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Abstract

In this paper we introduce the notion of encrypted RAM delegation. In an encrypted RAM
delegation scheme, the prover creates a succinct proof for a group of two input strings xpb and
xpr, where xpb corresponds to a large public input and xpr is a private input. A verifier can check
correctness of computation ofM on (xpb, xpr), given only the proof π and xpb.

We design encrypted RAM delegation schemes from a variety of standard assumptions such
as DDH, or LWE, or k-linear. We prove strong knowledge soundness guarantee for our scheme
as well as a special input hiding property to ensure that π does not leak anything about xpr.

We follow this by describing multiple applications of encrypted RAM delegation. First, we
show how to design a rate-1 non-interactive zero-knowledge (NIZK) argument system with a
straight-line extractor. Despite over 30+ years of research, the only known construction in the
literature for rate-1 NIZKs from standard assumptions relied on fully homomorphic encryption.
Thus, we provide the first rate-1 NIZK scheme based purely on DDH or k-linear assumptions.

Next, we also design fully-homomorphic NIZKs from encrypted RAM delegation. The only
prior solution crucially relied on algebraic properties of pairing-based NIZKs, thus was only
known from the decision linear assumption. We provide the first fully-homomorphic NIZK
system from LWE (thus post-quantum security) and from DDH-hard groups.

We also provide a communication-complexity-preserving compiler for a wide class of semi-
malicious multiparty computation (MPC) protocols to obtain fully malicious MPC protocols.
This gives the first such compiler for a wide class of MPC protocols as any comparable compiler
provided in prior works relied on strong non-falsifiable assumptions such as zero-knowledge suc-
cinct non-interactive arguments of knowledge (zkSNARKs). Moreover, we also show many other
applications to composable zero-knowledge batch arguments, succinct delegation of committed
programs, and fully context-hiding multi-key multi-hop homomorphic signatures.

∗Support for this research was provided by OVCRGE at UW-Madison with funding from the Wisconsin Alumni
Research Foundation.

†Work done while at UW–Madison. Funded by NSF #2143287.
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1 Introduction

Can we delegate a long computation, y =M(x), yet verify its validity using a short certificate π?

This question is one of the most fundamental problems in theoretical computer science. Delegation
of computation has immense practical applications, in part due to rapid rise in popularity of
blockchains and cloud services. While constructing non-interactive succinct proofs for delegation of
computation is believed to be impossible information theoretically, this task is known to be feasible
under computational hardness as long as soundness of the system is desired only against polynomial
time adversaries [BCC88, Kil92, Mic94].

Succinct non-interactive arguments (SNARGs) [Mic94] are powerful proof systems that solve
the problem of publicly verifiable delegation. Over the last several years, numerous works [KR09,
KRR14, BHK17, PR17, BKK+18, CCH+19, KPY19, JKKZ21, CJJ21, CJJ22a, KVZ21, WW22,
BBK+23, NWW23, JKLV24] have constructed SNARGs for various subclasses of NP. All these are
useful for publicly verifiable delegation of different types of deterministic computation. To go beyond
delegation of deterministic computation, we need SNARGs for general non-deterministic compu-
tations. While the seminal work of Micali [Mic94] designed SNARGs for NP in the random oracle
model [BR93], designing SNARGs for NP in the “plain model” under standard falsifiable crypto-
graphic assumptions remains a grand challenge, and requires overcoming strong barriers [GW11].

In this work, we approach the problem of designing publicly verifiable delegation for non-
deterministic computations from a different direction. Our philosophy is to anchor ourselves to the
plain model and standard cryptographic assumptions, and explore what applications and forms of
delegation for non-deterministic computations are achievable.

We propose and define a new notion of delegation system that we call encrypted RAM dele-
gation. We show several applications of encrypted RAM delegation that were previously known
only from SNARGs for NP, or select algebraic assumptions. We provide a new construction for
encrypted RAM delegation that is provably secure under a wide variety of standard cryptographic
assumptions such as DDH, LWE, or k-linear assumption.

We begin by informally introducing the notion of encrypted RAM delegation. An encrypted
RAM delegation scheme for a machineM consists of a prover and verifier algorithm1. The prover
algorithm, Prove, takes two input strings xpb and xpr, where xpb corresponds to a large public input
and xpr is a private input. It generates a short proof π that is used by the verifier algorithm,
Verify, to check validity of computation of M, while given only xpb as an additional input. In
words, consider y = M(xpb, xpr), then encrypted RAM delegation allows proving validity of this
computation to a verifier that only gets xpb and y, but never knows xpr.

Intuitively, for soundness we require that if a proof π gets verified for some input xpb and output
y, then there must exist a private input xpr such that y =M(xpb, xpr). Even further, we consider
extraction soundness, where such an xpr should be efficiently extractable from an accepting proof
π. To formally capture an appropriate notion of privacy for xpr, we consider a zero-knowledge style
guarantee for delegated proofs, called input hiding. Intuitively, it states that an honestly computed
proof π for y =M(xpb, xpr) should be efficiently simulatable, given only xpb and y.

At this point, the reader might be wondering:

1. How does this capture delegation for (a non-trivial class of) non-deterministic computations?

2. Why do we refer to it as “encrypted” RAM delegation?

1Similar to vanilla RAM delegation, we also consider a setup algorithm to sample a CRS, but ignore it for simplicity
of exposition.
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3. Why does this not face similar strong barriers [GW11] as SNARGs for NP?

Let us answer these questions one at a time. Informally, we view xpr as the non-deterministic portion
of the computation. That is, xpr is only available to the prover, and not the verifier. Moreover,
we require strong hiding guarantees for xpr from a malicious verifier. To further illustrate this,
consider the following application.

RAM delegation over encrypted data. Consider a public cloud server that stores a large encrypted
database D. For example, this could be a corpus of facial images collected by airport authorities,
or patient health data collected by NIH. Suppose an authorized user/entity that has the decryption
key, dk, wants to run a long computation M on the database D. This could be FBI running a
facial recognition software to identify potential threats, or a research study group training a huge
ML model to develop a predictor for heart diseases. Consider an auditor that wants to validate the
result of the computation, but can only access the encrypted database D, and not the decryption
key dk. For example, this could be the DOJ (Department of Justice) vetting the credibility of FBI’s
reports, or the OIG (Office of Inspector General) auditing the research study.

The authorized user/entity can perform this computation given dk and moreover, using basic
RAM delegation (for deterministic computation) they can create a short certificate π to prove
validity of computation. Unfortunately, π can not be verified by anyone that does not possess dk!
Thus, any third party that wants to validate the correctness of the computation needs to be able
to read the entire database in the clear.

Encrypted RAM delegation gets around the above limitations, and provides a solution to generate
public verifiable proofs for delegated computations over “encrypted data”. Quite simply, using
encrypted RAM delegation, the authorized user/entity can generate a proof π by treating xpb := D
and xpr := dk such that π can be verified given only encrypted database D2. Because of the above
perspective, we refer to our concept as encrypted RAM delegation, and the non-determinism aspect
is highlighted by the fact that the verifier does not know xpr.

While the above answers the first two questions, it does not fully address the feasibility question
surrounding encrypted RAM delegation. To answer that, we start with our main observation about
useful desiderata for encrypted RAM delegation. Looking from the perspective of applications, we
observe (as well as demonstrate later) that the private input xpr is usually quite small in many
applications. For instance, xpr is simply a fixed size decryption key dk in the above auditing
application. Thus, if the proof size is not fully succinct w.r.t. the length of private input, then it
suffices for many applications. Importantly, this would ensure that known proof barriers [GW11]
do not prohibit the design of encrypted RAM delegation. In words, our plan is to require the proof
size to be as large as the size of private input, but not scale with the size of public input. Thus,
|π| = poly(λ, log |xpb|, |xpr|). As we show later, this has the advantage that we can design encrypted
RAM delegation relying only on polynomial hardness of many standard cryptographic assumptions
as well as it suffices to get best possible solutions for many new applications.

We also consider a strengthening of encrypted RAM delegation to support fully succinct proofs,
as in we design proofs whose size does not grow even with |xpr|. We call them reusable encrypted
RAM delegation. Our intuition is that if the same private input, xpr, is being reused to generate
multiple proofs π1, π2, . . . for either different xpb or different machinesM, then we can reduce the
overall proof size by amortization. Basically, we will generate a pre-processed proof π̃ using xpr
such that each proof πi (w.r.t. xpr) can be thought of as two sub-proofs—a reusable portion π̃, and

2Technically, a verifier only needs to read the digest of D
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a non-reusable portion π′
i. Here only π′

i depends on xpb andM. Moreover, the size of each π′
i does

not grow with |xpr|, i.e. |π′| = poly(λ, log |xpb|, log |xpr|). The security properties for such resuable
encrypted RAM delegation systems can be appropriately generalized.

1.1 Overview of our applications

We will start with our applications, and defer the explanation of our construction and proof for
(reusable) encrypted RAM delegation to later.

Boosting Non-Interactive Zero-Knowledge Arguments to Rate-1. A non-interactive zero-
knowledge argument system (NIZK) [BDSMP91, BFM88] for an NP language L is a standard
two-party proof system defined in the CRS model, where a prover wants to convince a verifier that
an instance x ∈ L, without the revealing any information about the corresponding witness ω. All
parties have access to a public crs. Soundness states that any polytime cheating prover should
not be able to convince the verifier of a false assertion, while zero-knowledge requires that the
proof string π should be simulatable given just a valid instance x. A stronger notion of knowledge
soundness requires the system to additionally support efficient extraction of a valid witness ω from
any accepting proof π for an instance x. NIZKs are a fantastic and fundamental cryptographic tool
with numerous applications across cryptography.

Almost all NIZK systems built from standard tools3 result in proofs and CRS of large size. That
is, |π|, |crs| = poly(λ, |x|, |ω|). In particular, the proof size is much larger than the witness size, |ω|.
One notable exception is the work of Gentry et al. [GGI+15] that designed rate-1 NIZKs. Here rate-1
refers to the fact that |π| = |ω|+poly(λ). Their work, however, crucially relies on fully-homomorphic
encryption (FHE) [RAD+78, Gen09] to perform hybrid encryption to reduce the proof size. Thus,
despite the fact that the community has developed multiple approaches for designing NIZKs from
a variety of standard tools and assumptions [BFM88, GO94, FLS99, SW14, PS19, JJ21, Wat24]
over the last 30+ years, the only known construction we have for rate-1 NIZKs relies on learning
with errors [Reg09].

In this paper, we show how to use encrypted RAM delegation to generically design a rate-1
NIZK scheme with knowledge soundness. In a very recent work, Cheng and Goyal [CG24] proved
that rate-1 NIZKs with knowledge soundness are essentially optimal, and going beyond rate-1 faces
the same barriers as SNARGs for NP [GW11]. Thus, our transformation essentially designs NIZKs
with knowledge soundness and optimal efficiency from nearly all standard assumptions. Moreover,
our rate-1 NIZK construction also enjoys many useful properties such as straight-line extraction as
well as it is a universal proof system, which means the CRS is not tied to a single NP language,
but can be reused for any NP language.

The technique for designing rate-1 NIZKs is fairly simple. To generate a NIZK proof for instance
x with witness ω, simply start by encrypting ω using a one-time pad key K, where K could be
computed as the output of a pseudorandom generator on a random, but fixed size, seed sd. Now
the NIZK proof can be generated by running the encrypted RAM delegation with xpb := (x, ω⊕K)
and xpr := sd. This results in a proof π that can be verified given just xpb. That is, a verifier does
not need xpr. Therefore, the NIZK proof can be set as π and the one-time pad encryption of ω, i.e.

3For the purposes of this overview, we roughly consider direct cosntructions from standard falsifiable cryptographic
assumptions to be standard tools, and those based on multilinear maps, indistinguishability obfuscation, random
oracles, or other non-falsifiable assumptions not to be.
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ω⊕K. Clearly, the verifier can run the encrypted RAM delegation verified to check the validity of
the proof.

The fact that the resulting NIZK proof is rate-1 follows immediately from the fact that one-time
pad is rate-1 and the proof size in encrypted RAM delegation does not grow with xpb, but only
xpr which is of fixed size (say λ). For zero-knowledge, we can use a simple hybrid argument to first
rely on the input hiding property of encrypted RAM delegation proof, and then use a one-time
pad encryption argument to remove any remaining information about ω. Lastly, for knowledge
soundness, we can rely on the extraction soundness property for encrypted RAM delegation to
recover the seed sd and use it to extract the witness ω. At its core, our encrypted RAM delegation
scheme uses a poor-rate NIZK scheme to guarantee the input hiding property, thus if the underlying
zero-knowledge property is statistical, then so is the zero-knowledge guarantee of our rate-1 NIZKs.

The above construction works for any scheme with an apriori bounded size witness. We can in-
stead handle unbounded length witnesses quite easily by rather leveraging a pseudorandom function
instead of a pseudorandom generator. The details of our transformation are given in Section 5.

Fully-Homomorphic NIZKs. The concept of homomorphism in NIZKs was introduced by
Ananth et al. [ADKL19]. The intuition behind fully-homomorphic NIZK was to enable homomor-
phic computations over independently generated NIZK proofs. To avoid trivial impossibilities, the
standard approach to formalize homomorphism in NIZK systems was to consider an NP language,
where each instance contains a pair of circuit and boolean output (C, b) and a witness ω is an
input string such that C(ω) = b. In addition to the standard prover/verifier algorithms, homomor-
phic NIZK systems have a special proof evaluation evaluation, Eval. It takes k tuples of the form
{(Ci, bi, πi)}i∈[k] and a boolean circuit C that takes k bits as input. The goal of the evaluation
algorithm is to generate a NIZK proof for the statement (C ′, b′), where b′ = C(b1, . . . , bk) and C ′

is the circuit C composed with circuit Ci on its i-th input wire. Such a composition maintains the
invariant that (C ′, b′) will be a valid instance if every (Ci, bi) is a valid instance. This is because
C ′(ω1, . . . , ωk) is same as C(C1(ω1), . . . , Ck(ωk)), by definition.

Unlike FHE, there are no special compactness requirements from evaluated proofs4. Despite
that, there does not exist any canonical approach to design homomorphic NIZK. The reason is
that the naive approach of simply setting the evaluated proof as π1, . . . , πk along with circuit C
has several issues. First, the evaluated proof does not necessarily satisfy zero-knowledge property,
as the evaluated proof leaks intermediate wire values in the circuit computation. For example, if
C is just a tree of or gates and b′ = 1, then (ideally) the evaluated proof should hide which of the
input bits from b1 to bk are 1. However, the naive approach leaks that in the clear. Second, the
evaluated proof does not resemble an ‘honestly generated proof’ for the instance (C ′, b′). Thus, a
verifier can clearly distinguish whether the NIZK proof is an evaluated proof or it is a fresh proof.

To address these issues and enable new applications, Ananth et al. [ADKL19] introduced a
new unlinkability property for homomorphic NIZKs. It states that an evaluated proof must be
indistinguishable from any honestly generated proof for the same instance. Combining the un-
linkability property with the zero-knowledge property, we obtain that evaluated proofs are also
indistinguishable from simulated proofs.

Prior to this work, the only other construction for homomorphic NIZKs [ADKL19] relied on
the seminal pairing-based NIZK construction by Groth-Ostrovsky-Sahai (GOS) [GOS06]. At a

4Actually requiring compactness of evaluated signatures would necessitate the use of SNARGs with adaptive knowl-
edge soundness, which face even stronger barriers [GW11, CGKS23].
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very high level, during each homomorphic evaluation, they followed a two-step approach: (1) use
a commitment to hide the output wires of each input proof, and (2) generate a fresh NIZK proof
proving that it knows openings to the output wire commitments such that thet satisfy the circuit
being evaluated. To ensure unlinkability, the evaluator also had to randomize all wire commitments
as well as re-randomize existing NIZK proofs to match these randomized commitments. In a few
words, their core idea was to use the fact that GOS NIZKs were malleable, i.e. one can re-
randomize a NIZK proof for certain special relations. For more details, readers are encouraged to
consult [GOS06].

While it might appear that we always need to cleverly exploit algebraic properties of a NIZK
proof system to enable (unlinkable) homomorphism, our main insight is that this is not necessary!
We show that by carefully composing NIZK proofs we can design fully-homomorphic proofs from
a variety of cryptographic assumptions beyond pairings, such as DDH and LWE. For instance, this
gives the first post-quantum homomorphic NIZK to the best of our knowledge.

Our main idea is rather straightforward. For simplicity, let us start with a rate-1 NIZK system
with knowledge soundness as a building block, rather than encrypted RAM delegation. Although
we really need some special features from a rate-1 NIZK which are somewhat strong, we observe
that our encrypted RAM delegation can be easily generalized to obtain all such desired features.
Thus, we stick to rate-1 NIZKs for ease of exposition.

Suppose we are given a sequence of instances {(Ci, bi)}i∈[k] and proofs {πi}i∈[k], and now we
want to homomorphically evaluate a circuit C on it. Our plan is to simply generate a new NIZK
proof for the statement (C ′, b′), where C ′ = Compose(C,C1, . . . , Ck) is the composed circuit and
b′ = C(b1, . . . , bk) is the evaluated output. That is, we generate a new NIZK proof for following:

∀i ∈ [k], ∃πi s.t. Verify(crs, (Ci, bi), πi) = 1 and C(b1, . . . , bk) = b′.

The witness for this proof consists of (b1, . . . , bk) and (π1, . . . , πk). It turns out the above design
for homomorphic NIZKs guarantees completeness, soundness, zero-knowledge, as well as efficiency.
Because we use rate-1 NIZKs, thus the proof size only grows additively with each homomorphic
evaluation, and is therefore efficient. Moreover, by using straight-line knowledge soundness prop-
erty, we can prove (knowledge) soundness of our homomorphic NIZKs. And, similarly, completeness
and zero-knowledge follows.

Unfortunately, this does not yet ensure unlinkability. The problem is that, just by looking at the
size of the evaluated proof, one can distinguish an evaluated proof from a freshly generated proof.
While this might seem a big barrier, we notice by relying on a simple algorithmic trick, we can
bypass this issue. Basically, our idea is essentially to compute a fresh NIZK proof by running the
evaluation algorithm. This means we will simply “decompose” each circuit C into non-overlapping
groups of “atomic circuits”. And, to generate a NIZK proof, a prover would first decompose each
circuit into its atomic decompositions, and then use homomorphic evaluation to create a proof.
The important part is each homomorphic operation only evaluates an atomic circuit. Therefore,
the size of a freshly generated NIZK proof will be the same as any arbitrarily evaluted NIZK proof
for the same instance. This relies on the fact that the “atomic circuit decomposition” technique
that we rely on generates deterministic encodings.

Later in the main body, we provide our algorithms for such deterministic atomic circuit decom-
position. We remark that the core approach behind our decomposition is to view each circuit as a
directed acyclic graph, and identify the largest set of vertices that can be safely ‘cut’ to partition
a single directed acyclic graph into directed acyclic graphs that each could be restored as a circuit
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with at least one logic gate. We refer the reader to Section 6 for a full formal definition and our
construction. We remark that our homomorphic NIZK construction supports unbounded homo-
morphism, and is truly fully homomorphic. That is, we do not specify any a-priori upper bound
on the size or number of circuits that can be homomorphically evaluated.

Rate-Preserving Semi-Malicious to Malicious MPC Compilers. Multiparty Computation
(MPC) [Yao86, GMW87] protocols are a staple in modern cryptography as they allow mutually
distrusting parties to jointly compute a function f over distributed inputs, with the guarantee
that none of the honest parties’ inputs will get compromised. There are multiple approaches
in the literature categorize different flavors of security for MPC protocols. Two such popular
formulations are of semi-malicious and malicious security. Briefly, semi-malicious security states
that the protocol must remain secure as long an attacker honestly runs the algorithms, for every
corruped party, as defined in the protocol description. But, it can arbitrarily choose the randomness
distribution to maliciously influence its messages in the protocol. Fully malicious security states that
security must hold even against attackers that can arbitrarily deviate from the protocol description.

A very popular approach in the design of MPC protocols is to design an MPC protocol that
achieves only semi-malicious security, and later compile it to a maliciously secure protocol generi-
cally. Such a compiler was first presented by Asharov et al. [AJLA+12] who designed a compiler to
transform semi-malicious MPC protocols into maliciously secure protocols. Their compiler relied
on NIZK systems, and preserved the underlying function class F . In a few words, their approach
was to require each party to additionally provide a NIZK proof along with each message, where
the NIZK proof proves that it correctly followed the protocol for the corresponding round. By a
careful utilization of NIZKs, one could prove such a compiler amplifies security to full malicious
security.

However, using vanilla NIZKs is very inefficient. This adversely affects the efficiency of the
original (semi-malicious) MPC protocol. While it is well known that by using general-purpose
zero-knowledge SNARGs with knowledge soundness (zk-SNARKs), one can significantly improve
the efficiency of the compiler. (Refer to [DGMR21] for details.) By significantly we mean that the
total communication complexity of the compiled protocol is asymptotically nearly identical to that
of the original protocol. But this clearly relies on a very strong non-falsifiable assumption in the
form of zk-SNARKs.

In this work, we show that reusable encrypted RAM delegation is a great tool to build (optimal)
rate-preserving compilers from semi-malicious MPC to malicious MPC. By rate-preserving, we again
mean that the communication complexity does not degrade with the size of the MPC functionality,
inputs, or the number of parties. To the best of our knowledge, this gives the first rate-preserving
compiler for semi-malicious to malicious security from standard falsifiable assumptions.

For ease of exposition, we describe our compiler in the context of multiparty reusable non-
interactive secure computation (mrNISC) protocols [BL20]. A mrNISC protocol is a powerful MPC
protocol that gives fantastic solutions to round-optimal MPC protocols. In a mrNISC protocol, each
party (say Pi) encodes its private inputs (say xi) using a special Com algorithm. Such an encoding,
x̂i, is thought to be either posted on a public bulletin board, or broadcasted widely through the
network. Consider any set S of parties, say {Pi}i∈S , that want to jointly evaluate a function f
on their private inputs {xi}i∈S . A mrNISC protocol allows each party, Pi, to individually (and
without interaction) create a special evaluated encoding f̂i using the FuncEnc algorithm. This
only requires the input encodings {x̂j}j∈S and the decommitment information corresponding to
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x̂i. All these encodings together can be used to learn f(x1, . . . , xn), but nothing more. The point
behind mrNISC is that by making the first round of the protocol to be independent of the function
f and the set S of parties, we can amortize the cost of computing k functions in just k+1 rounds.

Over the last few years, mrNISC has received tremendous attention fromt the community. Today
we have multiple approaches to semi-maliciously secure protocols [BL20, BJKL21, AJJM21, Shi22]
from standard assumptions. Despite great progress, we do not have any approaches to compile them
into maliciously secure protocols without significantly degrading their efficiency under standard
falsifiable assumptions. We show that a reusable encrypted RAM delegation system is a great fit
for designing an optimal rate-preserving compiler for malicious security in mrNISC.

The main idea is as follows. Along with every input encoding (commitments x̂i to private
inputs xi), we will generate a pre-processed proof π̂i using xi and its decommitment information as
the private input for our encrypted RAM delegation. Together π̂i and x̂i correspond to the input
encoding for the compiled protocol. Next, while generating function encodings, each party first
generates the function encoding f̂i as is for semi-malicious protocol. This can be generated by
using {x̂j}j∈S and the decommitment information for x̂i. Next, it generates the actual encrypted

RAM delegation proof, by setting f̂i and all the encodings {x̂j}j∈S as the public input for our
encrypted RAM delegation. Given this, each party outputs the semi-malicious function encoding
as well as the encrypted RAM proof as the final function encoding. An evaluator simply checks
that all the proofs verify, and then it uses the semi-malicious evaluator to learn the output of
the computation. By appropriately combining semi-malicious security of the underlying mrNISC
protocol, and knowledge soundness and input-hiding property of our reusable encrypted RAM
delegation, we can provide malicious security of our compiled protocol.

Our above compiler preserves the function class for the underlying mrNISC protocol, and gives
nearly rate-preserving compilation. The reason it is nearly rate-preserving because the decommit-
ment information relies on the length of input xi. Thus, even when our pre-processed proof is also
rate-1, the resulting input encoding is going to be rate-12 . However, we show that this is not a
major hurdle, and we can design fully rate-preserving compiler by slightly altering our compiler.

To make the input encoding fully succinct, our approach is to perform a very simple additional
level of input delegation. By this we mean, rather than encoding the actual input xi using the semi-
malicious mrNISC protocol, we will create an input encoding for a short random seed sdi, and use
this to one-time pad the input xi (similar to what we did in our rate-1 NIZK construction). With
this, we will set the input encoding to contain the one-time pad encryption of xi, input encoding
for sdi, and a corresponding pre-processed proof π̂i. Clearly, the resulting input encoding is truly
rate-1 as only the one-time pad encryption depends upon the input xi.

However, to ensure that we can still compute the function f , we need to non-trivially alter the
function encoding procedure. Specifically, we have to generate the function encodings not for f ,
but for a new function gf that does the following:

g[f,PRG(sd1)⊕x1,...,PRG(sdn)⊕xn](sd1, . . . , sdn) = f(x1, . . . xn)

The security of this new protocol can also be argued similar to the previous protocol by additionally
relying on pseduorandomness of PRG. We highlight that although gf is a simple extension of f , it
is not the same as f . Thus, this suggests either we can get optimal-rate by altering the function
class slightly, or we can get a very mildly worse rate while preserving the function class. For further
discussion on definitions of mrNISC, construction, efficiency, and security, please refer to Section 7.
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More applications: composable zkBARGs, delegation of committed programs, etc.
Beyond the aforementioned applications, we show that reusable encrypted RAM delegation enables
many more interesting applications that we briefly discuss below.

Composable zkBARGs. Batch arguments (BARGs) allow a prover to generate a short proof for a
‘batch’ statement that x1 ∈ L ∧ . . . ∧ xk ∈ L. Soundness states that an attacker cannot create
an accepting proof for a batch of instances containing at least one instance xi /∈ L. Somewhere
extractable BARGs (seBARGs) [CJJ21, CJJ22a] are a mild strengthening, that enable witness ex-
traction for a single statement at some hidden trapdoor index i∗ from any accepting proof. Compos-
able or multi-hop batch arguments (BARGs) were recently introduced by Devadas et al. [DGKV22]
as a new tool to enable many new applications such as aggregate signatures with unbounded ag-
gregation [BGLS03]. They constructed composable seBARG from any rate-1 seBARG. Informally,
a multi-hop (se)BARG allows for succinct composition of multiple (se)BARG proofs (which could
themselves be composed proofs).

In this work, we provide a simple construction for rate-1 (somewhere-extractable) zero-knowledge
BARGs (zkBARGs). Our construction essentially combines the techniques of [DGKV22]. The idea
is create a NIZK proof for each BARG proof before composing it further using BARGs. Naturally,
the zero-knowledge property follows directly from that of the NIZK. And, since both the underlying
seBARGs and NIZKs are rate-1, thus the resulting composed proof is also rate-1. Further, if the
seBARG scheme is somewhere-extractable, and the NIZK proof system is straight-line extractable,
then one can show somewhere extractability for zkBARGs too. This immediately gives us privacy-
preserving aggregate signatures supporting unbounded aggregation, where by privacy preserving
we mean an aggregated signature completely hides the original signature. We provide more details
in Section 8.

Succinct Delegation of Committed Programs. In a recent work, Ghosal, Sahai, and Waters [GSW23]
proposed a new mechanism to assist users that wish to delegate the responsibility of hosting a
program to a server. The desired functionality was that any third-party client can be convinced
that they are indeed receiving the correct output of the program on some public input, without the
knowledge of program beyond a commitment and without trusting the server. Ghosal, Sahai, and
Waters designed such publicly verifiable succinct delegation protocols by carefully exploiting many
intricate properties of the vanilla RAM delegation construction of Choudhuri, Jain, and Jin [CJJ21].
To that end, they defined a new notion for SNARGs that they called semi-trusted SNARGs.

Here we show that reusable encrypted RAM delegation immediately gives such succinct dele-
gation protocols. Moreover, our construction guarantees a much stronger zero-knowledge property.
In particular, we give a generic way to build zero-knowledge delegation of committed program
from reusable encrypted RAM delegation as well as a stronger definition of soundness than was
considered in [GSW23]. We provide more details in Section 9.

Context-Hiding Multi-Hop/Multi-Key Homomorphic Signatures. Homomorphic signatures [JMSW02,
AB09, BFKW09, BF11, GVW15b] enable computations on secretly signed data. Given a circuit C,
they enable derivation of an evaluated signature σC,y from a signature σx for data x. In words, σC,y

is an unforgeable token validating possession of a signature σx on some data x such that C(x) = y.
A highly desirable property in homomorphic signatures is to support homomorphic evaluation on
evaluated signatures, while ensuring that evaluated signatures do not reveal non-trivial information
about the original data x. These two properties are commonly regarded as multi-hop homomorphic
evaluation and context hiding [GVW15b].
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In a very recent work, Afshar, Cheng, and Goyal [ACG24] designed the first homomorphic
signature scheme that satisfied general multi-hop homomorphic evaluation and context hiding from
standard falsifiable assumptions. All other prior works suffered from one or more limitations as
explained in detail in [ACG24]. However, to support context hiding, their construction relied on
rate-1 NIZKs which were previously known only under LWE assumption. Thus, their construction
could not be generalized to other cryptographic assumptions. By combining our rate-1 NIZK
schemes, we obtain the first non-lattice-based homomorphic signature scheme satisfying general
multi-hop homomorphic evaluation and context hiding, from sub-exponential hardness of DDH/k-
linear assumption, as a simple corollary. Moreover, this result also directly generalizes to multi-
key setting [GVW15b, FMNP16] as well. Prior to our work, context hiding multi-hop multi-key
homomorphic signatures were not known from falsifiable non-lattice assumptions. We refer the
reader to [ACG24] for a detailed discussion on the current state of the art.

We believe there are many more applications of encrypted RAM delegation that will be discovered
in the future. For instance, we suspect that encrypted RAM delegation would lead to new results in
the domain of attribute-based signatures [MPR11], ciphertext-rate-preserving CPA-to-CCA trans-
formations for encryption systems [NY90], etc.

1.2 Overview of our Encrypted RAM construction

We start by recalling the problem of the RAM delegation where a prover generates a proof π to
convince a verifier that a RAM machineM accepts an input x within T steps such that both the
proof size and the verifier’s running time only grow with polylog(T, |x|). In this work, we consider
the problem where the input is partially private, namely, x = (xpb, xpr) for some private (resp.
public) input xpr (resp. xpb). More specifically we consider an encrypted RAM delegation scheme
as a prover that, given (xpb, xpr), generates a proof π, and a verifier that, given a short digest hpb of
xpb, verifies π. Let LM,T describe the language of the machineM consisting of all (xpb, xpr) that
are accepted byM within T steps. We require our scheme to satisfy the following properties

1. Soundness: no PPT adversary can find an accepting (xpb, π) s.t. for all xpr, (xpb, xpr) /∈
LM,T ,

5

2. Straight-line extraction: there is an extractor E s.t. for any accepting (xpb, π), it holds that
x∗pr ← E(xpb, π) and (xpb, x

∗
pr) ∈ LM,T ,

3. Input hiding: there is a simulator that generates indistinguishable proofs without knowing
xpr,

4. Efficiency: the proof size and verification time grow with poly(log T, log |xpb|, |xpr|).6

We further consider an additional reusability notion for the encrypted RAM delegation. This
property allows one to generate an encoding ehpr of the private input xpr, with a long proof of the

encoding πenc, and then reuse the encoding to generate short proofs π
(i)
edel for the computation on

different public inputs x
(i)
pb . Thus, we have |πenc| grow with poly(|xpr|), but π

(i)
edel only grow with

polylog(|xpr|).
5We actually prove stronger soundness in the main body, where a cheating prover need not even output the full xpb.
6Note that if the proof does not grow with poly(|xpr|) then it will imply SNARGs for NP.
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From BARGs to (vanilla) RAM delegation. Before describing our construction we recall the
canonical construction of the RAM delegation from BARGs and why it falls short in satisfying our
required properties. For the computation of the RAMmachineM, let cf0 be the initial configuration
(including the input), cfi be the i-th configuration of the machine, and nxt-cnfg(cfi−1) = cfi be the
step function that computes the next configuration of the machine. The idea for RAM delegation
is to break down the global consistency of the configurations, to local consistency of any two
consecutive configurations cfi−1 and cfi. Namely, in the canonical construction the prover first
generates a succinct commitment c of (cf0, . . . , cfT ), then generate a BARG proof where the i-th
instance, given the witness (cfi−1, cfi, opi−1, opi) checks if cfi = nxt-cnfg(cfi−1), and whether opi−1

and opi are valid openings of cfi−1 and cfi w.r.t. c. To instantiate the commitment above a hash
tree with local opening is used.

First note that in the canonical construction the proof size grows with the configuration size
which is not ideal. The works of [CJJ22a, KLVW23] show how to construct efficient RAM delegation
schemes that have the desired polylogarithmic dependency on the configuration size (by additionally
hashing each configuration). However, the more important issue, that is the leakage of information
about the input remains unsolved. By analyzing the canonical construction we realize that both the
commitment and the BARG proof leak information about the inputs. Thus even if we use succinct
hiding commitments with local openings, the above construction fails in hiding any information
about the inputs. The main reason is that the configurations do not hide information about the
inputs, and the BARG proof does not hide the configurations.

Achieving input hiding through encrypt and prove trick. We start with a RAM delegation
scheme and show how to generically transform it to an encrypted RAM delegation. Here we consider
RAM delegation as a prover that given an initial configuration cf0 generates a proof π and a verifier
that given a digest of cf0 verifies the proof. The idea is to generate an encoding of the memory,
then prove the well-formedness of the encoding, then generate a RAM delegation proof and use the
encoded memory to generate a short proof, proving the validity of the delegation. For this approach
to work, the encoding should be hiding and succinct, and the well-formedness proof as well as the
proof of the validity of the delegation should both hide the information about the witnesses. Thus,
we hash the memory and then encrypt the hash value to generate the encoding, then we use NIZK
to generate the rest of the proofs. While this idea seems directly applicable, one issue that arises is
that the RAM delegation proof corresponds to a digest of the entire initial configuration, however
the proof size grows polynomially with the size of the encoded part. Therefore, instead of encoding
the entire memory we will have to only encode the private input, which means that memory has to
be split to different parts and digest each part separately. It is known to be a well-believed folklore
fact that existing designs for RAM delegation can be very easily extended to handle such split
memories. For completeness, we formally provide the design of such a splittable RAM delegation
scheme and its proof in Appendix B. Given all the ideas above we present our encrypted RAM
delegation scheme as follows:

• Let cf0 = (xpb, xpr,Σ). Compute digest of the initial configuration, i.e. (hpb, hpr, hΣ) using a
hash tree.

• Compute an encoding of the private input ehpr by encrypting hpr under uniform randomness
r.

• Compute NIZK proof πenc proving knowledge of xpr corresponding to ehpr using (xpr, hpr, r)
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as witness.

• Compute the a RAM delegation proof del.π of the computation.

• Compute NIZK proof πedel of the validity of the del.π as well as the correctness of encryption
where the statement is (hpb, ehpr, hΣ) and the witness is (hpr, r, del.π).

• Let π = (ehpr, πenc, πedel).

Here we analyze our construction.

Input hiding. Note that the proof hides all the information about xpr by the security of the
encrypted system and the NIZK proof, so the scheme is input hiding.

Straight-line extraction. Note that if the underlying NIZKs have straight-line extraction, then,
we can extract some x∗pr, check it is consistent with ehpr, then extract the witness from πedel,
use the correctness of the encryption to argue the consistency of the extracted h∗pr (from
πedel) and x∗pr, and finally rely on the security of the RAM delegation scheme to argue that
(xpb, x

∗
pr) ∈ LM,T .

Efficiency. Additionally, the size of all the hash values is λ bits, thus |ehpr| = poly(λ), and
|πenc| = poly(λ, |xpr|). Additionally, by the efficiency of the RAM delegation |del.π| =
poly(λ, log T, log |xpb|, log |xpr|), thus πedel is of the same size. The efficiency of the verifi-
cation time follows the same argument.

Reusability We notice that our construction of the encrypted RAM delegation, already satisfies
reusability. Namely, ehpr and πenc are generated independent of the xpb and machineM, thus

once they are generated, a prover can use aux = (xpr, r) in addition to x
(i)
pb to generate π

(i)
edel.

The above construction highlights the ease with which we can generalize the core ideas behind RAM
delegation construction to support delegation of restricted forms of non-deterministic computations
such as computation over encrypted data. In the main body, we provide an even simpler design for
encrypted RAM delegation. Regardless, we believe the above interpretation of core ideas beneath
vanilla RAM delegation might be useful to consider further strengthenings. Thus, we provide
the above construction as part of our overview. We conclude our overview by stating that we
view identifying reusable encrypted RAM delegation as a new abstraction and developing different
approaches to use it enable new applications as our core contribution.

1.3 Related Work

Partially hiding functional encryption. Gorbunov, Vaikuntanathan, and Wee [GVW15a]
introduced the notion of partially hiding predicate encryption as an amalgamation of standard
attribute-based encryption [SW05, GPSW06] and predicate encryption [BW07, KSW08]. The
goal was to split up the attribute into two parts (public and private). Their scheme allowed
“heavyweight” computation over public attributes and only a “lightweight” private processing for
secret attributes. Later on, [AJL+19] further generalized the concept to partially hiding functional
encryption [BSW11], which allows evaluation of function f(x, y) such that only output and x is
revealed.
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One could view encrypted RAM delegation as a similar generalization of RAM delegation, where
the goal is to be able to generate a proof for the validity of RAM computation M(xpb, xpr) = y,
while keeping xpr private from the verifier.

NIZK Arguments. NIZK arguments [BDSMP91, BFM88] are computationally sound non-
interactive counterpart of zero-knowledge proofs [GMR85]. Two very popular approaches to de-
sign NIZK are the hidden-bits paradigm [FLS99, QRW19] and the Fiat-Shamir heuristic [FS86]
by using correlation-intractable hash function [CGH04]. Using these two approaches and more,
we have seen numerous designs for NIZK for a variety of assumptions such as DLIN [GOS06,
GOS12], sub-exponential DDH [JJ21], CDH [CHK03, CJJQ23], LPN [BKM20, DJJ24, CJJQ23],
LWE [PS19, Wat24]. Moreover, there are generic construction known from objects such as weakly
succinct SNARGs [KMY23], vector trapdoor hash [BCD+24], and batch arguments [BKP+23,
CW23, BWW23].

Reusable non-interactive MPC. Reusable non-interactive MPC [IKO+11, BGI+14] is a spe-
cialization of the general concept of MPC [Yao82, Yao86, GMW87], and it has received a lot of
attention recently as removes the need for constant interaction between users. For a detailed dis-
cussion, we refer the reader to [BL20] who formally introduced the concept of mrNISC. They
constructed a mrNISC protocol in semi-malicious model using a round collapsing MPC argu-
ment [GS17, GS22, BL18] from witness encryption and NIZK schemes for a specific commitment
language assuming SXDH. Subsequently, post-quantum secure versions of mrNISC was constructed
in two concurrent works [AJJM21, BJKL21] from LWE and functional oblivious transfer. An addi-
tional advantage of these constructions is that the reusable first round messages need not depend
on the number of parties n. Shiehian [Shi22] later used a bootstrapping argument to construct
mrNISC using plain LWE.

Concurrent Work. In a recent concurrent work, Branco, Döttling, and Srinivasan [BDS24] also
studied the problem of designing optimal-rate NIZK arguments with knowledge soundness. The
focus of their work was only purely designing rate-1 NIZK arguments of knowledge. On the other
hand, the focus of our work is the new concept of encrypted RAM delegation, and we show multiple
new applications of it, where rate-1 NIZK with (straight-line) knowledge extractor are one of our
many applications. In terms of comparing our rate-1 NIZK schemes, their focus is on statistical
zero-knowledge (which leads to slightly poor rate of 1 + o(1)), while we only prove computational
zero-knowledge. In terms of comparing our technical approach, we provide a simple design from
RAM delegation, while they need to carefully combine many different building blocks in a non-
black-box way.

2 Preliminaries

Notation. We denote the security parameter by λ. By PPT, we denote a probabilistic polynomial-
time. All polynomials denoted by poly(·) are positive polynomials. For any finite set S, x ← S
denotes a uniformly random element x ∈ S. Similarly for any distribution D, x ← D denotes
an element x drawn from distribution D. We denote the set of all positive integers up to n as
[n] := {1, . . . , n}. Also, we use [m,n] where n ≥ m to denote the set of all integers from m to n,
i.e, [m,n] := {m, . . . , n}. By negl(λ), we define negligible functions. A function negl : N → R is a
negligible function if for every c ∈ N and for large enough λ, negl(λ) < λ−c.
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2.1 Rate-1 Somewhere Extractable (Zero-Knowledge) Batch Arguments

Syntax. A (publicly verifiable and non-interactive) somewhere extractable batch argument scheme
seBARG for an NP language L consists of the following polynomial time algorithms:

Setup(1λ, k, n, i∗)→ crs. This is a probabilistic setup algorithm that takes as input a security pa-
rameter 1λ, number of instances k, input length n, and an index i∗ ∈ [k]. It runs in time at
most poly(λ, n, log k) and outputs a common reference string crs.

Prove(crs, x1, . . . , xk, w1, . . . , wk)→ π. This is a prover algorithm takes as input a crs, k instances
x1, . . . , xk and corresponding witnesses w1, . . . , wk, and outputs a proof π.

Verify(crs, x1, . . . , xk, π)→ 0/1. The verification algorithm takes as input a common reference string
crs, k instances xi for i ∈ [k], and a proof π. It outputs 0 (reject) or 1 (accept).

Definition 2.1 (seBARG). A somewhere-extractable batch argument scheme seBARG = (Setup,Prove,Verify)
for L is required to satisfy the following properties:

Efficiency. The size of the CRS and the proof is at most poly(λ, log k, n,m), wherem is the witness
length.

Completeness. For any λ ∈ N, and any k = k(λ), n = n(λ) of size at most 2λ, any k instances
x1, . . . , xk ∈ L, and their corresponding witnesses w1, . . . , wk ∈ {0, 1}m, and any index i∗ ∈
[k],

Pr

[
Verify(crs, x1, . . . , xk, π) = 1 :

crs← Setup(1λ, k, n, i∗),
π ← Prove(crs, x1, . . . , xk, w1, . . . , wk)

]
= 1.

Index hiding. For any PPT adversary A, any polynomials k = k(λ) and n = n(λ), and any
indices i0, ii ∈ [k] there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
b← A(crs) : b← {0, 1},

crs← Setup(1λ, k, n, ib)

]
≤ 1

2
+ negl(λ).

Somewhere Extraction. There exists a stateful PPT extractor E such that for any PPT adversary
A, there exists a negligible function negl(·) such that for any polynomials k = k(λ) and
n = n(λ), and any index i∗ ∈ [k], for every λ ∈ N,

Pr

 Verify(crs, x1, . . . , xk, π) = 1
∧ w∗ is not a valid witness for xi∗ ∈ L

:
(crs, td)← E(1λ, k, n, i∗)
(x1, . . . , xk, π)← A(crs)
w∗ ← E

(
td, {xi}i∈[k], π

)
 ≤ negl(λ).

Remark 2.2. We note that the somewhere extraction property implies the following semi-adaptive
soundness property which asserts that for any PPT adversary A, any polynomials k = k(λ) and
n = n(λ), and any index i∗ ∈ [k], there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
Verify(crs, x1, . . . , xk, π) = 1
∧ xi∗ /∈ L :

crs← Setup(1λ, k, n, i∗)
(x1, . . . , xk, π)← A(crs)

]
≤ negl(λ).
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Definition 2.3 (zkBARG). A somewhere-extractable zero-knowledge batch argument scheme zkBARG =
(Setup,Prove,Verify) for L is required to satisfy the following property in addition to all properties
under Definition 2.1:

Zero-knowledge. There exists a PPT simulator S such that for any PPT adversary A, there exists
a negligible function negl(·) such that for any polynomials k = k(λ) and n = n(λ), and any
index i∗ ∈ [k], for every λ ∈ N,∣∣∣∣∣ Pr

[
1← A(crs)Prove(crs,·,·) : crs← Setup(1λ, k, n, i∗)

]
−Pr

[
1← A(crs)OS(crs,·,·) : crs← S(1λ, k, n)

] ∣∣∣∣∣ ≤ negl(λ).

where OS((x1, · · · , xk), (w1, . . . , wk)) outputs S(x1, . . . , xk) if for every i ∈ [k], wi is a valid
witness for xi ∈ L and ⊥ otherwise.

Definition 2.4 (Rate-1 seBARG). An seBARG scheme (Setup,Prove,Verify) is said to be rate-1 if
the proof generated by Prove(crs, x1, . . . , xk, w1, . . . , wk) is of length m+O(m/λ) + poly(λ).

Remark 2.5 ([DGKV22, PP22, KLVW23]). Assuming either LWE/DLIN/sub-exponential DDH,
there exists rate-1 seBARG.

2.2 RAM Programs

A RAM program is typically defined as a deterministic machine M represented using a fixed
polynomial-sized set of states that has random access to a large memory (where the memory
includes an explicit input and rest of it is initialized as zeros). In this work, we use the following
representation for RAM machines as it enables a simpler exposition of our main ideas.

Any RAM machine M that receives n bits of explicit input x = {0, 1}n, is associated with a
work tape of size S = S(n) and a fixed set of states Q that the machine can be in at any point
during machine execution. Formally, a machineM is associated with following components:

• A set of machine states Q.

• A memory M of size n + S. Without loss of generality, we assume that the explicit input
x ∈ {0, 1}n is written in the first n cells of the memory (i.e., x = (M1, . . . ,Mn)), and the rest
of the memory (i.e., (Mn+1, . . . ,Mn+S)) corresponds to the work-tape of the machine. For
ease of exposition, we also use Wi (for i ∈ [S]) to denote the work-tape. In our model, we
view the work tape to be initialized as all zeros.

• A state transition function δ with the following syntax:

δ : Q× {0, 1} → Q× {0, 1}log(n+S) × {0, 1}logS × {0, 1}

Here the transition function defines the execution of machineM at each time step.

There is a circuit CM that computes the next step as follows:

CM(q, rbit) = (q′, ridx′,widx,wbit)

We use cfi for the configuration of the machine when run for i steps, and let cf0 be the initial
configuration of the machine. We denote byM(z; 1t) running the machineM starting from cf0 on
input z for t steps that outputs cft. The language of machineM is defined as follows:
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LM,T =
{
(z, out) : cf0 = initial configuraion ∧ F(cfT ) = out ∧ M(z; 1T ) = cfT

}
(1)

where F(·) is a deterministic function that computes the output of the machine from the final
configuration.

In this work, we focus on RAM machines that output a single bit 0/1. In this case, the language
would be as follows:

LM,T =
{
(z, b) : cf0 = initial configuration ∧ F(cfT ) = b ∧ M(z; 1T ) = cfT

}
(2)

2.3 Hash Tree

Syntax. A hash tree consists of the following polynomial time algorithms:

Gen(1λ)→ hk. This is a probabilistic key generation algorithm that takes as input a security pa-
rameter 1λ, and outputs a hash key hk.

Hash(hk, x)→ h. This is the hashing algorithm that takes as input the hash key hk and an input
x ∈ {0, 1}∗, and outputs a hash value h ∈ {0, 1}poly(λ).

Open(hk, x, i)→ (b, op). This is the hash opening algorithm that takes as input the hash key hk,
an input x ∈ {0, 1}∗ and an index i ∈ [|x|], and outputs a bit b ∈ {0, 1} and an opening
op ∈ {0, 1}≤poly(λ).

Write(hk, x, i, b)→ (h′, op′). This is the writing algorithm that takes as input the hash key hk,
an input x ∈ {0, 1}∗ an index i ∈ [|x|] and a bit b ∈ {0, 1}, and outputs a hash value
h′ ∈ {0, 1}poly(λ) an opening op′ ∈ {0, 1}≤poly(λ).

VerifyRead(hk, h, i, b, op)→ 0/1. This is a read-verification algorithm that takes as input the hash
key hk, a hash value h ∈ {0, 1}poly(λ), an index i ∈ [|x|], a bit b ∈ {0, 1} and an opening
op ∈ {0, 1}≤poly(λ), and outputs 0 (reject) or 1 (accept).

VerifyWrite(hk, h, i, b, h′, op′)→ 0/1. This is a write-verification algorithm that takes as input the
hash key hk, a hash value h ∈ {0, 1}poly(λ), an index i ∈ [|x|], a bit b ∈ {0, 1}, a hash value
h′ ∈ {0, 1}poly(λ) and an opening op′ ∈ {0, 1}≤poly(λ), and outputs 0 (reject) or 1 (accept).

Definition 2.6 (Hash Tree). A hash tree HT = (Gen,Hash,Open,Write,VerifyRead,VerifyWrite) is
required to satisfy the following properties:

Efficiency. The size of hash key hk and hash value h is at most poly(λ) and the size of openings
is at most poly(λ, log n) where n is the input size.

Reading Soundness (Collision Resistance w.r.t. Opening). For any PPT adversaryA, there
exists a negligible function negl(·) such that for every λ ∈ N,

Pr

 VerifyRead(hk, h, i, b1i , op
1
i ) = 1,

VerifyRead(hk, h, i, b2i , op
2
i ) = 1,

b1i ̸= b2i

:
(hk)← Gen(1λ),
(h, i, b1i , op

1
i , b

2
i , op

2
i )← A(hk)

 ≤ negl(λ).
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Writing Soundness. For any PPT adversary A, there exists a negligible function negl(·) such
that for every λ ∈ N,

Pr

 VerifyWrite(hk, h, i, b, h1, op1) = 1,
VerifyWrite(hk, h, i, b, h2, op2) = 1,
h1 ̸= h2

:
(hk)← Gen(1λ),
(h, i, b, h1, op1, h2, op2)← A(hk)

 ≤ negl(λ).

Remark 2.7. Reading soundness implies collision resistance of the hash tree.

Remark 2.8 ([Mer87]). Hash trees can be constructed using any family F : {0, 1}2λ → {0, 1}λ of
collision-resistance hash functions.

2.4 Non-Interactive Zero-Knowledge Arguments (NIZK)

Consider an NP language L = {x | ∃w : R(x,w) = 1} defined w.r.t. a relation R.

Syntax. A non-interactive zero-knowledge (NIZK) argument consists of the following polynomial
time algorithms:

Setup(1λ, 1nx , 1nw)→ crs. The probabilistic setup algorithm takes as input a security parameter λ,
an instance length nx, an witness length nw, and outputs a common reference string crs.

Prove(crs, x, w)→ π. The prover algorithm takes as input a common reference string crs, an in-
stance x, and a witness w and outputs a proof π.

Verify(crs, x, π)→ 0/1. The verifier algorithm takes as input a common reference string crs, an
instance x, and a proof π. It outputs 0 (reject) or 1 (accept).

Definition 2.9 (NIZK). A non-interactive zero-knowledge proof (Setup,Prove,Verify) for L is re-
quired to satisfy the following properties:

Completeness. For all λ, nx, nw ∈ N and (x,w) ∈ R where |x| = nx and |w| = nw we have:

Pr[Verify(crs, x, π) = 1 : crs← Setup(1λ, 1nx , 1nw), π ← Prove(crs, x, w)] = 1.

Adaptive Soundness. For any PPT adversary A, there is a negligible function negl(·) such that
for all λ, nx ∈ N:

Pr[Verify(crs, x, π) = 1∧x /∈ L : crs← Setup(1λ, 1nx , 1nw), (x, π)← A(crs), |x| = nx] ≤ negl(λ)

Zero-Knowledge. There exists a stateful PPT simulator S such that for any PPT adversary A,
there is a negligible function negl(·) such that for all λ, nx, nw ∈ N:

|Pr[AProve(crs,·,·)(crs) = 1 : crs← Setup(1λ, 1nx , 1nw)]−

|Pr[AOS(·,·)(crs) = 1 : crs← S(1λ, 1nx , 1nw)]| ≤ negl(λ)

where OS(x,w) outputs S(x) if x ∈ L and ⊥ otherwise.
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Straight-line Extractor. There exists a stateful PPT extractor E such that for any non-uniform
PPT adversary A, there is a negligible function negl(·) such that for all λ, nx, nw ∈ N:

Pr

 Verify(crs, x, π) = 1,
∧ (R(x,w) = 0 ∨ |w| > nw)

:

(crs, td)← E(1λ, 1nx , 1nw),
(x, π)← A(crs),
|x| = nx,
w ← E(td, x, π)

 ≤ negl(λ).

and crs and crs← Setup(1λ, 1nx , 1nw) are computationally indistinguishable.

Remark 2.10 ([CW23, BWW23, BKP+23]). Assuming seBARGs there exists NIZKs.

Definition 2.11 (NIZK with strong extraction). A NIZK scheme (Setup,Prove,Verify) for language
L is said to be a NIZK scheme with strong extraction if it satisfies Definition 2.9 and the following
property:

Strong Extractor. There exists a stateful PPT extractor E such that for any non-uniform PPT
adversary A, there exists a negligible function negl(·) such that for all λ, nx, nw ∈ N:

Pr

 Verify(crs, x, π) = 1,
∧ (R(x,w) = 0 ∨ |w| > nw)

:

(crs, td)← E(1λ, 1nx , 1nw),
(x, π)← A(crs, td),
|x| = nx,
w ← E(td, x, π)

 ≤ negl(λ).

Note that this property implies straight-line extraction property from Definition 2.9.

Remark 2.12 (NIZK with strong extraction). Strong extraction is an additional property which
can be achieved using a PKE scheme (Definition 2.16) in conjunction with soundness of NIZK
scheme.

Definition 2.13 (Rate-1 NIZK). A NIZK scheme (Setup,Prove,Verify) for language L is said to be
a Rate-1 NIZK if it satisfies Definition 2.9 and the size of the proof π is |w|+poly(λ, log |x|, log |w|).

2.5 Rate-1 Message Encoding

A rate-1 message encoding of a string x ∈ {0, 1}∗ is an encoding ρ of the same length as x and
secret information sk. However, for any PPT adversary without the sk, the encoding should look
indistinguishable from a random string. In particular, we define a rate-1 message encoding scheme
as follows:

Syntax. A rate-1 message encoding scheme (r1Enc) for any x consists of the following polynomial
time algorithms:

Encode(1λ, x)→ (ρ, sk). The probabilistic encoding algorithm takes as input a security parameter
λ, a string x, outputs the encoding ρ, and the secret information sk.

Decode(1λ, ρ, sk)→ y. The decoding algorithm takes as input the security parameter λ, encoded
string ρ, the secret information sk, and outputs a string y.
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Definition 2.14 (r1Enc). A rate-1 message encoding scheme (Encode,Decode) is required to satisfy
the following properties:

Completeness. For any λ ∈ N, x ∈ {0, 1}∗, we have that Decode(1λ, ρ, sk) = x where (ρ, sk) ←
Encode(1λ, x).

Efficiency. The output size of Encode(·, ·) is |x|+ poly(λ) and the running time is poly(λ, |x|).

Security. For any PPT adversary A, there exists a negligible function negl(·) such that for all
λ ∈ N:∣∣∣∣Pr [ 1← A(ρ) :

x← A(1λ),
(ρ, sk)← Encode(1λ, x)

]
− Pr

[
1← A(ρ) :

x← A(1λ),
ρ← {0, 1}|x|

]∣∣∣∣ ≤ negl(λ)

Remark 2.15. A r1Enc scheme can be constructed using any family of pseudorandom functions
such that PRFλ : {0, 1}λ × {0, 1}λ → {0, 1} used in counter mode. In addition, sk will be a λ-bit
string.

2.6 Public-Key Encryption System

Syntax. A public key encryption (PKE) scheme for the message space M = {Mλ}λ∈N consists
of the following polynomial time algorithms.

Setup(1λ)→ (pk, sk). The probabilistic setup algorithm takes as input a security parameter 1λ and
outputs the public and secret key pair (pk, sk).

Enc(pk,m)→ ct. The probabilistic encryption algorithm takes as input the public key pk, a message
m ∈Mλ, and outputs the ciphertext ct.

Dec(sk, ct)→ m′. The decryption algorithm takes as input secret key sk, ciphertext ct, and outputs
m′.

Definition 2.16 (PKE). A public-key encryption system (Setup,Enc,Dec) for m ∈Mλ is required
to satisfy the following properties:

Correctness. For any λ ∈ N, m ∈ Mλ, we have that Dec(sk, ct) = m where ct← Enc(pk,m) and
(pk, sk)← Setup(1λ).

Security. For any stateful PPT adversary A, there is a negligible function negl(·) such that for all
λ ∈ N: ∣∣∣Pr [1← AEnc(pk,·)(1λ, pk)

]
− Pr

[
1← AEnc(pk,0|m|)(1λ, pk)

]∣∣∣ ≤ negl(λ)

where (pk, sk)← Setup(1λ).
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2.7 RAM Delegation Scheme

Syntax. A publicly verifable non-interactive delegation scheme for RAM machine M w.r.t. a
hash tree HT with hash key ht.hk consists of the following PPT algorithms:

Setup(1λ, T )→ crs : The setup algorithm takes as input security parameter λ and running time
bound T . It outputs crs.

Digest(crs, cf)→ h : This is a deterministic polynomial time algorithm that takes as input a crs,
and a configuration cf and outputs a digest h.

Prove(crs, cf0)→ (b, π) : The prover algorithm takes as input a common reference string crs, and
an initial configuration cf0, and outputs a bit b and a proof π.

Verify(crs, h0, b, π)→ {0, 1} : The verifier algorithm takes as input crs, a digest of the initial config-
uration h0, a bit b, and a proof π, and outputs either 0 or 1.

Definition 2.17 (RAM Delegation). A publicly verifiable non-interactive RAM delegation scheme
(Setup,Digest,Prove,Verify) forM with setup time TS and proof length ℓπ is required to satisfy the
following properties:

Completeness. For every polynomial λ, T ∈ N s.t. T ≤ 2λ, and cf0 ∈ {0, 1}∗ such that cf0 ∈ LM,T

it holds that

Pr

 Verify(crs, h0, b, π) = 1 :
crs← Setup(1λ, T )
h0 ← Digest(crs, cf0)
(b, π) = Prove(crs, cf0)

 = 1.

Efficiency. In the completeness experiment above,

• Setup runs in time TS .

• Digest on input cf runs in time |cf| · poly(λ) and outputs a digest of length λ.

• Prove runs in time poly(λ, T, |cf|) and output a proof of length ℓπ.

• Verify runs in time O(ℓπ) + poly(λ).

Collision Resistance. For every PPT adversary A and pair of polynomials T = T (λ) there exists
a negligible function negl(·) such that for every λ ∈ N,

Pr

[
cf ̸= cf ′

Digest(crs, cf) = Digest(crs, cf ′)
:

crs← Setup(1λ, T )
(cf, cf ′)← A(crs)

]
≤ negl(λ).

Soundness. For every PPT adversary A and pair of polynomials T = T (λ) there exists a negligible
function negl(·) such that for every λ ∈ N,

Pr

 Verify(crs, h0, b, π) = 1
cf0 /∈ LM,T

:
crs← Setup(1λ, T )
(cf0, b, π)← A(crs)
h0 ← Digest(crs, cf0)

 ≤ negl(λ).
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Strong Soundness. For every PPT adversary A and pair of polynomials T = T (λ) there exists a
negligible function negl(·) such that for every λ ∈ N,

Pr

[
Verify(crs, h0, 0, π

(0)) = 1

Verify(crs, h0, 1, π
(1)) = 1

:
crs← Setup(1λ, T )

(h0, π
(0), π(1))← A(crs)

]
≤ negl(λ).

Remark 2.18 ([CJJ22b]). Assuming seBARGs and SEH there exists RAM delegation.

3 Defining (Reusable) Encrypted RAM Delegation

In this section we formally define the notions of encrypted RAM delegation and reusable encrypted
RAM delegation.

Recall that in RAM delegation a prover generates a proof π to convince a verifier that a RAM
machineM accepts an input x within T steps such that both the proof size and the verifier’s running
time only grow with polylog(T, |x|). In encrypted RAM delegation the input is partially private,
namely, x = (xpb, xpr) for some private (resp. public) input xpr (resp. xpb). More specifically,
consider RAM machineM, and an input (xpb, xpr) where xpb is a publicly known input, and xpr is
a private input. Then an encrypted RAM delegation comprises of a setup algorithm that generates
a CRS (which is given to all the algorithms), a prover that given (xpb, xpr), generates a proof π,
and a verifier that, given only a short digest hpb (of public input xpb), verifies π.

Let LM,T describe the language of the machineM consisting of all (xpb, xpr) that are accepted
by M within T steps. We require our scheme to satisfy the following properties – (1) soundness:
no PPT adversary can find an accepting (xpb, π) s.t. for all xpr, (xpb, xpr) /∈ LM,T , (2) straight-line
extraction: there is an extractor E such that for any accepting (xpb, π), it holds that x

∗
pr ← E(td, π)

(for some trapdoor td associated with crs) and (xpb, x
∗
pr) ∈ LM,T , (3) input hiding: there is a sim-

ulator that without knowing xpr generates proofs that are indistinguishable from the output of the
prover, and(4) efficiency: the proof size and verification time grow with poly(log T, log |xpb|, |xpr|).
Note that if the proof doesn’t grow with poly(|xpr|) then it will imply SNARGs for NP breaking
the [GW11] barrier.

We further consider an additional reusability notion for the encrypted RAM delegation. This
property allows one to generate an encoding ehpr of the private input xpr, with a long proof of the

encoding πenc, and then reuse the encoding to generate short proofs π
(i)
edel for the computation on

different public inputs x
(i)
pb . Note that the only reason that the proof size and the verification time

grow polynomially with |xpr| is to prove the well-formedness of the private encoding ehpr. Thus we

let |πenc| to grow with poly(|xpr|), and then have π
(i)
edel only grow with polylog(|xpr|). Moreover, we

consider a stronger soundness notion for reusable encrypted RAM delegation where the adversary

cannot generate accepting proofs π
(0)
edel and π

(1)
edel for a unique tuple (hpb, ehpr) such that π

(b)
edel is a

proof forM(xpb, xpr) = b.

3.1 Encrypted RAM Delegation

Syntax. An encrypted RAM delegation scheme for a RAM machineM consists of the following
PPT algorithms:

Setup(1λ, npb, 1
npr , S, T )→ crs. The probabilistic setup algorithm takes as input a security param-

eter 1λ, a public input length npb, a private input length npr, a max configuration size S for
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the RAM machine, and the running time T of the machine. It outputs a common reference
string crs.

Prove(crs, xpb, xpr)→ (b, π). The proving algorithm takes as input the common reference string crs,
a public input value xpb and a private input value xpr. It outputs a bit b and a proof π.

Verify(crs, hpb, b, π)→ 0/1. The verification algorithm takes as input the common reference string
crs, a digest hpb of the public input, a bit b and a proof π. It outputs 0 (reject) or 1 (accept).

Definition 3.1 (Encrypted RAMDelegation). An encrypted RAM delegation scheme (Setup,Prove,Verify)
forM associated with a hash tree HT with hash key ht.hk has to satisfy the following property:

Completeness. For every λ, T, S, npb, npr ∈ N s.t. T, S, npb ≤ 2λ, npr = poly(λ), xpb ∈ {0, 1}npb ,
xpr ∈ {0, 1}npr , (xpb, xpr) ∈ LM,T it holds that:

Pr

[
Verify(crs, hpb, b, π) = 1 :

crs← Setup(1λ, npb, 1
npr , S, T )

(b, π)← Prove(crs, xpb, xpr)

]
= 1.

Efficiency. The crs and proof size, and the setup and the verifier running time are poly(λ, log T, log npb, npr),
and the prover’s running time is poly(λ, T, npb, npr).

Input Hiding. There exists a stateful PPT simulator S such that for any PPT adversary A, there
is a negligible function negl(·) such that for all λ, npb, npr, S, T ∈ N:∣∣∣∣ Pr[1← AProve(crs,·,·)(crs) : crs← Setup(1λ, npb, 1

npr , S, T )]

−Pr[1← AOS(·,·)(crs) : crs← S(1λ, npb, 1
npr , S, T )]

∣∣∣∣ ≤ negl(λ)

where OS(xpb, xpr) outputs S(xpb) ifM(xpb, xpr) = 1 and ⊥ otherwise.

Soundness. For any stateful PPT adversary A, there is a negligible function negl(·) such that for
all λ ∈ N:

Pr

 Verify(crs, hpb, b, π) = 1,
∧ ∀xpr : (xpb, xpr) /∈ LM,T

:

(npb, 1
npr , S, T )← A(1λ),

crs← Setup(1λ, npb, 1
npr , S, T ),

(xpb, b, π)← A(crs),
hpb = HT.Hash(ht.hk, xpb)

 ≤ negl(λ) .

We remark that the above soundness property is implied by the straight-line extraction prop-
erty.

Straight-line Extraction. There exists a stateful PPT extractor E such that for any stateful PPT
adversary A, there is a negligible function negl(·) such that for all λ ∈ N:

Pr

 Verify(crs, hpb, b, π) = 1
∧ (xpb, x

∗
pr) /∈ LM,T

:

(npb, 1
npr , S, T )← A(1λ),

(crs, td)← E(1λ, npb, 1
npr , S, T ),

(xpb, b, π)← A(crs),
hpb = HT.Hash(ht.hk, xpb),
x∗pr ← E(td, π)

 ≤ negl(λ) .

such that crs1 ← E(1λ, npb, 1
npr , S, T ) and crs2 ← Setup(1λ, npb, 1

npr , S, T ) are indistinguish-
able.
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3.2 Reusable Encrypted RAM Delegation

Syntax. A reusable encrypted RAM delegation scheme for a RAM machine M consists of the
following PPT algorithms:

Setup(1λ, npb, 1
npr , S, T )→ crs. This is the same as non-reusable encrypted RAM delegation.

PrivEnc(crs, xpr)→ (ehpr, πenc, aux). The private-input encoding algorithm takes as input the com-
mon reference string crs and a private input value xpr. It outputs an encrypted digest ehpr, a
proof πenc and some auxiliary value aux.

Prove(crs, xpb, aux)→ (b, πedel). The proving algorithm takes as input the common reference string
crs, a public input value xpb and an auxiliary value aux. It outputs a bit b and a proof πedel.

VerifyEnc(crs, ehpr, πenc)→ 0/1. The encoding verification algorithm takes as input the common
reference string crs, an encrypted digest ehpr and a proof πenc. It outputs 0 (reject) or 1
(accept).

Verify(crs, hpb, ehpr, b, πedel)→ 0/1. The verification algorithm takes as input the common reference
string crs, a digest hpb of the public input, an encrypted digest ehpr of the private input, a bit
b, and a proof πedel. It outputs 0 (reject) or 1 (accept).

Definition 3.2 (Reusable Encrypted RAM Delegation). A reusable encrypted RAM delegation
scheme (Setup, PrivEnc,Prove,VerifyEnc,Verify) for M associated with a hash tree HT with hash
key ht.hk has to satisfy the following property:

Completeness. For every λ, T, S, npb, npr ∈ N s.t. T, S, npb ≤ 2λ, npr = poly(λ), xpb ∈ {0, 1}npb ,
xpr ∈ {0, 1}npr , (xpb, xpr) ∈ LM,T it holds that:

Pr

 VerifyEnc(crs, ehpr, πenc) = 1 ∧
Verify(crs, hpb, ehpr, b, πedel) = 1

:
crs← Setup(1λ, npb, 1

npr , S, T )
(ehpr, πenc, aux)← PrivEnc(crs, xpr)
(b, πedel)← Prove(crs, xpb, aux)

 = 1.

Efficiency. For the completeness experiment above,

• The size of the crs and setup running time are poly(λ, log T, log npb, npr).

• The size of πenc, the private encoding and its verification time are poly(λ, npr).

• Prover’s running time is poly(λ, T, npb, npr).

• The size of πedel and the verification time are poly(λ, log T, log npb, log npr).

Input Hiding. There exists a stateful PPT simulator S such that for any PPT adversary A, there
is a negligible function negl(·) such that for all λ, npb, npr, S, T ∈ N:

∣∣∣Pr [1← ExptC,A0 (1λ, npb, 1
npr , S, T )

]
− Pr

[
1← ExptS,A1 (1λ, npb, 1

npr , S, T )
]∣∣∣ ≤ negl(λ)

where definitions of ExptC,A0 and ExptS,A1 are provided in Figure 1.
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ExptC,A0 (1λ, npb, 1
npr , S, T ). This is the real experiment parameterized by an honest challenger

C. A receives crs ← Setup(1λ, npb, 1
npr , S, T ) from C. A makes the following queries in an

adaptive manner. After this, A outputs guess b′. Output b′.
• Private Input Encoding: A sends xpr and receives (ehpr, πenc, i) where
(ehpr, πenc, auxi)← PrivEnc(crs, xpr) and i is an index that after each query of this type is
incremented.

• Prove: A sends (xpb, i) and receives πedel where (b, πedel)← Prove(crs, xpb, auxi).

ExptS,A1 (1λ, npb, 1
npr , S, T ). This is the ideal experiment parameterized by a stateful simulator

S. A receives crs← S(1λ, npb, 1
npr , S, T ) from C. A makes the following queries in an adaptive

manner. After this, A outputs guess b′. Output b′.

• Private Input Encoding: A sends xpr and receives (ehpr, πenc, i) where (ehpr, πenc) ←
S(1|xpr|, i) and i is an index that after each query of this type is incremented.

• Prove: A sends (xpb, i), and if (xpb, xpr) ∈ LM,T (for xpr corresponding to i) receives
πedel where πedel ← S(xpb, i), otherwise, receives ⊥.

Figure 1: Real and ideal experiments for Input Hiding property of reusable encrypted RAM dele-
gation.

Soundness. For any stateful PPT adversary A, there is a negligible function negl(·) such that for
all λ ∈ N:

Pr

 VerifyEnc(crs, ehpr, πenc) = 1
∧ Verify(crs, hpb, ehpr, b, πedel) = 1
∧ ∀xpr : (xpb, xpr) /∈ LM,T

:

(npb, 1
npr , S, T )← A(1λ),

crs← Setup(1λ, npb, 1
npr , S, T ),

(xpb, ehpr, πenc, b, πedel)← A(crs),
hpb = HT.Hash(ht.hk, xpb)

 ≤ negl(λ) .

We remark that the above soundness property is implied by the straight-line extraction prop-
erty explained further below.

Strong Soundness. For any stateful PPT adversary A, there is a negligible function negl(·) such
that for all λ ∈ N:

Pr

 Verify(crs, hpb, ehpr, 0, π
(0)
edel) = 1

∧ Verify(crs, hpb, ehpr, 1, π
(1)
edel) = 1

:

(npb, npr, S, T )← A(1λ),
crs← Setup(1λ, npb, npr, S, T ),

(hpb, ehpr, π
(0)
edel, π

(1)
edel)← A(crs)

 ≤ negl(λ) .

Straight-line Extraction. There exists a stateful PPT extractor E such that for any stateful PPT
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adversary A, there is a negligible function negl(·) such that for all λ, nx ∈ N:

Pr


VerifyEnc(crs, ehpr, πenc) = 1
∧ Verify(crs, hpb, ehpr, b, πedel) = 1
∧ (xpb, x

∗
pr) /∈ LM,T

:

(npb, 1
npr , S, T )← A(1λ),

(crs, td)← E(1λ, npb, 1
npr , S, T ),

(ehpr, πenc)← A(crs),
x∗pr ← E(td, πenc),
(xpb, b, πedel)← A(crs),
hpb = HT.Hash(ht.hk, xpb)

 ≤ negl(λ) .

such that crs1 ← E(1λ, npb, 1
npr , S, T ) and crs2 ← Setup(1λ, npb, 1

npr , S, T ) are indistinguish-
able.

4 Constructing (Reusable) Encrypted RAM Delegation

In this section we construct encrypted RAM delegation and reusable encrypted RAM delegation.
Our construction in a nutshell works as follows – First compute a short digest hpr of xpr, encrypt
hpr using randomness r to get the private encoding ehpr, and generate a NIZK proof of the validity
of ehpr using (xpr, hpr, r) as witness. Then let cf0 = (xpb, xpr, 0

S) be the initial configuration ofM
and compute its partial digests hpb (of xpb) and hΣ (of 0S). Finally compute a delegation proof
del.π forM(cf0) = b and generate a NIZK proof for the verification of the delegation for a partially
hiding digest (hpb, ehpr, hΣ) (of cf0) using (hpr, r, del.π) as witness. Finally let the final proof be
π = (ehpr, zk.πenc, zk.πedel) where one can verify (ehpr, zk.πenc) once and reuse ehpr across different
delegation proofs zk.πedel. In what follows we present our formal constructions and their analysis.

4.1 Encrypted RAM Delegation

Language Lenc

Hardwired: ht.hk, pke.pk
Instance: xenc = ehpr
Witness: wenc = (xpr, hpr, r)
Output: (xenc, wenc) ∈ Lenc if the following hold:

– hpr = HT.Hash(ht.hk, xpr).

– ehpr = PKE.Enc(pke.pk, hpr; r)

Language Ledel

Hardwired: ht.hk, pke.pk
Instance: xedel = (hpb, ehpr, hΣ, b)
Witness: wedel = (hpr, r, del.π)
Output: (xedel, wedel) ∈ Ledel if the following hold:

– ehpr = PKE.Enc(pke.pk, hpr; r).

– Del.Verify(del.crs, (hpb, hpr, hΣ), b, del.π) = 1

Parameters. In the following construction we use nenc = |ehpr| = |PKE.Enc(pke.pk, 1λ)| =
poly(λ), n′

enc = |xpr| + |hpr| + |r| = npr + poly(λ), nedel = |hpb| + |ehpr| + |hΣ| = poly(λ), and
n′
edel = |hpr|+ |r|+ |del.π| = poly(λ).

Construction 4.1. [Encrypted RAM Delegation] Let PKE = (PKE.Gen,PKE.Enc,PKE.Dec) be a
public-key encryption scheme, NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) be a non-interactive
zero-knowledge scheme, and Del = (Del.Setup,Del.Digest,Del.Prove,Del.Verify) be a RAM delega-
tion scheme associated with a hash tree HT with hash key ht.hk. We construct our encrypted RAM
delegation scheme EDel = (Setup,Prove,Verify) as follows:
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Setup(1λ, npb, 1
npr , S, T )→ crs. Sample a RAM delegation scheme del.crs← Del.Setup(1λ, T, npb, npr, S),

a PKE scheme (pke.pk, pke.sk)← PKE.Gen(1λ), a NIZK scheme for Lenc as (zk.crsenc, zk.tdenc)←
NIZK.Setup(1λ, 1nenc , 1n

′
enc), and finally another NIZK scheme for Ledel as (zk.crsedel, zk.tdedel)←

NIZK.Setup(1λ, 1nedel , 1n
′
edel). Let crs = (del.crs, pke.pk, zk.crsenc, zk.crsedel, S).

Prove(crs, xpb, xpr)→ (b, π). This poly-time algorithm does the following:

1. Parse crs = (del.crs, pke.pk, zk.crsenc, zk.crsedel, S).

2. Compute a hash digest of the private input hpr ← HT.Hash(ht.hk, xpr), sample a ran-
domness r, and compute an encryption of hpr as ehpr ← PKE.Enc(pke.pk, hpr; r).

3. Compute a NIZK proof for validity of ehpr as zk.πenc ← NIZK.Prove(zk.crsenc, ehpr, (xpr, hpr, r)).

4. Let cf0 = (xpb, xpr, 0
S) be the initial configuration of the RAM machine and compute

its partial digests hpb ← HT.Hash(ht.hk, xpb) and hΣ ← HT.Hash(ht.hk, 0S).

5. Compute a delegation proof (b, del.π)← Del.Prove(del.crs, cf0).

6. Compute a NIZK proof zk.πedel ← NIZK.Prove(zk.crsedel, (hpb, ehpr, hΣ, b), (hpr, r, del.π)).

7. Output (b, π = (ehpr, zk.πenc, zk.πedel)).

Verify(crs, hpb, b, π)→ 0/1. First parse crs = (del.crs, pke.pk, zk.crsenc, zk.crsedel, S), and then com-
pute hΣ ← HT.Hash(ht.hk, 0S). Output 1 if NIZK.Verify(zk.crsenc, ehpr, zk.πenc) = 1 and
NIZK.Verify(zk.crsenc, (hpb, ehpr, hΣ, b), zk.πedel) = 1; otherwise Output 0.

Theorem 4.2. Assuming RAM delegation, PKEs, and NIZKs, the Construction 4.1 is an encrypted
RAM delegation (Definition 3.1) with strong soundness, straight-line extractor, and input hiding.

Corollary 4.3. Assuming either LWE, k-LIN over pairing groups for any constant k ∈ N, or sub-
exponential DDH over pairing-free groups, the Construction 4.1 is an encrypted RAM delegation
(Definition 3.1) with straight-line extractor, and input hiding. Additionally, if we plug-in our rate-1
NIZK from Section 5, the crs size and the setup running-time will only grow with log npr.

Remark 4.4. If we use NIZKs with statistical zero-knowledge property and instead of PKEs we use
statistically-hiding commitments, then our construction achieves statistical input-hiding property.

Completeness. The completeness follows by the construction and the completeness of the un-
derlying Del and NIZK and the correctness of the underlying PKE.

Efficiency. The crs consists of (del.crs, pke.pk, zk.crsenc, zk.crsedel, S), and the followings hold (1)
Del setup time and crs size are bounded by poly(λ, log T, log npb, log npr), (2) PKE key generation
time and pk size are bounded by poly(λ), (3) NIZK setup time and crs size are bounded by (a)
poly(λ, npr) for Lenc, and (b) poly(λ, log T, log npb, log npr) for Ledel. Thus the crs size and setup
time of our construction is bounded by poly(λ, log T, log npb, log npr) + poly(λ, npr).

The hpb (resp. hpr) size is λ (resp. λ), and the generation and verification time is poly(λ, npb)
(resp. poly(λ, npr)).

Given hpr, the ehpr size, generation time and verification time are all poly(λ)
The zk.πenc size, its generation and verification time all depend on the NIZK for Lenc, which

depends on ehpr and hpr, hence are bounded by poly(λ, npr).
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The zk.πedel size, its generation and verification time all depend on the NIZK for Ledel, which
is in return is dependent on the Del scheme. Note that he del.π size and verification time are
poly(λ, log T, log npb, log npr), and generation time is poly(λ, T, npb, npr). Hence the same holds in
our construction.

Hence, in our construction, the proof size and the verification time are poly(λ, log T, log npb, log npr)+
poly(λ, npr) and the generation time is poly(λ, T, npb, npr)

Note that since we have T ≤ 2λ and npb + npr ≤ T , we can get rid of all the log terms in our
analysis.

4.1.1 Security Analysis.

Here we prove the straight-line extractor and input hiding properties of our construction.

Proof of Straight-Line Extractor. Let the extractor E do the following – (1) to generate (crs, td)
proceed the same as normal setup except that use NIZK.E1 to sample (zk.crsenc, zk.tdenc) and
(zk.crsedel, zk.tdedel), then construct crs similar to setup and let td = (pke.sk, zk.tdenc, zk.tdedel), (2)
upon receiving π = (ehpr, zk.πenc, zk.πedel) extract (x∗pr, h

∗
pr,1, r

∗
1) = NIZK.E1(zk.tdenc, ehpr, zk.πenc)

and output x∗pr.
First note that the crs indistinguishability is directly implied by the crs indistinguishability of

the undelying NIZK schemes.
Now define the experiment ExpEDel as follows – the adversaryA on input 1λ sends (npb, 1

npr , S, T )
to the challenger C, C runs (crs, td) ← E(1λ, npb, 1

npr , S, T ) and sends crs to A, then A out-
puts (xpb, b, π). Parse π = (ehpr, zk.πenc, zk.πedel), and let hpb = HT.Hash(ht.hk, xpb), and hΣ ←
HT.Hash(ht.hk, 0S). Then extract the values (x∗pr, h

∗
pr,1, r

∗
1) = NIZK.E1(zk.tdenc, ehpr, zk.πenc), and

(h∗pr,2, r
∗
2, del.π

∗) = NIZK.E2(zk.tdedel, (hpb, ehpr, hΣ, b), zk.πedel). Namely:

ExpEDel =



(npb, 1
npr , S, T )← A(1λ),

(crs, td)← E(1λ, npb, 1
npr , S, T ),

(xpb, b, π)← A(crs),
hpb = HT.Hash(ht.hk, xpb),
hΣ ← HT.Hash(ht.hk, 0S),
Let π = (ehpr, zk.πenc, zk.πedel),
(x∗pr, h

∗
pr,1, r

∗
1)← NIZK.E1(zk.tdenc, ehpr, zk.πenc),

(h∗pr,2, r
∗
2, del.π

∗) = NIZK.E2(zk.tdedel, (hpb, ehpr, hΣ, b), zk.πedel)


For an adversary A we define the output of the above experiment, ExpEDel(A), to be 1 if it holds

that NIZK.Verify(zk.crsenc, ehpr, zk.πenc) = 1 and NIZK.Verify(zk.crsedel, (hpb, ehpr, hΣ, b), zk.πedel) = 1
and (xpb, x

∗
pr) /∈ LM,T . Namely A wins if: (xpb, x

∗
pr) /∈ LM,T ∧

NIZK.Verify(zk.crsenc, ehpr, zk.πenc) = 1 ∧
NIZK.Verify(zk.crsedel, (hpb, ehpr, hΣ, b), zk.πedel) = 1

: ExpEDel


Let (xenc, wenc) = (ehpr, (x

∗
pr, h

∗
pr,1, r

∗
1)) and (xedel, wedel) = ((hpb, ehpr, hΣ, b), (h

∗
pr,2, r

∗
2, del.π

∗)).
Define the following variables:

ϵ1 = Pr[ExpEDel(A) = 1]− Pr

[
(xpb, x

∗
pr) /∈ LM,T ∧ (xenc, wenc) ∈ Lenc ∧

NIZK.Verify(zk.crsedel, xedel, zk.πedel) = 1
: ExpEDel

]
. (3)
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ϵ2 = Pr

[
(xpb, x

∗
pr) /∈ LM,T ∧ (xenc, wenc) ∈ Lenc ∧

NIZK.Verify(zk.crsedel, xedel, zk.πedel) = 1
: ExpEDel

]
−

Pr
[

(xpb, x
∗
pr) /∈ LM,T ∧ (xenc, wenc) ∈ Lenc ∧ (xedel, wedel) ∈ Ledel : ExpEDel

]
. (4)

ϵ3 = Pr
[

(xpb, x
∗
pr) /∈ LM,T ∧ (xenc, wenc) ∈ Lenc ∧ (xedel, wedel) ∈ Ledel : ExpEDel

]
−

Pr

[
(xpb, x

∗
pr) /∈ LM,T ∧ h∗pr,2 = HT.Hash(ht.hk, x∗pr)

Del.Verify(del.crs, (hpb, h
∗
pr,2, hΣ), b, del.π) = 1

: ExpEDel

]
. (5)

ϵ4 = Pr

[
(xpb, x

∗
pr) /∈ LM,T ∧ h∗pr,2 = HT.Hash(ht.hk, x∗pr)

Del.Verify(del.crs, (hpb, h
∗
pr,2, hΣ), b, del.π) = 1

: ExpEDel

]
. (6)

Now since Pr[ExpEDel(A) = 1] = ϵ1 + ϵ2 + ϵ3 + ϵ4 we only need to show that for i ∈ [4], ϵi is
negligible.

Case 1. Suppose towards the contradiction that ϵ1 is non-negligible, then by Eq. (3) it holds
that:

Pr[NIZK.Verify(zk.crsenc, ehpr, zk.πenc) = 1 ∧ (xenc, wenc) /∈ Lenc] ≥ ϵ1

Now we construct adversary BEzk that breaks the straight-line extractor property of the underlying
NIZK scheme as follows:

1. Receive (npb, 1
npr , S, T ) from A.

2. Receive zk.crs∗enc from C.

3. Construct crs similar to experiment ExpEDel where zk.crsenc = zk.crs∗enc, and send it to A.

4. Receive (xpb, b, π) from A.

5. Parse π = (ehpr, zk.πenc, zk.πedel).

6. Send (ehpr, zk.πenc) to C.

Note that BEzk perfectly simulates the experiment ExpEDel for A, thus has the same advantage ϵ1 in
breaking the straight-line extractor property of the underlying NIZK scheme.

Case 2. Suppose towards the contradiction that ϵ2 is non-negligible, then by Eq. (4) it holds
that:

Pr[NIZK.Verify(zk.crsedel, xedel, zk.πedel) = 1 ∧ (xedel, wedel) /∈ Ledel] ≥ ϵ2

Now we construct adversary BEzk that breaks the straight-line extractor property of the underlying
NIZK scheme as follows:

1. Receive (npb, 1
npr , S, T ) from A.

2. Receive zk.crs∗edel from C.
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3. Construct crs similar to experiment ExpEDel where zk.crsedel = zk.crs∗edel, and send it to A.

4. Receive (xpb, b, π) from A.

5. Parse π = (ehpr, zk.πenc, zk.πedel).

6. Compute hpb = HT.Hash(ht.hk, xpb) and hΣ ← HT.Hash(ht.hk, 0S).

7. Send ((hpb, ehpr, hΣ, b), zk.πedel) to C.

Note that BEzk perfectly simulates the experiment ExpEDel for A, thus has the same advantage ϵ2 in
breaking the straight-line extractor property of the underlying NIZK scheme.

Case 3. Suppose towards the contradiction that ϵ1 is non-negligible. First note that (xenc, wenc) ∈
Lenc is equivalent with:

ehpr = PKE.Enc(pke.pk, h∗pr,1; r
∗
1) ∧ h∗pr,1 = HT.Hash(ht.hk, x∗pr)

and (xedel, wedel) ∈ Ledel is equivalent with:

ehpr = PKE.Enc(pke.pk, h∗pr,2; r
∗
2) ∧ Del.Verify(del.crs, (hpb, h

∗
pr,2, hΣ), b, del.π) = 1

then by Eq. (5) it holds that

Pr

[
ehpr = PKE.Enc(pke.pk, h∗pr,1; r

∗
1) ∧ h∗pr,1 = HT.Hash(ht.hk, x∗pr) ∧

ehpr = PKE.Enc(pke.pk, h∗pr,2; r
∗
2) ∧ h∗pr,2 ̸= HT.Hash(ht.hk, x∗pr)

: ExpEDel

]
≥ ϵ3

Note that this implies that h∗pr,1 ̸= h∗pr,2, however, PKE.Enc(pke.pk, h
∗
pr,1; r

∗
1) = PKE.Enc(pke.pk, h∗pr,2; r

∗
2).

This breaks the perfect correctness of the underlying PKE scheme.

Case 4. Suppose towards the contradiction that ϵ4 is non-negligible, then we construct adversary
Bsounddel that breaks the soundness property of the underlying Del scheme as follows:

1. Receive (npb, 1
npr , S, T ) from A.

2. Send (1λ, T ) to C and receive del.crs∗ from C.

3. Construct crs similar to experiment ExpEDel where del.crs = del.crs∗, and send it to A.

4. Receive (xpb, b, π) from A.

5. Parse π = (ehpr, zk.πenc, zk.πedel).

6. Compute hpb = HT.Hash(ht.hk, xpb) and hΣ ← HT.Hash(ht.hk, 0S).

7. Compute (h∗pr,2, r
∗
2, del.π

∗) = NIZK.E2(zk.tdedel, (hpb, ehpr, hΣ, b), zk.πedel) and (x∗pr, h
∗
pr,1, r

∗
1) ←

NIZK.E1(zk.tdenc, ehpr, zk.πenc).

8. Send (cf0 = (xpb, x
∗
pr, 0

S), b, del.π∗) to C.
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Note that (hpb, h
∗
pr,2, hΣ) = Del.Digest(cf0), (xpb, x

∗
pr) /∈ LM,T implies that cf0 /∈ LM,T , and Bsounddel

perfectly simulates the experiment ExpEDel forA. Thus Bsounddel has the same advantage ϵ4 in breaking
the soundness property of the underlying Del scheme.

Proof of Input Hiding. We will define the simulator as follows – (1) sample the crs similar
to the Setup except that generate zk.crsenc and zk.crsedel using zk.crsenc ← NIZK.S1(1λ, 1nenc) and
zk.crsedel ← NIZK.S2(1λ, 1nedel), and (2) generate the proof by computing ehpr ← PKE.Enc(pke.pk, 0|hpr|),
zk.πenc ← NIZK.S1(ehpr), hpb ← HT.Hash(ht.hk, xpb), hΣ ← HT.Hash(ht.hk, 0S), and zk.πedel ←
NIZK.S2(hpb, ehpr, hΣ, b) and letting π = (ehpr, zk.πenc, zk.πedel).

We will define the following hybrids:

hyb0. This is the real experiment where the A receives (crs, td)← Setup(1λ, npb, 1
npr , S, T ), then

makes queries (xpb, xpr) and receives (b, π)← Prove(crs, xpb, xpr).

hyb1. Similar to hyb0 except that zk.crsenc ← NIZK.S1(1λ, 1nenc) in the crs, and in the query
responses, zk.πenc is generated using zk.πenc ← NIZK.S1(ehpr).

hyb2. Similar to hyb1 except that zk.crsedel ← NIZK.S2(1λ, 1nedel) in the crs, and in the query
responses, zk.πedel is generated using zk.πedel ← NIZK.S2(hpb, ehpr, hΣ, b).

hyb3. Similar to hyb2 except that ehpr = PKE.Enc(pke.pk, 0|hpr|). Note that this is the simulated
experiment.

Let A output a bit b ∈ {0, 1} at the end of each experiment and denote this output by hybi(A).

Lemma 4.5. If NIZK is zero-knowledge, then for any adversary A it holds that

|Pr[hyb0(A) = 1]− Pr[hyb1(A) = 1]| ≤ negl(λ).

Proof. Suppose towards the contradiction that for some adversary A and some non-negligible func-
tion ϵ(·) it holds that |Pr[hyb0(A) = 1]− Pr[hyb1(A) = 1]| ≥ ϵ(λ). We construct an adversary Bzk
against the zero-knowledge property of the underlying NIZK scheme as follows:

1. Receive (1λ, npb, 1
npr , S, T ) from the adversary.

2. Receive zk.crsenc ← NIZK.Setup(1λ, 1nenc) from C.

3. Construct the rest of the crs similar to the Setup.

4. On any query (xpb, xpr) generate the proof similar to Prove(crs, xpb, xpr) except that to gen-
erate zk.πenc, make a query to C on (ehpr, (xpr, hpr, r)).

5. Send π to A and output whatever A outputs.

Note that if the challenger uses NIZK.Setup and NIZK.Prove (resp. S1) in the experiment then Bzk
perfectly simulates hyb0 (resp. hyb1). Thus Bzk has the same advantage ϵ(λ) as A in breaking the
zero-knowledge property of the NIZK scheme.

Lemma 4.6. If NIZK is zero-knowledge, then for any adversary A it holds that

|Pr[hyb1(A) = 1]− Pr[hyb2(A) = 1]| ≤ negl(λ).
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Proof. Suppose towards the contradiction that for some adversary A and some non-negligible func-
tion ϵ(·) it holds that |Pr[hyb1(A) = 1]− Pr[hyb2(A) = 1]| ≥ ϵ(λ). We construct an adversary Bzk
against the zero-knowledge property of the underlying NIZK scheme as follows:

1. Receive (1λ, npb, 1
npr , S, T ) from the adversary.

2. Receive zk.crsedel ← NIZK.Setup(1λ, 1nedel) from C.

3. Construct the rest of the crs similar to hyb1.

4. On any query (xpb, xpr) generate the proof similar to hyb1 except that to generate zk.πedel,
make a query to C on ((hpb, ehpr, hΣ, b), (xpr, hpr, r)).

5. Send π to A and output whatever A outputs.

Note that if the challenger uses NIZK.Setup and NIZK.Prove (resp. S2) in the experiment then Bzk
perfectly simulates hyb1 (resp. hyb2). Thus Bzk has the same advantage ϵ(λ) as A in breaking the
zero-knowledge property of the NIZK scheme.

Lemma 4.7. If PKE is secure, then for any adversary A it holds that

|Pr[hyb2(A) = 1]− Pr[hyb3(A) = 1]| ≤ negl(λ).

Proof. Suppose towards the contradiction that for some adversary A and some non-negligible func-
tion ϵ(·) it holds that |Pr[hyb2(A) = 1]−Pr[hyb3(A) = 1]| ≥ ϵ(λ). We construct an adversary Bpke
against the security of the underlying PKE scheme as follows:

1. Receive (1λ, npb, 1
npr , S, T ) from the adversary.

2. Receive pke.pk← PKE.Enc(1λ) from C.

3. Construct the rest of the crs similar to hyb1.

4. On any query (xpb, xpr) compute hpr ← HT.Hash(ht.hk, xpr) send a query to C on hpr and
receive ehpr. Generate the rest of the proof similar to hyb2.

5. Send π to A and output whatever A outputs.

Note that if the challenger uses PKE.Enc(pke.pk, ·) (resp. PKE.Enc(pke.pk, 0|hpr|)) in the experiment
then Bpke perfectly simulates hyb2 (resp. hyb3). Thus Bpke has the same advantage ϵ(λ) as A in
breaking the security of the PKE scheme.

We conclude the input hiding proof by Lemmas 4.5 to 4.7 and a hybrid argument.

30



4.2 Reusable Encrypted RAM Delegation

We observe that our construction of encrypted RAM delegation is already reusable. In the following
we show how to partition the algorithms in Construction 4.1 to match the syntax of reusable
encrypted RAM delegation.

Construction 4.8. [Encrypted RAM Delegation] Let PKE = (PKE.Gen,PKE.Enc,PKE.Dec) be a
public-key encryption scheme, Del = (Del.Setup,Del.Digest,Del.Prove,Del.Verify) be a RAM dele-
gation scheme associated with a hash tree HT, and NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify)
be a non-interactive zero-knowledge scheme. We construct an encrypted RAM delegation EDel =
(Setup,Prove,Verify) as follows:

Setup(1λ, npb, 1
npr , S, T )→ (crs). Same as in Construction 4.1.

PrivEnc(crs, xpr)→ (ehpr, πenc, aux). Perform Items 1 to 3 from the prover’s algorithm in Construc-
tion 4.1 and output (ehpr, πenc = zk.πenc, aux = (xpr, r)).

Prove(crs, xpb, aux)→ (b, πedel). Same as in Construction 4.1 except that it takes aux = (xpr, r) as
input and doesn’t compute zk.πenc.

VerifyEnc(crs, ehpr, πenc)→ 0/1. Parse crs = (del.crs, pke.pk, zk.crsenc, zk.crsedel, S), and output 1 if
it holds that NIZK.Verify(zk.crsenc, ehpr, πenc) = 1; otherwise Output 0.

Verify(crs, hpb, ehpr, b, πedel)→ 0/1. First parse crs = (del.crs, pke.pk, zk.crsenc, zk.crsedel, S), and then
let hΣ ← HT.Hash(ht.hk, 0S). Output 1 if NIZK.Verify(zk.crsenc, (hpb, ehpr, hΣ, b), πedel) = 1;
otherwise Output 0.

Theorem 4.9. Assuming RAM delegation, PKEs, and NIZKs, the Construction 4.8 is a reusable
encrypted RAM delegation (Definition 3.2) with strong soundness, straight-line extractor, and input
hiding.

Completeness. The completeness follows by the construction and the completeness of the un-
derlying Del and NIZK and the correctness of the underlying PKE.

Efficiency. The proof is similar to the proof as in the encrypted RAM delegation. Refer to
Section 4.1 for details.

4.2.1 Security Analysis.

Proof of Straight-Line Extractor. The proof is similar to the proof as in the encrypted RAM dele-
gation. Refer to Section 4.1.1 for details.

Proof of Input Hiding. The proof is similar to the proof as in the encrypted RAM delegation. Refer
to Section 4.1.1 for details.

Proof of Strong Soundness. First define the following hybrids:
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hyb0. This is the real experiment where the adversary A on input 1λ sends (npb, 1
npr , S, T ) to the

challenger C. Then C runs crs← Setup(1λ, npb, 1
npr , S, T ) and sends crs to A. Upon receiving

crs, A outputs (xpb, ehpr, π
(0)
edel, π

(1)
edel). A wins if for b ∈ {0, 1}, Verify(zk.crsedel, hpb, ehpr, b, π

(b)
edel) =

1.

hyb1. Similar to hyb0 except that C generates zk.crsedel in the crs by running NIZK.E and appends
zk.tdedel to td.

The indistinguishability of the hyb0 and hyb1 directly follows from the crs indistinguishability
of the underlying NIZK scheme.

To conclude the proof we only need to show that the winning probability of A in hyb1 is
negligible. Let Setup′ be the setup as defined in hyb1. Define the experiment ExpEDel be the same
as in hyb1 except that C additionally computes hΣ and extracts the witness from NIZK proofs as
follows:

ExpEDel =


(npb, 1

npr , S, T )← A(1λ),
(crs, td)← Setup′(1λ, npb, 1

npr , S, T ),

(hpb, ehpr, π
(0)
edel, π

(1)
edel)← A(crs),

hΣ ← HT.Hash(ht.hk, 0S),

(h
(b)
pr , r

(b), del.π(b)) = NIZK.E(zk.tdedel, (hpb, ehpr, hΣ, b), π
(b)
edel) for b ∈ {0, 1}


For an adversary A we define the output of the above experiment, ExpEDel(A), to be 1, if A

wins (similar to hyb2), namely:[
NIZK.Verify(zk.crsedel, (hpb, ehpr, hΣ, b), π

(b)
edel) = 1 for b ∈ {0, 1} : ExpEDel

]
Let (x

(b)
edel, w

(b)
edel) = ((hpb, ehpr, hΣ, b), (h

(b)
pr , r

(b), del.π(b))). Define the following variables:

ϵ1 = Pr[ExpEDel(A) = 1]−

Pr

[
(x

(0)
edel, w

(0)
edel) ∈ Ledel

NIZK.Verify(zk.crsedel, (hpb, ehpr, hΣ, 1), π
(1)
edel) = 1

: ExpEDel

]
. (7)

ϵ2 = Pr

[
(x

(0)
edel, w

(0)
edel) ∈ Ledel

NIZK.Verify(zk.crsedel, (hpb, ehpr, hΣ, 1), π
(1)
edel) = 1

: ExpEDel

]
−

Pr
[

(x
(b)
edel, w

(b)
edel) ∈ Ledel for b ∈ {0, 1} : ExpEDel

]
. (8)

ϵ3 = Pr
[

(x
(b)
edel, w

(b)
edel) ∈ Ledel for b ∈ {0, 1} : ExpEDel

]
−

Pr

[
h
(0)
pr = h

(1)
pr

Del.Verify(del.crs, (hpb, h
(b)
pr , hΣ), b, del.π

(b)) = 1 for b ∈ {0, 1}
: ExpEDel

]
. (9)
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ϵ4 = Pr

[
h
(0)
pr = h

(1)
pr

Del.Verify(del.crs, (hpb, h
(b)
pr , hΣ), b, del.π

(b)) = 1 for b ∈ {0, 1}
: ExpEDel

]
. (10)

Now since Pr[ExpEDel(A) = 1] = ϵ1 + ϵ2 + ϵ3 + ϵ4 we only need to show that for i ∈ [4], ϵi is
negligible.

Case 1. Suppose towards the contradiction that ϵ1 is non-negligible, then by Eq. (7) it holds
that:

Pr[NIZK.Verify(zk.crsedel, (hpb, ehpr, hΣ, 0), π
(0)
edel) = 1 ∧ (x

(0)
edel, w

(0)
edel) /∈ Ledel] ≥ ϵ1

Now we construct adversary BEzk that breaks the straight-line extractor property of the underlying
NIZK scheme as follows:

1. Receive (npb, 1
npr , S, T ) from A.

2. Receive zk.crs∗edel from C.

3. Construct crs similar to experiment ExpEDel where zk.crsedel = zk.crs∗edel, and send it to A.

4. Receive (hpb, ehpr, π
(0)
edel, π

(1)
edel) from A.

5. Compute hΣ = HT.Hash(ht.hk, 0S).

6. Send ((hpb, ehpr, hΣ, 0), π
(0)
edel) to C.

Note that BEzk perfectly simulates the experiment ExpEDel for A, thus has the same advantage ϵ1 in
breaking the straight-line extractor property of the underlying NIZK scheme.

Case 2. Similar to case 1.

Case 3. Suppose towards the contradiction that ϵ3 is non-negligible. First note that (x
(b)
edel, w

(b)
edel) ∈

Ledel is equivalent with:

ehpr = PKE.Enc(pke.pk, h
(b)
pr ; r

(b)) ∧ Del.Verify(del.crs, (hpb, h
(b)
pr , hΣ), b, del.π

(b)) = 1

then by Eq. (9) it holds that

Pr

[
ehpr = PKE.Enc(pke.pk, h

(0)
pr ; r

(0))∧
ehpr = PKE.Enc(pke.pk, h

(1)
pr ; r

(1)) ∧ h
(0)
pr ̸= h

(1)
pr

: ExpEDel

]
≥ ϵ3

This breaks the perfect correctness of the underlying PKE scheme.

33



Case 4. Suppose towards the contradiction that ϵ4 is non-negligible, then we construct adversary
Bsounddel that breaks the strong soundness property of the underlying Del scheme as follows:

1. Receive (npb, 1
npr , S, T ) from A.

2. Send (1λ, T ) to C and receive del.crs∗ from C.

3. Construct crs similar to experiment ExpEDel where del.crs = del.crs∗, and send it to A.

4. Receive (hpb, ehpr, π
(0)
edel, π

(1)
edel) from A.

5. Compute (h
(b)
pr , r

(b), del.π(b)) = NIZK.E(zk.tdedel, (hpb, ehpr, hΣ, b), π
(b)
edel) for b ∈ {0, 1}.

6. Compute hΣ = HT.Hash(ht.hk, 0S).

7. Send ((hpb, h
(0)
pr , hΣ), π

(0)
edel, π

(1)
edel) to C.

Note that Bsounddel perfectly simulates the experiment ExpEDel for A. Thus Bsounddel has the same
advantage ϵ4 in breaking the strong soundness property of the underlying Del scheme.

Corollary 4.10. Assuming either LWE, k-LIN over pairing groups for any constant k ∈ N, or
sub-exponential DDH over pairing-free groups, the Construction 4.8 is a reusable encrypted RAM
delegation (Definition 3.2) with strong soundness, straight-line extractor, and input hiding. Addi-
tionally, if we plug-in our rate-1 NIZK from Section 5, the crs size and the setup running-time will
only grow with log npr.

5 Rate-1 NIZK

In this section, we present a construction for a rate-1 NIZK argument scheme with straight-line
extraction for any language LM,T using an encrypted RAM delegation scheme. The following
observation serves as the main design principle behind our rate-1 NIZK.

Rate-1 NIZK from Instance-Independent NIZK. Consider a NIZK scheme for a language
L = {x : ∃w,M(x,w) = 1} in which the size of the proof is independent7 on the size of the
instance x and grows polynomially in the size of the witness w. If such an “instance-independent”
NIZK scheme exists, we can generate a Rate-1 NIZK scheme by relying on PRG schemes. The idea
is to use the instance-independent NIZK scheme to generate proof for the modified instance-witness
pair ((x,PRG(s) ⊕ w), s). That is, we push a masked version of the witness to be a part of the
instance and use the seed s for the PRG as a witness. By assuming the computational soundness
of instance-independent NIZK and security of PRG, we get a soundNIZK.

Note that the new proof needs PRG(s) ⊕ w to be part of the proof. However, the proof of the
instance-independent NIZK is now only a polynomial in λ (assuming |s| = λ). So, the overall proof
size is |w|+ poly(λ) which means the new NIZK scheme is Rate-1 in the witness size. Moreover, all
the properties of instance-independent NIZK follow-through. If the instance-independent NIZK has
a knowledge extractor, we can use it to extract the seed s and then recover w using PRG. Using the

7...or only poly-logarithmically dependent.

34



simulator for instance-independent NIZK, we can simulate the proof and by relying on the security
of PRG, we can output a random string of length |w| as part of the proof. It looks like if we can
construct an instance-independent NIZK, we can bootstrap it to create a Rate-1 NIZK scheme using
a PRG scheme.

Instance-Independent NIZK from ERDel. We observe that it is trivial to construct an instance-
independent NIZK using an encrypted RAM delegation scheme. The idea is to use xpb := x and
xpr := w. From the efficiency of an ERDel scheme, the size of proof is poly-logarithmic in xpb
and polynomial in xpr. This satisfies the efficiency requirements for instance-independent NIZKs.
We can extract xpr using the extractor for the encrypted RAM delegation scheme which gives us
our witness. The input-hiding property of ERDel translates to the computational zero-knowledge
property of an instance-independent NIZK scheme. Hence, by using an encrypted RAM delegation
scheme along with a PRG scheme, we get a Rate-1 NIZK scheme with an argument of knowledge.
However, there is a subtle issue with the usage of PRG. As encrypted RAM delegation is defined for
RAM machines, the size of the witness can vary and is dependent on the input size of instance x and
the running time T . Hence, we use a single-bit PRF instead of a PRG scheme in the counter-mode
to encode the witness. In what follows we formally present and analyze our construction.

5.1 Construction

Construction 5.1. Let r1Enc = (Encode,Decode) be a secure rate-1 message encoding scheme
(Definition 2.14) and EDel = (Setup,Prove,Verify) be an encrypted RAM delegation scheme w.r.to
HT (Definition 3.1) for machineM′ defined as follows –M′ has (λ,M) hardwired, takes (x, ρ) as
public input, and sk as private input, computes w = r1Enc.Decode(1λ, ρ, sk) and output 1 if and only
ifM(x,w) = 1. We construct a Rate-1 NIZK for the language LM,T = {(x,w) :M(x,w, T ) = 1}
as follows:

Setup(1λ, T )→ crs. This probabilistic algorithm samples EDel scheme’s crs, del.crs← EDel.Setup
(1λ, 1λ, T ). Output crs = (λ, del.crs).

Prove(crs, x, w)→ π. This probabilistic algorithm parses crs as (λ, del.crs) and does the following.

1. Let (ρ, sk)← r1Enc.Encode(1λ, w). Set xpb := (x, ρ) and xpr := sk.

2. Sample EDel proof del.π ← EDel.Prove(del.crs, xpb, xpr) and output the proof π = (ρ, del.π).

Verify(crs, x, π)→ 0/1. This poly-time algorithm parses crs as (λ, del.crs), π as (ρ, del.π), computes
hpb = HT.Hash(ht.hk, (x, ρ)), and outputs EDel.Verify(del.crs, hpb, 1, del.π).

Theorem 5.2. If EDel is a secure encrypted RAM delegation scheme w.r.to hash tree HT for
language LM′ (Definition 3.1) and r1Enc is a secure rate-1 message encoding scheme (Definition
2.14), then Construction 5.1 is a rate-1 NIZK scheme for language LM.

Proof. We show that Construction 5.1 is correct and efficient as follows:

Correctness. We have that crs = (λ, del.crs) and π = (ρ, EDel.Prove(del.crs, (x, ρ), sk) where
(ρ, sk) ← r1Enc. Encode(1λ, w). By correctness of EDel, r1Enc for machine M′, if M(x,w) = 1,
thenM′((x, ρ), sk) = 1 and the verification algorithm outputs 1.
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Efficiency. Note that the crs of the NIZK scheme is nothing but the crs for EDel. Hence, |crs| =
|del.crs| = poly(λ, log T ). Similarly, running time of Setup follows from running time of EDel.Setup’s
running time. In Prove, we are using EDel.Prove whose running time is poly(λ, T, (|x| + |w|)) and
r1Enc whose running time poly(λ, |w|). It follows that the running time of Prove is poly(λ, T, |x|, |w|).
The size of the proof is |ρ|+|del.π|= |w|+poly(λ, log T, log(|x|+|w|)). The Verify algorithm computes
using HT which takes O((|x| + |w|)λ) time and then runs EDel.Verify. Hence the running time of
Verify follows from the running time EDel.Verify and HT.Hash. In summary, Construction 5.1 has
the following efficiency properties:

• |crs| = poly(λ, log T ).

• |π| = |w|+ poly(λ, log T, log(|x|+ |w|)).

• Running time of Setup is poly(λ, log T ).

• Running time of Prove is poly(λ, T, |x|, |w|).

• Running time of Verify is O((|x|+ |w|)λ) + poly(λ, log T, log(|x|+ |w|)).

Moreover, we remark that the running time of verifier can reduced by considering a pre-
processing phase where x, ρ (parsed from del.π) are hashed independent of Verify. This renders
the running time of Verify to be virtually independent of |x| and |w|. In addition, due to the poly-
logarithmic dependence |crs| and Setup algorithm’s running time T , we can parse λ many crs with
exponentially increasing T , i.e, T = 1, . . . , T = 2λ and use the crs that appropriately bounds the
running time of A. This is the popular powers-of-2 technique [GKP+13] which is used in various
contexts to reduce/remove the dependency of certain parameters in the analysis of algorithm which
depend poly-logarithmically in the length of said parameters. We can leverage this technique to
remove the dependence of T and we follow this convention for the rest of the paper.

5.2 Security Analysis

Here we show that Construction 5.1 satisfies straight-line extraction and computational zero-
knowledge.

Proof of straight-line extraction. We show that if EDel satisfies straight-line extraction and r1Enc is
correct, then Construction 5.1 satisfies straight-line extraction. Let the extractor do the following –
(1) generate (crs, td) using EDel.E . Set crs = del.crs and td = del.td, (2) to extract w∗ upon receiving
π = (ρ, del.π), compute sk∗ ← EDel.E(del.td, del.π) and output w∗ = r1Enc.Decode(1λ, ρ, sk∗).

Note that the crs indistinguishability is implied by the crs indistinguishability of EDel. We
define the experiment ExpNIZK as follows –

ExpNIZK =

 T ← A(1λ), (crs, td)← E(1λ, T ), (x, π)← A(crs),
Let π = (ρ, del.π), hpb = HT.Hash(ht.hk, (x, ρ)),
sk∗ ← EDel.E(td, π), w∗ ← r1Enc.Decode(1λ, ρ, sk∗)


We say that A wins if

Pr

[
(x,w∗) ̸∈ LM ∧
EDel.Verify(del.crs, hpb, del.π) = 1

: ExpNIZK

]
≥ ϵ(λ)
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for some non-negligible function ϵ(·). Then we define the following advantages of the adversary
A,

Adv1 = |Pr[A wins]− Pr[(x,w∗) ̸∈ LM ∧ ((x, ρ), sk∗) ∈ LM′ : ExpNIZK]| (11)

Adv2 = |Pr[(x,w∗) ̸∈ LM ∧ ((x, ρ), sk∗) ∈ LM′ : ExpNIZK]−
Pr[(x,w∗) ̸∈ LM ∧ w∗ = r1Enc.Decode(1λ, ρ, sk∗) : ExpNIZK ]| (12)

If A wins in ExpNIZK, then either A breaks the straight-line extraction property of EDel (Type
1, Adv1 ≥ ϵ/2) or it breaks the correctness of r1Enc (Type 2, Adv2 ≥ ϵ/2).

Type 1. Suppose Eq. (11) is correct, then it holds that

Pr[((x, ρ), sk∗) ̸∈ LM′ ∧ EDel.Verify(del.crs, hpb, del.π) = 1] ≥ ϵ/2

Now we construct an adversary BEDel.E that breaks the straight-line extraction property of EDel
for machineM′ as follows:

1. Receive T from A and send it to C.

2. Receive crs from C and pass it on to A.

3. Receive (x, π) from A. Parse π as (ρ, del.π). Send ((x, ρ), del.π) to C.

Note that BEDel.E perfectly simulates ExpNIZK for A thus having advantage ϵ/2 in breaking the
straight-line extraction for EDel.

Type 2. Suppose Eq. (12) is correct, note that ((x, ρ), sk∗) ∈ LM′ implies that w∗ = r1Enc.Decode(1λ, ρ,
sk∗). However, by Eq. (12), A can find w∗ ̸= r1Enc.Decode(1λ, ρ, sk∗) with probability ϵ/2, which
breaks the perfect correctness of r1Enc.

Proof of zero-knowledge. We show that if EDel is input-hiding and r1Enc is secure, then Construc-
tion 5.1 satisfies computational zero-knowledge. We define the following hybrids:

hybA0 This is the original experiment. Namely, in this experiment, the adversary A sends T to
the challenger C. C runs crs← Setup(1λ, T ) and sends crs to A. A queries C with (x,w) and
C responds with Prove(crs, x, w) ifM(x,w) = 1.

hybA1 This is same as hybA0 except that we use EDel.S to simulate EDel instantiation.

hybA2 This is same as hybA1 except we sample random ρ← {0, 1}m instead of r1Enc.Encode. This
is the description of the simulator S.

Let hybAi (1
λ) denote the output of the experiment hybAi .
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Claim 5.3. If EDel is an input-hiding encrypted RAM delegation scheme, then for any PPT
adversary A, there exists a negligible function negl(·) such that for every λ ∈ N:∣∣∣Pr [1← hybA0 (1

λ)
]
− Pr

[
1← hybA1 (1

λ)
]∣∣∣ ≤ negl(λ)

Proof. Assuming that there exists an adversary A which can distinguish between hybA0 and hybA1
such that

∣∣Pr [1← hybA0 (1
λ)
]
− Pr

[
1← hybA1 (1

λ)
]∣∣ = ϵ(λ) for some non-negligible function ϵ(·),

we construct an adversary Bdel against the input-hiding property of EDel as follows:

1. A sends T to Bdel. B sends T to C. Bdel passes the crs received from the challenger, C, to A.

2. A queries (x,w) to Bdel. IfM(x,w) = 1, query C with ((x, ρ), sk) where (ρ, sk)← r1Enc.Encode(1λ,
w). Otherwise, respond with ⊥.

3. Send (ρ, del.π) to A where del.π is send by C. Output whatever A outputs.

If C uses EDel.Setup and EDel.Prove (resp. EDel.S) in the experiment then Bdel perfectly simulates
hybA0 (resp. hybA1 ). Thus Bdel has advantage ϵ(λ) in breaking the input-hiding property of EDel.

Claim 5.4. If r1Enc is a secure rate-1 message encoding scheme, then for any PPT adversary A,
there exists a negligible function negl(·) such that for every λ ∈ N:∣∣∣Pr [1← hybA1 (1

λ)
]
− Pr

[
1← hybA2 (1

λ)
]∣∣∣ ≤ negl(λ)

Proof. Assuming that there exists an adversary A which can distinguish between hybA1 and hybA2
such that

∣∣Pr [1← hybA1 (1
λ)
]
− Pr

[
1← hybA2 (1

λ)
]∣∣ = ϵ(λ) for some non-negligible function ϵ(·),

we construct an adversary Br1Enc that breaks the security of r1Enc as follows:

1. A sends T to Br1Enc. B samples del.crs← EDel.S(1λ, 1λ, T ) and sends del.crs to A.

2. A queries (x,w). If M(x,w) = 1, query the challenger, C, with w to receive ρ and send
(ρ, del.π) where del.π ← EDel.S(del.crs, x, ρ) to A. Otherwise, output ⊥.

3. Output whatever A outputs.

If C uses r1Enc.Encode (resp. using random ρ) in the experiment then Br1Enc perfectly simulates
hybA1 (resp. hybA2 ). Thus Br1Enc has advantage ϵ(λ) in breaking the security of r1Enc.

Remark 5.5. If we rely on a multi-theorem NIZK argument and plug-in the Rate-1 NIZK from
Construction 5.1 in the reusable EDel scheme (Definition 3.2), we get an optimal rate rEDel scheme.

We conclude the section with an explicit restatement of Theorem 5.2.

Theorem 5.6 (Rate-1 NIZK). Assuming the existence of encrypted RAM delegation and rate-1
message encoding scheme (implied by pseudorandom functions), there exists a rate-1 NIZK argu-
ment scheme for RAM machines (universal and unbounded) with straight-line extraction.

We state the following corollary of Theorems 5.6, 4.2 and Remarks 2.12, 2.10.

Corollary 5.7. Assuming LWE/DLIN/sub-exponential DDH (and QR) assumptions, there exists
a rate-1 non-interactive zero-knowledge argument scheme with straight-line extraction for RAM
machines.
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6 Homomorphic NIZK

In this section, we outline the definition and design of the unbounded homomorphic NIZK, which
we call truly fully homomorphic NIZK, built upon rate-1 NIZKs. The primitive, initially intro-
duced by [ADKL19], enables homomorphic evaluations on top of multiple proofs to generate a
composite NIZK proof. Unlinke a standard NIZK scheme, a homomorphic NIZK includes an addi-
tional algorithm Eval that takes as input crs, C, {(Cj , bj , πj)}j∈[k] and outputs C ′, b, π for C ′ as the
composition of C,C1, . . . , Ck. An additional property of homomorphic NIZK is unlinkability: the
evaluated proof π for the instance (C ′, b) must be indistinguishable from a freshly generated proof
using a witness ω such that C ′(ω) = b. Moreover, the design of [ADKL19] inherently supports
unbounded circuit sizes and evaluation hops as it is based on the GOS design [GOS06]. The GOS
design gives NIZK for circuit satisfiability by generating a sequence of gate-by-gate NIZK proofs
under a single CRS. After presenting our design, we provide a detailed analysis including security
and scalability, which examines that our approach of composing rate-1 NIZKs supports all of the
above truly fully homomorphic NIZK requirements.

6.1 Definition

A NIZK proof system (Setup,Prove,Verify) is a fully homomorphic NIZK proof system if there
exists a PPT algorithm Eval with the following output behavior:

Eval(crs, C, {(Cj , bj , πj)}j∈[k])→ (C ′, b, π) . The evaluation algorithm takes as input CRS crs, k

instances {(Ci, bi)}ki=1, their proofs {πi}ki = 1, and a circuit C = {0, 1}k → {0, 1}. It outputs
the composed instance (C ′, b) where C ′ = Compose(C, {(Ci, bi)}ki=1) and a proof π.

Boolean Circuit Composition The definition of the circuit composer is exactly identical to
the composer defined by [ADKL19], with only slight adjustments to the symbols. We consider each
circuit C as a directed acyclic graph and provide a detailed breakdown of the algorithm, laying the
groundwork for the circuit decomposition in the following section.

Compose(C,C1, . . . , Ck)→ C ′.

1. Let directed acyclic graph G = (V,E) represent the boolean circuit C : {0, 1}k → {0, 1}.
In graph G, each node v ∈ V of in-degree 0 is an input node labelled by either 0 or 1,
and there are k such nodes. For each remaining node in G, it is either an AND gate,
or an OR gate, or a NOT gate, labeled with a bit representing the value of the gate’s
output wire. Each internal wire of the circuit corresponds to a directed edge in G, where
the direction of such edge indicates the direction of signal flow. We remark that the
node vout which has an out-degree of 0 represents the output gate. For all i ∈ [k], let
graphs Gi represent the boolean circuit Ci.

2. Define graph G′ = (V ′, E′) as follows:

V ′ = (

k⋃
i=1

Vi) ∪ V, and E′ = (

k⋃
i=1

Ei) ∪ E.

3. Define the merge of vertices u, v ∈ V in graph G = (V,E) as the following: First, for
each w ∈ V \ {u, v}, replace edge (w, v) with new edge (w, u), and (v, w) with (u,w) if
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there exists such edges. Next, remove node v, and edges (u, v), (v, u) if there exists such
edges. Formally, the new graph G′ = (V ′, E′) resulting from merging node u, v ∈ V is
defined as the following:

V ′ = V \ {v},

E′′ = E \ {(u, v), (v, u)},

E′ = (E \ {(w, v), (v, w) : w ∈ V }) ∪ {(u,w) : (v, w) ∈ E′′} ∪ {(w, u) : (w, v) ∈ E′′}.

4. Let ui ∈ Vi be the output gate of Ci, and vi ∈ V be the i-th input gate of C and for
all i ∈ [k]. It merges every pair of ui, vi in graph G′ for i ∈ [k] and outputs C ′ as the
resulting circuit.

Completeness of Eval. For any PPT adversary A and for all λ ∈ N,

Pr


∃i ∈ [k] s.t. Verify(crs, (Ci, bi), πi) = 0

∨

 Verify(crs, (C ′, b), π) = 1
∧ C ′ = Compose(C,C1, . . . , Ck)

∧ b = C(b1, . . . , bk)

 :

crs← Setup(1λ)
(C, {(Cj , bj , πj)}j∈[k])← A(crs)
(C ′, b, π)← Eval(crs, C, {(Cj , bj , πj)}j∈[k])

 = 1.

Unlinkability The homomorphic NIZK scheme requires that a proof obtained by Eval to be
indistinguishable from a freshly generated proof. Formally, for any stateful PPT adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N, the following equation holds, as
long as Verify((Ci, bi), πi) = 1 and Ci(ωi) = bi for all i ∈ [k]:

Pr


b′ = b :

crs← Setup(1λ)
(C, {(Ci, bi, ωi, πi)}i∈[k])← A(crs)
(C∗

0 , b
∗
0, π

∗
0)← Eval(crs, C, {(Ci, bi, πi)}i∈[k])

C∗
1 = Compose(C,C1, . . . , Ck)

b∗1 = C∗
1 (ω1, . . . , ωk)

π∗
1 = Prove(crs, (C∗

1 , b
∗
1), (ω1, . . . , ωk))

b← {0, 1}
b′ ← A(C∗

b , b
∗
b , π

∗
b )


≤ 1/2 + negl(λ).

6.2 Boolean Circuit Decomposition

To achieve unlinkability, we present a decomposition algorithm Decompose which breaks down a
circuit into atomic circuits. A boolean circuit C is modeled as a directed acyclic graph G = (V,E),
where each vertex of in-degree 0 are labeled as either 0 or 1, representing each input gate to circuit
C. Each of the remaining vertices either corresponds to an AND gate, an OR gate, or a NOT gate.
Edges of G represent the wires of circuit C. Before introducing the circuit decomposition algorithm,
we explain the term “cutting node” with respect to graph G. For each v ∈ V , v is a “cutting node”
if and only if by cutting the gate at vertex v breaks the boolean circuit C into two independent
boolean circuits. At a high level, by parsing each cutting node ofG, Decompose(C)→ (T, {Cv}v∈VT

)
parses circuit C into smallest chunks of circuits {Cv}v∈VT

such that their combination forms a tree
structure T = (VT , VE).

Decompose(C)→ (T, {Cv}v∈VT
).
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1. Let directed acyclic graph G = (V,E) represent the boolean circuit C : {0, 1}k → {0, 1}.
2. Consider the split of a vertex u ∈ V as the following: The first step is adding a new vertex

u′ and a new edge (u, u′). Next for each vertex v such that (u, v) ∈ E, replace the edge
with (u′, v). Intuitively, the node u is “split” into the edge (u, u′). Formally, the new
graph G′ = (V ′, E′) resulting from splitting the node u into an edge can be defined as:

V ′ = V ∪ {u′},

E′ = (E \ {(u, v) : v ∈ V }) ∪ {(u′, v) : (u, v) ∈ E} ∪ {(u, u′)}.

3. Define term “cutting node” as the following: Given G = (V,E) and u ∈ V , split node
u into an edge (u, u′) and obtain a new graph G′ = (V ′, E′). Vertex u ∈ V is a cutting
node if and only if the out-degree of u (in graph G) is non-zero and edge (u, u′) is a cut
of graph G′.

4. For all cutting nodes u ∈ V , the Decompose algorithm splits node u into a cutting edge
and let set C be the set of all such edges. It obtains a new graph G′ = (V ′, E′). By
removing the edge set C from graph G′, it represents each weakly-connected component
of graph (V ′, E′ − C) as a boolean circuit. For the weakly connected component that
only contains a single vertex, it represents such component as an empty circuit.

5. Following from step 4, it contracts each of the above circuit in graph G′ into a single
vertex and obtains a tree structure T = (VT , ET ) where each vertex v ∈ VT represents
a boolean circuit Cv as above, and the edge set ET corresponds to C. Note that T is a
tree because ET only contains cutting edges.

6. The Decompose algorithm outputs T, {Cv}v∈VT
.

Theorem 6.1. Given any set of boolean circuits {C,C1, . . . , Cℓ} where C = {0, 1}ℓ → {0, 1}, let
(T, {Cv}v∈VT

) be the decomposition by Decompose(C), and for each i ∈ [ℓ], let (Ti, {Cv}v∈VTi
) be

Decompose(Ci). Define C ′ as Compose(C, (C1, . . . , Cℓ)), and let (T ′, {Cv}v∈VT ′ ) be Decompose(C ′).
Then,

ℓ⋃
i=0

{Cv}v∈VTi
= {Cv}v∈VT ′ ,

where Ti for i ∈ [ℓ] are as defined above, and T0 is the tree T with all leaf nodes removed.

Proof. We note that on composing C, {Ci}i∈[ℓ], one is contracting the output gate of Ci with the
input gate of circuit C and make it a single node in the composed circuit C ′. Such node must be a
cut node, since the node is the only node connecting circuit C and Ci. Thus the decomposer splits
all such nodes in C ′, and our theorem directly follows.

6.3 Construction

Consider circuit C ′ = {0, 1}ℓ → {0, 1}, output bit b, and a valid homomorphic NIZK proof π for cir-
cuit satisfiability instance (C ′, b), then proof π could be either generated from Prove(crs, C, b, {bi}i∈[ℓ])
algorithm taking (C, b) as instance and {bi}i∈[k] as witness, or homomorphically evaluated from
Eval(crs, C, {(Ci, bi, πi)}i∈[k]) such that C ′ = Compose(C,C1, . . . , Ck). To achieve unlinkability prop-
erty, a freshly generated proof must be indistinguishable from any evaluated proof. As discussed
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in technical overview, the naive approach won’t work as one could not argue unlinkability since a
freshly generated NIZK proof is from the language

∃b1, . . . , bℓ, s.t. C ′(b1, . . . , bℓ) = b,

whereas evaluated proof is by language

∀i ∈ [k],∃πi s.t. Verify(crs, (Ci, bi), πi) = 1 and C(b1, . . . , bk) = b.

The idea is that we let the prover decompose the circuit C ′ into the smallest atomic circuits and
generate the fresh homomorphic NIZK proof π by simulating algorithm Eval level by level, following
the topological order of those atomic circuits. As a result, a freshly generated proof and a evaluated
proof would be generated by the underlying rate-1 NIZK scheme from a universal language. The
unlinkability property immediately holds by the zero-knowledge property of rate-1 NIZK. Our
construction is as follows:

Setup(1λ)→ crs. The Setup algorithm generates crs with respect to language L as follows:

crs← NIZK.Setup(1λ).

Language L
Instance: crs, C, b
Witness: {(bi, πi)}i∈[k].
Output: The Language goes step by step, as the following:

– It runs Decompose(C) and obtains (T, {Cv}v∈VT ).

– Let Rt be the root node of T , it checks if CRt takes k bits of input. If the check fails, it outputs 0
and aborts.

– Let v1, . . . , vk be the k child nodes of Rt. For each i ∈ [k], let circuit Ci be the circuit by the subtree
rooted at vi, combining all the circuits within that subtree.

– For each i ∈ [k], if Ci is not empty, it checks if NIZK.Verify(crs, (crs, Ci, bi), πi) = 1. If any of the
check fails, it outputs 0 and aborts.

– It outputs 1 if and only if CRt(b1, . . . , bk) = b.

Prove(crs, C, b, {bi}i∈[k])→ π. For all i ∈ [k], the prover’s algorithm sets Ci as an empty circuit, πi
as an empty string. It runs Eval(crs, C, {(Ci, bi, πi)}i∈[k]) and outputs proof π.

Eval(crs, C, {(Ci, bi, πi)}i∈[k])→ (C ′, b, π). The algorithm Eval follows these steps:

1. Set (T, {Cv}v∈VT
) to be Decompose(C).

2. Given the i-th leaf node v ∈ VT , it sets C
′
v = Ci, bv as bi, πv as πi.

3. Given a non-leaf node v ∈ VT with an in-degree of ℓ, let (v1, . . . , vℓ) be the child nodes of
Cv where Cv takes (bv1 , . . . , bvℓ) as input. It computes

bv = Cv(bv1 , . . . , bvℓ), C
′
v = Compose(C, (C ′

v1 , . . . , C
′
vℓ
)),

and generates
πv ← NIZK.Prove(crs, (crs, C ′

v, bv), {(bvi , πvi)}i∈ℓ).
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4. For every v ∈ VT , it runs step 2 or 3 using vertex v, in a topological order.

5. Let node Rt be the root of T , it outputs C ′ = C ′
Rt, b = bRt, and π = πRt.

Verify(crs, (C, b), π)→ 0/1. It outputs NIZK.Verify(crs, (crs, C, b), π).

Theorem 6.2. If NIZK is a rate-1 NIZK scheme for language L, then Construction 6.3 is a homo-
morphic NIZK scheme.

Completeness The design described above implements a recursive zero-knowledge proof over
the tree of the decomposed circuit. The functionality of the decomposed circuit is equivalent to
the original circuit, and the completeness of the above design is implied by the completeness of the
underlying NIZK.

Efficiency The succinctness of the above design follows from the rate-1 property of the underlying
NIZK which is specified by the efficiency of rate-1 NIZK.

Lemma 6.3. Assume that NIZK satisfies rate-1 property, then for every λ ∈ N, the following holds:

• For crs← Setup(1λ), |crs| ≤ poly(λ).

• For boolean circuit C : {0, 1}k → {0, 1}, the running time of Prove(crs, C, b, {bi}i∈[k]) is at
most poly(λ, |C|).

• For proof π ← Prove(crs, C, b, {bi}i∈[k]), |π| ≤ poly(λ, |C|).

Proof. By rate-1 NIZK, the crs size is at most poly(λ) since the running time of the above language
L is no more than 2λ. Next we consider the running time of Prove, observe that language L contains
a NIZK.Verify step. Again by efficiency of rate-1 NIZK, the NIZK verifier running time is bounded
by poly(λ, |x|, |ω|) for some poly(·, ·, ·). Thus the size of language L is at most poly(λ, |C|). By the
rate-1 property of NIZK, there is a poly(λ)-bit overhead of the zero knowledge proof. Otherwise,
the proof size is exactly equivalent to the witness size. We observe that the maximum number of
NIZK proofs applied is fewer than the number of nodes in the Decompose(C) tree. Thus, the overall
overhead size is bounded by poly(λ, |C|). Since the overall witness length k ≤ |C|, we conclude that
|π| ≤ poly(λ, |C|).

6.4 Security Analysis

Lemma 6.4 (Argument of knowledge). Assume that NIZK satisfies straight-line extraction, then
the above homomorphic NIZK design satisfies argument of knowledge.

Proof. We will show how to construct an extractor E for our scheme. Before doing that, we start
by defining a recursive extractor E ′ for our scheme.

E ′(1λ)→ (crs, td): The extractor first sets up NIZK CRS and trapdoor with respect to language L:

(nizk.crs, nizk.td)← NIZK.E(1λ).

Next, it outputs crs as nizk.crs and td as (nizk.crs, nizk.td).

43



E ′(td, (C, b), π)→ (T, {(C ′
v, bv, ωv)}v∈VT

). Below is a step-by-step explanation:

1. It first computes (T, {Cv}v∈VT
) = Decompose(C). Next for each leaf node v, it sets C ′

v = Cv. For
each non-leaf node v with child nodes (v1, . . . , vℓ), it sets C

′
v = Compose(Cv, (C

′
v1 , . . . , C

′
vℓ
)).

It sets C ′
v for each v ∈ VT in a topological order.

2. Let Rt be the root node of T , then C ′
Rt = C by definition of step 1. It sets πRt as π and bRt as

b. It parses td as (nizk.crs, nizk.td), and we note that crs is set as nizk.crs in our scheme.

3. Then for each internal node v ∈ VT , consider that it has been assigned πv, bv and that Cv

takes ℓ bits of input. The extractor runs NIZK.E(nizk.td, (nizk.crs, C ′
v, bv), πv) and obtains

{(bi, πi)}i∈[k]. It sets ωv as (b1, . . . , bℓ). Since C ′
v takes ℓ bits of input, v also has a number of

ℓ child nodes (v1, . . . , vℓ). It sets bvi as bi and πvi as πi for all i ∈ [ℓ].

4. It runs step 3 for each non-leaf node v ∈ VT in a reverse topological order. For each leaf node
v, it sets ωv as an empty string. It outputs T and {(C ′

v, bv, ωv)}v∈VT
.

Claim 6.5. Assuming that NIZK satisfies adaptive argument of knowledge, then there exists a
negligible function negl(·) such that for all λ ∈ N, the following holds for all non-leaf node v ∈ VT :

Pr

 Verify(crs, (C, b), π) = 1
∧ ωv is not a valid witness for (crs, C ′

v, bv) ∈ L
:

(crs, td)← E ′(1λ)
(C, b, π)← A(crs, td)
(T, {(C ′

v, bv, ωv)}v∈VT
)← E ′(td, (C, b), π)

 ≤ negl(λ),

where in the above equation T = (VT , ET ).

Proof. We construct a proof by induction over each v ∈ VT , in a reverse topological order.

Base Case (v = Rt): We first show that the lemma holds for v = Rt. Assume that Verify(crs, (C, b), π) =
1 and ωRt is not a valid witness for (crs, C ′

Rt, bRt) ∈ L, where ωRt ← NIZK.E(nizk.td, (nizk.crs, C ′
Rt, bRt), πRt).

Assume that there exists a PPT adversary A that breaks the security property in our lemma, we
build a reduction algorithm B that breaks the proof of knowledge property of NIZK.
A starts by setting language L and security parameter λ. Reduction algorithm B then queries

the NIZK challenger with 1λ. The challenger outputs nizk.crs, nizk.td. B sets crs = nizk.crs, td =
(nizk.crs, nizk.td) and sends crs, td to A. A outputs (C, b, π).

Consider that E ′(td, (C, b), π) outputs tree T = (VT , ET ) and {(C ′
v, bv, ωv)}v∈VT

. Let Rt be the
root of T . Then, based on our design of E ′, ωRt is extracted using NIZK.E(nizk.td, (crs, C ′

Rt, bRt), πRt).
Note that C ′

Rt = C, bRt = b and πRt = π, thus Verify(crs, (C, b), π) = 1 implies that NIZK.Verify(nizk.crs, (crs, C ′
Rt, bRt), πRt) =

1. B could break the proof of knowledge property by outputting (crs, C ′
Rt, bRt) and πRt.

Inductive Step for non-leaf node v: Suppose that the lemma holds for every node that
comes before node v in the reverse topological order. We show that the lemma also holds for v.
Assume that for some PPT adversary A, Verify(crs, (C, b), π) = 1 but ωv is not a valid witness for
(crs, C ′

v, bv) ∈ L where ωv ← NIZK.E(nizk.td, (crs, C ′
v, bv), πv). We build a reduction algorithm B

that breaks the proof of knowledge property of NIZK.
A sets L and λ. B queries the NIZK challenger with 1λ and the challenger responses with

nizk.crs, nizk.td. B sets and outputs crs = nizk.crs and td = (nizk.crs, nizk.td). A then outputs
(C, b, π). Let u be the parental node of v. Then by the above inductive hypothesis, with all
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but negligible probability, ωu is a valid witness for (crs, C ′
u, bu) ∈ L, which already implies that

NIZK.Verify(crs, (crs, C ′
v, bv), πv) = 1. If ωv is not a valid witness, then B breaks the argument of

knowledge property of nizk by extracting and outputting (crs, C ′
v, bv).

The recursive extractor E ′ falls short as a sufficient extractor, as it only produces the in-
stance and witness for individual nodes. We introduce the actual extractor E . E takes as input
(C, b, π), where circuit C takes k input bits. Ideally, E outputs a valid witness (b1, . . . , bk) satisfying
C(b1, . . . , bk) = b.

E(td, (C, b), π)→ (b1, . . . , bk). It runs E ′(td, (C, b), π) and obtains T, {(C ′
v, bv, ωv)}v∈VT

. Next for all
i ∈ [k], let vi be the i-th leaf node, it outputs (bv1 , . . . , bvk).

Let {Cv}v∈VT
be the output of Decompose(C). We note that by Claim 6.5, for each internal node

v with child nodes (v1, . . . , vℓ), it holds that Cv(bv1 , . . . , bvℓ) = 1. Since circuits {Cv}v∈VT
is a

decomposition of C, we have C(bv1 , . . . , bvk) = 1. Our theorem follows.

Lemma 6.6 (Unlinkability). Assume that NIZK satisfies zero-knowledge property, then the above
homomorphic NIZK design satisfies unlinkability.

Proof. Before proceeding to the proof, we define the term atomic circuit: A circuit C is con-
sidered atomic if output of Decompose(C) includes the circuit C itself. We argue the following:
For any set of boolean circuits C,C1, . . . , Cℓ, where C ′ = Compose(C,C1, . . . , Cℓ), the output by
Prove(crs, C ′, b, {bi}i∈[k]) is indistinguishable from Eval(crs, C, {(Ci, bi, πi)}i∈[k]), thereby unlinkabil-
ity holds. By Theorem 6.1, whether we decompose C,C1, . . . , Cℓ or directly decompose C ′, the
resulting atomic circuit sets are the same. Thus by definition of algorithm Compose, the circuits
C ′
Rt at the roots of both Prove(crs, C ′, b, {bi}i∈[k]) and Eval(crs, C, {(Ci, bi, πi)}i∈[k]) are equivalent

to C ′. Furthermore, the output proof π = πRt at the final hop by both Prove and Eval is gener-
ated using the zero-knowledge proof system NIZK under the same instance (crs, C ′

Rt, bRt). Since
language L is deterministic, given a fixed instance, our design already satisfies unlinkability by the
zero-knowledge property of NIZK.

Lemma 6.7 (Zero knowledge). Assume that NIZK satisfies zero-knowledge property, then the
above homomorphic NIZK design satisfies zero-knowledge property.

Proof. Given instance (C, b), the proof π by our design is itself a NIZK proof πRt under instance
(C ′

Rt, bRt) where C ′
Rt = C and bRt = b. Thus our design immediately satisfies zero-knowledge

property.

We close the section with the following corollaries, which are immediate by rate-1 NIZK (Corol-
lary 5.7).

Corollary 6.8. Assuming the existence of rate-1 NIZK argument scheme, there exists a homomor-
phic NIZK scheme.

Corollary 6.9. Assuming LWE/DLIN/sub-exponential DDH (and QR), there exists a homomorphic
NIZK scheme.
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7 Rate Preserving Maliciously Secure mrNISC

In this section, we provide the definitions, construction, and analysis of a maliciously secure multi-
party non-interactive secure computation scheme (mrNISC) for n parties using a semi-maliciously
secure mrNISC scheme for n parties and reusable Encrypted RAM Delegation scheme (rEDel) w.r.to
HT.

7.1 Definition

We provide the definitions for a mrNISC scheme for n parties (SC) in the semi-malicious adversary
setting below.

Syntax. A multi-party reusable non-interactive secure computation scheme for n parties (SC)
consists for the following polynomial time algorithms:

Setup(1λ)→ crs. The probabilistic setup algorithm takes as input the security parameter and out-
puts the common random string crs.

InpEnc(crs, id, x; r)→ (x̂, τ). The probabilistic input encoding algorithm takes as input a crs, iden-
tity of the party id, input x, randomness r, and outputs the public encoding of x, x̂ and
trapdoor τ .

FuncEnc(crs, id, f, {x̂idx}idx∈I , τid)→ f̂id. The function encoding algorithm takes as input a crs, iden-
tity of the party id, description of function f , public encodings for all idx ∈ I ⊆ [n], {x̂idx}idx
(id ∈ I), trapdoor for the id-th party τid, and outputs the function encoding for the id-th
party, f̂id.

Eval(f, {f̂id}id∈I , {x̂id}id∈I)→ y. The evaluation algorithm takes as input the function encodings,
{f̂id}id and input encodings {x̂id}id for all id ∈ I, and outputs a value y.

Definition 7.1. An SC scheme for n parties (Setup, InpEnc,FuncEnc,Eval) is required to satisfy
the following properties:

Correctness. For any λ ∈ N, n = n(λ), I ⊆ [n], efficient computation f , we have:

Pr

 f({xid}id∈I) =
Eval(crs, f, {f̂id}id∈I , {x̂id}id∈I)

:

crs← Setup(1λ),
∀id ∈ I, (x̂id, τid)← InpEnc(crs, id, xid; rid),

f̂id ← FuncEnc(crs, id, f, {x̂idx}idx∈I , τid)

 = 1

Static Corruptions, Semi-Malicious, Adaptive Security. For any λ ∈ N, any n = n(λ), any
H ⊆ [n], |H| ≥ 1 and admissible adversary A, there exists a negligible function negl(·) such
that: ∣∣∣Pr [1← ExptC,A0 (1λ)

]
− Pr

[
1← ExptS,A1 (1λ)

]∣∣∣ ≤ negl(λ)

where the definitions of admissible adversary, ExptC,A0 and ExptS,A1 are provided in Figure 2.
If the adversary instead behaves maliciously, we say the scheme is maliciously secure.
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Admissible Adversary. An admissible adversary is a stateful PPT machine that queries
for a single input encoding from all parties (corrupt and honest) and unbounded functional
encodings.

ExptC,A0 (1λ). This is the Real experiment parameterized by an honest challenger C. A submits
the set of honest parties H and receives crs← Setup(1λ) from C. A makes the following queries
in an adaptive manner. After this, A outputs guess b′. Output b′.

• Honest Input Encoding: A sends (id, xid) for id ∈ H and receives x̂id where (x̂id, τid)←
InpEnc(crs, id, xid; rid) for some randomness rid ← {0, 1}λ.

• Corrupt Input Encoding: A sends (id, xid, rid) for id ̸∈ H to C.

• Function Encoding: A sends (id, f, I) for id ∈ H such that input encodings for all
idx ∈ I are queried, and receives f̂id ← FuncEnc(crs, id, f, {x̂idx}idx∈I , τid).

ExptS,A1 (1λ). This is the Ideal experiment parameterized by a stateful simulator S. A submits
the set of honest parties H and receives crs ← S(1λ). A makes the following queries in an
adaptive manner. After this, A outputs guess b′. Output b′.

• Honest Input Encoding: A sends (id, xid) for id ∈ H and receives x̂id where x̂id ←
S(id).

• Corrupt Input Encoding: A sends (id, xid, rid) for id ̸∈ H.

• Function Encoding: A sends (id, f, I) for id ∈ H such that input encodings for all
idx ∈ I are queried. If ∀ idx ∈ I ∩ H, idx ̸= id, function encodings are queried, set
y = f({xid}id∈I). Otherwise, set y = ⊥. Send f̂id ← S(id, f, I, y) to A.

Figure 2: Real and Ideal experiments for security of SMSC

Remark 7.2. A semi-maliciously secure mrNISC scheme’s crs can be empty (or trivial). For
malicious security, mrNISC scheme has to be in the crs model for PPT simulation security.

Remark 7.3 ([BL20, BJKL21, AJJM21, Shi22]). Assuming SXDH/LWE, there exists a mrNISC
scheme for n parties for all efficient functions that is semi-maliciously secure.

7.2 Construction

Let SMSC be a semi-maliciously secure mrNISC scheme. Our high level idea for upgrading it to
a maliciously secure mrNISC scheme SC is that, in addition to the input encodings (commitments
to private inputs), we also generate a private input encoding using rEDel.PrivEnc with the party’s
input x and decommitment information de. Next, in order to generate function encodings for
SC, along with function encodings for SMSC, we must also generate a proof that these encodings
were generated in accordance with SMSC’s function encoding algorithm, using inputs x, de. In
particular, the overview of our design SC looks as follows:

CRS generation. For each party, generate a reusable encrypted RAM delegation crs using rEDel.Setup.
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Input Encoding. For any party, let (x̂, de)← SMSC.InpEnc(x). Then sample (del.πenc, del.aux)←
rEDel. PrivEnc(x, de). Output SC.x̂ = (x̂, del.πenc) and SC.de = del.aux.

Function Encoding. For any party, let f̂ ← SMSC.FuncEnc(f). Then sample del.πedel ← rEDel.Prove
(xpb := (x̂, f̂ ), xpr := del.aux). Output SC.f̂ = (f̂ , del.πedel).

Finally to evaluate f , the evaluator checks that the proofs from all parties verify, and then it
uses the semi-malicious evaluator to learn the output of the computation. In a nutshell, the semi-
malicious security of the underlying mrNISC protocol, and knowledge soundness and input-hiding
property of our reusable encrypted RAM delegation gives a maliciously secure mrNISC protocol.

Of course, as we discussed in the introduction, this direct compiler is only nearly rate-preserving
due to the decommitment information’s dependence on the length of input x. Next, we give our
formal construction that overcomes even this barrier to give a fully rate-1 compiler for maliciously
secure mrNISC. This is accomplished by instead creating an input encoding for a short random
seed for a rate-1 encoding of the input x and then creating the function encoding over a function
g that first extracts x from the rate-1 encoding and then evaluates f . More formally, we have the
following construction:

Construction 7.4 (Malicious SC). Let r1Enc = (Encode,Decode) be a secure rate-1 message
encoding scheme (Definition 2.14) and SMSC = (InpEnc,FuncEnc,Eval), be a semi-maliciously
secure mrNISC scheme (Definition 7.1). Using a reusable encrypted RAM delegation scheme
rEDel = (Setup,PrivEnc, Prove,VerifyEnc,Verify) w.r.to HT for language LSCM,T = {(xpb, xpr, T ) :
MSC(xpb, xpr, T ) = 1} whereMSC is defined in Figure 7.4, we provide the construction of an adap-
tively secure mrNISC scheme SC for n parties for the function f below.

RAM Machine MSC

Public Input: id, f, {x̂idx}idx∈I , f̂id
Private Input: x, r, τ
Output: Output 1 if and only if

– (x̂, τ) = InpEnc(id, x; r).

– f̂id = FuncEnc(id, f, {x̂idx}idx∈I , τ ; r).

Function g

Hardwired: λ, {ρid}id∈I , f
Input: {skid}id∈I

Output:

– ∀id ∈ I, xid = r1Enc.Decode(1λ, ρid, skid).

– Output f({xid}id∈I).

Setup(1λ)→ crs. This probabilistic algorithm samples a reusable encrypted RAM delegation crs for
each id ∈ [n], del.crsid ← rEDel.Setup(1λ, 1ℓpr) where ℓpr is the maximum length of the private
input forMSC across all n parties. Output crs = (del.crsid)id∈[n].

InpEnc(crs, id, x; r)→ (x̂, τ). This probabilistic algorithm parses crs, using del.crsid and does the
following.

1. Sample r′ ← {0, 1}λ. Compute (ρ, sk) = r1Enc.Encode(1λ, x).

2. Sample input encoding for SMSC for sk, (smsc.ŝk, smsc.τ)← SMSC.InpEnc(sk; r′).

3. Compute private encoding from rEDel, (del.ehpr, del.πenc, del.aux)← rEDel.PrivEnc(del.crsid,
(sk, r′, smsc.τ)).
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4. Output x̂ = (ρ, smsc.ŝk, del.ehpr, del.πenc), τ = del.aux.

FuncEnc(crs, id, f, {x̂idx}idx∈I , τid)→ f̂id/⊥. This probabilistic algorithm parses the crs, uses (del.crsidx)idx,
τid as del.auxid, x̂idx as (ρidx, smsc.ŝkidx, del.ehpr,idx, del.πenc,idx) for idx ∈ I, and does the follow-
ing.

1. If for any idx ∈ I, rEDel.VerifyEnc(del.crsidx, del.ehpr,idx, del.πenc,idx) = 0, abort and output
⊥.

2. Otherwise, sample, using SMSC, function encoding for g defined in Figure 7.4. smsc.ĝid ←
SMSC.FuncEnc(id, g, {smsc.ŝkidx}idx, smsc.τid; r

′
id) where smsc.τid, r

′
id are derived from del.auxid.

3. Compute proof, del.πedel,id ← rEDel.Prove(del.crsid, (id, g, {smsc.ŝkidx}idx, smsc.ĝid), del.auxid).

4. Output f̂id = (smsc.ĝid, del.πedel,id).

Eval(crs, f, {x̂id}id∈I , {f̂id}id∈I)→ y/⊥. This algorithm parses the crs, uses (del.crsid)id, for each id ∈
I, x̂id as (ρid, smsc.ŝkid, del.ehpr,id, del.πenc,id), f̂id as (smsc.ĝid, del.πedel,id) and does the following.

1. Construct g and compute for id ∈ I, hpb,id = HT.Hash(ht.hk, id, g, {smsc.ŝkidx}idx∈I , smsc.ĝid).

2. If for any id ∈ I, rEDel.VerifyEnc(del.crsid, del.ehpr,id, del.πenc,id) = 0 or rEDel.Verify(del.crsid,
hpb,id, del.ehpr,id, 1, del.πedel,id) = 0, abort and output ⊥.

3. Output SMSC.Eval(g, {smsc.ŝkid}id, {smsc.ĝid}id).

Theorem 7.5. If SMSC is a semi-maliciously secure mrNISC scheme (Definition 7.1), r1Enc is a
secure rate-1 message encoding scheme (Definition 2.14), and rEDel is a reusable encrypted RAM
delegation scheme w.r.to HT (Definition 3.2) for machineMSC, then Construction 7.4 is a Rate-1
maliciously secure mrNISC scheme.

Proof. We show that Construction 7.4 is correct and efficient as follows:

Correctness. We have that crs = (del.crsidx)idx∈[n], for each id ∈ I,

x̂id = (r1Enc.Encode(1λ, xid), smsc.ŝkid, del.ehpr,id, del.πenc,id, smsc.τid)

f̂id = (SMSC.FuncEnc(id, g, {smsc.ŝkidx}idx∈I , smsc.τid; r
′
id), rEDel.Prove(del.crsid, xpb,id, del.auxid))

where (del.ehpr,id, del.πenc,id, del.auxid)← rEDel.PrivEnc(del.crsid, (skid, r′id, x)) and (smsc.ŝkid, smsc.τid)
← SMSC.InpEnc(skid; r

′
id). By completeness of rEDel,

rEDel.VerifyEnc(del.crsid, del.ehpr,id, del.πenc,id) = 1 and

rEDel.Verify(del.crsid, hpb,id, del.ehpr,id, 1,

rEDel.Prove(del.crsid, id, g, {smsc.ŝkidx}idx, smsc.ĝid, del.auxid)) = 1

By correctness of SMSC, y = g({skid}id∈I) = f({xid}id∈I).
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Efficiency. We prove that our transformation is rate-1 in the input xid for input encoding, and
rate-preserving for function encoding.

Input Encoding. As Kid and r′id are λ-bit strings, length of smsc.ŝkid and smsc.τid is polynomial
in λ. Similarly, the length of del.ehpr,id and del.πenc,id is polynomial in λ. However, ρid is the same
length as xid (i.e, l). Thus x̂id is a rate-1 string and τid is independent of the length of xid.

Function Encoding. Note that the size of the function g, |g| = |f | + poly(λ) where the
polynomial poly(λ) depends on r1Enc. By efficiency of rEDel, we have that size of del.πedel,id is

poly(λ) + poly(log |g|, λ). Hence, the size of f̂id is the size of function encoding of SMSC for g and
some additional polynomial in λ. Thus, the function encoding for f in Construction 7.4 is rate
preserving.

7.3 Security Analysis

Here, we show that Construction 7.4 is secure against malicious adversaries in the static corruptions,
adaptive query setting.

Proof of static corruptions, malicious, adaptive query security. We show that if SMSC, r1Enc
are secure, and rEDel is input-hiding, then Construction 7.4 is a maliciously secure mrNISC scheme.
We define the following hybrids:

hybA0 This is the honest experiment ExptC,A0 with malicious adversary A.

hybA1,j This is the same as hybA0 except that for j ∈ [n + 1], we simulate rEDel instantiations for
the first j − 1 honest parties.

hybA2,j This is the same as hybA1,n+1 except that for j ∈ [n+ 1], we use the extractor rEDel for the
first j − 1 corrupt parties to extract the corrupt party input and randomness. If these values
are not consistent with SMSC function encodings provided by the malicious adversary, abort
and output ⊥.

hybA3 This is the same as hybA2,n+1 except that we simulate all encodings of SMSC for honest parties.

hybA4,j This is same as hybA3 except that for j ∈ [n + 1], we sample random ρid instead of using

r1Enc.Encode for the first j − 1 honest parties. hybA4,n+1 is the description of simulator S.

Let hybAi(,j)(1
λ) denote the output of the experiment hybAi(,j).

Claim 7.6. For every λ ∈ N, any PPT adversary A, Pr
[
1← hybA0 (1

λ)
]
= Pr

[
1← hybA1,1(1

λ)
]
.

Proof. The proof of this claim is immediate from the distributions of hybA0 and hybA1,1.

Claim 7.7. If rEDel is input-hiding, then for any PPT adversary A, for any j ∈ [n], there exists a
negligible function negl(·) such that for every λ ∈ N:∣∣∣Pr [1← hybA1,j(1

λ)
]
− Pr

[
1← hybA1,j+1(1

λ)
]∣∣∣ ≤ negl(λ)
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Proof. Note that if j ∈ H̃ where H̃ = [n] \ H, hybA1,j and hybA1,j+1 are identical. Hence, w.l.o.g

assume j ∈ H. Assuming that there exists an adversary A that can distinguish between hybA1,j and

hybA1,j+1 such that |Pr
[
1← hybA1,j(1

λ)
]
−Pr

[
1← hybA1,j+1(1

λ)
]
| = ϵ(λ) for some non-negligible

function ϵ(·), we construct an adversary Bdel that breaks the input-hiding property of rEDel as
follows:

1. Bdel receives crs from the challenger C. A submits the number of parties n and the set of
honest parties H. If id ∈ H, id < j, sample del.crsid ← rEDel.S(1λ, 1ℓpr). Otherwise if id = j,
set del.crsid = crs. Otherwise, if id > j, sample del.crsid ← rEDel.Setup(1λ, 1ℓpr) in accordance
withMSC. Send (del.crsid)id to A.

2. When A queries for input encoding of (id, xid) for id ∈ H, do the following.

• Sample r′id ← {0, 1}λ. Compute (ρid, skid)← r1Enc.Encode(1λ, xid).

• Compute (smsc.ŝkid, smsc.τid)← SMSC.InpEnc(skid; r
′
id).

• If id < j, sample (del.ehpr,id, del.πenc,id)← rEDel.S(del.crsid, 1|skid|+λ+|smsc.τid|). Otherwise,
if id > j, sample (del.ehpr,id, del.πenc,id, del.auxid)← rEDel.PrivEnc(del.crsid, (skid, rid, smsc.τid)).
Otherwise, if id = j, send (skid, rid, smsc.τid) to C and receive (del.ehpr,id, del.πenc,id).

Send x̂id = (ρid, smsc.ŝkid, del.ehpr,id, del.πenc,id) to A.

3. A submits input encoding for id ∈ H̃, parse x̂id as (ρid, smsc.ŝkid, del.ehpr,id, del.πenc,id). If
rEDel. VerifyEnc(del.crsid, del.ehpr,id, del.πenc,id) = 0, abort and output ⊥.

4. When A queries for function encoding of (id, f, I) for id ∈ I ∩ H, such that all the input
encodings for parties idx ∈ I are known, do the following:

• If for any idx ∈ I ∩ H̃, if rEDel.VerifyEnc(del.crsidx, del.ehpr,idx, del.πenc,idx) = 0, abort and
output ⊥.

• Sample smsc.ĝid ← SMSC.FuncEnc(id, g, {smsc.ŝkidx}idx, smsc.τid; r
′
id).

• If id < j, sample del.πedel,id ← rEDel.S(del.crsid, (id, g, {smsc.ŝkidx}idx, smsc.ĝid), 1). Other-

wise, if id > j, sample del.πedel,id ← rEDel.Prove(del.crsid, (id, g, {smsc.ŝkidx}idx, smsc.ĝid),

del.auxid). Otherwise, if id = j, send ((id, g, {smsc.ŝkidx}idx, smsc.ĝid), 1) to C and receive
del.πedel,id.

Send (smsc.ĝid, del.πedel,id) to A. Here, we use g as described in Figure 7.4.

5. A sends the function encoding for id ∈ I ∩ H̃, such that all the input encodings for idx ∈ I are
known, parse f̂id as (smsc.ĝid, del.πedel,id). If rEDel.Verify(del.crsid, hpb,id, del.ehpr,id, 1, del.πedel,id) =
0, abort and output ⊥ where hpb,id = HT.Hash(ht.hk, id, g, {smsc.x̂idx}idx, smsc.ĝid).

6. Output whatever A outputs.

If C uses rEDel.Setup, rEDel.PrivEnc, and rEDel.Prove (resp. rEDel.S) in the experiment then Bdel
simulates hybA1,j (resp. hybA1,j+1). Thus Bdel has advantage ϵ(λ) in breaking input hiding property
of rEDel.

Claim 7.8. For every λ ∈ N, any PPT adversary A, Pr
[
1← hybA1,n+1(1

λ)
]
= Pr

[
1← hybA2,1(1

λ)
]
.
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Proof. The proof of this claim is immediate from the distributions of hybA1,n+1 and hybA2,1.

Claim 7.9. If rEDel satisfies straight-line extraction, then for any PPT adversary A, any j ∈ [n+1],
there exists a negligible function negl(·) such that for every λ ∈ N, Pr

[
⊥ ← hybA2,j(1

λ)
]
≤ negl(λ).

Proof. Note that if j ∈ H, hybA2,j will not abort as there is no extractor involved in the hy-

brid. Hence, w.l.o.g assume j ∈ H̃. Assuming that there exists an adversary A such that
Pr

[
⊥ ← hybA2,j(1

λ)
]
= ϵ(λ) for some non-negligible function ϵ(·), we construct an adversary Bdel

that breaks the straight-line extraction property of rEDel as follows:

1. Bdel receives crs from the challenger C. A submits the number of parties n and the set
of honest parties H. For each id ∈ [n], if id ∈ H, sample del.crsid ← rEDel.S(1λ, 1ℓpr).
Otherwise if id ∈ H̃ and id < j, sample (del.crsid, del.tdid) ← rEDel.E(1λ, 1ℓpr) in accordance
withMSC. Otherwise if id ∈ H̃, id > j, sample del.crsid ← rEDel.Setup(1λ, 1ℓpr). If id = j, set
del.crsid = crs. Send (del.crsid)id to A.

2. When A queries for input encoding of (id, xid) for id ∈ H, do the following.

• Sample r′id ← {0, 1}λ. Compute (ρid, skid)← r1Enc.Encode(1λ, xid).

• Compute (smsc.ŝkid, smsc.τid)← SMSC.InpEnc(skid; r
′
id).

• Sample (del.ehpr,id, del.πenc,id)← rEDel.S(del.crsid).

Send x̂id = (ρid, smsc.ŝkid, del.ehpr,id, del.πenc,id) to A.

3. A submits input encoding for id ∈ H̃, parse x̂id as (ρid, smsc.ŝkid, del.ehpr,id, del.πenc,id). If
rEDel. VerifyEnc(del.crsid, del.ehpr,id, del.πenc,id) = 0, abort and output ⊥. Otherwise, if id < j,
extract (skid, r

′
id, smsc.τid)← rEDel.E(del.tdid, del.πenc,id). If id = j, send (del.ehpr,id, del.πenc,id)

to C.

4. When A queries for function encoding of (id, f, I) for id ∈ I ∩ H such that all the input
encodings for parties idx ∈ I are known, do the following.

• Sample smsc.ĝid ← SMSC.FuncEnc(id, g, {smsc.ŝkidx}idx, smsc.τid; r
′
id).

• Sample del.πedel,id ← rEDel.S(del.crsid, (id, g, {smsc.ŝkidx}idx, smsc.ĝid), 1).

Send (smsc.ĝid, del.πedel,id) to A. Here, we use g as described in Figure 7.4.

5. A sends the function encoding for id ∈ I ∩ H̃, such that all the input encodings for idx ∈ I
are known, parse f̂id as (smsc.ĝid, del.πedel,id), and do the following:

• Set xpb,id := (id, g, {smsc.ŝkidx}idx, smsc.ĝid) and compute hpb,id = HT.Hash(ht.hk, xpb,id).

• For any id ̸= j, rEDel.Verify(del.crsid, hpb,id, del.ehpr,id, 1, del.πedel,id) = 0 abort and output
⊥.

• If id < j,MSC(xpb,id, (skid, r
′
id, smsc.τid)) = 0, abort and output ⊥.

• Otherwise, if id = j, send (xpb,id, del.πedel,id) to C.

6. Output whatever A outputs.
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Note that Bdel is a valid adversary against the straight-line extractor of rEDel with advantage ϵ(λ)
whenever A can make trigger an abort in hybA2,j(1

λ).

Claim 7.10. If SMSC is a semi-maliciously secure mrNISC scheme, then for any PPT adversary
A, there exists a negligible function negl(·) such that for every λ ∈ N:∣∣∣Pr [1← hybA2,n+1(1

λ)
]
− Pr

[
1← hybA3 (1

λ)
]∣∣∣ ≤ negl(λ)

Proof. Assuming that there exists an adversary A that can distinguish between hybA2,n+1 and hybA3
such that |Pr

[
1← hybA2,n+1(1

λ)
]
−Pr

[
1← hybA3 (1

λ)
]
| = ϵ(λ) for some non-negligible function ϵ(·),

we construct an adversary BSMSC that breaks the security of SMSC as follows:

1. A submits the number of parties n and the set of honest parties H. Send n,H to C. For id ∈
[n], if id ∈ H, sample del.crsid ← rEDel.S(1λ, 1ℓpr). Otherwise, sample (del.crsid, del.tdid) ←
rEDel.E(1λ, 1ℓpr) in accordance withMSC. Send (del.crsid)id to A.

2. When A queries for input encoding of (id, xid) for id ∈ H, do the following.

• Compute (ρid, skid)← r1Enc.Encode(1λ, xid).

• Send (id, skid) to C and receive smsc.ŝkid.

• Sample (del.ehpr,id, del.πenc,id)← rEDel.S(del.crsid).

Send x̂id = (ρid, smsc.ŝkid, del.ehpr,id, del.πenc,id) to A.

3. A submits input encoding for id ∈ H̃, parse x̂id as (ρid, smsc.ŝkid, del.ehpr,id, del.πenc,id). If
rEDel. VerifyEnc(del.crsid, del.ehpr,id, del.πenc,id) = 0, abort and output ⊥. Otherwise, extract
(skid, r

′
id, smsc.τid)← rEDel.E(del.tdid, del.ehpr,id, del.πenc,id). Extract the input for id-th party,

xid = r1Enc. Decode(1λ, ρid, skid). Send (id, skid, r
′
id) to C.

4. When A queries for function encoding of (id, f, I) for honest party id ∈ I such that all the
input encodings for parties idx ∈ I are known, do the following.

• Send (id, g, I) to C to receive smsc.ĝid.

• Sample del.πedel,id ← rEDel.S(del.crsid, (id, g, {smsc.ŝkidx}idx, smsc.ĝid), 1).

Send (smsc.ĝid, del.πedel,id) to A. Here, we use g as described in Figure 7.4.

5. A sends the function encoding for id ∈ I ∩ H̃, such that all the input encodings for idx ∈ I
are known, parse f̂id as (smsc.ĝid, del.πedel,id), and do the following:

• Set xpb,id := (id, g, {smsc.ŝkidx}idx, smsc.ĝid) and compute hpb,id = HT.Hash(ht.hk, xpb,id).

• If rEDel.Verify(del.crsid, hpb,id, del.ehpr,id, 1, del.πedel,id) = 0 orMSC(xpb,id, (skid, r
′
id, smsc.τid)) =

0 abort and output ⊥.

6. Output whatever A outputs.

If C uses SMSC.InpEnc and SMSC.FuncEnc (resp. SMSC.S) in the experiment then BSMSC simulates
hybA2,n+1 (resp. hybA3 ). Thus BSMSC has advantage ϵ(λ) in breaking the security of SMSC.
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Claim 7.11. For every λ ∈ N, any PPT adversary A, Pr
[
1← hybA3 (1

λ)
]
= Pr

[
1← hybA4,1(1

λ)
]
.

Proof. The proof of this claim is immediate from the distributions of hybA3 and hybA4,1.

Claim 7.12. If r1Enc is a secure rate-1 message encoding scheme, then for any PPT adversary A,
for any j ∈ [n], there exists a negligible function negl(·) such that for every λ ∈ N:∣∣∣Pr [1← hybA4,j(1

λ)
]
− Pr

[
1← hybA4,j+1(1

λ)
]∣∣∣ ≤ negl(λ)

Proof. Note that if j ∈ H̃, hybA4,j and hybA4,j+1 are identical. Hence, w.l.o.g assume j ∈ H. As-

suming that there exists an adversary A that can distinguish between hybA4,j and hybA4,j+1 such

that |Pr
[
1← hybA4,j(1

λ)
]
−Pr

[
1← hybA4,j+1(1

λ)
]
| = ϵ(λ) for some non-negligible function ϵ(·), we

construct an adversary Br1Enc that breaks the security of r1Enc as follows:

1. Sample crs similar to hybA3 and send it to A.

2. When A queries for input encoding of (id, xid) for id ∈ H, do the following.

• If id < j, sample ρid ← {0, 1}|xid|. Otherwise if id > j, sample (ρid, skid)← r1Enc(1λ, xid).
Otherwise, if id = j, query the challenger C with xid to receive ρid.

• Perform the rest of the steps same as hybA3 .

3. Perform the rest of the steps same as hybA3 .

If C uses r1Enc.Encode (resp. sampling ρj randomly) in the experiment then Br1Enc simulates hybA4,j
(resp. hybA4,j+1). Thus Br1Enc has advantage ϵ(λ) in breaking the security of r1Enc.

We conclude the section with an explicit restatement of Theorem 7.5.

Theorem 7.13. Assuming the existence of reusable encrypted RAM delegation scheme, rate-1 mes-
sage encoding scheme (implied by pseudorandom functions), non-interactive reusable MPC scheme
that is semi-maliciously secure, there exists a rate preserving (optimal/minimal communication
overhead) non-interactive reusable MPC scheme which is maliciously secure. In addition,

• The transformation achieves rate-1 input encodings from any semi-maliciously secure scheme.

• If the underlying semi-malicious MPC scheme supports unbounded-arity functions / RAM
computations, the transformation supports unbounded-arity functions / RAM computations.

We state the following corollary of Theorems 7.13, 4.2 and Remark 7.3.

Corollary 7.14. Assuming the hardness of LWE and secure rate-1 multi-key fully homomorphic
encryption scheme (mkFHE), there exists a maliciously secure mrNISC scheme for n parties (SC)
such that:

• The size of input encodings of SC is |x|+ poly(λ).

• The size of function encodings of SC is poly(λ, |y|, |I|) where y = f({xid}id∈I). In particular,
function encoding sizes are independent of the function size |f | and input sizes |xid|.
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Proof. We utilize the rate-1 mkFHE scheme (Definition A.3) of [DGMR21] to prove this result. The
main insight is that if we replace our rate-1 message encoding scheme r1Enc in Construction 7.4
with rate-1 mkFHE, the input encodings remain rate-1 in the private inputs xid. We can publish
these ciphertexts and public keys for each party as part of the public input encodings x̂id. We
will use the corresponding secret key as input encoding for SMSC. While computing the function
encodings, we can leverage the homomorphic evaluation property of mkFHE to evaluate the function
f on the ciphertexts present in {x̂id}id∈I to get a rate-1 ciphertext for f({xid}id∈I). We will use a
special circuit that performs mkFHE’s threshold decryption and reconstruction with this ciphertext
hardwired as input the underlying SMSC’s function encoding algorithm.

Thus, the correctness and efficiency of the scheme follow from the correctness of rate-1 mkFHE
and other primitives used in Construction 7.4. Moreover, the security of the scheme flows naturally.
In particular, we change hybA4,j in the security analysis by relying on threshold decryption property
of mkFHE to simulate the ciphertext of honest parties.

8 Multi-Hop zkBARG with Somewhere-Extraction

Composable or multi-hop BARGs were introduced by Devadas et al. [DGKV22] who gave a con-
struction for rate-1 multi-hop seBARG from rate-1 seBARG. Informally, a multi-hop BARG allows
for the composition of multiple BARG proofs (which could themselves be composed BARG proofs)
in a succinct manner. In this section, we extend the notion of a somewhere-extractable zkBARG
to the multi-hop setting, and describe a construction based on a rate-1 seBARG and rate-1 NIZK.
At a high-level, a multi-hop somewhere-extractable zkBARG allows succinct batching of multiple
zkBARGs. The number of hops (i.e., number of times zkBARGs can be successively batched) can
be any polynomial, and the batch size in each hop can be set arbitrarily. Each hop increases the
proof size by an additive poly(λ) factor. Our construction essentially combines the technique of
[DGKV22]—compose proofs by creating a batch argument with the proofs as the witness—and
appends a NIZK proof at the end of each level of composition with the seBARG proof as the wit-
ness. Naturally, the zero-knowledge property follows directly from that of the NIZK, but the key
osbervation is that if the underlying seBARG scheme and the NIZK proof system are rate-1, then
the composed proof is also rate-1. Further, if the seBARG scheme is somewhere-extractable, and
the NIZK proof system is straight-line extractable then one can show, by the process of induction,
that the resulting zkBARG scheme is also somewhere-extractable.

8.1 Definition

Formally, our syntax for multi-hop zkBARG (mzkBARG) follows that of multi-hop seBARG defined
by [DGKV22]. More precisely, in addition to the algorithms of a plain zkBARG, we additionally
require combining algorithm called ComposeProof.

Syntax. A multi-hop zkBARGscheme for an NP language L consists of the following polynomial
time algorithms:

Setup(1λ, d, (i1, . . . , id))→ crs. This is a probabilistic setup algorithm. It takes as input the security
parameter 1λ, the maximum number of hops d ∈ [2λ] (i.e., the number of batch-compositions),
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and a sequence of d extraction indices8 I = (i1, . . . , id) ∈ [2λ]d. It outputs the crs crs which
consists of d strings crs = (crs1, . . . , crsd).

Prove(crs1, (x1, · · · , xk), (w1, . . . , wk))→ π. The poly-time prover algorithm that takes as input crs1
(which is the first string in crs), any (unbounded) number of instance-witness pairs of arbitrary
size9. It runs in time poly

(
λ, (|xi|, |wi|)i∈[k]

)
and outputs a proof π.

ComposeProof
(
(crsi)i∈[d′],

(
X(1), . . . , X(ℓ)

)
,
(
π(1), . . . , π(ℓ)

))
→ π. This proof combiner is a poly-

time algorithm that takes as input the (crs)i∈[d′], a sequence of arbitrarily many instance-

trees X(1), . . . , X(ℓ) (as defined below), of maximal depth d′−1, and corresponding mzkBARG
proofs π(1), . . . , π(ℓ). It outputs a (combined) mzkBARG proof π.

Verify((crsi)i∈[d′], X, π)→ {0, 1}. The poly-time verification algorithm takes as input (crsi)i∈[d′], an
instance-tree X of depth d′, and a (combined) proof π, and outputs 0/1 (corresponding to
reject or accept).

Definition 8.1 (Instance Tree). An instance-tree X is a tree of varying arity, where each leaf
node v is associated with an instance xv, and each intermediate node u corresponds to a mzkBARG
proof that certifies the validity of the sub-tree rooted at u (these mzkBARG proofs are not included
in X).

Following the notation of Devadas et al. [DGKV22], a tree T is comprised of leaves, denoted by
v, associated with a parameter nv = nv(λ). A poly-size tree, is a tree T with at most poly(λ) nodes
and nv = nv(λ) ≤ poly(λ) for every leaf v. For any tree T , we denote by path(T ), the set of all the
possible paths from the root to a leaf in T . An instance-tree X is said to be consistent with T if
X has the exact same tree structure as T and for each leaf v ∈ T the instance (leaf) xv in X is of
size nv. For any instance-tree X that is consistent with some tree T and any (i1, . . . , id) ∈ path(T )
we let Xi1,...,id denote the instance (in the leaf) corresponding to the path (i1, . . . , id). Finally, for
a collecition of instance-trees X(1), . . . , X(ℓ) we denote by

(
X(1), . . . , X(ℓ)

)
the instance-tree that

combines all the ℓ instance-trees X(1), . . . , X(ℓ) by adding a root with arity ℓ, whose i’th child is
the root of X(i).

Definition 8.2. A rate-1 multi-hop somewhere-extractable zkBARG scheme mzkBARG = (Setup,
Prove,ComposeProof,Verify) for an NP language L is required to satisfy the following properties:

Efficiency. For every i ∈ [d], the size of crsi is at most poly(λ), and the size of a (combined) proof
corresponding to an instance-tree X of depth d′ is at most m+ d′ · poly(λ, log |X|), where m
is the maximal witness length of all the leaf instances in X.

Completeness. For any λ ∈ N, any d ∈ [2λ], any instance-tree X of size ≤ 2λ and depth d′ ≤ d,
and any corresponding valid witness W ,

Pr

[
Verify

(
(crsi)i∈[d′], X, π

)
= 1 :

(crsi)i∈[d] ← Setup(1λ, d, (i1, . . . , id)),
π ← Compose

(
(crsi)i∈[d′], X,W

) ]
= 1

where Compose
(
(crsi)i∈[d′], X,W

)
is defined inductively on d′ as follows:

8The j’th extraction index ij is interpreted as saying that, from an accepting zkBARG proof π created via j-
compositions, we can efficiently extract the ij ’th witness, which is itself an accepting zkBARG proof π′ created
via (j − 1)-compositions.

9Note that neither the batch size nor the instance size are fixed at setup time in the multi-hop setting
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• If d′ = 1 then parse X = (x1, . . . , xℓ) and W = (w1 . . . , wℓ) and output

Compose(crs1, X,W ) = Prove(crs1, x1, . . . , xℓ, w1 . . . , wℓ).

• If d′ > 1 then parse X =
(
X(1), . . . , X(ℓ)

)
and W =

(
W (1), . . . ,W (ℓ)

)
, where W (i) is the

witness corresponding to the sub-tree instance X(i). Denote by di the depth of X(i). For
every i ∈ [ℓ] compute by induction

π(i) = Compose
(
(crsj)j∈[di], X

(i),W (i)
)

and output

π = ComposeProof
(
(crsi)i∈[d′], X

(1), . . . , X(ℓ), π(1), . . . , π(ℓ)
)
.

Index hiding. For any poly-size adversary A, any polynomial d = poly(λ), any poly-size tree T of
depth d′ ≤ d, and any sets of indices I0 = (i0,1, . . . , i0,d), I1 = (i1,1, . . . , i1,d) ∈ path(T ), there
exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
A(crs) = b :

b← {0, 1},
crs← Setup(1λ, d, Ib)

]
≤ 1

2
+ negl(λ).

Somewhere argument of knowledge. There exists a stateful PPT extractor E such that for any
poly-size adversary A, there exists a negligible function negl(·) such that for any polynomial
d = poly(λ), any poly-size tree T of depth d′ ≤ d, and any set of indices (i1, . . . , id′) ∈ path(T )
and id′+1 . . . , id ∈ [2λ], for every λ ∈ N,

Pr

 Verify(crs, X, π) = 1
∧ X is consistent with T
∧ W ∗ is not a valid witness for Xi1,...,id′ ∈ L

:
(crs, td)← E(1λ, d, (i1, . . . , id))
(X,π)← A(crs)
W ∗ ← E (td, X, π)

 ≤ negl(λ).

Zero-knowledge. There exist PPT simulators S = (S1,S2,S3) sharing state-information for any
poly-size adversary A, there exists a negligible function negl(·) such that for any polynomial
d = poly(λ), any poly-size tree T of depth d′ ≤ d, and any set of indices (i1, . . . , id′) ∈ path(T )
and id′+1 . . . , id ∈ [2λ], for every λ ∈ N,∣∣∣∣∣ Pr

[
1← AProve(crs,·,·),ComposeProof(crs,·,·)(crs) : crs← Setup(1λ, d, (i1, . . . , id))

]
−Pr

[
1← AOS2 (crs1,·,·),OS3 (crs,·,·)(crs) : crs← S1(1λ, d)

] ∣∣∣∣∣ ≤ negl(λ)

where OS2((x1, · · · , xk), (w1, . . . , wk)) outputs S2(x1, . . . , xk) if for every i ∈ [k], wi is a
valid witness for xi ∈ L and ⊥ otherwise; and OS3

((
X(1), . . . , X(ℓ)

)
,
(
π(1), . . . , π(ℓ)

))
out-

puts S3
(
X(1), . . . , X(ℓ)

)
if for every i ∈ [k], Verify

(
(crsi)i∈[di], X

(i), π(i)
)
= 1 and ⊥ otherwise;

8.2 Construction

We now give a construction for rate-1 multi-hop somewhere-extractable zkBARG from any rate-1
seBARG and a rate-1 NIZK. Our multi-hop zkBARG construction, denoted mzkBARG, for some NP
language L uses the single-hop seBARG primitive, denoted s-seBARG, for the language L′ containing
L. Essentially, an s-seBARG is an seBARG where the number of instances and the input length
are not a priori bounded. The existence of s-seBARG was shown by [DGKV22] and we recall their
construction next.
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Single-hop seBARG. A single-hop seBARG is a seBARG where the number of batched instances
k, and the input length n can be determined when batching the arguments. The construction
of s-seBARG from a regular seBARG follows from the observation made in [DGKV22] that (i)
one can always pad inputs of unequal length; and more importantly, (ii) it is possible to run
the setup algorithm for zkBARG, which grows only polylogarithmically in k and n, once for each
k, n ∈ {2i}i∈[λ] and allow the prover to choose the appropriate crs based on the actual k and n.

Multi-hop zkBARG. We will now use an s-seBARG for the language L′ and NIZK for the language
L′′. Here, any instance in L′ is an instance-tree X of some depth d′, along with (crsi)i∈[d′] (if d

′ = 0
then there is no crs associated with the instance) and a valid witness is a valid aggregated proof
corresponding to (crsi)i∈[d′] (where if d

′ = 0 then a valid proof is simply a valid witness corresponding
to L); and any instance of L′′ is the input to the s-seBARG.Verify circuit, and the witness is the
corresponding s-seBARG proof.

Setup(1λ, d, I)→ crs. Parse I = (i1, . . . , id) and for every j ∈ [d], sample barg.crsj ← s-seBARG.Setup(1λ, ij)
and nizk.crsj ← NIZK.Setup(1λ). Finally, output crs = (nizk.crsj , barg.crsj)j∈[d].

Prove(crs1, (x1, . . . , xk), (w1, . . . , wk))→ π. Parse crs1 as nizk.crs1 and barg.crs1. Compute

barg.π ← s-seBARG.Prove(barg.crs1, (x1, . . . , xk), (w1, . . . , wk))

and output,

nizk.π ← NIZK.Prove(nizk.crs1, (barg.crs1, (x1, . . . , xk)), barg.π)

as the proof π.

ComposeProof
(
crs,

(
X(1), . . . , X(ℓ)

)
,
(
π(1), . . . , π(ℓ)

))
→ π. For every i ∈ [ℓ], denote by di the depth

of X(i) and let d′ = max{di} + 1. If d′ > d then the abort. Otherwise, parse crs =
((nizk.crs1, barg.crs1), . . . , (nizk.crsd′ , barg.crsd′ , . . .)) and compute

barg.π ← s-seBARG.Prove

(
barg.crsd′ ,

(
(barg.crsj)j∈[di], X

(i)
)
i∈[ℓ]

,
(
π(i)

)
i∈[ℓ]

)
where a valid witness corresponding to

(
(barg.crsj)j∈[di], X

(i)
)
∈ L′ is π(i) such that

Verify
(
(barg.crsj)j∈[di], X

(i), π(i)
)
= 1

where if di = 0 then Verify
(
⊥, X(i), π(i)

)
= 1 if and only if π(i) is a valid witness for X(i) ∈ L.

Finally, output

nizk.π ← NIZK.Prove

(
nizk.crsd′ ,

(
barg.crsd′ ,

(
(barg.crsj)j∈[di], X

(i)
)
i∈[ℓ]

)
, barg.π

)
as the proof π.

58



Verify(crs, X, π)→ 0/1. Parsing X =
(
X(1), . . . , X(ℓ)

)
, let di ∈ [d] be the depth of the instance-tree

X(i). If d′ ̸= max{di}i[ℓ] + 1 then output 0. Otherwise parse crs = ((nizk.crs1, barg.crs1), . . . ,
(nizk.crsd′ , barg.crsd′ , . . .)) and then output

NIZK.Verify

(
nizk.crsd′ ,

(
barg.crsd′ ,

(
(barg.crsj)j∈[di], X

(i)
)
i∈[ℓ]

)
, π

)
Theorem 8.3. If s-seBARG is a rate-1 single-hop seBARG and NIZK is a rate-1 NIZK scheme
(with straight-line extraction) then Construction 8.2 is a rate-1 multi-hop somewhere extractable
zkBARG scheme.

Lemma 8.4 (Completeness). If s-seBARG and NIZK are complete, then Construction 8.2 is com-
plete.

Proof. This follows directly from the construction.

Lemma 8.5 (Efficiency). If s-seBARG and NIZK are rate-1, then Construction 8.2 is rate-1.

Proof. This follows directly from the construction.

8.3 Security Analysis

Lemma 8.6 (Index hiding). If s-seBARG is index hiding, then Construction 8.2 is index hiding.

Proof. This follows directly from the construction.

Lemma 8.7 (Somewhere argument of knowledge). If s-seBARG is somewhere argument of knowl-
edge and NIZK is straight-line extractable, then Construction 8.2 is somewhere argument of knowl-
edge.

Proof. Let s-seBARG.E (resp. NIZK.E) denote the PPT extractor corresponding to the underlying
s-seBARG (resp. NIZK) scheme. We define an extractor E that given (td, X, π) does the following:

1. Parse td = ((nizk.td1, barg.td1), . . . , (nizk.tdd, barg.tdd)) and for j ∈ [d], let each barg.tdj con-
sist of index ij . We also assume w.l.o.g. that each nizk.tdj implicitly contains nizk.crsi<j

(similarly for barg.tdj).

2. Parse X =
(
X(1), . . . , X(ℓ)

)
, and let d′ denote the depth of X.

3. For every j ∈ [d′] we denote by dj the depth of X(id′ ,...,id′−j+1), the subtree of X obtained by
going down from the root on the path (id′ , . . . , id′−j+1). Let j∗ ∈ [d′] be the smallest index
such that dj = 0 for for every j ≥ j∗ (i.e., j∗ is the length of the path (id′ , . . . , i1) in X until
we reach a leaf).

4. Run the NIZK extractor to compute

barg.π(id′ ) ← NIZK.E
(
nizk.tdd′ ,

(
X(1), . . . , X(ℓ)

)
, π

)
.
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5. Then, run the s-seBARG extractor to compute

π(id′ ) ← s-seBARG.E
(
barg.tdd′ ,

(
X(1), . . . , X(ℓ)

)
, barg.π(id′ )

)
.

Intuitively, if π is a valid mzkBARG proof for X then with overwhelming probability π(id′ ) is
a valid mzkBARG proof for the instance-tree X(id′ ).

6. For every j ∈ [j∗− 1] parse X(id′ ,...,id′−j+1) =
(
X(1), . . . , X(ℓj)

)
, and then inductively compute

(starting with j = 1)

barg.π(id′−j) ← NIZK.E
(
nizk.tddj ,

(
X(1), . . . , X(ℓj)

)
, π(id′ ,...,id′−j+1)

)
.

and,

π(id′ ,...,id′−j) ← s-seBARG.E
(
barg.tddj ,

(
X(1), . . . , X(ℓj)

)
, barg.π(id′ ,...,id′−j)

)
7. Output W ∗ = π(id′ ,...,id′−j∗+1).

Now, fix any PPT adversary A and any polynomial d = poly(λ). We will argue by induction
that for every d′ ≤ d there exists a negligible function µd′ , such that for any poly-size tree T of
depth d′, and any set of indices (i1, . . . , id′) ∈ path(T ) and id′+1 . . . , id ∈ [2λ] it holds that for every
λ ∈ N,

Pr

 Verify((crsj)j∈[d′], X, π) = 1

∧ X is consistent with T
∧ W ∗ is not a valid witness for Xi1,...,id′ ∈ L

:
(crs, td)← E(1λ, d, (i1, . . . , id))
(X,π)← A(crs)
W ∗ ← E (td, X, π)

 ≤ µd′(λ).

(13)

Base case: d′ = 1: Let us define the following two types of possible PPT adversaries:

Type 1. For this type of adversary, the following probability is non-negligible,

Pr

 Verify(crs1, (x1, . . . , xk), π) = 1 ∧
Verify(crs1, (x1, . . . , xk), barg.π) ̸= 1

:

(crs, td)← E(1λ, d, (i1, . . . , id))
((x1, . . . , xk), π)← A(crs)
barg.π ← NIZK.E (nizk.td1, (x1, . . . , xk), π)
w∗ ← s-seBARG.E(td1, (x1, . . . , xk), barg.π)
parse crs = (crs1, . . . , crsd)

 (14)

Then, we give a reduction BNIZK.E that breaks straight-line extraction of NIZK as follows:

1. On receiving crs from the challenger, BNIZK.E sets nizk.crs1 = crs.

2. It then generates the rest of the crs honestly and sends it to the type 1 adversary.

3. Finally it outputs whatever the adversary outputs.

It is clear that if the type 1 adversary has non-negligible probability for (14), then BNIZK.E
breaks straight-line extraction of NIZK with the same probability.
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Type 2. For this type of adversary, the following probability is non-negligible,

Pr


Verify(crs1, (x1, . . . , xk), π) = 1 ∧
Verify(crs1, (x1, . . . , xk), barg.π) = 1
∧ w∗ is not a valid witness for xi1 ∈ L

:

(crs, td)← E(1λ, d, (i1, . . . , id))
((x1, . . . , xk), π)← A(crs)
barg.π ← NIZK.E (nizk.td1, (x1, . . . , xk), π)
w∗ ← s-seBARG.E(td1, (x1, . . . , xk), barg.π)
parse crs = (crs1, . . . , crsd)


(15)

Then, we give a reduction BseBARG.E that breaks somewhere argument of knowledge of seBARG
as follows:

1. On receiving crs from the challenger, BseBARG.E sets barg.crs1 = crs.

2. It then generates the rest of the crs honestly and sends it to the type 2 adversary.

3. On receiving ((x1, . . . , xk), π) from the adversary, it runs the NIZK extractor, to obtain barg.π.

4. It then outputs ((x1, . . . , xk), barg.π).

It is clear that if the type 2 adversary has non-negligible probability for (15), then BseBARG.E
breaks somewhere argument of knowledge of the underlying seBARG scheme with the same proba-
bility.

Intermediate step: Before proceeding with the induction step, we must first show that there
exists a negligible function ν such that for every λ ∈ N,

Pr


Verify((crsj)j∈[d′], X, π) = 1 ∧
X is consistent with T ∧(

Verify
(
(crsj)j∈[d1], X

(id′ ), barg.π(id′ )
)
̸= 1

∨ Verify
(
(crsj)j∈[d1], X

(id′ ), π(id′ )
)
̸= 1

) :

(crs, td)← E(1λ, d, (i1, . . . , id))
(X,π)← A(crs)
barg.π(id′ ) ← NIZK.E (nizk.tdd′ , X, π)

π(id′ ) ← s-seBARG.E
(
tdd′ , X, barg.π(id′ )

)
parse crs = (crs1, . . . , crsd)

 ≤ ν(λ).

(16)
Let us again define two types of possible PPT adversaries:

Type 1. For this type of adversary, the following probability is non-negligible,

Pr


Verify((crsj)j∈[d′], X, π) = 1 ∧
X is consistent with T ∧
Verify

(
(crsj)j∈[d1], X

(id′ ), barg.π(id′ )
)
̸= 1

:

(crs, td)← E(1λ, d, (i1, . . . , id))
(X,π)← A(crs)
barg.π(id′ ) ← NIZK.E (nizk.tdd′ , X, π)

π(id′ ) ← s-seBARG.E
(
tdd′ , X, barg.π(id′ )

)
parse crs = (crs1, . . . , crsd)


(17)

Then, we give a reduction BNIZK.E that breaks straight-line extraction of NIZK as follows:

1. On receiving crs from the challenger, BNIZK.E sets nizk.crsd′ = crs.
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2. It then generates the rest of the crs honestly and sends it to the type 1 adversary.

3. Finally it outputs whatever the adversary outputs.

It is clear that if the type 1 adversary has non-negligible probability for (17), then BNIZK.E
breaks straight-line extraction of NIZK with the same probability.

Type 2. For this type of adversary, the following probability is non-negligible,

Pr


Verify((crsj)j∈[d′], X, π) = 1 ∧
X is consistent with T ∧
Verify

(
(crsj)j∈[d1], X

(id′ ), barg.π(id′ )
)
̸= 1

∧ Verify
(
(crsj)j∈[d1], X

(id′ ), π(id′ )
)
̸= 1

:

(crs, td)← E(1λ, d, (i1, . . . , id))
(X,π)← A(crs)
barg.π(id′ ) ← NIZK.E (nizk.tdd′ , X, π)

π(id′ ) ← s-seBARG.E
(
tdd′ , X, barg.π(id′ )

)
parse crs = (crs1, . . . , crsd)


(18)

Then, we give a reduction BseBARG.E that breaks somewhere argument of knowledge of seBARG
as follows:

1. On receiving crs from the challenger, BseBARG.E sets barg.crsd′ = crs.

2. It then generates the rest of the crs honestly and sends it to the type 2 adversary.

3. On receiving (X,π) from the adversary, it runs the NIZK extractor, to obtain barg.π(id′ ).

4. It then outputs
(
X, barg.π(id′ )

)
.

It is clear that if the type 2 adversary has non-negligible probability for (18), then BseBARG.E
breaks somewhere argument of knowledge of the underlying seBARG scheme with the same proba-
bility.

Induction step: Now, suppose that Equation (13) holds for every j < d′ and we prove that it
holds for d′. To that end, consider the poly-size adversary A′ that given crs does the following:

1. Parse crs = ((nizk.crs1, barg.crs1) , . . . , (nizk.crsd, barg.crsd)).

2. Generate (barg.crs∗, barg.td∗)← s-seBARG.E(1λ, id′) and (nizk.crs∗, nizk.td∗)← NIZK.E(1λ).

3. Let crs∗ = ((nizk.crs1, barg.crs1), . . . , (nizk.crsd′−1, barg.crsd′−1), (nizk.crs
∗, barg.crs∗), (nizk.crsd′+1, barg.crsd′+1),

. . . , (nizk.crsd, barg.crsd)).

4. Compute (X,π)← A(crs∗).

5. Compute barg.π(id′ ) ← NIZK.E (nizk.td∗, X, π) and π(id′ ) ← s-seBARG.E
(
tdd′ , X, barg.π(id′ )

)
.

6. Output
(
X(id′ ), π(id′ )

)
.
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By the induction hypothesis there exists a negligible function µ such that for every λ ∈ N,

Pr

 Verify
(
(crsj)j∈[d1], X

(id′ ), π(id′ )
)
= 1

∧ X(id′ ) is consistent with T (id′ )

∧ Verify
(
(crsj)j∈[d2], X

(id′ ,id′−1), π(id′ ,id′−1)
)
̸= 1

:

(crs, td)← E(1λ, d, (i1, . . . , id))(
X(id′ ), π(id′ )

)
← A′(crs)

π(id′ ,id′−1) ← E
(
td∗, X(id′ ), π(id′ )

)
 ≤ µ(λ).

This, together with Equation (16), implies the induction step (i.e., Equation (13)).

Lemma 8.8 (Zero-knowledge). If NIZK satisfies zero-knowledge, then Construction 8.2 satisfies

Proof. We define the following hybrids:

hybA0 This is the original zero-knowledge experiment described in Definition 8.2.

hybA1 This is same as hyb0 except that we use NIZK.S to simulate NIZK instantiation. This is the
description of the simulator S.

Let hybAi (1
λ) denote the output of the experiment hybAi .

Claim 8.9. If NIZK satisfies zero-knowledge, then there exists a negligible function negl(·) such
that for every λ ∈ N: ∣∣∣Pr [1← hybA0 (1

λ)
]
− Pr

[
1← hybA1 (1

λ)
]∣∣∣ ≤ negl(λ)

Proof. This follows directly from the zero-knowledge property of NIZK.

Corollary 8.10. Assuming the hardness of LWE, or DLIN, or sub-exponential DDH (and QR)
assumptions, there exists a rate-1 multi-hop somewhere-extractable zkBARG scheme.

9 Publicly-Verifiable Succinct Delegation of Committed Programs

In this section, we show that reusable encrypted RAM delegation implies a stronger variant of
publicly-verifiable succinct delegation of committed programs introduced by Ghosal et al. [GSW23]
for fixed programs. The problem of sDel considers the scenario where a client delegates the compu-
tation of its program to a server, so that a third-party user, holding a commitment to the client’s
program, can later request the server for the output said program on some public input. Impor-
tantly, the third-party user need not trust the server is additionally required to provide a proof of
correct computation with respect to the committed program.

As we explain below, our sDel construction satisfies a stronger notion soundness as well as
straight-line extraction. The stronger soundness property is essentially the no-equivocation prop-
erty for rEDel proofs, namely that an adversary cannot furnish proofs of contradictory outputs for
the same committed program. Moreover, our construction directly yields the zero-knowledge ver-
sion of sDel, called zksDel where the verifier does not learn anything about the committed program.
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9.1 Definition

We recall the syntax of zksDel given in [GSW23], with a mild modification. Specifically, instead
of a “program authoring” algorithm ProgAuth that outputs the program and its commitment, we
consider the program to be the input to an encoding algorithm that outputs the commitment and
some auxiliary information. This separates the logic of the program from the algorithm generating
its commitment and allows us to define a delegation scheme with respect to a program.

Syntax. A zksDel scheme with respect to a program P ∈ {0, 1}m consists of the following poly-
nomial time algorithms:

Setup(1λ, n, 1m, T )→ crs. This is a probabilistic setup algorithm. It takes as input the security
parameter 1λ, the input length n to the program, the size m of the program, the maximum
runtime T of the program and outputs a common reference string crs.

ProgEnc(crs, P )→ (cP , aux). The poly-time program encoding algorithm that takes as input crs
and the program P ∈ {0, 1}m, m ≤ 2λ ∈ N . It outputs a commitment cP to P and some
auxiliary information aux, which includes P itself.

Prove(crs, x, aux)→ (y, π). The poly-time prover algorithm that takes as input crs, some program
input x ∈ {0, 1}n and some auxiliary information aux. It outputs a value y ∈ {0, 1} and a
proof π.

Verify(crs, x, y, cP , π)→ {0, 1}. The poly-time verification algorithm takes as input crs, some pro-
gram input x, a program output y, commitment cP and the proof π. It outputs either 1
(accept) or 0 (reject).

Definition 9.1. A zksDel scheme zksDel = (Setup,ProgEnc,Prove,Verify) is required to satisfy the
following properties:

Completeness. For any λ, n,m ∈ N, for all x ∈ {0, 1}n and for all P ∈ {0, 1}m such that
n,m < 2λ,

Pr

 P (x) = y ∧ Verify (crs, x, y, cP , π) = 1 :
crs← Setup(1λ, n, 1m, T ),
(cP , aux)← ProgEnc(crs, P ),
(y, π)← Prove(crs, x, aux)

 = 1

Efficiency. For the completeness experiment above,

• Setup’s running time and the size of the crs are poly(λ, log T, log n,m).

• The size of cP is poly(λ,m).

• Prover’s running time is poly(λ, T, n,m).

• The size of π is poly(λ, log T, log n, logm).

• The Verifier’s running time is poly(λ, log T, log n,m).
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ExptC,A0 (1λ, n, 1m, T ). This is the Real experiment parameterized by an honest challenger C.
A receives crs ← Setup(1λ, n, 1m, T ) from C. A makes the following queries in an adaptive
manner. After this, A outputs guess b′. Output b′.

• Program Encoding: A sends program P of length m and runtime T , and receives
(cP , i) where (cP , auxi)← ProgEnc(crs, P ) and i is an index that after each query of this
type is incremented.

• Prove: A sends (x, i) and receives (y, π) where (y, π)← Prove(crs, x, auxi) and y = P (x)
(for P corresponding to i).

ExptS,A1 (1λ, n, 1m, T ). This is the Ideal experiment parameterized by a stateful simulator S.
A receives crs← S(1λ, n, 1m, T ) from C. A makes the following queries in an adaptive manner.
After this, A outputs guess b′. Output b′.

• Program Encoding: A sends program P of lengthm and runtime T , and receives (cP , i)
where cP ← S(crs) and i is an index that after each query of this type is incremented.

• Prove: A sends (x, i), and receives (y, π) where (y, π)← S(crs, x) and y = P (x) (for P
corresponding to i), otherwise, receives ⊥.

Figure 3: Real and Ideal experiments for the zero-knowledge property of the succinct delegation of
scheme for committed programs.

Zero-knowledge. There exists a poly-time stateful simulator S such that for any poly-time ad-
versary A, there is a negligible function negl(·) such that for all λ, n,m ∈ N with n,m ≤ 2λ:∣∣∣Pr [1← ExptC,A0 (1λ, 1n, 1m)

]
− Pr

[
1← ExptS,A1 (1λ, 1n, 1m)

]∣∣∣ ≤ negl(λ)

where definitions of ExptC,A0 and ExptS,A1 are provided in Figure 3.

Straight-line Extraction. There exists a PPT extractor E such that for any stateful poly-size
adversary A, there exists a negligible function negl(·) such that for λ ∈ N

Pr

 P ∗(x) ̸= y ∧ Verify (crs, x, y, cP , π) = 1 :

(n,m, T )← A(1λ)
crs← E(1λ, n, 1m, T )
(cP , x, y, π)← A(crs)
P ∗ ← E(cP )

 ≤ negl(λ).

such that crs1 ← E(1λ, n, 1m, T ) and crs2 ← Setup(1λ, n, 1m, T ) are indistinguishable.

Strong Soundness. For any stateful PPT adversary A, there is a negligible function negl(·) such
that for all λ ∈ N:

Pr

 Verify(crs, x, 0, cP , π
(0)) = 1

∧ Verify(crs, x, 1, cP , π
(1)) = 1

:

(n,m, T )← A(1λ),
crs← Setup(1λ, npb, 1

npr , S, T )

(cP , x, π
(0), π(1))← A(crs)

 ≤ negl(λ) .

65



We note that the aforementioned straight-line extraction property implies the following weaker
property given in [GSW23]:

Soundness. For any stateful poly-size adversary A, there exists a negligible function negl(·) such
that for λ, n,m ∈ N with n = n(λ) and m = m(λ), and every P ∈ {0, 1}m,

Pr

 P (x) ̸= y ∧ Verify (crs, x, y, cP , π) = 1 :
crs← Setup(1λ)
(cP , aux)← ProgEnc(crs, P )
(x, y, π)← A(crs, cP , aux)

 ≤ negl(λ).

9.2 Construction

We now give a construction for zksDel for program P from rEDel for the RAM machineMP defined
as below, and associated with a hash tree HT with hash key ht.hk.

RAM Machine MP

Public Input: x ∈ {0, 1}n
Private Input: P ∈ {0, 1}m
Output: y ∈ {0, 1} such that y = P (x).

Figure 4: RAM Machine for program P

Setup(1λ, n, 1m, T )→ crs. Sample crs← rEDel.Setup(1λ, n, 1m, T ) and output it.

ProgEnc(crs, P )→ (cP , aux). Generate (ehP , πP , aux) ← rEDel.PrivEnc(crs, P ), where aux = (P, r),
and output cP = (ehP , πP ) and aux.

Prove(crs, x, aux)→ (y, π). Compute (y, π)← rEDel.Prove(crs, x, aux) and output (y, π).

Verify(crs, x, y, cP , π)→ {0, 1}. Parse cP as (ehP , πP ), compute the hash h ← HT.Hash(ht.hk, x)
and output

rEDel.VerifyEnc(crs, ehP , πP ) ∧ rEDel.Verify(crs, h, ehP , y, π) .

Theorem 9.2. If rEDel for MP is secure resuable encrypted RAM delegation scheme then Con-
struction 9.2 is a secure publicly-verifiable zero-knowledge succinct delegation of committed pro-
grams scheme for the program P .

Proof. We show that Construction 9.2 satisfies all desired properties.

Completeness. This follows directly from completeness of rEDel forMP .

Efficiency. This follows directly from the efficiency of rEDel forMP .

Zero-knowledge. It follows by construction that if rEDel is input-hiding, then Construction 9.2
is zero-knowledge.
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Straight-line Extraction. It follows by construction that if rEDel is an straight-line extractable,
then Construction 9.2 is also straight-line extractable.

Strong Soundness. It follows by construction that if rEDel is srongly sound, then Construc-
tion 9.2 is also strongly sound.
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A Additional Definitions

In this section we provide additional pre-requisite definitions used in this work.

A.1 Somewhere Extractable Hash Families

In what follows we recall the definition of a somewhere extractable (SEH) hash family based on
prior works [HW15, OPWW15].

Syntax. A somewhere extractable hash family SEH consists of the following polynomial time
algorithms:

Gen(1λ, N, I)→ (hk, td). This is a probabilistic setup algorithm that takes as input a security
parameter 1λ in unary, a message length N , and a subset I ⊆ [N ]. It outputs a hash key hk.

Hash(hk, x)→ v. This is a deterministic algorithm that takes as input a hash key hk generated by
Gen(1λ, N, I) and an input x ∈ {0, 1}N , and outputs a hash value v ∈ {0, 1}|I|·poly(λ).

Open(hk, x, S)→ ((bj)j∈S , ρ). This is a deterministic algorithm that takes as input a hash key hk
generated by Gen(1λ, N, I), an input x ∈ {0, 1}N and set of indices S ⊆ [N ], outputs bits bj
for j ∈ S and an opening ρ ∈ {0, 1}≤|I|·|S|·poly(λ,logN).

Verify(hk, v, S, (bj)j∈S , ρ)→ 0/1. This is a deterministic algorithm that takes as input a hash key
hk generated by Gen(1λ, N, I), a hash value v ∈ {0, 1}|I|·poly(λ,logN), set of indices S ⊆ [N ], a
sequence of bits bj for j ∈ S and an opening ρ ∈ {0, 1}≤|I|·|S|·poly(λ,logN), and outputs 0 or 1.

Extract(td, v)→ (b∗j )j∈I . This is a deterministic extraction algorithm that takes as input the trap-

door td generated by Gen(1λ, N, I), a hash value v ∈ {0, 1}|I|·poly(λ,logN), and outputs extracted
sequence of bits (bj)j∈I .

Definition A.1 (SEH). A somewhere extractable hash family SEH = (Gen,Hash,Open,Verify,Extract)
is required to satisfy the following properties:

Efficiency. The size of the hash key hk and the hash value v is at most |I| · poly(λ, logN).

Index Hiding. For any PPT adversary A, any polynomial N = N(λ), and any I0, I1 ⊆ [N ] such
that |I0| = |I1|, there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
b← A(hk) : b← {0, 1}

(hk, td)← Gen(1λ, N, Ib)

]
≤ 1

2
+ negl(λ),

Opening Completeness. For any λ ∈ N, any N ≤ 2λ, any subset I ⊆ [N ], any index j ∈ [N ],
and any x ∈ {0, 1}N ,

Pr

 ∀ j ∈ S, bj = xj
∧ Verify(hk, v, S, (bj)j∈S , ρ) = 1

:
(hk, td)← Gen(1λ, N, I),
v = Hash(hk, x),
((bj)j∈S , ρ) = Open(hk, x, S),

 = 1.
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Somewhere Statistically Binding w.r.to Opening. For any λ ∈ N, any N ≤ 2λ, any subset
I ⊆ [N ], and any (all powerful) adversary A, there exists a negligible function negl(·) such
that for every λ ∈ N,

Pr

 Verify(hk, v, I, (bj)j∈I , ρ) = 1
∧ bj ̸= b∗j , for any j ∈ I

:

(hk, td)← Gen(1λ, N, I),
(v, (bj)j∈I , ρ)← A(hk),
(b∗j )j∈I = Extract(td, v)

 ≤ negl(λ).

Remark A.2 ([KLVW23, HW15, OPWW15]). Assuming the hardness of QR/DCR/DDH/LWE/k-LIN,
there exists an SEH family.

A.2 Rate-1 Multi-Key Fully Homomorphic Encryption

We provide the syntax and definitions for a multi-key fully homomorphic encryption (mkFHE) for
message spaceM = {Mλ}λ used in our mrNISC constructions.

Syntax. A multi-key fully homomorphic encryption scheme (mkFHE) consists of the following
polynomial-time algorithms.

Setup(1λ)→ PP. The probabilistic setup algorithm takes as input the security parameter λ and
outputs the public parameters PP. The following algorithms take PP as an implicit parameters
unless mentioned.

KeyGen(PP)→ (pk, sk). The probabilistic key generation algorithm takes as input the public pa-
rameters PP and outputs the public and secret key pair (pk, sk).

Enc(pk,m)→ ct. The probabilistic encryption algorithm takes as input the public key pk, (multi-
bit) message m ∈Mλ, and outputs the ciphertext ct.

Eval(pk1, . . . , pkn, f, ct1, . . . , ctℓ)→ c̃t. The probabilistic evaluation algorithm takes as input the
public keys for n parties {pkid}id∈[n], the description of the function f , ciphertexts {cti}i∈[ℓ],
and outputs the evaluated ciphertext c̃t.

Dec(sk1, . . . , skn, c̃t)→ y. The deterministic decryption algorithm takes as input secret keys for n
parties {skid}id∈[n], an evaluated ciphertext ct, and outputs the value y.

PartDec(id, skid, c̃t)→ sh. The deterministic partial decryption algorithm takes as input the secret
key of the id-th party, skid, evaluated ciphertext c̃t, and outputs decryption share sh.

Recon({shid}id∈[n])→ y. The deterministic reconstruction algorithm takes as input decryption shares
of all the parties and outputs the value y.

Definition A.3 (mkFHE). An mkFHE scheme (Setup,KeyGen,Enc,Eval,Dec,PartDec,Recon) for
message spaceMλ, is required to satisfy the following properties:

Multi-Hop Correctness. For any λ ∈ N, n = n(λ), x, x1, . . . , xn ∈Mλ, and n-ary P/Poly circuit
f :

Pr

 x = Dec(sk, ct) :
PP← Setup(1λ),
(pk, sk)← KeyGen(PP),
ct← Enc(pk, x)

 = 1
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Pr

 f(x1, . . . , xn) =
Dec(sk1, . . . , skn, c̃t)

:

PP← Setup(1λ),
∀ id ∈ [n], (pkid, skid)← KeyGen(PP),
∀ id ∈ [ℓ], ctid ← Enc(pkid, xid),
c̃t = Eval(pk1, . . . , pkn, f, ct1, . . . , ctℓ)

 = 1

Efficiency. For any λ ∈ N , n = n(λ), x1, . . . , xn ∈Mλ, and n-ary P/Poly circuit f :

|f(x1, . . . , xn)|
|c̃t|

= 1− o(1)

where PP ← Setup(1λ), ∀ id ∈ [n], (pkid, skid) ← KeyGen(PP), ctid ← Enc(pkid, xid), c̃t =
Eval(pk1, . . . , pkn, f, ct1, . . . , ctℓ).

Semantic Security. For any stateful PPT adversary A, there exists a negligible function negl(λ)
such that ∀ λ ∈ N,∣∣∣Pr [1← AEnc(pk,·)(1λ, pk)

]
− Pr

[
1← AEnc(pk,0)(1λ, pk)

]∣∣∣ ≤ negl(λ)

where PP← Setup(1λ), (pk, sk)← KeyGen(PP).

Threshold Decryption. There exists a PPT simulator S such that for any H ⊆ [n], |H| < n,
∀ λ ∈ N,

{PartDec(id, skid, c̃t)}id∈H ≈s S(y, c̃t, H, {skid}id∈[n]\H)

where ≈s denotes statistical indistinguishability.

Remark A.4 ([DGMR21]). Assuming the hardness of LWE with sub-exponential modulus-to-
noise ratio and circular security, there exists a rate-1 mkFHE scheme for all P/Poly circuits and
M = {0, 1}∗.

B RAM Delegation with Split Configuration

In this section, we state and provide a short proof of a property of RAM Delegation that [CJJ22b,
KLVW23] satisfies implicitly. We show that the RAM delegation of [CJJ22b, KLVW23] can be
done when the configuration is hashed into multiple hash values and can be verified using these
multiple hash values. One advantage of this approach as we demonstrate is that the running time
of the prover of RAM delegation scheme can be dependent only on the portion of the configuration
it uses as work tape (which of polynomial-size computations, is polynomial).

We require an additional property from the collision resistant hash family as building block: for
HT.Hash (ht.hk, 0∗), the output value h = 0λ+1. This can be achieved using any collision resistant
hash tree HT. Using HT we can define a “punctured” hashing algorithm as follows:

Hash(ht.hk, x)→ h. If x is an all-zero string, output h = 0λ+1. Otherwise, output h = 1 ∥
HT.Hash(ht.hk, x).

As remarked in [CG24], completeness and collision resistance follow from HT. One useful
implication of this “punctured” hash evaluation is that the RAM machine need not worry about
the part of configuration which is not needed. Hence, when we start with an all zero configuration,
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we need not provide the hash values for all the configurations as they are a string of zeros anyway.
Thus, the running time of RAM machine only grows polynomially in the size of the work tape it
uses depending on the number partitions specified and hash values changed. We provide a RAM
delegation construction that obeys Definition 2.17 which splits the configuration into n parts below.

B.1 RAM Delegation Construction

We provide the construction of RAM delegation in accordance with Definition 2.17 as follows. We
remark that L̃ (specified below) is the language for Batch Index Circuit-SAT and CM doesn’t
require the entire description of M hardwired. As shown by Choudhuri et al. [CJJ22b], a state
transition circuit which ensures that transition between sti−1 and sti are consistent with M’s de-
scription is sufficient. For the sake of brevity, we ignore this technical subtlety in the construction.
In addition, since we are using batch arguments for index languages and the statements are clear
from the context, we avoid repeating the index statements as input to the batch argument’s algo-
rithms. However, we will add the language circuit to the inputs of the batch argument’s algorithms
as it will help with the analysis.

Construction B.1 (RAM Delegation). Let SEH = (Gen,Hash,Open,Verify,Extract) be a some-
where extractable hash family (Definition A.1), HT = (Gen,Hash,Open,Write,VerifyRead,VerifyWrite)
be a hash tree, seBARG = (Setup,Prove,Verify) be a (publicly-verifiable, non-interactive) batch ar-
gument scheme for the language L̃ = {CM : ∃ wi such that CM(i, wi) = 1, ∀ i ∈ [k]} where CM

is defined in Figure 5. We provide the construction of a RAM delegation scheme for machine M
with strong soundness below.

Description of circuit CM

Hardwired: T, S, seh.hk0, seh.hk1, ht.hk, h∗0, v
0, v1, out

Instance: i
Witness: wi = (ŵi−1, ρ

0
i−1, ρ

1
i−1, ŵi, ρ

0
i , ρ

1
i , brd,i, ℓrd,i, ji, urd,i, oprd,i, bwr,i, ℓwr,i, j

′
i, uwr,i, opwr,i)

Output: Output 1 if and only if all of these checks pass.

1. Parse ŵi−1 = (sti−1, hi−1), and ŵi = (sti, hi).

2. If i = 1, check that st0 is the initial state. Also, check h0 = h∗0.

3. If i = T , check that stT is accepting/rejecting state based on out = 1/0 respectively.

4. SEH.Verify
(
seh.hk0, v0, Ii−1, ŵi−1, ρ

0
i−1

) ?
= 1 and SEH.Verify

(
seh.hk1, v1, Ii−1, ŵi−1, ρ

1
i−1

) ?
= 1.

5. SEH.Verify
(
seh.hk0, v0, Ii, ŵi, ρ

0
i

) ?
= 1 and SEH.Verify

(
seh.hk1, v1, Ii, ŵi, ρ

1
i

) ?
= 1.

6. M in sti−1 should read from ℓrd,i and write bwr,i to ℓwr,i and transitions to sti. In addition, ji, j
′
i ∈ [n]

are partitions that accommodate indices ℓrd,i and ℓwr,i respectively.

7. urd,i
?
= ℓrd,i −

(
S(1) + . . .+ S(ji−1)

)
and uwr,i

?
= ℓwr,i −

(
S(1) + . . .+ S(j′i−1)

)
.

8. HT.VerifyRead(ht.hk, h
(ji)
i−1, urd,i, brd,i, oprd,i)

?
= 1.

9. HT.VerifyWrite(ht.hk, h
(j′i)
i−1, uwr,i, bwr,i, h

(j′i)
i , opwr,i)

?
= 1.

Figure 5: Circuit for verifying RAM configuration transition.
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Setup(1λ, T, S)→ crs. The probabilistic setup algorithm takes as input the security parameter,
a vector of split sizes S =

(
S(1), . . . , S(n)

)
, running time T for machine M, and does the

following.

1. Sample two SEH hash keys, seh.hk0, seh.hk1 ← SEH.Gen(1λ,m·(T+1), I1) wherem = |ŵi|
(later specified in Prove) and Ii = {(i− 1) ·m+ 1, . . . , i ·m} for i ∈ [T ].

2. Sample crs for seBARG, barg.crs← seBARG.Setup
(
1λ, T, 1|C

M|, 1
)
.

3. Sample a HT hash key, ht.hk← HT.Gen(1λ).

Output crs =
(
T, S, seh.hk0, seh.hk1, barg.crs, ht.hk

)
.

Digest(crs, x)→ h. The deterministic digest algorithm parses crs, uses ht.hk, parses x as
(
x(1), . . . , x(n)

)
,

such that
∣∣x(j)∣∣ = S(j) for each j ∈ [n], computes h(j) = HT.Hash

(
ht.hk, x(j)

)
, and outputs

h =
(
h(1), . . . , h(n)

)
.

Prove(crs, cf0)→ (out, π). The probabilistic prover algorithm parses crs as (T, S, seh.hk0, seh.hk1, barg.crs,
ht.hk) and does the following.

1. Let out denote the output, ((st1, cf1), . . . , (stT , cfT )) denote the states and configurations
resultant from running M(cf0, T ), where cfi for i ∈ [0, T ] includes the input and work
tape.

2. For each i ∈ [0, T ], let hi = Digest(crs, cfi).

3. For each i ∈ [T ]:

• Let ℓrd,i, ℓwr,i denote the location that M reads from, writes to memory when it
is in state sti−1. Let ℓrd,i, ℓwr,i belong to some partitions indexed by ji, j

′
i ∈ [n]

respectively.

• Let urd,i denote the index of ℓrd,i in the partition ji. That is urd,i = ℓrd,i−
(
S(1) + . . .+ S(ji−1)

)
.

Similarly, calculate uwr,i.

• Compute (brd,i, oprd,i) = HT.Open
(
ht.hk, x

(ji)
i−1, urd,i

)
and

(
h̃
(j′i)
i , opwr,i

)
= HT.Write(

ht.hk, x
(j′i)
i−1, uwr,i, bwr,i

)
where x

(ji)
i−1 and x

(j′i)
i−1 are the ji-th and j′i-th partitions of

cfi−1.

4. For i ∈ [0, T ], set ŵi := (sti, hi).

5. Let ŵ = (ŵi)i∈[0,T ], compute v0 = SEH.Hash(seh.hk0, ŵ), v1 = SEH.Hash(seh.hk1, ŵ).

6. For i ∈ [0, T ], let (ŵi, ρ
0
i ) = SEH.Open(seh.hk0, ŵ, Ii), (ŵi, ρ

1
i ) = SEH.Open(seh.hk1, ŵ, Ii).

7. For i ∈ [T ], let wi := (ŵi−1, ρ
0
i−1, ρ

1
i−1, ŵi, ρ

0
i , ρ

1
i , brd,i, ℓrd,i, ji, urd,i, oprd,i, bwr,i, ℓwr,i, j

′
i, uwr,i, opwr,i).

8. Let barg.π ← seBARG.Prove
(
barg.crs, CM, (wi)i∈[T ]

)
.

9. Set π := (v0, v1, barg.π) and output (out, π).

Verify(crs, h∗0, out, π)→ 0/1. The deterministic verification algorithm parses crs as (T, S, seh.hk0, seh.hk1,
barg.crs, ht.hk), parses π as (v0, v1, barg.π), and outputs seBARG.Verify

(
barg.crs, CM, barg.π

)
.
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Theorem B.2. If SEH is a secure somewhere extractable hash family (Definition A.1), HT is a
sound hash tree (Definition 2.6), and seBARG is a secure somewhere extractable batch argument
scheme for language L̃ (Definition 2.1), then Construction B.1 is a RAM delegation scheme for
machineM w.r.to HT that satisfies strong soundness.

Proof. We show that Construction B.1 is correct, efficient, and collision resistant as follows:

Completeness. Completeness of RAM delegation scheme follows from the completeness of HT,
seBARG, and opening completeness of SEH.

Efficiency. Assuming that HT,SEH, seBARG are efficient, the RAM delegation scheme satisfies
the following properties:

1. Sizes of the crs and proof π are poly(λ, n, log T ).

2. Running time of Setup is poly(λ, n, log T ).

3. Running time of Digest is poly(n, λ) and the size of digest is poly(n, λ).

4. Running time of Prove is poly(λ, T, n).

5. Running time of Verify is poly(λ, n, log T ).

Collision Resistance. It is easy to see that if HT is collision resistant, then so is the RAM
delegation scheme. If there exists an adversary that can produce two configurations cf, cf ′ that
break collision resistance with non-negligible probability ϵ, then note that there is at least one
partition indexed by j ∈ [n] such that the j-th partition of cf is not equal to the j-th partition
of cf ′. We can reduce this adversary to an adversary that breaks the collision resistance of HT by
using this x(j) with ϵ probability.

B.2 Security Analysis

Here, we show that Construction B.1 is secure against PPT adversaries. We provide a sketch of the
proof and it is easy to see that full proof follows from [CJJ22b, KLVW23].

Proof of strong soundness. We show that if HT satisfies reading and writing soundness, SEH satis-
fies index-hiding, straight-line extraction, and seBARG satisfies index-hiding and somewhere extrac-
tion, then Construction B.1 satisfies strong soundness. Assume towards a contradiction that there
exists a PPT adversary A that can break the strong soundness property with some non-negligible
probability ϵ(λ) as defined in Definition 2.17 for T = T (λ), n = n(λ), S(λ) = S = (S(1), . . . , S(n)).
In other words,

Pr

[
∀ b ∈ {0, 1}, seBARG.Verify(barg.crs, Cb, barg.πb) = 1 :

crs← Setup(1λ, T, S),
(h0, π0, π1)← A(crs)

]
= ϵ(λ)

where Cb is CM (Figure 5) with out = b. In what follows, we will assume that Setupk is the same
as Setup except that we use k, Ik, Ik+1 for k ∈ [T ] in seBARG.Setup, β-th SEH.Gen, and (1− β)-th
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SEH.Gen respectively where β = (k − 1) mod 2. By index-hiding property of SEH, seBARG, there
exists a negligible function µ(·) such that for any PPT adversary A, λ ∈ N and k ∈ [T ],

Pr

[
∀ b ∈ {0, 1},
seBARG.Verify(barg.crs, Cb, barg.πb) = 1

:
crs← Setupk(1

λ, T, S),
(h0, π0, π1)← A(crs)

]
≥ ϵ(λ)− µ(λ)

Now, we proceed to inductively argue for k that there exists a negligible function ζ(·) such that for
any PPT adversary A, k ∈ [T ], λ ∈ N,

Pr


∀ b ∈ {0, 1},
seBARG.Verify
(barg.crs, Cb, barg.πb) = 1∧
ŵ0,k = ŵ1,k

:

crs← Setupk(1
λ, T, S),

(h0, π0, π1)← A(crs)
∀ b ∈ {0, 1},
ŵb,k ← SEH.Extract(seh.tdβ, vβb )

 ≥ ϵ(λ)− k · ζ(λ) (19)

where β ≡ (k − 1) mod 2. When k = T , Equation 19 claims that an accepting state and rejecting
configurations are identical with non-negligible probability which is a contradiction. Hence, we will
prove by induction on k that above equation holds.

Base Case. We need to start from ŵb,0, however, since the Setupk is only defined for k ≥ 1, for
the base case we just consider k = 1 for setup and extract ŵ0,0 and ŵ1,0 from SEH. This holds as
there is a unique starting hash value h0 and starting state st0.

Induction. Assume that Equation 19 holds for k. Now, we will switch to using seBARG.E instead
of normal instantiation. By somewhere extraction property of seBARG, there exists a negligible
function ν(·) such that for any PPT adversary A, k ∈ [T ], λ ∈ N,

Pr


ŵ0,k = ŵ1,k ∧
∀ b ∈ {0, 1},
seBARG.Verify
(barg.crs, Cb, barg.πb) = 1
∧ Cb(k,wb,k) = 1

:

crs← Setupk(1
λ, T, S),

(h0, π0, π1)← A(crs)
∀ b ∈ {0, 1},
wb,k ← seBARG.E(barg.td, Cb, barg.πb),

ŵb,k ← SEH.Extract(seh.tdβ, vβb )


≥ ϵ(λ)− k · ζ(λ)− ν(λ)

Parse wb,k to find stb,k−1, stb,k, hb,k−1, hb,k. Next we additionally extract from (1 − β)-th
instantiation SEH and by assuming the somewhere statistical binding property of SEH, there exists
a negligible function ν1(·) such that for any λ ∈ N,

Pr



ŵ0,k = ŵ1,k ∧
∀ b ∈ {0, 1},
seBARG.Verify
(barg.crs, Cb, barg.πb) = 1
∧ Cb(k,wb,k) = 1 ∧
ŵb,k = (stb,k, hb,k) ∧
ŵb,k+1 = (stb,k+1, hb,k+1)

:

crs← Setupk(1
λ, T, S),

(h0, π0, π1)← A(crs)
∀ b ∈ {0, 1},
wb,k ← seBARG.E(barg.td, Cb, barg.πb),

ŵb,k ← SEH.Extract(seh.tdβ, vβb ),

ŵb,k+1 ← SEH.Extract(seh.td1−β, v1−β
b )


≥ ϵ(λ)− k · ζ(λ)− ν(λ)− ν1(λ)
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By relying on the reading soundness and writing soundness of HT, we can see that there exists a
negligible function ν2(·) such that for any PPT adversary A, λ ∈ N,

Pr


ŵ0,k+1 = ŵ1,k+1 ∧
∀ b ∈ {0, 1},
seBARG.Verify
(barg.crs, Cb, barg.πb) = 1

:

crs← Setupk(1
λ, T, S),

(h0, π0, π1)← A(crs)
∀ b ∈ {0, 1},
wb,k ← seBARG.E(barg.td, Cb, barg.πb),

ŵb,k ← SEH.Extract(seh.tdβ, vβb ),

ŵb,k+1 ← SEH.Extract(seh.td1−β, v1−β
b )


≥ ϵ(λ)− k · ζ(λ)− ν(λ)− ν1(λ)− ν2(λ)

Now, we will stop extracting using seBARG and β-th SEH and instead extract them on k + 1 and
Ik+2 respectively. By the index hiding properties of seBARG and SEH, there exists a negligible
function ν3(·) such th for any PPT A, λ ∈ N,

Pr


ŵ0,k+1 = ŵ1,k+1 ∧
∀ b ∈ {0, 1},
seBARG.Verify
(barg.crs, Cb, barg.πb) = 1

:

crs← Setupk+1(1
λ, T, S),

(h0, π0, π1)← A(crs)
∀ b ∈ {0, 1},
ŵb,k+1 ← SEH.Extract(seh.td1−β, v1−β

b )


≥ ϵ(λ)− k · ζ(λ)− ν(λ)− ν1(λ)− ν2(λ)− ν3(λ)

Note that (1 − β) ≡ ((k + 1) − 1) mod 2. By setting ζ(λ) = ν(λ) +
∑3

l=1 νl(λ), we prove the
induction step as desired.
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