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Abstract

Quantum no-cloning (Wootters and Zurek, Nature, 1982) is one of the most fundamental properties
of quantum information. In this work, we introduce a new toolkit for analyzing cloning games; these
games capture more quantitative versions of no-cloning and are central to unclonable cryptography.
Previous works rely on the framework laid out by Tomamichel, Fehr, Kaniewski and Wehner (New
Journal of Physics, 2013) to analyze both the n-qubit BB84 game and the subspace coset game. Their
constructions and analysis face the following inherent limitations:

1. The existing bounds on the values of these games are at least 2−0.25n; on the other hand, the trivial
adversarial strategy wins with probability 2−n. Not only that, the BB84 game does in fact admit a
highly nontrivial winning strategy. This raises the natural question: are there cloning games which
admit no non-trivial winning strategies?

2. The existing constructions are not multi-copy secure; the BB84 game is not even 2 7→ 3 secure,
and the subspace coset game is not t 7→ t + 1 secure for a polynomially large t. Moreover,
we provide evidence that the existing technical tools do not suffice to prove multi-copy security
of even completely different constructions. This raises the natural question: can we design new
cloning games that achieve multi-copy security, possibly by developing a new analytic toolkit?

Inspired by the literature on pseudorandom states, we study a new cloning game based on binary phase
states and show that it is t-copy secure when t = o(n/ log n). Moreover, for constant t, we obtain the
first asymptotically optimal bounds of O(2−n). To accomplish this, we introduce a new analytic toolkit
based on of binary subtypes and combine this with novel bounds on the operator norms of block-wise
tensor products of matrices. We also show a worst-case to average-case reduction for a large class of
cloning games, which allows us to show the same quantitative results for Haar cloning games. These
technical ingredients together enable two new applications which have previously been out of reach:

• In the area of black-hole physics, our cloning games reveal that, in an idealized model of a black
hole which features Haar random (or pseudorandom) scrambling dynamics, the information from
infalling qubits can only be recovered from either the interior or the exterior of the black hole—but
never from both places at the same time. To demonstrate this result, it turns out to be crucial to
prove an asymptotically optimal bound and to overcome the first limitation above.

• In the area of quantum cryptography, our worst-case to average-case reduction helps us construct
succinct unclonable encryption schemes from the existence of pseudorandom unitaries, thereby,
for the first time, bridging the gap between “MicroCrypt” and unclonable cryptography. We also
propose and provide evidence for the security of multi-copy unclonable encryption schemes, which
requires us to overcome the second limitation above.
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1 Introduction

Quantum no-cloning [WZ82] is one of the most fundamental properties of quantum information. Roughly
speaking, it states that no quantum procedure can create an exact copy of an arbitrary unknown quantum
state. The principle of no-cloning has profound implications in quantum information processing [BB84,
BBC+93, Ron19, CBTW17] and has even inspired entirely new cryptographic primitives, starting with
Wiesner’s remarkable quantum money scheme [Wie83] and many subsequent primitives which are collec-
tively known as unclonable cryptography [Sat22]; these include unclonable quantum encryption [BL20,
AKL23, KT23, AKY24], encryption with unclonable decryption keys [GZ20, APV23], quantum copy-
protection [AKL+22, CMP22, CLLZ21], unclonable commitments and proofs [GMR23], and many more.

Because the standard no-cloning theorem [WZ82] merely precludes the possibility of creating exact
copies, several lines of work have since explored other quantitative variants of no-cloning which are far less
restrictive; for example, Bužek and Hillery [BH96] initiated the study of approximate no-cloning, whereas
Molina, Vidick and Watrous [MVW13] studied the limitations of counterfeiting attacks against Wiesner’s
quantum money. In the context of money, the latter offers a much more meaningful notion of no-cloning as
as it not only prohibits the act of copying a banknote, but also the possibility of forging possibly different
quantum states that merely pass verification by the bank. Following a long-standing tradition of studying
quantum mechanical phenomena through the lens of interactive games [Mer90, Ara02, Har93, GHZ89,
RUV12, TFKW13, JNV+21, KLVY23], the field of unclonable cryptography [Sat22] today relies on abstract
games as a means of capturing no-cloning; as in the case of quantum money, these games enable much
stronger notions of no-cloning which not only capture the difficulty of copying the states themselves, but
merely copying properties of quantum states, such as a choice of basis which is used to generate the state.

Cloning Games. The class of interactive games which are relevant for unclonable cryptography are known
as cloning games [AKL23]. These types of games first emerged in the context of unclonable encryption
schemes [BL20] but the general framework1 also applies many other fundamental unclonable primitives,
such as copy-protection, single-decryptor encryption, quantum money, and more [AKL23].

A basic 1 7→ 2 cloning game G17→2 with respect to the question set Θ, answer set X , and ensemble of
unitaries {Uθ}θ∈Θ of dimension |X | is the following interactive game played by a trusted challenger, say
Alice, as well as an adversary consisting of a cloner Φ and two additional players, say Bob and Charlie.

1. (Setup phase) Alice samples random x ∼ X and θ ∼ Θ, and sends Uθ |x⟩A to the cloner Φ.

The cloner Φ splits the state into two registers B and C, which he then forwards to Bob and Charlie,
respectively. Afterwards, the players may no longer communicate for the rest of the game.

2. (Question phase) Bob and Charlie both receive the string θ.

3. (Answer phase) Bob and Charlie independently output a guess for the element x.

4. (Outcome phase) Bob and Charlie win if they both guess x correctly.

We illustrate the cloning game G1 7→2 in Figure 1. A strategy S for the game G17→2 consists of a cloning map
Φ and a pair of positive operator-valued measurements B = {Bθ

x}θ∈Θ,x∈X and C = {Cθ
x}θ∈Θ,x∈X . The

value of a particular strategy S for the cloning game G1 7→2 is defined as the average winning probability

ωS(G17→2) = E
θ∼Θ

E
x∼X

Tr
[(

Bθ
x ⊗Cθ

x

)
ΦA→BC(Uθ |x⟩⟨x|A U

†
θ )
]
.

1We note that our notion of a basic cloning game is slightly more specific than the general framework studied in [AKL23]; we
discuss these differences in more detail in Remark 7.
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Figure 1: A basic 1 7→ 2 cloning game.

Here, we use ω(G17→2) to denote the optimal winning probability over all joint strategies which are specified
by Φ, B and C. Note that there always exists a trivial strategy that succeeds with probability 1/|X |: the
cloner Φ simply forwards the state Uθ |x⟩ to Bob, who can easily recover x once θ becomes available,
whereas Charlie simply guesses a random element in X .

We emphasize that an upper bound on the success probability of a cloning game implies something
stronger than the conventional no-cloning theorem [WZ82] or even its approximate variant [BH96]: if the
cloner Φ can copy the state Uθ |x⟩, then Φ can certainly also send the two copies to Bob and Charlie and
ensure that they win the game. However, there may be other strategies which do not involve direct cloning
but may nevertheless provide the players with enough information to win the game. In fact, the only property
of the state that Φ needs to clone is its measurement statistics with respect to the bases specified by Θ (or
more weakly, just x itself). As it turns out, this basic notion of unclonability is already sufficient for most
applications in unclonable cryptography [Sat22].

To this day, the majority of unclonable cryptography is rooted in either n-qubit BB84 states with
Uθ = Hθ [TFKW13, BL20] or subspace coset states over Fn2 , where Uθ encodes a shift of a random n/2-
dimensional subspace A ⊂ Fn2 [CLLZ21, CV22, SS25]. In both cases, the optimal winning probability for
the corresponding cloning game decays exponentially in the number of qubits [BL20, CV22, SS25].

1.1 Our Contributions

Despite extensive study and multiple successful applications in unclonable cryptography, several important
gaps in our understanding of cloning games remain. Our contributions to this effect are several fold:

1. We show that existing techniques for analyzing cloning games are severely limited; in particular, they
prevent us from making progress on many fundamental open questions in the field. We formally
expose these limitations with counterexamples and concrete, quantitative proofs.

2. We study several new cloning games and develop a whole suite of techniques for analyzing them;
crucially, these techniques allow us to circumvent some of the limitations of previous approaches.

3. Finally, we present two applications of our results which have previously been out of reach; one in the
area of black hole physics and one in the field of unclonable cryptography. Both of these applications
provably require us to overcome several technical barriers which are inherent in prior work.

We now discuss each of these contributions in some more detail.
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Exposing Limitations on Cloning Games. Our first contribution is to expose several important gaps in
our understanding of cloning games; more importantly, we also show that existing techniques for analyzing
cloning games appear fundamentally insufficient at addressing them. We list some of these gaps below:

1. Optimal games: Prior work on cloning games over X = {0, 1}n has shown the upper bounds of
cos2

(
π
8

)n and 2−n/4 in the case of BB84 states [TFKW13] and subspace coset states [CV22, SS25],
respectively. In contrast, a trivial strategy always succeeds with probability 2−n, and this holds for any
cloning game. Are there especially hard cloning games which admit no non-trivial strategies and have
asymptotically optimal bounds of the form O(2−n)? Closing this gap has important consequences for
certain applications of cloning games which we discuss in Section 1.3.

Not only are all known cloning games far from optimal, we prove that existing techniques can at best
only produce upper bounds of the form 2−n/2. We discuss this in detail in Section 1.2.1.

2. Multi-copy games: Quantum states become learnable once many identical copies are available, as
the literature on quantum tomography [BCG13] suggests. Does cloning also become significantly
easier in the presence of multiple copies? Can we extend 1 7→ 2 cloning games towards t 7→ t + 1
cloning games, where the cloner Φ receives t identical copies of the initial state, i.e., (Uθ |x⟩)⊗t, and
there are t + 1 players P1, . . . ,Pt+1 who simultaneously seek to recover x? This was posed as an
open question in [MPSY24, AMP24], where the latter initiated the study of multi-copy security in
the context of revocable cryptography. Not only is prior work limited to 1 7→ 2 cloning games, all
existing unclonable cryptography becomes completely insecure if t is allowed to grow polynomially.

We discuss these limitations in Section 1.2.1. Moreover, we also provide strong evidence that existing
techniques seem fundamentally insufficient for analyzing multi-copy games more generally.

3. Unclonable cryptography in MicroCrypt: A number of recent works [Kre21, AQY22, AGQY22,
BCQ23] showed how to build quantum cryptography from pseudorandom states and unitaries, which
exist in “MicroCrypt” and are potentially even weaker than one-way functions [Kre21]. To this day,
however, the worlds of unclonable cryptography and MicroCrypt have been completely disconnected,
as was recently observed in [MPSY24, AMP24]. Do pseudorandom unitaries, which have so far
eluded major cryptographic application, give rise to interesting unclonable cryptography?

The analysis of Haar cloning games, where Uθ is a Haar unitary (or, a unitary sampled from a unitary
design), seems far beyond the scope of existing techniques, as we explain in Sections 1.2.1 and 1.2.2.

4. Applications beyond cryptography: While cloning games appear quite fundamental, their use case
has so far been limited to cryptography. Can cloning games offer new insights in other scenarios where
no-cloning and monogamy of entanglement play an important role, such as in black hole physics?
Recent works studied idealized models of black holes which rely on Haar random or pseudorandom
unitary dynamics [HP07, KP23, EFL+24], which raises the question: can cloning games with Haar
random unitaries help us understand how information gets scrambled inside of a black hole?

An application to black hole physics once again seems to require new insights into Haar cloning
games which, as mentioned before, are currently out of reach. We refer to Sections 1.2.1 and 1.2.2.

Given these inherent limitations on cloning games, it seems that fundamentally new techniques are
needed in order to advance the field. This is where our next contribution comes in.
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A New Suite of Techniques for Analyzing Cloning Games. Our approach towards overcoming both
limitations 1 and 2 is to focus on entirely new cloning games altogether. Inspired by the recent literature
on pseudorandom quantum states [JLS18, BS19, Col23], we study a cloning game based on binary phase
states. The pseudorandomness property of these states makes them excellent candidates for multi-copy
unclonability [Wer98], in the sense of a traditional no-cloning theorem. In order to extend this to a stronger
cloning game bound, we take the existing formalism of binary types [AGQY22] and extend it to a new
notion of binary subtypes, proving new standalone spectral bounds along the way. For technical reasons, our
results only apply to a restricted model: rather than receiving the string θ in the clear, each player receives a
oracle access and is allowed to make a query to either Uθ or U †θ . While this constitutes a weaker model, it
already implies something much stronger than a conventional t 7→ t+ 1 no-cloning bound.2

Ultimately, we prove the following theorem (see Section 1.2.3 for more details):

Theorem 1.1 (Informal, see Theorem 5.15 for a formal statement). Let n, t ∈ N. Then, the one-query
t 7→ t + 1 binary phase cloning game Gt 7→ t+1 over X = {0, 1}n, where each of the players is allowed to
make one oracle query, has a value of ω(Gt 7→ t+1) ≤ exp(O(t log t)) · 2−n.

For constant t, this is asymptotically optimal and thus overcomes limitation 1. For t = o(n/ log n), this
is still negligible in n and thus makes significant progress towards overcoming limitation 2. However, we be-
lieve that this construction is plausibly secure when t is any polynomial in n (unlike previous constructions
based on BB84 [TFKW13, BL20] and coset states [CLLZ21, CV22, SS25]), and view our results as provid-
ing evidence towards this conjecture. Our justification for the plausible security of this construction is the
fact that binary phase states are pseudorandom [JLS18, BS19] and hence multi-copy unclonable [Wer98].
We discuss our binary phase state construction more in Section 1.2.3.

Secondly, we study the new and natural notion of a Haar cloning game. Here, the unitary Uθ is sampled
according to the Haar measure and the players receive oracle access to Uθ and U †θ . We show that the Haar
cloning game is the hardest cloning game by exhibiting a worst-case to average-case reduction; this allows
us to use an upper bound on the value of any cloning game, including our binary phase state game, in order
to bound the value of the Haar cloning game. As a consequence, we additionally obtain the following:

Corollary 1.2 (Informal). Let n, t ∈ N. As a consequence of our worst-case to average-case reduction
(Theorem 7.5), we can show the following bounds on the Haar cloning game:

• In the single-copy setting, the Haar game G1 7→ 2 has a value of ω(G1 7→ 2) ≤
(
cos2(π/8)

)n ≈
2−0.228n.
(Here, the players are free to make arbitrarily many adaptive queries to Uθ or U †θ .)

• In the multi-copy setting, the Haar game Gt 7→ t+1 has a value of ω(Gt 7→ t+1) ≤ exp(O(t log t)) · 2−n.
(Here, the players are restricted to making a single query to Uθ or U †θ .)

We will see next that Haar cloning games are central to the applications previously listed in items 3 and 4.
We will discuss Haar cloning games and our worst-case to average-case reduction more in Section 1.2.2.

Opening Up New Applications. To demonstrate the full potential of our new insights into cloning games,
we give two applications of our techniques which help resolve fundamental open questions in the field. We
will see that these applications crucially require us to overcome the aforementioned limitations 1 and 2 in
the existing constructions and analyses of cloning games.

2As we explain in Remark 6, approximate t 7→ t + 1 no-cloning emerges as a special case of our one-query cloning game,
whereby each player makes a single query to U†

θ and immediately measures in the computational basis (with no post-processing
whatsoever). In this case, the value of the cloning game is precisely equal to the maximum average cloning fidelity for t 7→ t+ 1.
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• Black Hole Cloning Games. In Section 8, we analyze a new three-player game which is designed to
capture cloning and entanglement monogamy in the context of evaporating black holes (see Figure 2).
Our results offer new quantitative insights into the black hole information paradox [Haw76, Pre92,
HP07] and suggest that, in an idealized model of a black hole which features Haar random (or pseu-
dorandom) scrambling dynamics, the information from infalling qubits can only be recovered from
either the interior or the exterior of the black hole—but never from both places at the same time.

At a technical level, this requires us to essentially show a bound ofO(2−n) for the 1 7→ 2 Haar cloning
game. We thus crucially need to overcome the aforementioned limitation 1, and we also need to make
use of the aforementioned worst-case to average-case reduction. We will discuss this application in
more detail in Section 1.3, taking care to provide context on relevant prior work in black hole physics.

• Unclonable Cryptography: “MicroCrypt” and the Multi-Copy Setting. In Section 9, we give an
affirmative answer to an open question which was recently posed in [MPSY24]; namely: do inter-
esting unclonable cryptographic primitives exist, even in a world in which P = NP? We construct
succinct unclonable encryption schemes from the existence of pseudorandom unitaries; thereby, for
the first time, bridging the gap between the worlds of MicroCrypt and unclonable cryptography. A
crucial ingredient for this result is the aforementioned worst-case to average-case reduction.

Secondly, we propose a candidate multi-copy unclonable encryption scheme based on the aforemen-
tioned binary phase cloning game. We view Theorem 1.1 as evidence and a first step towards proving
its security in the stronger setting where t can be an a priori unbounded polynomial in n and the
players are free to make polynomially many queries to the encryption and decryption functionality
(or even more strongly, are given the secret key θ in the clear). Considering the pseudorandomness
of the binary phase states that we use as ciphertexts, we believe this stronger security guarantee to be
plausible. Obtaining multi-copy security clearly requires us to overcome limitation 2.

We will discuss these applications to unclonable cryptography in some more detail in Section 1.4.

We now turn to a detailed overview of our techniques.

1.2 Technical Overview

This technical overview is organized as follows:

• In Section 1.2.1, we discuss previous constructions [BL20, CLLZ21] and explain the limitations of
these constructions and the underlying techniques [TFKW13, CV22, SS25] in both the multi-copy
and single-copy settings.

• In Section 1.2.2, we discuss a natural construction using Haar random unitaries, the obstacles to
directly analyzing this construction, and our worst-case to average-case reduction as a means of indi-
rectly studying this construction.

• In Section 1.2.3, we present our construction based on binary phase states (previously put forth
by [JLS18, BS19] as a quantum pseudorandom state), and our new tools for analyzing this. Our
tools significantly extend the previous notion of binary types introduced by [AGQY22] for analyzing
binary phase states.

We remark at the outset that, when considering cloning games, we will consider a few different models for
how the players (Bob and Charlie) access θ:

5



• Strong cloning games: Bob and Charlie are given θ in the clear;

• Oracular cloning games: Bob and Charlie are given oracle access to Uθ and U †θ , and are free to make
an a priori unbounded polynomial number of queries.

• Bounded-query-oracular cloning games: Bob and Charlie are given some a priori bound q on the
number of queries they can adaptively make.

We note that, even when q = 1, this model is still quite expressive; as noted in Remark 6, it captures
conventional and approximate t 7→ t+ 1 no-cloning bounds as a special case.

We will also sometimes consider Bob and Charlie who are required to run in quantum polynomial time.

1.2.1 Previous Techniques and Their Limitations

Let us now dive a little deeper into the shortcomings of our current understanding of cloning games. Here,
it is instructive to start with limitation 2; namely, that of multi-copy games.

Multi-Copy Insecurity of BB84 and Coset States. One can extend cloning games as defined in Figure 1
to multi-copy cloning games: in this variant, the cloner Φ receives t copies i.e. the state (Uθ |x⟩)⊗t. In the
place of Bob and Charlie, there are now t+1 players P1, . . . ,Pt+1 who wish to all simultaneously guess x.
It is easy to see that this game becomes provably easier for the adversaries as t increases.

In the case of BB84 states, whereUθ |x⟩ = Hθ |x⟩, we claim that the adversaries can win with probability
1 for any t ≥ 2. The attack is simple: Φ will measure one copy in the standard basis and one copy in the
Hadamard basis, and forward these results to all players. Upon receiving θ, the players can mix-and-match
these results to recover x. The intuitive issue here is that the measurement basis is entirely disentangled
across qubits; in fact, [AK21] describes a generic attack on cloning games with this disentangled structure.

The case of coset states [CLLZ21, CV22, SS25] is similar, albeit only once t ≫ n. Here, we will
interpret the basis θ as a subspace A ⊆ Fn2 of dimension n/2, and the input x ∈ {0, 1}n as a pair of cosets
s+A, s′ +A⊥. Then the cloner will receive copies of the state

|As,s′⟩ =
1

2n/4

∑
a∈A

(−1)⟨a,s′⟩ |a+ s⟩ .

The cloner can measure half the copies in the standard basis and half the copies in the Hadamard basis, and
forward these results to all players. Upon receiving A, they can all identify the cosets s + A and s′ + A⊥

with high probability.
As stated, the above attacks only apply in the strong cloning setting. However, the situation is more

grim for a very simple reason: these families of states are both learnable given poly(n) copies, whereas
most states require exponentially many copies to become learnable, as the state of the art in quantum to-
mography [BCG13] suggests. Hence, the cloner Φ can simply learn a classical description of the state and
subsequently forward both the basis θ and the message x to the t+1 players; the players do not even require
the challenger to send them θ. In other words, these attacks even hold in the bounded-query-oracular model
with q = 0 or q = 1. Nevertheless, our technical starting point, which we discuss next, is the toolkit used by
previous works to analyze cloning games in the single copy (t = 1) case. We will pin down where exactly it
fails to work in the multi-copy case and remedy these problems. To provide the necessary background, we
begin by introducing the notion of a monogamy of entanglement game.

6



Monogamy of Entanglement Games. We now take a brief detour and discuss the concept of monogamy
of entanglement games; we will see shortly that they are closely related to cloning games. Monogamy of
entanglement games were introduced by Tomamichel, Fehr, Kaniewski and Wehner [TFKW13] in order to
characterize entanglement monogamy [Ter04] using the language of non-local games. Informally, quantum
correlations are “monogamous”, and thus cannot be shared freely among multiple parties.

A monogamy of entanglement (MOE) game G with respect to the question set Θ, answer set X and
measurement set {Aθ

x}θ∈Θ,x∈X is an interactive game played by three players: a trusted referee called
Alice, as well as two colluding and adversarial parties called Bob and Charlie.

1. (Setup phase) Bob and Charlie prepare a tripartite quantum state ρ ∈ D(HA ⊗ HB ⊗ HC). They
send register A to Alice, and hold onto registers B and C, respectively. Afterwards, they are no longer
allowed to communicate for the remainder of the game.

2. (Question phase) Alice samples a random question θ ∼ Θ, and then applies the corresponding
measurement {Aθ

x}x∈X to her register A. Afterwards, Alice announces the question θ to both Bob
and Charlie, and keeps the measurement outcome in X to herself.

3. (Answer phase) Bob and Charlie independently output a guess for Alice’s outcome by applying the
measurements {Bθ

x}x∈X and {Cθ
x}x∈X to their registers B and C, respectively.

4. (Outcome phase) Bob and Charlie win if they both guess Alice’s outcome correctly.

Here, we associate a particular strategy S employed by Bob and Charlie with the tuple consisting of the
initial shared state ρ and the positive operator-valued measurements {Bθ

x}θ∈Θ,x∈X and {Cθ
x}θ∈Θ,x∈X . The

value of a particular strategy S for the monogamy game G is defined as the average winning probability

ωS(G) := E
θ∼Θ

∑
x∈X

Tr
[
(Aθ

x ⊗Bθ
x ⊗Cθ

x)ρABC

]
.

We let ω(G) denote the maximal value of the game, i.e., the optimal winning probability over all strategies.
An upper bound on the value of a monogamy game therefore limits the extent to which Bob and Charlie
can simultaneously maintain a quantum correlation with Alice who holds a register outside of their view.
We emphasize that in general monogamy of entanglement games, the shared state ρ is completely arbitrary
and adversarially chosen by Bob and Charlie; as we will see, this is the main way in which cloning games
deviate from the monogamy of entanglement setting.

Appendix A: Connecting Cloning and Monogamy Games. The standard tool for analyzing cloning
games is to recast them as a special type of monogamy game. Together with the techniques laid out
by [TFKW13] for analyzing monogamy games, this has found numerous applications in unclonable cryp-
tography, including unclonable encryption [BL20], quantum copy-protection [Aar09, CMP22, CLLZ21,
AKL+22], unclonable decryption keys [GZ20], and unclonable proofs [GMR23].

We now explain this connection between cloning and MOE games. In a cloning game, Alice sends the
cloner Φ the state Uθ |x⟩. Instead, we could imagine that Alice and Φ share several EPR pairs, and later on
in the game (even after the cloning phase) Alice can apply a measurement

{
Aθ
x := Ūθ |x⟩⟨x| Ū †θ

}
x∈{0,1}n

on her side to induce the state Uθ |x⟩ on the cloner’s side, where Ū denotes the complex conjugate of U .
This yields a monogamy of entanglement game with the following two restrictions:

• As already mentioned, Alice’s measurements Aθ
x must take the form Ūθ |x⟩⟨x| Ū †θ .
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• The tripartite state ρ shared by Alice, Bob, and Charlie is the Choi state of the cloning channel Φ.
Concretely, we must have the special form

ρABC = (IA ⊗ ΦA′→BC)(|EPR⟩⟨EPR|AA′). (1)

In words, ρ can be adversarially chosen subject to the constraint that its marginal state on Alice’s
system is maximally mixed.

This equivalence, which we formally show in Lemma A.1, was first observed in the context of BB84 states
by Broadbent and Lord [BL20]. On a high level, the statement is a consequence of the ricochet property of
EPR pairs, which we formally state in Section 2.1. The technical benefit of doing this is that it enables us to
get a handle on the cloning channel Φ by absorbing it into the state shared by the players in the equivalent
monogamy game. Now we can focus on Bob and Charlie’s measurements which, as we will see, can be
handled using spectral bounds as first observed by [TFKW13].

Although the equivalence observed by [BL20] is in the single-copy setting, it turns out that this idea
readily generalizes to the multi-copy setting, as we show in Lemma A.2. The differences are as follows:

• In the cloning game, Alice and the cloner Φ now share nt EPR pairs, and Alice will measure each of
the t copies in the basis specified by

{
Ūθ |x⟩⟨x| Ū †θ

}
x∈{0,1}n

.

• In the equivalent monogamy-like game, we only say that the adversaries win if Alice’s tmeasurements
and the t+1 players’ outputs are all equal to the same string x. In other words, we need to essentially
post-select on Alice’s measured string x ∈ {0, 1}n being the same for each of the t copies, which
means the value of this monogamy-like game is immediately upper bounded by 2−n(t−1).

Because of this post-selection, what we end up with is an equality of the following form:

ω(Gcloning) = 2n(t−1) · ω(Gmonogamy−like). (2)

Note that when t = 1, the 2n(t−1) term is 1 and we recover the equivalence used by [BL20]. Our goal is
hence to upper bound the value of Gmonogamy−like by 2−n(t−1) · negl(n), ideally even O(2−nt).

Section 6: [TFKW13] and its Limitations. The work by [TFKW13] analyzes MOE games and later
focuses on the BB84 case (i.e. Uθ = Hθ) and uses two beautiful ideas, which for simplicity we state in the
single-copy setting:

1. The value of a particular monogamy game can be bounded independently of the state ρABC shared by
the 3 players, noting that ρABC is PSD and has trace 1. Concretely, one can show that

E
θ∼Θ

∑
x∈X

Tr
[
(Aθ

x ⊗Bθ
x ⊗Cθ

x)ρABC

]
≤

∥∥∥∥∥ E
θ∼Θ

∑
x∈X

Aθ
x ⊗Bθ

x ⊗Cθ
x

∥∥∥∥∥
∞

.

This reduces the task of bounding the value of a monogamy game to bounding an operator norm. In
general monogamy games as formulated by [TFKW13], the shared state ρABC is adversarially chosen
so this step is tight. However, we will see soon that this step is too lossy when restricting attention to
the special monogamy-like games that are equivalent to cloning games.
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2. This operator norm can in turn be bounded just in terms of pairwise overlaps between the Aθ
x’s, which

the designer of the game is free to choose. As we restate in Theorem 6.1, the authors of [TFKW13]
show that ∥∥∥∥∥ E

θ∼Θ

∑
x∈X

Aθ
x ⊗Bθ

x ⊗Cθ
x

∥∥∥∥∥
∞

≤ 1

|Θ|
+
|Θ| − 1

|Θ|
· max
θ,θ′∈Θ
θ ̸=θ′

max
x,x′∈X

∥∥∥Aθ
xA

θ′
x′

∥∥∥
∞
.

We refer the reader to Theorem 6.1 for a formal statement.

In the BB84 monogamy game where Θ = X = {0, 1} and Aθ
x = Hθ |x⟩⟨x|Hθ, it is straightforward to

see that
∥∥∥Aθ

xA
θ′
x′

∥∥∥
∞

= 1√
2
, and hence ω(GBB84) ≤ 1

2 + 1
2
√
2
. The work by [TFKW13] also extends this to

“parallel-repeated” BB84 games with |Θ| = |X | = {0, 1}n (see Theorem 3.4) for a formal definition, and
show that

ω(G⊗nBB84) ≤ cos2
(π
8

)n
≈ 2−0.228n.

Hence the BB84 monogamy game has value≤ 2−0.228n, and in fact this is tight; [TFKW13] exhibits a simple
strategy achieving this bound. Similar techniques were used by [CV22] and improved upon by [SS25] to
analyze subspace coset states, ultimately proving an upper bound of O(2−n/4); it is not known whether or
not this is tight.3 However, the techniques laid out by [TFKW13] provably do not suffice for our applications:

• In the multi-copy case, recall from Equation (2) that we need to prove a bound on Gmonogamy−like
of ≪ 2−n(t−1). Item 1 of the [TFKW13] methodology proposes to ignore the structure of the state
shared by Alice and P1, . . . ,Pt+1, in order to reduce our task to bounding an operator norm.

This is likely too lossy in our setting, as evidenced by the following simple counterexample (assume
t > 1 is even for simplicity) that holds against any cloning game where the unitaries Uθ have real
entries. Alice will hold tn/2 EPR pairs (which are unentangled from the states held by P1, . . . ,Pt+1).
The t+1 players will each deterministically output 0n as their guess (note that once again this strategy
does not depend at all on θ). The winning probability is now just the probability that Alice measures
0 on each of her tn/2 EPR pairs (in whatever basis she samples), which is 2−nt/2 ≥ 2−n(t−1). We
formalize this counterexample in Section 6.1.

We note that this does not rule out the possibility of the [TFKW13] technique being adaptable to
the multi-copy setting for a construction that uses unitaries with complex entries. However, the pre-
existing constructions based on BB84 states or coset states — as well as our main construction based
on binary phase states (which we sketch in Section 1.2.3) — only use unitaries with real entries. Thus
we still view our result as a bound against the adaptability of existing construction and techniques to
the multi-copy setting.

• Even in the single-copy case, there is another inherent limitation that arises from using Item 2 of
the [TFKW13] methodology: the maximal pairwise overlap maxθ ̸=θ′

∥∥∥Aθ
xA

θ′
x′

∥∥∥
∞

is provably at

least 2−n/2 for any monogamy game, as we show in Section 6.2. For completeness, we also show
in Section 6.3 that our binary phase state construction (which we will discuss more in Section 1.2.3)
essentially attains this maximum pairwise overlap.

3Previous work [SSS24] proved an upper bound of O(2−n/2) in a setting where the cloner Φ is restricted to splitting the state
as is into two equal-sized halves, sending one to Bob and the other to Charlie. We cite O(2−n/4) as the state of the art, as we are
interested in games where the cloner Φ is unrestricted.
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Howeover, we would ideally like to prove a tight bound (up to constant factors) of O(2−n). This is
not just a matter of aesthetic taste; this is actually crucial for our application to black hole physics, as
we explain in Section 1.3.

We next turn our attention to our construction and our new techniques for analyzing it, which make progress
towards overcoming both of these barriers.

1.2.2 Section 7: Haar Cloning Games and Worst-Case to Average-Case Reductions

Given our previous observations on the multi-copy insecurity of BB84 and coset states, it is clear that we
need to look for entirely new constructions. Ideally, such a candidate ensemble of states would also remain
unlearnable in the presence of an arbitrary polynomial amount of identical copies. A natural idea is to
consider Haar random states, which Werner [Wer98] showed to be multi-copy unclonable. This suggests
the following very natural approach: Alice will take {Uθ : θ ∈ Θ}4 to be a Haar random ensemble and send
the cloner (Uθ |x⟩)⊗t. We call this the t 7→ t + 1 Haar cloning game. However, existing techniques for
analyzing the Haar measure, which we outline below, appear severely limited for our purposes:

• Prior works [MPSY24, CDX+24, ACG+24] often rely on representation-theoretic techniques. In our
setting, we would roughly need to prove spectral bounds on the mixed Haar twirl of a certain operator
Ξ; informally, in the 1 7→ 2 case, these amount to expressions of the form:∥∥∥∥ E

U∼U(d)

[(
U ⊗ U ⊗ Ū

)
Ξ
(
U ⊗ U ⊗ Ū

)†]∥∥∥∥
∞
.

General expressions of this form have been studied by [EW01, GO23, GBO23] using the machinery
of mixed Schur-Weyl duality, but their techniques appear to be very unwieldy in our more complicated
setting with multiple non-communicating parties.

• The recent breakthrough result by Ma and Huang [MH24] uses a technically involved purification
argument [MH24] that once again does not seem to adapt easily to the multi-party setting.

• Finally, the recent beautiful work by Bhattacharya and Culf [BC25] analyzes the Haar measure in
the single-copy case using a modular application of the one-shot decoupling theorem [DBWR14], but
in the process only establishes a cloning bound of Õ(1/n), whereas we would like a bound that is
O(2−n) or at the very least exponentially small in n.

Instead, we take a two-step approach which is based on the following insight: cloning games instantiated
with a Haar (pseudo)random unitary are, in some sense, strictly harder to win than any other cloning game.
We prove this via a worst-case to average-case reduction which, at a high level, follows from Haar invariance
and some additional new insights into mixed unitary designs, which we explain in more detail below.

Our observation immediately suggests the following approach for analyzing a Haar cloning game:

1. Argue that for any distribution D supported on U(2n), we have:

sup
strategies S

ωS(G;U ∼ U(2n)) ≤ sup
strategies S

ωS(G;U ∼ D). (3)

4The Haar random ensemble is infinite so this is not well-defined; this technicality can be circumvented by using a higher order
unitary design or a pseudorandom unitary [MPSY24, MH24] in its place.
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2. Find a convenient distribution D such that we can more easily show that

sup
strategies S

ωS(G;U ∼ D) ≤ O(2−n),

perhaps by passing first to an equivalent monogamy game as stated earlier.

We prove the aforementioned worst-case-to-average-case reduction which is captured in Item 1 in Section 7.
To instantiate this argument, we need to be able to sample V that appears Haar random, together with
a classical description of it. This can be done using either a mixed unitary design (in the bounded-query-
oracular setting) or a pseudorandom unitary [MPSY24, MH24] (in the oracular setting with computationally
bounded players). We formally define mixed unitary designs in Section 7.1, and—as a bonus—we also
prove that the standard notion of an exact unitary t-design will also work as a mixed unitary design without
modification. To the best of our knowledge, this was not previously observed in the literature, and we hope
that this contribution might be of independent interest. We leave the task of adapting this reduction to the
strong cloning game setting as a direction for future work.

It now remains to address Item 2 i.e. find some other cloning game that we can more easily show an
upper bound of O(2−n) for. We address this next.

1.2.3 Sections 4 and 5: Construction and Analysis from Binary Phase States

Our Construction Inspired by Quantum Pseudorandom States. We begin from a simple starting point:
in Section 1.2.2, we suggested having Alice send a Haar random state Uθ |x⟩ to the cloner. Instead, what if
Alice were to send a pseudorandom state [JLS18, BS19]? These are also multi-copy unclonable by a trivial
hybrid argument combined with Werner’s result [Wer98] in the Haar case. The advantage of working with
binary phase states is that we have much simpler constructions that, as we will see, are easier to analyze.

It was shown by [JLS18, BS19] that if F is a family of post-quantum pseudorandom functions [Zha21a]
f : {0, 1}n → {0, 1}, then the binary phase state

|ψf ⟩ := 2−n/2
∑

y∈{0,1}n
(−1)f(y) |y⟩

is pseudorandom. To use this in a cloning game, we follow the approach in [Col23] in order to encode
x ∈ {0, 1}n into this state, which we do by taking:

|ψfx⟩ := 2−n/2
∑

y∈{0,1}n
(−1)f(y)+⟨x,y⟩ |y⟩ = UfH

⊗n |x⟩ , where Uf :=
∑

x∈{0,1}n
(−1)f(x) |x⟩⟨x|

is a phase oracle for f . In other words, we are proposing to define a cloning game with Θ = F and
Uθ = UfH

⊗n. Thus in the equivalent monogamy game, Alice’s projectors will be defined by

Af
x := UfH

⊗n |x⟩⟨x|H⊗nUf .

The question is now how one should go about analyzing this game. As mentioned in Section 1.2.1, the
usual [TFKW13] methodology for analyzing cloning games is firstly limited to the single-copy setting, and
secondly even in this setting can only prove a bound of 2−n/2. For completeness, we show that in Section 6.3
that plugging our binary phase construction into [TFKW13] “saturates” this technique and yields a single-
copy cloning bound of Õ(2−n/2), which is stronger than the previous results on BB84 [TFKW13, BL20]
and coset [CLLZ21, CV22, SS25] states.
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Compressed Oracles and Binary Types. The techniques discussed up to this point draw on the machinery
of [TFKW13] and thus suffice to establish cloning bounds even in the setting where a classical description
of the measurement basis θ (in the binary phase case, the function f ) is sent to all players P1, . . . ,Pt+1 in
the clear. To our knowledge, the only other technique that works in this strong regime is the decoupling
technique by [BC25]. However, as we explained in Sections 1.2.1 and 1.2.2, both of these techniques run
into limitations with respect to the multi-copy setting and/or attaining an optimal bound of O(2−n).

We hence propose to migrate to the oracular setting, where each player can make oracle queries to Uf ,
but is not given a description of f in the clear. Note that this still suffices to recover x from UfH

⊗n |x⟩. In
fact, we only need one query: a single query to Uf would leave us with H⊗n |x⟩, and now measuring in the
Hadamard basis yields x. We explain this in the case of general cloning games in Remark 6.

We now want to reason about algorithms that make oracle queries to Uf for a random (or pseudoran-
dom) function f . The natural candidate technique for such a task is Zhandry’s compressed oracle tech-
nique [Zha19]. The crucial idea is to purify the cloning game by adding a register that stores the function f .
One can then argue that queries to Uf for a random f : {0, 1}n → {0, 1} can be simulated as follows:

• We will add a purifying “database” register to the system that we initialize to |∅⟩. In general, it will
store some subset S ⊆ {0, 1}n.

• If the algorithm wishes to query the string y ∈ {0, 1}n, simply update |S⟩ ← |S ⊕ {y}⟩ (note that if
y is in S before the query, this will remove y from S.)

Let us see how this technique would play out in our setting. Alice and P1, . . . ,Pt+1 all share some global
state, and act as follows:

• Alice queries each of her t n-qubit states, then applies a Hadamard to each copy. Her local transfor-
mation can be written as

⊗t
i=1

(∑
yi∈{0,1}n H

⊗n |yi⟩⟨yi|
)

, and she will XOR {y1} ⊕ . . .⊕ {yt} into
the database register.

• For each i ∈ [t+1], let the adversaryPi make q adaptive queries represented by unitaries Vi,1, . . . , Vi,q.
Their local transformation can be written as a sum of terms of the form

Vi,q |zi,q⟩⟨zi,q|Vi,q−1 |zi,q−1⟩⟨zi,q−1| . . . Vi,1 |zi,1⟩⟨zi,1| ,

and they will XOR {zi,1} ⊕ . . .⊕ {zi,q} into the database register.

In summary, the database register will contain the set:

t⊕
i=1

{yi} ⊕
t+1⊕
i=1

q⊕
j=1

{zi,j} . (4)

At this point, it is unclear how to proceed, for the following simple conceptual reason: the utility of
Zhandry’s compressed oracle technique [Zha19] lies in the fact that it connects an algorithm’s success prob-
ability with the contents of the database register in some way. For example, when reproving the [BBBV97]
lower bound showing the optimality of Grover search, Zhandry shows that the success probability of the
algorithm is essentially upper bounded by the probability of a solution x to the search problem appearing
in the database register. However, there is no analogous notion in our setting, because we are considering a
problem with inherently quantum inputs; a successful adversary likely needs to query Uf on every input in
superposition.
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Instead, we will deviate from Zhandry’s compressed oracle formalism by simply tracing out (or equiv-
alently, measuring) the database register. This effectively conditions our superposition on the collection of
strings that are listed an odd number of times in Equation (4). This is exactly the notion of binary types
introduced by [AGQY22]. In order to get a better handle on the binary type’s combinatorial structure, we
will restrict each of the t+1 players to only make one oracle query to Uf ; as explained in Remark 6, this is
still sufficiently expressive to admit a trivial strategy attaining value 2−n.

In this case, a binary type λ is specified by a subset Tλ ⊆ [2n] with |Tλ| ≤ 2t+1. For x ∈ [2n]2t+1, we
say that BinType(x) = λ, or equivalently that x matches λ, if every string in Tλ appears an odd number of
times in x, while every string outside Tλ appears an even number of times in x. Thus, if Alice and the players
jointly hold a standard basis state |x⟩, a simultaneous query to Uf by all parties will write BinType(x) into
the database register. Finally, we let Πλ denote the projector onto standard basis vectors x that match λ. We
provide more precise definitions and properties of binary types in Section 4.2. We now model each player’s
projector as follows:

Pf
i,x = UfV

†
i |x⟩⟨x|ViUf ,

for unitaries Qi.5 This simplification together with the aforementioned binary type formalism allows us to
succinctly characterize the value of the cloning game: if we define

Ξ :=
∑

x∈{0,1}n

[(
H⊗n |x⟩⟨x|H⊗n

)⊗t ⊗ t+1⊗
i=1

(
V †i |x⟩⟨x|Vi

)]
, then

ω(G) =
∑
λ

Tr [ΠλΞΠλρ] ,

where ρ is the shared state from the monogamy-like game that we introduced in Section 1.2.1. We face two
challenges in bounding expressions of this form. We state them below and then describe how we address
these challenges:

1. The [TFKW13] paradigm of discarding the tripartite state ρ and simply bounding this expression by
maxλ ∥ΠλΞΠλ∥∞6 is provably too lossy, as we explained in Section 1.2.1.

2. Even if it were somehow sufficient to bound ∥ΠλΞΠλ∥∞ for each λ, to the best of our knowledge,
it appears difficult to directly establish such a bound. Informally, the reason is that the combinatorial
structure arising from a type λ entangles registers together; if we consider the t = 1 case and the type
defined by Tλ = {x∗} for some string x∗, then strings of the form (x∗, y, y), (y, x∗, y), or (x∗, y, y)
would all match λ. It would be much cleaner if we could just analyze strings from one of these
categories at a time.

Idea 1 (Section 5.4): Staring at the Shared State. To address Item 1, we take a closer look at the structure
of the shared state ρ. It is the result of applying some (adversarially chosen) channel to the right half of tn
EPR pairs. This can be seen from Equation (1) (appropriately generalized to the multi-copy setting). In
other words, if we apply a partial trace to remove the P1→t+1 registers of the t+1 players, the residual state
on Alice’s register A will always be proportional to I2n×2n .

5In reality, we later also allow these players additional ancillary workspace qubits; we define this generalization in Definition 3.8.
Moreover, we assume without loss of generality that the players do not perform any preprocessing before making their query to Uf ,
by absorbing this preprocessing into the cloning channel Φ that constructs their initial states.

6This bound holds by noting that the projectors ΠλΞΠλ are mutually orthogonal.
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This structure may seem mild, but it turns out to be enough to complete our analysis; we present this in
Sections 5.4 and 5.5. This is perhaps not surprising; in the counterexample we presented in Section 1.2.1
showing that just bounding the operator norm would be insufficient, Alice’s local state was very far from
maximally mixed. In fact, it was a pure state consisting of t/2 EPR qudit pairs.

At a high level, our analysis to use this structure of ρ proceeds by showing that for any type λ such that
ΠλΞΠλ has high operator norm, the shared state ρ must place low weight on the image of Πλ. These effects
roughly cancel each other out.

Idea 2 (Sections 4.3 and 5.3): From Types to Subtypes. We now turn to the issue stated in Item 2.
Continuing with the t = 1 example, reasoning about λ directly requires simultaneously handling three
categories of strings: (x∗, y, y), (y, x∗, y), or (x∗, y, y). Instead, we simplify matters by focusing on just
one of these categories at a time — we call such a category a subtype, a novel notion we define formally
in Section 4.3. We denote subtypes by µ and their corresponding subtype projectors by Πµ. In Section 4.3.2,
we show that instead of bounding ∥ΠλΞΠλ∥∞ for a type λ, it suffices to bound ∥ΠµΞΠµ∥∞ for a subtype
µ. This added structure allows us to prove better spectral bounds, which we present in Section 5.3.

It turns out that this technique allows us to prove the desired bound ofO(2−n) for 1 7→ 2 cloning games,
albeit with the restriction that Bob and Charlie can only make one query each to Uf . At a very high level, the
“product structure” of subtypes enables us to leverage a simple but novel spectral bound on the column-wise
tensor product of several matrices, which we present in Lemma 2.18.

Technical Tool (Section 2.4): Spectral Bounds on Blockwise Tensor Products. In order to prove spec-
tral bounds on the norm of ΠµΞΠµ for any subtype µ, and accommodate the possibility of the t+1 players
using ancilla qubits, we require a novel bound on the norm of a blockwise tensor product of d × d block
matrices. As a simple example, the d = 2 case is the following: we need to show that∥∥∥∥[c1,1A1,1 ⊗B1,1 c1,2A1,2 ⊗B1,2

c2,1A2,1 ⊗B2,1 c2,2A2,2 ⊗B2,2

]∥∥∥∥
∞
≤ 1,

provided that
[
A1,1 A1,2

A2,1 A2,2

]
,

[
B1,1 B1,2

B2,1 B2,2

]
are unitary and |ci,j | ≤ 1 for all i, j. Proving this turns out to

be rather technically challenging; we present this result and its proof in Theorem 2.15. We also discuss at
the end of Section 2.4.1 why existing techniques fail to prove the general result we need. Given that this
theorem is a purely linear algebraic statement unrelated to monogamy games, we are hopeful that it might
be useful elsewhere in quantum information and even in other areas.

Putting these ideas together, we manage to prove a multi-copy cloning bound of Ot(2−n), overcoming
the limitations of previous techniques explained in 1.2.1 with a complete overhaul of the technical frame-
work laid out by [TFKW13], albeit at the expense of restricting the t + 1 players to make a single oracle
query to Uf .

1.3 Application I: Black Hole Cloning Games

As one application of our techniques on cloning games, we study the notion of a black hole cloning game—a
three-player interactive game which is designed to capture no-cloning and entanglement monogamy which
arises naturally in the context of evaporating black holes. The main result we discuss in this section is an
asymptotically tight upper bound on the success probability of a variant of the game. In particular, we ob-
serve that the analysis of black hole cloning games is inextricably linked to the existence of standard cloning
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games which have asymptotically optimal bounds of the form O(2−n)—well beyond the pre-existing upper
bound of 2−0.25n from the analysis by [SS25] of the coset state game [CLLZ21, CV22]. Our new contribu-
tions on optimal games allow us to fill this gap, and to complete the analysis.

In this section, we first provide some relevant context on black holes, and then give an overview of how
we revisit the problem using the language of cloning games. We present more detailed context and results
in Section 8.

Hayden-Preskill thought experiment. Hawking [Haw76] made the remarkable prediction that black
holes are not completely black—they slowly emit what is now known as Hawking radiation. But if black
holes evaporate, what happens to information that falls inside of a black hole? Does it get destroyed, or
is it effectively conserved and eventually radiated out in some scrambled form? This question has puzzled
physicists for many decades. The endeavour of trying to reconcile the predictions of quantum mechanics
and general relativity has led to the famous black hole information paradox [Haw76, Pre92].

Hayden and Preskill [HP07] proposed a thought experiment that illustrates the black-hole information
loss problem: Suppose that Alice throws k qubits into a black hole, which are maximally entangled with a
second register in her possession. For simplicity, we assume that the black hole initially consists of n − k
qubits. After a long period of time, another distant observer, say Bob, uses the intercepted Hawking radiation
(say, in the form of photons) which he has collected in the meantime, feeds it into his quantum computer
and applies an appropriate computation in an attempt to recover Alice’s quantum state. Hayden and Preskill
asked: how long would Bob have to wait before he finally starts to observe correlations between the outgoing
Hawking radiation and the entangled infalling matter near the boundary? To answer this question, they made
the following crucial assumption: black holes are extremely strong and efficient information scramblers—
their internal dynamics can be modeled as a more or less Haar random unitary time-evolution.7 This view
has since been widely adopted as an idealized mathematical model of black hole evolution [AMPS13, HH13,
KP23, EFL+24]. Concretely, it assumes that, from the perspective of an outside observer, Alice’s infalling
information is scrambled by a random unitary and effectively spread across the entire horizon of the black
hole, whereby the total amount of information—accounting for both the internal degrees of freedom, as
well as Alice’s infalling information—is encoded in qubits which lie at the surface of the black hole. Here,
the surface of the black hole refers to the stretched horizon—a tiny region of space which is located "just
outside" of the black hole horizon [STU93, HH13] and is typically considered to be part of the black hole.

Hayden and Preskill [HP07] showed that after slightly more than half of the black hole has evaporated
(sometimes called the Page time), Bob can in principle completely recover the information from Alice’s
infalling qubits by intercepting the outgoing Hawking radiation. This led them to conclude that black holes
act as information mirrors: while Alice’s information remains concealed up until the half-way point, it then
starts to emerge fairly quickly in the form of scrambled Hawking radiation.

Do Black Holes Clone Information? While the Hayden-Preskill thought experiment [HP07] suggests that
the information from Alice’s infalling qubits is ultimately preserved and encoded in the form of scrambled
radiation, it does raise the question: how much of Alice’s information is still retained by the black hole?
Could it be that a distant observer, say Bob, can recover Alice’s information from the outgoing radiation,
and yet a "second copy" of Alice’s information somehow also survives in the black hole interior?

Suppose that we partition the relevant qubits which result from the evolution of the black hole into two
registers H and R, where H corresponds to the qubits near the horizon which are still retained by the black

7Note that genuine Haar dynamics have exponential circuit complexity with high probability [Kni00]. Hayden and Preskill
opted for a weaker notion than Haar randomness which nevertheless suffices for their purposes; namely, that of a unitary 2-design.
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hole, and where R corresponds to emitted Hawking radiation. Hayden and Preskill [HP07] consider two
regimes: at the beginning of the experiment, H is significantly larger than R and virtually all of Alice’s
information is contained in H; however, by the end of the experiment, when the black hole has evaporated
long past the Page time (and most of the qubits have been transformed into radiation), R is now significantly
larger than H and must therefore be highly correlated with Alice’s infalling qubits. Is it possible that Alice’s
information is retained by the black hole (and thus present in H) but simultaneously also encoded in R—
even long after the Page time? Could it be that black holes clone information?8 Note that the standard
no-cloning theorem [WZ82] and its approximate variants [BH96] do not suffice to immediately answer this
question; for example, if Alice’s infalling information is classical rather than quantum, the black hole may
not even need to fully clone a quantum state to retain her information; it merely needs to maintain a classical
correlation with Alice’s infalling bits. Therefore, to answer this question, a new approach is necessary.

This Work: Revisiting the Black Hole Information Paradox. We seek to extend our existing under-
standing of the black hole information paradox in two ways. The first is that we would like to provide a
new and quantitative characterization of cloning and entanglement monogamy which arises in the context
of evaporating black holes. Many seminal works [CHSH69, TFKW13] have quantified and enhanced our
understanding of physical principles (e.g., the nature of entanglement) through the formulation and analysis
of certain interactive games; our first goal is to do the same for the black hole information paradox:

Question One: Can we give a quantitative trade-off for how much of Alice’s infalling
information can be retained by the black hole, and how much can be present in its radiation?

Note that such a trade-off would significantly extend the analysis by Hayden and Preskill [HP07] who
merely studied two extreme cases, i.e., when when most of the qubits are either retained by the black hole
or when most of the qubits have been converted into Hawking radiation. As it turns out, however, such an
information-theoretic analysis seems to lie way beyond the scope of existing techniques. (We will discuss
the limitations of existing these techniques later in this section, as well as in Sections 1.2.1 and 1.2.2.)

Secondly, we aim to revisit prior attempts for how to model the decoder’s knowledge of the internal
dynamics of the black hole. In the seminal Hayden-Preskill thought experiment [HP07], the authors assume
that the decoder (say, Bob) holds a quantum memory that is maximally entangled with the qubits in the
interior of the black hole. In other words, Bob is an extremely powerful observer that has complete control
over the black hole and its resulting radiation. As noted by Hayden and Preskill, we would ideally like a
more realistic model that captures Bob’s knowledge of the black hole dynamics without giving him direct
control over the black hole, which raises the question:

Question Two: Are there alternative—and perhaps more reasonable—models that capture the
fact that the decoder has knowledge of the internal dynamics of the black hole?

We believe that an affirmative answer to these two questions could offer new and valuable insights into the
black-hole information paradox.

8Hayden and Preskill [HP07] explored this question using another and much more radical thought experiment: suppose that Bob
quickly decodes Alice’s information from the intercepted Hawking radiation, and then immediately jumps inside of the black hole
and crosses the event horizon in an attempt to find a "second copy" of Alice’s information. A series of follow-up works [AMPS13,
HH13, Aar16] have since exposed and studied paradoxes which emerge out of this experiment, and which have led to the belief that
black-hole radiation decoding must necessarily be computationally intractable [HH13, Bra23, BEM+23].
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Figure 2: Black Hole Cloning Game. Entangled particles emerge near the boundary and form a k-qubit
EPR pair |EPR⟩B′B, of which register B′ falls inside of the black hole, and register B is given to Alice. The
interior of the black hole, modeled as |0n−k⟩I, together with the k infalling qubits in register B′, undergo a
scrambling process. Here, the internal dynamics of the black hole are described by a random n-qubit unitary
time-evolution operator U ∼ ν which gets applied to registers B′I. A quantum channel ΦIB′→HR processes
the internal qubits into two registers: a register H corresponding to the qubits at the event horizon which are
retained by the black hole, and a register R corresponding to the emitted Hawking radiation. Charlie (who is
anchored at the horizon) receives H, whereas Bob (who is a distant observer) receives R. The two observers
are allowed to have some knowledge of the internal dynamics U , and thus receive oracles for U and U †.
Finally, Alice measures B, and Bob and Charlie win if they simultaneously guess her outcome correctly.

Our Approach: Black Hole Cloning Games. To address Question One, we cast the famous black-hole
information paradox into the form of a cloning game (see Figure 2). At the beginning of the game, Alice
throws her entangled qubits into the black hole. Later, at the end of the game, two spatially separated “ad-
versaries” called Bob and Charlie will attempt to recover Alice’s information—either as a distant observer
with access to the emitted Hawking radiation (say, Bob), or as an anchored observer (say, Charlie) who
remains at the event horizon and has access to remaining qubits which are retained by the black hole. Con-
cretely, we imagine that Alice measures her half of the entangled state at the end of the experiment, and Bob
and Charlie are asked to simultaneously predict her measurement outcome. In our setting, Alice’s infalling
information should be thought of as being classical rather than quantum; indeed, our black hole cloning
game in Figure 6 is equivalent to a game in which Alice throws random classical bits into the black hole9.

9This is an important distinction compared to the Hayden and Preskill experiment, where Alice’s information can actually be
thought of as being quantum and where Bob attempts to decode it in a coherent fashion by exploiting entanglement as a resource.
Nevertheless, our setting captures the inherent trade-off between Alice’s system and the registers H and R in a similar spirit.
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We work with the purified picture for purely aesthetic purposes; it helps us keep the notation consistent with
Hayden and Preskill, and also makes the analysis via monogamy of entanglement games much more direct.

In line with prior works [HP07, HH13, KP23, EFL+24], we model the black hole’s internal evolution in
between as a “scrambling process” which is the result of some random unitary time-evolution U , followed
by an arbitrary quantum channel Φ that processes the internal qubits into two systems: one corresponding
to the qubits near the event horizon of the black hole (denoted by H), and another corresponding to the
emitted Hawking radiation (denoted by R). In the work of Hayden and Preskill [HP07], Φ is essentially
just a simple unitary channel that randomly partitions the scrambled qubits into two subsystems H and R of
different sizes (in particular, where R is typically much larger than H), whereas in our work we let Φ be an
arbitrary (and possibly unitary) completely-positive and trace-preserving map. This significantly generalizes
the setting considered by Hayden and Preskill [HP07] and, in particular, includes all possible partitionings
into two systems H and R. As in a conventional cloning game, it is also crucial that Bob and Charlie do not
communicate while the decoding phase is taking place, which also consistent with our modeling assumption
that Charlie is anchored at the horizon of the black hole, whereas Bob remains a distant observer.

To address Question Two, we grant Bob and Charlie oracle access to the internal scrambling dynamics
U , as well as its inverse U †. Additionally, we assume that Bob and Charlie have a complete description
of the physical process Φ that results in the outgoing radiation. While Bob (and similarly, also Charlie)
no longer has the ability to exercise direct control over the black hole dynamics (as in the Hayden-Preskill
model), he does have the power (via the oracle for U †) to instantaneously “unscramble” the black hole’s
time evolution at will. Here, the oracle access to the unitaries U,U † is meant to reflect the possibility that
Bob and Charlie are powerful observers that have obtained some knowledge on the physical equations and
parameters governing the black hole’s evolution (see Figure 7 for a quantum circuit representation).

Analyzing Black Hole Cloning Games. Given the similarity between our black hole cloning game and
the games studied in [TFKW13, BL20], this raises the question of whether one can indeed interpret one as
an instance of the other. Our main technical insight is that the analysis of black hole cloning games is inex-
tricably linked to the existence of standard 1 7→ 2 cloning games which have asymptotically optimal bounds
of the form O(2−n)—well beyond the pre-existing upper bound of 2−0.25n from the analysis by [SS25] of
the coset state game [CLLZ21, CV22]. In Theorem 8.4, we prove the following result without any restric-
tions on the choice of quantum channel Φ; however, for technical reasons, we let ν be a unitary 3-design and
we assume that Bob and Charlie employ single-query strategies only. We visualize what Bob and Charlie’s
strategies might look like in Figure 7, and we mention further potential improvements in Section 1.5.

Theorem 1.3 (Informal, see Theorem 8.4 for formal statement). Let n, k ∈ N be integers with n ≥ k
and let ν = {Uθ}θ∈Θ be an n-qubit unitary 3-design. Then, for any quantum channel Φ (of appropriate
dimensions), the maximal single-query value ω(GBH) of the black hole cloning game GBH (as illustrated in
Figure 2) with respect to ν and Φ is at most O(2−k).

The bulk of our work in Section 8 is to show that the maximal value ω(GBH) (see Definition 8.3 for a
formal definition) can always be related to the maximal value of a related (but standard) cloning game Gclone.
Specifically, we show that the game GBH emerges as a special case of Gclone in which we post-select on the
event that Alice’s sampled message y takes the form y = x||0n−k, for some x ∈ {0, 1}k. Because this event
occurs with probability 2−n+k, this allows us to deduce that

sup
strategies S

ωS(Gclone) ≥ 2−n+k · ω(GBH).
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Therefore, in order to obtain an asymptotically optimal bound of the form ω(GBH) = O(2−k), it suffices
to show that the related cloning game Gclone has a maximal value of supstrategies S ωS(Gclone) = O(2−n).
Crucially, we require an O(2−n) bound; a bound of the form O(2−cn) for any c < 1 is insufficient.
This would yield ω(GBH) ≤ 2−k · 2n(1−c), which is a completely trivial bound if we assume n ≫ k (which
is likely since presumably the black hole is a much larger system than the set of qubits Alice throws inside).
As briefly mentioned in the introduction and elaborated in Section 1.2.1, our work is the first to show that
a cloning game (even if in a restricted query model) admits an asymptotically optimal bound of the form
O(2−n). We explain this final point some more in Remark 14.

Implications for Black-Hole Physics. Theorem 1.3 yields the first quantitative trade-off for how much of
Alice’s information in the form of k infalling entangled qubits can be retained by the black hole, and how
much can be present in its emitted Hawking radiation. In fact, our bound of O(2−k) is also optimal (up to
constant factors), since there always exists a particular Hawking radiation channel Φ together with a trivial
strategy that attains it: we can consider a variant of the black hole cloning game where Φ is the channel
that converts the entirety of all the qubits inside of the black hole into radiation (i.e., acting as the identity),
which would allow Bob to perfectly recover the information from Alice’s system by simply applying the
inverse of the scrambling unitary. Now Charlie can guess randomly and succeed with probability 2−k.

We believe that our bound has several interesting implications. First, it suggests that the moment Bob
has produced a register which is nearly maximally correlated with Alice’s infalling qubits, then any addi-
tional qubits that lie in the interior of the black hole (i.e., in Charlie’s system), must be almost completely
uncorrelated from them. Second, such a strong decoupling result is achieved for any choice of Hawking
radiation channel Φ—it arises precisely because of the strong scrambling properties of the unitary 3-design
itself. By contrast, the same would not be true for a classical model of black-hole scrambling [HP07],
say in the form of a random reversible circuit or a random permutation10. Despite the fact that a random
permutation is already exponentially complex (i.e., requires exponential-sized circuits with overwhelming
probability), it is simply not sufficiently scrambling to allow for a similar decoupling to hold.

In summary, our results suggest that, in an idealized model of a black hole which features Haar random
(or pseudorandom) scrambling dynamics, the information from infalling entangled qubits can only be re-
covered from either the interior (specifically, at the event horizon) or the exterior of the black hole (i.e., in
the form of distant Hawking radiation), though never from both places at the same time.

1.4 Application II: Unclonable Cryptography

In this section, we describe our applications to quantum cryptography; specifically, for how to construct
succinct unclonable encryption schemes from the existence of pseudorandom unitaries. This allows us to
fully bridge the gap between the world of quantum pseudorandomness and unclonable cryptography.

Unclonable Encryption. Cloning games have played a foundational role in the field of unclonable cryp-
tography—a branch of quantum cryptography that capitalizes on quantum no-cloning [WZ82] to achieve
guarantees of “unclonable security” which are completely impossible classically. These include unclonable
encryption [BL20, AKL23, KT23, AKY24], encryption with unclonable decryption keys [GZ20], unclon-
able commitments and proofs [GMR23], quantum copy-protection [AKL+22, CMP22], and unclonable

10Interestingly, one could interpret the one-round variant of the sponge construction which underlies the international hash
standard SHA-3 [BDPA11, CP24, CPZ24] as a classical model of black hole scrambling, where the scrambling unitary is given by
a random permutation and the Hawking radiation channel is an erasure channel that selects a subset of the final output bits.
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quantum advice [BKL23]. Most of these constructions rely at minimum on the existence of post-quantum
one-way functions, placing unclonable cryptography in “Post-Quantum MiniCrypt” [Imp95].11

Of particular interest to us is unclonable encryption, which is very closely related to cloning games.
Indeed, any cloning game with value negl(n) immediately implies an unclonable encryption scheme with
message space X = {0, 1}n that satisfies unclonable search security: to encrypt x under secret key θ, output
Uθ |x⟩. This scheme has the obvious shortcoming that it is deterministic, and hence does not satisfy the ideal
notions of indistinguishable or unclonable-indistinguishable security.

However, Broadbent and Lord [BL20] proposed the following transformation that plausibly transforms
an unclonable search secure scheme SearchEnc to an unclonable indistinguishable secure scheme: to en-
crypt x ∈ {0, 1}n under secret keys k, θ, sample a random PRF seed r ∈ {0, 1}λ and output the classical
string x ⊕ PRF(k, r) together with the quantum state |SearchEnc(θ, r)⟩. Broadbent and Lord [BL20] also
provided some mild evidence that this may be secure if the PRF is instantiated with a random oracle. We
emphasize that proving the unclonable-indistinguishable security of this transformation (or a similar one) is
a notoriously difficult open problem [KT23, AKL23, AKY24]. Our point is just that studying unclonable
encryption in the weaker search-secure setting is still an interesting and relevant cryptographic problem.

Multi-Copy Unclonable Cryptography. Previous works on unclonable cryptography have exclusively
focused exclusively on the case of 1 7→ 2 cloning games, e.g. in the case of unclonable encryption [BL20],
the adversarial cloner is given only one copy of a ciphertext state and aims to provide two receivers, say Bob
and Charlie, with sufficient information to later recover the plaintext message.

These cryptographic primitives could naturally be extended to t 7→ t+1 security: in the case of unclon-
able encryption, the cloner receives t identical copies of a ciphertext state and aims to provide t+1 receivers
with enough information to later recover the plaintext message. This raises the following question:

Can we construct t 7→ t+ 1 unclonable cryptography from well-founded assumptions?

As explained in Section 1.2.1, existing constructions and techniques have little to say about this question.
Answering this would resolve a question which was recently left open in [AMP24], who asked whether the
desirable property of multi-copy security is within reach in unclonable cryptography more generally.

Quantum Cryptography in “MicroCrypt”. Meanwhile, another line of work [JLS18, BS19, MPSY24,
MH24, BHHP24] has introduced and constructed notions of pseudorandom quantum states and unitaries.
These are implied by the existence of post-quantum one-way functions; however, the reverse implication is
not known. In fact, recent work [Kre21, AIK22, KQST23] has provided evidence that such an implication
is unlikely to exist. This has led to the development of new and inherently quantum assumptions [BHHP24,
PQS24]. As a result, the quantum cryptographic landscape includes yet another world, sometimes referred
to as “MicroCrypt”, which is potentially even weaker than that of MiniCrypt.

Moreover, pseudorandom states have proven to be powerful cryptographic tools in quantum cryptogra-
phy, implying commitments [MY22] and oblivious transfer [BCKM21, GLSV21], and more. The fact that
such powerful primitives live in MicroCrypt raises the following question:

Does unclonable cryptography exist in MicroCrypt?

In fact, the authors of [MPSY24] explicitly asked whether pseudorandom unitaries (which have eluded
major cryptographic application so far) imply the existence of unclonable cryptographic primitives.

11The work by [BL20] does imply an information-theoretic construction of unclonable encryption based on BB84 states; how-
ever, this lacks succinctness as the size of the encryption and decryption keys scales with the message length n rather than just the
security parameter λ.
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Our Results. In this work, we make progress towards these foundational questions, and give an affirmative
answer to both of them. Our main result of this section is the following:

Theorem 1.4 (Informal, see Theorems 9.4 and 9.5 for formal statements). We show the following statements:

1. Assuming the existence of pseudorandom unitaries, there exists an unclonable encryption scheme with
succinct keys which satisfies oracular 1 7→ 2 search security (i.e., the adversaries are computationally
bounded and only given oracle access to encryption and decryption functionality).

2. If the message space is X = {0, 1}n and we fix t = o(n/ log n) then, assuming the existence of
post-quantum pseudorandom functions, there exists an unclonable encryption scheme with succinct
keys satisfies oracular t 7→ t + 1 search security, provided that the adversaries are computationally
bounded and can only make a single oracle query to either the encryption or decryption functionality.

Remark 1. Although we are only able to prove security for t = o(n/ log n), we remark that our con-
struction is plausibly secure for t that is an arbitrary polynomial in n (unlike previous constructions based
on BB84 states [BL20] and coset states [CLLZ21]). Our justification for the plausible security of this
construction is the fact that binary phase states are pseudorandom [JLS18, BS19] and hence multi-copy
unclonable [Wer98].

Remark 2. Broadbent and Lord [BL20] prove a result that appears similar to our result for the 1 7→ 2 case.
The main difference is that they assume the existence of post-quantum PRFs, while we only need PRUs which
is likely a weaker assumption [Kre21]. Additionally, they assume a different oracle model; they instantiate
their PRF as a random oracle, while we give the adversaries oracle access to unitaries for encryption and
decryption.

Our proof of the first result uses the BB84 cloning game [TFKW13] and its analysis by [BL20], together
with the worst-case to average-case reduction outlined in Section 1.2.2 and fleshed out in Section 7. The
latter can be thought of as an additional cryptographic application of pseudorandom unitaries12 which was
previously not known. While this gives us a security bound of 2−0.228n + negl(λ) rather than the ideal
O(2−n) + negl(λ), this is not a crucial difference for this application (unlike in the black hole setting);
moreover, the analysis of the subspace coset monogamy game has the advantage that it does not need to
restrict the queries made by the players.13

Our proof of the second result uses our machinery outlined in Section 1.2.3 and fleshed out in Sections 4
and 5 for analyzing cloning games based on binary phase states. We emphasize that our construction is the
first that could even be plausibly secure in the setting where t can be an a priori unbounded polynomial in
λ, n and the t + 1 players are given the secret key θ in the clear. While our results are far from this ideal
goal, we view our techniques as providing a stepping stone towards an ideal security result for unclonable
encryption. We are also optimistic that our results and techniques might be adaptable to other problems in
unclonable cryptography.

We visualize the landscape of some unclonable cryptographic primitives relative to the worlds of Micro-
Crypt, Post-Quantum Minicrypt, and Post-Quantum Obfustopia in Figure 3.

12To the best of our knowledge, the use of pseudorandom unitaries in the context of efficient worst-case to average-case reductions
has not previously appeared.

13We note for completeness that we could just as easily have used the analysis by [SS25] of the subspace coset monogamy
game [CLLZ21, CV22] in the place of the BB84 game and thus obtained a marginally stronger bound of O(2−0.25n) + negl(λ).
We comment on this more in Remark 18.
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Figure 3: A visualization of some primitives in unclonable cryptography and the assumptions that are known
to imply them (we focus here on primitives that are relatively well-understood and related to monogamy
of entanglement games). We segment these assumptions into three worlds, loosely following [Imp95]:
Obfustopia, MiniCrypt, and MicroCrypt. MicroCrypt is a world where we only assume the existence of
pseudorandom states and unitaries, which could plausibly hold even if P = NP [KQST23]. Powerful cryp-
tographic primitives such as bit commitments [MY22] and oblivious transfer [BCKM21, GLSV21] have
been shown to exist in MicroCrypt; however, prior to our work, it was not known how to instantiate any
unclonable cryptography with succinct keys in MicroCrypt. Our work takes a first step in this direction
by showing that pseudorandom unitaries imply search-secure succinct unclonable encryption in an oracle
model.
(∗We note for clarity that the existing results on indistinguishability-secure unclonable encryption all come
with some kind of caveat e.g. existing in an oracle model and requiring that the adversaries are disentan-
gled [BL20], or requiring quantum decryption keys [AKY24].)
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1.5 Open Questions

Cloning Games in General. We first list some open questions related to cloning games in general; these
would immediately yield applications to either or both of the black hole and unclonable encryption settings.
We list some of these questions here:

1. Can the security of the underlying 1 7→ 2 oracular cloning game (i.e., as in Construction 1) be proven
even if the two players (say, Bob and Charlie) can adaptively make any polynomial number of queries
to the encoding underlying unitary and its inverse?

This would immediately imply the security of our black hole cloning game against arbitrary Bob
and Charlie strategies, when instantiated with a pseudorandom unitary (PRU) rather than a unitary
design. Due to their highly efficient (and yet strong) scrambling properties, pseudorandom unitaries
are believed to be an excellent theoretical model of black hole dynamics [KP23, EFL+24].

2. More tantalizingly, can this security be shown if the measurement basis θ (either a PRU or PRF secret
key, depending on whether we are considering the PRU or binary phase construction) is given to Bob
and Charlie in the clear, rather than in the form of an oracle? This still plausibly satisfies unclonable
security (as demonstrated by [TFKW13, BL20, CV22, SS25] for BB84 and coset state cloning games),
but is highly counterintuitive; the PRU/PRF security guarantees do not say anything about what could
happen in a game where the secret key θ is eventually leaked.

In our black hole cloning game, this would allow us to prove much stronger quantitative statements,
even in the scenario in which Bob and Charlie have complete knowledge of the internal scrambling
dynamics of the black hole.

3. Can we achieve any of the above stronger security guarantees for t 7→ t + 1 cloning games? Or as
a starting point: can we prove security against players P1, . . . ,Pt+1 that are free to make multiple
non-adaptive queries to Uθ, U

†
θ ?

Applications to Black Hole Physics and Beyond. Here, we list some questions specific to our black hole
application:

1. Can we make our modeling assumptions in our definition of black hole cloning games in Section 8
more physically realistic? For example, can we model the (initial) internal qubits of the black hole as
a more general quantum state (potentially even entangled with the exterior) rather than as the all-zero
state |0n−k⟩? What if the scrambling dynamics do not just affect internal qubits, but also external
qubits? And lastly, what if the scrambling dynamics is in the form of a Haar random isometry?

2. Can we use the language of interactive games to offer new quantitative insights into information
scrambling in other chaotic quantum systems, besides black holes?

Applications to Unclonable Cryptography. Finally, we present some questions specific to our applica-
tions to unclonable cryptography:

1. What other unclonable cryptography primitives can be instantiated in MicroCrypt?

2. Can we obtain unclonable encryption with the stronger notion of indistinguishability security that
we usually require of encryption schemes? (Our notion of unclonable security takes the form of
“search security”, which as we argue in Section 1.4 offers a plausible but not yet proven path towards
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indistinguishable security.) This is an important but difficult problem that recent works have made
some progress on [BL20, KT23, AKL23, AKY24].

3. Which unclonable cryptography primitives have natural, constructible, and applicable t 7→ t + 1
analogues, besides unclonable encryption?

Organization of the Paper. The remainder of this paper is organized as follows:

• In Section 2, we present some preliminaries including our novel spectral bounds in Section 2.4 on
blockwise tensor products of matrices.

• In Section 3, we formally define monogamy of entanglement games and cloning games.

• In Sections 4 and 5, we introduce our novel notion of binary subtypes and apply this to proveOt(2−n)
cloning bounds for our binary phase state cloning game in the single-query-oracular setting.

• In Section 6, we revisit pre-existing techniques for analyzing cloning and monogamy games, and
demonstrate that there are inherent limitations that likely prevent them from being adaptable to our
applications in either black hole physics or unclonable cryptography.

• In Section 7, we prove a worst-case to average-case reduction for cloning games that allows us to
adapt our result for binary phase state cloning games to Haar cloning games. This is integral both to
our application to black hole physics, and to proving the existence of 1 7→ 2 unclonable encryption
assuming only PRUs.

• In Section 8, we formally define black hole cloning games, and use our aforementioned technical
results on cloning games to prove an upper bound on the value of the black hole cloning game.

• Finally, in Section 9, we define the notion of succinct unclonable encryption schemes and show that it
exists in an oracle model, assuming the existence of pseudorandom unitaries. We also provide a first
result towards establishing multi-copy security of the same scheme.
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2 Preliminaries

2.1 Quantum Computation

For a comprehensive background, we refer to [NC16]. We denote a finite-dimensional complex Hilbert
space by H, and we use subscripts to distinguish between different systems (or registers). For example, we
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let HA be the Hilbert space corresponding to a system A. The tensor product of two Hilbert spaces HA and
HB is another Hilbert space denoted by HAB = HA ⊗HB. The Euclidean norm of a vector |ψ⟩ ∈ H over
the finite-dimensional complex Hilbert space H is denoted as ∥ψ∥ =

√
⟨ψ|ψ⟩. Let L(H) denote the set of

linear operators over H. A quantum system over the 2-dimensional Hilbert space H = C2 is called a qubit.
For n ∈ N, we refer to quantum registers over the Hilbert space H =

(
C2
)⊗n as n-qubit states. We use

the word quantum state to refer to both pure states (unit vectors |ψ⟩ ∈ H) and density matrices ρ ∈ D(H),
where we use the notation D(H) to refer to the space of positive semidefinite matrices of unit trace acting
onH. The trace distance of two density matrices ρ, σ ∈ D(H) is given by

TD(ρ, σ) =
1

2
∥ρ− σ∥1.

A quantum channel Φ : L(HA) → L(HB) is a linear map between linear operators over the Hilbert spaces
HA andHB. Oftentimes, we use the compact notation ΦA→B to denote a quantum channel between L(HA)
and L(HB). We say that a channel Φ is completely positive if, for a reference system R of arbitrary size, the
induced map IR⊗Φ is positive, and we call it trace-preserving if Tr [Φ(X)] = Tr [X], for all X ∈ L(H). A
quantum channel that is both completely positive and trace-preserving is called a quantum CPTP channel.
A unitary U : L(HA) → L(HA) is a special case of a quantum channel that satisfies U †U = UU † = IA.
When U acts on a density matrix ρ, it maps ρ 7→ UρU †, and we will denote this channel by U · U †.
Whenever d = 2n, we refer to the group of unitaries acting on n qubits as U(d). An isometry is a linear map
V : L(HA) → L(HB) with dim(HB) ≥ dim(HA) and V †V = IA. A projector Π is a Hermitian operator
such that Π2 = Π, and a projective measurement is a collection of projectors {Πi}i such that

∑
iΠi = I. A

positive-operator valued measure (POVM) is a set of Hermitian positive semidefinite operators {Mi} acting
on a Hilbert spaceH such that

∑
iMi = I.

Given a bipartite state ρAB, the partial trace TrB captures the residual state of the system on just the A
register. TrB is thus defined as a linear map from L(HA ⊗HB) → L(HA) that maps R ⊗ S 7→ Tr [S] · R.
Given a multipartite operator X ∈ L(HA ⊗ HB ⊗ HC), the partial transpose applies a transpose to only
some of these systems. For example, the partial transpose X 7→ X⊤B with respect to the second system is
defined as a linear map satisfying X1 ⊗X2 ⊗X3 7→ X1 ⊗X⊤2 ⊗X3. We can also define a SWAP operator
that acts on say registers A and C; this is a linear map that will map X1 ⊗X2 ⊗X3 7→ X3 ⊗X2 ⊗X1.

Operators. Define the following unitary operators:

• Phase oracle: For f : {0, 1}n → {0, 1} we let

Uf =
∑

x∈{0,1}n
(−1)f(x) |x⟩⟨x| .

• Multi-bit Pauli operator: For m ∈ {0, 1}n, let

Zm =
∑

x∈{0,1}n
(−1)⟨x,m⟩ |x⟩⟨x| .

• Hadamard: The n-qubit Hadamard operator is defined by

H⊗n = 2−n/2
∑

x,y∈{0,1}n
(−1)⟨x,y⟩ |x⟩⟨y| .
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Choi-Jamiołkowski isomorphism. Let HA be a d-dimensional Hilbert space with an orthonormal basis
denoted by {|1⟩ , . . . , |d⟩}. Let |Ω⟩ =

∑
i∈[d] |i⟩ ⊗ |i⟩ be the vectorization of the identity Id =

∑
i∈[d] |i⟩⟨i|.

Then, the Choi-Jamiołkowski isomorphism J(Φ) ∈ L(HB ⊗HA′) with respect to a linear map of the form
Φ : L(HA)→ L(HB) is defined as

J(Φ) = (ΦA→B ⊗ IA′)(|Ω⟩⟨Ω|) =
∑
i,j∈[d]

Φ(|i⟩⟨j|)⊗ |i⟩⟨j| .

We use the following well known fact.

Lemma 2.1. Let Φ : L(HA)→ L(HB) be a linear map. Then, for any |ψ⟩ ∈ S(HA) and |ϕ⟩ ∈ S(HB),

⟨ϕ|Φ(|ψ⟩⟨ψ|) |ϕ⟩ = ⟨ϕ| ⊗ ⟨ψ̄| J(Φ) |ϕ⟩ ⊗ |ψ̄⟩ ,

where the complex conjugation is taken with respect to the computational basis. Equivalently, we have:

Tr [|ϕ⟩⟨ϕ|Φ(|ψ⟩⟨ψ|)] = Tr
[(
|ϕ⟩⟨ϕ| ⊗ |ψ̄⟩⟨ψ̄|

)
J(Φ)

]
.

By linearity, we immediately obtain the following corollary:

Corollary 2.2. Let Φ : L(HA)→ L(HB) be any linear map. Then, for any Hermitian operators P ∈ L(HB)
and Q ∈ L(HA), it holds that

Tr [PΦ(Q)] = Tr
[(
P⊗ Q̄

)
J(Φ)

]
.

2.2 Unitary Designs

In this section, we formally define the Haar measure [Sim95] and also define a new and more general
version of a mixed unitary t-design which also allows for inverses with respect to the adjoint of the unitary.

Definition 2.3 (Haar measure). Let d ∈ N denote the dimension. The Haar measure µH is the unique left
and right unitarily-invariant measure over the unitary group U(d); that is, for every (possibly matrix-valued)
integrable function f with domain L(Cd) and every unitary V ∈ U(d),∫

U(d)
f(U) dµHU =

∫
U(d)

f(U · V ) dµHU =

∫
U(d)

f(V · U) dµHU.

For brevity, we oftentimes denote the expectation of f over the Haar measure by

E
U∼U(d)

[f(U)] =

∫
U(d)

f(U) dµHU.

Non-Adaptive Mixed Unitary Designs. In this section, we introduce a generalization of the standard
notion of a unitary t-design which also accounts for inverse queries (to the adjoint of the unitary). We
exclusively consider exact designs; in particular, exact unitary 3-designs via the Clifford group [Web16].

Definition 2.4 (Non-Adaptive Mixed Unitary (p, q)-Design). Let ν be an ensemble of unitary operators
over Cd. Then, ν is a (non-adaptive) unitary (p, q)-design if, for every O ∈ L((Cd)⊗(p+q)),

E
U∼ν

[
(U⊗p ⊗ (U †)⊗q)O(U⊗p ⊗ (U †)⊗q)†

]
= E

U∼U(d)

[
(U⊗p ⊗ (U †)⊗q)O(U⊗p ⊗ (U †)⊗q)†

]
.

Note that a unitary t-design is a special case of the above definition.

Definition 2.5 (Non-Adaptive Unitary t-Design). Let ν be an ensemble of unitary operators over Cd. Then,
ν is a (non-adaptive) unitary t-design if it is a (non-adaptive) unitary (t, q)-design for q = 0.

26



Adaptive Mixed Unitary Designs. In this section, we generalize the notion of mixed unitary designs to
algorithms which may query a unitary (and possibly its inverse) adaptively, rather than in parallel.

Definition 2.6 (Adaptive Mixed Unitary (p, q)-Design). Let ν be an ensemble of unitary operators over
Cd. Then, ν is an adaptive unitary (p, q)-design if, for every single-bit output (possibly adaptive) quantum
algorithm A making at most p many queries to a unitary and q many queries to its adjoint,

Pr
[
1← AU,U†

(1⌈log d⌉) : U ∼ ν
]
= Pr

[
1← AU,U†

(1⌈log d⌉) : U ∼ U(d)
]
.

We say that ν is an adaptive mixed unitary t-design if the property above holds for any adaptive quantum
query algorithm A which submits no more than t queries to either U or U †.

2.3 Pseudorandom Unitaries

Pseudorandom unitaries are ensembles of unitary operators that look indistinguishable from Haar random
unitaries for all computationally bounded observers. These ensembles of unitaries have been first proposed
in [JLS18], and have only very recently been constructed assuming the existence of post-quantum one-way
functions [MPSY24, MH24]. We give a formal definition below.

Definition 2.7 (Pseudorandom Unitary). Let λ be the security parameter, n := n(λ) ∈ N be some polyno-
mial, and d = 2n. An infinite sequence U = {Un}n∈N of n-qubit unitary ensembles Un = {Uθ,n}θ∈{0,1}λ is
a pseudorandom unitary if it satisfies the following conditions:

• (Efficient computation) For all λ, n, there exists a polynomial-time quantum algorithm Q such that
for all keys θ ∈ {0, 1}λ, and any |ψ⟩ ∈ (C2)⊗n, it holds that

Q(θ, |ψ⟩) = Uθ,n |ψ⟩ .

• (Pseudorandomness) The unitary Uθ,n, for a random key θ ∼ {0, 1}λ, is computationally indistin-
guishable from a Haar random unitary U ∼ U(d). In other words, for any QPT algorithmA, it holds
that

Pr
θ∼{0,1}λ

[AUθ,n,U
†
θ,n(1λ, 1n) = 1]− Pr

U∼U(d)
[AUθ,n,U

†
θ,n(1λ, 1n) = 1] ≤ negl(λ) .

Remark 3. We note that this definition of pseudorandom unitary is quite strong; the adversary A is free
to make its queries adaptively, and moreover it is allowed to query both U and U †, in analogy to strong
pseudorandom permutations. This notion was constructed in recent work by Ma and Huang [MH24].

2.4 Operator Norm Bounds

In this section, we lay out some tools for bounding the operator norm ∥A∥∞ of operators A ∈ Cd×d. For
matrices A,B of the same dimensions, we use A ◦B to denote their entrywise product.

Lemma 2.8 (Well-known). For any matrix A ∈ Cd1×d2 , we have

∥A∥∞ =
√
λmax(A†A) =

√
λmax(AA†) = max {∥Ax∥2 : ∥x∥2 = 1} .

Moreover, if A has rank ≤ 1, then we have λmax(A
†A) = Tr

[
A†A

]
.
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Lemma 2.9 (Well-known). For any pair of matrices A ∈ Cd1×d2 and A′ ∈ Cd′1×d′2 such that A′ is a
submatrix of A, we have ∥A′∥∞ ≤ ∥A∥∞.

Lemma 2.10 (Well-known). For A ∈ Cd1×d2 and B ∈ Cd3×d4 , we have ∥A⊗B∥∞ = ∥A∥∞ · ∥B∥∞.

Lemma 2.11. Let A1, . . . ,Ak ∈ Cd×d be unitary matrices with k ≥ 2. Then, the rows and columns of
C = A1 ◦ . . . ◦Ak all have ℓ1 norm ≤ 1.

Proof. In the case of rows, we have:

d∑
j=1

|Ci,j | =
d∑
j=1

|A1;(i,j)| · . . . · |Ak;(i,j)|

≤
d∑
j=1

|A1;(i,j)| · |A2;(i,j)| (all entries of a unitary are ≤ 1)

≤

√√√√√
 d∑
j=1

|A1;(i,j)|2

 ·
 d∑
j=1

|A2;(i,j)|2

 (Cauchy-Schwarz)

= 1.

The case of columns is analogous.

Lemma 2.12. Let C ∈ Cd1×d2 be such that the ℓ1 norm of each row is ≤ a and the ℓ1 norm of each column
is ≤ b. Then ∥C∥∞ ≤

√
ab.

Proof. For any row i of C†C ∈ Cd2×d2 , we have:

d2∑
j=1

|(C†C)i,j | =
d2∑
j=1

|
d1∑
k=1

C†i,kCk,j |

≤
d2∑
j=1

d1∑
k=1

|Ck,i||Ck,j |

≤ a ·
d∑

k=1

|Ck,i|

≤ ab.

Since the maximum eigenvalue of a square matrix is at most the maximum ℓ1 norm of its rows, we have∥∥C†C∥∥∞ ≤ ab⇒ ∥C∥∞ ≤ √ab.
We also define and state some simple properties of matrix inner products:

Definition 2.13. For matrices A,B ∈ Cd1×d2 , define the inner product

⟨A,B⟩ =
∑

i∈[d1],j∈[d2]

Ai,j ·Bi,j = Tr
[
A†B

]
.

We also define the Frobenius norm ∥A∥F =
√
⟨A,A⟩.
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Lemma 2.14. For matrices A,B ∈ Cd×d, we have:

• (Cauchy-Schwarz) |⟨A,B⟩| ≤ ∥A∥F · ∥B∥F .

• (Well-known) If A is Hermitian and B is Hermitian PSD, then we have |⟨A,B⟩| ≤ ∥A∥∞ · Tr [B].

2.4.1 Blockwise Tensor Products

This section is devoted to stating and proving Theorem 2.15, which will serve as our central linear algebraic
workhorse. We will make some comments about this theorem and its proof at the end of this section. We
will then present some straightforward consequences of this theorem in Section 2.4.2, which we will use
directly when analyzing t 7→ t+ 1 cloning games.

Theorem 2.15. Let R,C be positive integers. Let r1, r2, . . . , rR, r′1, r
′
2, . . . , r

′
R, c1, . . . , cC , c

′
1, . . . , c

′
C be

positive integers. For each i ∈ [R], k ∈ [C], let Ai,k ∈ Cri×ck and Bi,k ∈ Cr′i×c′k be matrices. Additionally,
for each i ∈ [R], k ∈ [C], let γi,k ∈ C be a scalar of magnitude at most 1, i.e. |γi,k| ≤ 1.

Define the following block matrices:

A :=

A1,1 . . . A1,C
...

. . .
...

AR,1 . . . AR,C

 ∈ C(r1+...+rR)×(c1+...+cC)

B :=

B1,1 . . . B1,C
...

. . .
...

BR,1 . . . BR,C

 ∈ C(r′1+...+r
′
R)×(c′1+...+c′C)

M :=

 γ1,1A1,1 ⊗B1,1 . . . γ1,CA1,C ⊗B1,C
...

. . .
...

γR,1AR,1 ⊗BR,1 . . . γR,CAR,C ⊗BR,C

 ∈ C(r1r′1+...+rRr
′
R)×(c1c′1+...+cCc′C).

Suppose both of the following conditions hold:

1. ∥A∥∞ ≤ 1.

2. Each block column of B has operator norm ≤ 1 i.e. for all k ∈ [C], we have∥∥∥∥∥∥∥
B1,k

...
BR,k


∥∥∥∥∥∥∥
∞

≤ 1.

Then, it holds that ∥M∥∞ ≤ 1.

High-level proof idea. The main idea is as follows: it suffices to show that for any unit vectors x, y of the
right dimensions that |x†My| ≤ 1. As a function of B, x†My is linear. We can hence express this as the
inner product of B with some other matrix. It turns out that this matrix has a simple form; reformulating the
problem in these terms will allow us to use the standard bounds stated in Lemma 2.14.
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Notation. We begin by setting up some notation. If we have a sequence of matrices {AI : I ∈ I} indexed
by I with rows and columns indexed by r ∈ R and c ∈ C, we use (AI)r;c to denote the entry in row r and
column c of matrix AI .

Now let us define B̃ as follows, and let B′ be its entrywise conjugate:

B̃ :=

B̃1,1 . . . B̃1,C
...

. . .
...

B̃R,1 . . . B̃R,C



=

 γ1,1B1,1 . . . γ1,CB1,C
...

. . .
...

γR,1BR,1 . . . γR,CBR,C

 ∈ C(r′1+...+r
′
R)×(c′1+...+c′C).

As outlined earlier, it suffices to show for any unit vectors x ∈ Cr1r′1+...+rRr′R and y ∈ Cc1c′1+...+cCc′C that
|x†My| ≤ 1. We index the entries of x by an index i ∈ [R] and then values j ∈ [ri] and j′ ∈ [r′i]. We
similarly index the entries of y by (k, l, l′). We can also apply this same indexing to the rows and columns
of M. Thus for i ∈ [R] and k ∈ [C], we can define Mi,k ∈ Crir′i×ckc′k by Mi,k = γi,kAi,k ⊗Bi,k (i.e. this
is one block of M).

For each i ∈ [R], let Xi ∈ Cri×r′i be defined by (Xi)j;j′ = x(i,j,j′). Similarly define Yk ∈ Cck×c′k for
each k ∈ [C]. We also defined the following matrices:

X :=


X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . XR

 ∈ C(r1+...+rR)×(r′1+...+r′R)

Y :=


Y1 0 . . . 0
0 Y2 . . . 0
...

...
. . .

...
0 0 . . . YC

 ∈ C(c1+...+cC)×(c′1+...+c′C).

It is straightforward to see that ∥X∥F = ∥Y∥F = 1, since the nonzero entries in X are exactly the same as
in x, and similarly for Y and y.

Finally, over Cc′1+...+c′C , for each k ∈ [C] define the projector Π′k to be onto the natural c′k coordinates
(more precisely, all coordinates z such that c′1 + . . . + c′k−1 < z ≤ c′1 + . . . + c′k. Note then that the
block-diagonal structure of Y implies that:

Y†Y =
∑
k∈[C]

Π′kY
†YΠ′k. (5)

Rewriting x†M y as a linear function of B′. We now show that x†M y can be written as a linear function
of B′. This is captured in the following lemma:

Lemma 2.16. We have
x†M y = Tr

[
X†AY(B′)†

]
.
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Proof. We proceed as follows:

x†M y =
∑

i∈[R],k∈[C]

∑
j∈[ri],j′∈[r′i],l∈[ck],l′∈[c′k]

x(i,j,j′) (Mi,k)(j,j′);(l,l′) y(k,l,l′)

=
∑

i∈[R],k∈[C]

∑
j∈[ri],j′∈[r′i],l∈[ck],l′∈[c′k]

x(i,j,j′)

(
Ai,k ⊗ B̃i,k

)
(j,j′);(l,l′)

y(k,l,l′)

=
∑

i∈[R],k∈[C]

∑
j∈[ri],j′∈[r′i],l∈[ck],l′∈[c′k]

x(i,j,j′) (Ai,k)j;l

(
B̃i,k

)
j′;l′

y(k,l,l′)

=
∑

i∈[R],k∈[C]

∑
j′∈[r′i],l′∈[c′k]

(
B̃i,k

)
j′;l′
·

 ∑
j∈[ri],l∈[ck]

x(i,j,j′) (Ai,k)j;l y(k,l,l′)


=

∑
i∈[R],k∈[C]

∑
j′∈[r′i],l′∈[c′k]

(
B̃i,k

)
j′;l′
·

 ∑
j∈[ri],l∈[ck]

(Xi)j;j′ (Ai,k)j;l (Yk)l;l′


=

∑
i∈[R],k∈[C]

∑
j′∈[r′i],l′∈[c′k]

(
B̃i,k

)
j′;l′
·

 ∑
j∈[ri],l∈[ck]

(
X†i

)
j′;j

(Ai,k)j;l (Yk)l;l′


=

∑
i∈[R],k∈[C]

∑
j′∈[r′i],l′∈[c′k]

(
B̃i,k

)
j′;l′
·
(
X†iAi,kYk

)
j′;l′

=
∑

i∈[R],k∈[C]

∑
j′∈[r′i],l′∈[c′k]

B̃(i,j′);(k,l′) · (X†AY)(i,j′);(k,l′)

= ⟨B′,X†AY⟩ = Tr
[
(B′)†X†AY

]
= Tr

[
X†AY(B′)†

]
.

Bounding the operator norm of B′Π′k. Our second ingredient will be the following straightforward ob-
servation:

Lemma 2.17. For any k ∈ [C], we have ∥B′Π′k∥∞ ≤ 1.

Proof. After removing zero columns, B′Π′k is just the following block matrix: γ1,kB1,k
...

γR,kBR,k

 .

This is the result of taking

B1,k
...

BR,k

, multiplying each row by a scalar of magnitude ≤ 1, then conjugating

all entries. The latter two operations do not increase operator norm, and we are assuming that the starting
matrix has operator norm ≤ 1. The conclusion follows.

31



Completing the proof. We are now ready to complete the proof of Theorem 2.15; this will follow from
the standard inequalities stated in Lemma 2.14, in addition to using the block-diagonal structure of Y (as in
Equation (5)).

Proof of Theorem 2.15. Starting from Lemma 2.16, we have:

|x†M y| =
∣∣∣Tr [X†AY(B′)†

]∣∣∣
≤ ∥X∥F ·

∥∥∥AY(B′)†
∥∥∥
F

(Lemma 2.14)

=
∥∥∥AY(B′)†

∥∥∥
F
.

Continuing from here, we have:∥∥∥AY(B′)†
∥∥∥2
F
= Tr

[
B′Y†A†AY(B′)†

]
= Tr

[
A†AY(B′)†B′Y†

]
≤ Tr

[
Y(B′)†B′Y†

]
(Lemma 2.14; ∥A∥∞ ≤ 1)

= Tr
[
Y†Y(B′)†B′

]
=
∑
k∈[C]

Tr
[
Π′kY

†YΠ′k(B
′)†B′

]
(Equation (5))

=
∑
k∈[C]

Tr
[(

Π′kY
†YΠ′k

)(
Π′k(B

′)†B′Π′k

)]
≤
∑
k∈[C]

Tr
[
Π′kY

†YΠ′k

]
·
∥∥∥Π′k(B′)†B′Π′k∥∥∥∞ (Lemma 2.14)

≤
∑
k∈[C]

Tr
[
Π′kY

†YΠ′k

]
(Lemma 2.17)

=
∑
k∈[C]

Tr
[
Π′kY

†Y
]

= Tr
[
Y†Y

]
= ∥Y∥2F
= 1,

thus completing the proof of the theorem.

Discussion. Given the simplicity of the statement of Theorem 2.15, one might wonder why our proof is
so involved. Here, we present some justification that this theorem is actually quite strong, and discuss some
obstacles to more intuitive proof strategies. First, we note that our theorem captures some simple special
cases:

• When R = C = 1, this is immediate from Lemma 2.10.
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• When γi,k = 1 for all i, k (or more generally γi,k is constant) and ∥B∥∞ ≤ 1, this can be shown by
noting that the matrix M would be a submatrix of A ⊗ B, and then appealing to Lemma 2.10. (We
rigorously argue this fact as part of the proof of Lemma 2.19.)

However, this argument completely breaks down if γi,k is allowed to vary between blocks.

• When ri = r′i = ck = c′k = 1 for all i, k, this boils down to bounding the operator norm of any
complex R × C matrix with the entry in row i and column k having magnitude equal to |Ai;kBi;k|
(noting that in this setting Ai;k, Bi;k are scalars). This is not straightforward but still easier to handle;
one can argue by Cauchy-Schwarz that the rows and columns of such a matrix must have ℓ1 norm
≤ 1, and it is well-known that such a matrix must have operator norm≤ 1 (see Lemmas 2.11 and 2.12
for details).

This argument also breaks down as soon as the block matrices Ai,k, Bi,k are not just scalars; the ℓ1
norms of the rows and columns of M will end up growing polynomially in
max(r1, . . . , rR, r

′
1, . . . , r

′
R, c1, . . . , cC , c

′
1, . . . , c

′
C) in the worst case. (Jumping ahead, in the setting

of oracular cloning games, this would yield a bound that degrades exponentially in the number of
ancilla qubits that each adversary is allowed to use, which is of course undesirable.)

One could imagine “interpolating” between these two techniques by considering the operator norm of
each block of M individually, and using this to obtain a bound on ∥M∥∞. Perhaps surprisingly, this is also
provably insufficient. Suppose R = C = n for some n, and ri = r′i = ck = c′k = n for all i, k. Then
let us take A,B to be n2 × n2 permutation matrices with exactly one 1 in each block. Now we will have
∥Ai,k∥∞ = ∥Bi,k∥∞ = 1 ⇒ ∥Ai,k ⊗Bi,k∥∞ = 1 for all i, k. However, there exist n × n block matrices
(i.e. containing n2 blocks in total) with each block having operator norm 1, but where the overall matrix
has operator norm growing with n; one such example is the n× n all 1’s matrix (appropriately padded with
zero rows and columns to obtain the right dimensions). This counterexample implies that just considering
the operator norm of each block of M is too lossy.

Thus Theorem 2.15 is quite strong and there are natural barriers to proof strategies that might feel more
simple and intuitive. The proof we have presented is the simplest one that we are aware of.

2.4.2 Consequences

We now state some corollaries of Theorem 2.15 that we will later directly apply when bounding the operator
norms relevant to cloning games in Section 5.3.

Lemma 2.18. Let A1, . . . ,Ak be block matrices of d columns. More formally, for each i ∈ [k] set

Ai =
[
Ai,1 . . . Ai,d

]
,

for some block matrices Ai,1, . . . ,Ai,d that have the same number of rows but not necessarily the same
number of columns. (Note that we do not require Ai,1 and Aj,1 to have the same number of rows when
i ̸= j.) Assume the following preconditions:

1. For all i ∈ [k] and j ∈ [d], we have ∥Ai,j∥∞ ≤ 1; and

2. There exists some i ∈ [k] such that ∥Ai∥∞ ≤ 1.

Let
A =

[⊗k
i=1Ai,1

⊗k
i=1Ai,2 . . .

⊗k
i=1Ai,d

]
be defined as a “block column-wise tensor product” of A1,A2, . . . ,Ad. Then ∥A∥∞ ≤ 1.
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Proof. Firstly, if k = 1 then we will have A = A1 so the conclusion will follow from the second precon-
dition. From now on, assume that k ≥ 2. Also, by symmetry, let us assume without loss of generality that
∥A1∥∞ ≤ 1.

Now define the matrix M as follows:

M =
[⊗k

i=2Ai,1
⊗k

i=2Ai,2 . . .
⊗k

i=2Ai,d

]
.

Notice that, for each j ∈ [d], the jth block column of M has operator norm equal to
∏k
i=1 ∥Ai,j∥∞ ≤ 1.

Since we also have ∥A1∥∞ ≤ 1, we can apply Theorem 2.15 to A1 and M (with R = 1, C = d, and
γi,j = 1 for all i, j) to immediately obtain that ∥A∥∞ ≤ 1, as desired.

Lemma 2.19. Let R,C be positive integers. Let r1, . . . , rR, c1, . . . , cC be positive integers. Fix some
integer d ≥ 2. For each t ∈ [d], i ∈ [R], k ∈ [C], let At,i,k ∈ Cri×ck be a matrix. Additionally, for each
i ∈ [R], k ∈ [C], let γi,k ∈ C be a scalar of magnitude at most 1 i.e. |γi,k| ≤ 1. Then define the following
block matrices:

At :=

At,1,1 . . . At,1,C
...

. . .
...

At,R,1 . . . At,R,C

 ∈ C(r1+...+rR)×(c1+...+cC), for each t ∈ [d]

M :=

 γ1,1
⊗d

t=1At,1,1 . . . γ1,C
⊗d

t=1At,1,C
...

. . .
...

γR,1
⊗d

t=1At,R,1 . . . γR,C
⊗d

t=1At,R,C

 ∈ C(rd1+...+r
d
R)×(cd1+...+cdC).

Suppose that for all t ∈ [d], we have ∥At∥∞ ≤ 1. Then ∥M∥∞ ≤ 1. (Note that the d = 2 case is immediate
from Theorem 2.15.)

Proof. Define the matrix

B =


⊗d

t=2At,1,1 . . .
⊗d

t=2At,1,C
...

. . .
...⊗d

t=2At,R,1 . . .
⊗d

t=2At,R,C

 ∈ C(rd−1
1 +...+rd−1

R )×(cd−1
1 +...+cd−1

C ).

We claim that B is a submatrix of A2⊗ . . .⊗Ad. This is intuitive, but nevertheless we justify this rigorously
before completing the proof. To this end, let us index each row of each At by an index i ∈ [R] together
with an index α ∈ [i]. Similarly, we can index each column by an index k ∈ [C] together with β ∈
[k]. We can hence index rows of A2 ⊗ . . . ⊗Ad by (i2, . . . , it, α2, . . . , αd) and similarly the columns by
(k2, . . . , kd, β2, . . . , βd); so that:

(A2 ⊗ . . .⊗Ad)(i2,...,id,α2,...,αd);(k2,...,kd,β2,...,βd)
=

d∏
t=2

(At,it,kt)αt;βt
.

On the other hand, we can index the rows of B by one index i ∈ [R] and indices α2, . . . , αd ∈ [i], and
similarly the columns by k, β2, . . . , βd, so that:

B(i,α2,...,αd);(k,β2,...,βd) =
d∏
t=2

(At,i,k)αt;βt
.
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Game 1 (Monogamy of Entanglement Game).
A monogamy of entanglement game G = (HA,Θ,X , {Aθ

x}θ∈Θ,x∈X ) for a quantum strategy
S = (HB,HC, ρABC, {Bθ

x}θ∈Θ,x∈X , {Cθ
x}θ∈Θ,x∈X ) is the following game between a trusted ref-

eree (called Alice) and two collaborating players (called Bob and Charlie):

1. (Setup phase) Bob and Charlie prepare a tripartite quantum state ρ ∈ D(HA ⊗ HB ⊗ HC).
They send register A to Alice, and hold onto registers B and C, respectively. Afterwards, they
are no longer allowed to communicate for the remainder of the game.

2. (Question phase) Alice first samples a uniformly random question θ ∼ Θ, and then applies
the corresponding measurement {Aθ

x}x∈X to her register A. Afterwards, Alice announces the
question θ to both Bob and Charlie.

3. (Answer phase) Bob and Charlie independently output a guess for Alice’s outcome by applying
the measurements {Bθ

x}x∈X and {Cθ
x}x∈X to their registers B and C, respectively.

4. (Outcome phase) Bob and Charlie win if they both guess Alice’s outcome correctly.

Figure 4: A monogamy of entanglement game.

It is now clear that B can be obtained by restricting A2⊗ . . .⊗Ad to rows where i2 = . . . = id and columns
where k2 = . . . = kd. This establishes our claim.

We now complete the proof as follows. By Lemma 2.9, our claim implies that

∥B∥∞ ≤
d∏
t=2

∥At∥∞ ≤ 1.

The conclusion now follows by applying Theorem 2.15 to A1 and B for the choices of R,C, and scalars
γi,k. This proves the claim.

3 Monogamy of Entanglement and Oracular Cloning Games

In this section, we formally define monogamy of entanglement games, as well as the closely related notion
of (oracular) cloning games, which is the central object of study in this work.

3.1 Monogamy of Entanglement Games

A monogamy of entanglement game [TFKW13] is an interactive game which is played by three players: a
trusted referee called Alice, and two colluding and adversarial parties Bob and Charlie.

Definition 3.1 (Monogamy of Entanglement Game). A monogamy of entanglement (MOE) game is specified
by a tuple G = (HA,Θ,X , {Aθ

x}θ∈Θ,x∈X ) which consists of the following elements:

• A finite dimensional Hilbert spaceHA corresponding to a register A that Alice holds;

• A finite set Θ corresponding to the set of possible questions;

35



• A finite set X corresponding to the set of all possible answers;

• A set of positive operator-valued measurements
{
Aθ
x

}
θ∈Θ,x∈X to be performed on Alice’s system.

Definition 3.2 (Quantum Strategy). A quantum strategy S = (HB,HC, ρABC, {Bθ
x}θ∈Θ,x∈X , {Cθ

x}θ∈Θ,x∈X )
for a monogamy of entanglement game G = (HA,Θ,X , {Aθ

x}θ∈Θ,x∈X ) consists of

• A finite dimensional Hilbert spaceHB corresponding to a register B that Bob holds;

• A finite dimensional Hilbert spaceHC corresponding to a register C that Charlie holds;

• A tripartite quantum state ρ ∈ D(HA ⊗HB ⊗HC);

• A set of positive operator-valued measurements
{
Bθ
x

}
θ∈Θ,x∈X to be performed on Bob’s system.

• A set of positive operator-valued measurements
{
Cθ
x

}
θ∈Θ,x∈X to be performed on Charlie’s system.

Definition 3.3 (Value of a Monogamy Game). Let G = (HA,Θ,X , {Aθ
x}θ∈Θ,x∈Σ) be monogamy game.

Then, the winning probability of a quantum strategy S = (HB,HC, ρABC, {Bθ
x}θ∈Θ,x∈X , {Cθ

x}θ∈Θ,x∈X ) for
the particular monogamy game G is defined by the quantity

ωS(G) := E
θ∼Θ

∑
x∈X

Tr
[
(Aθ

x ⊗Bθ
x ⊗Cθ

x)ρABC

]
.

Moreover, we define the value of the monogamy game G as the optimal winning probability

ω(G) := sup
S=(HB,HC,ρABC,{Bθ

x},{Cθ
x})

ωS(G).

Remark 4. As noted in [TFKW13], a standard purification argument and Neumark’s dilation theorem
show that we can assume without loss of generality that all POVMs are projective. We will assume this
going forward.

Definition 3.4 (Parallel-Repeated Monogamy Game). Let r ∈ N be a parameter. For any monogamy game
G = (HA,Θ,X ,

{
Aθ
x

}
θ∈Θ,x∈X ), we define the r-fold parallel-repeated monogamy game G×r as follows:

• The Hilbert space for Alice’s register will beH⊗rA .

• The set of questions will now be Θr.

• The set of answers will be X r.

• For any (x1, . . . , xr) ∈ X r and (θ1, . . . , θr) ∈ Θr, we define Alice’s measurement to be

A
(θ1,...,θr)
(x1,...,xr)

=
r⊗
i=1

Aθi
xi .

Informally, Alice will carry out r parallel measurements and Bob and Charlie succeed if they successfully
guess the outcomes of all r measurements.

Example (BB84 Monogamy Game). As a simple example, the following monogamy game is known as the
“BB84 monogamy game”:
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• The Hilbert spaceHA is C2.

• The sets of questions Θ and answers X are both {0, 1}.

• For any x, θ ∈ {0, 1}, we have
Aθ
x = Hθ |x⟩⟨x|Hθ.

Remark 5. We note that any MOE game admits a trivial strategy with success probabiliy 1/|X |. Bob and
Charlie could set up the state ρABC so that Bob and Alice are maximally entangled. This would enable Bob
to always guess x correctly, and now Charlie can guess randomly. (He cannot do better as in this case he
must be completely decoupled from Alice and Bob.)

3.2 Oracular Cloning Games

The monogamy of entanglement games which we encounter in physics and cryptography often deal with
some restrictions on the types of strategies that can be employed. Motivated by this, in this section, we
introduce the notion of a t 7→ t + 1 cloning game. In the case when t = 1, this notion turns out to be a
special case of a monogamy of entanglement game in Section 3.1, with the following additional restrictions:

• The tripartite state ρ ∈ D(HA ⊗ HB ⊗ HC) which is shared between Alice, Bob and Charlie is the
result of applying a cloning channel ΦA′→BC to one half of an EPR pair, i.e.,

ρABC = (IA ⊗ ΦA′→BC)(|EPR⟩⟨EPR|AA′).

In other words, ρABC is the normalized Choi state of some channel ΦA′→BC.

• Alice’s measurement
{
Aθ
x

}
θ∈Θ,x∈X on register A is a projective measurement of the form

Aθ
x = Ūθ |x⟩⟨x| Ū †θ ,

for some family of unitary operators {Uθ}θ∈Θ acting onHA.

• (If we are in the oracular setting) Bob and Charlie’s measurements can only depend on oracle queries
to Uθ and U †θ , rather than directly on θ.

This equivalence was first observed and used by Broadbent and Lord [BL20] for analyzing BB84 cloning
games; for completeness, we give a proof of the general case (which proceeds along almost identical lines)
in Lemma A.1. For t ≥ 2, the notion of a t 7→ t+ 1 cloning game includes t+ 1 colluding parties and thus
starts to become incomparable to a monogamy of entanglement game in Section 3.1. However, a similar
argument still allows us to establish an equivalence between t 7→ t + 1 cloning games and another game
that resembles a monogamy game, and we will use this equivalence in our analysis. This equivalence is
demonstrated in Lemma A.2.

Let us now give a formal definition of a t 7→ t+ 1 cloning game.

Definition 3.5 ((Oracular) Cloning Game). Let t ∈ N be an integer. A t 7→ t + 1 (oracular) cloning game
((O)CG) is a tuple Gt7→t+1 = (t,HAt ,Θ,X , {Uθ}θ∈Θ) which consists of the following elements:

• A finite dimensional Hilbert spaceHAt consisting of registers At := A1 · · ·At given to the cloner;

• A finite set Θ corresponding to the set of possible questions;
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• A finite set X corresponding to the set of all possible answers;

• A finite ensemble of unitary operators {Uθ}θ∈Θ acting on the A systems.

Definition 3.6 (Quantum Strategy for Cloning Games). Let t ∈ N and let Gt7→t+1 = (t,HAt ,Θ,X , {Uθ}θ∈Θ)
be a cloning game. A quantum strategy S = (HBt+1 ,ΦAt→Bt+1 , {Pθ

1,x}θ∈Θ,x∈X , . . . , {Pθ
t+1,x}θ∈Θ,x∈X ) for

the game Gt7→t+1 is characterized by the following elements:

• A finite dimensional Hilbert space HBt+1 consisting of registers Bt+1 := B1 · · ·Bt+1 which are held
by the k + 1 many players in the game;

• A completely positive and trace-preserving channel ΦAt→Bt+1 performed by the cloner;

• A sequence of measurements {Pθ
1,x}θ∈Θ,x∈X , . . . , {Pθ

t+1,x}θ∈Θ,x∈X which are to be performed by
the t+ 1 players on the registers B1, · · · ,Bt+1, respectively.

Definition 3.7 (Quantum Strategy for Oracular Cloning Games). A quantum strategy for an oracular
cloning game is the same as a quantum strategy for a cloning game, with the following crucial restriction:
the measurements by the t+ 1 players will now be oracle-aided. We denote these as{

P
Uθ,U

†
θ

1,x

}
θ∈Θ,x∈X

, . . . ,

{
P
Uθ,U

†
θ

t+1,x

}
θ∈Θ,x∈X

.

Informally, an oracular cloning game is one where the players are only given oracle access to Uθ, U
†
θ ,

whereas in Definition 3.6 the players are given the question θ in the clear.

Definition 3.8 (Restricted Quantum Strategy for Oracular Cloning Games). Assume X = {0, 1}n. Then a
restricted quantum strategy for an oracular cloning game further restricts the players in the following way.
For each i ∈ [t+ 1], player Pi must output their guess x ∈ {0, 1}n after applying some quantum algorithm
that makes at most one query to either Uθ or U †θ .

We let Srest denote the collection of restricted quantum strategies S for the oracular cloning game G.

We first observe that we can impose some structure on the t+1 players’ strategies without loss of generality;
this will make our analysis easier:

Lemma 3.9. Without loss of generality, a restricted quantum strategy for G may be taken to the have the
following much more restricted structure: Each player Pi will hold a register Bi that splits into the following
registers:

• A query register Ci of n qubits;

• An ancilla register Di of a qubits (we allow a to be arbitrary, but assume WLOG that it is the same
for all the players); and

• A classical control bit bi from the cloning channel Φ, which we store in a single-qubit register Ei for
formality’s sake.

The player Pi will then proceed as follows:

1. They first make exactly one query to either Uθ or U †θ , which will be applied to the Ci register. Which
of these unitaries they query will be controlled by bi.
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2. They can then apply a unitary Qi of their choice to their entire system Bi. (We assume without loss of
generality that the same unitary Qi is applied regardless of the value of the control bit bi; the cloner
could simply include a copy of the control bit in register Di as well, which Qi acts on.)

3. They now measure the n qubits in the Ci register to obtain a string x ∈ {0, 1}n.

4. They output x.

Formally: for every i ∈ [t+ 1] and x ∈ {0, 1}n, player Pi’s projector has the form:

P
Uθ,U

†
θ

i,x =
[
(U †θ ⊗ IDi

)Q†i (|x⟩⟨x| ⊗ IDi)Qi(Uθ ⊗ IDi
)
]
⊗ |0⟩⟨0|Ei

+
[
(Uθ ⊗ IDi

)Q†i (|x⟩⟨x| ⊗ IDi)Qi(U
†
θ ⊗ IDi

)
]
⊗ |1⟩⟨1|Ei

.

Proof. Any preprocessing that player Pi might carry out before their query can be absorbed into the cloning
channel Φ, including the decision about which of Uθ, U

†
θ to query, which we represent in the control bit bi.

(If the player does not want to query either, we can just treat Ci as dummy qubits and make a query there.)
The conclusion now follows from the Stinespring and Neumark dilation theorems [NC16].

Remark 6. Some comments are in order about Definition 3.8:

• The cloner Φ remains entirely unrestricted; they can apply an arbitrary quantum channel to (Uθ |x⟩)⊗t.

• While quite restrictive, this model is still sufficiently expressive and captures a standard approximate
no-cloning bound as a special case: once the cloning map Φ has been applied, each player Pi imme-
diately makes a query to U †θ and measures in the computational basis. In this case, it is easy to check
that the winning probability corresponds precisely to the average cloning fidelity for t 7→ t+ 1.

Definition 3.10 (Value of a (Oracular) Cloning Game). Let t ∈ N. The winning probability of a quantum

strategy S = (HBt+1 ,ΦAt→Bt+1 , {PUθ,U
†
θ

1,x }θ∈Θ,x∈X , . . . , {P
Uθ,U

†
θ

t+1,x }θ∈Θ,x∈X ) for a particular t 7→ t + 1
oracular cloning game Gt7→t+1 = (t,HAt ,Θ,X , {Uθ}θ∈Θ) is defined by the quantity

ωS(Gt7→t+1) := E
θ∼Θ

E
x∼X

Tr

[(
P
Uθ,U

†
θ

1,x ⊗ . . .⊗P
Uθ,U

†
θ

t+1,x

)
ΦAt→Bt+1

(
(Uθ |x⟩⟨x|U †θ )

⊗t
At

)]
.

Moreover, we define the value of the oracular cloning game G as the optimal winning probability

ω(Gt7→t+1) := sup
S=(HBt+1 ,ΦAt→Bt+1 ,{P1,x}, ...,{Pt+1,x})

ωS(Gt7→t+1).

We analogously define the value of a cloning game G, using the measurements
{
Pθ
i,x

}
instead.

Remark 7 (Comparison with [AKL23]). Our definition of cloning games (in the single copy setting) is
much more specific than that in [AKL23, Definitions 2-6]. Using their terminology, the secret key is θ and
each of the steps has the following structure:

• The secret key sk will be the basis θ.

• Token generation GenT(sk, x) is restricted to deterministically output the pure state Uθ |x⟩.
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• Challenge generation GenC(sk, x) simply releases θ = sk, either in the clear or in the form of an
oracle.

• For verification, we specialize to the cloning search setting (see [AKL23, Definition 4]), where the
players win if they all output the string x as their answer.

Our reason for focusing on games of this form is because we are primarily concerned with the difficulty of
cloning one very specific property of a quantum state, namely its measurement statistics with respect to the
bases specified by Θ (or even more weakly, just the string x).

We also make the straightforward observation that cloning games are closely related to unclonable encryp-
tion (UE) schemes (which we will formally define in Section 9):

Lemma 3.11. Consider a cloning game with t players, X = {0, 1}n, and Θ = {0, 1}λ. Then all of the
following hold:

• If the corresponding cloning game has value ≤ ϵ with computationally unbounded (respectively,
computationally bounded) (Φ,P1, . . . ,Pt+1), then there exists a UE scheme satisfying statistical (re-
spectively, computational) t 7→ t+ 1 ϵ-UE security.

• If the corresponding oracular cloning game has value ≤ ϵ with computationally unbounded (respec-
tively, computationally bounded) (Φ,P1, . . . ,Pt+1), then there exists a UE scheme satisfying (statis-
tical, respectively computational) t 7→ t+ 1 (ϵ,∞)-UE oracular security.

• If in the corresponding oracular cloning game, any computationally unbounded (respectively, com-
putationally bounded) restricted strategy (Φ,P1, . . . ,Pt+1) has value ≤ ϵ, then there exists a UE
scheme satisfying (statistical, respectively computational) t 7→ t+ 1 (ϵ, 1)-UE oracular security.

Proof. In all cases, the construction proceeds as follows: we will take Enc(θ, x) = Uθ |x⟩, and Dec will
apply U †θ and measure in the standard basis. The conclusions are now straightforward to verify.

4 Types and Subtypes

In order to improve on the limitations of the [TFKW13] framework for bounding the value of monogamy
games, we essentially restrict attention to oracular cloning games, and restrict each player to only make
one query. This allows us to analyze this game using the language of binary phase twirls (defined and
analyzed in Section 4.2). To effectively capture the effect of binary phase twirls on an operator, we revisit
the formalism of types introduced by [AGQY22] in Section 4.1 and extend this to subtypes in Section 4.3.
Later, in Section 5, we will leverage these tools to analyze our construction using binary phase states and
prove cloning bounds of Ot(2−n).

4.1 Binary Types

Let N,M ∈ N and r ∈ N. For a vector x = (x1, . . . , xr) ∈ [N ]r and an ancilla input y ∈ [M ], we denote
by Type(x, y) ∈ [0 : r]N the so-called type vector in which the i-th entry corresponds to the number of
occurrences of i ∈ [N ] in x. Note that the ancillary information y is just representing some auxiliary input
that we do not consider when evaluating Type. We denote by BinType(x, y) ∈ {0, 1}N the binary type
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Game 2 (Oracular Cloning Game).
A t 7→ t + 1 oracular cloning game Gt7→t+1 = (k,HAt ,Θ,X , {Uθ}θ∈Θ) for a quantum strategy of

the form S = (HBt+1 ,ΦAt→Bt+1 , {PUθ,U
†
θ

1,x }θ∈Θ,x∈X , . . . , {P
Uθ,U

†
θ

t+1,x }θ∈Θ,x∈X ) is the following game
between a trusted challenger, a cloner and t+ 1 many players:

1. (Setup phase) The challenger samples a random x ∼ X and a random θ ∼ Θ, and sends the
state (Uθ |x⟩)⊗t consisting of registers At := A1 · · ·At to the cloner.

The cloner applies the channel ΦAt→Bt+1 to (Uθ |x⟩)⊗t and sends the resulting registers
Bt+1 = B1 · · ·Bt+1 to the t + 1 many players, respectively. Afterwards, the players may
no longer communicate with each other for the remainder of the game.

2. (Question phase) Each of the players receives oracles for both Uθ and U †θ .

3. (Answer phase) The players independently output a guess for the element x by applying the

measurements {PUθ,U
†
θ

1,x }x∈X , . . . , {P
Uθ,U

†
θ

t+1,x }x∈X to their registers, respectively.

4. (Outcome phase) The players win if they all guess x correctly.

Figure 5: A t 7→ t + 1 oracular cloning game. A regular cloning game is defined analogously, except the
measurements are now Pθ

i,x and free to depend on θ in any way. Informally, in a standard cloning game θ
is revealed to the t + 1 players in the clear, while in the oracular cloning game the players are only given
oracle access to Uθ and U †θ .

vector in which the i-th entry corresponds to the parity of the number of occurrences of i ∈ [N ] in x. In
other words, we let

BinType(x, y) = Type(x, y) (mod 2).

We note that our definition of Type and BinType is a natural extension of the standard definition in the
literature (which does not consider auxiliary input); in particular, when M = 0 and y is the empty string,
our definitions and the standard definitions coincide.

BinType decomposition. When working with the vector spaceH = (CN )⊗r ⊗CM , we use the following
BinType decomposition into orthogonal subspaces Vλ indexed by binary types λ ∈ {0, 1}N such that

(CN )⊗r ⊗ CM ∼=
⊕
λ

Vλ ,

where each subspace Vλ ⊆ H corresponds to vectors with a particular binary type λ, i.e.,

Vλ = spanC{|v1, . . . , vr, w⟩ : BinType((v1, . . . , vr), w) = λ}.

4.2 Phase Twirling

For a binary function f : [N ]→ {0, 1}, we let Uf define the phase unitary

Uf =
∑
x∈[N ]

(−1)f(x) |x⟩⟨x| .
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Using the BinType decomposition, we can show the following identity for the r-wise twirl with Uf . We note
that the below lemma is also immediate from Zhandry’s compressed oracle technique [Zha19]; although we
do not present our results in these terms here, we outline this formulation in Section 1.2.3.

Lemma 4.1. Let O ∈ L(H) be a linear operator acting on the vector spaceH = (CN )⊗r ⊗ CM . Then,

E
f∼Fn

[(
U⊗rf ⊗ I

)
O
(
U⊗rf ⊗ I

)]
=

∑
λ∈{0,1}N

ΠλOΠλ ,

where Πλ projects onto Vλ = spanC{|x1, . . . , xr, v⟩ ∈ (CN )⊗r ⊗ CM : BinType((x1, . . . , xr), v) = λ}.

Proof. Expanding O in the standard basis and using the linearity of expectation, we get

E
f∼Fn

[(
U⊗rf ⊗ I

)
O
(
U⊗rf ⊗ I

)]
=

∑
x,y∈[N ]r

v,w∈[M ]

O(x,v);(y,w) E
f∼Fn

[
U⊗rf |x⟩⟨y|U

⊗r
f ⊗ |v⟩⟨w|

]

=
∑

x,y∈[N ]r

v,w∈[M ]

O(x,v);(y,w) E
f∼Fn

[
(−1)f(x1)+...+f(xr)+f(y1)+...+f(yr)

]
|x⟩⟨y| ⊗ |v⟩⟨w|

=
∑

x,y∈[N ]r

v,w∈[M ]
BinType(x,v)=BinType(y,w)

O(x,v);(y,w) |x, v⟩⟨y, w| =
∑

λ∈{0,1}N
ΠλOΠλ.

4.3 Binary Subtypes

4.3.1 Definitions and Combinatorial Properties

While BinType is very simple to define, it comes with an “entangled”14 combinatorial structure that is
difficult to work with. As a simple example, consider the case where r = 3,M = 0, and the binary type
λ is (1, 0, 0, . . . , 0). There are a few different ways for a vector in [N ]3 to attain this BinType: the vector
could be of the form (0, x, x) for any x ∈ [N ] or any permutation of this, and moreover these collections of
vectors will overlap on (0, 0, 0).

Instead of working with the BinType directly, it is more natural and convenient to address each of
these different collections of vectors separately. Within each of these collections, there is now a very clean
combinatorial structure that we will be able to exploit.

To formalize the above intuition, we will work with the notion of subtypes. As in Section 4.1, letN,M, r
be positive integer parameters:

Definition 4.2. A subtype of a given type λ = (c1, . . . , cN ) ∈ {0, 1}N is a string µ of length r. Each entry
of µ is either an integer i ∈ [N ] such that λi = 1, or a variable symbol xi for some index i. We have the
following constraints:

• For each i ∈ [N ] such that λi = 1, i should appear an odd number of times in µ.

14This comment is qualitative, and does not relate in any way to quantum entanglement.
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• For any i such that xi appears at least once in µ, the first i distinct variable symbols that appear in µ
are x1, x2, . . . , xi in that order.

• Each variable symbol xi appears an even number of times in µ.

Definition 4.3. For a vector (x, y) ∈ [N ]r × [M ], define its query restriction to be x ∈ [N ]r. (Informally,
the query restriction discards any auxiliary information.)

Definition 4.4. We say a vector (x, y) ∈ [N ]r × [M ] matches a subtype µ if there exist assignments of
values in [N ] to the variable symbols in µ to yield the query restriction x of (x, y).

For a subtype µ, we define Sµ ⊆ [N ]r × [M ] to be the set of vectors (x, y) that match µ, and let Πµ

denote the projection onto standard basis vectors in Sµ.

Definition 4.5. For any subtype µ with variable symbols x1, . . . , xk and some specific values y1, . . . , yk ∈
[N ] and z ∈ [M ], define Reconstruct(µ, (y1, . . . , yk), z) to be the vector in [N ]r × [M ] obtained by taking
µ and replacing the variable symbol xi with yi for each i, then finally appending z.

At this point, we make some straightforward observations. Firstly, membership of a vector (x, y) in a
subtype µ or a type λ depends only on its query restriction. Also, any vector (x, y) that matches a subtype
µ of a type λ must have type λ. This is due to the parity constraints in Definition 4.2. Conversely, for any
vector (x, y) of type λ, there is at least one subtype µ of λ that (x, y) matches: we can take x, leave entries
i such that λi = 1 as they are, and replace all other distinct values by variable symbols x1, x2, . . .. This
suggests that we might be able to relate the collection of vectors in a given BinType to the collection of
vectors in a given subtype.

Lemma 4.6. Any type λ has at most (2r)r subtypes.

Proof. Consider a subtype µ of λ. Any entry in the string defining µ must be one of the following:

• A fixed integer i ∈ [N ] such that λi = 1. There are at most r such integers.

• A variable symbol xi, where i ≤ r.

µ has r entries, so the conclusion follows.

4.3.2 Relating Subtype Projectors to Type Projectors

It turns out that our main technical task to prove bounds on monogamy games in Section 5 is to bound
expressions of the form

Tr [ΠλΞΠλρ] ,

where ρ is some quantum mixed state in S((CN )⊗r ⊗ CM ), Ξ is some PSD operator, and λ is a BinType.
Here, we will use the combinatorial machinery we just introduced in Section 4.3.1 to reduce this to bounding
expressions of the form

∥ΠµΞΠµ∥∞ · Tr [Πµρ] ,

where µ is now a subtype. Our starting point is the following lemma:

Lemma 4.7. For any type λ, there exist projectors Pµ for each subtype µ of λ such that both of the following
are true:
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1. We have
Πλ =

∑
µ

Pµ.

2. For every µ, we have Pµ ≤ Πµ (with respect to the PSD ordering).

Proof. Let µ1,µ2, . . . ,µK be all the subtypes of λ in an arbitrary order. For each i ∈ [K], let Pµi be the
projector onto the span of standard basis vectors in the set

Tµi := Sµi\
⋃
j<i

Sµj .

First, we check condition 1: the sets Tµi are disjoint by construction and clearly contained in the set of
vectors of type λ. Conversely, any vector of type λ is contained in at least one Sµi (and hence some Tµi).
Hence the disjoint union of {Tµi : i ∈ [K]} is exactly the collection of standard basis vectors with type λ.
The claim follows. Finally, condition 2 is immediate from the fact that Tµi ⊆ Sµi .

Finally, we completely reduce our problem to working with subtypes instead of types via the following
lemma:

Lemma 4.8. For any PSD matrix A, type λ, and mixed state ρ, we have

Tr [ΠλAΠλρ] ≤ (2r)r ·

 ∑
µ subtype of λ

∥ΠµAΠµ∥∞ · Tr [Πµρ]

 .

Proof. By linearity, it suffices to prove the result when ρ is a pure state |ϕ⟩⟨ϕ|. Moreover, let us write
A = B†B for some matrix B. Then we have:

Tr [ΠλAΠλρ] = ⟨ϕ|ΠλB
†BΠλ|ϕ⟩

= ∥BΠλ |ϕ⟩∥2

=

∥∥∥∥∥∥
∑

µ subtype of λ

BPµ |ϕ⟩

∥∥∥∥∥∥
2

(Lemma 4.7, condition 1)

≤ (2r)r ·
∑

µ subtype of λ

∥BPµ |ϕ⟩∥2 (Cauchy-Schwarz; Lemma 4.6)

= (2r)r ·
∑

µ subtype of λ

⟨ϕ|PµB
†BPµ|ϕ⟩

= (2r)r ·
∑

µ subtype of λ

Tr [PµAPµρ]

≤ (2r)r ·
∑

µ subtype of λ

∥PµAPµ∥∞ · Tr [Pµρ]

≤ (2r)r ·
∑

µ subtype of λ

∥ΠµAΠµ∥∞ · Tr [Πµρ] . (Lemma 4.7, condition 2)
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In more detail, the final step follows from two straightforward observations. Firstly: Tr [Pµρ] ≤ Tr [Πµρ]
is clear since Πµ − Pµ is PSD. Secondly: since Pµ is a projector, we have that:

∥PµAPµ∥∞ = max
|ϕ⟩∈imPµ

⟨ϕ|A|ϕ⟩ ; and similarly

∥ΠµAΠµ∥∞ = max
|ϕ⟩∈imΠµ

⟨ϕ|A|ϕ⟩ .

Now we have Pµ ≤ Πµ ⇒ imPµ ⊆ imΠµ ⇒ ∥PµAPµ∥∞ ≤ ∥ΠµAΠµ∥∞. This completes our proof.

5 Cloning Game Construction from Binary Phase States

In this section, we prove upper bounds on the value of restricted oracular cloning games (defined in Defini-
tion 3.8). This section is organized as follows:

• In Section 5.1, we formally state our binary phase construction and prove some preliminary lemmas,
in particular relating the cloning game to a monogamy-like game with some state ρ shared between
the challenger and the t+ 1 players P1, . . . ,Pt+1.

• In Section 5.2, we expand out the relevant operators and states in terms of subtypes (defined in Sec-
tion 4.3).

• In Section 5.3, we prove spectral bounds on the operator norms of the relevant operators.

• In Sections 5.4 and 5.5, we provide some additional tools — namely, an analysis of the structure of the
shared state ρ and how it splits across subtypes — that are necessary for handling t 7→ t + 1 cloning
games when t > 1. We then put everything together to prove our desired bounds in the restricted
oracular cloning setting.

5.1 Setup and Notation

We begin by presenting our construction. Note the qualitative similarity of this construction with Construc-
tion 2; both rely centrally on binary phase states.

Construction 1. Let F = {fθ : {0, 1}n → {0, 1}}θ∈Θ be a family of functions parametrized by elements
Θ = {0, 1}λ. Consider the following t 7→ t + 1 oracular cloning game (as defined in Definition 3.5) GF,t

with question set Θ and answer set X := {0, 1}n. For any θ, we will take the unitary Uθ to be UfθH
⊗n.

(Here, Ufθ is the phase oracle for fθ as defined in Section 2.1.) In other words, for any x ∈ {0, 1}n, we
have

Uθ |x⟩ = 2−n/2
∑

u∈{0,1}n
(−1)fθ(u)⊕⟨x,u⟩ |u⟩ .

Remark 8. We are being intentionally vague about the choice of function family F. One could imagine
instantiating it with a post-quantum PRF family, to obtain a construction that is plausibly secure against
arbitrary polynomial-time adversaries in the oracular cloning game. (We believe this construction would
be plausibly secure because Uθ |x⟩ is pseudorandom [JLS18, BS19] for any fixed x ∈ {0, 1}n, and hence
multi-copy unclonable [Wer98].)

Since we only prove oracular security in the case where t = O(1) and each player can make q = 1
query in total, we will instead instantiate F as an O(1)-wise uniform function family, which is statistically
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indistinguishable from the family of all functions from {0, 1}n → {0, 1} in this query bounded game. We
will reiterate this formally when establishing our final theorem in Section 5.5.

We will consider restricted quantum strategies (defined in Definition 3.8). Recall that we use Srest to denote
the collection of all such strategies. We now make a crucial observation:

Remark 9. Since U †θ = H⊗nUfθ and each player Pi is given a control bit in register Ei dictating whether
they will query Uθ or U †θ , we can assume without loss of generality that each player simply makes one non-
adaptive query to Ufθ as their first step. (In the event that the player is querying Uθ = UfθH

⊗n, they would
technically need to query H⊗n first. We can get around this by absorbing this query to H⊗n into the cloning
channel Φ.)

Recall from Definition 3.8 that each player’s register Bi splits into a query register Ci, an ancilla register
Di, and a control qubit register Ei. Recalling the setup in Definition 3.8 together with Lemma 3.9 and
Remark 9, we can write

P
Uθ,U

†
θ

i,x = (Ufθ ⊗ IDiEi
)Q†i (|x⟩⟨x| ⊗ IDiEi

)Qi(Ufθ ⊗ IDiEi
), (6)

for some unitaries Q1, . . . , Qt+1 such that Qi acts on all the three registers CiDiEi.
With this in mind, we now switch from a cloning-based formulation to an entanglement-based for-

mulation. At a high level, this follows from the ricochet property of EPR pairs (formally, Lemma 2.1).
Substituting Pi,x as defined in Equation (6) and Uθ = UfθH

⊗n (note that all entries of this unitary are real)
into Lemma A.2 implies that:

ωS(G) =2n(t−1) · E
θ

∑
x∈{0,1}n

Tr

[(( ⊗
i∈[t+1]

(Ufθ ⊗ IDiEi
)Q†i (|x⟩⟨x| ⊗ IDiEi

)Qi(Ufθ ⊗ IDiEi
)
)

⊗
(
UfθH

⊗n |x⟩⟨x|H⊗nUfθ
)⊗t
A′
1:t

)
ρ

]
,

where ρ is the Choi state

ρB1:t+1A′
1:t

:= (ΦA1...At→B1...Bt+1 ⊗ IA′
1:t
)
(
|EPRn⟩⟨EPRn|⊗t

)
. (7)

Now define the projector

Ξ =
∑

x∈{0,1}n

 ⊗
i∈[t+1]

Q†i

(
|x⟩⟨x|Ci

⊗ IDiEi

)
Qi

⊗ (H⊗n |x⟩⟨x|H⊗n)⊗t
A′
1:t

 . (8)

Let d = 2n, r = 2t+1, d′ = 2a+1, and r′ = t+1. Recall that (Cd)⊗r⊗(Cd′)⊗r′ ∼=
⊕

λ Vλ decomposes
into a collection of subspaces corresponding to binary type vectors λ ∈ {0, 1}d. Here, (Cd′)⊗r′ serves as
an auxiliary register; in terms of the notation in Section 4.1, we are taking N = d and M = d′r

′
(in other

words, we are packing all the players’ ancillary registers into one auxiliary input).
Moreover, we assume going forward that F is a (4t+2)-wise uniform family of functions from {0, 1}n →

{0, 1}. As noted in Remark 8, this is statistically indistinguishable from instantiating F as the family of all
functions from {0, 1}n → {0, 1}, since the expression in Lemma A.2 has degree 4t+ 2 in Ufθ .
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Then using Lemma A.2 and then Lemma 4.1, we get:

ωS(G) = 2n(t−1)Tr

[
E
f

[(
U⊗rf ⊗ ID1:t+1

)
Ξ
(
U⊗rf ⊗ ID1:t+1

)]
ρ

]
= 2n(t−1)

∑
λ∈{0,1}d

Tr [ΠλΞΠλρ] , (9)

where Πλ is the projector onto the subspace of (Cd)⊗r ⊗ (Cd′)⊗(t+1) given by

Vλ = spanC{|(v1, . . . , vr, a1, . . . , at+1)⟩ : BinType(v1, . . . , vr, a1, . . . , at+1) = λ}.

We now state a simple high-level bound on ω(G) in terms of subtypes µ. Unlike the bounds obtained using
techniques in [TFKW13], this bound will depend on the Choi state ρ. This is provably necessary for any
t ≥ 2, as we will show in Section 6.1.

Lemma 5.1. We have

ω(G) ≤ exp(O(t log t)) · 2n(t−1) ·
∑
µ

Tr [Πµρ] · ∥ΠµΞΠµ∥∞ .

Proof. This follows immediately by plugging Lemma 4.8 into Equation (9).

5.2 Expanding out Ξ using Subtypes

We now set up some additional notation. For each i ∈ [t + 1] and j1, j2 ∈ [d] and l1, l2 ∈ [d′], we let
Q†i,(j1,l1);(j2,l2) denote the entry in the (j1, l1)-th row and (j2, l2)-th column of the unitary Q†i . To keep
track of the ancillary indices in registers D1:t+1, we will introduce the values z1, . . . , zt+1 ∈ [d′] and denote
z = (z1, . . . , zt+1) for brevity. We can now write the projector Ξ in Equation (8) as:

Ξ =
∑

x∈{0,1}n
z1,...,zt+1∈{0,1}a

|Ξx,z⟩⟨Ξx,z| , where

|Ξx,z⟩ = Q†1 (|x⟩ ⊗ |z1⟩)⊗ · · · ⊗Q
†
t+1 (|x⟩ ⊗ |zt+1⟩)⊗

(
H⊗n |x⟩

)⊗t
= 2−nt/2

∑
v1,...,vr∈[d]

w1,...,wt+1∈[d′]

(
(−1)⟨vt+2+···+vr,x⟩

t+1∏
i=1

Q†i,(vi,wi);(x,zi)

)
|v1, . . . , vr⟩ ⊗ |w1, . . . , wt+1⟩ .

We now begin unpacking the operator ΠµΞΠµ, using the formalism of subtypes introduced in Section 4.3.
Recall that we have:

Ξ =
∑

x∈{0,1}n
z1,...,zt+1∈{0,1}a

|Ξx,z⟩⟨Ξx,z|

⇒ ΠµΞΠµ =
∑

x∈{0,1}n
z1,...,zt+1∈{0,1}a

Πµ |Ξx,z⟩⟨Ξx,z|Πµ.
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Therefore we can define a matrix A ∈ Cd1×d2 , where d1 = 2rn+(t+1)a is the dimension of |Ξx,z⟩ and
d2 = 2n+(t+1)a is the number of possible values of x, z. The columns of A are indexed by x, z and the
corresponding column is exactly Πµ |Ξx,z⟩. Then we have ΠµΞΠµ = AA† ⇒ ∥ΠµΞΠµ∥∞ = ∥A∥2∞.

Recall also that we have:

|Ξx,z⟩ = 2−nt/2
∑

v1,...,vr∈[d]
w1,...,wt+1∈[d′]

(
(−1)⟨vt+2+···+vr,x⟩

t+1∏
i=1

Q†i,(vi,wi);(x,zi)

)
|v1, . . . , vr⟩ ⊗ |w1, . . . , wt+1⟩ .

Therefore, once we project onto the subspace corresponding to the subtype µ, we get the state

Πµ |Ξx,z⟩ = 2−nt/2
∑

v1,...,vr∈[d]
w1,...,wt+1∈[d′]

(v,w)∈Sµ

(
(−1)⟨vt+2+···+vr,x⟩

t+1∏
i=1

Q†i,(vi,wi);(x,zi)

)
|v1, . . . , vr⟩ ⊗ |w1, . . . , wt+1⟩ .

(10)

Now note that any row of A that does not correspond to a standard basis vector in Sµ will be 0. We can
discard all such rows without affecting the operator norm of A. We can therefore re-index the rows of A
by the variable symbols x1, . . . , xl of µ and the ancilla indices w1, . . . , wt+1, so that A is effectively a
2nl+a(t+1) × 2n+a(t+1) matrix.

With this setup in mind, we introduce a couple more definitions that will help us complete our analysis:

Definition 5.2. Let ℓ ∈ [0, t] be an integer parameter (typically we will work with ℓ = t). Let µ be a subtype
of (Cd)⊗(t+1+ℓ) ⊗ (Cd′)⊗r′ with variable symbols x1, . . . , xl. Then, define the matrix

B := Bµ(Q1, . . . ,Qt+1)

with dimensions 2nl+a(t+1) × 2n+a(t+1) as follows:
Its rows are indexed by y1, . . . , yl ∈ [d] and w1, . . . , wt+1 ∈ [d′]. Its columns are indexed by x ∈ [d]

and z1, . . . , zt+1 ∈ [d′]. For any such indices, take

(v1, . . . , vt+1+ℓ, w1, . . . , wt+1) = Reconstruct(µ, (y1, . . . , yl), (w1, . . . , wt+1)) ∈ [d]t+1+ℓ × [d′]t+1.

(The function Reconstruct is defined in Definition 4.5.) Then we define the entry

B(y1,...,yl,w1,...,wt+1);(x,z1,...,zt+1) = (−1)⟨vt+2+...+vt+1+ℓ,x⟩
t+1∏
i=1

Q†i,(vi,wi);(x,zi)
. (11)

We remark that when ℓ = t, this definition coincides with the matrix 2nt/2A. The reason we generalize
to ℓ < t is for technical reasons; there could be variable symbols that only appear in the “phase entries”
vt+2, . . . , vt+1+ℓ, in which case they appear an even number of times and do not have any effect on the value
of that entry in the matrix B. These variable symbols artificially blow up the operator norm of B and will
need to be dealt with separately. To capture this, we have the following notion:

Definition 5.3. For a subtype µ with respect to (Cd)⊗(t+1+ℓ)⊗ (Cd′)⊗r′ and variable symbol xi, we say xi
is a free variable symbol of µ if it only appears in entries t+2, t+3, . . . , t+1+ ℓ of µ. (Informally, a free
variable symbol is one that only appears in the phase.)
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5.3 Bounding ∥Bµ(Q1, . . . ,Qt+1)∥∞
In this section, we provide estimates on the operator norm of Bµ(Q1, . . . ,Qt+1). We first begin with a
lemma that allows us to dispose of free variable symbols:

Lemma 5.4. Suppose µ is a subtype with respect to (Cd)⊗(2t+1) ⊗ (Cd′)⊗r′ , and suppose it has b free
variable symbols that appear in a total of p positions in indices k + 2, k + 3, . . . , 2k + 1.

Then define ℓ := t − p, and µ′ to be the subtype with respect to (Cd)⊗(t+1+ℓ) ⊗ (Cd′)⊗r′ obtained by
taking µ and removing all free variable symbols. Then we have

∥Bµ(Q1, . . . ,Qt+1)∥∞ = 2nb/2
∥∥Bµ′(Q1, . . . ,Qt+1)

∥∥
∞ .

Proof. For brevity, write B = Bµ(Q1, . . . ,Qt+1) and B′ = Bµ′(Q1, . . . ,Qt+1). Let the variable symbols
of µ be y1, . . . , yl, so that its free variable symbols are yl−b+1, . . . , yl. Note that µ′ will have l − b variable
symbols, none of which are free variable symbols. Now since each free variable symbol appears an even
number of times in the phase, we have for any indices that

B(y1,...,yl,w1,...,wt+1);(x,z1,...,zt+1) = B′(y1,...,yl−b,w1,...,wt+1);(x,z1,...,zt+1)
.

In other words, the matrix B is obtained by vertically stacking 2nb copies of B′ (up to a permutation of
rows). Put another way, B is equal to B′ tensored with a column vector consisting of 2nb 1’s. It follows by
Lemma 2.10 that:

∥B∥∞ =
∥∥B′∥∥∞ ·

∥∥∥∥∥∥∥∥∥


1
1
...
1


∥∥∥∥∥∥∥∥∥
∞

= 2nb/2
∥∥B′∥∥∞ .

For most of the remainder of this section, we focus on subtypes µ that do not have any free variable
symbols. We first set up some more notation. At a high level, the idea is to cluster the terms being multiplied
in Equation (11) according to which of the variable symbols they depend on. This allows us to write B as
a block column-wise tensor product of several much simpler block matrices, and then we will appeal to
Lemma 2.18.

To this end, let µ have variable symbols x1, . . . , xl. For each for i ∈ [l], let Ii = {j ∈ [t+ 1 + ℓ] : µj = xi}
and J = {j ∈ [t+ 1 + ℓ] : µj is fixed}. Note that [t+ 1 + ℓ] is the disjoint union of I1, I2, . . . , Il, J . Also,
for convenience we will make the following abuse of notation: for any integer h, subset I ⊆ [h], and
vector b with h entries, we use bI to denote the sub-vector of length |I| obtained by taking only the in-
dices in I from b. With this in mind, for each i ∈ [l] define the following matrix Mi of dimensions
2n+a(|Ii|∩[t+1]) × 2n+a(|Ii|∩[t+1]):

Mi,(yi,wIi∩[t+1]);(x,zIi∩[t+1]) =
∏

j∈Ii∩[t+2,t+1+ℓ]

(−1)⟨yi,x⟩ ·
∏

j∈Ii∩[t+1]

Q†j,(yi,wj);(x,zj)
.

Additionally, define the following matrix T of dimensions 2a(|J |∩[t+1]) × 2n+a(|J |∩[t+1]):

TwJ∩[t+1];(x,zJ∩[t+1]) =
∏

j∈J∩[t+2,t+1+ℓ]

(−1)⟨µj ,x⟩ ·
∏

j∈J∩[t+1]

Q†j,(µj ,wj);(x,zj)
.
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It is clear by inspection that Bµ is the result of applying the block column-wise tensoring operation
described in Lemma 2.18 to M1, . . . ,Ml,T. Here, the block columns are indexed by x. We will proceed
by applying this lemma to these matrices. We thus need to check that the preconditions of the lemma apply,
which we do in the next few lemmas:

Lemma 5.5. For any x∗ ∈ [2n], consider the matrix Tx∗ obtained by restricting T to columns where
x = x∗. Then ∥Tx∗∥∞ ≤ 1. Moreover, if J ∩ [t+ 1] is nonempty, then we have ∥T∥∞ ≤ 1.

Proof. We have:

TwJ∩[t+1];(x,zJ∩[t+1]) =
∏

j∈J∩[t+2,t+1+ℓ]

(−1)⟨µj ,x⟩ ·
∏

j∈J∩[t+1]

Q†j,(µj ,wj);(x,zj)
.

Now consider the matrix T ′ with the same dimensions as T defined by:

T ′wJ∩[t+1];(x,zJ∩[t+1])
=

∏
j∈J∩[t+1]

Q†j,(µj ,wj);(x,zj)
.

Since µj is fixed for j ∈ J , T′ can be obtained from T by just flipping the signs of some columns. This
preserves the operator norm (this can be seen from Lemma 2.8 for example), so we have ∥T′∥∞ = ∥T∥∞.
It also follows analogously that ∥T′x∗∥∞ = ∥Tx∗∥∞, where we analogously define T′x∗ as the result of
restricting T′ to columns where x = x∗. At this point, we split into two cases:

• If J ∩ [t + 1] is nonempty, we claim that T′ is a submatrix of Q :=
⊗

j∈J∩[t+1]Q
†
j . Indeed, we can

index the rows of Q by (a,b) and the columns by (c,d), and write

Q(a,b);(c,d) =
∏

j∈J∩[t+1]

Q†j,(aj ,bj);(cj ,dj).

Then T′ is the submatrix of Q obtained by restricting to rows (a,b) such that aj = µj for all
j ∈ J ∩ [t+ 1] and columns (c,d) such that cj1 = cj2 for any j1, j2 ∈ J ∩ [t+ 1].

Since the operator norm of a unitary matrix is 1 and there is at least one unitary matrix in this tensor
product, it follows from Lemmas 2.9 and 2.10 that ∥T′∥∞ ≤ 1 ⇒ ∥T∥∞ ≤ 1. Then, it also follows
that ∥Tx∗∥∞ ≤ 1 by Lemma 2.9.

• If J ∩ [t + 1] is empty then T ′ is really just a vector of 2n many 1’s. Hence T ′x∗ is just the scalar 1,
which trivially has operator norm ≤ 1.

Lemma 5.6. Assume µ does not have free variable symbols. For any x∗ ∈ [2n] and i ∈ [l], consider the
matrix Mi,x∗ obtained by restricting Mi to columns where x = x∗. Then ∥Mi,x∗∥∞ ≤ 1.

Proof. We have:

Mi,(yi,wIi∩[t+1]);(x
∗,zIi∩[t+1]) =

∏
j∈Ii∩[t+2,t+1+ℓ]

(−1)⟨yi,x∗⟩ ·
∏

j∈Ii∩[t+1]

Q†j,(yi,wj);(x∗,zj)
.

We can now define another matrix M′i,x∗ with the same dimensions as Mi,x∗ defined by:

M′(i,x∗),(yi,wIi∩[t+1]);zIi∩[t+1]
=

∏
j∈Ii∩[t+1]

Q†j,(yi,wj);(x∗,zj)
.
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Since we are fixing x∗, M′i,x∗ can be obtained from Mi,x∗ by just flipping the signs of some rows. It follows

that
∥∥∥M′i,x∗∥∥∥∞ = ∥Mi,x∗∥∞. Now to finish, we argue that M′i,x∗ is a submatrix of Q :=

⊗
j∈Ii∩[t+1]Q

†
j .

Note that Ii ∩ [t + 1] must be non-empty as otherwise xi would be a free variable symbol. Given this, this
claim would imply the conclusion by Lemmas 2.9 and 2.10.

To see this claim, note that we can index the rows of Q by (a,b) and the columns by (c,d), and write:

Q(a,b);(c,d) =
∏

j∈Ii∩[t+1]

Q†j,(aj ,bj);(cj ,dj).

Then M′i,x∗ is the submatrix of Q obtained by restricting to rows (a,b) where aj1 = aj2 for any j1, j2 ∈
Ii ∩ [t + 1] and columns (c,d) where cj = x∗ for all j ∈ Ii ∩ [t + 1]. This completes the proof of the
lemma.

Lemma 5.7. Assume µ does not have free variable symbols. Consider some i ∈ [l] such that the integer
|Ii ∩ [t+ 2, t+ 1 + ℓ]| is even. Then, it holds that ∥Mi∥∞ ≤ 1.

Proof.

Mi,(yi,wIi∩[t+1]);(x,zIi∩[t+1]) =
∏

j∈Ii∩[t+2,t+1+ℓ]

(−1)⟨yi,x⟩ ·
∏

j∈Ii∩[t+1]

Q†j,(yi,wj);(x,zj)

=
∏

j∈Ii∩[t+1]

Q†j,(yi,wj);(x,zj)
,

since there are an even number of identical terms being multiplied together in the first product. In this case,
we just argue that Mi is a submatrix of Q :=

⊗
j∈Ii∩[t+1]Q

†
j . This is a non-empty tensor product since

otherwise xi would be a free variable symbol. Given this, this claim would imply the conclusion by Lemmas
2.9 and 2.10.

To see this claim, we once again index the rows of Q by (a,b) and the columns by (c,d), and write:

Q(a,b);(c,d) =
∏

j∈Ii∩[t+1]

Q†j,(aj ,bj);(cj ,dj).

Then, Mi is the submatrix of Q obtained by restricting to rows (a,b) such that aj1 = aj2 for any
j1, j2 ∈ Ii ∩ [t+ 1] and columns (c,d) such that cj1 = cj2 for any j1, j2 ∈ Ii ∩ [t+ 1]. This completes the
proof of the lemma.

Our final technical lemma handles the case where a variable symbol appears multiple times among
v1, . . . , vt+1:

Lemma 5.8. Consider some i ∈ [l] be such that |Ii ∩ [t+ 1]| ≥ 2 (we are assuming that such i exists; this
may not always be the case). Then

∥Mi∥∞ ≤ 1.

Proof. Firstly, if |Ii ∩ [t + 1]| is even, then by the parity constraints (the variable symbol xi should appear
an even number of times in µ), we must also have that |Ii ∩ [t + 2, t + 1 + ℓ]| is even. In this case, the
conclusion would follow from Lemma 5.7. Hence from now on we assume that |Ii ∩ [t + 1]| is odd. We
hence have:

Mi,(yi,wIi∩[t+1]);(x,zIi∩[t+1]) =
∏

j∈Ii∩[t+2,t+1+ℓ]

(−1)⟨yi,x⟩ ·
∏

j∈Ii∩[t+1]

Q†j,(yi,wj);(x,zj)
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= (−1)⟨yi,x⟩ ·
∏

j∈Ii∩[t+1]

Q†j,(yi,wj);(x,zj)
.

The conclusion now follows by applying Lemma 2.19 with the following inputs:

• We will take R = C = 2n, and d = |Ii ∩ [t + 1]| ≥ 2. (In fact, d ≥ 3 since |Ii ∩ [t + 1]| is odd, but
this will not matter for us.)

• The matrices will be
{
Q†j ∈ C2n+a×2n+a

}
j∈Ii∩[t+1]

. Accordingly, we will have

r1 = . . . = rR = c1 = . . . = cC = d′.

These matrices are unitary so they have operator norm exactly 1.

• For each yi, x ∈ {0, 1}n, the scalar γyi,x will be (−1)⟨yi,x⟩, which clearly has magnitude 1.

Finally, we can put these lemmas together to prove the bounds that we want:

Lemma 5.9. Suppose µ is a subtype with respect to (Cd)⊗2t+1⊗ (Cd′)r′ with b free variable symbols. Then
we have ∥ΠµΞΠµ∥∞ ≤ 2−nt+nb.

Moreover, when t = 1, we must have b = 0 and hence ∥ΠµΞΠµ∥∞ ≤ 2−n.

Proof. We first address the final claim about the t = 1 case. Indeed, a subtype with respect to (Cd)⊗2t+1 ⊗
(Cd′)⊗t+1 = (Cd)⊗3 ⊗ (Cd′)⊗2 cannot have free variable symbols. Definition 5.3 states that a free variable
symbol of µ could only appear in entry 3 of µ. But a free variable symbol must appear an even number of
times (as specified by Definition 4.2), so in fact it cannot appear at all. Now let us turn to proving the desired
bound.

Now let µ′ be defined as in the statement of Lemma 5.4 i.e. it is µ but with free variable symbols
removed. Then we would like to show:

∥ΠµΞΠµ∥∞ ≤ 2−nt+nb

⇔ ∥A∥2∞ ≤ 2−nt+nb

⇔ ∥Bµ(Q1, . . . ,Qk+1)∥2∞ ≤ 2nb

⇔
∥∥Bµ′(Q1, . . . ,Qk+1)

∥∥
∞ ≤ 1. (Lemma 5.4)

Let µ′ have l variable symbols. As hinted at earlier, we will bound this by applying Lemma 2.18 to the
matrices M1, . . . ,Ml and T defined with respect to µ′. The first precondition follows from Lemmas 5.5 and
5.6. To check the second precondition, we need only show that min(∥M1∥∞ , . . . , ∥Ml∥∞ , ∥T∥∞) ≤ 1.
For this, we have some light casework:

1. If at least one of µ1, . . . ,µt+1 is fixed, then J ∩ [t+ 1] is nonempty, so it follows that ∥T∥∞ ≤ 1 by
Lemma 5.5.

2. Otherwise, all of µ1, . . . ,µt+1 must be variable symbols. However, every variable symbol must
appear at least twice and we only have 2t+ 1 entries in total, so the total number of variable symbols
must be ≤ t. Therefore by the pigeonhole principle, some two of µ1, . . . ,µt+1 are the same variable
symbol i.e. there exists i ∈ [l] such that |Ii ∩ [t + 1]| ≥ 2. In this case, Lemma 5.8 tells us that
∥Mi∥∞ ≤ 1.
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5.4 Combinatorial Lemmas about Free Variable Symbols

In the case where t > 1, free variable symbols could exist, and as indicated by Lemma 5.9, they can blow
up the operator norms we care about. To mitigate this, we establish some simple lemmas about free variable
symbols:

Definition 5.10. For any l ∈ [t], define the projector Γl over (Cd)⊗r ⊗ (Cd′)⊗(t+1) as the projector onto

Wl := spanC{|(v1, . . . , vr, a1, . . . , at+1)⟩ : exactly l distinct values among vt+2, . . . , vr}.

Lemma 5.11. We have∑
b≤t/2

∑
µ with b free variable symbols

2nbΠµ ≤ exp(O(t log t)) ·
∑
l≤t

2n(t−l)Γl,

with respect to the PSD ordering.

Proof. Note that the LHS and RHS are both diagonal in the standard basis. Hence it suffices to show for
any x = (v1, . . . , vr, a1, . . . , at+1) that:∑

b≤t/2

∑
µ with b free variable symbols

2nb ⟨x|Πµ|x⟩ ≤ exp(O(t log t)) ·
∑
l≤t

2n(t−l) ⟨x|Γl|x⟩ .

Let l∗ be the number of distinct values among vt+2, . . . , vr, then the RHS is exp(O(t log t)) · 2n(t−l∗).
On the other hand, the LHS is equal to:∑

b≤t/2

∑
µ with b free variable symbols

x∈Sµ

2nb.

Now consider any subtype µ with b free variable symbols such that x ∈ Sµ. Each of its b free variable
symbols must appear at least twice among vt+2, . . . , vr due to the parity constraint, which implies that we
must have l∗ ≤ t − b ⇔ b ≤ t − l∗. Hence every term in the above sum is at most 2n(t−l

∗). Moreover, by
Lemma 4.6, there are at most exp(O(t log t)) subtypes µ with x ∈ Sµ, so there are at most exp(O(t log t))
terms in the above sum. It follows that the LHS is at most exp(O(t log t)) · 2n(t−l∗), which is exactly the
RHS, as desired.

We make one more observation:

Lemma 5.12. The number of tuples (x1, . . . , xt) ∈ [2n]t with l distinct values is at most exp(t log t) · 2nl.

Proof. There are at most 2nl ways to choose the l distinct values. Then there are lt ≤ tt = exp(t log t) ways
to assign a value to each individual xi. The conclusion follows.

Next, we present the only specific property of the shared state ρ that we need. In the following, we
partition the Hilbert space (Cd)⊗r ⊗ (Cd′)⊗t+1 as the tensor product of Hilbert spaces on the following
systems:

• R1: this consists of the values (vt+2, . . . , vr). ThusHR1
∼= (Cd)⊗t.

• R2: all other values i.e. (v1, . . . , vt+1, a1, . . . , at+1). ThusHR2
∼= (Cd)⊗t+1 ⊗ (Cd′)⊗t+1.
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Lemma 5.13. We have
TrR2 [ρ] = 2−nt · IR1 .

Informally, if we take ρ and trace out the system R2, we are left with a maximally mixed state.

Proof. We have by definition that:

ρ = (IR1 ⊗ ΦR2)
(
|EPR⟩⟨EPR|⊗ntR1,R2

)
= 2−nt ·

∑
x,y∈[2n]t

(IR1 ⊗ Φ)
(
|x⟩⟨y|R1

⊗ |x⟩⟨y|R2

)
= 2−nt ·

∑
x,y∈[2n]t

|x⟩⟨y|R1
⊗ Φ(|x⟩⟨y|)R2

⇒ TrR2 [ρ] = 2−nt ·
∑

x,y∈[2n]t
|x⟩⟨y|R1

· Tr [Φ(|x⟩⟨y|)R2 ]

= 2−nt ·
∑

x∈[2n]t
|x⟩⟨x|R1

,

which implies the conclusion. In the last step, we are using the fact that Φ is trace-preserving.

Finally, we put these two together to show the following:

Lemma 5.14. For any integer l ∈ [1, t], we have

Tr [Γlρ] ≤ exp(t log t) · 2−nt+nl.

Proof. We can clearly write
Γl = Γ′l,R1

⊗ IR2 ,

where Γ′l is the projector onto standard basis vectors |vt+2, . . . , vr⟩ with exactly l distinct values. We hence
have:

Tr [Γlρ] = Tr
[(
Γ′l,R1

⊗ IR2

)
ρ
]

= Tr
[
Γ′l,R1

(TrR2ρ)
]

= 2−nt · Tr
[
Γ′l,R1

]
(Lemma 5.13)

≤ exp(t log t) · 2−nt+nl,

where in the last step we are using the fact that Γ′l,R1
is a projector together with Lemma 5.12.

5.5 Putting Everything Together

In this section, we complete our treatment of the case of t 7→ t + 1 cloning games for t > 1. Our bounds
here are once again independent of the number of ancilla qubits a used by each player.

Theorem 5.15. Let F be a (4t+2)-wise uniform family of functions from {0, 1}n → {0, 1}. Then for all n,
we have

sup
S∈Srest

ωS(GF,t) ≤ exp(O(t log t)) · 2−n.
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Proof. For any strategy S ∈ Srest, we have:

ωS(G) ≤ exp(O(t log t)) · 2n(t−1) ·
∑
µ

Tr [Πµρ] · ∥ΠµΞΠµ∥∞ (Lemma 5.1)

≤ exp(O(t log t)) · 2n(t−1) ·
∑
b≤t/2

∑
µ with b free variable symbols

2−nt+nb · Tr [Πµρ] (Lemma 5.9)

≤ exp(O(t log t)) · 2−n ·
∑
l≤t

2n(t−l) · Tr [Γlρ] (Lemma 5.11)

≤ exp(O(t log t)) · 2−n ·
∑
l≤t

2n(t−l) · 2−nt+nl (Lemma 5.14)

≤ exp(O(t log t)) · 2−n,

as desired.

6 Limitations of Analyzing Monogamy Games Using Existing Techniques

In this section, we revisit the existing techniques laid out by [TFKW13] for upper bounding the value of
monogamy games (and hence cloning games in particular). We begin by summarizing their technique and
main result, modifying the presentation to accommodate the multi-copy setting. For a particular strategy S,
define the operator

Πθ := |X |t−1 ·
∑
x∈X

(
t+1⊗
i=1

Pθ
i,x ⊗ (Aθ

x)
⊗t

)
, where we define (12)

Aθ
x := Ūθ |x⟩⟨x|A Ū

†
θ .

Then, by Lemma A.2, we have:

ωS(G) = E
θ∼Θ

[
Tr
[
Πθρ

]]
≤
∥∥∥∥ E
θ∼Θ

[
Πθ
]∥∥∥∥
∞
, (13)

since ρ has trace 1 (by Lemma 2.14). To bound this in the t = 1 case, they show the following result:

Theorem 6.1 (Essentially [TFKW13], Theorem 4). When t = 1, we have∥∥∥∥ E
θ∼Θ

[
Πθ
]∥∥∥∥
∞
≤ 1

|Θ|
+
|Θ| − 1

|Θ|
· max
θ,θ′∈Θ
θ ̸=θ′

max
x,x′∈X

∥∥∥∥√Aθ
x

√
Aθ′
x′

∥∥∥∥
∞

=
1

|Θ|
+
|Θ| − 1

|Θ|
· max
θ,θ′∈Θ
θ ̸=θ′

max
x,x′∈X

∥∥∥Aθ
xA

θ′
x′

∥∥∥
∞
.

(The second line holds because Aθ
x is always a projector.)
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Using this theorem, they are able to show that the BB84 monogamy game has value 1
2 + 1

2
√
2
. Moreover,

they show that the n-fold parallel repetition of the BB84 monogamy game has value
(
1
2 + 1

2
√
2

)n
. These

techniques have since been adapted by [CV22, SS25] to cloning games based on coset states as well. In this
section, we will demonstrate three things that we previously alluded to in Section 1.2.1:

• Section 6.1: In the case of the case of multi-copy cloning games (i.e. t > 1), we will show that
ignoring the shared state ρ can provably lose too much. Specifically, we will show for any {Uθ} with
real entries, there exist projectors Pθ

i,x such that∥∥∥∥ E
θ∼Θ

[
Πθ
]∥∥∥∥
∞
≥ 1.

Moreover, we will show this even if Pθ
i,x does not even depend on θ. (This can informally be thought

of as the case where the players P1, . . . ,Pt+1 are never given access to the basis θ in any form.)

Since previous constructions [TFKW13, BL20, CLLZ21, CV22, SS25] as well as our binary phase
state construction only make use of unitaries with real entries, this justifies the necessity of our finer
analysis in Section 5.4 of the specific structure imposed on the shared state ρ by the oracular cloning
setting.

• Section 6.2: For the single-copy case, we will demonstrate another inherent limitation that arises
from the [TFKW13] approach of bounding a spectral norm in terms of the maximal pairwise overlap
maxθ ̸=θ′

∥∥∥Aθ
xA

θ′
x′

∥∥∥
∞

. Namely, we will show that this pairwise overlap is provably at least 1/
√
|X | =

2−n/2 (as opposed to the ideal O(2−n) for any monogamy game). Recall from Section 1.3 that this
is crucial for our application to black hole physics (we will elaborate on this more in Section 8 and
Remark 14 in particular).

Thus, in order to bypass this limitation of Theorem 6.1, we need entirely new techniques. This is
yet another reason why we restrict attention to oracular cloning games (defined in Section 3.2) and
analyze these with a completely different technique based on binary subtypes in Section 5.

• Finally, for completeness, we show in Section 6.3 that this bound of 2−n/2 is essentially tight in the
single-copy case; we will show that a slight tweak of our binary phase state construction — introduced
in Section 1.2.3 and fleshed out in Section 5 — yields a different monogamy game with X = {0, 1}n
and maximal pairwise overlap ≤ 2−n/2+o(n). This only requires the existence of sub-exponentially
classically secure PRFs.

6.1 Limitations of Bounding the Operator Norm Directly

Recall that, in Section 5, we proved a multi-copy cloning bound with the assistance of a careful analysis
(in Section 5.4) of the structure of the shared state ρ defined in Equation (7), namely the structure specified
by Lemma 5.13. In this section, we argue that this more careful approach is likely necessary:

Lemma 6.2. Consider any t > 1 and projectors
{
Aθ
x = Ūθ |x⟩⟨x| Ū †θ

}
such that Uθ has real entries for

all θ i.e. Uθ = Ūθ. Then there exist projectors Pθ
i,x such that, if Πθ is defined as in Equation (12), then we

have: ∥∥∥∥ E
θ∼Θ

[
Πθ
]∥∥∥∥
∞
≥ |X |⌊t/2⌋−1.
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Moreover, this bound can be attained even if these projectors need not depend at all on θ. Note that for any
t ≥ 2, the RHS is ≥ 1 so this implies that Equation (13) does not give any non-trivial bound on the value of
the corresponding cloning game.

Proof. Fix some element y ∈ X . For all i, θ, we will define Pθ
i,x to be I if x = y and 0 otherwise. In other

words, each player is simply going to guess x = y deterministically. Then Equation (12) tells us that:

Πθ = |X |t−1 ·

(
t+1⊗
i=1

I⊗
(
Aθ
y

)⊗t)

⇒
∥∥∥∥ E
θ∼Θ

[
Πθ
]∥∥∥∥
∞

= |X |t−1 ·
∥∥∥∥ E
θ∼Θ

[(
Aθ
y

)⊗t]∥∥∥∥
∞
.

To finish, it suffices to exhibit some mixed state ρ such that:

Tr

[
E
θ∼Θ

[(
Aθ
y

)⊗t]
ρ

]
≥ |X |⌊t/2⌋−t. (14)

Define the bit b = t mod 2, and let

ρ :=

⌊t/2⌋⊗
i=1

|EPRX ⟩⟨EPRX |

⊗ ( 1

|X |
IX
)⊗b

.

In other words, we let ρ comprise ⌊t/2⌋ EPR qudits supported on X , and in the event that t is odd we also
include one qudit that is maximally mixed on X . Intuitively, we will use the entanglement between each
EPR pair to increase the probability that the t measurements specified by

{
Aθ
x

}
measurements all output y.

Indeed, for any particular θ we have:

Tr

[(
Aθ
y

)⊗t
ρ

]
=

(
Tr

[(
Aθ
y

)⊗2
|EPRX ⟩⟨EPRX |

])⌊t/2⌋
· 1

|X |b

=

(
1

|X |
Tr
[
Aθ
yA

θ
y

])⌊t/2⌋
· 1

|X |b
(Corollary 2.2)

=

(
1

|X |
Tr
[
Aθ
yA

θ
y

])⌊t/2⌋
· 1

|X |b
(Uθ has real entries)

= |X |−⌊t/2⌋−b ·
(
Tr
[
Uθ |y⟩⟨y|U †θUθ |y⟩⟨y|U

†
θ

])⌊t/2⌋
= |X |−⌊t/2⌋−b

= |X |⌊t/2⌋−t.

In the above application of Corollary 2.2, we are taking P = Aθ
y,Q = Aθ

y, and Φ to be the identity map.
Now taking expectation over θ immediately yields Equation (14), as desired.

6.2 Limitations of Bounding Pairwise Overlaps

Here, we show that the framework laid out by [TFKW13] of using Theorem 6.1 to bound monogamy games
cannot prove a better bound than 1/

√
|X | (see the statement of Theorem 6.1).
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Lemma 6.3. If |Θ| ≥ 2, then we have

max
θ,θ′∈Θ
θ ̸=θ′

max
x,x′∈X

∥∥∥∥√Aθ
x

√
Aθ′
x′

∥∥∥∥
∞

= max
θ,θ′∈Θ
θ ̸=θ′

max
x,x′∈X

∥∥∥Aθ
xA

θ′
x′

∥∥∥
∞
≥ 1√

|X |
.

Proof. The first equality follows since the measurements are projective, so
√
Aθ
x = Aθ

x. Now for any
distinct θ, θ′ ∈ Θ, we will show that

max
x,x′∈X

∥∥∥Aθ
xA

θ′
x′

∥∥∥
∞
≥ 1√

|X |
.

Indeed, fix any x′ ∈ X such that Aθ′
x′ is nonzero (such x′ exists since

∑
x′ A

θ′
x′ = I) and consider an arbitrary

state |ψ⟩ in the image of Aθ′
x′ . Then we have:

|ψ⟩ =
∑
x∈X

Aθ
x |ψ⟩

=
∑
x∈X

Aθ
xA

θ′
x′ |ψ⟩

⇒ 1 =

∥∥∥∥∥∑
x∈X

Aθ
xA

θ′
x′ |ψ⟩

∥∥∥∥∥
2

2

.

For each x ∈ X , let |ψx⟩ = Aθ
xA

θ′
x′ |ψ⟩, where |ψx⟩ may not be normalized. Note for any x ̸= y that

⟨ψx|ψy⟩ = ⟨ψ|Aθ′
x′A

θ
xA

θ
yA

θ′
x′ |ψ⟩ = 0, since Aθ

xA
θ
y = 0. Hence the |ψx⟩’s are mutually orthogonal,

implying that:

1 =

∥∥∥∥∥∑
x∈X
|ψx⟩

∥∥∥∥∥
2

2

=
∑
x∈X
∥|ψx⟩∥22 .

Hence there exists x ∈ X such that ∥|ψx⟩∥22 ≥ 1/|X | ⇒ ∥|ψx⟩∥2 ≥ 1/
√
|X |. For this x, we have:

1√
|X |
≤ ∥|ψx⟩∥2

=
∥∥∥Aθ

xA
θ′
x′ |ψ⟩

∥∥∥
2

≤
∥∥∥Aθ

xA
θ′
x′

∥∥∥
∞
,

as desired.

6.3 Monogamy Bounds from Binary Phase States

We just showed in Section 6.2 that using Theorem 6.1 to bound a monogamy game with X = {0, 1}n,
we can only hope to prove a bound of 2−n/2. On the other hand, no existing analyses saturate this bound:
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the best known upper bound for the coset monogamy game is O(2−n/4), due to [SS25]15, and the BB84
monogamy game attains value ≈ 2−0.228n.

In this section, we close this gap. Specifically, we will show that a variant of our binary phase construc-
tion used in Section 5 satisfies ω(G) ≤ 2−n/2+o(n), and that this can be shown following the [TFKW13]
methodology and using Theorem 6.1. For details on how exactly our results in this section differ from those
in Section 5, we refer the reader to Remark 13.

Lemma 6.4. Suppose we have Aθ
x = Vθ |x⟩⟨x|V†θ for some unitaries Vθ. Then for any x, x′ ∈ X and

θ, θ′ ∈ Θ, we have ∥∥∥∥√Aθ
x

√
Aθ′
x′

∥∥∥∥
∞

=
∥∥∥Aθ

xA
θ′
x′

∥∥∥
∞

=
∣∣∣⟨x|V†θVθ′ |x′⟩∣∣∣ .

Proof. Note firstly that the ℓ∞ norm of any rank 1 Hermitian PSD matrix is equal to its trace (see Lemma 2.8).
Bearing this in mind, we have:∥∥∥Aθ

xA
θ′
x′

∥∥∥2
∞

=
∥∥∥Aθ

xA
θ′
x′A

θ′†
x′ A

θ†
x

∥∥∥
∞

=
∥∥∥Vθ |x⟩⟨x|V†θ · Vθ′ |x′⟩⟨x′|V†θ′ · Vθ′ |x′⟩⟨x′|V†θ′ · Vθ |x⟩⟨x|V†θ∥∥∥∞

= Tr
[
Vθ |x⟩⟨x|V†θ · Vθ′ |x

′⟩⟨x′|V†θ′ · Vθ′ |x
′⟩⟨x′|V†θ′ · Vθ |x⟩⟨x|V

†
θ

]
=
∣∣∣⟨x|V†θVθ′ |x′⟩∣∣∣2 · Tr [Vθ |x⟩ ⟨x′|V†θ′ · Vθ′ |x′⟩ ⟨x|V†θ]

=
∣∣∣⟨x|V†θVθ′ |x′⟩∣∣∣2 ,

which implies the conclusion.

We now describe our PRF-based construction. We stress that we only require the PRF to be secure against
classical adversaries, and we do not assume that Bob and Charlie are computationally bounded. The reasons
for this will become clear later, and are summarized in Remark 12. Some other helpful remarks on this
construction and its analysis can be found in Remark 13.

Construction 2. Let F =
{
Fk : {0, 1}m+n → {0, 1}

}
k∈{0,1}λ be a PRF family. (Here, m := m(λ) and

n := n(λ) should be thought of as small polynomials in the security parameter λ e.g. λ0.1.) For any
k ∈ {0, 1}λ and θ ∈ {0, 1}m, define the “salted” function fk,s : {0, 1}n → {0, 1} by fk,θ(x) = Fk(θ||x).

Then for any k ∈ {0, 1}λ, we define the monogamy game GF,k as follows:

• The Hilbert spaceHA is C2n .

• The set of questions Θ is {0, 1}m.

• The set of answers X is {0, 1}n.

• For any θ ∈ {0, 1}m and x ∈ {0, 1}n, we define the following:

Vθ = Ufk,θH
⊗n, and

15Previous work [SSS24] proved an upper bound of O(2−n/2) in a setting where the cloner Φ is restricted to splitting the state
as is into two equal-sized halves, sending one to Bob and the other to Charlie. We cite O(2−n/4) as the state of the art, as we are
interested in games where the cloner Φ is unrestricted.
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Aθ
x = Vθ |x⟩⟨x|V†θ,

where Ufk,θ is the phase unitary defined in Section 4.2.

Remark 10. Our use of PRF security is already quite unconventional; the PRF key k should be thought of
here as a public parameter that is known to all parties (including Bob and Charlie) before the monogamy
game commences.

Remark 11. At first glance, this “salting” construction appears unnatural; it would be much more natural
to consider a PRF family {Fk : {0, 1}n → {0, 1}}k∈{0,1}λ , set Θ = {0, 1}λ, and set Vθ = UFθ

H⊗n (where
θ ∈ {0, 1}λ is the PRF key).

The problem with this is that we will be analyzing this construction using Theorem 6.1, which considers
the worst-case overlap across different θ, θ′ ∈ {0, 1}λ, while PRF security would only give us a “with high
probability” guarantee with respect to θ, which is insufficient for us.

To remedy this, we salt the PRF so that the “with high probability” guarantee is absorbed into the setup
phase of the construction. In other words, this can be thought of as a “randomized monogamy game” (where
the new randomization occurs during the setup phase). We can now obtain the desired worst-case overlap
bounds using simple concentration bounds, as we will see next.

Our starting point to analyze Construction 2 is the following lemma:

Lemma 6.5 (Essentially [O’D21], Exercise 5.8). Let F : {0, 1}m+n → {−1, 1} be a random function. For
any s ∈ {0, 1}m, define fs : {0, 1}n → {−1, 1} by fs(u) = F (s, u). Then with probability 1 − O(2−n)
over the randomness of F , we have

max
r ̸=s

max
w∈{0,1}n

∣∣∣Eu [(−1)⟨w,u⟩fr(u)fs(u)]∣∣∣ ≤ 2 · 2−n/2
√
m+ n.

Proof. We will first argue for any fixed r, s, w then take a union bound at the end. If we let G(u) =
fr(u)fs(u) = F (r, u)F (s, u), it is clear that G is itself a random function from {0, 1}n → {−1, 1} (noting
that we get independence because r ̸= s). Hence we just want to bound∣∣∣Eu [(−1)⟨w,u⟩G(u)]∣∣∣ .
For each u, (−1)⟨w,u⟩G(u) is an independent and uniformly random sample from {−1, 1}, so this quantity
can be bounded with a straightforward Chernoff bound. Indeed, Hoeffding’s inequality tells us that:

Pr
[∣∣∣Eu [(−1)⟨w,u⟩G(u)]∣∣∣ > 2 · 2−n/2

√
m+ n

]
≤ 2 exp

(
−4 · 2n · (m+ n)

2n+1

)
= 2 exp(−2(m+ n)).

Taking a union bound over 2m choices of r, 2m choices of s, and 2n choices of w implies that:

Pr

[
max
r ̸=s

max
w∈{0,1}n

∣∣∣Eu [(−1)⟨w,u⟩G(u)]∣∣∣ > 2 · 2−n/2
√
m+ n

]
≤ 22m+n · 2 exp(−2(m+ n))

= O(2−n).
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Corollary 6.6. Assume that the PRF family F is (2m+n, ϵ(λ))-classically secure i.e. a classical distinguisher
that runs in time poly(2m+n) can only distinguish a function sampled from F from a truly random function
with advantage ≤ ϵ(λ). Then with probability 1−O(2−n)− ϵ(λ) over the randomness of k ← {0, 1}λ, we
have

max
r ̸=s

max
w∈{0,1}n

∣∣∣Eu [(−1)⟨w,u⟩+fk,r(u)+fk,s(u)]∣∣∣ ≤ 2 · 2−n/2
√
m+ n.

Proof. Consider the following PRF distinguisher given oracle access to some function F : it simply iterates
over all r, s, w, u and computes

max
r ̸=s

max
w∈{0,1}n

∣∣∣Eu [(−1)⟨w,u⟩+F (r,u)+F (s,u)
]∣∣∣ ,

and outputs 1 if the result is > 2 · 2−n/2
√
m+ n. This distinguisher runs in time poly(2m+n). By

Lemma 6.5, it outputs 1 given a random function with probability at most O(2−n) (noting that the out-
puts of F are in {0, 1}, so the outputs of (−1)F (·) are in {−1, 1} as in Lemma 6.5). Hence by PRF security,
it outputs 1 given a function sampled from F with probability at most O(2−n) + ϵ(λ). The conclusion
follows.

Note that a PRF with this security guarantee can be instantiated assuming sub-exponentially secure PRFs
since λ is a large polynomial in m + n. With this corollary, we can prove an upper bound on the value of
our monogamy game:

Theorem 6.7. Assume (as in Corollary 6.6) that the PRF family F is (2m+n, ϵ(λ))-classically secure i.e. a
classical distinguisher that runs in time poly(2m+n) can only distinguish a function sampled from F from a
truly random function with advantage≤ ϵ(λ). Then with probability 1−O(2−n)−ϵ(λ) over the randomness
of k ← {0, 1}λ, we have:

ω(GF,k) ≤ O(2−m + 2−n/2
√
m+ n).

Proof. By Theorem 6.1 and the analysis preceding it, we have:

ω(GF,k) ≤ 2−m + (1− 2−m) · max
θ,θ′∈{0,1}m

θ ̸=θ′

max
x,x′∈{0,1}n

∥∥∥∥√Aθ
x

√
Aθ′
x′

∥∥∥∥
∞
.

Hence it suffices to show that

max
θ,θ′∈{0,1}m

θ ̸=θ′

max
x,x′∈{0,1}n

∥∥∥∥√Aθ
x

√
Aθ′
x′

∥∥∥∥
∞
≤ O(2−n/2

√
m+ n).

Indeed, we have: ∥∥∥∥√Aθ
x

√
Aθ′
x′

∥∥∥∥
∞

=
∣∣∣⟨x|V†θVθ′ |x′⟩∣∣∣ (Lemma 6.4)

=
∣∣∣⟨x|H⊗nUfk,θUfk,θ′H⊗n|x′⟩∣∣∣

=
1

2n

∣∣∣∣∣∣
∑

y,y′∈{0,1}n
(−1)⟨x,y⟩+⟨x′,y′⟩ ⟨y|Ufk,θUfk,θ′ |y

′⟩

∣∣∣∣∣∣
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=
1

2n

∣∣∣∣∣∣
∑

y,y′∈{0,1}n
(−1)⟨x,y⟩+⟨x′,y′⟩+fk,θ(y)+fk,θ′ (y′) ⟨y|y′⟩

∣∣∣∣∣∣
=

∣∣∣∣ E
y←{0,1}n

[
(−1)⟨x+x′,y⟩+fk,θ(y)+fk,θ′ (y)

]∣∣∣∣
⇒ max

θ,θ′∈{0,1}m
θ ̸=θ′

max
x,x′∈{0,1}n

∥∥∥∥√Aθ
x

√
Aθ′
x′

∥∥∥∥
∞

= max
θ,θ′∈{0,1}m

θ ̸=θ′

max
x,x′∈{0,1}n

∣∣∣∣ E
y←{0,1}n

[
(−1)⟨x+x′,y⟩+fk,θ(y)+fk,θ′ (y)

]∣∣∣∣
≤ O(2−n/2

√
m+ n),

with probability at least 1−O(2−n)− ϵ(λ) over the randomness of k by Corollary 6.6 (noting that we can
consolidate the max over x and x′ into a single max over w := x+ x′).

Remark 12. Our use of PRF security is only to prove the concentration bound in Corollary 6.6, and hence
we only need security against classical adversaries. Once we have this bound, we are applying Theorem
6.7 which holds against computationally unbounded Bob and Charlie. Therefore, although our construction
is based on a cryptographic assumption, it is secure even against computationally unbounded adversaries
Bob and Charlie.

Remark 13. We make some other comparisons between this construction and other constructions:

• Compared with the very similar construction (Construction 1) based on binary phase states in Sec-
tion 5:

– Theorem 6.7 only establishes a bound of Õ(2−n/2) in the single-copy setting. In comparison,
in Section 5 we show a bound of Ot(2−n) in the t-copy setting.

– On the other hand, Theorem 6.7 holds in a much stronger attack model; the players Bob and
Charlie are given the basis θ in the clear and are computationally unbounded. On the other
hand, in Section 5 we restrict the players to each make a single query to Uf .

• Compared with the BB84 [TFKW13, BL20] and coset state [CLLZ21, CV22, SS25] constructions, we
show a better bound in the same attack model. However, we need to use a cryptographic assumption
(sub-exponentially classically secure PRFs).

7 Worst-Case to Average-Case Reduction

In this section, we show that t 7→ t+1 oracular cloning games admit a worst-case to average-case reduction:
even the hardest games which are specified by some worst-case unitary Uw can be won by a strategy for the
average-case version of the game that involves a Haar-like unitary Ua from an appropriate unitary design, or
alternatively from a pseudorandom unitary ensemble.

We begin with a technical background section on mixed unitary designs; equipped with this machinery,
we can then complete the proof of our worst-case to average-case reduction.

7.1 Preliminary: Mixed Unitary Designs

We first review some relevant background on the vectorization technique.
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Vectorization Formalism. For a linear operator Λ ∈ L(Cd), we consider the corresponding vectorization
map vec : L(Cd)→ (Cd)⊗2 which is defined as follows:

Λ =
∑
i,j∈[d]

Λ(i,j) |i⟩⟨j| 7→ vec(Λ) := |Λ⟩⟩ =
∑
i,j∈[d]

Λ(i,j) |i⟩ ⊗ |j⟩ .

We are also going to use the so-called ABC-rule [Mel24]: for any linear operators A,B,C ∈ L(Cd),

|ABC⟩⟩ = (A⊗C⊺) |B⟩⟩.

We now introduce a "mixed variant" of the regular vectorized moment operator [Mel24].

Definition 7.1 (Mixed-Adjoint Moment Operator). Let ν be an ensemble of unitary operators over Cd.
Then, we define the mixed-adjoint (p, q)-moment operatorM(p,q)

ν,adj : L(C
d)→ L(Cd) by

M(p,q)
ν,adj(O) := E

U∼ν

[
(U⊗p ⊗ (U †)⊗q)O(U⊗p ⊗ (U †)⊗q)†

]
for a linear operator O ∈ L((Cd)⊗(p+q)). Similarly, we let M(p,q)

U(d),adj denote the mixed-adjoint (p, q)-
moment operator with respect to the Haar measure over the unitary group Ud.

It turns out that the mixed-adjoint moment operator allows for a particularly neat characterization of
mixed unitary designs introduced in Section 2.2. In particular, we show the following equivalence.

Lemma 7.2. A unitary ensemble ν over Cd is a (non-adaptive) unitary (p, q)-design if and only if

E
U∼ν

[
U⊗p ⊗ (U †)⊗q ⊗ Ū⊗p ⊗ (U⊺)⊗q

]
= E

U∼U(d)

[
U⊗p ⊗ (U †)⊗q ⊗ Ū⊗p ⊗ (U⊺)⊗q

]
.

Proof. Suppose that ν is a unitary (p, q)-design. Then, for all O ∈ L((Cd)⊗(p+q)), it holds that

M(p,q)
ν,adj(O) =M(p,q)

U(d),adj(O).

By applying the vectorization vec : L((Cd)⊗(p+q))→ ((Cd)⊗(p+q))⊗2 on both sides, we get

|M(p,q)
ν,adj(O)⟩⟩ = |M(p,q)

U(d),adj(O)⟩⟩.

By linearity and the ABC-rule for vec(·), this is equivalent to

E
U∼ν

[
U⊗p ⊗ (U †)⊗q ⊗ Ū⊗p ⊗ (U⊺)⊗q

]
|O⟩⟩ = E

U∼U(d)

[
U⊗p ⊗ (U †)⊗q ⊗ Ū⊗p ⊗ (U⊺)⊗q

]
|O⟩⟩.

Because vec(·) is a bijection between L((Cd)⊗(p+q)) and ((Cd)⊗(p+q))⊗2, the operators above must be
identical on the entire vector space ((Cd)⊗(p+q))⊗2. The converse statement can be shown analogously.

Lemma 7.3. A unitary t-design ν is a mixed unitary (p, q)-design for any p, q with t = p+ q.
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Proof. Let t = p+ q. According to Theorem 7.2, it suffices to show that ν satisfies

E
U∼ν

[
U⊗p ⊗ (U †)⊗q ⊗ Ū⊗p ⊗ (U⊺)⊗q

]
= E

U∼U(d)

[
U⊗p ⊗ (U †)⊗q ⊗ Ū⊗p ⊗ (U⊺)⊗q

]
.

By inserting the partial transpose with respect to the 2nd and 4th system, this is equivalent to

E
U∼ν

[
U⊗p ⊗ Ū⊗q ⊗ Ū⊗q ⊗ U⊗p

]T2,4 = E
U∼U(d)

[
U⊗p ⊗ Ū⊗q ⊗ Ū⊗q ⊗ U⊗p

]T2,4 .

After inserting a SWAP between the 2nd and 4th system via F2,4, it is also equivalent to showing that[
F†2,4 E

U∼ν

[
U⊗p ⊗ U⊗q ⊗ Ū⊗p ⊗ Ū⊗q

]
F2,4

]T2,4

=

[
F†2,4 E

U∼U(d)

[
U⊗p ⊗ U⊗q ⊗ Ū⊗p ⊗ Ū⊗q

]
F2,4

]T2,4

.

By assumption, ν is a unitary t-design for t = p+ q, and hence it holds that

E
U∼ν

[
U⊗p ⊗ U⊗q ⊗ Ū⊗p ⊗ Ū⊗q

]
= E

U∼U(d)

[
U⊗p ⊗ U⊗q ⊗ Ū⊗p ⊗ Ū⊗q

]
which yields the desired equality from before.

Finally, we show that an (exact) non-adaptive mixed unitary t-design is automatically also an (exact)
adaptive mixed unitary t-design. In the approximate case, this conversion incurs an exponential blow-up.

Theorem 7.4. Any exact non-adaptive unitary t-design is also an exact adaptive mixed unitary t-design.

Proof. Let ν be a non-adaptive unitary t-design over Cd. Suppose thatAU,U†
(1⌈log d⌉) is an adaptive t-query

quantum algorithm that makes p many queries to U and q queries to U †, for U ∈ U(d) and t = p+ q.
The idea is to use a standard gate teleportation approach, similar to [AMR19, Kre21]. Concretely, we

can argue that, for any U ∈ U(d), there exists a non-adaptive algorithm BU,U†
(1⌈log d⌉) that makes p many

parallel queries to U and q many parallel queries to U † such that

Pr
[
1← AU,U†

(1⌈log d⌉)
]
= d2(p+q) Pr

[
1← BU,U†

(1⌈log d⌉)
]
.

This essentially follows from [Kre21, Lemma 23], since the non-adaptive query algorithm has access to both
U and U †. Because ν is a non-adaptive unitary t-design, we know from Theorem 7.3 that ν is also mixed
unitary (p, q)-design. Putting everything together, we get that

Pr
[
1← AU,U†

(1⌈log d⌉) : U ∼ ν
]
= d2(p+q) Pr

[
1← BU,U†

(1⌈log d⌉) : U ∼ ν
]

= d2(p+q) Pr
[
1← BU,U†

(1⌈log d⌉) : U ∼ U(d)
]

= Pr
[
1← AU,U†

(1⌈log d⌉) : U ∼ U(d)
]
.

This proves the claim.
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7.2 Proof of the Reduction

Using the technical machinery on mixed unitary designs from the previous section, we can finally prove our
worst-case to average-case reduction for cloning games.

Theorem 7.5 (Worst-Case to Average-Case Reduction). Let n, t ∈ N and let ν = {Ua}a∈Θ be an ensemble
of n-qubit unitaries to be specified later. Suppose there exists a quantum strategy

Savg = (HBt+1 ,ΦAt→Bt+1 , {PUa,U
†
a

1,x }a∈Θ, x∈{0,1}n , . . . , {P
Ua,U

†
a

t+1,x }a∈Θ, x∈{0,1}n)

for the average-case t 7→ t+ 1 oracular cloning game Gavg
t7→t+1 = (t,HAt ,Θ, {0, 1}n, {Ua}a∈Θ), where the

t+ 1 players make no more than a total of q many oracle queries to either Ua or U †a combined, and

ωSavg(G
avg
t7→t+1) = ϵ.

Then, there exists a quantum strategy (in which the t+ 1 many players make the same number of queries)

Swst = (HB̃t+1 , Φ̃At→B̃t+1 , {P̃Vw,V
†
w

1,x }x∈{0,1}n , . . . , {P̃
Vw,V

†
w

t+1,x }x∈{0,1}n)

for any t 7→ t+ 1 oracular cloning game Gwst
t7→t+1 = (t,HAt ,Θ′, {0, 1}n, {Vw}w∈Θ′) in the worst-case (i.e.,

for any adversarially chosen ensemble of n-qubit unitaries {Vw}w∈Θ′), such that:

• If ν is an exact unitary r-design, for r = t+ q and q ∈ N: we will have

ωSwst(G
wst
t7→t+1) = ϵ.

• If ν is a pseudorandom unitary family with security parameter λ, and the adversaries (Φ,P1, . . . ,Pt+1)
are computationally bounded: we will have

ωSwst(G
wst
t 7→t+1) ≥ ϵ− negl(λ).

Proof. Let Gwst
t7→t+1 = (t,HAt ,Θ′, {0, 1}n, {Vw}w∈Θ′) be a worst-case t 7→ t+ 1 oracular cloning game for

ensemble of unitaries {Vw}. Consider the quantum strategy Swst for the game Gwst
t7→t+1 which internally uses

Savg and proceeds as follows:

• (Cloning Channel:) on input (Vw |x⟩)⊗t in register At, the channel Φ̃At→B̃t+1 proceeds as follows:

1. Sample a uniformly random unitary Ua ∼ ν from the unitary ensemble ν.

2. Apply Ua to each copy of Vw |x⟩, resulting in a state (UaVw |x⟩)⊗t in register At.

3. Run ΦAt→Bt+1 on (UaVw |x⟩)⊗t, and let Bt+1 = B1 · · ·Bt+1 denote the resulting registers.

4. Output B̃t+1 := B̃1 · · · B̃t+1, where B̃i consists of Bi together with B′i = |a⟩⟨a|, for i ∈ [t+ 1].

• (i-th Player:) On input B̃i, the measurement {P̃Vw,V
†
w

i,x }x∈{0,1}n proceeds as follows:

1. Parse B̃i as BiB
′
i. Measure B′i to obtain the string a.

2. Run the oracle-aided measurement {PU,U†

i,x }x∈{0,1}n with respect to U := UaVw in such a way
that, whenever one of the q-many oracle queries to U or U † is submitted:
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– If the query is to U : the query is first submitted to the available oracle Vw, then the unitary
Ua is applied to the resulting outcome.

– If the query is to U †: the unitary U †a is applied, and the resulting outcome submitted to the
available oracle V †w.

Let us now analyze the success probability ωSwst(G
wst
t7→t+1) of the strategy Swst. We first address the case

where ν is an exact unitary r-design. Recall from Theorem 7.4 that any exact (non-adaptive) unitary r-design
is also an exact adaptive r-design. Therefore, using that ν is an adaptive unitary r-design, for r = t+ q, as
well as the right-invariance of the Haar measure over the unitary group U(2n), we get:

E
x∼{0,1}n
w∼Θ′

Tr
[(

P̃Vw,V
†
w

1,x ⊗ . . .⊗ P̃Vw,V
†
w

t+1,x

)
Φ̃At→B̃t+1

(
(Vw |x⟩⟨x|V †w)⊗tAt

)]
= E

Ua∼ν
E

x∼{0,1}n
w∼Θ′

Tr
[(

P
UaVw,(UaVw)†

1,x ⊗ . . .⊗P
UaVw,(UaVw)†

t+1,x

)
ΦAt→Bt+1

(
(UaVw |x⟩⟨x| (UaVw)†)⊗tAt

)]
= E

W∼U(2n)
E

x∼{0,1}n
w∼Θ′

Tr
[(

P
WUw,(WUw)†

1,x ⊗ . . .⊗P
WUw,(WUw)†

t+1,x

)
ΦAt→Bt+1

(
(WVw |x⟩⟨x| (WVw)

†)⊗tAt

)]
= E

U∼U(2n)
E

x∼{0,1}n
Tr
[(

PU,U†

1,x ⊗ . . .⊗PU,U†

t+1,x

)
ΦAt→Bt+1

(
(U |x⟩⟨x|U †)⊗tAt

)]
= E

Ua∼ν
E

x∼{0,1}n
Tr
[(

PUa,U
†
a

1,x ⊗ . . .⊗PUa,U
†
a

t+1,x

)
ΦAt→Bt+1

(
(Ua |x⟩⟨x|U †a)⊗tAt

)]
.

Therefore, we get that ωSwst(G
wst
t7→t+1) = ωSavg(G

avg
t7→t+1) = ϵ, which proves the claim. In the case that ν is a

PRU family and the adversary is computationally bounded, we can apply essentially the same calculation,
but we will incur a potential additive loss of negl(λ) when passing from Ua to the Haar measure. (Note
that we can appeal to PRU security because the strategy Swst can be simulated using only oracle access to
Ua, U

†
a .)

8 Black Hole Cloning Games

Hayden and Preskill [HP07] put forward the idea that the dynamics of a black hole are well-described by a
random unitary time-evolution operator, e.g., via a unitary design. Does such a scrambling process limit the
extent to which black holes clone information? In this section, we seek to give a quantitative answer to this
question. We formally state and discuss our model for this problem in terms of black hole cloning games
in Section 8.1, and then turn to proving a bound on the value of black hole cloning games in Section 8.2.

8.1 Definition

Inspired by the monogamy game of Tomamichel, Fehr, Kaniewski and Wehner [TFKW13], we formalize
the notion of a black hole cloning game as follows:

Definition 8.1 (Black Hole Cloning Game). A black hole cloning game is specified by a tuple of the form
GBH = (HI,HB,HB′ ,HH,HR,Θ, {Uθ}θ∈Θ,ΦIB′→HR) and consists of the following elements:

• A finite dimensional Hilbert spaceHI associated with the internal degrees of the freedom of the black
hole; in particular, whereHI contains the (n− k)-qubit initial state of the black hole;
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• A pair of isomorphic finite dimensional Hilbert spacesHB andHB′ which are associated with k-qubit
EPR pairs that emerge near the boundary of the black hole;

• A finite dimensional Hilbert spaceHH associated with the final state of the black hole that comprises
all of the qubits at its event horizon;

• A finite dimensional Hilbert spaceHR associated with the emitted Hawking radiation;

• A finite set of indices Θ over the set of all possible scrambling unitaries;

• A finite ensemble of scrambling unitaries {U †θ}θ∈Θ indexed by Θ which is associated with the internal
time-evolution of the black hole within its event horizon;

• A completely positive and trace-preserving channel ΦIB′→HR associated with the physical process
that maps the internal registers IB′ of the black hole into a final internal register H and a register R
associated with the emitted Hawking radiation.

We remark that the modeling assumptions behind our black hole cloning game (see Figure 6) appear
consistent with the postulates of black hole complementarity [STU93, ’t 85]; all of the components of our
game are modeled according to the existing understanding of physics and Hawking radiation:

• we model the entire process of black hole evolution as a (possibly unitary) quantum channel which
takes as input the set of qubits belonging to the interior—together with Alice’s infalling qubits—and
converts them into a global (possibly pure) state of which a subsystem constitutes outgoing radiation;

• we assume that Hawking radiation is a valid phenomenon—it enables Bob to intercept outgoing radi-
ation in the form of qubits that he can process on his quantum computer; meanwhile, Charlie is simply
another observer that is anchored at the event horizon and has access to the remaining qubits; and

• we assume that Bob and Charlie have knowledge of the internal dynamics of the black hole, say as the
result of statistical mechanical and thermodynamic considerations—in analogy to how deciphering
the contents of a burning book is possible, at least in principle, by observing its smoke and ashes.16

Therefore, we believe that black hole cloning games offer a reasonable characterization of quantum cloning
in the context of evaporating black holes. In Section 1.5, we discuss further improvements to our modeling
assumptions which could potentially make our game even more realistic from a physical perspective.

Definition 8.2 (Quantum Strategy). A quantum strategy S = ({HUθ,U
†
θ

x }θ∈Θ,x∈{0,1}k , {R
Uθ,U

†
θ

x }θ∈Θ,x∈{0,1}k)
for a black hole cloning game GBH = (HI,HB,HB′ ,HH,HR,Θ, {Uθ}θ∈Θ,ΦIB′→HR) consists of

• An ensemble of oracle-aided positive operator-valued measurements{
H
Uθ,U

†
θ

x

}
θ∈Θ,x∈{0,1}k

which are to be performed on Charlie’s systemHH.
16This analogy was also used in the work of Hayden and Preskill [HP07].
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• An ensemble of oracle-aided positive operator-valued measurements{
R
Uθ,U

†
θ

x

}
θ∈Θ,x∈{0,1}k

which are to be performed on Bob’s systemHR.

Next, we define the value of a black hole cloning game, which can be thought of as the maximal winning
probability over all admissible strategies.

Definition 8.3 (Value of a Black Hole Cloning Game). Consider a black hole cloning game of the form
GBH = (HI,HB,HB′ ,HH,HR,Θ, {Uθ}θ∈Θ,ΦIB′→HR). Then, the winning probability of a quantum strategy

S = ({HUθ,U
†
θ

x }θ∈Θ,x∈{0,1}k , {R
Uθ,U

†
θ

x }θ∈Θ,x∈{0,1}k) for GBH is defined by the quantity

ωS(GBH) := E
θ∼Θ

{ ∑
x∈{0,1}k

Tr

[(
H
Uθ,U

†
θ

x ⊗R
Uθ,U

†
θ

x ⊗ |x⟩⟨x|B
)(

ΦIB′→HR ⊗ IB
)

((
Uθ · U †θ

)
IB′→IB′ ⊗ IB

)(
|0n−k⟩⟨0n−k|I ⊗ |EPR

k⟩⟨EPRk|B′B

)]}
.

Moreover, we define the value of the monogamy game GBH as the optimal winning probability

ω(GBH) := sup

S=
({

H
Uθ,U

†
θ

x },{R
Uθ,U

†
θ

x

}) ωS(GBH).

Let us remark that the initial quantum state is not adversarially prepared by Bob and Charlie (unlike in
typical monogamy games [TFKW13]); rather, it is generated by an external process (say, nature) over which
the players have no control. While this is also true of the ΦIB′→HR cloning channel in practice, our bounds
will hold even if Φ is chosen adversarially by Bob and Charlie.

8.2 Bounds On the Value of a Black Hole Cloning Game

In this section, we bound the maximal value ω(GBH) = supS ωS(GBH) of a particular black hole cloning
game GBH for a unitary 3-design {Uθ}θ∈Θ and where we restrict the set of oracle-aided strategies

S =
(
{HUθ,U

†
θ

x }θ∈Θ,x∈{0,1}k , {R
Uθ,U

†
θ

x }θ∈Θ,x∈{0,1}k
)

such that Charlie and Bob only make a single oracle query (to either Uθ or U †θ ), for any given θ ∈ Θ.
Let us first give a brief overview of the idea behind our proof. We refer the reader to our technical

overview (Section 1.2) and the associated technical sections for details on each of these steps.

Overview of the proof. To obtain a bound, we consider a sequence of hybrid games:

• GBH: This is a black hole cloning game of the form

GBH = (HI,HB,HB′ ,HH,HR,Θ, {Uθ}θ∈Θ,ΦIB′→HR)

where ν = {Uθ}θ∈Θ is an n-qubit unitary 3-design and ΦIB′→HR is an arbitrary CPTP map.
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Game 3 (Black Hole Cloning Game).
A black hole cloning game GBH = (HI,HB,HB′ ,HH,HR,Θ, {Uθ}θ∈Θ,ΦIB′→HR) for a quan-

tum strategy S = ({HUθ,U
†
θ

x }θ∈Θ,x∈{0,1}k , {R
Uθ,U

†
θ

x }θ∈Θ,x∈{0,1}k) is the following game between
a trusted referee called Alice and two colluding and adversarial parties Bob and Charlie.

1. (Setup phase) A tripartite quantum state ρ ∈ D(HI ⊗HB′ ⊗HB) is prepared, where

ρ =
(
|0n−k⟩⟨0n−k|I ⊗ |EPR

k⟩⟨EPRk|B′B

)
.

Here, k denotes the number of qubits in the registers B and B′. Next, Alice receives register B.

2. (Time-evolution phase) A random scrambling unitary Uθ is selected, where θ ∼ Θ is chosen
uniformly at random, and the internal registers of the black hole evolve according to the uni-
tary channel

(
Uθ · U †θ

)
IB′→IB′ which is applied to registers IB′ of the state ρ.

Afterwards, the channel ΦIB′→HR is applied to registers IB′ and produces registers HR.

3. (Guessing phase) Charlie and Bob receive the registers H and R, respectively. They also
receive oracles for both Uθ and U †θ , but may no longer communicate. They independently

perform the measurements {HUθ,U
†
θ

x }x∈X and {RUθ,U
†
θ

x }x∈X and output a k-bit string.

4. (Outcome phase) Alice measures B is measured in the computational basis, resulting in an
outcome x ∈ {0, 1}k. Charlie and Bob win if they both guessed x correctly.

Figure 6: A black hole cloning game.

V1

U or U †

V2

|0⟩

|0⟩

|0⟩

Hawking
radiation R

Output
x ∈ {0, 1}k

Figure 7: Visualization of Bob’s quantum computation in our black hole cloning game. He takes the inter-
cepted Hawking radiation in register R as input, adds any number of ancilla qubits (in the |0⟩ state) of his
choosing, and applies an initial unitary V1 to the entire system. He then makes one oracle query to either
U or U †, where U is the black hole’s scrambling unitary. Finally, he applies an additional unitary V2 then
measures the last k qubits to produce his guess x ∈ {0, 1}k. The diagram for Charlie’s strategy would be
similar, except the input would consist of the black hole’s interior qubits in register H.
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• GMOE: This is a (regular) monogamy of entanglement game (as in Section 3.1), where

GMOE = (HA,Θ, {0, 1}n, {Aθ
y}θ∈Θ,x∈{0,1}n)

where Alice performs a set of projective measurements {Aθ
y}θ∈Θ, y∈{0,1}n acting on the Hilbert space

HA = (C2)⊗n, for some rank-1 projectors Aθ
y = Ūθ |y⟩⟨y| Ū †θ .

• G17→2: This is a 1 7→ 2 oracular cloning game (as in Section 3.2), where

G17→2 = (1,HA,Θ, {0, 1}n, {Uθ}θ∈Θ).

• GF,1: This is a different 1 7→ 2 oracular cloning game (as in Section 3.2), where

GF,1 = (1,HA, {0, 1}λ, {0, 1}n, {UfθH
⊗n}θ∈{0,1}λ).

and F = {fθ : {0, 1}n → {0, 1}}θ∈Θ is a family of 6-wise uniform functions.

First, we show that the game GBH emerges as a special case of GMOE in which we post-select on the
event that Alice measures {Aθ

y}θ∈Θ, y∈{0,1}n and obtains the outcome y = x||0n−k, for some x ∈ {0, 1}k.
Informally, because this event occurs with probability 2−n+k, we can deduce that that:

supŜ ωŜ(GMOE) ≥ 2−n+k · supS ωS(GBH),

where we maximize over the choice of strategies Ŝ selected by Bob and Charlie which consist of a tripartite
state ρ, where ρ is the normalized Choi state of the quantum channel Φ, and where Bob and Charlie perform
oracle aided measurements with single-query access to Uθ and U †θ ) on an enlarged Hilbert space. Therefore,
in order to obtain an asymptotically optimal bound of the form ω(GBH) = O(2−k), it suffices to show that
the related monogamy game GMOE has a maximal value of supŜ ωŜ(GMOE) = O(2−n). Note that analyses
of monogamy games preceding this work [TFKW13, BL20, CLLZ21, CV22, SS25] would not suffice
here, since they only prove bounds of the form O(2−cn) for c < 1. (We will discuss this in some more
detail in Remark 14.)

Second, we relate the game GMOE to the 1 7→ 2 cloning game G17→2. Here, we use the general result in
Theorem A.1 which allows us to relate this particular class of monogamy games to cloning games. As a
result, we find that supŜ ωŜ(GMOE) = supS′ ωS′(G17→2), where S′ ranges over the set of analogous oracular
cloning strategies, but which involve Φ as a cloning channel.

Third, we use the insight from our worst-case to average-case reduction in Theorem 7.5 in order to
argue that the G17→2 is at least as hard as the cloning game GF,1. In particular, we observe that the winning
probabilities satisfy supŜ′ ωŜ′(G17→2) ≤ supS′ ωS′(GF,1), where the set of strategies Ŝ′ remains the same.

Finally, we invoke Theorem 5.15 which gives an explicit bound on the game GF,1. Specifically, we prove
that supS′ ωS′(GF,1) ≤ O(2−n), if F is a family of 6-wise uniform functions. As remarked above, proving
a bound this strong requires the new techniques that we introduced earlier in this work.

Putting everything together, we then obtain the aforementioned asymptotically optimal bound of the
form ω(GBH) = O(2−k) on the black hole cloning game GBH. Let us now state our main theorem.

Theorem 8.4. Let n, k ∈ N be integers such that n ≥ k and let ν = {Uθ}θ∈Θ be a unitary 3-design on
n-qubits. Then, for any quantum channel ΦIB′→HR, the maximal single-query value of the black hole cloning
game GBH = (HI,HB,HB′ ,HH,HR,Θ, {Uθ}θ∈Θ,ΦIB′→HR) is at most

supS ωS(GBH) = O(2−k) ,
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where the supremum ranges over all oracle-aided strategies

S =
(
{HUθ,U

†
θ

x }θ∈Θ,x∈{0,1}k , {R
Uθ,U

†
θ

x }θ∈Θ,x∈{0,1}k
)

that only make a single oracle query (to either Uθ or U †θ ), for any given θ ∈ Θ.

Proof. Let S be any single-query strategy. For convenience, we also assume there exists an auxiliary register
E (say, the exterior of the black hole) which is initialized to |0n−k⟩E and not touched by any of the processes
in the black hole cloning game. This is without loss of generality, since it can always be absorbed into Φ by
re-defining the quantum channel appropriately. Then, it follows that:

ωS(GBH) = E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x ⊗ |x0n−k⟩⟨x0n−k|BE
)(

ΦIB′→HR ⊗ IBE
)

((
U · U †

)
IB′→IB′ ⊗ IBE

)(
|0n−k⟩⟨0n−k|I ⊗ |EPR

k⟩⟨EPRk|B′B ⊗ |0
n−k⟩⟨0n−k|E

)]}

= 2n−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x ⊗ |x0n−k⟩⟨x0n−k|BE
)(

ΦIB′→HR ⊗ IBE
)

((
U · U †

)
IB′→IB′ ⊗ IBE

)(
|EPRn⟩⟨EPRn|IB′BE

)]}
.

The above step holds because in the second line the projector |0n−k⟩⟨0n−k|E will act on one half of the EPR
pair |EPRn−k⟩⟨EPRn−k|IE, thus collapsing it to |0n−k⟩⟨0n−k|I ⊗ |0n−k⟩⟨0n−k|E and pulling out a factor of
2k−n.

We continue by using the ricochet property of EPR pairs (formally, Corollary 2.2) to pull U,U † “out”
of the cloning channel to obtain something that will look more like a monogamy game. First, consider the
channel ΨIB′→HR defined as Φ ◦ (U · U †) (here, ◦ denotes composition). Applying Corollary 2.2 to the
channel Ψ yields the following:

2n−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x ⊗ |x0n−k⟩⟨x0n−k|BE
)(

ΦIB′→HR ⊗ IBE
)

((
U · U †

)
IB′→IB′ ⊗ IBE

)(
|EPRn⟩⟨EPRn|IB′BE

)]}

=2−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x ⊗ |x0n−k⟩⟨x0n−k|BE
)
J(Ψ)

]}

=2−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x

)
Ψ(|x0n−k⟩⟨x0n−k|)

]}

=2−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x

)
Φ(U |x0n−k⟩⟨x0n−k|U †)

]}
.
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Next, we apply Corollary 2.2 once more, this time to the channel Φ:

2−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x

)
Φ(U |x0n−k⟩⟨x0n−k|U †)

]}

=2−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x ⊗ Ū |x0n−k⟩⟨x0n−k|BE Ū
†
)
J(Φ)

]}

=2n−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x ⊗ Ū |x0n−k⟩⟨x0n−k|BE Ū
†
)

(
ΦIB′→HR ⊗ IBE

)(
|EPRn⟩⟨EPRn|IB′BE

)]}
.

For the remainder of the proof, we will bound the final quantity in the expression above; specifically, by
relating it to the value of a related monogamy of entanglement game. To this end, we now observe that

2n−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x ⊗ Ū |x0n−k⟩⟨x0n−k|BE Ū
†
)

(
ΦIB′→HR ⊗ IBE

)(
|EPRn⟩⟨EPRn|IB′BE

)]}

= 2n−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
H̃U,U†

x||0n−k ⊗ R̃U,U†

x||0n−k ⊗ Ū |x0n−k⟩⟨x0n−k|BE Ū
†
)

(
ΦIB′→HR ⊗ IBE

)(
|EPRn⟩⟨EPRn|IB′BE

)]}

≤ 2n−k sup

S̃=
({

ĤU,U†
y },{R̂U,U†

y

}) E
U∼ν

{ ∑
y∈{0,1}n

Tr

[(
ĤU,U†
y ⊗ R̂U,U†

y ⊗ Ū |y⟩⟨y|BE Ū
†
)

(
ΦIB′→HR ⊗ IBE

)(
|EPRn⟩⟨EPRn|IB′BE

)]}
. (15)

We have now transitioned successfully to GMOE. Because the bound in Equation (15) applies to any
single-query strategy S, we can therefore complete the proof by bounding the black hole cloning game as
follows:

ω(GBH) = sup

S=
(
{HU,U†

x },{RU,U†
x }

) ωS(GBH)

≤ 2n−k sup

Ŝ=
(
HH,HR, ρAHR ,{ĤU,U†

y },{R̂U,U†
y }

) ωŜ(GMOE) (by Equation (15))

= 2n−k sup

S′=
(
HH⊗HR,ΦIB′→HR,{Ĥ

U,U†
y },{R̂U,U†

y }
) ωS′(G1 7→2) (Lemma A.1)

≤ 2n−k sup

S′=
(
HH⊗HR,ΦIB′→HR,{Ĥ

U,U†
y },{R̂U,U†

y }
) ωS′(GF,1) (Theorem 7.5)
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≤ 2n−k ·O(2−n) = O(2−k). (Theorem 5.15)

We conclude this section with the following remark.

Remark 14 (Comparison with the Cloning Game Bound by [BL20]). Earlier, we made the claim that we
require a construction of a cloning game with value≤ O(2−n), and that our work is the first to achieve this.
At the surface, it might appear that the construction of Broadbent and Lord [BL20] also achieves this (even
if their unclonable encryption construction does not strictly conform to the syntax in Definition 3.5): they
provide a construction with X = {0, 1}n and Θ = {0, 1}λ with value ≤

(
cos2(π/8)

)λ
+ O(2−n). Thus, if

λ ≥ cn for some c > 1, this value will be O(2−n).
However, the result by [BL20] still does not suffice for our black hole application. The reason is that

their ciphertext states comprise λ > n qubits and are thus not succinct. Looking through our proof of The-
orem 8.4, what we really need is a cloning game such that messages x ∈ {0, 1}n are “encrypted” using
m qubits and where we can prove a bound of O(2−m), which the [BL20] construction does not satisfy as
m = λ. The reason for this is that an adaptation of our worst-case to average-case reduction in Section 7
would have proceed by applying a Haar random (or pseudorandom) unitary to the entire ciphertext state.
This forces the Haar random unitary to act on m qubits, so our goal would be to prove a bound of O(2−m).

9 Search-Secure Unclonable Encryption

In this section, we formally define (succinct, deterministic, search-secure) unclonable encryption, loosely
following the terminology introduced by Broadbent and Lord [BL20]. We will use θ ∈ {0, 1}λ (rather than
k, which we are already using in Section 8 to denote the number of EPR pairs in a black hole cloning game)
to denote the secret key.

9.1 Definitions

Definition 9.1 (Unclonable Encryption). Let λ ∈ N be the security parameter and let n := n(λ) be some
polynomial in λ. A succinct and deterministic unclonable encryption scheme (UE) is a tuple (KeyGen,Enc,Dec)
consisting of the following QPT algorithms:

• KeyGen(1λ, 1n) : takes as input 1λ, 1n and outputs θ ∈ {0, 1}λ.

• Enc(θ ∈ {0, 1}λ, x ∈ {0, 1}n) : on input (θ, x), it outputs a pure ciphertext state |ψθx⟩. We require
Enc(θ, x) to deterministically output Uθ |x⟩, for some unitary Uθ,n ∈ U(2n). Thus the ciphertext
state must also comprise n qubits.

• Dec(1n, θ ∈ {0, 1}λ, ρ): on input θ and a quantum state ρ, it outputs x′ ∈ {0, 1}n.

We require the following correctness property: for any λ, n, it holds that

Pr
[
Dec

(
1n, θ, |ψθx⟩⟨ψθx|

)
= x : θ←KeyGen(1λ,1n)

|ψθ
x⟩←Enc(θ,x)

]
= 1.

Succinctness is implicit in our requirement that the key length only depends on λ rather than n.

73



Definition 9.2 (t 7→ t + 1 UE security). Let (KeyGen,Enc,Dec) be a UE scheme, and t ∈ N a posi-
tive integer. Consider the following experiment between a challenger and an adversary (Φ,P1, . . . ,Pt+1)
consisting of a cloner Φ and t+ 1 players P1, . . .Pt+1 who are not allowed to communicate:

1. The challenger runs θ ← KeyGen(1λ, 1n). Next, the challenger samples x ← {0, 1}n and runs
Enc(θ, x) to obtain the ciphertext |ψθx⟩, and sends t copies |ψθx⟩

⊗t of the state to the cloner Φ.

2. The cloner Φ applies any quantum channel to |ψθx⟩
⊗t in registers A1 . . .At and then splits the resulting

state into t+ 1 registers B1, . . . ,Bt+1. Finally, Φ sends Bi to player Pi.

3. The players P1, . . . ,Pt+1 receive θ and output their guesses for x, and win if they all guess correctly.

We say that (KeyGen,Enc,Dec) satisfies statistical (respectively, computational) t 7→ t+1 and ϵ(t, λ, n)-UE
security if, for any computationally unbounded (respectively, computationally bounded) adversary (Φ,P1, . . . ,Pt+1),
where each Pi is an ensemble of positive-operator valued measurements {Pθ

i,x}x,θ,

E
(x,θ)∼KeyGen(1n)

Tr
[(

Pθ
1,x ⊗ . . .⊗Pθ

t+1,x

)
ΦA1...At→B1...Bt+1

(
|ψθx⟩⟨ψθx|

⊗t
A1...At

)]
≤ O (ϵ(t, λ, n)) .

The 1 7→ 2 UE security experiment is visualized in Figure 8. In the following definition, we also define
an oracular version of this security experiment.

Ch Φ
|ψθ

x⟩

P1θ

x1

θ

x2

P2

Figure 8: The 1 7→ 2 UE experiment. A cloner Φ splits a state |ψθx⟩ prepared by the challenger Ch into two
parts, one is sent to P1 and one is sent to P2. Given θ, P1 and P2 then output their guesses x1 and x2 for x.

Definition 9.3 (t 7→ t+1 oracular UE security). We say that (KeyGen,Enc,Dec) satisfies statistical (respec-
tively, computational) t 7→ t + 1 ϵ-UE oracular security under the same conditions as Definition 9.2, with
the following modification: in the final phase, the players P1, . . .Pt+1 do not receive θ directly. Instead,
they receive query access to the unitary Uθ,n computing Enc(θ, ·) as well as its inverse U †θ,n.

We say that (KeyGen,Enc,Dec) satisfies the weaker notion of (ϵ, q)-UE oracular security if each of the
players may only make a total of ≤ q queries to Uθ,n and U †θ,n.

Remark 15. We emphasize that our work is the first to consider t 7→ t + 1 cloning games for t > 1: not
only is prior work limited to 1 7→ 2 cloning games, all existing unclonable cryptography (based on BB84
states or coset states) becomes completely insecure if t is allowed to grow polynomially (see Section 1.2.1
and [AMP24] for more details).

While we are only able to prove security for t = o(n/ log n) (see Theorem 9.5), we reiterate that our
construction could very well be secure for t that is an arbitrary polynomial in n (unlike previous construc-
tions based on BB84 states [BL20] and coset states [CLLZ21]).
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Remark 16 (Comparison with [BL20]). At first glance, in the t = 1 case this notion may already appear to
have been achieved by the construction by Broadbent and Lord [BL20], which achieves a security bound of
ϵ(λ, n) = 9

2n +
(
cos2 π8

)λ. At a high level, they compose a λ-bit BB84 cloning game as in [TFKW13] with
a PRF-based one-time pad (see Remark 17 below for details). However, their construction has two aspects
which we would like to improve on:

• Their construction assumes the existence of post-quantum pseudorandom functions. We would like to
instantiate a UE scheme assuming the milder notions of pseudorandom quantum states or unitaries.

• Their encryption is randomized. The natural deterministic analogue of this would be the BB84-based
encryption scheme without the PRF, which has security

(
cos2 π8

)n but is no longer succinct as this
would use keys of length n.

We note that a common shortcoming of both the work by [BL20] and our work is the reliance on oracles for
proving security.

Remark 17 (Justifying Deterministic Encryption). Our reason for focusing on UE schemes with determinis-
tic unitary encryption is in order to be able to naturally instantiate the oracular security setting. Regardless,
any such scheme comes with the obvious shortcoming that it is deterministic, and hence does not satisfy the
ideal notions of indistinguishable or unclonable-indistinguishable security (as defined in [BL20]). Never-
theless, we argue that a deterministic scheme satisfying unclonable search security can plausibly be boot-
strapped to a scheme satisfying unclonable-indistinguishable security.

One such bootstrapping transformation was proposed by Broadbent and Lord [BL20]: suppose we have
an unclonable search-secure scheme SearchEnc. Then to encrypt x ∈ {0, 1}n under secret keys (k, θ) ∈
{0, 1}λ × {0, 1}λ, sample a random PRF seed r ∈ {0, 1}λ and output the classical string x ⊕ PRF(k, r)
together with the quantum state |SearchEnc(θ, r)⟩. Broadbent and Lord [BL20] also provided some mild
evidence that this may be secure if the PRF is instantiated with a random oracle.

We emphasize that proving the unclonable-indistinguishable security of this transformation (or a sim-
ilar one) is a notoriously difficult open problem [KT23, AKL23, AKY24]. Our point is just that studying
unclonable encryption in the weaker search-secure setting is still an interesting and relevant cryptographic
problem, and hence that restricting attention to the case of deterministic unclonable encryption is also
interesting.

Finally, we recall from Remark 6 that the oracular UE setting is still quite expressive, even if we only allow
each player one query. In particular, it would be sufficient for recovering x from |ψθx⟩, and thus there is still
a trivial strategy that succeeds with probability 2−n: the cloner forwards their copies to the first t players,
and nothing to player t+ 1. The first t players can decrypt and output x, and player t+ 1 will simply guess
randomly.

9.2 Constructions

Construction 3. Let U = {Un}n∈N be some ensemble of unitaries (we will specify what U should be later).
Recall that Un = {Uθ,n}θ∈{0,1}λ . Our construction proceeds as follows:

• KeyGen(1λ, 1n): sample and output uniformly random θ ∈ {0, 1}λ.

• Enc(θ, x): output Uθ,n |x⟩.
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• Dec(1n, θ, ρ). First apply the unitary channel U †θ,n ·Uθ,n to obtain the state U †θ,nρUθ,n. Now measure
in the standard basis and output the result.

Correctness is clear, so we now prove security in two different settings. First, we show 1 7→ 2 security
assuming the existence of pseudorandom unitaries, thus placing unclonable encryption in MicroCrypt:

Theorem 9.4. If U is a pseudorandom unitary (as defined in Definition 2.7), then the UE scheme specified
in Construction 3 satisfies computational 1 7→ 2 ϵ-UE oracular security, where ϵ = negl(λ) +

(
cos2 π8

)n.

Proof. We consider a series of hybrid games:

• Hyb0: This is the 1 7→ 2 oracular UE security game, as defined in Definition 9.3.

• Hyb1: In step 1 of the UE security game, the challenger also only has oracle access to Uθ,n, U
†
θ,n. To

generate the ciphertext state |ψθx⟩, they query the oracle for Uθ,n on input |x⟩.

• Hyb2: Now, the unitary U is sampled as follows: sample a string b ← {0, 1}n uniformly at random,
and output Hb (which applies a Hadamard at every position where the corresponding entry of b is 1).

For i = 0, 1, 2, let ω(Hybi) denote the probability of the players winning the security game in Hybi. Then
we observe the following:

• ω(Hyb0) = ω(Hyb1), as these two are functionally equivalent.

• |ω(Hyb1)− ω(Hyb2)| ≤ negl(λ) by the worst-case to average-case reduction in Section 7.

• ω(Hyb2) ≤ cos2
(
π
8

)n: this is exactly the BB84 security game. This security bound essentially
follows from analysis by [TFKW13], and was formally shown in [BL20, Corollary 2].

The conclusion follows.

Remark 18. We note that we could just as easily have used the subspace coset monogamy game [CLLZ21,
CV22] and its analysis by [SS25] in the place of the BB84 cloning game in Hyb2 to obtain a slightly stronger
upper bound of negl(λ) +O(2−n/4).

In some more detail: the unitary will be indexed by a linear subspace A of Fn2 with dimA = n/2. The
unitary will be that which takes an n-bit string x as input, interprets this as a pair of cosets s+A, s′ +A⊥,
and outputs

|As,s′⟩ =
1

2n/4

∑
a∈A

(−1)⟨a,s′⟩ |a+ s⟩ .

Secondly, we show assuming the existence of post-quantum one-way functions that Construction 3 can be
instantiated to satisfy multi-copy security against query-bounded adversaries:

Theorem 9.5. For any λ, n, let n′ = n− ω(log λ) and consider t such that

t ≤ O
(

n′

log n′

)
⇔ exp(O(t log t)) ≤ 2n

′
= 2n · negl(λ).

Let
{
fθ,n : θ ∈ {0, 1}λ

}
be a post-quantum pseudorandom function family from {0, 1}n → {0, 1}. Then we

define U by
Uθ,n = Ufθ,nH

⊗n.

Then the UE scheme specified in Construction 3 satisfies computational t 7→ t + 1 (ϵ, 1)-UE oracular
security, where

ϵ = exp(O(t log t)) · 2−n + negl(λ) = negl(λ).
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Proof. We first pass from a pseudorandom function fθ,n to a truly random function f at the expense of an
additive negl(λ) security loss. A random function is (4t + 2)-wise uniform, so we can then finish using
Lemma 3.11 and Theorem 5.15.
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A Relating Cloning Games to Monogamy-Like Games

In this section, we show that t 7→ t + 1 cloning games can be recast as a particular variant of a monogamy
of entanglement game, as defined in Section 3.1. We first begin by presenting this argument when t = 1,
which essentially follows by an argument laid out by Broadbent and Lord [BL20]. The additional structure
we impose on the MOE game is as follows:

• The tripartite state ρ ∈ D(HA ⊗ HB ⊗ HC) which is shared between Alice, Bob and Charlie is the
result of applying a cloning channel ΦA′→BC to one half of an EPR pair, i.e.,

ρABC = (IA ⊗ ΦA′→BC)(|EPR⟩⟨EPR|AA′).

In other words, ρABC is the normalized Choi state of some channel ΦA′→BC.

• Alice’s measurement
{
Aθ
x

}
θ∈Θ,x∈X on register A is a projective measurement of the form

Aθ
x = Ūθ |x⟩⟨x| Ū †θ ,

for some family of unitary operators {Uθ}θ∈Θ acting onHA.

• (If we are in the oracular setting) Bob and Charlie’s measurements can only depend on oracle queries
to Uθ and U †θ , rather than directly on θ.

We now prove a formal equivalence between the two notions for t = 1.

Lemma A.1. Let G1 7→2 = (1,HA,Θ,X , {Uθ}θ∈Θ) be a 1 7→ 2 cloning game, for some family of unitary
operators {Uθ}θ∈Θ acting on the Hilbert space HA. Then, the winning probability of a particular strategy
S = (HB ⊗HC,ΦA→BC, {Pθ

1,x}θ∈Θ,x∈X , {Pθ
2,x}θ∈Θ,x∈X ) (possibly in the oracular setting) with

ωS(G17→2) = E
θ∼Θ

E
x∼X

Tr
[(

Pθ
1,x ⊗Pθ

2,x

)
ΦA→BC(Uθ |x⟩⟨x|A U

†
θ )
]
.
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is exactly equal to the winning probability

ωS̃(G) = E
θ∼Θ

∑
x∈X

Tr
[(

Pθ
1,x ⊗Pθ

2,x ⊗ (Ūθ |x⟩⟨x|A Ū
†
θ )
)
ρBCA

]
.

of a quantum strategy S̃ = (HB,HC, ρBCA, {Pθ
1,x}θ∈Θ,x∈X , {Pθ

2,x}θ∈Θ,x∈X ) (possibly in the oracular set-

ting) of a monogamy entanglement game G = (HA,Θ,X , {Ūθ |x⟩⟨x| Ū †θ}θ∈Θ,x∈X ), where

ρBCA = (ΦA′→BC ⊗ IA) |EPR⟩⟨EPR|A′A .

Here, |EPR⟩AA′ denotes 1√
|X |

∑
x∈X |x⟩A ⊗ |x⟩A′ . (We swap the A and BC registers in the formulation of

the relevant monogamy game for the purposes of syntactic compliance with Corollary 2.2 in our proof.)

Proof. Recall that Corollary 2.2 implies that, for any projector P ∈ L(HBC),

Tr
[
PBCΦA′→BC(Uθ |x⟩⟨x|A U

†
θ )
]
= Tr

[(
P⊗ Ūθ |x⟩⟨x| Ū †θ

)
J(Φ)

]
,

where J(Φ) ∈ L(HB ⊗HC ⊗HA) is the Choi-Jamiołkowski isomorphism of Φ. Therefore:

ωS(G17→2) = E
θ∼Θ

E
x∼X

Tr
[(

Pθ
1,x ⊗Pθ

2,x

)
ΦA→BC(Uθ |x⟩⟨x|A U

†
θ )
]

= E
θ∼Θ

E
x∼X

Tr
[(

Pθ
1,x ⊗Pθ

2,x ⊗ (Ūθ |x⟩⟨x|A Ū
†
θ )
)
J(Φ)

]
= E

θ∼Θ

∑
x∼X

Tr
[(

Pθ
1,x ⊗Pθ

2,x ⊗ (Ūθ |x⟩⟨x|A Ū
†
θ )
)
ρBCA

]
= ωS̃(G) ,

where we define ρBCA = (ΦA′→BC ⊗ IA) |EPR⟩⟨EPR|A′A. The final step holds because of the identity
J(Φ) = |X | · ρBCA (see the definitions preceding Lemma 2.1). This proves the claim.

We can generalize this to arbitrary t as follows:

Lemma A.2. For any t ≥ 1, let Gt7→t+1 = (t,HAt ,Θ,X , {Uθ}θ∈Θ) be a t 7→ t+ 1 cloning game, for some
family of unitary operators {Uθ}θ∈Θ acting on the Hilbert spaceHA. Moreover, define the shared state

ρB1:t+1A′
1:t

:= (ΦA1...At→B1...Bt+1 ⊗ IA′
1:t
)
(
|EPRn⟩⟨EPRn|⊗t

)
.

Then, the winning probability of a particular strategy S = (HBt+1 ,ΦAt→Bt+1 , {Pθ
1,x}θ∈Θ,x∈X , . . . , {Pθ

t+1,x}θ∈Θ,x∈X )
(possibly in the oracular setting) with

ωS(Gt7→t+1) := E
θ∼Θ

E
x∼X

Tr

[(
P
Uθ,U

†
θ

1,x ⊗ . . .⊗P
Uθ,U

†
θ

t+1,x

)
ΦAt→Bt+1

(
(Uθ |x⟩⟨x|U †θ )

⊗t
At

)]
.

is exactly equal to the quantity

|X |t−1 · E
θ∼Θ

∑
x∈X

Tr

[(
t+1⊗
i=1

Pθ
i,x ⊗ (Ūθ |x⟩⟨x|A Ū

†
θ )
⊗t

)
ρB1:t+1A′

1:t

]
.
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Proof. Let J(Φ) ∈ L(HB1:t+1 ⊗ HA′
1:t
) denote the Choi-Jamiołkowski isomorphism of the cloning map

ΦA1:t→B1:t+1 . Recall that

J(Φ) = |X |t · (ΦA1...At→B1...Bt+1 ⊗ IA′
1:t
)
(
|EPRn⟩⟨EPRn|⊗t

)
= |X |tρ.

Now using Lemma 2.1, we have:

ωS(G) =E
θ

E
x∼X

Tr

[(
t+1⊗
i=1

Pθ
i,x

)
ΦA1...At→B1...Bt+1

(
(Uθ |x⟩⟨x|U †θ )

⊗t
A1...At

)]

=E
θ

E
x∼X

Tr

[(
t+1⊗
i=1

Pθ
i,x ⊗

(
Ūθ |x⟩⟨x| Ū †θ

)⊗t
A′
1:t

)
J(Φ)B1:t+1A′

1:t

]

=|X |t · E
θ

E
x∼X

Tr

[(
t+1⊗
i=1

Pθ
i,x ⊗

(
Ūθ |x⟩⟨x| Ū †θ

)⊗t
A′
1:t

)
ρB1:t+1A′

1:t

]

=|X |t−1 · E
θ

∑
x∼X

Tr

[(
t+1⊗
i=1

Pθ
i,x ⊗

(
Ūθ |x⟩⟨x| Ū †θ

)⊗t
A′
1:t

)
ρB1:t+1A′

1:t

]
.
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