
1

Improved ML-DSA Hardware Implementation With
First Order Masking Countermeasure

Kamal Raj, Prasanna Ravi, Tee Kiah Chia, Anupam Chattopadhyay

Abstract—We present the protected hardware implementation
of the Module-Lattice-Based Digital Signature Standard (ML-
DSA). ML-DSA is an extension of Dilithium 3.1, which is the win-
ner of the Post Quantum Cryptography (PQC) competition in the
digital signature category. The proposed design is based on the
existing high-performance Dilithium 3.1 design. We implemented
existing Dilithium masking gadgets in hardware, which were only
implemented in software. The masking gadgets are integrated
with the unprotected ML-DSA design and functional verification
of the complete design is verified with the Known Answer
Tests(KATs) generated from ML-DSA reference software. We
also present the practical power side-channel attack experimental
results by implementing masking gadgets on the standard side-
channel evaluation FPGA board and collecting power traces
up-to 1 million traces. The proposed protected design has the
overhead of 1.127× LUT, 1.2× Flip-Flop, and 378× execution
time compared to unprotected design. The experimental results
show that it resists side-channel attacks.

Index Terms—Post Quantum Cryptography, ML-DSA, Hard-
ware Implementation, Masking, Side-Channel Attack, Security

I. INTRODUCTION

A huge amount of data is exchanged between various
devices through wired or wireless communication channels.
Most of the data is exchanged over the public channel,
which is vulnerable to various threats and also has privacy
concerns. The cryptographic ciphers protect sensitive data
from the attacker and solve the problem of security and privacy
concerns [1]. The underlying method to protect data over
public channels is a mathematical hard problem that can’t be
solved by the modern computer unless the adversary has the
information about the secret key, which encrypts or decrypts
the secret messages.

There are two types of cryptosystems, symmetric key and
asymmetric key cryptosystems both have their benefits. For
example, symmetric cryptosystems have the benefit of less
computational cost while secret key sharing is the biggest issue
while asymmetric cryptosystems have the benefit of no secret
key sharing but has more computational cost. In practice, both
symmetric and asymmetric cryptosystems are used to balance
the computational cost by using asymmetric cryptosystems for
authentication and key encapsulation over public channels and
using symmetric cryptosystems for encrypting or decryption
the secret messages [2].

Kamal Raj and Tee Kiah Chia are with Temasek Laboratories @ Nanyang
Technological University, Singapore 639798 (email: kamalraj@ieee.org,
tkchia@ntu.edu.sg)

Prasanna Ravi and Anupam Chattopadhyay are with College of Computing
and Data Science, Nanyang Technological University, Singapore 639798.
(email: prasanna.ravi@ntu.edu.sg, anupam@ntu.edu.sg)

However, asymmetric cryptosystems pose a major security
threat to quantum computers because of Shor’s algorithms that
can solve the current public key cryptosystem’s hard problem
in polynomial time with the quantum computer [3]. The
National Institute of Standard and Technology (NIST) started a
competition called Post Quantum Cryptography (PQC) which
aims to develop cryptosystems that are quantum-safe, which
means the algorithms that are hard for classical as well
as quantum computers and also provides long-term secu-
rity. These PQC cryptosystems are implemented in classical
computers but at the same time, they also provide security
from quantum computer threats. Although PQC algorithms are
quantum-safe, it has some issues compared to non-quantum-
safe cryptosystems like larger key size, and most importantly,
they are not studied rigorously for side-channel attack threat.

There are both software and hardware implementation PQC
algorithms are available in the literature but we choose hard-
ware implementation to study side-channel attack threats. A
cryptosystem implemented in hardware can give high-speed
computation of the cryptographic algorithms. For example,
authors in [4] have implemented PQC candidate Dilithium
on FPGA SoC which achieved about 40× better performance
compared to software-only implementation. Authors in [5]
implemented AES on 22nm Tri-gate CMOS which gives a
throughput of 289 Gbps which is significantly large compared
to its software-only implementation. Also, the computational
extensive part of the cryptosystem can be implemented in
hardware and added to the instruction set architecture which
increases the performance of the cryptosystem in software.
For example, Intel added six instructions in the processor to
improve Advanced Encryption Standard (AES) performance
in software [6].

Although hardware implementation of cryptosystesms pro-
vide better performance, it has the threat of extracting se-
cret information through side-channel attack techniques like
power side-channel attack [7], timing side-channel attacks
[8] etc. These attacks can recover secret information from
the system running with the cryptographic algorithm. Hence,
it is important that it is protected from side-channel attack
countermeasure.

Module-Lattice-Based Digital Signature Standard or ML-
DSA [9] is the extension of Dilithium 3.1 [10] recently
standardized by NIST. However, it also has a threat from
side-channel attacks. For example, authors in [11] presented
the power side-channel attack on Dilithium targeting the
randomness leakage in the signature generation algorithm and
recovered secret information from Dilithium level 3 using
10,000 power traces within half an hour.

2

There are various hardware designs of Dilithium are avail-
able in the literature. However, these designs are not protected
with the side-channel attack countermeasure which can lead
to the extraction of secret information through leakage con-
cerning security and privacy issues. At present, there is a lack
of protected hardware implementation of Dilithium or ML-
DSA which motivates us to implement side-channel attack
countermeasures to protect ML-DSA for long-term security.

In this paper, the implementation of masking counter-
measures for ML-DSA hardware design, the challenges of
implementing it in hardware, and its effect on side-channel
attack resistance, area, and performance are presented. The
main contributions are as follows:

1) Existing hardware implementation, Dilithium 3.1 imple-
mented by the authors in [12], is updated to the final
ML-DSA standard, and its functionality is verified using
Known Answer Tests (KATs) generated from the official
ML-DSA software implementation.

2) Masking gadgets proposed by the authors in [13] to
mask entire signature generation algorithm are imple-
mented in hardware which is then integrated with ML-
DSA design. The masked implementation is also verified
with the same Known Answer Tests (KATs).

3) The proposed protected ML-DSA design has an over-
head of 1.127× LUT, 1.2× Flip-Flop, and 378× execu-
tion time compared to the high-performance unprotected
ML-DSA hardware design.

4) Side-Channel attack experiments are performed to evalu-
ate proposed protected ML-DSA hardware. We collected
up to 1 million traces for each module and t-test result
shows that it doesn’t leak side-channel information.

This paper is organized as follows. Section II present
the background on existing hardware implementation, Side-
Channel attack and its countermeasures of Dilithium algo-
rithms. Section III briefly present the internal algorithms of
ML-DSA and masking gadgets for ML-DSA. Section IV
present the proposed hardware implementation of masked ML-
DSA signature generation. Section V present the experimental
results and Section VI concludes the paper.

II. BACKGROUND

Modular Lattice-Based Digital Signature Standard (ML-
DSA) [9] is a lattice-based post-quantum cryptography (PQC)
digital signature algorithm, recently standardized by the Na-
tional Institute of Standard and Technology (NIST) as FIPS
204. It is an extension of Dilithium Version 3.1 [10] which is
the winner of the NIST PQC competition in the digital signa-
ture scheme. The initial public draft of ML-DSA was finalized
to the final ML-DSA standard on 13th August 2024 with
minor changes to the initial draft. The authors of Dilithium
3.1 also published a reference software implementation of ML-
DSA which is available in public. This implementation also
includes, ML-DSA implemented with AVX2 instruction set
and implementation tests like Known Answer Tests (KATs).

A. Dilithium Hardware Implementation
Although there is no official Dilithium or ML-DSA hard-

ware implementation available from authors of Dilithium,

authors in [12] present high-performance hardware implemen-
tation of Dilithium 3.1 which is available in the public repos-
itory. It is a high-performance design that uses multiple cores
of different hardware modules to increase the performance of
the design. More details about this implementation are given in
Section IV. There are also other hardware designs of Dilithium
3.1 available in the literature which are given below.

Authors in [14] have presented a lightweight hardware
implementation of Dilithium 3.1. It uses various methods to
optimize the design which includes efficient implementation
of modular reduction module, implementation of pipeline
architecture, and hardware resource sharing. They also use
this hardware design as an accelerator for the Zynq processing
system by integrating the core design of Dilithium with the
Zynq processing system using the AXI interface. Authors
in [4] have presented the Dilithium hardware implemented
on the FPGA SoC platform. The authors use the hardware-
software co-design method to implement Dilithium on the SoC
platform. Those computations that are expensive for software
are implemented in hardware like polynomial multiplication,
expandmask, SampleInBall. The high-level design is then
integrated with the processer using AXI interface.

Authors in [15] have presented the hardware implementation
of a crypto-processor that is targeted for accelerating opera-
tions in Dilithium algorithms. The authors implemented low
latency NTT butterfly using the Karatsuba algorithm which is
embedded in the NTT module. The crypto-processor is de-
signed in such a way that one object (256-degree polynomial)
is processed in each instruction enabling computation of par-
allel data resulting in speeding up the execution time. Authors
in [16] presented a unified crypto-processor for lattice-based
post-quantum cryptography Kyber and Dilithium. The authors
targeted polynomial multiplication design to optimize the de-
sign. The sampling unit that samples pseudo-random numbers
from the KECCAK module is customized for Dilithium and
Kyber.

B. Side-Channel Attack and Countermeasure

Since ML-DSA is a digital signature algorithm, some of its
variables are public and can be skipped for masking and some
variables are sensitive and need to be protected because if they
are leaked, they can help attackers to compute secret parts. The
first variable in the signing algorithm is y, which needs to be
protected since attackers can compute coefficients of s1 from
z = y + cs1, because z and c are public. The variable y is
generated pseudo-randomly from the seed (ρ) and a nonce.

Authors in [11] have presented a practical Side-Channel
attack on Dilithium signature generation by targeting y vari-
able and they recommend that the entire Dilithium signa-
ture generation must be protected including pseudo-random
number. To protect the Dilithium from side-channel attack,
masked Dilithium is proposed by the authors in [13] and [17].
Authors in [13] have not provided any software and hardware
implementation but presented the practical result of a Side-
Channel attack on their proposed algorithm. Authors in [17]
have not provided any practical results but they have provided
C program implementation of their proposed algorithm. We

3

use the masking gadget proposed by the authors in [13] to
implement protected ML-DSA hardware design.

III. ALGORITHM DESCRIPTION

All the notations used in this section are as per the no-
tations used in the FIPS-204 document [9]. ML-DSA has
three internal algorithms that are key generation, signature
generation, and signature verification. It is divided into three
categories, category 2 (ML-DSA-44), category 3 (ML-DSA-
65), and category 5 (ML-DSA-87). The parameter set of
different categories is given in TABLE I.

TABLE I
ML-DSA PARAMETER SET [9]

Parameter ML-DSA-44 ML-DSA-65 ML-DSA-87
Public key size 2560 1312 2420
Private key size 4032 1952 3309
Signature size 4896 2592 4627
γ1 217 219 219

γ2 (q-1)/88 (q1-/32) (q-1)/32
(k, l) (4, 4) (6, 5) (8, 7)
η 2 4 2
β 78 196 120

A. Key Generation

The key generation algorithm (Algorithm 1) generates a
public key and a secret key pair using a random 32-bit seed ξ.
This seed is expanded to to generate other seeds ρ, ρ′and K.
ρ is expanded using the XOF function to pseudo-randomly
sampling matrix A which is then stored in NTT representation.
ρ′ is expanded to sample s1 and s2 in the range [−η, η]. After
expanding A, s1 and s2, t = As1 + s2 which is a public
value. K is stored as it is and it is used in the signature
generation algorithm. The public key is then packed which
is byte encoding of t1 and ρ. Then hash of the public key is
computed and it is packed with other secret key variables.

Algorithm 1 Key Generation
Input: Seed ξ ∈ B32

Output: Public Key(pk) and Private Key(sk)
1: (ρ, ρ′,K) ∈ B32 × B64 × B32 ← H(ξ||κ||l)
2: Â← ExpandA(ρ)
3: (s1, s2)← ExpandS(ρ′)
4: t← NTT−1(Â ◦NTT (s1)) + s2
5: (t1, t2)← Power2Round(t)
6: pk ← pkEncode(ρ, t1)
7: tr ← H(pk, 64)
8: sk ← skEncode(ρ,K, tr, s1, s2, t0)

B. Signature Generation

Signature generation algorithm takes message M ′ which is
message M padded with the contextual message, and secret
key (sk) as input and generate the signature. The signature
generation algorithm is shown in Algorithm 2. First, the secret
key is decoded to get the seed and other variables. Then s1,

s2, and t0 are converted to NTT domain. ρ is expanded to
sample matrix A which is then converted to NTT domain.
Other seed ρ′′ is computed which is expanded to sample y.
From y, it computes w = Ay. w1 nd µ and hashed to gen c̃.
The signature z is computed as z = y + cs1.

Algorithm 2 Signature Generation
Input: (sk,M ′, rnd)
Output: Signature σ

1: (ρ,K, tr, s1, s2, t0)← skDecode(sk)
2: ŝ1 ← NTT(s1)
3: ŝ2 ← NTT(s2)
4: t̂0 ← NTT(t0)
5: Â← ExpandA(ρ)
6: µ← H(BytesToBits(tr)||M ′, 64)
7: ρ′′ ← H(K||rnd||µ, 64)
8: κ← 0
9: (z, h)←⊥

10: while (z, h) =⊥ do
11: y ∈ Rl

q ← ExpandMask(ρ′′, κ)

12: w ← NTT (−1)(Â ◦NTT (y))
13: c̃← H(µ||w1Encode(w1), λ/4)
14: c ∈ Rq ← SampleInBall(c̃)
15: c̃← NTT (c)
16: ⟨⟨cs1⟩⟩ ← NTT−1(ĉ ◦ ŝ1)
17: ⟨⟨cs2⟩⟩ ← NTT−1(ĉ ◦ ŝ2)
18: z ← y + ⟨⟨cs1⟩⟩
19: r0 ← LowBits(w − ⟨⟨cs2⟩⟩)
20: if ||z||∞ ≥ γ1 − βor||ro||∞ ≥ γ2 − βthen(z, h) ←⊥

then
21: else
22: ⟨⟨cto⟩⟩ ← NTT−1(ĉ ◦ t̂0)
23: h←MakeHint(−⟨⟨ct0⟩⟩, w− ⟨⟨cs2⟩⟩+ ⟨⟨ct0⟩⟩)
24: end if
25: end while
26: σ ← sigEncode(c̃, z, h)

After signature generation, validity check is performed and
if validity check is failed, the signature generation continue the
rejection sampling. If the validity is passed, hint is computed
and it is encoded with final signature.

C. Signature Verification

The signature verification takes message M ′ and public key
and generates a boolean output. If the output is true then
the signature is valid else signature is invalid. The signature
verification algorithm is given in Algorithm 3. First, the
signature is decoded and if lengths are not as per defined
value, it generates an invalid output. If decoding returns valid,
signature verification continues by first expanding the seed ρ to
sample matrix A which is then stored in NTT representation.
Then it samples challenge and computes W′

approx = Az−ct1.
It uses signer’s hint to obtain w′

1 form W′
approx. Finally, it

checks whether response z and hint are valid or not. If all
succeeds, it returns true otherwise it returns false.

4

Algorithm 3 Signature Verification
Input: (pk,M ′, σ)
Output: Boolean

1: (ρ, t1)← pkDecode(pk)
2: (c̃, z, h)← sigDecode(σ)
3: if h =⊥ then return false
4: end if
5: Â← ExpandA(ρ)
6: tr ← H(pk, 64)
7: µ← (H(BytesToBits(tr)||M ′, 64))
8: c← Rq ← SampleInBall(c̃)
9: w′

Approx ← NTT−1(A◦NTT (z)−NTT (c)◦NTT (t1 ◦
2d))

10: w′
1 ← UseHint(h,w′

Approx)
11: c̃′ ← H(µ||w1Encode(w′

1), λ/4)
12: return[[||z||∞ < γ1 − β]]and[[c̃ = c̃′]]

D. Masking Gadgets

The higher-order masking gadget algorithms form authors
in [13] is used in the proposed protected ML-DSA design.
Although they used these gadgets to protect Dilithium from
side-channel attack but it can also be used for masking ML-
DSA since the internal algorithms of ML-DSA is similar to
Dilithium algorithms [9]. The masking is basically splitting the
sensitive variables into shares such that combining the shares
give the original value. The masking applies for boolean values
such that (b1⊕b2⊕ . . .⊕bn = b) where b is the original value.
It applies for arithmetic value such that (a1 + a2 + . . .+ an)
mod q = a, where a is the original value.

The ML-DSA algorithms use both arithmetic and boolean
values. Hence conversion from boolean to arithmetic and
arithmetic to boolean is required to mask ML-DSA. The
authors have proposed an efficient gadgets ShiftMod which
is the base component in masking Dilithium [13]. They also
provided boolean to arithmetic conversion algorithms which
is used in Dilithium expandMask and decompose. There are
three functions where masking is used which are expandMask,
decompose and rejection sampling. In ML-DSA, these func-
tions are the same as Dilithium hence these gadgets are also
applicable to masking ML-DSA.

IV. PROPOSED HARDWARE IMPLEMENTATION

The proposed design is based on existing Dilithium
3.1 design from the authors in [12]. The source code
of this design which includes the implementation of key-
pair generation, signature generation, signature verification
and KATs are available online in a GitHub repository
https://github.com/GMUCERG/Dilithium.

The design exchanges data using 64-bit input-output ports.
The authors have provided the Verilog testbench with the
hardware implementation, which demonstrates how the data is
exchanged. Other than the 64-bit port, there are more input and
output ports like sec level input port (2,3 and 5 are the valid
inputs) for setting Dilithium security level, mode (0,1,2 are
valid inputs) for setting which algorithm to run like key-pair

RAM4 RAM3

Decoder

UseHint

RAM2

RAM0

PolyArith1

Encoder

SampleC

SampleA

SampleS

AXI
Stream
IN

AXI
Stream
Out

64

64

64
\\

64
\\

\\

\\

\\
64

64

64

sig_gen

Masked
Decomposer

Masked
SampleY

RAM4A RAM3ARAM5RAM5ARAM6RAM6A

RAM2A

RAM1RAM1A

Decomposer

PolyArith0
MakeHint

Keccak1

Keccak0

Keccak2

Fig. 1. Masked ML-DSA Hardware Implementation Architecture. Redrawn
Dilithium 3.1 Architecture From [12].

generation (mode 0), sign (mode 2), or verify (mode 1) and
handshaking signals valid i, ready o, ready i, and valid o.

The design uses two cores of polynomial arithmetic unit
(PolyArith), which performs NTT, polynomial addition, and
subtraction operations. The PolyArith core uses the four but-
terfly unit to perform arithmetic operations. The BRAM used
to store the coefficient has 96-bit in each address which is
capable of storing 4 coefficients per address. It also uses three
KECCAK cores which perform computation independently to
each other for parallel operation.

A. Masked ML-DSA Hardware Implementation Flow

First, we updated the existing Dilithium 3.1 design to the
final ML-DSA standard. There are a few changes in the
Dilithium 3.1 to ML-DSA which can be implemented easily
in hardware. These changes are listed below:

1) Domain separation added in the key generation algo-
rithm.

2) The length of tr is increased from 256-bit to 516-bit.
3) The size of the c̃ is increased from 256-bit to 384-bit

and 512-bit.
4) Addition of 256-bit random number in signature gener-

ation to generate ρ′.
5) Addition of contextual message padded with the original

message.
In hardware, these changes are made by changing the counter
read, and counter write value of the KECCAK module since
the changes either increase the number of absorb data or
squeeze data. After the design update, it is verified us-
ing the Known Answer Tests(KATs) generated from offi-
cial software implementation (https://github.com/pq-crystals/
dilithium, 5 Sep 2024 version, Git commit cf998be4ad).
The KATs used in this design can be found online at the
link https://github.com/kamalrajnegi/ml-dsa-kats. We further
tried to optimise the design by locating the critical path and
reducing it. We identified the critical path parallel in serial
out buffer and we reduced the buffer size which reduces the
critical path.

https://github.com/GMUCERG/Dilithium
https://github.com/pq-crystals/dilithium
https://github.com/pq-crystals/dilithium
https://github.com/kamalrajnegi/ml-dsa-kats

5

https://github.com/pq-crystals/dilithium

https://github.com/fragerar/Masked_Dilithium

https://github.com/GMUCERG/Dilithium

Masked ML-DSA

Reference ML-DSA

(Deterministic Variant)

KATs

Dilithium 3.1
Masking Gadgets

Design

ML-DSA

KAT Available

KAT From

Hardware Design Flow

Compile

KATs

Compile

KAT Matching

Design Update

Design Verification

Design Verification

Design UpdateDesign Update

1

1

1

2

Optimized

Masking Gadgets

Design Integration

Design Verified

Design Verification Using Test

Vectors Generated From

3

3

4

4

Masked Dilithium

(Randomised variant)

Masked ML-DSA

(Deterministic Variant)

Source Code Update

Software Flow

KAT From Optimized

ML-DSA

Optimized

Masked ML-DSA
Design Verification

Design Verification

KAT From

2

4

4

KATs == KATs

1

1

1

Fig. 2. Design and Verification Flow of Proposed Masked ML-DSA Hardware Implementation.

Next, we designed and integrated masking gadgets with the
ML-DSA design. The architecture of the proposed design is
shown in Fig. 1.It is similar to the Dilithium 3.1 design but
the only difference is the modules that perform computation
with sensitive variables are replaced with masked modules, and
extra BRAM is added to store the shares of sensitive variables.

The most important part of designing hardware is the design
should functionally correct. It can be checked using the Known
Answer Tests (KAT). There are different variants of ML-
DSA signature generation which is deterministic, hedged, and
randomized. The author in [17] have provided the masked
implementation for randomised Dilithium. The randomised
variant makes verification of the design difficult and also it
makes difficult to find errors in the design. To solve this issue,
we updated the masked Dilithium C implementation to the
masked ML-DSA deterministic variant with minor changes in
the C code. Then we used this implementation to verify indi-
vidual masking gadgets as well as to verify complete masked
signature generation. The design and verification flow of the
proposed hardware is shown in Fig. 2. The hardware design of
various modules used to implement masking countermeasures
are given below.

B. Modular Reduction

Modular reduction is the most expensive computation in
both ML-DSA and masking algorithms. Optimising this can
lead to significant improvement in area and performance.
Since we are implementing masking, it is essential that we
implement modular reduction in an efficient way. There are
different methods for modular reduction which are Barrett
reduction and Montgomery reduction.

There is a modular reduction method which is very efficient
in hardware and it is presented by the authors in [18] [19].
The authors in [14] used the same method to implement
modular reduction for Dilithium. We implemented and used
the same design to computed mod q, mod 2q and mod
4q, which is required in designing masking gadgets. The

+

+

Shifter

+

//

//

//

//

//

//

//46

data_in

3

//
2

//
2

//
10

10
//

12

10

3

13

23

//
1

//
1

//
10

-

-
Q

out2Q

Q

Comparator
-

+

+

+

+

-

Fig. 3. Modular Reduction Hardware Implementation [14].

modular reduction uses the modulus property of Dilithium
recursively, which is 223 = 213 − 1 (mod 8380417) [14]. The
equations for modular reduction for Dilithium are given below:

a = 223a[45 : 23] + a[22 : 0] (1)

Using the modulus property we get:

= 213(a[45 : 43] + a[42 : 33] + a[32 : 23])

− (a[45 : 43] + a[45 : 33] + a[45 : 23]) + a[22 : 0]
(2)

= 213c− e+ a[22 : 0](mod q) (3)

Using the same modulus property, we can reduce c as:

213c = 213(c[11 : 10] + c[9 : 0])− c[11 : 10] (4)

= 213f − c[11 : 10](mod q) (5)

Further reduction gives the following equation:

= 213(f [10] + f [9 : 0])− (f [10] + c[11 : 10]) (6)

The modulus reduction described above require shift and
add operations which is efficient in hardware. Fig. 3 shows
the circuit diagram of modular reduction for mod q using the

6

technique described above. The similar technique is used to
calculate mod 2q and mod 4q which are used in masking
gadgets, with the cost of increased size of the adder circuit.

C. Psudo Random Number Generator (PRNG)

The masking requires random numbers to refresh the
masked coefficients. In our hardware design, we used a
Pseudo Random Number Generator (PRNG) for refreshing the
variables. We choose the size of PRNG 96-bits. It is enough
for masking operation because the design requires a random
number at most 47-bit for masking y, and 24-bit for masking
the rest of the variables.

D. Masking s1 and s2

The s1 and s2 variables are used in signature generation
algorithms (Line 16 to 18 in Algorithm 2). These variables
are first converted to the arithmetic shares and then it is used
in the masked signature generation. The circuit for masking
s1 and s2 are shown in Fig. 4. It takes s1 or s2 as an input,
and generate two output shares such that (share1 + share2)
mod q = (s1 or s2). Both the shares are stored separately in
memory so that it can be use later in the masked signature
generation operation. The shares are refreshed with random
number each and every time when the signature generation is
performed in the hardware. Refreshing the values with random
number makes harder for the attacker to get the values from
side-channel attack.

-

//
23

//
23

//
23

23
//

23
1

0

//

Q

23
-Q

23
//

23

MSB

//

23
//

23
//

23
//

23
//

//

24
//-

-
rand

share1

share2

s1/s2

1

0

Comparator

rand>Q

Fig. 4. Circuit For Masking s1 and s2.

E. Masking y

The expandmask function samples y from the SHAKE256
output and it is used to compute signature z. The masked
sampler takes input form expandmask hardware, then it makes
boolean shares of it using random number and then, it gener-
ates two share of y. The architecture for masking y is shown
in Fig. 5. The masked sampler uses the boolean to arithmetic
conversion gadgets and Shift Mod gadget [13] to generate
shares of y.

The shares of y is computed such a way that, (y share1
+ y share2) mod q = y. After this, both the shares are made
in the range of q using the center hardware which subtracts
q if the value of the share is more than q. This module also
refreshes the shares of y using random number each and every
time the module computes y.

Controller

Datapath

clk

y_share1

y_share2

done_s

rst start

load

//

//

//
//

//
//

rnd

regA

B2A

rho_plevel

level

rnd

20

start_b2a

done_b2a

start_smod

done_s

done_smod

94 20

23

//23

Shift Mod

regB

+

-
//

rho_p

20 20
//
20

//
23

//20

//47
rnd //20

//
20

18

clk

clk

clk

clk

load

done_b2astart_b2a

gamma

done_smod

center

center

//32
rnd //47 // 47

load

//
//

20

18

level

Fig. 5. Masked Sampler Architecture.

F. Masked Decompose
The masked decompose function computes HighBits and

LowBits of w as w0 and w1. It takes two shares of w as
an input and computes two shares of w0 and unmasks the
w1 variable because it can be skipped for masking. The
architecture of masked decompose is shown in Fig. 6. This

Controller

Datapath

clk

w0_share1

w0_share2

done_dec

w1

rst start

load

//

//

//

rnd share2level

start_b2a

start_cmod

done_b2a

start_sadd

done_decom

done_cmod

done_sadd

24 24

//

share1

24

24

//24

+

+

Convert Modp

regB

center

regA

Secure Add

Bool2Arith

clk

clk

done_smod

done_b2a

done_cmod

clk

clk

loadload

level
start_cmod

start_smod

rand

clk

start_b2a
rand

share1 share2

level

Fig. 6. Masked Decompose Architecture.

module uses the boolean to arithmetic conversion which is
also used in the masked sampler and other masking gadgets to
compute the share of w1. This module also refreshes the values
using the random number each and every time the masked w1

is computed.

G. Masked Rejection
The signature generation algorithm rejects the signature if it

leaks the information. If the signature is rejected, it computes
y again with the next nonce and all the computation is repeated
till there is no rejection. It is also masked using the masked
gadgets with is used in previous masked decompose module.
It takes two shares of z and r and 24-bit random number
to refresh the values and set control signal to reject if there
is rejection. The architecture of masked rejection sampling is
shown in Fig. 7.

H. Unmasking
If there is no rejection, the signature is unmasked. It is

computed only after the completion of rejection sampling.

7

TABLE II
PERFORMANCE COMPARISON OF ML-DSA IMPLEMENTATION ON FPGA (KINTEX-7) SYNTHESIZED IN AMD VIVADO 2024.1

Hardware Module LUT FF1 BRAM1 DSP1 Freq1 Keygen Sign Verify
(36 Kb) (MHz) Cycles2 Time Cycles Time Cycles3 Time

(×103) (µs) (×103) (µs) (×103) (µs)
Dilithium 3.1 [12] 54668 28199 29 16 111.8 14.030 125.49 24.846 222.24 14.635 130.9

ML-DSA Ref 55040 28746 29 16 106.2 14.038 125.56 24.857 222.33 14.647 131.01
ML-DSA Opt 55156 28625 29 16 125.9 14.038 111.5 24.857 197.43 14.647 116.34

ML-DSA Masked 61629 33861 47 21 122.5 14.038 114.59 1151.294 9398.32 14.647 119.56
1 Same design constraint and synthesis strategy are used for fair comparison. 2 Cycle count is for ML-DSA-88’s best case sign generation.

Controller

Datapath

clk

reject

done_rej

rst start

load

////

rnd

regA

share2share1

start_cmod

start_sadd

start_refresh

done_refresh

done_sadd

done_cmod

24

//

level

3

mode

// 24 24

Convert Modp

Secure Add

refresh

regB
clk

clk

clk

load

//24

//

//

24

load

start_cmod
level

mode

rand

//24 //24 //24

//24

24

//rand rej
done_sadd

done_refresh

24

//24

// 24

Fig. 7. Masked Rejection Sampling Architecture.

Unmasking is basically the addition of the arithmetic shares
of the signature z and the variable r followed by mod Q
operation such that z or r = (share1 + share2) mod q. Since we
have implemented first order masking, we can use subtraction
circuit instead of mod circuit, which is less expensive in
hardware. The unmasking circuit is shown in Fig. 8.

share1

share2

-

+

//
23

//
23

1

0
z

Q

Comparator

sum>Q

//
24

sum sum

//
23

//
23

//
23

//
23

//
24

//
23

Fig. 8. Circuit For Unmasking Signature z.

V. RESULTS

In this section, we present the hardware synthesis, per-
formance and side channel analysis results of masked ML-
DSA hardware implementation. The masking gadget design
is described in Verilog HDL and it is integrated with the
existing hardware implementation of Dilithium 3.1. The syn-
thesis report of masking gadget hardware is given in Table
III. These masking gadget are integrated with the improved
ML-DSA hardware which is verified with the Known Answer
Test (KAT) generated form the reference ML-DSA software
implementation. The synthesis report of complete system is
given in Table II.

A. Hardware Performance and Area Analysis

At present, there is no hardware implementation of pro-
tected ML-DSA known to us, so we compared our proposed
protected ML-DSA design with the unprotected design to com-
pare the area and computational overhead. The performance
comparison of the proposed design is given in the TABLE
II. The intermediate values of masked variables need to be
stored separately which increases the BRAM count in the
proposed design. The expandmask, decompose, and rejection
sampler modulus are replaced with a new masked design
which also increased the LUT count. Also, the finite state
machine of the top module is updated so that it can compute
and process masked variables, which also increased the total
LUT count. The computation of masked variables requires
more clock cycles as given in TABLE III that increased the
execution time of signature generation. Other operations like
NTT multiplication, addition, and subtraction to the masked
variable are computed twice, which further increases the
execution time of signature generation.

B. Challenges of Implementing Masking Countermeasure

Masking implementation requires the redesign of the tar-
geted module which computes the sensitive variable. The
design needs to be integrated with the unmasked design by
replacing the unprotected module with the protected one. The
integration is also challenging since the design has various
handshaking signals that need to be taken care of during design
integration. Since the masked variable needs to be computed
twice and more constraints need to be added in the design since
some part of the computation is unmasked, it also requires the
redesign of the finite state machine.

TABLE III
SYNTHESIS RESULT OF MASKING GADGETS IMPLEMENTED ON KINTEX-7

FPGA

Module LUT FF DSP Cycles *

PRNG 88 192 0 1
Masked s1 and s2 60 0 0 1
Masked Sampler 2256 1587 3 58
Masked Decompose 1664 1107 2 678,132**
Masked Rejection 854 1233 0 166
Unmask 75 0 0 1
* It is the number of clock cycle required to process one coefficient.
** Boolean to arithmetic conversion is not required for ML-DSA-65 and
ML-DSA-87.

8

Fig. 9. Experimental Setup for Side-Channel Attack Resistant Evaluation.

Control FPGA Crypto FPGAInterconnect

Masking
Gadget

PRNG

clk

24MHz

24MHz
data_in

UART

Controller

data_out
trigger

Clock
Generator

TX
start

done RX

clk

clk

24
//

24
//

random

random

clk

share1

24 24

// share2

//

// //

clk

tx_clk

rx_clk

Fig. 10. Block Diagram of Side-Channel Attack Trace Collection Method.

C. Side-Channel Attack Analysis

1) Experimental Setup: The masking gadgets is evaluated
for Side-Channel attack (SCA) resistant using standard side
channel attack testing FPGA board (SAKURA X). The exper-
imental setup is shown in Figure 9. This FPGA board have
two FPGAs Kintex-7 (to implement cryptographic design) and
Spartan-6 (to implement non-cryptographic design). The target
hardware (masking gadget design) is implemented on the
Kintex-7 FPGA which is running on 24MHz clock frequency.
To eliminate the noise effect generated from parallel hardware,
other hardware module like UART clock generator and PRNG
are implemented on the control FPGA. Fig. 10 shows the
block diagram of different hardware modules implemented on
control and crypto FPGAs to perform side-channel attack ex-
periment. For trace collection, High Definition digital storage
oscilloscope with the sample size of 100 Mega samples per
second, a low noise amplifier, and 200 MHz internal digital
filter are used.

2) Testing Methodology: We used the similar technique
used by the authors in [17] in which each masked module
is tested separately for the experiment. Although, they used
the simulation based power result which is only limited to 10
thousand traces, we used actual power consumption trace from
FPGA implementation beyond 10 thousand traces. The masked
share, which is two shares of original value is generated from
the computer and transferred it to the FPGA through UART.
The UART controller enables the masking gadgets once both
of the shares are received. Once the masked operation are
performed, the UART controller sends the result to the PC. The

0 50 100 150 200 250 300 350

Trace points

-8

-6

-4

-2

0

2

4

6

8

t-
v
a
lu

e

TVLA-Set1-Set2

TVLA-PASS-FAIL-Threshold

Fig. 11. Masked Sampler t-test Result (1 million Traces).

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Trace points

-8

-6

-4

-2

0

2

4

6

8

t-
v
a
lu

e

TVLA-Set1-Set2

TVLA-PASS-FAIL-Threshold

Fig. 12. Masked Decompose t-test Result (1 million Traces).

trigger signal is used to locate the masking operation since we
used asynchronous communication protocol. The trigger signal
is just ex-or operation of start signal and done signal.

After the trace collection, the computed result is checked
in the PC. If the output is unexpected, the collected trace
is rejected and it is re-run again for the same sample data
until computed operation is correct and expected. We have
done this to avoid any false data collected which is generated
by unexpected glitching the hardware which can led to false
positive or false negative result in the t-test plot. Then, 1
million traces are logged in the system, and t-test plot is
generated for first 500K traces as first-set and next 500K traces
as second-set. The t-test plot is plotted for masked decompose,
sampler and rejection sampler and are shown in Figure 12,
Figure 11 and Figure 13 respectively. As shown in the plot,
there is no leakage in the design for 1 million traces.

VI. CONCLUSION

In this paper, we presented improved ML-DSA hardware
implementation with the addition of masking countermeasures

9

0 100 200 300 400 500 600 700 800 900 1000

Trace points

-8

-6

-4

-2

0

2

4

6

8
t-

v
a
lu

e

TVLA-Set1-Set2

TVLA-PASS-FAIL-Threshold

Fig. 13. Masked Rejection Sampling t-test Result (1 million Traces).

to protect the hardware implementation from the side-channel
attack threat. The Proposed hardware design is implemented
as per ML-DSA final standard which was published on 13
August 2024. It is verified with the Known Answer Tests
(KATs), which are generated from the reference ML-DSA soft-
ware implementation. After designing and verifying ML-DSA
hardware, masking gadgets are designed and integrated with
the ML-DSA hardware by replacing expandmask, decompose,
and rejection sampling module with the masked module which
is functionally equivalent to these modules. These masked
modules generate two shares of sensitive variables to protect
these variables from the side-channel attack. Finally, the side-
channel attack experiments are performed to test the masked
module to see if it is leaking any information or not. The
experimental results show that the proposed masked design is
resistant to side-channel attacks.

REFERENCES

[1] W. S. Admass, Y. Y. Munaye, and A. A. Diro, “Cyber security:
State of the art, challenges and future directions,” Cyber Security
and Applications, vol. 2, p. 100031, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2772918423000188

[2] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second
Edition, 2nd ed. Chapman & Hall/CRC, 2014.

[3] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer,” SIAM Journal
on Computing, vol. 26, no. 5, pp. 1484–1509, 1997, eprint:
https://doi.org/10.1137/S0097539795293172. [Online]. Available: https:
//doi.org/10.1137/S0097539795293172

[4] T. Wang, C. Zhang, P. Cao, and D. Gu, “Efficient Implementation of
Dilithium Signature Scheme on FPGA SoC Platform,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 9,
pp. 1158–1171, 2022.

[5] S. Mathew, S. Satpathy, V. Suresh, M. Anders, H. Kaul, A. Agarwal,
S. Hsu, G. Chen, and R. Krishnamurthy, “340 mV–1.1 V, 289 Gbps/W,
2090-Gate NanoAES Hardware Accelerator With Area-Optimized En-
crypt/Decrypt GF(2 4) 2 Polynomials in 22 nm Tri-Gate CMOS,” IEEE
Journal of Solid-State Circuits, vol. 50, no. 4, pp. 1048–1058, 2015.

[6] Shay Gueron, “Intel® Advanced Encryption Stan-
dard (AES) New Instructions Set,” 2020. [On-
line]. Available: https://www.intel.com/content/dam/doc/white-paper/
advanced-encryption-standard-new-instructions-set-paper.pdf

[7] X. Hou and J. Breier, “Side-Channel Analysis Attacks and Counter-
measures,” in Cryptography and Embedded Systems Security. Cham:
Springer Nature Switzerland, 2024, pp. 205–352. [Online]. Available:
https://doi-org.remotexs.ntu.edu.sg/10.1007/978-3-031-62205-2 4

[8] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” in Advances in Cryptology — CRYPTO
’96, N. Koblitz, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1996, pp. 104–113.

[9] N. I. of Standards and Technology, “Module-lattice-based digital signa-
ture standard,” (Department of Commerce, Washington, D.C.), Federal
Information Processing Standards Publication (FIPS) NIST FIPS 204,
2024.

[10] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyuba-
shevsky, P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-
dilithium algorithm specifications and supporting documentation,”
2021. [Online]. Available: https://pq-crystals.org/dilithium/data/
dilithium-specification-round3-20210208.pdf

[11] Z. Qiao, Y. Liu, Y. Zhou, J. Ming, C. Jin, and H. Li, “Practical
Public Template Attacks on CRYSTALS-Dilithium With Randomness
Leakages,” IEEE Transactions on Information Forensics and Security,
vol. 18, pp. 1–14, 2023.

[12] L. Beckwith, D. T. Nguyen, and K. Gaj, “High-Performance Hardware
Implementation of CRYSTALS-Dilithium,” in 2021 International Con-
ference on Field-Programmable Technology (ICFPT), 2021, pp. 1–10.

[13] Jean-Sébastien Coron, François Gérard, Matthias Trannoy, and Rina
Zeitoun, “Improved Gadgets for the High-Order Masking of Dilithium,”
IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2023, no. 4, pp. 110–145, Aug. 2023. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/11160

[14] N. Gupta, A. Jati, A. Chattopadhyay, and G. Jha, “Lightweight Hardware
Accelerator for Post-Quantum Digital Signature CRYSTALS-Dilithium,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70,
no. 8, pp. 3234–3243, 2023.

[15] X. Li, J. Lu, D. Liu, A. Li, S. Yang, and T. Huang, “A High Speed Post-
Quantum Crypto-Processor for Crystals-Dilithium,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 71, no. 1, pp. 435–439,
2024.

[16] A. Aikata, A. C. Mert, M. Imran, S. Pagliarini, and S. S. Roy, “KaLi: A
Crystal for Post-Quantum Security Using Kyber and Dilithium,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 2,
pp. 747–758, 2023.

[17] V. Migliore, B. Gérard, M. Tibouchi, and P.-A. Fouque, “Masking
Dilithium Efficient Implementation and Side-Channel Evaluation,” in
Applied Cryptography and Network Security, R. H. Deng, V. Gauthier-
Umaña, M. Ochoa, and M. Yung, Eds. Cham: Springer International
Publishing, 2019, pp. 344–362.

[18] Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, and Shaojun
Wei, “Highly Efficient Architecture of NewHope-NISTon FPGA using
Low-Complexity NTT/INTT,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2020, no. 2, pp. 49–72,
Mar. 2020. [Online]. Available: https://tches.iacr.org/index.php/TCHES/
article/view/8544

[19] F. Yaman, A. C. Mert, E. Öztürk, and E. Savaş, “A Hardware Accelerator
for Polynomial Multiplication Operation of CRYSTALS-KYBER PQC
Scheme,” in 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2021, pp. 1020–1025.

https://www.sciencedirect.com/science/article/pii/S2772918423000188
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://doi-org.remotexs.ntu.edu.sg/10.1007/978-3-031-62205-2_4
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://tches.iacr.org/index.php/TCHES/article/view/11160
https://tches.iacr.org/index.php/TCHES/article/view/8544
https://tches.iacr.org/index.php/TCHES/article/view/8544

	Introduction
	Background
	Dilithium Hardware Implementation
	Side-Channel Attack and Countermeasure

	Algorithm Description
	Key Generation
	Signature Generation
	Signature Verification
	Masking Gadgets

	Proposed Hardware Implementation
	Masked ML-DSA Hardware Implementation Flow
	Modular Reduction
	Psudo Random Number Generator (PRNG)
	Masking s1 and s2
	Masking y
	Masked Decompose
	Masked Rejection
	Unmasking

	Results
	Hardware Performance and Area Analysis
	Challenges of Implementing Masking Countermeasure
	Side-Channel Attack Analysis
	Experimental Setup
	Testing Methodology

	Conclusion
	References

