higher dimensional
abelian varieties to interpolate and reconstruct the isogenies comprising
the SIDH private key. The original attack applies in theory to any prime
power degree, but the implementation accompanying the original attack
required one of the SIDH keys involved in a key exchange to have de-
gree equal to a power of 2. An implementation of the power of 3 case
was published subsequently by Decru and Kunzweiler. However, despite
the passage of several years, nobody has published any implementations
for prime powers other than 2 or 3, and for good reason — the nec-
essary higher dimensional isogeny computations rapidly become more
complicated as the base prime increases. In this paper, we provide for
the first time a fully general isogeny interpolation implementation that
works for any choice of base prime, and provide timing benchmarks for
various combinations of SIDH base prime pairs. We remark that the tech-
nique of isogeny interpolation now has constructive applications as well
as destructive applications, and that our methods may open the door to
increased flexibility in constructing isogeny-based digital signatures and
cryptosystems.

1 Introduction

Supersingular Isogeny Diffie-Hellman (SIDH) is a key-exchange protocol based
on walks on the isogeny graph of supersingular elliptic curves. It was first pro-
posed in 2011 by Jao and De Feo [11], and was submitted to the United States
National Institute of Standards and Technology’s (NIST) competition for stan-
dardization of post-quantum cryptography protocols. The protocol advanced to



the fourth round of the competition as an alternate candidate. However, in July
2022, Castryck and Decru [5] found a devastating attack against the protocol
that allowed to recover Bob’s secret key in a few hours on a laptop. Later im-
provements by others, notably Oudompheng [15], made it possible for the attack
to run in a few seconds.

In the SIDH protocol, Alice’s and Bob’s secret isogenies are usually taken to
have degree 2a and 3b respectively. In order to recover Bob’s secret isogeny, the
Castryck-Decru attack requires computing a degree 2a isogeny in a 2-dimensional
abelian variety. Formulas by Richelot [19] provide an extremely efficient method
to compute such isogenies. If instead, we wanted to recover Alice’s secret isogeny,
we would need to compute a degree 3b isogeny in dimension 2. The necessary
formulas were published by Bruin et al. [3] and implemented by Decru and
Kunzweiler [9,14].

One can naturally ask about how to implement the Castryck-Decru attack
when Alice and Bob’s secret isogenies have degrees equal to powers of primes
other than 2 or 3. Implementing the attack in this case requires computing a
degree ℓe isogeny in dimension 2 for ℓ > 3. More specifically, one needs to com-
pute an isogeny from a product of elliptic curves to a Jacobian of a hyperelliptic
curve (the so-called “glue” isogeny), followed by a chain of isogenies between
Jacobians of hyperelliptic curves, and finally an isogeny from a Jacobian back
to a product of elliptic curves (the “split” isogeny). Formulas for 2-dimensional
degree ℓe isogenies between Jacobians of hyperelliptic curves have been devel-
oped by Cosset and Robert [7], and these formulas are mostly implemented in
a Magma package called Avisogenies [16]. However, explicit formulas for the
necessary glue and split isogenies are not available in any prior works.

Contribution. We present the first full working implementation of isogeny in-
terpolation involving the mapping of a point through a glue-and-split chain of
2-dimensional isogenies of degree ℓ > 3. To do this, we add conversion formulas
for converting from Mumford to theta coordinates in the glue and split steps to
the Avisogenies package. We also fix some bugs in the ImagePoint function,
which was flagged as untested in the source code and, indeed, contains some
bugs. Finally, we extend the ImagePoint function so that it takes theta coordi-
nates as input, in order to be able to use it in the glue and split cases. We then
demonstrate that the computation of this isogeny chain can be used to recover
Alice’s secret key in the SIDH protocol when Bob’s base prime is ℓB > 3.

Related work. Paradoxically, the technique of representing an isogeny using an
SIDH public key turns out to be fairly efficient compared to other possible ap-
proaches, and forms a central building block in the next generation of isogeny-
based cryptosystems designed to succeed SIDH. Robert [18] has coined the term
higher dimensional representation or HD representation to denote such isogeny
representations, and the process of computing an isogeny given its HD repre-
sentation is known as isogeny interpolation, with the idea being that the pairs



of input-output values that comprise an HD representation can be interpolated
to produce an isogeny function that matches these known values. Our results
can be viewed as an implementation of isogeny interpolation in the case where
the known isogeny values lie in the ℓe torsion subgroup. Notably, isogeny in-
terpolation is used in isogeny-based signature schemes such as SQIsignHD [8]
and SQIsign2D-West [1], as well as the FESTA isogeny-based cryptosystem [2].
Although it is unlikely that the ℓ > 3 case will ever outperform the extremely
efficient Richelot isogeny formulas for ℓ = 2, it is possible that future protocols
may be able to provide more advanced functionality or benefit in other yet to
be determined ways using the added flexibility provided by more base primes.

Outline. In Section 2, we present some mathematical preliminaries along with a
description of the SIDH protocol and the Castryck-Decru attack. In Section 3,
we introduce theta coordinates and the Avisogenies package. We then chronicle
all the missing steps for implementing the attack with more general primes and
explain how each one was done. In Section 4, we present the magma code imple-
menting the attack. Finally, Section 5 gives timing benchmarks using different
parameters and proposes future work.

2 Preliminaries

2.1 Abelian Varieties of Genus 2

Elliptic curves are abelian varieties of genus one and dimension one. The follow-
ing definition generalizes this concept to higher genera.

Definition 1 (Hyperelliptic Curve). A hyperelliptic curve C of genus g
defined over a field K is an equation of the form

C : y2 + h(x)y = f(x),

where h, f ∈ K[x] with deg(h) ≤ g and 2g + 1 ≤ deg(f) ≤ 2g + 2.

If the characteristic of K is different from 2, we can always complete the
square on the left to eliminate h. Since we will be working with fields Fp2 for
large primes p, the characteristic condition always holds, and so we only consider
hyperelliptic curves of the form y2 = f(x). We will also mostly be restricting
ourselves to the case g = 2 from now on.

While the set of points on hyperelliptic curves of genus 2 doesn’t form a group
directly as it did with elliptic curves, we can construct divisors and the Jacobian
of any hyperelliptic curve C in exactly the same way as one does for elliptic
curves, and work with the group Jac(C) instead. It turns out that this Jacobian
has the structure of a 2-dimensional abelian variety. In the case of hyperelliptic



curves of genus 2, every element in the Jacobian has a unique representative of
the form

(P ) + (Q)− 2(∞),

where P and Q are points on the curve. Divisors in this form are referred to as
reduced divisors.

Mumford coordinates give a practical way to represent divisors on the Ja-
cobian of hyperelliptic curves. Write P = (x1, y1) and Q = (x2, y2). Then the
Mumford representation of D is

D = [u(x), v(x)],

where u(x) = (x − x1)(x − x2) and v(x) is the line such that v(x1) = y1 and
v(x2) = y2. Cantor’s algorithm [4] gives a way to efficiently add divisors when
they are written in this form.

We can also construct abelian varieties of dimension 2 in a different way.
Namely, we can take the product group of two elliptic curves E1 × E2. The set
of points (P1, P2) on E1 ×E2 forms a group. Every abelian variety of dimension
2 is either the Jacobian of a hyperelliptic curve or the product of two elliptic
curves.

2.2 Isogenies in Dimension 2

We are interested in isogenies between abelian varieties in dimension 2. Specifi-
cally, we are interested in isogenies of the form

Φ : E1 × E2 → E3 × E4

that go from a product of two elliptic curves to the product of two elliptic curves.
Such isogenies were characterized by Kani’s theorem [12]. They can be written
in matrix form

Φ =

(
α β
γ δ

)
where α : E1 → E3, β : E2 → E3, γ : E1 → E4 and δ : E2 → E4 are 1-dimensional
isogenies of elliptic curves. All our isogenies are separable, and so the number of
points in kerΦ determines its degree. The degree of dimension 2 isogenies is often
written as (d, d) to emphasize the fact that we are working in higher dimension.
We would like to have isogeny formulas analogous to Vélu’s formulas [20] that
allow us to compute the codomain of dimension 2 isogenies from their kernel.

By factoring d, we can break up Φ into a composition of smaller isogenies of
prime degree. When d = ℓe for some prime ℓ, we call this composition an (ℓ, ℓ)-
isogeny chain. When working over Fp2 for large p, it is overwhelmingly likely that
all of the middle steps of the chain will be between Jacobians of hyperelliptic



curves. Therefore, to map a point through the chain, we first need to map it
through a “glue” isogeny

ϕgl : E1 × E2 → Jac(Hgl)

and then through a chain of e− 2 isogenies between Jacobians

ϕ : Jac(C) → Jac(C ′)

and finally, through a “split” isogeny:

ϕsp : Jac(Hsp) → E3 × E4.

Formulas due to Richelot [19] address the three cases when ℓ = 2. When ℓ = 3,
explicit formulas have also been found [3,9]. For general ℓ, Cosset and Robert [7]
have developed algorithms that make use of theta coordinates, although complete
formulas are only given for the isogenies in the middle of the chain, that go
between Jacobians. These are the formulas we will be working with.

2.3 Supersingular Isogeny Diffie-Hellman

In SIDH, Alice and Bob choose two integers a and b and two small primes ℓA and
ℓB such that p = ℓaAℓ

b
B − 1 is a large prime. The small primes are usually taken

to be ℓA = 2 and ℓB = 3 to maximize the speed of the computations. However,
we are interested in the case where larger values of ℓA and ℓB are chosen. From
here, Alice and Bob publicly agree on a starting supersingular elliptic curve E0

which is defined over Fp2 . A common choice is E0 : y2 = x3 +6x2 +x. Alice and
Bob then must publicly agree on a basis ⟨PA, QA⟩ and ⟨PB , QB⟩ for the ℓaA and
ℓbB torsion on E0 respectively. This completes the initial setup.

To exchange a key, Alice and Bob start by choosing a secret integer skA and
skB . Alice then computes the codomain EA of the ℓaA-isogeny ϕA whose kernel is
generated by PA+skAQA. She then transmits EA to Bob along with the images
ϕA(PB) and ϕA(QB) of the generators of the ℓbB-torsion under the isogeny. Bob
performs an analogous procedure: he chooses a secret integer skB and constructs
an isogeny ϕB : E0 → EB whose kernel is PB + skBQB . He then transmits
EB , ϕB(PA) and ϕB(QA) to Alice. With this information, Alice computes the
codomain EAB of the isogeny ϕ′

A : EB → EBA whose kernel is generated by
ϕB(PA)+skAϕB(QA). Bob similarly calculates the codomain EAB of the isogeny
ϕ′
B : EA → EAB whose kernel is generated by ϕA(PB) + skBϕA(QB). Alice and

Bob thereby obtain isomorphic curves EAB ≃ EBA, so they can use the j-
invariant of these curves as their shared secret key. The key exchange protocol
is summarized in Figure 1a.

For SIDH to be secure, it is necessary, but not sufficient, to assume that the
generic isogeny problem is hard. This hardness assumption states that, given two
isogenous elliptic curves E1 and E2, it is computationally infeasible to recover



E0 EA

EB EAB

ϕB

ϕA

ϕ′
B

ϕ′
A

(a) SIDH key exchange diagram

E0 EA

E0 C

γ

ϕA

γ′

ϕ′
A

(b) Isogeny Square from Kani’s theorem

Fig. 1: Isogeny commutative diagrams

the kernel of an isogeny between them. However, in the SIDH protocol, more
information than just the codomain of the isogenies is transmitted, namely, the
image of the isogeny ϕA (resp. ϕB) on the ℓaA (resp. ℓbB) torsion. It was conjec-
tured for a long time that the transmission of this extra information does not
impact the security of the scheme. However, Castryck and Decru [5] showed that
this information can be exploited to break the scheme completely.

2.4 Castryck-Decru Attack

In what follows, we describe how to recover Alice’s isogeny ϕA. Since we are
working with arbitrary ℓA and ℓB , this choice does not affect the generality of
the attack. The breakthrough idea of Castryck and Decru is to look at higher
dimension isogeny chains that start and end on a product of elliptic curves,
which were characterized by Kani [12]. The goal is to construct an isogeny chain
of abelian varieties for which the kernel can be calculated from the torsion point
information and where one of the components gives us the image of the dual
isogeny ϕ̂A of ϕA on any point of EA, when mapping a suitable point through
the chain. Once this work is done, we can compute ϕ̂A on generators P ′

A and
Q′

A of the ℓaA-torsion on EA. The kernel of ϕA is then straightforward to find, as

it is generated by either of the points ϕ̂A(P
′
A) or ϕ̂A(Q

′
A). Castryck and Decru

originally devised this attack using 2-dimensional isogeny chains, but Robert [17]
later generalized their idea to dimensions 4 and 8 which allow for more flexibility
in the starting curve. We will be working only with the dimension 2 case.

To construct the desired isogeny chain, we need an endomorphism γ on E0

which has degree c = ℓbB−ℓaA. The purpose of choosing γ in this way is to ensure
that the isogeny chain meets the criteria for Kani’s theorem so that the chain
indeed splits at the end. Given γ, we build the isogeny square in Figure 1b.

The dimension 2 isogeny chain forms an isogeny

Φ : E0 × EA → E0 × C

where

Φ =

(
γ̂ ϕ̂A

−ϕ′
A γ′

)



The kernel of Φ is given by

⟨(ℓaAPB ,−ϕA(γ̂(PB))), (ℓ
a
AQB ,−ϕA(γ̂(QB)))⟩,

where PB and QB are generators for the ℓbB-torsion on E0 as in Section 2.3. If γ
can be computed efficiently, this kernel can be obtained directly from the public
information passed on in the SIDH protocol. Furthermore, we have that

Φ(∞, P ) = (ϕ̂A(P ), γ′(P ))

for any P ∈ EA(Fp2), and therefore computing this chain on (∞, P ′
A) and

(∞, Q′
A) will give us ϕ̂A(P

′
A) and ϕ̂A(Q

′
A) as desired.

The first hurdle when implementing this attack is to find a suitable endo-
morphism γ which can easily be computed on any point of E0. When E0 is
y2 = x3 + 6x2 + x, we can take γ = [u] + 2i[v] where 2i = ρ̂ ◦ ι ◦ ρ with ρ a
2-isogeny connecting E0 to E′

0 : y2 = x3 + x and ι is the well-known endomor-
phism

ι : E′
0 → E′

0

(x, y) 7→ (−x, iy).

With this choice, we have that deg(γ) = u2 + 4v2 and so we must choose u
and v so that ℓbB − ℓaA = u2 + 4v2.

The resulting isogeny chain has degree (ℓbB , ℓ
b
B) and can be broken down into

one (ℓB , ℓB) gluing step, b − 2 (ℓB , ℓB)-isogenies between Jacobians of hyper-
elliptic curves and one (ℓB , ℓB) splitting step. In the case where ℓB = 2, the
chain can be computed using formulas by Richelot which is what was done in
the original implementation by Castryck and Decru. The case where ℓB = 3 has
also been implemented in [9].

3 Computing (ℓ, ℓ)-isogeny glue-and-split chains

In order to be able to generalize the Castryck-Decru attack to primes ℓA and
ℓB that are different from 2 and 3, we need to be able to compute a chain
of 2-dimensional (ℓ, ℓ)-isogenies that starts with a gluing step and ends with
a splitting step for an arbitrary prime ℓ. Cosset and Robert [7] have devised
algorithms to compute (ℓ, ℓ)-isogenies between abelian varieties of dimension
g that make use of theta coordinates. These algorithms are implemented in a
Magma package called Avisogenies.

3.1 Theta Coordinates and Mumford Coordinates

Theta coordinates are derived from the Riemann theta function. This function is
defined on Cg ×Hg where Hg is the Siegel upper-half plane. A matrix Ω belongs
to Hg if and only if it is symmetric and its imaginary part is positive definite.



Definition 2 (Riemann theta function). Let Ω ∈ Hg and z ∈ Cg. The
Riemann theta function is defined as

θ(z,Ω) =
∑
n∈Zg

exp(iπnTΩn+ 2iπnT z).

Theta coordinates give a way to embed abelian varieties of dimension g in
the projective space Png−1. This technique works regardless of which type of
abelian variety we have. Therefore, in dimension 2, it gives us a common system
of coordinates to work with both Jacobians of hyperelliptic curves and products
of elliptic curves. The integer n in Png−1 is the level of the theta functions from
which the coordinates originate. The Riemann theta function can be generalized
by adding characteristics a, b ∈ Qg to it. Depending on its characteristic, a theta
function will satisfy a recurrence relation involving an integer n. This integer is
referred to as the level of the function. For a fixed matrix Ω, the theta functions
of characteristic b ∈ Qg are defined as

θb(·, Ω) : Cg → C

z 7→
∑
m∈Zg

exp
(
iπ

(
mTΩm+ 2mT (z + b/2)

))
.

More generally, the theta functions of characteristic a, b ∈ Qg are defined as

θa,b(z,Ω) =
∑
m∈Zg

exp

[
iπ

((
m+

a

2

)T

Ω
(
m+

a

2

)
+ 2

(
m+

a

2

)T
(
z +

b

2

))]
.

Theta functions of level n form a vector space of dimension ng. To embed an
abelian variety in projective space, we need a basis for that vector space. Different
choices of bases give different embeddings. Therefore, for each abelian variety,
there exist several different coordinates that can be used, depending on the level
of theta functions and the basis chosen. We mainly work with theta functions of
level 2 and dimension 2 and therefore we will be using P3.

The original Riemann theta functions were defined over the complex num-
bers. Abelian varieties of dimension g over C can be represented as points on Cg

modulo a lattice ΛΩ . This lattice can be written as ΩZg ×Zg where Ω is a g× g
matrix in the Siegel upper half-plane Hg. However, in our case we are working
with abelian varieties defined over a finite field Fp2 and so we will work with the
analogous theta functions defined over Fp2 .

A basis for the vector space of theta functions of level 2 when g = 2 is given
by the functions whose characteristics b are (0, 0), (0, 1), (1, 0) and (1, 1):

F2(2) = {θ00(·, Ω), θ01(·, Ω), θ10(·, Ω), θ11(·, Ω)} .

This is the basis we will be mainly working with. We also need to work with
genus 1 as an intermediate step in the conversion of elements on the product of



elliptic curves into theta coordinates. When g = 1, a basis is given by the theta
functions of characteristic 0 and 1:

F2(1) = {θ0(·, Ω), θ1(·, Ω)} .

Starting with a divisor D given in Mumford coordinates on the Jacobian of a
hyperelliptic curve C of genus 2 defined over Fp2 , we would like to use the basis
F2(2) to map D to a point on P3. There exists a one-to-one correspondence
between points on Jac(C) and elements on (Fp2)2 modulo a lattice ΛΩ = ΩZ2+
Z2. We first map D to a point z ∈ (Fp2)2 such that z mod ΛΩ is the point on
(Fp2)2/ΛΩ corresponding to D on Jac(C). We can then map z to

θD = (θ00(z,Ω) : θ01(z,Ω) : θ10(z,Ω) : θ11(z,Ω)) ∈ P3(Fp2).

We refer to the point obtained on the projective space as a theta point.
This mapping gives a correspondence between Divisors on Jac(C) and points
on P3(Fp2). A more detailed introduction to theta functions and a proof of
the validity of this correspondence is given in [6, Chapter 3]. We can proceed
analogously to obtain the theta coordinates of a point P1 on an elliptic curve
E1. These are given by

θP1 = (θ0(z1, Ω1) : θ1(z1, Ω1)) ∈ P1(Fp2)

where ΛΩ1
= Ω1Z+Z is a lattice such that Fp2/ΛΩ1

is in one-to-one correspon-
dence with E1 and z is a point on Fp2 which corresponds to P when modded
out by ΛΩ1

. If we also have the theta coordinates

θP2 = (θ0(z2, Ω2) : θ1(z2, Ω2)) ∈ P1(Fp2)

of a point P2 on another elliptic curve E2, then the theta coordinates of the
point (P1, P2) on the variety E1 × E2 are given by

θ(P1,P2) =
(
θ0(z1, Ω1)θ0(z2, Ω2) : θ0(z1, Ω1)θ1(z2, Ω2) :

θ1(z1, Ω1)θ0(z2, Ω2) : θ1(z1, Ω1)θ1(z2, Ω2)
)
∈ P(Fp2)3.

The precise formulas to convert between Mumford coordinates and theta co-
ordinates are given in the appendix of [7] and implemented in Avisogenies. We
abbreviate the coordinate θij(z,Ω) as θDij and similarly, θi(zj , Ωj) will be abbre-

viated as θ
Pj

i . We can also represent A = Jac(C) itself using theta coordinates
by computing

θA = (θ00(0, Ω) : θ01(0, Ω) : θ10(0, Ω) : θ11(0, Ω)) ∈ P3.

This point is referred to as the theta null point of A and its coordinates corre-
spond to the theta coordinates of the identity element on A. We abbreviate the
coordinate θij(0, Ω) as θAij .



In Section 3.4, we also need to make use briefly of theta functions of level
4 using the basis F(2,2). This basis includes theta functions with a non-zero
characteristic a ∈ Q2. The basis is given by:

F(2,2)(2) =
{
θ00,00(·, Ω), θ00,01(·, Ω), θ00,10(·, Ω), θ00,11(·, Ω)

θ01,00(·, Ω), θ01,01(·, Ω), θ01,10(·, Ω), θ01,11(·, Ω)

θ10,00(·, Ω), θ10,01(·, Ω), θ10,10(·, Ω), θ10,11(·, Ω)

θ11,00(·, Ω), θ11,01(·, Ω), θ11,10(·, Ω), θ11,11(·, Ω)
}
.

These functions are sometimes referred to as level (2, 2) because of the choice
of basis. These functions are typically numbered using indices 1 to 16. Differ-
ent authors have used different numberings in the past. To avoid confusion, we
will stick to labelling the coordinates using the four binary digits. Some of the
numberings used by other authors are listed in [6, §3.1.2].

3.2 The Avisogenies Package

Avisogenies is a Magma package developed by Damien Robert and Romain
Cosset. It contains implementations of algorithms to compute 2-dimensional
(ℓ, ℓ)-isogenies in theta coordinates for an arbitrary prime ℓ. Currently, it can be
used to compute the theta null point of the codomain of such an isogeny by using
the function IsogenieG2Theta in the file isogenie.m. It also contains implemen-
tations of the conversion between Mumford coordinates and theta coordinates in
the functions MumfordToLevel2ThetaPoint and Level2ThetaPointToMumford.
These functions can be used for any dimension and so they can be used to
convert an elliptic curve point or a divisor on a hyperelliptic curve into theta
coordinates. They can be found in the file morphisms.m

The package also contains conversions between a theta null point and its cor-
responding hyperelliptic curve of genus two. These conversions are implemented
in the functions theta point from ros and theta null from rosenhain in the
file rosenhain.m. The functions make use of the Rosenhain form of a curve. A
hyperelliptic curve of genus 2 is in Rosenhain form if it has the form

y2 = x(x− 1)(x− λ)(x− µ)(x− ν).

The function RosenhainForm allows one to convert a curve to its Rosenhain
form, which must be done before computing its theta null point.

Theta coordinates can also be used to represent points on a variety A =
E1 × E2 that is the product of two elliptic curves. The (ℓ, ℓ)-isogeny formulas
that are implemented in Avisogenies work regardless of whether we are working
with the theta coordinates of a product of elliptic curves or of the Jacobian of a
hyperelliptic curve. However, the Avisogenies package has no implementation
of the conversion functions between points on the product of elliptic curves and



theta coordinates, which is necessary for the gluing and splitting steps of the
isogeny chain.

In order to map points through the chain, we need a function that computes
the image of a point given the kernel of an isogeny. The package Avisogenies

contains an untested function ImagePoint, which takes as input a divisor in
Mumford coordinates on the Jacobian of a genus 2 curve, as well as the kernel
of an isogeny in Mumford coordinates and returns the the image of the divisor
under that isogeny as well as the codomain curve. When testing this function,
we obtained an error and so some bugs had to be fixed before it could be used.
We also needed to reorganize it so that it could be used for the glue and split
cases as well.

In summary, in order to be able to use Avisogenies to compute an (ℓ, ℓ)-
isogeny glue and split chain, we made the following changes:

– We implemented the conversion from an elliptic curve to theta null points.
– We mplemented the conversion from theta null points of two elliptic curves

E1 and E2 to theta null points of the product E1 × E2.
– We implemented the conversion from a point on a product of elliptic curves

to theta coordinates.
– We fixed the ImagePoint function and reorganized it to use theta coordinates

for input and output, so that it can be used for the glue and split cases.
– We implemented the conversion from theta null points of the product of two

elliptic curves to theta null points of each elliptic curve.
– We implemented the conversion from theta null points to an elliptic curve.
– We implemented the conversion from the theta coordinates of a point (P,Q)

on the product of two elliptic curves to the points P and Q.

3.3 Computing the Image of a Point

Algorithm 4.5 in [7] describes how to compute the image of a point using theta
coordinates. It is implemented in the file Image.m of the Avisogenies package.
However, the implementation was marked in the code as untested and contained
some bugs.

The first step of the algorithm is to find an integer matrix F such that
FTF = ℓI. To do this, the authors first write ℓ as a sum of two squares ℓ = a2+b2,
or four squares ℓ = a2 + b2 + c2 + d2 if two is not possible. Then they take F to
be either

F =

(
a b
−b a

)
or F =


a b c d
−b a −d c
−c d a −b
−d −c b a


Here we describe the 4× 4 case, but similar remarks apply to the 2× 2 case. In
step 4 of Algorithm 4.5 of [7], we need a vector (m1,m2,m3,m4) such that(

ℓ 0 0 0
)
F−1 =

(
m1 m2 m3 m4

)
.



The authors take this vector to be (a, b, c, d). However it doesn’t satisfy the
equation since (

ℓ 0 0 0
)
F−1 = (a,−b,−c,−d).

so we obtain an error when running the code. We corrected this error by taking
a to have the opposite sign from b, c and d when constructing F .

There was also a minor typo in the original version of the ImagePoint func-
tion. In the equation on line 193, the c should be cx instead.

Finally, there were some issues with the way the conversion between Mumford
and theta coordinates was done. Since we also needed to use these conversions
in the glue and split cases, we simply broke out the conversion steps into sep-
arate functions and re-implemented them from scratch. We then modified the
ImagePoint function to use theta coordinates for input and output.

3.4 Theta Coordinates and Product Varieties

In this section, we describe how to convert between points on a product of elliptic
curves and theta coordinates. This conversion is necessary to complete the gluing
and splitting steps of the chain.

Gluing. In this step, we are given two elliptic curves E0 and EA, the kernel of
an (ℓA, ℓA)-isogeny

Φgl : E0 × EA → Jac(Hgl),

where Hgl is a hyperelliptic curve of genus 2, as well as a pair of points P =
(∞, P ′

A) and Q = (∞, Q′
A) on E0 ×EA that we would like to map through Φgl.

The isogeny algorithm implemented in Avisogenies allows us to compute
the codomain curve Hgl as well as Φgl(P) and Φgl(Q). The algorithm to recover
Hgl takes as input the theta null point θE1×E2 of E1 ×E2 along with the theta
points of all the elements in the kernel of Φgl. In order to compute the image of
P, we also need to give as input the theta coordinates of P+K for allK ∈ kerΦgl

(and similarly for Q).

Therefore, in order to be able to complete the gluing step, we first need to
compute the theta null point of the product variety A = E0×EA. The first step
is to compute the theta null points θE0 and θEA of E0 and EA. The procedure is
given in [13, §4]. However, the formulas given are for theta points of level 4, so we
combine these formulas with the conversion formulas between level 2 and level 4
theta points given in [6, §3.1.2]. Starting from an elliptic curve E : y2 = f(x),
to obtain the level 2 theta null point θE , we first compute the roots e1, e2 and
e3 of f(x). Then, θE = (θE0 : θE1 ) with

θE0 =
√
e1 − e3 +

√
e1 − e2, θE1 =

√
e2 − e3.



Once we have obtained θE0 and θEA , we can compute the theta null point of A,

θA = (θA00 : θA01 : θA10 : θA11)

where

θA00 = θE0
0 · θEA

0 , θA01 = θE0
0 · θEA

1 , θA10 = θE0
1 · θEA

0 , θA11 = θE0
1 · θEA

1

In order to compute the theta coordinates of a point P = (R,S) on A we
proceed in a similar way. We first compute the theta coordinates θR and θS of
the elliptic curve points R and S. This conversion can be done by using the
function MumfordToLevel2ThetaPoint that has already been implemented in
the Avisogenies package. The theta coordinates of P are then given by

θP00 = θR0 · θS0 , θP01 = θR0 · θS1 , θP10 = θR1 · θS0 , θP11 = θR1 · θS1

Using these two procedures, we can obtain the theta null point and all of the
theta points that are needed as input to the Avisogenies algorithm and there-
fore obtain the codomain curve C and the image points Φgl(P) and Φgl(Q)
completing the first step of the chain.

Splitting. In this step, we are given the Jacobian Jac(Hsp) of a genus 2 hyper-
elliptic curve Hsp : y2 = f(x), as well as the kernel of an (ℓA, ℓA)-isogeny:

Φsp : Jac(Hsp) → E′
0 × C ′

for which we know the codomain is the product of two elliptic curves E′
0 and C ′.

We would like to recover the images of the two divisors DP and DQ through Φsp

where DP and DQ are the images of P and Q respectively through the rest of
the chain. By using the functions available in Avisogenies, we can obtain the
theta points θΦ(P) and θΦ(Q) of Φsp(DP) = Φ(P) and Φsp(DQ) = Φ(Q) along
with the theta null point θB of B = E′

0 ×C ′. In what follows, we will work with
Φ(P) and write

Φ(P) = (P ′
0, P

′
C),

where P ′
0 ∈ E′

0(Fp2) and P ′
C ∈ C ′(Fp2). We expect the coordinates of θΦ(P) to

have the form

θ
Φ(P)
00 = θ

P ′
0

0 · θP
′
C

0 , θ
Φ(P)
01 = θ

P ′
0

0 · θP
′
C

1 , θ
Φ(P)
10 = θ

P ′
0

1 · θP
′
C

0 , θ
Φ(P)
11 = θ

P ′
0

1 · θP
′
C

1 .

If the coordinates do have this form, we can reverse the process in Section 3.4
to recover Φ(P). However, this case does not always occur, as theta coordinates
are not unique up to isomorphism. Therefore, we might need to apply an auto-
morphism to θΦ(P) in order to transform it into the above form. The procedure
to find and apply the correct isomorphism is described in the next section. For
now, we assume that θΦ(P) has the form above. We wish to recover P ′

0, as this

point is the one that should equal ϕ̂A(P
′
A). In order to do so, the first step is to



recover θ
P ′

0
0 and θ

P ′
0

1 . Since these are projective coordinates, we are really only

interested in the ratio θ
P ′

0
0 /θ

P ′
0

1 . This ratio is equal to θ
Φ(P)
00 /θ

Φ(P)
10 which we can

compute directly. Once we have that, we can feed these coordinates into the
Avisogenies function Level2ThetaPointToMumford to recover P ′

0. This func-
tion requires as input the roots of the polynomial defining the elliptic curve on
which P ′

0 lies, as well as the theta null point of that curve. At first sight, there
does not appear to be a problem, since we know that P ′

0 must lie on E′
0 which

is isomorphic to the starting curve E0. However, we encountered the following
two issues.

The first issue is that, as stated before, theta coordinates are not unique
up to isomorphism, so if we give as input to Level2ThetaPointToMumford the
theta coordinates of P ′

0 and the roots of the polynomial of E0, we get an error.
Therefore, we must start by recovering the equation for E′

0 from the theta null
point θB .

The second issue is that the points P ′
0 and P ′

C might have gotten swapped

through the chain and so when we evaluate θ
Φ(P)
00 /θ

Φ(P)
10 we might actually have

calculated θ
P ′

C
0 /θ

P ′
C

1 instead. In order to test whether we have the correct point,
we can try running the function Level2ThetaPointToMumford by using the theta
null point and the roots of the polynomial of the elliptic curve E′

0. If we actually
gave as input the theta coordinates of P ′

C instead of the ones for P ′
0, we will get

an error and so we can retry by using θ
Φ(P)
00 /θ

Φ(P)
01 as θ

P ′
0

0 /θ
P ′

0
1 instead.

Recovering the equation of E′
0 from θB. We assume that θB has the form

θB00 = θ
E′

0
0 · θC

′

0 , θB01 = θ
E′

0
0 · θC

′

1 , θB10 = θ
E′

0
1 · θC

′

0 , θB11 = θ
E′

0
1 · θC

′

1 .

If not, then we need to follow the procedure outlined in the next section to

get a point of this form. We start by recovering the ratio θ
E′

0
0 /θ

E′
0

1 of the theta
coordinates of E′

0, by computing the ratio θB00/θ
B
10. It might be the case that the

curves E′
0 and C ′ are swapped. If so, we can detect it once we have obtained

the equation for E′
0 by comparing its j-invariant with the one of E0. If these are

different, we restart the procedure by taking θB00/θ
B
01 as the ratio of the theta

coordinates of E′
0 instead. Recall from the gluing step that the theta coordinates

of an elliptic curve E : y2 = f(x) are

θE0 =
√
e1 − e3 +

√
e1 − e2, θE1 =

√
e2 − e3

We would now like to invert these equations to obtain e1, e2 and e3 from θE0
and θE1 . We only care about finding one set of roots e1, e2, e3 that satisfy this
equation and not all of them. Therefore, we can start by setting e2 = 0. Squaring
the second equation, we get

e3 = −(θE1 )
2.



Substituting into the first equation and moving
√
e1 to the left, we get:

θE0 −
√
e1 =

√
e1 + (θE1 )

2.

Squaring both sides we get:

(θE0 )
2 − 2

√
e1θ

E
0 + e1 = e1 + (θE1 )

2

and moving 2
√
e1θ

E
0 to the right and everything else to the left, then squaring

both sides, we obtain ((θE0 )
2 − (θE1 )

2)2 = 4e1(θ
E
0 )

2 or

e1 =
((θE0 )

2 − (θE1 )
2)2

4(θE0 )
2

.

Therefore, we have that the equation of an elliptic curve E with theta coor-
dinates (θE0 , θ

E
1 ) is given by y2 = (x− e1)(x− e2)(x− e3) with

e1 =
((θE0 )

2 − (θE1 )
2)2

4(θE0 )
2

, e2 = 0, e3 = −(θE1 )
2.

Once we have recovered these roots from θE
′
0 , we have all the necessary in-

gredients to call the function Level2ThetaPointToMumford to recover P ′
0. When

calling this function, the order of the roots matters, so it is important to give
them as a list [e1, e2, e3] in that order. Once we have P ′

0, we can call the Magma
function IsIsomorphic to obtain the isomorphism from E′

0 to E0 in order to

get P0 = ϕ̂A(P
′
A).

Applying Automorphisms to Theta Coordinates. It may be the case that
after we apply the isogeny formula, we obtain a theta null point θB and a theta
point θΦ(P) that don’t have a product structure, meaning that the coordinates
of θB (and θΦ(P)) cannot be written as

θB = (xu : xv : yu : yv)

for some elements x, y, u, v in the base field Fp2 . In that case, we must apply an
automorphism to θB before proceeding further. In order to do so, we work with
the squares of the theta coordinates of level (2, 2) as it is easier to detect which
automorphism must be applied in that case. The squares of the theta coordinates
of level (2, 2) are in one-to-one correspondence with the theta coordinates of
level 2. We write the (square of the) theta null point of level (2, 2) of B as

θ̄B = (θ̄B0000 : θ̄B0001 : θ̄B0010 : θ̄B0011 : θ̄B0100 : θ̄B0101 : θ̄B0110 : θ̄B0111 :

θ̄B1000 : θ̄B1001 : θ̄B1010 : θ̄B1011 : θ̄B1100 : θ̄B1101 : θ̄B1110 : θ̄B1111) ∈ P15.

We first need to convert θB into a point of level (2, 2). The formulas for
performing this conversion are given in [6, §3.1.2] and are implemented in the



AlgebraicToAnalyticThetaNullPoint and AlgebraicToAnalyticThetaPoint

functions in the Avisogenies package. Rewriting these formulas using our no-
tation, we have that

θ̄B0000 = (θB00θ
B
00 + θB10θ

B
10 + θB01θ

B
01 + θB11θ

B
11)/4

θ̄B0001 = (θB01θ
B
00 + θB11θ

B
10 + θB00θ

B
01 + θB10θ

B
11)/4

θ̄B0010 = (θB10θ
B
00 + θB00θ

B
10 + θB11θ

B
01 + θB01θ

B
11)/4

θ̄B0011 = (θB11θ
B
00 + θB01θ

B
10 + θB10θ

B
01 + θB00θ

B
11)/4

θ̄B0100 = (θB00θ
B
00 + θB10θ

B
10 − θB01θ

B
01 − θB11θ

B
11)/4

θ̄B0101 = (θB01θ
B
00 + θB11θ

B
10 − θB00θ

B
01 − θB10θ

B
11)/4

θ̄B0110 = (θB10θ
B
00 + θB00θ

B
10 − θB11θ

B
01 − θB01θ

B
11)/4

θ̄B0111 = (θB11θ
B
00 + θB01θ

B
10 − θB10θ

B
01 − θB00θ

B
11)/4

θ̄B1000 = (θB00θ
B
00 − θB10θ

B
10 + θB01θ

B
01 − θB11θ

B
11)/4

θ̄B1001 = (θB01θ
B
00 − θB11θ

B
10 + θB00θ

B
01 − θB10θ

B
11)/4

θ̄B1010 = (θB10θ
B
00 − θB00θ

B
10 + θB11θ

B
01 − θB01θ

B
11)/4

θ̄B1011 = (θB11θ
B
00 − θB01θ

B
10 + θB10θ

B
01 − θB00θ

B
11)/4

θ̄B1100 = (θB00θ
B
00 − θB10θ

B
10 − θB01θ

B
01 + θB11θ

B
11)/4

θ̄B1101 = (θB01θ
B
00 − θB11θ

B
10 − θB00θ

B
01 + θB10θ

B
11)/4

θ̄B1110 = (θB10θ
B
00 − θB00θ

B
10 − θB11θ

B
01 + θB01θ

B
11)/4

θ̄B1111 = (θB11θ
B
00 − θB01θ

B
10 − θB10θ

B
01 + θB00θ

B
11)/4.

Once we have obtained the coordinates of θ̄B in this way, we can separate
them into two sets, the “even” coordinates:

{θ̄B0000, θ̄B0010, θ̄B0001, θ̄B0011, θ̄B1000, θ̄B1001, θ̄B0100, θ̄B0110, θ̄B1100, θ̄B1111}

and the “odd” coordinates:

{θ̄B0101, θ̄B0111, θ̄B1010, θ̄B1110, θ̄B1011, θ̄B1101}.

If we are working with a theta null point, the odd coordinates should all
be zero. Furthermore, if we are working with the theta null point of a variety
that is the product of two elliptic curves as we are now, exactly one of the even
coordinates will be zero. In order for the corresponding theta null point of level
2 to have the desired form, we need the even zero coordinate to be θ̄B1111.

The process to apply an automorphism to a theta point of level (2, 2) is
detailed in [6, §3.1.5]. There it is only done for the case where the theta point



is defined over C, but it is straightforward to adapt it to Fp2 . An automorphism
on θ̄B can be represented as a 4× 4 matrix

γ =

(
A B
C D

)
in the symplectic group Sp(4,Z) where A,B,C,D are 2×2 matrices with entries
in Fp2 . The matrix γ belongs to Sp(4,Z) if and only if the following two conditions
are satisfied:

1. ATC and DTB are symmetric
2. ATD − CTB = I

where I is the 2× 2 identity matrix. To write out how the matrix γ acts on the
coordinates of θ̄B , we first define the vector

d = diag(ATC) || diag(DTB) ∈ (Z/2Z)4

which consists of the concatenation of the diagonal entries of ATC with the diag-
onal entries of DTB reduced modulo 2. The matrix γ then acts in the following
way on the coordinate θ̄Bc :

γ · θ̄Bc = ζ2γζ
2
γ·cθ̄

B
c+d

where ζγ and ζγ·c are roots of unity in Fp2 depending on γ and γ and c re-
spectively. These are squared because we are working with the squares of the
coordinates of level (2, 2). In this equation, we view the index c of the coordinate
as a vector in (Z/2Z)4 which allows us to perform the addition c+d. Since we are
working with projective coordinates and ζγ does not depend on the coordinate,
we can treat it as a projective factor and ignore it. Therefore, it only remains
to determine the value of ζγ·c. We write the index c as c = a || b where a and b
are vectors in Z × Z. Note that here we look at the index as a vector over the
integers and not over Z/2Z. When working over C, the root ζγ·c is given by

ζγ·c = exp(−πi(aTABTa+ bTCDT b+ 2aTBCT b)).

We let
τ = −(aTABTa+ bTCDT b+ 2aTBCT b)

and add or subtract a multiple of 2 so that τ ∈ (−1, 1]. When computing this
number in the complex plane, we have that ζγ·c = eπiτ ∈ Q(

√
2, i) whenever

τ ∈ (−1, 1] ∩ 1
4Z. When working over Fp2 , we can simply use the corresponding

square root of 2 in Fp2 for
√
2 and the square root of −1 in Fp2 for i.

To choose the correct automorphism to apply, we start by identifying which
of the even coordinates of θ̄B is zero. Call the index of that coordinate i. We
then pick γ ∈ Sp(4,Z) so that i = [1, 1, 1, 1] + d where d is defined as above and
the indices are viewed as vectors in (Z/2Z)4. A suitable matrix γ for each of the



even coordinates being zero is available inside the function get aut matrix in
the file Automorphism.m.

Once we have applied γ to θ̄B , we can convert γ · θ̄B back to level 2 by using
the Avisogenies function AnalyticToAlgebraicThetaPoint. The conversion
formulas are given below:

γ · θB00 = γ · θB0000 + γ · θB0100 + γ · θB1000 + γ · θB1100
γ · θB01 = γ · θB0001 + γ · θB0101 + γ · θB1001 + γ · θB1101
γ · θB10 = γ · θB0010 + γ · θB0110 + γ · θB1010 + γ · θB1110
γ · θB11 = γ · θB0011 + γ · θB0111 + γ · θB1011 + γ · θB1111

The point γ · θB = (γ · θB00 : γ · θB01 : γ · θB10 : γ · θB11) should now have the
desired form. We then apply the same automorphism γ to the point θΦ(P) so
that it also has a product structure. We first need to obtain the squares of the
coordinates of level (2, 2) of θΦ(P):

θ̄Φ(P) = (θ̄
Φ(P)
0000 : θ̄

Φ(P)
0001 : θ̄

Φ(P)
0010 : θ̄

Φ(P)
0011 : θ̄

Φ(P)
0100 : θ̄

Φ(P)
0101 : θ̄

Φ(P)
0110 : θ̄

Φ(P)
0111 :

θ̄
Φ(P)
1000 : θ̄

Φ(P)
1001 : θ̄

Φ(P)
1010 : θ̄

Φ(P)
1011 : θ̄

Φ(P)
1100 : θ̄

Φ(P)
1101 : θ̄

Φ(P)
1110 : θ̄

Φ(P)
1111 ) ∈ P15.

These are given by

θ̄
Φ(P)
0000 = (θB00θ

Φ(P)
00 + θB10θ

Φ(P)
10 + θB01θ

Φ(P)
01 + θB11θ

Φ(P)
11 )/4

θ̄
Φ(P)
0001 = (θB01θ

Φ(P)
00 + θB11θ

Φ(P)
10 + θB00θ

Φ(P)
01 + θB10θ

Φ(P)
11 )/4

θ̄
Φ(P)
0010 = (θB10θ

Φ(P)
00 + θB00θ

Φ(P)
10 + θB11θ

Φ(P)
01 + θB01θ

Φ(P)
11 )/4

θ̄
Φ(P)
0011 = (θB11θ

Φ(P)
00 + θB01θ

Φ(P)
10 + θB10θ

Φ(P)
01 + θB00θ

Φ(P)
11 )/4

θ̄
Φ(P)
0100 = (θB00θ

Φ(P)
00 + θB10θ

Φ(P)
10 − θB01θ

Φ(P)
01 − θB11θ

Φ(P)
11 )/4

θ̄
Φ(P)
0101 = (θB01θ

Φ(P)
00 + θB11θ

Φ(P)
10 − θB00θ

Φ(P)
01 − θB10θ

Φ(P)
11 )/4

θ̄
Φ(P)
0110 = (θB10θ

Φ(P)
00 + θB00θ

Φ(P)
10 − θB11θ

Φ(P)
01 − θB01θ

Φ(P)
11 )/4

θ̄
Φ(P)
0111 = (θB11θ

Φ(P)
00 + θB01θ

Φ(P)
10 − θB10θ

Φ(P)
01 − θB00θ

Φ(P)
11 )/4

θ̄
Φ(P)
1000 = (θB00θ

Φ(P)
00 − θB10θ

Φ(P)
10 + θB01θ

Φ(P)
01 − θB11θ

Φ(P)
11 )/4

θ̄
Φ(P)
1001 = (θB01θ

Φ(P)
00 − θB11θ

Φ(P)
10 + θB00θ

Φ(P)
01 − θB10θ

Φ(P)
11 )/4

θ̄
Φ(P)
1010 = (θB10θ

Φ(P)
00 − θB00θ

Φ(P)
10 + θB11θ

Φ(P)
01 − θB01θ

Φ(P)
11 )/4

θ̄
Φ(P)
1011 = (θB11θ

Φ(P)
00 − θB01θ

Φ(P)
10 + θB10θ

Φ(P)
01 − θB00θ

Φ(P)
11 )/4



θ̄
Φ(P)
1100 = (θB00θ

Φ(P)
00 − θB10θ

Φ(P)
10 − θB01θ

Φ(P)
01 + θB11θ

Φ(P)
11 )/4

θ̄
Φ(P)
1101 = (θB01θ

Φ(P)
00 − θB11θ

Φ(P)
10 − θB00θ

Φ(P)
01 + θB10θ

Φ(P)
11 )/4

θ̄
Φ(P)
1110 = (θB10θ

Φ(P)
00 − θB00θ

Φ(P)
10 − θB11θ

Φ(P)
01 + θB01θ

Φ(P)
11 )/4

θ̄
Φ(P)
1111 = (θB11θ

Φ(P)
00 − θB01θ

Φ(P)
10 − θB10θ

Φ(P)
01 + θB00θ

Φ(P)
11 )/4.

We then apply the automorphism γ to these coordinates by computing

γ · θ̄Φ(P)
c = ζ2γζ

2
γ·cθ̄

Φ(P)
c+d

where d, ζγ and ζγ·c are the same as above. We then convert these coordinates
back to level 2 using the same formulas as before. We now have that the point

γ · θΦ(P) = (γ · θΦ(P)
00 : γ · θΦ(P)

01 : γ · θΦ(P)
10 : γ · θΦ(P)

11 )

has the form
γ · θΦ(P) = (xu : xv : yu : yv).

4 Magma Code

The code accompanying this paper can be found at the following git repository:
https://git.uwaterloo.ca/jmlaflam/sidh-attack/

It contains the following files:

– Gluing.m: This file contains implementations of the methods in Section 3.4
to convert a product of elliptic curves and points on it to theta coordinates.

– Spitting.m: This file contains implementations of the methods in Section 3.4
to convert theta points to points on a product of elliptic curves.

– automorphism.m: This file contains implementations of the methods in Sec-
tion 3.4 to apply automorphisms to theta coordinates. It also contains a
function get aut matrix which stores matrices for the right automorphism
to apply in all possible cases.

– ImagePoint.m: A modified version of Image.m from the Avisogenies pack-
age which contains the modifications described in Section 3.3.

– attack ll.m: This is the main file and contains an implementation of the
attack when Bob’s prime is ℓb = 5. It contains several functions that were
taken from the file sikep751 attack.m which can be found here.

– parameters.txt: This file contains the list of parameters in Table 1 along
with suitable values of u, v and d which can be copy and pasted at the top
of the file attack ll.m to run the attack on the different parameter sets.

All of these files make use of the package Avisogenies, which is available
at https://gitlab.inria.fr/roberdam/avisogenies/. In order to run the code, the
import path for the functions coming from this package will need to be modified
at the top of each file.

https://git.uwaterloo.ca/jmlaflam/sidh-attack/
https://github.com/KULeuven-COSIC/3_3_isogenies
https://gitlab.inria.fr/roberdam/avisogenies/https://gitlab.inria.fr/roberdam/avisogenies/


5 Timings and Conclusion

5.1 Timings

We ran the code in Section 4 to recover Alice’s secret isogeny using different
sets of parameters ℓA, ℓB , a and b. To do this, we used Magma version 2.27-8 on
an Intel Core i5-7200U CPU at 2.50GHz. For some parameter sets we had to
extend Alice’s isogeny by a degree d isogeny so that ℓbB − dℓaA can be written
as u2 + 4v2 for integers u and v. The timings of the attack given the different
parameter choices are compiled in Table 1.

ℓA ℓB a b p time

2

5

93 104 2935104 − 1 ≈ 2335 83 s

216 115 22165115 − 1 ≈ 2484 2 mins

109 216 21095216 − 1 ≈ 2611 4 mins

7 113 106 21137106 − 1 ≈ 2411 38 mins

11 99 80 2991180 − 1 ≈ 2376 ≈ 3 hours

3

5 79 88 4 · 379588 − 1 ≈ 2326 72 s

7 102 73 4 · 3102773 − 1 ≈ 2369 21 mins

5 7 107 102 4 · 51077102 − 1 ≈ 2537 50 mins

Table 1: Timings of the attack for different choices of parameters

In [7, §5.5], the authors give a brief complexity analysis of the isogeny algo-
rithms implemented in Avisogenies. The run time for the computation of each
ℓB-isogeny depends on whether ℓB can be written as the sum of two squares.
If it can, then the run time is in O(ℓ2B) and otherwise, ℓB will be written as
the sum of four squares and the run time will be in O(ℓ4B). This explains the
big increase in time between ℓB = 5 and ℓB = 7. Furthermore, when running
the attack, we need to compute b-isogenies of degree ℓB and so the timings also
depend heavily on b. Somewhat counter intuitively, the runtime of the attack
when recovering Alice’s isogeny does not directly depend on ℓA or a. However,
these will influence the size of the field Fp2 and so bigger values of ℓA and a
will make the field arithmetic slower, especially when taking square roots in the
gluing step.

5.2 Future work

A natural next step is use Avisogenies to implement the dimension 4 and
8 attacks proposed by Robert in [17]. The isogeny formulas implemented in



the package should in theory work in higher dimensions. However, most of the
implementation currently available in the package is restricted to dimension
2, specifically when it comes to the conversion to and from theta coordinates.
Therefore, more work would be needed in order to extend the implementation
to higher dimensions.

Our results could also be useful in implementing future attacks on M-SIDH
or MD-SIDH, two SIDH variants proposed in [10] to counter the initial Castryck-
Decru attack. In addition, newer isogeny-based schemes such as SQIsignHD [8],
SQIsign2D-West [1], and FESTA [2] make use of isogeny interpolation in a con-
structive manner. Our implementation results, especially if optimized further,
could lead to more flexible parameter choices or unlock other functionality.
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