
Revisiting subgroup membership testing on
pairing-friendly curves via the Tate pairing

Yu Dai1, Debiao He2�, Dimitri Koshelev3, Cong Peng2, and Zhijian Yang1

1 School of Mathematics and statistics, Wuhan University, Wuhan, China.
eccdaiy39@gmail.com, zjyang.math@whu.edu.cn

2 School of Cyber Science and Engineering, Wuhan University, Wuhan, China.
hedebiao@whu.edu.cn, cpeng@whu.edu.cn

3 Department of Mathematics, University of Lleida, Catalonia, Spain.
dimitri.koshelev@gmail.com

Abstract. In 2023, Koshelev introduced an efficient method of subgroup
membership testing for a list of non-pairing-friendly curves, using at most
two small Tate pairings. In fact, this technique can also be applied to
certain pairing-friendly curves, e.g., from the BLS and BW13 families. In
this paper, we revisit Koshelev’s method and propose simplified formulas
for computing the two Tate pairings. Compared to the original formu-
las, ours reduce both the number of Miller’s iterations and the storage
requirements. Furthermore, we provide a high-speed software implemen-
tation on a 64-bit processor. Our experimental results show that the new
method outperforms the state-of-the-art one by up to 62.0% and 41.2%
on the BW13-310 and BLS48-575 curves, respectively. When special pre-
computation is utilized, our method achieves greater speed improvements
of up to 110.6% and 74.4% on the two curves, respectively.

Keywords: pairing-friendly curves · subgroup membership testing · Tate
pairing.

1 Introduction

A cryptographic pairing on an elliptic curve E over a large prime field Fp is a
bilinear and non-degenerate map of the form G1 ⊕ G2 → GT , where G1, G2

and GT are three subgroups with the same large prime order r. More specif-
ically, the two input groups G1 and G2 are distinct subgroups of E(Fpk) and
the output group GT is a subgroup of the finite field Fpk , where k is the small-
est positive integer such that r | (pk − 1). Over the last two decades, pairings
have been widely used in the design of various cryptographic protocols. Nowa-
days, the research on pairings remains active, driven largely by their applica-
tions in zero-knowledge Succinct Non-Interactive Arguments of Knowledge (zk-
SNARKs), such as Groth16 [24] and PlonK [22]. In pairing-based cryptographic
protocols, participants often need to exponentiate in one or more pairing groups.
However, these groups typically lie in larger groups with non-trivial cofactors for
most of mainstream pairing-friendly curves. As a result, this can lead to small



subgroup attacks: if a participant performs group exponentiation on an element
of non-prime order with a secret key, this may expose partial information about
the secret key. We refer the reader to [6] for more details.

In order to resist small subgroup attacks in pairing-based cryptographic pro-
tocols, it is essential to verify that a given element belongs to a specific subgroup.
This process is called subgroup membership testing. Given a candidate element
g claimed to be a member of Gi (i ∈ {1, 2, T}), the naive method involves
checking whether gr is equal to the identity element of Gi. However, the cost
of this method is expensive as the size of the prime r is large in practice. In
2020, Scott [42] proposed an efficient method of subgroup membership testing
on the BLS12 curves via an easily computable endomorphism. His method is
approximately 2×, 4× and 4× as fast as the naive one for G1, G2 and GT mem-
bership testings, respectively. Subsequently, Dai et al. [14] generalized Scott’s
technique such that it can be applied to a large class of pairing-friendly curves.
In more detail, Dai et al.’s method requires about log2(r)/2, log2(r)/φ(k) and
log2(r)/φ(k) group operations for G1, G2 and GT membership testings, respec-
tively, where φ(k) is the Euler phi function of k. In particular, the number of
group operations for G2 can be further reduced to around log2(r)/(2φ(k)) on
some special pairing-friendly curves [13]. It should also be noted that the cost of
G2 membership testing may be almost free if it is allowed to be executed during
pairing computation.

Recently, Koshelev [33] invented a novel method of subgroup membership
testing for non-pairing-friendly (i.e., plain) curves via the Tate pairing. His
method imposes a specific restriction on the group structure of curves. To be pre-
cise, given an elliptic curve E over a finite field Fp with a large prime divisor r, it
follows from [44, Theorem 4.1] that E(Fp) ∼= Ze1⊕Ze2·r for uniquely defined nat-
urals e1 and e2 with e1 | e2. Koshelev stated that if e2 | (p− 1), one can perform
subgroup membership testing for E(Fp)[r] via the two Tate pairings of orders e1
and e2. In particular, if E(Fp) is cyclic, i.e., e1 = 1, it only requires evaluating one
e2-order pairing. This technique is well-suited for zk-SNARK-friendly curves like
Jubjub [20] and Bandersnatch [35]. Since e1 ∈ {1, 2} and e2 ∈ {2, 8} for them,
the lengths of the Miller loops are extremely short, meaning that the whole pair-
ing computations almost amount to their final exponentiations. Interestingly, the
latter can be further accelerated when e2 ≤ 11 according to [30]. It should be
noted that Koshelev [34] subsequently generalized his method such that it can
be applied to certain curves with e2 ∤ (p − 1), e.g., Ed448-Goldilocks [27]. Un-
fortunately, this generalization may be inefficient as it involves operations in an
extension field Fpd , where d is the smallest degree such that the exponent of the
group E(Fpd)[e∞2 ] divides pd − 1.

In fact, Koshelev’s technique is also suitable for G1 membership testing on a
list of mainstream pairing-friendly curves, such as the Barreto-Lynn-Scott(BLS)
family [8] and the complete families from [21, Construction 6.6] with embedding
degrees 13 and 19. The latter are also referred to as BW curves in the literature,
as they are constructed by means of the Brezing-Weng method [10]. However,
when applying the idea of Koshelev to these curves (unlike the aforementioned

2



plain ones), the computational cost cannot be ignored anymore. As an example,
the sizes of e1 and e2 are about 4× smaller than the size of r for the BLS12
curves. This makes Koshelev’s method in its original form more expensive than
Scott’s method.

1.1 Our contributions

The goal of this work is to illustrate how to properly apply Koshelev’s method
to accelerate G1 membership testing for the BLS, BW13 and BW19 families.
Our contributions are summarized as follows:

• We obtain an efficient algorithm for simultaneously computing two peculiar
Tate pairings, i.e., a shared Miller loop supplemented by two independent
final exponentiations.
• Using the RELIC cryptographic toolkit [1], we present a high-speed software
implementation across a list of mainstream curves, including BLS12-381,
BLS12446, BW13-310, BLS24-315, BLS24-509 and BLS48-575. The experi-
mental results show that
1. in the general case, our algorithm achieves speed improvements of up to

62.0%, 6.5%, 2.7% and 41.2% on the BW13-310, BLS24-315, BLS24-509
and BLS48-575 curves, respectively, while being approximately 50.5%
and 48.6% slower on the BLS12-381 and BLS12-446 curves, respectively;

2. when precomputation is utilized, our algorithm is approximately 2.7%,
5.3%, 110.6%, 41.4%, 40.2% and 74.4% faster than the previous leading
one on the BLS12-381, BLS12-446, BW13-310, BLS24-315, BLS24-509
and BLS48-575 curves, respectively.

Organization of the paper. The remainder of this paper is organized as follows.
In Section 2, we give some preliminaries about elliptic curves with a focus on
those appropriate for pairings. Section 3 surveys existing methods (and a new
variant of Koshelev’s one) for subgroup membership testing on elliptic curves.
Explicit formulas and algorithms concretizing the new variant (for the desired
BLS, BW13 and BW19 curves) are contained in Section 4. Section 5 offers a
comprehensive performance comparison between our implementation and the
previous fastest one. Finally, we draw our conclusion in Section 6.

2 Preliminaries

In this section, we first review some basic concepts about elliptic curves and
the Tate pairing. Then, we introduce a series of parameterized pairing-friendly
families.

2.1 Elliptic curves and pairings

Let Fp be a large prime field. An elliptic curve E over Fp in the short Weierstrass
form is defined by the equation y2 = x3+ax+b, where a, b ∈ Fp such that 4a3+

3



27b2 ̸= 0. The j-invariant of E is given by j(E) = 1728 · 4a3/(4a3 + 27b2). The
group E(Fp) consists of Fp-rational points (x, y) that satisfy the curve equation,
together with the point at infinity O = (0 : 1 : 0). The order of E(Fp) is equal
to #E(Fp) = p + 1 − t, where t is the trace of the p-power Frobenius map
π : (x, y) → (xp, yp). If t = 0, then the curve E is said to be supersingular;
otherwise, it is ordinary.

Let r be a large prime such that r ∥ #E(Fp). Then, the group E(Fp) ∼=
Ze1 ⊕ Ze2·r for e1, e2 ∈ N such that m = e2/e1 ∈ N. The embedding degree
k of E with respect to r and p is the smallest degree such that r | (pk − 1).
If k > 1, then it is equally the smallest degree such that the r-torsion group
E[r] ⊆ E(Fpk). In this case, E[r] is the direct product of the r-order subgroups
G1 = E(Fp)[r] and G2 = E(Fpk)[r] ∩ Ker(π − [p]). A cryptographic pairing on
E is a non-degenerate bilinear map (mainly) of the form G1 ⊕G2 → GT , where
the codomain is the subgroup of r-th roots of unity in F∗

pk .
Given i ∈ Z and P ∈ E, we let fi,P be the normalized rational function on

E with divisor
div(fi,P ) = i(P )− (iP )− (i− 1)(O).

Hereafter, we refer to fi,P as Miller functions. Let n be an integer such that
n | (p− 1). The reduced Tate pairing of order n on E(Fp) is defined as

Tn : E(Fp)[n]⊕ E(Fp)/nE(Fp)→ µn

(P,R)→ fn,P (R)(p−1)/n,

where µn is the subgroup of n-th roots of unity in F∗
p. The Tate pairing Tn

satisfies the following properties:

1. Bilinearity: For any P1, P2 ∈ E(Fp)[n] and R1, R2 ∈ E(Fp),

Tn(P1, R1 +R2) = Tn(P1, R1) · Tn(P1, R2),

Tn(P1 + P2, R1) = Tn(P1, R1) · Tn(P2, R1).

2. Non-degeneracy: Let P ∈ E(Fp)[n]. If Tn(P,R) = 1 for all R ∈ E(Fp), then
P = O. Similarly, let R ∈ E(Fp). If Tn(P,R) = 1 for all P ∈ E(Fp)[n], then
R ∈ nE(Fp).

3. Compatibility: Let P ∈ E(Fp)[n] and R ∈ E(Fp). For all endomorphisms α
on E,

Tn(α(P ), R) = Tn(P, α̂(R)),

where α̂ is the dual of α, i.e., α ◦ α̂ = [deg(α)].

The computation of the Tate pairing Tn(P,R) can be divided into two phases:
the Miller loop [37] (Algorithm 1) and the final exponentiation. In more detail,
the first phase involves evaluating fn,P (R) and the second one aims to raise
fn,P (R) to the power of (p − 1)/n. Let ℓiP,jP be the line through iP and jP
(tangent to E at the point if iP = jP ), and νiP be the vertical line through iP .
The value fn,P (R) is recursively determined in the algorithm via the equation

fi+j,P = fi,P · fj,P · µiP,jP (1)

4



Algorithm 1 Miller’s algorithm.

Input: P ∈ E(Fp)[n], R ∈ E(Fp) \ {O} and n =
∑ℓ

i=0 ni2
i with ni ∈ {0, 1},

nℓ = 1
Output: fn,P (R)

1: T ← P , f ← 1
2: for i = ℓ− 1 down to 0 do
3: f ← f2 · µT,T (R), T ← 2T
4: if ni = 1 then
5: f ← f · µT,P (R), T ← T + P
6: end if
7: end for
8: return f

with the auxiliary function

µiP,jP =


ℓiP,jP

ν(i+j)P
if (i+ j)P ̸= O,

νP otherwise.

Throughout this paper, we assume that the curve E is ordinary with j-
invariant 0. In this case, the coefficient a = 0 and p ≡ 1 mod 3 due to [44,
Proposition 4.33]. Therefore, there exists the easily computable endomorphism
ϕ : (x, y)→ (ωx, y) on E, where ω is a primitive cube root of unity in F∗

p. This
map is also called the GLV endomorphism as it was used by Gallant, Lambert
and Vanstone [23] to accelerate elliptic curve scalar multiplication. The dual of

ϕ is given as ϕ̂ : (x, y) → (ω2x, y). Their characteristic polynomial is obviously
of the form X2 +X + 1. Moreover, the curve E has complex multiplication by
Z[ϕ], which is a maximal quadratic order. Hence, the integer e1 is the largest
integer such that e21 | #E(Fp) and e1 | (p− 1) (see [40, Proposition 3.7]).

2.2 Parameterized families of pairing-friendly curves

Pairing-friendly curves are specifically designed to facilitate high-performance
pairing implementations at the required security levels. These curves typically
have a low embedding degree k and a small value ρ = log2(p)/ log2(r) ≳ 1. Table
1 summarizes some popular parameterized families of pairing-friendly curves
with 1.11 ≲ ρ ≲ 1.5 and embedding degree k ranging from 12 to 48, including
the BLS12, BW13, BW19, BLS24 and BLS48 families. All their curves have the
j-invariant 0, meaning that they can be defined by the equation y2 = x3 + b
for some b ∈ F∗

p. Among other things, the quotient m = 3 for each family
under consideration, but it is reasonable for universality to continue writing the
symbol m. There may be families with another e2-torsion structure, although
still relevant to pairing-based G1 membership testing: the condition m | (p− 1)
does not generally imply that m = 3.

5



Due to the decrease of the asymptotic complexity for computing discrete
logarithms in finite fields under the attacks of number field sieve and its vari-
ants [5,29,32], the parameters of pairing-friendly curves should be selected care-
fully to reach the desired security level. In Table 2, we list the key parame-
ters of specific curves derived from the above families, which are suitable for
implementing pairing-based protocols across various security levels. To be pre-
cise, BLS12-381 is one of the most popular curves in practice, which is widely
used for digital signatures and zero-knowledge proofs; BLS12-446, BLS24-509
and BLS48-575 are believed to be the best choice for the 128-bit, 192-bit and
256-bit security levels, respectively [2, 25, 36]; BW13-310 and BW19-286 pro-
vide good performance of exponentiation in G1 at the 128-bit security level [11];
BLS24-315 [18] is adequate for constructing zk-SNARKs based on KZG [31]
polynomial commitment, e.g., PLONK [22]. For more information on selecting
pairing-friendly curves, we refer to Guillevic’s blog [26].

Table 1: Polynomial parameters of the BLS, BW13 and BW19 families. The
symbol Φk(z) represents the k-th cyclotomic polynomial.

family-k p r t e1 e2 m

BLS12 1
3
(z − 1)2(z4 − z2 + 1) + z Φ12(z) z + 1 |z−1|

3
|z − 1| 3

BW13 1
3
(z+1)2(z26−z13 + 1)−z27 Φ78(z) −z14 + z + 1 z2−z+1

3
z2 − z + 1 3

BW19 1
3
(z+1)2(z38−z19 + 1)−z39 Φ114(z) −z20 + z + 1 z2−z+1

3
z2 − z + 1 3

BLS24 1
3
(z − 1)2(z8 − z4 + 1) + z Φ24(z) z + 1 |z−1|

3
|z − 1| 3

BLS48 1
3
(z − 1)2(z16 − z8 + 1) + z Φ48(z) z + 1 |z−1|

3
|z − 1| 3

Table 2: A list of pairing-friendly curves derived from the BLS, BW13 and BW19
families.

curve b z ⌈log2(p)⌉ ⌈log2(r)⌉ ρ ≈ ⌈log2(pk)⌉

BLS12-381 4 −263 − 262 − 260 − 257 − 248 − 216 381 255 1.5 4569

BLS12-446 1 −274−273−263−257 − 250−217−1 446 299 1.5 5376

BW13-310 −17 −211 − 27 − 25 − 24 310 267 1.17 4027

BW19-286 31 −27 − 24 − 1 286 259 1.11 5427

BLS24-315 1 −231 − 230 + 221 + 220 + 1 315 253 1.25 7543

BLS24-509 1 −251 − 228 + 211 − 1 509 409 1.25 12202

BLS48-575 4 232 − 218 − 210 − 24 575 512 1.125 27572

6



3 Efficient methods for subgroup membership testing on
elliptic curves

In this section, we discuss recognized approaches in the existing literature for
testing the membership to subgroups on elliptic curves.

3.1 Method I: subgroup membership testing via an easily
computable endomorphism

Scott [42] invented the first non-trivial method for G1 membership testing specif-
ically designed for the BLS12 family. After that, El Housni, Guillevic and Piel-
lard [19] confirmed that this technique is also suitable for the BLS24 and BLS48
families. In 2023, Dai et al. [14] further generalized Scott’s method such that it
can be applied to a large class of pairing-friendly curves. In essence, they are de-
manded to be equipped with a cheap endomorphism. In particular, for ordinary
curves with j-invariant 0, Dai et al.’s method can be summarized as follows.

Theorem 1 ( [14, Theorem 3]). Let E be an ordinary curve over Fp with
j-invariant 0, and let the GLV endomorphism ϕ on G1 act as a scalar multipli-
cation by λ1. Define the two-dimensional lattice

Lϕ = {(u0, u1) ∈ Z2 | u0 + u1λ1 ≡ 0 mod r}.

Consider a vector u ∈ Lϕ such that

gcd(#E(Fp), u2
0 − u0u1 + u2

1) = r. (2)

Finally, let R be a point in E(Fp). Then, R ∈ G1 if and only if

u0R+ u1ϕ(R) = O.

For efficiency, we expect that the infinity norm ∥u∥∞ is as small as possi-
ble. According to [43, Theorem 7], there exists a short vector v ∈ Lϕ such that
∥v∥∞ ≈

√
r. Fortunately, the condition (2) is generally mild, allowing the target

vector u to be selected as v for many popular pairing-friendly curves. Further-
more, the two scalars u0 and u1 are frequently related such that we actually deal
with one usual scalar multiplication. Consequently, the Scott(-type) method re-
quires approximately log2(r)/2 group operations, which is roughly twice as fast
as the naive one.

3.2 Method II: subgroup membership testing via the Tate pairing

Taking advantage of the non-degeneracy of Tate pairing, Koshelev [33] proposed
a new insight into subgroup membership testing on elliptic curves. The essence
of his method is captured in the following theorem.

7



Theorem 2 ( [33, Lemma 1]). Let E be an elliptic curve over Fp with the
group structure E(Fp) ∼= Ze1⊕Ze2·r and e2 | (p−1). Let P1 and P2 be two points
with orders e1 and e2, respectively, such that E(Fp)[e2] = ⟨P1⟩ ⊕ ⟨P2⟩. Finally,
let R be yet another point in E(Fp). Then, R ∈ G1 if and only if

Te1(P1, R) = 1 and Te2(P2, R) = 1.

According to Theorem 2, subgroup membership testing on elliptic curves can
be accomplished at a cost of the two Tate pairings of orders e1 and e2. In fact, if
E(Fp) is cyclic, i.e., e1 = 1, the method only needs computing the e2-order Tate
pairing. In addition, Koshelev also demonstrated that if ei ≤ 11, then the final
exponentiation part of the ei-order Tate pairing can be dramatically accelerated
by means of an Euclidean-type algorithm [30]. In particular, if ei = 2, then the
final exponentiation is equivalent to determining the Legendre symbol, which
can be further optimized using the algorithms presented in [3, 28].

In Theorem 2, it is not necessary to restrict {P1, P2} to form a basis of
E(Fp)[e2]. Instead, it suffices for the two points to generate this group.

Proposition 1. Let P1 and P2 be two points that generate the group E(Fp)[e2],
and let R be yet another point in E(Fp). Then, R ∈ G1 if and only if

Te2(P1, R) = 1 and Te2(P2, R) = 1.

Proof. It is nearly identical to the corresponding proof of [33, Lemma 1]. ⊓⊔

3.3 Summary

The above two methods differ significantly in terms of applicability, efficiency
and storage requirements. Specifically, Method I is mostly tailored to pairing-
friendly curves, while Method II was originally developed for plain curves such
as Jubjub [20] and Bandersnatch [35]. To sum up, the main differences between
the two approaches are:

1. Method I is well-suited for elliptic curves equipped with an efficiently com-
putable endomorphism, while Method II is applicable when the curve pa-
rameters meet the condition e2 | (p− 1).

2. The cost of Method I arises from (two-)scalar multiplication with length
≈ log2(r)/2 bits. In contrast, the cost of Method II comes from two Tate
pairings, the longest of which has the length ≈ log2(e2) bits.

3. Method I does not occupy additional memory since the coefficient ω of the
endomorphism ϕ is initially provided to accelerate scalar multiplication in
G1, involved in pairing-based protocols themselves. As a comparison, Method
II requires storing two points P1 and P2 that generate E(Fp)[e2].

It is clear that Method I is suitable for the BLS, BW13 and BW19 families.
Fortunately, we notice that they also meet the condition e2 | (p − 1), making
Method II applicable as well. However, despite the relatively small sizes of e1

8



and e2 in these families, the computational cost of the Miller loops is non-
negligible. In addition, the technique of [30] cannot be exploited to speed up the
final exponentiations as e1, e2 ≫ 11. To the best of our knowledge, before the
present work, Method I has thereby been the state of the art as regards subgroup
membership testing (for G1) on pairing-friendly curves. That is why this method
was implemented in numerous cryptographic libraries, including MIRACL [41]
and RELIC [1].

3.4 New variant of Method II

In this section, we revisit Method II in such a way that it is still applied to the
BLS, BW13 and BW19 families, becoming less costly (even than Method I in a
series of cases). We first formulate the next lemma to illustrate how to obtain
the generators of E(Fp)[e2].

Lemma 1. Let P be a point of E(Fp) with order e2, and let m̃ be an integer
such that gcd(e1, m̃) = 1. Let We2(·, ·) be the Weil pairing of order e2 on E. If
additionally the order of We2(P, ϕ(P )) is equal to e1, then {P , m̃ϕ(P )} is a pair
of generators for E(Fp)[e2].

Proof. For convenience, we define the auxiliary group homomorphism

Ψ : Ze1 ⊕ Ze2 → E(Fp)[e2]

(ℓ1, ℓ2)→ ℓ1m̃ϕ(P ) + ℓ2P.

The pair {P , m̃ϕ(P )} generates E(Fp)[e2] if and only if the map Ψ is surjective.
Since #E(Fp)[e2] = e1e2, it then suffices to show that Ψ is injective, i.e., ker(Ψ) =
{(0, 0)}. By definition, for any (ℓ1, ℓ2) ∈ ker(Ψ), we have:

Ψ(ℓ1, ℓ2) = ℓ1m̃ϕ(P ) + ℓ2P = O. (3)

Then, it is straightforward to see that

We2(P, ϕ(P ))ℓ1m̃ = We2(P, ℓ1m̃ϕ(P )) = We2(P, Ψ(ℓ1, ℓ2)) = 1.

Since We2(P, ϕ(P )) has order e1, gcd(e1, m̃) = 1 and ℓ1 ∈ Ze1 , we can deduce
that ℓ1 = 0. Furthermore, since ℓ2 ∈ Ze2 and the point P has order e2, it implies
from Equation (3) that ℓ2 = 0. Thus, we conclude that ker(Ψ) = {(0, 0)}, which
completes the proof of the lemma. ⊓⊔

Given a random e2-order point P ∈ E(Fp), our experience demonstrates that
We2(P, ϕ(P )) has the order e1 with high probability. At least, such a point exists
for every curve from Table 2. Based on this observation, we establish a viable
variant of Method II, which is summarized in the following theorem.

Theorem 3. Let the point P and integer m̃ be defined as in Lemma 1, and let
R be yet another point in E(Fp). Then, R ∈ G1 if and only if

Te2(P, ϕ̂(R))m̃ = 1 and Te2(P,R) = 1.

9



Proof. By Lemma 1, the two points P and m̃ϕ(P ) can generate E(Fp)[e2]. Then,
it implies from Proposition 1 that R ∈ G1 if and only if

Te2(m̃ϕ(P ), R) = 1 and Te2(P,R) = 1.

By the bilinearity and compatibility of Tate pairing, we have:

Te2(m̃ϕ(P ), R) = Te2(ϕ(P ), R)m̃ = Te2(P, ϕ̂(R))m̃,

which completes the proof of the theorem. ⊓⊔

Remark 1. If gcd(e1,m) = 1 with m = e2/e1, nothing prevents from choosing
m̃ = m such that the final exponentiation part for one of the Tate pairings can
be performed more efficiently (see Section 4.3 for details); otherwise, the choice
m̃ = 1 is always available.

Theorem 3 presents a new approach for testing the membership to the sub-
group G1. Even though it still requires computing two Tate pairings, the evalua-
tions of the corresponding Miller functions can be shared, significantly reducing
the total number of Miller’s iterations. In addition, this approach benefits from
lower storage requirements due to the same first pairing argument.

4 Explicit formulas and algorithms

In this section, we formalize the aforementioned Koshelev-type method and an-
alyze its computational cost.

Notations. We represent the points R and ϕ̂(R) in affine coordinates as (xR, yR)
and (x̂R, yR), and the point R in Jacobian coordinates as (XR, YR, ZR), where
xR = XR/Z

2
R and yR = YR/Z

3
R. We write λR and λR1,R2

for the slopes of the
lines ℓR,R and ℓR1,R2

. Finally, we denote by i, m, mu, s, su, a and r the costs of
inversion, multiplication, multiplication without reduction ×, squaring, squaring
without reduction, addition and reduction itself, respectively.

4.1 Miller’s iterations without precomputation

Since the technique of denominator elimination [7] is not applicable to curves
with embedding degree one, vertical line evaluations in Algorithm 1 cannot be
ignored. In this case, the formulas proposed in [9,16] can be employed to minimize
the number of vertical line evaluations. Specifically, the authors of [16] suggest
performing Miller’s iterations via modified Miller functions gi,P (given i ∈ Z and
P ∈ E) with divisors

div(gi,P ) = i(P ) + (−iP )− (i+ 1)(O).

They outlined the optimal strategy for computing pairings on curves with odd
prime embedding degrees:

10



1. combine two consecutive doubling steps into one quadrupling step, saving
two vertical line evaluations;

2. combine one doubling and one addition/subtraction step into a single doubling-
addition/subtraction step, also saving two vertical line evaluations.

Moreover, in order to delay the inversion operation in Fp, it is necessary to
update the numerator and denominator of the function gi,P at each Miller’s
iteration.

Based on the above observation, Dai et al. [15] discussed how to evaluate a

Miller function at the two points R and ϕ̂(R) in a shared Miller loop. Specifically,

the two values gi,P (R) and gi,P (ϕ̂(R)) can be written as

gi,P (R) =
Ni(R)

Di(R)
, gi,P (ϕ̂(R)) =

Ni(ϕ̂(R))

Di(ϕ̂(R))
.

Since g1,P = x− xP , we initially set that

d1 = N1(R) = xR − xP , d2 = N2(ϕ̂(R)) = x̂R − xP , d3 = yR − yP ,

D1(R) = 1, D2(ϕ̂(R)) = 1.
(4)

For conciseness, we put

τi(R) =
(
Ni(R), Di(R), Ni(ϕ̂(R)), Di(ϕ̂(R))

)
.

Observing that fe2,P = ge2−1,P , we actually need to determine the tuple τe2−1(R).
This computation mainly involves six subroutines: SDBL, SADD, SSUB, SDADD,
SDSUB and SQPL. To be precise, on input τi(R) and T , where T = iP , the out-
puts of these subroutines are given in Table 3.

Table 3: The outputs of the subroutines.

SDBL SADD SSUB SDADD SDSUB SQPL

τ2i(R), τi+1(R), τi−1(R), τ2i+1(R), τ2i−1(R), τ4i(R),

2T T + P T − P 2T + P 2T − P 4T

Table 4 is dedicated to updating functions that are used to execute the de-
fined subroutines. The authors of [15] demonstrated in detail how to perform
SADD, SDADD and SQPL. As a supplement, we summarize in Appendix A explicit
operation sequences for the remaining subroutines SDBL, SSUB and SDSUB. In
Algorithm 2, we present pseudo-code for computing fe2,P (R) and fe2,P (ϕ̂(R)),
whose input consists of the fixed point P from Lemma 1, the candidate point R
and the number e2 − 1 =

∑ℓ
i=0 ni2

i in its non-adjacent form (NAF).

11



Table 4: The updating functions and the precomputed values for the defined
subroutines.

subroutines updating functions precomputed values

SDBL g2i,P = g2i,P · x−x2T
y+λT (x−x2T )−y2T

λT , x2T , y2T

SADD gi+1,P = gi,P · y−λT,P (x−xP )−yP
x−xT

λT,P , xT

SSUB gi−1,P = gi,P · x−xT−P

y−λP,−T (x−xP )−yP
λP,−T , xT−P

SDADD g2i+1,P = g2i,P · y−y2T−λP,2T (x−x2T )

y−y2T+λT (x−x2T )
−

SDADD

(pre)
g2i+1,P =g2i,P · (x−xT )(x+A)−B(y−yT )

(x−xT )2
xT , yT , B = λT,P + λT+P,T ,
A =xT +xT+P +λT,P ·λT+P,T

SDSUB g2i−1,P = g2i,P · y−λ2T,−P (x−x2T )−y2T
(y+λT (x−x2T )−y2T )(x−xP )

−
SDSUB

(pre)
g2i−1,P = g2i,P · (x−xT )(x+A)−B(y−yT )

(x−xT )2·(x−xP )

xT , yT , B = λT,−P + λT−P,T ,
A =xT +xT−P +λT,−P ·λT−P,T

SDSUBL g2i−1,P =
g2i,P
x−xT

xT

SQPL g4i,P = g4i,P · (y−y2T−λ2T (x−x2T ))2

y−y2T+λT (x−x2T )
λT , λ2T , x2T , y2T

Remark 2. If n0 = −1, we have the relation

ge2−1,P =
g2ẽ2,P · Z

2
ẽ2Q

x · Z2
ẽ2Q
−Xẽ2Q

,

where ẽ2 = e2/2 is an integer. Hence, it is quite convenient to finish the last
iteration of the shared Miller loop as follows:

A = Z2
ẽ2Q, B = A · xR −Xẽ2Q, C = A · x̂R −Xẽ2Q, Ne2−1(R) = N2

ẽ2(R) ·A,

Ne2−1(ϕ̂(R))=N2
ẽ2(ϕ̂(R))·A, De2−1(R)=D2

ẽ2(R)·B, De2−1(ϕ̂(R))=D2
ẽ2(ϕ̂(R))·C,

which requires 6m + 5s + 2a. We denote the above subroutine as SDSUBL such
that it can be distinguished from the general SDSUB.

4.2 Miller’s iterations with precomputation

It is well known that the evaluation of a Miller function can be further sped up
in the scenario when the first pairing argument is fixed as a system parameter.
This technique was investigated by Costello and Stebila [12]. It was also applied
to optimize the algorithm of public-key compression for isogeny-based cryptog-
raphy [39]. Consequently, for computing the Miller function fe2,P at the points
R and ϕ(R), we can predetermine all the coefficients of line functions that only

12



Algorithm 2 The shared Miller loop for the two Tate pairings without precom-
putation.

Input: P ∈ E(Fp)[e2], R ∈ E(Fp) \ {O} and e2 − 1 =
∑ℓ

i=0 ni2
i with ni ∈

{−1, 0, 1}, nℓ = 1

Output: N1, D1, N2, D2 such that fe2,P (R) = N1/D1, fe2,P (ϕ̂(R)) = N2/D2

1: N1 ← xR − xP , D1 ← 1, N2 ← x̂R − xP , D2 ← 1, d1 ← N1, d2 ← N2,
d3 ← yP − yR, T ← P , i← ℓ− 1

2: if n0 = −1 then j ← 1 else j ← 0 end if
3: while i ≥ j do
4: if ni = 0 and i ̸= j then
5: T,N1, D1, N2, D2 ← SQPL(T,R,N1, D1, N2, D2), i← i− 1
6: if ni = 1 then
7: T,N1, D1, N2, D2 ← SADD(T,R,N1, D1, N2, D2)
8: elif ni = −1 then
9: T,N1, D1, N2, D2 ← SSUB(T,R,N1, D1, N2, D2)

10: end if
11: i← i− 1
12: elif ni = 1 then
13: T,N1, D1, N2, D2 ← SDADD(T,R,N1, D1, N2, D2), i← i− 1
14: elif ni = −1 then
15: T,N1, D1, N2, D2 ← SDSUB(T,R,N1, D1, N2, D2), i← i− 1
16: else
17: T,N1, D1, N2, D2 ← SDBL(T,R,N1, D1, N2, D2), i← i− 1
18: end if
19: end while
20: if n0 = −1 then
21: N1, D1, N2, D2 ← SDSUBL(T,R,N1, D1, N2, D2)
22: end if
23: return N1, D1, N2, D2

depend on the point P . In this situation, it is convenient to use affine coordinates
such that the line functions can be represented in a simple form.

In Table 4, we list precomputed values across the introduced subroutines.
In Algorithm 3, we show how to generate a lookup table Tab to store all these
values required for finding fe2,P (R) and fe2,P (ϕ̂(R)). Thus, in the shared Miller

loop, one only needs to evaluate the line functions at R and ϕ̂(R), accumulating
properly their results. In Algorithm 4, we present the corresponding pseudo-code
whose input includes the table Tab.

Remark 3. In the case of precomputation, we observe that it is more efficient to
use the technique proposed in [17, Section 6.2] to execute the subroutines SDADD
and SDSUB. Therefore, the modified Miller functions g2i+1,P and g2i−1,P can be

13



Algorithm 3 Generating the lookup table for pairing evaluation with precom-
putation.

Input: P ∈ E(Fp)[e2] and e2 − 1 =
∑ℓ

i=0 ni2
i with ni ∈ {−1, 0, 1}, nℓ = 1

Output: Tab

1: T ← P , k ← 0, i← ℓ− 1
2: if n0 = −1 then j ← 1 else j ← 0 end if
3: while i ≥ j do
4: if ni = 0 and i ̸= j then
5: Tab[k]←λT , Tab[k + 1]←λ2T , Tab[k+2]← x2T , Tab[k + 3]← y2T
6: T ← 4T , k ← k + 4, i← i− 1
7: if ni = 1 then
8: Tab[k]←λT,P , Tab[k+1]←xT , T←T +P , i← i+1, k ←k+2
9: elif ni = −1 then

10: Tab[k]←λP,−T , Tab[k+1]←xT−P , T←T−P , i←i+1, k←k+2
11: end if
12: i← i− 1
13: elif ni = 1 then
14: Tab[k]←xT , Tab[k+1]←yT ,Tab[k+2]←xT + xT+P+λT,P ·λT+P,T

15: Tab[k+3]←λT,P + λT+P,T , T ← 2T + P , k ← k + 4, i← i− 1
16: elif ni = −1 then
17: Tab[k]←xT , Tab[k+1]←yT ,Tab[k+2]←xT +xT−P+λT,−P ·λT−P,T

18: Tab[k+3]←λT,−P + λT−P,T , T ← 2T − P , k ← k + 4, i← i− 1
19: else
20: Tab[k]←λT ,Tab[k+1]←x2T ,Tab[k+2]←y2T ,T←2T , k←k+3,i← i−1
21: end if
22: end while
23: if n0 = −1 then Tab[k]← xT end if
24: return Tab

written as follows:

g2i+1,P =
g2i,P
ν2T
· ℓT,P · ℓT+P,T

νT+P
, g2i−1,P =

g2i,P
ν2T · νP

· ℓT,−P · ℓT−P,T

νT−P
,

where ℓT,±P · ℓT±P,T /νT±P can be expressed as the parabola

(x− xT )(x+ xT + xT±P + λT,±P · λT±P,T )− (λT,±P + λT±P,T )(y − yT ).

4.3 Final exponentiations

In Algorithm 5, we summarize the process of subgroup membership testing
for G1, grounded on the new variant of Method II. It should be noted that line
evaluations vanish at the candidate point R or ϕ̂(R) only if R ∈ ⟨P ⟩. Hence, one
or more of the four updated values in Algorithms 2 and 4 may be equal to zero.
In this case, the testing can be aborted early.

14



Algorithm 4 The shared Miller loop for the two Tate pairings with precompu-
tation.

Input: Tab, P ∈ E(Fp)[e2], R ∈ E(Fp) \ {O} and e2 − 1 =
∑ℓ

i=0 ni2
i with

ni ∈ {−1, 0, 1}, nℓ = 1

Output: N1, D1, N2, D2 such that fe2,P (R) = N1/D1, fe2,P (ϕ̂(R)) = N2/D2

1: N1 ← xR − xP , D1 ← 1, N2 ← x̂R − xP , D2 ← 1, d1 ← N1, d2 ← N2,
d3 ← yR − yP , i← ℓ− 1

2: if n0 = −1 then j ← 1 else j ← 0 end if
3: while i ≥ j do
4: if ni = 0 and i ̸= j then
5: t0 ← xR−Tab[k + 2], t1 ← x̂R−Tab[k + 2], t2 ← yR−Tab[k + 3]
6: t3 ← t2 + t0·Tab[k], t4 ← t2 + t1·Tab[k], t5 ← t2 − t0·Tab[k + 1]
7: t6← t2 +t1·Tab[k+1], D1← D4

1 · t3, D2 ← D4
2 · t4, N1← (N2

1 · t5)2
8: N2← (N2

2 · t6)2, i← i− 1, k ← k + 4
9: if ni = 1 then

10: t0 ← xR−Tab[k + 1], t1 ← x̂R−Tab[k + 1], t2←d1·Tab[k]
11: t3← d2·Tab[k], D1←D1 · t0, D2 ← D2 ·t1, N1← N1 ·(d3−t2)
12: N2← N1 ·(d3− t3), i← i− 1, k ← k+ 2
13: elif ni = −1 then
14: t0 ← xR−Tab[k + 1], t1 ← x̂R−Tab[k + 1], t2←d1·Tab[k]
15: t3←d2·Tab[k], N1←N1 · t0, N2 ← N2 ·t1, D1← D1 ·(d3−t2)
16: D2← D2 ·(d3 − t3), i← i−1, k ←k+2
17: end if
18: i← i− 1
19: elif ni = 1 then
20: t0 ← xR−Tab[k], t1 ← x̂R−Tab[k], U0 ← (xR+Tab[k + 2])× t0
21: U1 ← (x̂R+Tab[k + 2])× t1, U2 ← (yR−Tab[k + 1])×Tab[k + 3]
22: t2←(U0−U2)mod p, t3← (U1−U2)mod p, N1←N2

1 ·t2,N2←N2
2 ·t3

23: D1← (D1 · t0)2, D2← (D2 · t1)2, i← i− 1, k ← k + 4
24: elif ni = −1 then
25: t0 ← xR−Tab[k], t1 ← x̂R−Tab[k], U0 ← (xR+Tab[k + 2])× t0
26: U1 ← (x̂R+Tab[k + 2])× t1, U2 ← (yR−Tab[k + 1])×Tab[k + 3]
27: t2←(U0−U2)mod p, t3← (U1−U2)mod p, N1←N2

1 ·t2,N2←N2
2 ·t3

28: D1← (D1 · t0)2 · d1, D2← (D2 · t1)2 · d2, i← i− 1, k ← k + 4
29: else
30: t0 ← xR−Tab[k + 1], t1 ← x̂R−Tab[k + 1], t2 ← yR−Tab[k + 2]
31: t3← t2 + t0·Tab[k], t4← t2 + t1·Tab[k], N1←N2

1 · t0, N2 ← N2
2 · t1

32: D1← D2
1 · t3, D2← D2

2 · t4, i← i− 1, k ← k + 3
33: end if
34: end while
35: if n0 = −1 then
36: t0←xR−Tab[k], t1← x̂R−Tab[k], N1←N2

1 , N2←N2
2 , D1←D2

1 · t0
37: D2←D2

2 · t1
38: end if
39: return N1, D1, N2, D2

15



Algorithm 5 The new G1 membership testing.

Input: R ∈ E(Fp) \ {O}
Output: if R ∈ G1, then 1; otherwise, 0

1: Computing N1, D1, N2, D2 by Algorithm 2 or 4
2: if N1 = 0 or D1 = 0 or N2 = 0 or D2 = 0 then
3: return 0
4: else
5: h← (D1 ·D2)

−1

6: f1 ← (h ·N1 ·D2)
exp1

7: f2 ← (h ·N2 ·D1)
exp2

8: if f1 = f2 = 1 then
9: return 1

10: else
11: return 0
12: end if
13: end if

Otherwise, we continue to performing the final exponentiation part. In this
phase, we first use the trick of Montgomery’s simultaneous inversion [38] to

compute f1 = fe2,P (R) and f2 = fe2,P (ϕ̂(R)) such that one inversion operation
in Fp can be saved:

f1 =
N1 ·D2

D1 ·D2
, f2 =

N2 ·D1

D1 ·D2
. (5)

Then, the two Tate pairings can be computed by raising f1 and f2 to the
power of exp1 = (p− 1)/e2 and exp2 = exp1 · m̃, respectively. If gcd(e1,m) = 1,
we select m̃ = m, i.e., exp2 = (p − 1)/e1; otherwise, we select m̃ = 1, i.e.,
exp2 = exp1. In the first case, the exponent exp2 can be parameterized (in
accordance with Table 1) by a polynomial in z with small integral coefficients.
For example, the exponent

exp2 = |z5 − z4 − z3 + z2 + z + 2|

is attributed to BLS12-381. We observe that the given favorable case takes place
for all the target curves except for BLS24-315. In Table 5, we present the expo-
nent exp2 for the seven pairing-friendly curves. Since it is sufficient to determine
whether the pairing values are equal to 1 or not, the second final exponentiation
can be replaced by checking that{

fz5+z2+z+2
2 = fz4+z3

2 if z > 0,

f−z5+z4−z
2 = f−z3+z2+2

2 if z < 0.

In turn, the coefficients of the exponent exp1 (equal to exp2 when m̃ = 1) in
base z are not small. Indeed, the quotient polynomial (p − 1)/e2 ∈ Q[z] does
not lie in the subring Z[z] because of 1/m. Thus, it appears more efficient to
exponentiate directly.

16



4.4 Computational cost

Notations. We write ei and z for the costs of the exponentiations in Fp by
expi and |z|. Besides, let n1, n2, n3, n4, n5, n6 and n7 respectively denote the
numbers of the subroutines SDBL, SADD, SSUB, SDADD, SDSUB, SDSUBL and SQPL

in the execution of the shared Miller loop.
In Table 6, we exhibit the operation counts of these subroutines. In terms of

the final exponentiation part,

1. we can get an accurate estimate of e2 for the exponentiation by exp2 with
m̃ = m once the cost z is determined (cf. Table 5);

2. we utilize the sliding window method to perform the exponentiation by exp1
(and by exp2 when m̃ = 1), which approximately costs

e1 = ⌈log2(exp1)⌉
( 1

w + 1
·m+ s

)
︸ ︷︷ ︸
the main part of the exponentiation

+(2w−1 − 1) ·m+ s︸ ︷︷ ︸
the precomputation

,

where w is the selected window size. Our experience results show that w = 4
is optimal for the curves under consideration.

In summary, the total cost of Algorithm 5 is about

n1 ·SDBL+n2 ·SADD+n3 ·SSUB+n4 ·SDADD+n5 ·SDSUB+n6 ·SDSUBL+n7 ·SQPL︸ ︷︷ ︸
the main part of the shared Miller loop

+ i+ 5m+ 3a︸ ︷︷ ︸
Eqs. (4) and (5)

+ e1 + e2.
(6)

So, the overall costs of the new G1 membership testing on the seven pairing-
friendly curves are demonstrated in Table 7.

Table 5: The exponent exp2 for the candidate pairing-friendly curves.

curve exp2 e2

BW13-310
|z26 − z13 − 3z12 − 3z11 + 3z9 + 3z8 − 3z6

−3z5 + 3z3 + 3z2 − 2| 26z+ 11m+ 3s

BW19-286
|z38 − z19 − 3z18 − 3z17 + 3z15 + 3z14 − 3z12

−3z11 + 3z9 + 3z8 − 3z6 − 3z5 + 3z3 + 3z2 − 2| 38z+ 15m+ 3s

BLS12-381 |z5 − z4 − z3 + z2 + z + 2| 5z+ 4m+ s

BLS12-446 |z5 − z4 − z3 + z2 + z + 2| 5z+ 4m+ s

BLS24-315 |z9 − z8 − z5 + z4 + z + 2|/3 e1

BLS24-509 |z9 − z8 − z5 + z4 + z + 2| 9z+ 4m+ s

BLS48-575 |z17 − z16 − z9 + z8 + z + 2| 17z+ 4m+ s

17



Table 6: The costs of the introduced subroutines.

subroutine without precomputation with precomputation

SDBL 11m+ 4mu + 8s+ su + 15a+ 3r 6m+ 4s+ 5a

SADD 15m+ 5mu + 3s+ 15a+ 3r 6m+ 4a

SSUB 14m+ 5mu + 4s+ 14a+ 3r 6m+ 4a

SDADD 16m+ 8mu + 10s+ su + 26a+ 6r 4m+ 3mu + 4s+ 9a+ 2r

SDSUB 18m+ 8mu + 10s+ su + 26a+ 6r 6m+ 3mu + 4s+ 9a+ 2r

SDSUBL 6m+ 5s+ 2a 2m+ 4s+ 2a

SQPL 14m+ 7mu + 15s+ 2su + 28a+ 6r 8m+ 8s+ 7a

Table 7: The costs of the new G1 membership testing for the candidate pairing-
friendly curves.

curve (n1,n2, · · ·,n7) z without precomputation with precomputation

BLS12-381(0, 2, 0, 3, 0, 0, 30)5m+ 63s
i+ 602m+ 244mu +1119s

+63su + 951a+ 204r
i+ 368m+ 9mu+
885s+ 248a+ 6r

BLS12-446(0, 2, 0, 4, 0, 0, 35)6m+ 74s
i+ 704m+ 287mu + 1314s

+74su + 1117a+ 240r
i+ 428m+ 12mu+
1039s+ 292a+ 8r

BW13-310 (0, 2, 2, 0, 2, 0, 10)3m+ 11s
i+ 392m+ 106mu + 761s

+22su + 393a+ 84r
i+ 274m+ 6mu+
665s+ 107a+ 4r

BW19-286 (1, 2, 3, 1, 0, 0, 6) 2m+ 7s
i+ 340m+ 79mu + 667s

+14su + 284a+ 60r
i+ 245m+ 3mu+
597s+ 79a+ 2r

BLS24-315(1, 1, 1, 1, 0, 1, 14) − i+ 389m+ 120mu + 806s
+30su + 467a+ 99r

i+ 267m+ 3mu+
690s+ 125a+ 2r

BLS24-509(0, 0, 0, 2, 1, 0, 24)9m+ 50s
i+ 574m+ 192mu + 1299s

+51su + 753a+ 162r
i+ 394m+ 9mu+
1113s+ 198a+ 6r

BLS48-575(1, 0, 3, 0, 1, 0, 15)9m+ 31s
i+ 558m+ 132mu + 1326s

+32su + 506a+ 108r
i+ 427m+ 3mu+
1199s+ 134a+ 2r

5 Implementation results

We first present a Magma code to verify the correctness of our proposed formulas
and algorithms. In order to compare the performance between our technique and
the previous state of the art, we also provide high-speed software implementa-
tion within the RELIC toolkit. It is a well-known cryptographic library created
mainly in the C programming language with ASM acceleration for the prime field
arithmetic. The library contains the optimal implementations of various opera-
tions on many pairing-friendly curves, including all the BLS curves listed in Table

18



2. Recently, Dai et al. [15] also used RELIC to implement operations on BW13-
310. Thus, we integrated our code into RELIC to ensure fair speed measurement.
Our code is available at https://github.com/eccdaiy39/test-tate. All the
benchmarks were taken on an 3.00GHZ Intel(R) Core(TM) i7-9700 CPU running
at Ubuntu 22.04 LTS averaged over 104 executions with the TurboBoost disabled
and HyperThreading turned off. The compiler used was GCC version 11.4.0, with
optimization flags-O3-funroll-loops-march=native -mtune=native.

In Figure 1, we collect the timing results (measured in ×103 clock cycles) of
each building block for the two Tate pairing evaluations on our target curves.
In Figure 2, we sum these timings to compare the running time of G1 member-
ship testing between our work and the previous leading work. The results show
that our method without precomputation is about 62.0%, 6.5%, 2.7% and 41.2%
faster than the previous optimal one on the BW13-310, BLS24-315, BLS24-509
and BLS48-575 curves, respectively. However, the former is around 50.5% and
48.6% slower than the latter on the BLS12-381 and BLS12-446 curves. Never-
theless, the performance advantage of the new method can be further extended
with precomputation. In this case, it is about 2.7%, 5.3%, 110.6%, 41.4%, 40.2%
and 74.4% better than the previous fastest method on the BLS12-381, BLS12-
446, BW13-310, BLS24-315, BLS24-509 and BLS48-575 curves, respectively. It
should be noted that the latter cannot be sped up in advance.

To summarize, our method is well-suited for curves with a small value of ρ,
such as BW13-310 and BLS48-575. Indeed, by the fact that p ≈ #E(Fp) = e1e2r
and e1 ≈ e2 for our chosen curves, it is easy to deduce that

log2(e2)

log2(r)/2
≈ ρ− 1 ≳ 0.

Recall that the previous state-of-the-art method requires approximately log2(r)/2
group operations, while the new one involves around log2(e2) Miller’s iterations
and two exponentiations in Fp. Thus, the value of ρ − 1 roughly represents the
ratio of the computational costs between the two methods.

Figure. 1: The timings for each building block of the two Tate pairings on the
listed pairing-friendly curves.

BLS12-381 BLS12-446 BW13-310 BLS24-315 BLS24-509 BLS48-575
0

80

160

240

320

400

480

560

286

432

93

115

359

305

126

188

42
54

160

137

73

109

62 66

180

282

94

135

66 66

205

296

cl
o
ck

cy
cl
es
(×

10
3
)

The exponentiation by exp1
The exponentiation by exp2
The shared Miller loop with precomputation
The shared Miller loop without precomputation

19

https://github.com/eccdaiy39/test-tate


Figure. 2: The timings for G1 membership testing on the listed pairing-friendly
curves between our work and the previous leading work.

BLS12-381 BLS12-446 BW13-310 BLS24-315 BLS24-509 BLS48-575
0

180

360

540

720

900

1,080

1,260

1,440

293

432

170 186

545

715

453

676

221
247

744

883

301

455

358

263

764

1,247

cl
o
ck

cy
cl
es
(×

10
3
)

The previous leading work
Our work without precomputation
Our work with precomputation

6 Conclusion

In this paper, we revisited the problem of subgroup membership testing for G1 on
pairing-friendly curves via the Tate pairing. We first introduced faster formulas
(tailored to the BLS, BW13 and BW19 families) such that the evaluation of the
two Tate pairings cumulatively requires around 2× fewer Miller’s iterations than
the original Koshelev method. Moreover, we also provided a high-performance
software implementation for our proposed algorithm and compared it to the pre-
vious leading one across several popular pairing-friendly curves. Our experimen-
tal results show that the new Koshelev-type method exhibits on BW13-310 and
BLS48-575 a significant acceleration over the Scott(-type) method. With precom-
putation, the former is also the best for BLS24-315 and BLS24-509. However, the
profit of pairing-based testing becomes negligible when applied to curves with
a slightly larger value of ρ, such as BLS12-381 and BLS12-446 (not to mention
the scenario ρ ≳ 1.5).

References

1. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an efficient library for cryptography,
https://github.com/relic-toolkit/relic

2. Aranha, D.F., Fotiadis, G., Guillevic, A.: A short-list of pairing-friendly curves
resistant to the special TNFS algorithm at the 192-bit security level. IACR Com-
munications in Cryptology 1(3) (2024). https://doi.org/10.62056/angyl86bm

3. Aranha, D.F., Hvass, B.S., Spitters, B., Tibouchi, M.: Faster constant-time eval-
uation of the Kronecker symbol with application to elliptic curve hashing. In:
ACM SIGSAC Conference on Computer and Communications Security – CCS
2023. pp. 3228–3238. Association for Computing Machinery, New York (2023).
https://doi.org/10.1145/3576915.3616597

4. Azarderakhsh, R., Fishbein, D., Grewal, G., Hu, S., Jao, D., Longa,
P., Verma, R.: Fast software implementations of bilinear pairings. IEEE

20

https://github.com/relic-toolkit/relic
https://doi.org/10.62056/angyl86bm
https://doi.org/10.1145/3576915.3616597


Transactions on Dependable and Secure Computing 14(6), 605–619 (2017).
https://doi.org/10.1109/TDSC.2015.2507120

5. Barbulescu, R., Gaudry, P., Kleinjung, T.: The tower number field sieve. In: Iwata,
T., Cheon, J.H. (eds.) Advances in Cryptology – ASIACRYPT 2015. Lecture Notes
in Computer Science, vol. 9453, pp. 31–55. Springer, Berlin, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48800-3 2

6. Barreto, P.S.L.M., Costello, C., Misoczki, R., Naehrig, M., Pereira, G.C.C.F.,
Zanon, G.: Subgroup security in pairing-based cryptography. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) Progress in Cryptology – LATINCRYPT 2015. Lec-
ture Notes in Computer Science, vol. 9230, pp. 245–265. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22174-8 14

7. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: Yung, M. (ed.) Advances in Cryptology – CRYPTO 2002.
Lecture Notes in Computer Science, vol. 2442, pp. 354–369. Springer, Berlin, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45708-9 23

8. Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups.
In: Matsui, M., Zuccherato, R.J. (eds.) Selected Areas in Cryptography – SAC
2003. Lecture Notes in Computer Science, vol. 3006, pp. 17–25. Springer, Berlin,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24654-1 2

9. Boxall, J., El Mrabet, N., Laguillaumie, F., Le, D.P.: A variant of Miller’s formula
and algorithm. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing-Based Cryptog-
raphy – Pairing 2010. Lecture Notes in Computer Science, vol. 6487, pp. 417–434.
Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17455-1 26

10. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryp-
tography. Designs, Codes and Cryptography 37(1), 133–141 (2005).
https://doi.org/10.1007/s10623-004-3808-4

11. Clarisse, R., Duquesne, S., Sanders, O.: Curves with fast computations in the first
pairing group. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) Cryptology and
Network Security – CANS 2020. Lecture Notes in Computer Science, vol. 12579,
pp. 280–298. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65411-5 -
14

12. Costello, C., Stebila, D.: Fixed argument pairings. In: Abdalla, M., Barreto,
P.S.L.M. (eds.) Progress in Cryptology – LATINCRYPT 2010. Lecture Notes
in Computer Science, vol. 6212, pp. 92–108. Springer, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14712-8 6

13. Dai, Y., He, D., Peng, C., Yang, Z., Zhao, C.A.: Revisiting pairing-friendly curves
with embedding degrees 10 and 14. In: Chung, K.M., Sasaki, Y. (eds.) Advances
in Cryptology – ASIACRYPT 2024. Lecture Notes in Computer Science, vol.
15485, pp. 454–485. Springer, Singapore (2025). https://doi.org/10.1007/978-981-
96-0888-1 15

14. Dai, Y., Lin, K., Zhao, C.A., Zhou, Z.: Fast subgroup membership testings for G1,
G2 and GT on pairing-friendly curves. Designs, Codes and Cryptography 91(10),
3141–3166 (2023). https://doi.org/10.1007/s10623-023-01223-7

15. Dai, Y., Zhang, F., Zhao, C.A.: Don’t forget pairing-friendly curves
with odd prime embedding degrees. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2023(4), 393–419 (2023).
https://doi.org/10.46586/tches.v2023.i4.393-419

16. Dai, Y., Zhou, Z., Zhang, F., Zhao, C.A.: Software implementation of optimal
pairings on elliptic curves with odd prime embedding degrees. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences 105(5),
858–870 (2022). https://doi.org/10.1587/transfun.2021EAP1115

21

https://doi.org/10.1109/TDSC.2015.2507120
https://doi.org/10.1007/978-3-662-48800-3_2
https://doi.org/10.1007/978-3-319-22174-8_14
https://doi.org/10.1007/3-540-45708-9_23
https://doi.org/10.1007/978-3-540-24654-1_2
https://doi.org/10.1007/978-3-642-17455-1_26
https://doi.org/10.1007/s10623-004-3808-4
https://doi.org/10.1007/978-3-030-65411-5_14
https://doi.org/10.1007/978-3-030-65411-5_14
https://doi.org/10.1007/978-3-642-14712-8_6
https://doi.org/10.1007/978-981-96-0888-1_15
https://doi.org/10.1007/978-981-96-0888-1_15
https://doi.org/10.1007/s10623-023-01223-7
https://doi.org/10.46586/tches.v2023.i4.393-419
https://doi.org/10.1587/transfun.2021EAP1115


17. Eisenträger, K., Lauter, K., Montgomery, P.L.: Fast elliptic curve arithmetic and
improved Weil pairing evaluation. In: Joye, M. (ed.) Topics in Cryptology – CT-
RSA 2003. Lecture Notes in Computer Science, vol. 2612, pp. 343–354. Springer,
Berlin, Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X 24

18. El Housni, Y., Guillevic, A.: Families of SNARK-friendly 2-chains of elliptic
curves. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EU-
ROCRYPT 2022. Lecture Notes in Computer Science, vol. 13276, pp. 367–396.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3 13

19. El Housni, Y., Guillevic, A., Piellard, T.: Co-factor clearing and subgroup member-
ship testing on pairing-friendly curves. In: Batina, L., Daemen, J. (eds.) Progress
in Cryptology – AFRICACRYPT 2022. Lecture Notes in Computer Science, vol.
13503, pp. 518–536. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
17433-9 22

20. Electric Coin Company: What is Jubjub?, https://bitzecbzc.github.io/

technology/jubjub

21. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology 23(2), 224–280 (2010). https://doi.org/10.1007/s00145-009-
9048-z

22. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge (2019),
https://eprint.iacr.org/2019/953

23. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) Advances in Cryptology
– CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139, pp. 190–200.
Springer, Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 11

24. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016. Lecture Notes
in Computer Science, vol. 9666, pp. 305–326. Springer, Berlin, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 11

25. Guillevic, A.: A short-list of pairing-friendly curves resistant to special TNFS at
the 128-bit security level. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) Public-Key Cryptography – PKC 2020. Lecture Notes in Computer Science,
vol. 12111, pp. 535–564. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45388-6 19

26. Guillevic, A.: Pairing-friendly curves (2021), https://members.loria.fr/

AGuillevic/pairing-friendly-curves

27. Hamburg, M.: Ed448-Goldilocks, a new elliptic curve (2015), https://eprint.
iacr.org/2015/625

28. Hamburg, M.: Computing the Jacobi symbol using Bernstein–Yang (2021), https:
//eprint.iacr.org/2021/1271

29. Joux, A., Pierrot, C.: The special number field sieve in Fpn . In: Cao, Z., Zhang,
F. (eds.) Pairing-Based Cryptography – Pairing 2013. Lecture Notes in Computer
Science, vol. 8365, pp. 45–61. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-04873-4 3

30. Joye, M., Lapiha, O., Nguyen, K., Naccache, D.: The eleventh power
residue symbol. Journal of Mathematical Cryptology 15(1), 111–122 (2020).
https://doi.org/10.1515/jmc-2020-0077

31. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) Advances in Cryptology – ASI-
ACRYPT 2010. Lecture Notes in Computer Science, vol. 6477, pp. 177–194.

22

https://doi.org/10.1007/3-540-36563-X_24
https://doi.org/10.1007/978-3-031-07085-3_13
https://doi.org/10.1007/978-3-031-17433-9_22
https://doi.org/10.1007/978-3-031-17433-9_22
https://bitzecbzc.github.io/technology/jubjub
https://bitzecbzc.github.io/technology/jubjub
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1007/s00145-009-9048-z
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-030-45388-6_19
https://doi.org/10.1007/978-3-030-45388-6_19
https://members.loria.fr/AGuillevic/pairing-friendly-curves
https://members.loria.fr/AGuillevic/pairing-friendly-curves
https://eprint.iacr.org/2015/625
https://eprint.iacr.org/2015/625
https://eprint.iacr.org/2021/1271
https://eprint.iacr.org/2021/1271
https://doi.org/10.1007/978-3-319-04873-4_3
https://doi.org/10.1007/978-3-319-04873-4_3
https://doi.org/10.1515/jmc-2020-0077


Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 -
11

32. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology
– CRYPTO 2016. Lecture Notes in Computer Science, vol. 9814, pp. 543–571.
Springer, Berlin, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 -
20

33. Koshelev, D.: Subgroup membership testing on elliptic curves via the
Tate pairing. Journal of Cryptographic Engineering 13(1), 125–128 (2023).
https://doi.org/10.1007/s13389-022-00296-9

34. Koshelev, D.: Correction to: Subgroup membership testing on elliptic curves via
the Tate pairing. Journal of Cryptographic Engineering 14(1), 127–128 (2024).
https://doi.org/10.1007/s13389-023-00331-3

35. Masson, S., Sanso, A., Zhang, Z.: Bandersnatch: a fast elliptic curve built over
the BLS12-381 scalar field. Designs, Codes and Cryptography 92(12), 4131–4143
(2024). https://doi.org/10.1007/s10623-024-01472-0

36. Mbiang, N.B., Aranha, D.F., Fouotsa, E.: Computing the optimal ate pairing
over elliptic curves with embedding degrees 54 and 48 at the 256-bit secu-
rity level. International Journal of Applied Cryptography 4(1), 45–59 (2020).
https://doi.org/10.1504/IJACT.2020.107167

37. Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptology
17(4), 235–261 (2004). https://doi.org/10.1007/s00145-004-0315-8

38. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of Computation 48(177), 243–264 (1987).
https://doi.org/10.1090/S0025-5718-1987-0866113-7

39. Naehrig, M., Renes, J.: Dual isogenies and their application to public-key compres-
sion for isogeny-based cryptography. In: Galbraith, S.D., Moriai, S. (eds.) Advances
in Cryptology – ASIACRYPT 2019. Lecture Notes in Computer Science, vol. 11922,
pp. 243–272. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8 9

40. Schoof, R.: Nonsingular plane cubic curves over finite fields. Journal of Combi-
natorial Theory, Series A 46(2), 183–211 (1987). https://doi.org/10.1016/0097-
3165(87)90003-3

41. Scott, M.: MIRACL: multiprecision integer and rational arithmetic C/C++ library,
https://github.com/miracl/core

42. Scott, M.: A note on group membership tests for G1, G2 and GT on BLS pairing-
friendly curves (2021), https://eprint.iacr.org/2021/1130

43. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory
56(1), 455–461 (2009). https://doi.org/10.1109/TIT.2009.2034881

44. Washington, L.C.: Elliptic curves: number theory and cryptography, Discrete
Mathematics and Its Applications, vol. 50. CRC Press, Boca Raton, 2 edn. (2008).
https://doi.org/10.1201/9781420071474

A Formulas for SDBL, SSUB and SDSUB

In this section, we analyze the computational costs of the subroutines SDBL, SSUB
and SDSUB on ordinary curves with j-invariant 0. Let T = iP be in Jacobian
coordinates for some point P and non-zero integer i. Using the formulas provided

23

https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/s13389-022-00296-9
https://doi.org/10.1007/s13389-023-00331-3
https://doi.org/10.1007/s10623-024-01472-0
https://doi.org/10.1504/IJACT.2020.107167
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1090/S0025-5718-1987-0866113-7
https://doi.org/10.1007/978-3-030-34621-8_9
https://doi.org/10.1016/0097-3165(87)90003-3
https://doi.org/10.1016/0097-3165(87)90003-3
https://github.com/miracl/core
https://eprint.iacr.org/2021/1130
https://doi.org/10.1109/TIT.2009.2034881
https://doi.org/10.1201/9781420071474


in [4, Section 4.3], the point 2T can be found via the sequence of operations

A=X2
T , B =

A

2
, C = A+B, D = C2, E = Y 2

T , F = XT ·E, X2T = D−2F,

U0 = C × (F −X2T ), U1 = E × E, Y2T = (U0 − U1) mod p, Z2T = YT · ZT .

Assuming that the computation of U0 − U1 requires 2a, the total cost of the
point doubling is 2m+mu + 3s+ su + 7a+ r. When P ̸= T , the authors of [4]
also derive explicit formulas to find T + P by a mixed addition:

A=Z2
T , θ=yP ·A·ZT −YT , β=xP ·A−XT , B=β2, C=β ·B, D=XT ·B, ZT+P =ZT ·β,

XT+P =θ2−2D − C, U0=θ×(D−XT+P ), U1=YT × C, YT+P =(U0−U1) mod p,

which comes at a cost of 6m+ 2mu + 3s+ 8a+ r.

A.1 SDBL

The modified Miller function g2i,P can be obtained from gi,P as follows:

g2i,P = g2i,P ·
x− x2T

y − λ−T (x− x2T )− y2T
.

Writing the point 2T in Jacobian coordinates, then the functions N2i(x, y) and
D2i(x, y) can be expressed as

N2i(x, y) = N2
i (x, y) · Z2T · (xZ2

2T −X2T ),

D2i(x, y) = D2
i (x, y) ·

(
yZ3

2T − Y2T +
3

2
X2

T · (xZ2
2T −X2T )

)
.

We first compute the point 2T = (X2T , Y2T , Z2T ). Then, the tuple τ2i(R) can
be obtained at a cost of 9m + 3mu + 5s + 8a + 2r by performing the sequence
of operations

A = Z2
2T , B = A · Z2T , C1 = A · xR −X2T , C2 = A · x̂R −X2T , L1=C1 · Z2T ,

L3=C2 ·Z2T , U0=yR×B, U1=
3

2
X2

T ×C1, U2=
3

2
X2

T ×C2, E=(U0+U1)mod p,

F = (U0 + U2) mod p, L2 = E − Y2T , L4 = F − Y2T , N2i(R) = N2
i (R) · L1,

D2i(R)=D2
i (R) ·L2, N2i(ϕ̂(R))=N2

i (ϕ̂(R)) ·L3, D2i(ϕ̂(R))=D2
i (ϕ̂(R)) ·L4,

where 3
2X

2
T is given during the computation of 2T . In total, the subroutine SDBL

requires 11m+ 4mu + 8s+ su + 15a+ 3r.

A.2 SSUB

The modified Miller function gi−1,P can be obtained from gi,P as follows:

gi−1,P = gi,P ·
x− xT−P

y − λ−T,P (x− xP )− yP
.

24



Then, the two functions Ni−1(x, y) and Di−1(x, y) can be expressed as

Ni−1(x, y) = Ni(x, y) · (xZ2
T−P −XT−P ),

Di−1(x, y)= Di(x, y) · ZT−P ·
(
(y − yP ) · ZT−P + θT−P · (x− xP )

)
,

where θT−P = −yP ·Z3
T −YT can be obtained during the computation of T −P .

Thus, the tuple τi−1(R) can be found at a cost of 8m+ 3mu + s+ 6a+ 2r via
the sequence of operations

A=Z2
T−P , L1=xR ·A−XT−P , L3= x̂R ·A−XT−P , U0=d3×ZT−P , U1=d1×θT−P ,

U2 = d2 × θT−P , B = (U0 + U1) mod p, C = (U0 + U2) mod p, L2 = B · ZT−P ,

L4 = C · ZT−P , Ni−1(R) = Ni(R) · L1, Di−1(R)=Di(R) · L2,

Ni−1(ϕ̂(R)) = Ni(ϕ̂(R)) · L3, Di−1(ϕ̂(R)) = Di(ϕ̂(R)) · L4,

where d1, d2 and d3 are given at the initial stage of the shared Miller loop (Line
1 in Algorithms 2 and 4). In total, the subroutine SSUB requires 14m + 5mu +
4s+ 14a+ 3r.

A.3 SDSUB

The modified Miller functions gi,P and g2i−1,P satisfy the relation

g2i−1,P = g2i,P ·
y − λ2T,−P (x− x2T )− y2T

(y − λ−T,−T (x− x2T )− y2T )(x− xP )
.

Then, the two functions N2i−1(x, y) and D2i−1(x, y) can be expressed as

N2i−1(x, y) = N2
i (x, y) ·

(
(yZ3

2T − Y2T ) · β2T−P − (xZ2
2T −X2T ) · θ2T−P

)
,

D2i−1(x, y)= D2
i (x, y)·(x−xP ) · β2T−P ·

(
(yZ3

2T−Y2T ) +
3

2
X2

T (xZ
2
2T −X2T )

)
,

where
β2T−P = xP · Z2

2T −X2T , θ2T−P = −yP · Z3
2T − Y2T .

In order to compute τ2i−1(R), we first determine

2T = (X2T , Y2T , Z2T ), 2T − P = (X2T−P , Y2T−P , Z2T−P ).

During this process, the intermediate variables Z2
2T , Z

3
2T , β2T−P , θ2T−P and 3

2X
2
T

can be obtained. Thus, we find the above tuple by performing the sequence of
operations

A1=xR · Z2
2T −X2T , A2= x̂R · Z2

2T −X2T , B=yR · Z3
2T − Y2T , C=

3

2
X2

T ·β2T−P ,

U0= B × β2T−P , U1=A1× θ2T−P , U2 =A2 × θ2T−P , U3= C ×A1, U4= C ×A2,

E=(U0+U3)modp, F=(U0+U4)modp, L1=(U0−U1)modp, L3=(U0−U2)modp,

L2 = d1 · E, L4 = d2 · F, N2i−1(R) = N2
i (R) · L1, D2i−1(R) = D2

i (R) · L2,

N2i−1(ϕ̂(R)) = N2
i (ϕ̂(R)) · L3, D2i−1(ϕ̂(R)) = D2

i (ϕ̂(R)) · L4,

which requires 10m+ 5mu + 4s+ 11a+ 4r. In total, the subroutine SDSUB can
be executed at a cost of 18m+ 8mu + 10s+ su + 26a+ 6r.

25


	Revisiting subgroup membership testing on pairing-friendly curves via the Tate pairing

