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Abstract. The Shortest Vector problem (SVP) is the most important problem in
lattice-based cryptanalysis. There is currently a gap in the understanding of this
problem with respect to its worst-case complexity and its average-case behaviour.
For instance, SVP on an n-dimensional lattice has worst-case complexity 2n+o(n)

[ADRS15]. However, in practice, people rely on heuristic (unproven) sieving algo-
rithms of time complexity 20.292n+o(n) [BDGL16] to assess the security of lattice-based
cryptography schemes. Those heuristic algorithms are experimentally verified for
lattices used in cryptography, which are usually random in some way ∗.
In this paper, we try to bridge the gap between worst-case and heuristic algorithms.
Using the formalism of random real lattices developed by Siegel [Sie45], we show a
tighter upper bound on an important lattice parameter called the smoothing parameter
that applies to almost all random lattices. Using a known discrete Gaussian sampler
at the smoothing parameter, we can then directly sample short vectors. This allows
us to provably solve an approximation version of the SVP on almost all random
lattices with a small constant approximation factor 1.123, in time 2n/2+o(n). With
further analysis, we can provably solve the exact SVP in time 20.63269n+o(n) on almost
all random lattices as well. We also provide a smooth time approximation factor
tradeoff between these two cases. All our algorithms work in space 2n/2+o(n). Our
paper is a first step towards better understanding the heuristic behaviour of lattice
sieving on random lattices.

1 Introduction
Lattice problems are central to modern cryptography and computational complexity theory
due to their inherent hardness, which provides a foundation for secure cryptographic
protocols. These problems are believed to be difficult to solve efficiently, even for quantum
computers. This makes lattice-based cryptography a promising candidate for post-quantum
security, offering resilience against future quantum attacks [BDK+18, DKL+18, FHK+19].
Moreover, lattice problems have applications in algorithmic number theory [LLL82], convex
optimization [Jr.83, Kan87, FT87], coding theory [dB89], and cryptanalysis tools [Sha84,
Bri84, LO85], reinforcing their importance across both theoretical and practical domains
in computer science.

There is currently a gap in the understanding of these problems with respect to their
worst-case complexity and their average-case behaviour. For instance, the Shortest Vector
problem (SVP) on an n-dimensional lattice has worst-case complexity 2n+o(n) [ADRS15].
However, in practice, people rely on heuristic (unproven) sieving algorithms of time
complexity 20.292n+o(n) [BDGL16] to assess the security of lattice-based cryptography
schemes. Those heuristic algorithms are experimentally verified for lattices used in
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Figure 1: Time complexity to solve γ-SVP on random lattices (Theorem 1)

cryptography, which are usually random in some way, but only seem to provide very short
and not shortest nonzero vectors.

For most cryptographic applications, finding a short, but not necessarily shortest,
nonzero vector is in fact sufficient. The α-SVP consists in finding a nonzero vector
of length at most α times the length of a shortest nonzero vector. Surprisingly, very
little is known about the worst-case complexity about this problem. The best provable
algorithm has worst-case complexity 20.802n+o(n) [WLW15] but only solve O(1)-SVP for
an unspecified constant. More explicit constants are provided in [AUV19] but even for
α = 100, the time complexity is still 20.824n+o(n). In [BN24], the authors noted that
there is no theoretical evidence to show that

√
2-SVP is easier than SVP. In fact, solving√

2-SVP in time better than 2n+o(n) would give a better algorithm for ZLIP which is a
recent hardness assumption in lattice-based cryptographic schemes [DvW22]. If we relax
the approximation ratio, better complexities can be achieved. For example, [ALSD21]
gives an algorithm that solves Õ(

√
n)-SVP in time 2n/2+o(n).

SVP. In this paper, we try to bridge the gap between worst-case and heuristic algorithms.
Using the formalism of random real lattices developped by Siegel [Sie45], we obtain a
2n/2+o(n) time algorithm for 1.123-SVP and a 20.63269n+o(n) time algorithm for exact
SVP on random lattices. More generally, we obtain a smooth tradeoff between the time
complexity and the approximation factor (see Figure 1). Our algorithm (Theorem 1)
achieves a much better approximation ratio compared to all worst-case algorithms and is
particularly simple compared to [ALSD21].

Theorem 1 (Informal, see Theorem 9, Remark 2 and Corollary 5). There is an algorithm
that, for every n ⩾ 1 and γ ∈ [1, 1.122973948] solves γ-SVP on most lattices in time
eo(n)( γ2

2 e−γ2/2e)−n/2 and space 2n/2+o(n).

Hermite SVP. Most lattice reduction algorithms rely on solving α-SVP in smaller
dimension [Sch87] for α close to 1 [ABLR21]. In certain lattice reduction algorithms such
as slide reduction [GN08, ALNSD20], it is more convenient for the analysis to compare
the length of short vectors to the determinant of the lattice instead of the length of a
shortest vector. The problem of finding a vector of length at most α vol(L)1/n for a lattice
L ⊂ Rn is known as the α-Hermite SVP (α-HSVP). Our algorithm (Theorem 2) also solves√

0.2320n
π -HSVP in time 2n/2+o(n) and

√
n

2πe -HSVP in time 20.63269n+o(n) for random
lattices. More generally, we obtain a smooth trade-off between the time complexity and the
approximation factor. This improves upon the worst-case algorithm of [ALSD21] which
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solves Õ(
√

n)-HSVP in time 2n/2+o(n). Indeed, we avoid the extra logarithmic factors in
the approximation ratio and obtain a much better constant.
Theorem 2 (Informal, see Theorem 8 and Corollary 4). There is an algorithm that,
for every n ⩾ 1 and β ∈ [0.1514, 0.2320] solves

√
nβ
π -SVP on most lattices in time

eo(n)(βe1−β)−n/2 + 2n/2+o(n) and space 2n/2+o(n).
Our algorithm works by sampling the discrete Gaussian distribution DL,s on the

lattice L, a very commonly used distribution in lattice algorithms. This distribution is
parametrized by the width s. It is known that sampling from DL,s is easy when s is large
but very hard when s is small. An important quantity, known as the smoothing parameter
ηε(L), intuitively characterizes when DL,s transitions from a “smooth” distribution to a
discrete one (see Section 2.5). In particular, we use [ADRS15] to sample from DL,s for
s =

√
2η1/2(L). Our main technical result is a probabilistic bound on the value of ηε(L)

for a random lattice L for all ε > 0. This allows us to obtain tigher bounds on the length
of vectors sampled from DL,s. More precisely, we obtain probabilistic bounds on ρs(L) for
a random lattice, and more generally on ρs(L ∩Bn(r)) for any r > 0. The latter could be
of independent interesting since tail bounds on the Gaussian mass are extremely useful in
the analysis of lattice algorithms.

The sampler from [ADRS15] takes time 2n/2+o(n) but produces 2n/2+o(n) vectors.
Interesingly, we find that already with a single call to sampler we can solve 1.123-SVP but
by calling the sampler an exponential number of times, we can decrease the approximation
factor and even solve SVP. Therefore, any improvement in those samplers would yield
an improvement to the complexity of solving 1.123-SVP (and correspondingly HSVP)
for random lattices. Lattice-based cryptography relies on the fact that problems such
as α-SVP for small α are hard, even for random lattices, with no subexponential-time
algorithms. On the other hand, sampling efficiently from the discrete Gaussian distribution
at the smoothing parameter is still an open problem, with no subexponential algorithm
currently known. Therefore, we can view our result as an average-case hardness result for
discrete Gaussian sampling (DGS) at the smoothing parameter. Plainly, solving DGS at
the smoothing parameter in subexponential time for random lattices would have a major
impact in lattice-based cryptography.

Approximate GapSVP The security of certain cryptographic primitives, such as fully
homomorphic encryption [BV14], can be based on the worst-case hardness of a decision
version of the approximate SVP problem, known as γ-GapSVP. This problem asks to
decide, for a given r > 0, if a lattice L satisfies λ1(L) ⩽ r or λ1(L) ⩾ γr (note that this is
a promise problem). The hardness of this problem has been studied extensively as well
and the best known result is a 2n/2+o(n)-time algorithm for 1.93-GapSVP [ADRS15].

In this paper, we study random lattices, therefore it is natural to wonder if γ-GapSVP
remains hard in this setting. This should intuitively not be the case because by the
“Gaussian Heuristic”, the value of λ1 for a random lattice is expected to be close to√

n
2πe vol(L)1/n, which makes the problem easy to decide. We formally prove that this

is the case by giving a polynomial-time algorithm (Theorem 3) that solves γ-GapSVP on
most lattices, for any γ > 1. Although this is more of a folklore result, our theorem gives
explicit constants and bounds not found in the literature.
Theorem 3 (Informal, see Theorem 10 and Corollary 6). There is an algorithm that, for
every γ > 1, n ⩾ 1 and on most lattices L ⊂ Rn, solves γ-GapSVP in polynomial time.

Organization of the paper Section 2 contains preliminary technical results. Section 3
gives some probabilistic bounds on the Gaussian mass and smoothing parameter of random
real lattice. Section 4 give an application of those bounds to the approximate (Hermite)
SVP. Section 5 contains some discussion and open problems.
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2 Preliminaries
We denote vectors and matrices in bold case. We denote by xT the transpose of the
(column) vector x, which is therefore a row vector. For any vector x ∈ Rn, we denote by
∥x∥ its Euclidean norm. For any n ⩾ 1 and r > 0, we denote by Bn the open ball of radius
1 in Rn, and by Bn(r) the open ball of radius r.

For any finite set X, we denote by U(X) the uniform distribution over X. As usual, if
P and Q are two probability distributions over X and Y respectively, we denote by PQ
the product distribution over X × Y . For any two distributions P and Q, we denote by
dTV(P, Q) the statistical distance (or total variation distance) between P and Q. We say
that two distributions P and Q are ε-close if dTV(P, Q) ⩽ ε.

We denote by ζ the Riemann zeta function, defined for any s > 1 by ζ(s) =
∑∞

k=1 k−s.
Furthermore, it is standard that

ζ(s) − 1 ∼s→∞ 2−s (1)

2.1 Gamma function
We denote by Γ the gamma function, defined for any a > 0 by

Γ(a) =
∫ ∞

0
ta−1e−td t.

Furthermore, we denote by γ the lower incomplete gamma function, defined for any a > 0
and s ⩾ 0 by

γ(a, x) =
∫ x

0
ta−1e−td t.

We will make use of the following series expansion† for any a > 0 and s ⩾ 0:

γ(a, x) = xae−x
∞∑

k=0

xk

(a)k+1

where (a)n = a(a + 1) · · · (a + n − 1) is Pochhammer’s symbol. We easily derive from this
that for all a > 0 and x ⩾ 0,

γ(a, x) ⩾ xae−x

a
. (2)

We will also use the following bound on Γ [Rob55]: for x > 0,

Γ(1 + x) ⩽
√

2πxx+ 1
2 e−x+ 1

12x . (3)

2.2 Lambert W function
Recall that the Lambert W function is a multivalued function giving the complex solution(s)
w to the equation wew = z. In this paper we will only deal with real numbers. It can be
shown that for any x, y ∈ R, the equation

yey = x

can only be solved (for y) if x ⩾ − 1
e . For negative numbers x < 0, this equation has

exactly two solutions y = W0(x) and y = W−1(x), where W0 and W−1 are the two real
branches of the W function. It is known that W0 is an increasing function while W−1 is a
decreasing function. Furthermore, for x ∈ [− 1

e , 0), W−1(x) ⩽ −1 ⩽ W0(x). We will also
use the fact that the map x ∈ [0, 1] 7→ xe1−x is increasing.

†See for example: https://en.wikipedia.org/wiki/Incomplete_gamma_function.

https://en.wikipedia.org/wiki/Incomplete_gamma_function
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2.3 Lattices
A lattice L is a discrete subgroup of Rm. Equivalently it is the set

L(b1, . . . , bn) =
{

n∑
i=1

xibi : xi ∈ Z

}

of all integer combinations of n linearly independent vectors b1, . . . , bn ∈ Rm. Such bi’s
form a basis of L and are usually collected in matrix form

[
b1 · · · bn

]
. The lattice L

is said to be full-rank if n = m. We denote by λ1(L) the first minimum of L, defined
as the length of a shortest non-zero vector of L. We denote by vol(L) the volume (or
determinant) of L. For a full-rank lattice L, vol(L) = det(A) for any basis A of L. Recall
that for two lattices L ⊆ L′, the index of L in L′ is the size of the quotient L′ / L.

For a rank n lattice L ⊂ Rm, the dual lattice, denoted L̂, is defined as the set of all
points in span(L) that have integer inner products with all lattice points,

L̂ = {w ∈ span(L) : ∀y ∈ L, ⟨w, y⟩ ∈ Z}.

Similarly, for a lattice basis B = (b1, . . . , bn), we define the dual basis B∗ = (b∗
1, . . . , b∗

n)
to be the unique set of vectors in span(L) satisfying ⟨b∗

i , bj⟩ = 1 if i = j, and 0, otherwise.
It is easy to show that L̂ is itself a rank n lattice, that vol(L̂) = 1

vol(L) , and B∗ is a basis
of L̂. Given a lattice B = (b1, . . . , bn), we denote ∥ B ∥2 = max

i
∥bi∥. In this paper, all

the lattices that we consider will be full rank, i.e. n = m.

2.4 Lattice problems
We will study the following lattice problems in this paper.

Definition 1. The search problem SVP (Shortest Vector Problem) is defined as follows:
The input is a basis B for a lattice L ⊂ Rn. The goal is to output a vector y ∈ L with
∥y∥ = λ1(L).

Definition 2. For γ = γ(n), the search problem γ-SVP (γ-Approximate Shortest Vector
Problem) is defined as follows: The input is a basis B for a lattice L ⊂ Rn. The goal is to
output a vector y ∈ L \{0} with ∥y∥ ⩽ γ · λ1(L).

Definition 3. For γ = γ(n), the search problem γ-HSVP (γ-Hermite Approximate Shortest
Vector Problem) is defined as follows: The input is a basis B for a lattice L ⊂ Rn. The
goal is to output a vector y ∈ L \{0} with ∥y∥ ⩽ γ · det(L)1/n.

Definition 4. For γ = γ(n), the decision problem γ-GapSVP (γ-Approximate Gap SVP)
is defined as follows: The input is a basis B for a lattice L ⊂ Rn and a real number r > 0.
The goal is to accept if λ1(L) ⩽ r and reject if λ1(L) ⩾ γr. Note that this is a promise
problem: the program may accept or reject if neither condition holds.

For convenience reasons, when we discuss the running time of the algorithms solving the
problems above, we ignore polynomial factors in the bit-length of the individual input basis
vectors (i.e. we assume the input basis has bit-size polynomial in the ambient dimension
n).

2.5 Discrete Gaussian distribution
Let n ∈ N and s > 0. For any x ∈ Rn, we let

ρs(x) = e−π∥x∥2/s2
.
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As usual, we extend ρs to sets by

ρs(X) =
∑
x∈X

ρs(x)

for any set X. For any lattice L ⊂ Rn, we denote the discrete Gaussian distribution over L
by DL,s(x) = ρs(x)

ρs(L) for any x ∈ L. We denote DL,1 by DL for simplicity. It is well-known
by the Poisson summation formula that for any lattice L and any s > 0,

ρ1/s(L̂) = s−n

vol(L)ρs(L).

See e.g. [Ste17] for a good introduction on this topic. The discrete Gaussian distribution
plays an essential role in lattice-based cryptography and an important problem is to be
able to sample efficiently from it: this is known as the discrete Gaussian sampling (DGS)
problem.

Definition 5. For δ = δ(n) ≥ 0, σ a function that maps lattices to non-negative real
numbers, and m = m(n) ∈ N, δ-DGSm

σ is defined as follows. The input is a basis B for a
lattice L ⊂ Rn and a parameter s > σ(L). The goal is to output a sequence of m vectors
whose joint distribution is δ-close to m independent samples from DL,s.

We omit the parameter δ if δ = 0, and the parameter m if m = 1. We stress that δ
bounds the statistical distance between the joint distribution of the output vectors and m
independent samples from DL,s.

In general, the smaller s is, the harder it is to construct a sampler for DL,s. The notion
of smoothing parameter [MR04] captures the idea that sampling for a value of s above
this threshold is significantly easier than sampling below because the distribution looks
more like a continuous Gaussian. Formally, for any ε > 0, the smoothing parameter of a
lattice L is defined by

ηε(L) = inf
{

s > 0 : ρ1/s(L̂) ⩽ 1 + ε
}

.

Observe that ηε(L) is a decreasing function of ε.
There are many algorithms to sample above the smoothing parameter [Kle00, GPV08,

BLP+13], including a time-space trade-off [ACKS21]. Sampling below the smoothing
parameter is much more challenging and usually inefficient [ADRS15]. At the extreme,
sampling for sufficiently small values of s allows one to solve the Shortest Vector problem
(SVP) [ADRS15] which is known to be NP-hard under randomized reduction [Ajt98]. The
Monte Carlo Markov Chain based algorithm of [WL19] works for all values of s but the
complexity significantly depends on s and the shape of the basis [PS24]. Finally, it should
be noted that the problem of estimating the smoothing parameter is provably harder than
BDD and LWE in certain parameter ranges [CDLP13].

In this paper, we will use the following sampler that works (almost) up to the smoothing
parameter and takes time 2n/2+o(n) to produce a sample.

Theorem 4 ([ADRS15, Theorem 5.11]). There is a probabilistic algorithm that, given
a lattice L ⊂ Rn and s ≥

√
2η1/2(L) as input, outputs 2n/2 samples from a distribution

2−Ω(n2)-close to DL,s in expected time 2n/2+o(n).

2.6 Random real lattices
Recall that a lattice L is the integer span of a real basis b1, . . . , bn in Rn. If B is the
matrix whose columns are the bi, then L = BZn. The classical approach to defining a
probability on the real lattices is the following. First we usually consider lattices modulo
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scales, so that L and αL are equivalent for any α ∈ R. Therefore, a lattice is represented
by an invertible matrix of determinant 1, that is an element of SLn(R). Second, it is clear
that many matrices in SLn(R) span the same lattice: for instance permuting columns or
changing the sign of an even number of columns. In general, matrices B ∈ SLn(R) and
BU spans the same lattice for any U ∈ SLn(Z). The converse is also true and hence we
wish to define a probability measure on the homogenous space Xn := SLn(R)/ SLn(Z).

Let µ be a measure on Xn, Y be a measurable set of lattices in Xn and B ∈ SLn(Z): a
natural measure µ should assign the same probability to Y and BY since those are the
same lattices up to the change of basis. Therefore, µ should be (left) SLn(Z)−invariant:
µ(Y ) = µ(BY ). Furthermore, Xn inherits the natural topology of Rn2 through the quotient
and we want the open sets to be measurable, therefore µ should be a Borel measure. Such a
measure is called a (left-)invariant Haar measure and Siegel showed [Sie45] that it is unique
up to a multiplicative factor. We are interested in the unique one which is a probability
measure (µ(Xn) = 1) which we denote by µn.

In this paper, we will identity the set of lattices modulo scaling and the set Xn. This
means that we will view an element of Xn either as a lattice or as matrix of determinant
of 1, depending on what is more convenient. We also note that the map Xn → Xn, L 7→ L̂
preserves µn so that if L is distributed according to µn then so is its dual L̂.

The above measure was introduced by Siegel in [Sie45] who proved the following
averaging theorem.

Theorem 5 (Siegel [Sie45]). Let n ⩾ 1 and f be a Lebesgue integrable function on Rn,
then ∫

Xn

∑
x∈L \{0}

f(x)d µn(L) =
∫
Rn

f(x)d λ(x).

where λ denotes the usual Lebesgue measure on Rn

This result was later generalized (Theorem 6) by Rogers [Rog55], and the presentation
simplified in [MR58] which is probably the most readable reference on the topic. It should
be noted that a gap was recently found in the original proof of Rogers but fortunately the
result still holds [Kim24].

For any ℓ ⩽ n, we say that a matrix M ∈ Zn×ℓ is primitive if n − ℓ columns can be
added to it to make up a unimodular matrix. Equivalently, a matrix is primitive if its
columns form a primitive set of vectors for Zn, i.e. this set can be extended to form an
integer basis of Zn. Let PRn,ℓ ⊂ Zn×ℓ be the set of primitive matrices and LIn,ℓ ⊂ Zn×ℓ

be the set of matrices whose columns are linearly independent. Macbeath and Rogers’
theorem can be stated as follows. Here, recall again that we identify elements of Xn as
both lattices modulo scale, or matrices of determinant 1.

Theorem 6 ([MR58, Theorems 1, 2 and (13)]). Let 1 ⩽ ℓ ⩽ n − 1 and f be Lebesgue
integrable on Rn×ℓ, then∫

Xn

∑
M∈LIn,ℓ

f(AM)d µ(A) = ζ(n) · · · ζ(n − ℓ + 1)
∫

Xn

∑
P∈PRn,ℓ

f(AP)d µ(A)

=
∫
Rn×ℓ

f(X)d λ(X).

It is clear that this theorem implies Siegel’s theorem when ℓ = 1 since the set of linearly
independent points of L is exactly L \{0}. In fact, the result about linearly independent
vectors follows easily from the statement about primitive matrices which is the main
technical result of [MR58]. In this paper, we will only make use of the following special
case.
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Recall that a vector x ∈ Zn is primitive if and only if x ∈ PRn,1. One can check that
this is equivalent to saying that 1

αx /∈ Zn for all integers α ⩾ 2, i.e. x is not an integer
multiple of an integer vector (except by multiplying by 1 and −1).

Corollary 1. Let n ⩾ 2 and f be Lebesgue integrable on Rn×ℓ, then∫
Xn

∑
x∈L

f(x)d µn(L) = f(0) +
∫
Rn

f(x)d λ(x),

∫
Xn

(∑
x∈L

f(x)
)2

d µn(L) =
(∫

Xn

∑
x∈L

f(x)d µn(L)
)2

+ 1
ζ(n)

∑
α∈N\{0}

∑
β∈Z\{0}

∫
Rn

f(αx)f(βx)d λ(x).

Proof. The first inequality follows directly from Theorem 5:∫
Xn

∑
x∈L

f(x)d µn(L) = f(0) +
∫

Xn

∑
x∈L \{0}

f(x)d µn(L) = f(0) +
∫
Rn

f(x)d λ(x).

For the second equality, first observe that

∫
Xn

(∑
x∈L

f(x)
)2

d µn(L) =
∫

Xn

∑
x,y∈L

f(x)f(y)d µn(L).

Now let g : Rn×2 → R be defined by g(
[
x y

]
) = f(x)f(y) which is clearly Lebesgue

integrable. Let L ∈ Xn be a lattice and A be a basis of L. Then∑
x,y∈L

f(x)f(y) =
∑

u,v∈Zn

f(Au)f(Av) =
∑

u,v∈Zn

g(A
[
u v

]
).

Now there are three cases for u and v: either u = v = 0; or u and v are linearly independent
i.e.

[
u v

]
∈ LIn,2; or u = 0 and v ̸= 0; or they are linearly dependent and both non zero.

The last case is the most interesting: it is not hard to see that if u, v ∈ Zn \{0} are linearly
dependent, then u = αp and v = βp for some unique primitive vector p ∈ Zn, unique
α ∈ N \ {0} and unique β ∈ Z \ {0}. Since p, α and β are unique, and that conversely the
vectors αp and βp are always linearly dependent and nonzero, there is a bijection between{

(u, v) ∈ (Zn \ {0})2 : linearly dependent
}

and
{(αp, βp) : p ∈ Zn primitive, α ∈ N \ {0}, β ∈ Z \ {0}}.

Therefore, ∑
x,y∈L

f(x)f(y)

= f(0)2 +
∑

M∈LIn,2

g(AM) + 2f(0)
∑

v∈Zn\{0}

f(Av)

+
∑

p∈Zn:prim.

∑
α∈N\{0}

∑
β∈Z\{0}

f(Aαp)f(Aβp)

= f(0)2 +
∑

M∈LIn,2

g(AM) + 2f(0)
∑

y∈L \{0}

f(y)
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+
∑

α∈N\{0}

∑
β∈Z\{0}

∑
p∈Zn:prim.

f(αAp)f(βAp).

The integral of the first term is trivial to compute since µ is chosen to be a probability
measure. We can compute the middle term by Theorem 5:∫

Xn

f(0)
∑

y∈L \{0}

f(y)d µn(L) = f(0)
∫
Rn

f(x)d λ(x).

And the other two by Theorem 6:∫
Xn

∑
M∈LIn,2

g(AM)d µn(A) =
∫
Rn×2

g(M)d λ(M)

=
∫
Rn

∫
Rn

f(x)f(y)d λ(x)d λ(y)

=
(∫

Rn

f(x)d λ(x)
)2

and ∫
Xn

∑
p∈Zn:prim.

f(αAp)f(βAp)d µn(A) =
∫

Xn

∑
p∈PRn,1

f(αAp)f(βAp)d µn(A)

= 1
ζ(n)

∫
Rn

f(αx)f(βx)d λ(x).

Therefore,∫
Xn

∑
x,y∈L

f(x)f(y)d µn(L) = f(0)2 + 2f(0)
∫
Rn

f(x)d λ(x) +
(∫

Rn

f(x)d λ(x)
)2

+
∑

α∈N\{0}

∑
β∈Z\{0}

1
ζ(n)

∫
Rn

f(αx)f(βx)d λ(x)

which shows the result.

The following result is a well-known consequence of Theorem 6. There are many ways
to prove similar results, see e.g. [Rog56] or the survey [AEN]. Since we could not find
a proof with explicit constants in both the length bound and the probability bound, we
provide one for completeness.

Lemma 1. Let n ⩾ 2 and r > 0, then

EL∼µn
[| L ∩Bn(r)|] = 1 + vol(Bn(r)),

VL∼µn
[| L ∩Bn(r)|] ⩽ 2A(n) vol(Bn(r))

where A(n) := 1 + n
n−1

ζ(n−1)−1
ζ(n) = 1 + 21−n(1 + o(1)) as n → ∞.

Proof. Let fr be the indicator function of the n-dimensional ball Bn(r) of radius r. By
Corollary 1, we have that

µr := EL∼µn
[| L ∩Bn(r)|] = 1 +

∫
Rn

fr(x)d λ(x) = 1 + vol(Bn(r)).
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and

σ2
r := VL∼µn [| L ∩Bn(r)|]

= 1
ζ(n)

∑
α∈N\{0}

∑
β∈Z\{0}

∫
Rn

fr(αx)fr(βx)d λ(x).

But we observe that for any α ⩾ 1 and β ∈ Z, fr(αx)fr(βx) = fr(max(α, |β|)x). Therefore,

σ2
r = 1

ζ(n)
∑

α∈N\{0}

∑
β∈Z\{0}

∫
Rn

fr(max(α, |β|)x)d λ(x)

= 1
ζ(n)

∑
α∈N\{0}

∑
β∈Z\{0}

max(α, |β|)−n vol(Bn(r))

= 2vol(Bn(r))
ζ(n)

∑
α∈N\{0}

∑
β∈N\{0}

max(α, β)−n.

We now observe that ∑
α∈N\{0}

∑
β∈N\{0}

max(α, β)−n

=
∑

α∈N\{0}

 α∑
β=1

α−n + (α + 1)−n +
∞∑

β=α+2
β−n


⩽

∑
α∈N\{0}

(
α1−n + (α + 1)−n +

∫ ∞

α+1
x−nd x

)

= ζ(n − 1) + ζ(n) − 1 +
∑

α∈N\{0}

(α + 1)1−n

n − 1

= ζ(n − 1) + ζ(n) − 1 + ζ(n − 1)
n − 1

= ζ(n) + n
n−1 (ζ(n − 1) − 1).

It follows that
σ2

r ⩽ 2 vol(Bn(r)) · (1 + n
n−1

ζ(n−1)−1
ζ(n) ).

As a consequence, we can formalize what is usually known as the Gaussian heuris-
tic which says that heuristically, a “random” lattice L ⊂ Rn satisfies that λ1(L) ≈√

n
2πe vol(L)1/n. For the notion of real random lattices that we use in this paper, the

volume is always 1.

Theorem 7. Let n ⩾ 2. For any α > 0,

PrL∼µn

[
λ1(L) ⩽ α vol(Bn)−1/n

]{⩽ 2αnA(n)
(2−αn)2 if α < 21/n,

⩾ 1 − 2αnA(n)
(αn−2)2 if α > 21/n.

where A(n) is defined in Lemma 1.

Proof. By Lemma 1, we have that

µr := EL∼µn [| L ∩Bn(r)|] = 1 + vol(Bn(r))
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and
σ2

r := VL∼µn
[| L ∩Bn(r)|] ⩽ 2A(n) vol(Bn(r)).

It follows by Chebyshev’s inequality that for any X > 0,

PrL
[∣∣| L ∩Bn(r)| − µr

∣∣ > X
]
⩽

σ2
r

X2 .

We apply the above inequality to study λ1. Observe that for any r > 0, λ1(L) ⩽ r if
and only if | L ∩Bn(r)| ⩾ 3 since as soon as there is a nonzero vector, there are at least
two (a point and its opposite), as the origin is in every ball. Assume that µr ⩽ 3, i.e.
rn vol(Bn) ⩽ 2. Then we can let X = 3 − µr and apply the above inequality to get that

PrL[λ1(L) ⩽ r] = PrL[| L ∩Bn(r)| ⩾ 3]
= PrL[| L ∩Bn(r)| − µr ⩾ X]
⩽ PrL

[∣∣| L ∩Bn(r)| − µr

∣∣ ⩾ X
]

⩽
σ2

r

X2 .

If we let r0 be such that vol(Bn(r0)) = 1 and write r = αr0 then

σ2
r = 2 vol(Bn(αr0))A(n) = 2αnA(n)

where A(n) := 1 + n
n−1

ζ(n−1)−1
ζ(n) , and at the same time

X = 3 − µr = 2 − vol(Bn(αr0)) = 2 − αn.

Finally, we check that the condition µr ⩾ 3 is equivalent to αn < 2.
Conversely, let Y = µr−3 and assume that Y > 0, i.e. αn > 2. If

∣∣| L ∩Bn(r)|−µr

∣∣ ⩽ Y
then in particular µr − | L ∩Bn(r)| ⩽ Y so | L ∩Bn(r)| ⩾ µr − Y = 3. Hence,

PrL[λ1(L) ⩽ r] = PrL[| L ∩Bn(r)| ⩾ 3]
⩾ PrL

[∣∣| L ∩Bn(r)| − µr

∣∣ ⩽ Y
]

= 1 − PrL
[∣∣| L ∩Bn(r)| − µr

∣∣ > Y
]

⩾ 1 − σ2
r

Y 2 .

3 On the Gaussian mass of random lattices
In this section, we give a probabilistic estimate of the value of ρs(L) when L is a random
real lattice. We derive from this a probabilistic bound on the smoothing parameter of a
random lattice. A similar result was shown for “standard” random q-ary lattices (i.i.d.
from uniform entries) in [LLBS14, Lemma 3] but only gives the expected value, whereas
we also bound the variance. A closely related result is available in [KNSW20] which
studies matrices with each entry independently and identically distributed from an integer
Gaussian distribution. Similarly, [CPS+20, Appendix A], [LPR13, Section 7] and [SS11,
Theorem 2] analyzes the Gaussian mass of a random q-ary lattice over cyclotomic fields.

Recall that by random real lattice, we mean L ∈ Xn distributed according to µn, i.e.
the Haar measure. See Section 2.6 for more details. Our first technical result is to obtain
the expected value and variance of ρs(L) for a random lattice L. We derive from this a
probabilistic bound on ρs(L) and the smoothing parameter. For reasont that will become
clear in the proof of Theorem 8, we prove a more general result on ρs(L ∩Bn(ℓ)), i.e. the
Gaussian mass of a lattice restricted to a ball.
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Lemma 2. For any n ∈ N, ℓ > 0 and s > 0, let L ∈ Xn be distributed according to µn.
Then

EL[ρs(L ∩Bn(ℓ))] = 1 + snθ, VL[ρs(L ∩Bn(ℓ))] ⩽ Asnθ

where A = 2
ζ(n)

∑∞
α,β=1(α2 + β2)−n/2 ⩽ 21−n/2(1 + o(1)) and θ = γ(n/2,πℓ2/s2)

Γ(n/2) where γ

denotes the lower incomplete gamma function. In particular,

EL[ρs(L)] = 1 + sn, VL[ρs(L)] ⩽ Asn.

Proof. Let fℓ be the identify function of Bn(ℓ). By Corollary 1, we have that

EL[ρs(L ∩Bn(ℓ))] = ρs(0) +
∫
Rn

ρs(x)fℓ(x)d λ(x).

To compute this integral, we perform a polar change of coordinate. Let σn denote the
spherical measure of the n-sphere Sn. Then∫

Rn

ρs(x)fℓ(x)d λ(x)

=
∫

Sn−1

∫ ℓ

0
e−π

r2

s2 rn−1d rd σn−1(ω)

= σn−1(Sn−1)
∫ ℓ

0
e−π

r2

s2 rn−1d r

= 2πn/2

Γ( n
2 )

∫ π
ℓ2

s2

0
e−t

(
s
√

t
π

)n−2
s2

2π d t by the change t = π r2

s2

= sn

Γ( n
2 )

∫ π
ℓ2

s2

0
e−tt

n
2 −1d t

= sn γ( n
2 , π ℓ2

s2 )
Γ( n

2 ) .

By Corollary 1, and a similar integral calculation, we also have that

VL∼µn [ρs(L ∩Bn(ℓ))]

= 1
ζ(n)

∑
α∈N\{0}

∑
β∈Z\{0}

∫
Rn

ρs(αx)ρs(βx)fℓ(αx)fr(βx)d λ(x)

= 1
ζ(n)

∑
α∈N\{0}

∑
β∈Z\{0}

∫
Rn

ρ
s/

√
α2+β2(x)fℓ(max(α, |β|)x)d λ(x)

= 2 sn

ζ(n)

∞∑
α,β=1

(α2 + β2)−n/2
γ
(

n
2 , π ℓ2

s2 max(α2,β2)

)
Γ( n

2 )

⩽ 2 sn

ζ(n)

∞∑
α,β=1

(α2 + β2)−n/2
γ
(

n
2 , π ℓ2

s2

)
Γ( n

2 ) since γ( n
2 , ·) is increasing

= 2 sn

ζ(n)
γ( n

2 , π ℓ2

s2 )
Γ( n

2 )

∞∑
α,β=1

(α2 + β2)−n/2.

Furthermore,
∞∑

α,β=1
(α2 + β2)−n/2 =

∞∑
α=1

(α2 + 1)−n/2 +
∞∑

β=2
(α2 + β2)−n/2


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⩽
∞∑

α=1

(α + 1)−n/2 +
∞∑

β=2
(α2 + β2)−n/2


⩽ ζ( n

2 ) − 1 +
∞∑

α=1

∫ ∞

1
(α + β)−n/2d β

= ζ( n
2 ) − 1 +

∞∑
α=1

2 (α+1)1−
n
2

n−2

= ζ( n
2 ) − 1 + 2

n−2 (ζ( n
2 − 1) − 1)

= 2−n/2(1 + o(1))

as n → ∞. The final part of the result follows by letting ℓ → ∞ and noting that θ → 1
since Γ( n

2 ) = limx→∞ γ( n
2 , x) by definition.

Corollary 2. For any n ∈ N, s > 0, ℓ > 0 and α > 0,

PrL∼µn
[|ρs(L ∩Bn(ℓ)) − 1 − snθ| > α] ⩽ 21−n/2snθ(1 + on(1))

α2

where θ is defined in Lemma 2 and on(1) → 0 as n → ∞ is independent of α and ℓ.

Proof. This is a direct application of Lemma 2 and Chebyshev’s inequality.

The previous lemma allows us to derive a probabilistic bound on the smoothing
paragraph ηε(L) of a random lattice L.

Corollary 3. For any n ∈ N and ε > 0, let sε =
(

ε+1+
√

2ε+1
ε2

)1/n

. Then

PrL∼µn [ηε(L) > sε] ⩽ 2−n/2(1 + o(1)).

Proof. Recall that if L ∈ Xn is distributed according to µn then its dual L̂ is also
distributed according to µn. Let α = ε − s−n

ε and check that α > 0. We can therefore
apply Corollary 2 to get that

PrL

[
ρ1/sε

(L̂) > 1 + ε
]

= PrL

[
ρ1/sε

(L̂) − 1 − s−n
ε > α

]
⩽ PrL

[∣∣∣ρ1/s(L̂) − 1 − s−n
ε

∣∣∣ > α
]

⩽
21−n/2(1 + o(1))

sn
ε α2 .

A routine calculation shows that‡ sn
ε α2 = sn

ε (ε − s−n
ε )2 = 2. Furthermore, for any lattice

L, if ρ1/sε
(L̂) ⩽ 1 + ε then ηε(L) ⩽ sε. Therefore,

PrL[ηε(L) > sε] ⩽ PrL
[
ρ1/sε

(L) > 1 + ε
]
⩽ 2−n/2(1 + o(1)). (4)

‡Technically, there is second choice s̃ε =
(

ε+1−
√

2ε+1
ε2

)1/n

which satisfies that s̃ε
n(ε − s̃ε

−n)2 = 2.

However note that s̃ε ⩽ ε−1/n so if we applied Corollary 2, we would get the probability that ρ1/s̃ε
(L̂) >

1 + s̃ε
−n + α for some positive α > 0, but since 1 + s̃ε

−n > 1 + ε, this would not help us bound the
smoothing parameter ηε.
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4 Application to the Hermite and approximate SVP
In this section, we use our probabilistic bound on the smoothing parameter ηε(L) to solve
the approximate (Hermite) SVP for random lattices. Our algorithm is conceptually simple:
we sample a large number of vectors from DL,s for s =

√
2η1/2(L) and we return the

shortest nonzero vector among them. The trade-off lies in the number of samples: the more
we have, the more likely we are to find a short vector but more expensive the algorithm
becomes. The sampler that we used (Theorem 4) runs in time 2n/2+o(n) but gives us
2n/2+o(n) vectors at a time. Surprisingly, this already allows us to solve 1.123-SVP but by
calling the sampler an exponential number of times, we can decrease the approximation
factor and even solve SVP.

Theorem 8. There is a randomized algorithm that for every n ⩾ 1 and β ∈ (β0, 1)
where β0 := −W0

(
− 1

4e

)
≈ 0.1018284311, and on a fraction at least 1 − 2−n/2+o(n) − 1

X ,
where X ⩾ (4βe1−β)n/2 > 1, of random lattices L according to µn, outputs in time
eo(n)(βe1−β)−n/2 + 2n/2+o(n) and space 2n/2+o(n) a nonzero vector of L of length at most
s1/2

√
nβ
π with probability at least 1/2, where s1/2 = (6 + 4

√
2)1/n = 1 + o(1) is defined in

Corollary 3.

Remark 1. Although this theorem can be applied up to β = 1, it is actually pointless to go
beyond βmax = −W0

(
− 1

2e

)
≈ 0.2319609530. Indeed, for β = βmax, the time complexity of

the algorithm is exactly 2n/2+o(n) and it cannot become any smaller by increasing β.

Proof. Let s1/2 be given by Corollary 3, σ =
√

2s1/2, ℓ = s1/2

√
nβ
π and N to be fixed

later. Consider the following algorithm:

• Sample N vectors independently according to DL,σ by Theorem 4.

• Return the shortest nonzero vector.

We will analyze this algorithm. First the running time is clear by Theorem 4 the algorithm
takes time (N + 2n/2) · 2o(n). Next we observe that by Corollary 3 for ε = 1/2, and with
probability at least 1 − 2−n/2(1 + o(n)) over the choice of L we have

η1/2(L) ⩽ s1/2. (5)

Furthermore, by Corollary 2 for α = 1
2 σnθ, and with probability at least 1− 23−n/2

σnθ (1+o(n))
over the choice of L we have

|ρs(L ∩Bn(ℓ)) − 1 − σnθ| > 1
2 σnθ (6)

where θ = γ(n/2,πℓ2/σ2)
Γ(n/2) . Finally, by the same argument, and with probability at least

1 − 2−n/2(1 + o(n)) over the choice of L we have

|ρs(L) − 1 − σn| >
√

2σn. (7)

By a union bound, we have that (5), (6) and (7) hold at the same time for a fraction at
least 1 − 2−n/2+o(n) − 1

X of random lattices where X = 2n/2−3σnθ(1 + o(n)). Assume that
we are in this case. It will be useful to note that s1/2 = (6 + 4

√
2)1/n. Therefore

111/n ⩽ s1/2 ⩽ 121/n.

Since
√

2η1/2(L) ⩽
√

2s1/2 = σ we can indeed apply Theorem 4 to sample from DL,σ.
Therefore, the probability that each sample is nonzero and of length at most ℓ is

p := ρσ(L \{0} ∩ Bn(ℓ))
ρσ(L) ⩾

1
2 σnθ

1 + σn +
√

2σn
by (6) and (7)
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⩾
1
2 σnθ

2σn
= θ

4 since σn ⩾ 4.

Therefore if we sample N = Ω(1/p) vector from DL,σ, then with constant probability we
will get a vector in L \{0} ∩ Bn(ℓ).

We now need to obtain a lower bound on θ: let a = n/2 and x = πℓ2/σ2. Check that
x = βa. Since β ⩽ 1, we have x ⩽ a so

θ = γ(a, x)
Γ(a) ⩾

γ(a, x)
Γ(a + 1)

⩾
xae−x

a ·
√

2πaa+ 1
2 e−a+ 1

12a

by (2) and (3)

= 1
a3/2

√
2π

(
x
a

)a
ea−x− 1

12a

= eo(n)(βe1−β)n/2.

Recall that this holds for a fraction at least 1 − 2−n/2+o(n) − 1
X of lattices, where

X = 2n/2−3σnθ ⩾ (4βe1−β)n/2.

Recall (Section 2.2) that β ∈ [0, 1] 7→ βe1−β is increasing, and since β > β0,

X >
(
4β0e1−β0

)n/2 = 1

by elementary calculations involving the lambert W function.

The previous result allows us to show that we have an algorithm that returns relatively
short vectors on average but note that the bound does not depend on the lattice (more
precisely, it is related to the volume of the lattice because our random lattices are scaled
to have volume 1). This is known as the α-Hermite SVP (HSVP). The following corollary
is a simplified version of Theorem 8.

Corollary 4. There is a randomized algorithm that for every n ⩾ 1 and β ∈ [β1, βmax]
where β1 := −W0

(
−

√
2

4e

)
≈ 0.1514 < 1

2e and βmax is defined in Remark 1, solves (1 +

o(1))
√

nβ
π -HSVP in time eo(n)(βe1−β)−n/2 and space 2n/2+o(n) with probability at least

1/2 on a fraction at least 1 − 2−n/4+o(n) of random lattices L according to µn.

Proof. This is a direct consequence of Theorem 8 since β1 ⩾ β0 and s1/2 ⩽ 121/n = 1+o(1).
The only thing to check is that the fraction of lattices on which the algorithm succeeds.
Recall (Section 2.2) that β ∈ [0, 1] 7→ βe1−β is increasing, and since β ⩾ β1,

X ⩾
(
4β1e1−β1

)n/2 = 2n/4

by elementary calculations involving the lambert W function. Finally, note that the time
complexity is

eo(n)(βe1−β)−n/2 + 2n/2+o(n)

but by Remark 1, the first term is always larger than the second when β ⩽ βmax.

The more common γ-SVP problem asks to relate the length of the vectors to the first
minimum λ1(L). To do so, we rely on a probabilistic lower bound on λ1 for random
lattices.
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Theorem 9. There is a randomized algorithm that for every n ⩾ 1, γ ∈ [1,
√

2eβmax] and
β ∈ (β0, γ2

2e ), where β0 is defined in Theorem 8 and βmax is defined in Remark 1, solves
γ-SVP in time eo(n)(βe1−β)−n/2 and space 2n/2+o(n) with probability at least 1/2 on a

fraction at least 1 − (4βe1−β)−n/2 − eo(n)
(

2eβ
γ2

)n/2
of random lattices L according to µn.

Remark 2. If we let β → γ2

2e then the complexity of the algorithm will tend to eo(n)( γ2

2 e−γ2/2e)−n/2

although in this case the algorithm will only succeed on a fraction 1 − 1
poly(n) of ran-

dom lattices. In particular, for γ = 1 the complexity will be 20.63269n+o(n) and for
γ =

√
2eβmax ≈ 1.122973948, the complexity will be 2n/2+o(n).

Proof. Let β ∈ (β0, βmax) to be fixed later where βmax is defined in Remark 1. We apply
Theorem 8 to get an algorithm that returns a nonzero vector on a lattice L with probability
at least 1/2 and of length at most ℓ = s1/2

√
nβ
π , where s1/2 = (6 + 4

√
2)1/n ⩽ 121/n. This

algorithm works on a fraction at least 1−2−n/2+o(n)− 1
X of lattices where X = (4βe1−β)n/2.

Let α = ℓ
γ vol(Bn)1/n. Assuming for now that α < 21/n, we apply Theorem 7 to get that

for a fraction at least 1−ε of lattices, where ε = 2αn(1+o(1))
(2−αn)2 , we have λ1(L) ⩾ α vol(Bn)−1/n.

Therefore, for a fraction at least 1 − ε − 1
X − 2−n/2+o(n) of lattices, the nonzero vector

returned by the algorithm is of length at most

ℓ = γα vol(Bn)−1/n ⩽ γλ1(L).

Recall that we need to satisfy the constraint α < 21/n. Check that

αn ⩽ 12
(

nβ

πγ2

)n/2
vol(Bn)

∼ 12
(

nβ

πγ2

)n/2 1√
nπ

(
2πe

n

)n/2

= 12√
nπ

(
2eβ

γ2

)n/2
.

In particular, if 2eβ < γ2 then α → 0 as n → ∞ so the condition α < 21/n is clearly
satisfied for large enough n. If we further restrict γ ⩽ γmax so that γ2

max/2e = βmax then
by Remark 1 we can simplify the time complexity as in the proof of Corollary 4.

The previous theorem is difficult to use because of the parameter β which balances the
complexity and the fraction of lattices on which the algorithm succeeds. The following
corollary is a simplified version for a hardcoded fraction of lattices.

Corollary 5. There is a randomized algorithm that for every n ⩾ 1 and γ ∈ [1, γmax]
where γmax =

√
2eβmax ≈ 1.122973948, solves γ-SVP and space 2n/2+o(n) and time(

0.1821γ2e1−0.1821γ2
)−n/2

with probability at least 1/2 on a fraction at least 1 − 0.99n/2

of random lattices L according to µn.

Proof. Apply Theorem 9 with β = 0.99 γ2

2e . Then it is clear that the fraction of lattices on
which the algorithm works is 1 − 0.99n/2. Substituting into the runtime complexity gives
the result.

Finally, we observe that the strong bounds on λ1 for a random lattices give a polynomial
time algorithm for (1 + ε)-GapSVP. Although this is more of a folklore result, our theorem
gives explicit constants and bounds not found in the literature.
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Theorem 10. There is a deterministic algorithm that for any n ⩾ 1 and γ = γ(n) > 22/n,
and on a fraction at least 1 − ϵ − ϵ′ of random lattices according to µn, solves γ − GapSVP
in polynomial time (independent of γ), where ε = 2αnA(n)

(αn−2)2 , ε′ = 2βnA(n)
(2−βn)2 , α = √

γ and
β = 1/

√
γ and A(n) is defined in Theorem 7.

Proof. The algorithm is trivial: on input L ⊆ Rn and r > 0, accept if vol(Bn)−1/n < r
√

γ
and reject otherwise.

We now analyze the algorithm: let α = √
γ and note that α > 21/n. Apply Theorem 7

to get that for a fraction at least 1 − ε of lattices L, where ε = 2αnA(n)
(αn−2)2 , we have

λ1(L) ⩽ α vol(Bn)−1/n. Similarly, let β = 1/
√

γ and note that β < 2−1/n < 21/n.
Therefore, for a fraction at least 1 − ε′ of lattices L, where ε′ = 2βnA(n)

(2−βn)2 , we have
λ1(L) > β vol(Bn)−1/n. By a union bound, for a fraction at least 1 − ε − ε′ of lattices L,
we have

β vol(Bn)−1/n < λ1(L) ⩽ α vol(Bn)−1/n. (8)

Assume that the input lattice satisfies (8) and let r > 0. There are two cases to consider:

• If λ1(L) ⩽ r then vol(Bn)−1/n < r/β = r
√

γ so the algorithm accepts.

• If λ1(L) ⩾ γr then vol(Bn)−1/n ⩾ rγ/α = r
√

γ so the algorithm rejects.

Therefore the algorithm solves γ-GapSVP on L. The running time is clearly polynomial.

Since the statement of Theorem 10 is quite hard to decipher, we give a weaker result
in the case of a constant approximation factor, which can be arbitrarily close to 1.

Corollary 6. There is a deterministic algorithm that for any γ > 1 solves γ-GapSVP for
n ⩾ 4 ln 2

ln γ in polynomial time (independent of γ) and on a fraction at least 1 − 10γ−n/2(1 +
o(1)) of random lattices according to µn.

Proof. Apply Theorem 10 with γ. Note that since n ⩾ 4 ln(2)/ ln(γ), we have γ ⩾ 42/n >
22/n. Therefore the algorithm solves γ-GapSVP on a fraction at least 1 − ε − ε′ of lattices.
Now observe that αn = γn/2 > 4, therefore§

ε = 2αnA(n)
(αn − 2)2 ⩽

8A(n)
αn

= 8γ−n/2(1 + o(1)).

The bound of ε′ is easier since β = 1/
√

γ ⩽ 1 so

ε′ = 2βnA(n)
(2 − βn)2 ⩽ 2βnA(n) = 2γ−n/2(1 + o(1)).

5 Discussion and open questions
We have shown a conceptually simple algorithm to solve SVP and HSVP for random lattices
by discrete Gaussian sampling. Perhaps the most intriguing consequence of these results is
that it implies that sampling from a discrete Gaussian at the smoothing parameter cannot
be done in subexponential time (even for random lattices) without major consequences
on lattice-based cryptography. This, however, does not quite settle the question of the
exact complexity of DGS at the smoothing parameter. Indeed, all existing algorithms
that run in time 2n/2+o(n) use exponential space and it is open whether it is possible to

§We use that x
(x−2)2 ⩽ 4

x
for x ⩾ 4 which follows by a simple analysis.



18 Solving the Shortest Vector Problem in 20.63269n+o(n) time on Random Lattices

sample in subexponential space. If such an algorithm exists, it’s not hard to see that all
our algorithms will also run in subexponential space on random lattices.

Another open question concerns our probabilistic bound (Corollary 3) on ηε(L). Indeed,
recall that for any ε > 0 we have shown that almost all lattices L satisfy that

ηε(L) ⩽ sε =
(

ε + 1 +
√

2ε + 1
ε2

)1/n

.

When ε becomes sufficiently small, sε ∼ 21/nε−2/n. Combining this with the upper bound
(Theorem 7) on λ1(L) we get that for small values of ε,

λ1(L)ηε(L̂) ⩽ (1 + o(1))
√

n
2πe ε−2/n. (9)

This should be compared with the unconditional result of [ADRS15, Lemma 6.1] that
shows that √

log(1/ε)
π

< λ1(L)ηε(L̂) <

√
β(L)2n

2πe
· ε−1/n · (1 + o(1)) (10)

where β(L) ⩽ 20.401 is the generalized kissing number [ACKS21]. It is reasonable to believe
that β(L) ≈ 1 for a random lattice L. If this were the case, then it remains a discrepancy
between our bound (9) and the bound (10) of [ADRS15]: ε−2/n in our case compared to
ε−1/n in theirs. We leave as an open question to explain this discrepancy which may point
to our upper bound (Corollary 3) being suboptimal.
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