
Pushing the QAM method for finding APN functions further

Nadiia Ichanska1, Simon Berg1, Nikolay S. Kaleyski1, Yuyin Yu2

1University of Bergen, Norway
2School of Mathematics and Information Science, Guangzhou University, China

Abstract

APN functions offer optimal resistance to differential attacks and are instrumental in the
design of block ciphers in cryptography. While finding APN functions is very difficult in general,
a promising way to construct APN functions is through symmetric matrices called Quadratic
APN matrices (QAM). It is known that the search space for the QAM method can be reduced by
means of orbit partitions induced by linear equivalences. This paper builds upon and improves
these approaches in the case of homogeneous quadratic functions over F2n with coefficients in the
subfield F2m . We propose an innovative approach for computing orbit partitions for cases where
it is infeasible due to the large search space, resulting in the applications for the dimensions
(n,m) = (8, 4), and (n,m) = (9, 3). We find and classify, up to CCZ-equivalence, all quadratic
APN functions for the cases of (n,m) = (8, 2), and (n,m) = (10, 1), discovering a new APN
function in dimension 8. Also, we show that an exhaustive search for (n,m) = (10, 2) is infeasible
for the QAM method using currently available means, following partial searches for this case.

1 Introduction

Cryptographically optimal classes of functions such as almost perfect nonlinear (APN) functions
play a crucial role in cryptography, particularly in designing secure symmetric ciphers. S-boxes or
substitution boxes together with their properties characterize the security of the cipher. They are
fundamental building blocks, and therefore, they must withstand various attacks, such as linear and
differential cryptanalysis. The effectiveness of an S-box in thwarting these attacks largely depends
on certain mathematical properties, with differential uniformity being one of the most important
since it measures the resistance to differential cryptanalysis, one of the most efficient attacks that
can be applied against block ciphers. The lower the differential uniformity of a function, the more
resistant it is to differential attacks. An APN function is an optimal type of S-box function with
the lowest differential uniformity possible. These functions achieve therefore maximal security
against differential attacks, making them highly desirable in cryptography. Since at the same time,
they are mathematically rare and challenging to identify, discovering new APN functions often
requires extensive computation and sophisticated methods. These methods span a wide range,
from theoretical approaches to brute-force and heuristic computational searches. One example
of the recent innovations in computational searches is the QAM Method [15], which involves a
depth-first search through symmetric matrices representing the S-box.

This paper explores and advances the Quadratic APN Matrix (QAM) method for searching for
Almost Perfect Nonlinear (APN) functions. Originally introduced in 2014 by Y. Yu, M. Wang,

This paper was presented in part under the title “Further Investigations on the QAM Method for Finding APN
Functions” at the 9th International Workshop on Boolean Functions and their Applications (BFA 2024). Sections
3.3; 3.5; 4.1; 4.5.1; 5.1; 5.4.2 are new.

1

and Y. Li [15], the QAM method was used to discover 2252 APN functions; this count was later
increased to 8157 in the extended version [14]. In 2020, this approach was used to classify all
quadratic APN functions over the finite field F2n with coefficients in the prime field F2 up to
dimension n = 9 [11], which was recently pushed forward to dimension 10 in [12]. Later, in 2022,
D. Davidova and N.S. Kaleyski [7] expanded on this by considering subfields other than prime fields
and proposing a more intuitive definition of the derivative matrix.

In this work, we introduce an improved computational framework for applying the QAMmethod
to search for quadratic APN functions with subfield coefficients. We use linear permutations to
reduce the search space beyond the first level of the depth-first search (as opposed to all other
previous papers, where such a reduction is only applied to the first level) and introduce an approach
to test if two values belong to the same orbit under the action of linear permutations, allowing
the method to be used in the case of higher dimensions where generating all linear permutations
explicitly is infeasible. We also describe an approach for estimating the running time by representing
the search as a tree. This also allows us to efficiently distribute parallel processes during the search.
Additionally, we enhance the computational speed by applying linear equivalence on the right and
improve upon the submatrix test from [15], which can be used to prune away branches of the search
that do not lead to APN functions. By generalizing the result from [12] we also refine the QAM
test.

This allows us to conduct a full classification of quadratic APN functions over F2n with coeffi-
cients in F2m in the cases of (n,m) = (10, 1) and (n,m) = (8, 2). In the case of (10, 1), we confirm
that all of these functions belong to the previously known classes, while in the case of (8, 2) we find
one new APN function, which is inequivalent to all the previously known ones.

2 Preliminaries

Consider n,m natural numbers. We use Fn
2 to represent the vector space of dimension n over

the finite field F2 with 2 elements. A function F that maps from Fn
2 to Fm

2 is referred to as an
(n,m)-function, a vectorial Boolean function, or S-box.

The algebraic normal form (ANF) of an (n,m)-function F is the unique representation:

F (x1, x2, ..., xn) =
∑

u∈Fpn

au ·
n∏

i=1

xui
i , au ∈ Fm

2 ,

where x = (x1, x2, ..., xn) and u = (u1, u2, ..., un) are the coordinate vectors of x and u, respec-
tively. The algebraic degree of an (n,m)-function F is defined as the highest degree of any term
with a non-zero coefficient in ANF representation, that is deg(F) = max{

∑n
i=1 ui | au ̸= 0, u =

(u1, u2, ..., un) ∈ Fn
2}. A function F with an algebraic degree not exceeding 1 is called affine, or

equivalently it satisfies F (x) + F (y) + F (z) = F (x+ y+ z) for any x, y, z in F2n . If for an affine F
we also have F (0) = 0, we say that F is linear. Functions with algebraic degrees of 2 and 3 are
referred to as quadratic and cubic, respectively.

The finite field F2n has the structure of n-dimensional vector space, by choosing F2-basis
(α1, . . . , αn) of F2n , every element v ∈ Fn

2 can be identified with v1α1 + · · · + αnvn. Therefore
vector space Fn

2 can be identified with the finite field F2n . For an (n,m)-function F where m di-
vides n, it can be represented as a polynomial over F2n of the form F (x) =

∑2n−1
i=0 ai · xi, ai ∈ F2n .

This is called the univariate representation of F . This representation always exists, and when
n = m, this representation is unique.

For any (n,m)-function F : F2n → F2m , its (first-order) derivative in the direction a ∈ F2n\{0}
is DaF (x) = F (a + x) + F (x). The differential uniformity δF of an (n,m)-function F is the

2

maximum number of solutions x to any equation of the form F (a + x) + F (x) = b for any choice
of a, b in F2n with a ̸= 0, or symbolically:

δF = max
a,b∈F2n ,a̸=0

|{x ∈ F2n : DaF (x) = b}|.

Differential uniformity measures the resistance of a function to a differential attack. The smaller
δF — the better its resistance. For the case of characteristic 2, the smallest differential uniformity
that can be achieved is δF = 2. The functions F : F2n → F2m with δF = 2 are called almost
perfect nonlinear (APN) and have the best possible resistance to differential attacks. We
design a computational approach based on the method of symmetric matrices [15], [7] to find and
classify all APN functions for particular dimensions with coefficients in subfields.

There are several equivalence relations of functions for which differential uniformity is an in-
variant. Consequently, having a single APN function allows us to generate an extensive class of
equivalent APN functions. Therefore, APN functions are typically considered up to equivalence,
allowing us to prune equivalent functions during an exhaustive search once a representative from
each equivalent class is identified. Two functions F and F ′ from Fn

2 to Fm
2 are called affine

equivalent (or linear equivalent) if there exist affine (linear) permutations A1 of Fm
2 and A2

of Fn
2 s.t. F ′ = A1 ◦ F ◦ A2. Moreover, we say that F and F ′ from Fn

2 to Fm
2 are extended

affine equivalent(EA-equivalent) if there exists an affine mapping A : Fn
2 → Fm

2 and affine
permutations A1 of Fm

2 and A2 of Fn
2 s.t. F ′ = A1 ◦ F ◦ A2 + A. The most general known

equivalence relation that is used in practice and preserves the differential uniformity is called
CCZ-equivalence. Two functions F and F ′ from Fn

2 to Fm
2 are called Carlet-Charpin-Zinoviev

equivalent (CCZ-equivalent) if there exists an affine permutation A of Fn
2 × Fm

2 that maps the
image of the graph of F to the graph of F ′, i.e. A(GF) = GF ′ , where GF = {(x, F (x)) | x ∈ Fn

2} and
GF ′ = {(x, F ′(x)) | x ∈ Fn

2}. In the literature, APN functions are typically classified up to CCZ-
equivalence. We also use the differential spectrum that serves as an invariant that can distinguish
between inequivalent APN functions. The differential spectrum DF of the function F is the mul-
tiset of all values δF (a, b) for each pair (a, b) where a ̸= 0, i.e. DF = [δF (a, b) : a, b ∈ F2n , a ̸= 0],
where δF (a, b) is the number of solutions in x to the equation DaF (x) = b.

This multiset DF represents the distribution of all the values (a, b) across all non-zero input
differences a and output differences b. The ortho-derivative [5] of a quadratic function F : Fn

2 7→
Fn
2 is a function π : Fn

2 7→ Fn
2 , s.t. π(0) = 0, and for all x, a ∈ Fn

2 , a ̸= 0 we have π(a) ̸= 0 and:

π(a) · (F (x) + F (x+ a) + F (0) + F (a)) = 0.

We refer to the [6] as a general reference to APN functions and their cryptographic properties.

Unless explicitly stated otherwise, we assume henceforth that we are dealing with F : F2n → F2n

functions with identical domain and co-domain. Moreover, we consider quadratic (n, n)-functions
without linear and affine terms of the form

F (x) =
∑

0≤i<j≤n−1

ai,jx
2i+2j , ai,j ∈ F2n . (1)

Quadratic functions F (x) with i ̸= j are often called purely quadratic or homogeneous quadratic
functions. We can omit linear and affine terms due to equivalence. For quadratic APN (n, n) -
functions, F and F ′ are CCZ-equivalent if and only if they are EA-equivalent [10].

Let B = {b1, b2, . . . , bn} be a basis of a vector space Fn
2 over a prime field F2. For a coordinate

vector v = (v1, . . . , vn) ∈ Fn
2 , we call the rank of the v the dimension of the F2-linear span of

3

its coordinates over F2. Let Fm×k
2n denote the space of all matrices over F2n with m rows and k

columns. We will use the notation Mi,j to refer to the entry in the i-th row and j-th column of the
matrix M ∈ Fm×k

2n , 1 ≤ i ≤ m, 1 ≤ j ≤ k.
The symmetric derivative of a function F : F2n → F2n in the direction a ∈ F2n is

∆aF (x) = F (a+ x) + F (x) + F (a) + F (0) = DaF (x) +DaF (0). (2)

In [15] the notion of the quadratic APN matrix was introduced together with its properties,
while the interpretation of this structure as a matrix of symmetric derivatives was given in [7].

The derivative matrix [7],[15] of the function F is the matrix MF ∈ Fn×n
2n given by

MF =


∆F (b1, b1) ∆F (b1, b2) . . . ∆F (b1, bn)
∆F (b1, b2) ∆F (b2, b2) . . . ∆F (b2, bn)

...
...

. . .
...

∆F (b1, bn) ∆F (b2, bn) . . . ∆F (bn, bn)

 , (3)

where we denote ∆biF (bj) as ∆F (bi, bj), because ∆biF (bj) = ∆bjF (bi), for any 1 ≤ i, j ≤ n.

A matrix MF ∈ Fn×n
2n is called a Quadratic APN Matrix (QAM) [15] if:

1. MF is symmetric and the elements in its main diagonal are all zeros;

2. Every nonzero linear combination of the n rows (or columns, since MF is symmetric) of MF

has rank n− 1.

Following the Corollary 5 from [7], we get that a function (1) is APN if and only if its derivative
matrix MF is QAM. This allows us to conduct a depth-first search for all quadratic APN functions
by traversing all possible derivative matrices.

3 Improving the QAM method

Let n,m be natural numbers such that m divides n. Set a normal basis B = {b, b2, . . . , b2n−1} of
F2n over F2, where b is a normal element. We consider a homogeneous quadratic function over F2n

with coefficients in the subfield F2m :

F (x) =
∑

0≤i<j≤n−1

ai,jx
2i+2j , for ai,j ∈ F2m . (4)

The derivative matrix (3) of the function F (x) will look like

MF (B) =


∆F (b, b) ∆F (b, b2) . . . ∆F (b, b2

n−1
)

∆F (b2, b) ∆F (b2, b2) . . . ∆F (b2, b2
n−1

)
...

...
. . .

...

∆F (b2
n−1

, b) ∆F (b2
n−1

, b2) . . . ∆F (b2
n−1

, b2
n−1

))

 . (5)

Using the univariate representation of F (x), it is not so hard to show that

F (x)2
m
=

 ∑
0≤i<j≤n−1

ai,jx
2i+2j

2m

=
∑

0≤i<j≤n−1

ai,j

(
x2

i+2j
)2m

= F
(
x2

m)
.

4

Applying the same to the symmetric derivative ∆aF (x):

(∆aF (x))2
m

= (F (x+ a) + F (x) + F (a) + F (0))2
m
= F (x+ a)2

m
+ F (x)2

m
+ F (a)2

m
+ 02

m
=

= F (x2
m
+ a2

m
) + F (x2

m
) + F (a2

m
) = ∆a2mF

(
x2

m)
.

That leads us to the main equation that helps simplify the general structure of the derivative
matrix for the function with subfield coefficients, which we will call the diagonalization property:

Mi+m,j+m = (Mi,j)
2m , (6)

for 1 ≤ i, j ≤ n. When entry index i+m or j +m exceeds n, we take i+m mod n, or j +m
mod n, respectively. The diagonalization property allows us to infer matrix values along diagonals
from fixed entries in the matrix MF (5). This significantly reduces the degrees of freedom and
therefore the number of levels in a computational search.

3.1 Orbit restrictions

Following Theorem 3 in [15], if we take any linear permutation l of F2n and M ∈ Fn×n
2 such that

M is QAM of some quadratic APN function F : F2n → F2n , then any matrix M ′ produced by

M ′
i,j = l(Mi,j) for all 1 ≤ i, j ≤ n (7)

will be the quadratic APN matrix of another function F ′ = l ◦ F that is linearly equivalent to
F , therefore EA-equivalent to F .

In the case when we want to take only the coefficients from the subfield F2m of the quadratic
function F , we need to take only those linear permutation polynomials l that have the coefficients
in F2m as well, so the diagonalization property (6) is preserved for M ′.

Let us take the univariate representation of the linear permutation polynomial l =
∑n

i=1 αix
2i−1

on F2n with αi ∈ F2m . The set L of all linear (n, n)-permutations with coefficients in the subfield
F2m forms a group under composition acting on F2n . Then the orbit of a ∈ F2n under the action
of the group L can be defined as

Orb(a,L) = {l(a) : l ∈ L}.

We will use the orbit notion to restrict the search space. For any purely quadratic function
F (x) with coefficients in the subfield F2m of the form (4), we can represent its derivative matrix
MF ∈ Fn×n

2 as a matrix of the form (using diagonalization property (6)):

MF =



0 Ω1 Ω2

Ω1 0
. . .

.
Ω2 . . . 0 Ω2m

1 Ω2m
2 . . .

...
... Ω2m

1 0
...

... Ω2m
2 . . . 0 . . .

...
...

...
...

...
. . .


, (8)

where Ω1,Ω2, . . . ,Ωr ∈ F2n are unknowns of the MF which we will refer to as variables of the
derivative matrix MF . To make a depth-first computational search more intuitive, each variable
Ωi is assigned to the i-th level, where i ranges from 1 to r, e.g. level 1 refers to the guessing the
value of Ω1, etc.

5

The problem of finding all quadratic APN functions over F2n with coefficients in F2m is equiv-
alent to finding all QAM matrices of the form (8). By going through all possible values of the
variables Ω1,Ω2, . . . ,Ωr we will get 2nr different matrices where r is the number of variables in the
structure of matrix MF . By utilizing orbits to confine the search parameters within computational
search we reduce the number of candidates for each variable.

The finite field can be partitioned into the orbits under the action of L, see Algorithm 1:

F2n = Orb(a1,L) ∪ · · · ∪Orb(ak,L), for some ai ∈ F2n , 1 ≤ i ≤ k.

Algorithm 1 Partitioning F2n into the orbits using the set of linear permutations L
1: function findLinear(L)
2: linClasses← { }
3: fieldF ← {x : x ∈ F2n | x ̸= 0}
4: while #fieldF ̸= 0 do
5: el← Random(fieldF)
6: orb← {l(el) : l ∈ L}
7: linClasses← linClasses ∪ orb
8: fieldF ← fieldF \ orb
9: end while

10: return linClasses
11: end function

Following (7) we can see that the derivative matrix M ′
F corresponding to the equivalent function

F ′ such that F ′ = l ◦ F, for any l ∈ L looks like:

M ′
F =



0 l(Ω1) l(Ω2)

l(Ω1) 0
. . .

.
l(Ω2) . . . 0 l(Ω2m

1) l(Ω2m
2) . . .

...
... l(Ω2m

1) 0
...

... l(Ω2m
2) . . . 0 . . .

...
...

...
...

...
. . .


,

where l(Ω2mj

i) = (l(Ωi))
2mj

, j ∈ {1, . . . , n/m− 1} for any variable Ωi, 1 ≤ i ≤ r.
Since the choice of l(Ω1) on the first level gives a derivative matrix of equivalent functions to

the choice of variable Ω1 of the matrix MF , we can restrict the search from all elements of the field
F2n to only one representative from each orbit. We choose the orbit representative as the element
of the orbit with the smallest discrete logarithm, see Algorithm 2.

6

Algorithm 2 Computing the set of orbit representatives from the set of orbits

1: function equivSet(classes)
2: out1 ← { }
3: for all C ∈ classes do
4: minC ← an element in C with a smallest exponent
5: out1 ← out1 ∪minC
6: end for
7: out← ordered sequence of out1 elements by ascending exponent
8: return out
9: end function

Previous investigations had not done any reductions beyond the first level. However, in our
method, we show that the same orbit approach can be used to reduce the values that need to be
considered on lower levels as well. After we have chosen Ω1, we can move to the variable Ω2. It
can be any element of the field, but instead of checking all 2n elements, we can ignore elements
that will produce a derivative matrix of an equivalent function. For any choice of the variable Ω2,
we can see that linear permutation l fixing Ω1, i.e. such that l(Ω1) = Ω1, will produce a matrix
corresponding to an equivalent function with the value l(Ω2) on the second level while preserving
the value of Ω1:

M ′
F =



0 Ω1 l(Ω2)

Ω1 0
. . .

.
l(Ω2) . . . 0 l(Ω2m

1) l(Ω2m
2) . . .

...
... Ω2m

1 0
...

... l(Ω2m
2) . . . 0 . . .

...
...

...
...

...
. . .


,

Therefore we can restrict the values for Ω2 under the action of the linear permutations fixing
Ω1, i.e. the set LΩ1 = {l : l ∈ L | l(Ω1) = Ω1}. That lets us perform the partition of the field on
the second level, using permutations that fix Ω1:

OrbΩ1(Ω2,L) = {l(Ω2) : l ∈ L | l(Ω1) = Ω1}.

Algorithm 3 Compute the partition on the level 2

A function that returns a set of orbit representatives OrbΩ1(Ω2,L) and a set of linear permu-
tations for a current level with Ω1 7→ Ω1.

1: function classORB(Ω1, L)
▷ Ω1: an element of the field that was fixed in the node;
▷ L: a set of linear permutations from the previous level.

2: LΩ1 ← {l : l ∈ L | l(Ω1) = Ω1}.
3: class← findLinear(LΩ1)
4: OrbΩ1 ← equivSet(class)
5: return OrbΩ1 ,LΩ1

6: end function

By restricting the group of linear permutations acting on F2n to only those that fix previously
assigned values, it is possible to generalize this approach to any level k. Let us fix first (k−1) levels

7

to the variables from the ordered set S = {Ω1, . . . ,Ωk−1}, then the set of linear permutations that
maps all of the previously assigned values to itself looks like:

LS = {l : l ∈ L | ∀Ω ∈ S, l(Ω) = Ω}. (9)

The partition for the variable on the k-th level will look like Orb(Ωk,LS) = {l(Ωk) : l ∈ LS}.
To apply Algorithm 3 successively for every level k ∈ {1, . . . , r}, we use the previous level

output: OrbΩk−2
; LΩk−2

, and define partition for Ωk−1 ∈ OrbΩk−2
as

OrbΩk−1
(Ωk,LΩk−2

) = {l(Ωk) : l ∈ LΩk−2
},

so it is possible to call ClassOrb(Ωk−1,LΩk−2
) from the output on the previous level. We refer

the reader to the specific examples in Section 4. It is efficient to run the successive partition while
LS > 1, for S = {Ω1, . . . ,Ωk−1}, or #Orb(Ωk,LS) < 2n − 1; in other words while orbit partition is
still effectively reduce number of candidates for the exhaustive search, see Section 3.3. We show in
Section 4 how significantly it reduces the search space when the partitioning continues until some
level k depending on the dimension we are working with.

For some dimensions, it is feasible to compute orbit partitioning by generating the set of all linear
permutations L. But there are cases where generating L is memory-consuming to the point when
it is impractical to perform orbit partition for the QAM method. Therefore, we propose a method
that makes partitioning possible without explicitly generating the set of linear permutations.

3.2 Partitioning without the set of linear permutations

For a given element a ∈ F2n , its conjugates with respect to a subfield F2m can be linearly dependent
in different ways, e.g. a+a2

m
= 0, or a+a2

m
+a2

n−m
= 0, etc. We define a category corresponding

to each of these relations for conjugates a2
mk

, 0 ≤ k ≤ n/m− 1. If the number of such relations is
c, then it gives us categories:

· Catm1 = {a ∈ F2n \ {0} | a+ a2
m
= 0};

. . .
· Catmj = {a ∈ F2n \ {0} |

∑n/m−1
i=0 νix

2mi
= 0}, νi ∈ F2;

. . .
· Catmc−1 = {a ∈ F2n \ {0} | a+ a2

m
+ · · ·+ a2

n−m
= 0};

· CatmInd = {a ∈ F2n \ {0} | a /∈ Catmi , ∀i ∈ [1, . . . , c− 1]}.

Depending on the dimension of the main field n and the subfield m, the number of categories c
varies. Moreover, there exists a subset of indices {i1, . . . , ir}, where 1 ≤ r ≤ c−1 s.t. Catmi1 , . . . Catmir
are mutually disjoint sets, so finite field F2n can be described as the union of such categories:

F2n = {0} ∪ Catmi1 ∪ · · · ∪ Catmir−1
∪ CatmInd. (10)

Lemma 1. If elements a, b ∈ F2n belong to the different categories then they do not belong to the
same orbit.

Proof. Let a, b ∈ F2n belong to the same orbit, but to different categories. Then there is a linear
permutation l ∈ L, s.t. l(a) = b, and there is some subset of indices I ⊂ {0, 1, . . . , n

m −1}, for which∑
i∈I a

2mi
= 0, but not for b which is from different cathegory, i.e.

∑
i∈I b

2mi ̸= 0.

Then
∑

i∈I b
2mi

=
∑

i∈I(l(a))
2mi

= l
(∑

i∈I (a
2mi

)
)
= l(0) = 0, which leads us to contradiction.

8

The set of all elements a of F2n all of whose conjugates are linearly independent is CatmInd, and
we can partition elements belonging to it using the following theorem.

Theorem 1. Let a, b ∈ CatmInd for m | n. If there exists a linear function l(x) =
∑n−1

i=0 cix
2i , ci ∈

F2m s.t. l(a) = b, then there exists a linear permutation l′(x) =
∑n−1

i=0 c′ix
2i , c′i ∈ F2m , s.t. l

′(a) = b.

Proof. Since a ∈ CatmInd, the conjugates a, a
2m , a2

2m
, . . . , a2

n−m
form a set of n

m linearly independent
vectors over F2. By a fundamental result in linear algebra any set of linearly independent vectors
in a vector space such as {a, a2m , . . . , a2n−m} can be extended to form a basis for the space.

Given the function l(x), which maps a to b and similarly maps each conjugate of a to the
corresponding conjugate of b, we can view this as a set of linear equations that l must satisfy.
Specifically, since l maps each a2

km
to b2

km
for 0 ≤ k ≤ n

m − 1, the mapping preserves the linear
property over F2m . Since the conjugates of a are linearly independent over F2, it can be extended
to the basis. Note that this can be done so that this extended basis consists of complete conjugacy
classes. Consequently, there exists a linear permutation l′(x) =

∑n−1
i=0 c′ix

2i , where c′i ∈ F2m , such
that l′(a) = b. The function l′ respects the linearity over F2m and ensures the correct mapping of
a and its conjugates, demonstrating that such a linear permutation exists. Furthermore, since it
maps conjugacy classes to conjugacy classes and preservers the conjugation property on them, it
must necessarily have coefficients in F2m .

Note that CatmInd contains the major part of the elements of the field, therefore the partition
using Theorem 1 gives a sufficient reduction of candidates for the first level of the search. This
theorem is sufficient for partition. Moreover, the algorithm based on the theorem partitions very
efficiently using a built-in function in MAGMA [2] that checks the consistency of a linear system
of equations. It gives a significant decrease in a number of candidates for the cases, where we
cannot pre-generate the set of linear permutations over F2n with coefficients in the subfield F2m .
Furthermore, Theorem 1 can be generalized to cases with one or more fixed variables. However, as
this involves some technical complexity with correctly identifying disjoint union (10) for the general
case, we only state it for specific cases of (n,m) = (8, 4) and (n,m) = (9, 3) in Section 4.

3.3 Time estimate of the method with orbit partitioning

To create a computational search for quadratic APN functions over F2n with coefficients in F2m ,
where m divides n, we need to check all possible derivative matrices in this case for being QAM.
Fix normal basis as before, and let MF ∈ Fn×n

2n be a derivative matrix of the form (5) of some
quadratic function F over F2n with coefficients in the subfield, and Ω1, . . . ,Ωr ∈ F2n\{0} denote
the variables of MF . We can visualize the orbit representatives of these variables as a tree, which
we will call an orbit tree. In this orbit tree, the branches connected to the root will be the orbit
representatives ωi ∈ F2n , 1 ≤ i ≤ r1 of the partition F2n = Orb(ω1,L) ∪ · · · ∪ Orb(ωr1 ,L) on the
first level.

·

ω1 ω2 . . . ωr1

Figure 1: The first level partition

Then the branches from each child of Ω1 on the first level will be the orbit representatives on the
second level, such that for fixed Ω1 = ωi we get orbit representatives {υij : ωi 7→ ωi} for 1 ≤ j ≤ ri2.

9

Where for the partition on the second level we use the subset of L, that maps Ω1 to itself, defined
in (9) and denoted as LΩ1 , ∀Ω1 = ωi ∈ {ω1, . . . , ωr1} : F2n = Orb(υi1,Lωi) ∪ · · · ∪Orb(υi

ri2
,Lωi).

·

ω1

υ11 υ12 . . . υ1
r12

ω2

υ21 υ22 . . . υ2
r22

. . . ωr1

υr11 υr12 . . . υr1
r
r1
2

Figure 2: The second level partition

We can see that such a partition can be performed for as many levels k as we want, but the
deeper down we partition, the more variables we need to fix in the linear mapping. As a result,
fewer and fewer linear permutations will take part in the partitioning, and the number of orbit
representatives will get closer to 2n − 1. That is why we need to stop the process of partitioning
to the level where it starts to be useless. By recursively traversing the orbit tree and counting the
number of leaves, we can calculate an upper bound on the number of matrices to be checked.

Algorithm 4 Estimate Tree Size

1: function EstimateTs(L, level, number of variables, max classes)
▷ L: Set of linear permutations; level: current level, number of variables: total number of

variables; max classes: max number of classes; n: is a global variable for dimension.
/* Check if we are in a leaf */

2: if level ≥ number of variables then
3: return 1
4: end if
5: total size← 0

/* Partition according to L */
6: classes← findLinear(L)
7: reps← equivSet(classes)

/* Check termination condition */
8: if #classes > max classes then
9: return (2n)number of variables−level−1 ×#classes

10: end if
/* Handle sub-tree recursively */

11: for v in reps do
12: Lv ← {l ∈ L | l(v) = v}
13: total size← total size+EstimateTs(Lv, level + 1,number of variables,max classes)
14: end for
15: return total size
16: end function

We start with the partition on the first level, where we get orbit representatives {ω1, . . . , ωr1}.
We then traverse them and define {(ωi, υ

i
j)}i,j , where i = {1, . . . , r1} and j = {ri2}i is a different

number of orbit representative for each i, both r1, r2 do not exceed (2n − 1). Until some level

10

k < r we find it inefficient and stop partitioning. We have chosen 2n−1 + 2n−2 to be the number
close to the (2n − 1) when we stop partitioning. Therefore we repeat the process of traversing and
partitioning recursively until the level k − 1 inclusively, then backtrack and count the number of
leaves, see an Algorithm 4.

3.4 Submatrix test

In the computational search, we guess variables level by level. Applying orbit partitioning on each
level makes the search space smaller, yet we need more restrictions to make the search faster.

When we search for new APN functions using derivative matrices, we can use submatrices to
reduce the number of matrices that we have to check for being QAM as was done in [15].

Let MF ∈ Fn×n
2n be a derivative matrix of some function F of the form (1). The matrix MF is

QAM if and only if for every 1 ≤ p, q ≤ n every submatrix S ∈ Fp×q
2n of MF is proper.

Definition 3.1. [15] S is proper if every nonzero linear combinations of the p rows has rank at
least q − 1.

Starting from the second level, we can already completely determine some submatrices, and
check if they are proper. It helps to cut off branches of the search tree that will never lead to a
QAM regardless of the instantiation of the remaining variables [7]. We check the condition of the
submatrices for being proper on each level (except the last one) in our depth-first search. Moreover,
we pre-generate the set of indices for submatrices for each level, avoiding repetitions, indices that
produce equivalent matrices, etc. We also use Theorem 2 to reduce the number of indices for each
level, making the submatrix test work faster.

To the best of our knowledge, only “left-side” equivalence (described in Section 3.1) was applied
for the QAM method, as it is difficult to say anything about the effect of composing on the right.
Despite this, we make the following observation:

Theorem 2. Let us fix a normal basis B = {b, b2, . . . , b2n−1} of F2n over F2. If MF (B) = MF =
(Mi,j)1≤i,j≤n is the derivative matrix (5) of the quadratic function F then the matrix MF ′ =
(Mσ(i),σ(j))1≤i,j≤n will be the derivative matrix of the equivalent function F ′ = F ◦ L, where L =

αx2
s
, for any α ∈ F2m. Here σs(i) represents a cyclic shift of rows and columns on i, i.e. σs(i) =

i+ s, s ∈ {0, . . . , n− 1}, when σs(i) > n, we take σs(i) mod n.

Proof. For a fixed basis with a normal element b ∈ F2n , the structure of the derivative matrix MF

of a function F (x) =
∑n−1

i=0 cix
i, where ci ∈ F2m , is given by (5) as MF =

(
∆F (b2

i
, b2

j
)
)
1≤i,j≤n

.

For a function F ′ = F (αx2
s
), where α ∈ F2m , its symmetric derivative (2) in the direction

a ∈ F2n :
∆F ′(a, x) = F (α(a+ x)2

s
) + F (αx2

s
) + F (αa2

s
) + F (0),

which is ∆F ′(a, x) = ∆F (αa2
s
, αx2

s
). It shows that

MF ′ =
(
∆F (αb2

(i+s)
, αb2

(j+s)
)
)
1≤i,j≤n

.

Since α is a constant in F2n , it can be factored out, and the structure of the matrix depends only
on the powers of b. The effect of the transformation is a cyclic shift of the indices i and j by s ,
which corresponds to the shift σs(i) = i+ s.

11

This gives us invariance of QAM property under the cyclic shifts for rows and columns. We
use this property to reduce the set of submatrices for the test on each level of the search. For
example, we can omit the check of submatrices produced from the conjugates of already checked
submatrix. It makes the search much faster, see Section 5.3 for example. Moreover, this is true for
any quadratic function without the restriction on its coefficients. Examples of application of the
theorem outside the submatrix test can be found in Subsection 4.5.1.

3.5 Reducing number of linear combinations for QAM check

Set a normal basis B = {b, b2, . . . , b2n−1} of F2n over F2. Let MF (B) ∈ Fn×n
2n be a derivative matrix

(5) of the quadratic function F (x) =
∑

0≤i<j≤n−1 ai,jx
2i+2j over F2n with coefficients ai,j in the

subfield F2m . Represent MF using the row vector decomposition MF (B) = (r1, r2, . . . , rn)
T , where

each row vector ri = (ri1, ri2, . . . , rin) ∈ Fn
2n , we can generalize the Theorem 2 from [12]:

Theorem 3. Any non-zero linear combination {αiri}ni=1 of rows will have the same rank as the
same linear combination of cyclically shifted rows {αiri+m}ni=1, that is

Rank(

n∑
i=1

αiri+m) = Rank(

n∑
i=1

αiri),

for any α = (α1, . . . , αn) ∈ Fn
2 , when i+m > n, we take i+m mod n.

Proof. Using the diagonalization property (6) of the matrix MF , we have that each element in the
span of linear combinations of the rows of MF is mapped to a cyclically shifted element when raised
to the power 2m. Specifically, for any linear combination of rows, we have:

Span

(
n∑

i=1

αiri+m

)
= Span

(
n∑

i=1

αir
2m

i

)
, for αi ∈ F2.

Which means that Rank (
∑n

i=1 αiri+m) = Rank
(∑n

i=1 αir
2m
i

)
= Rank (

∑n
i=1 αiri) .

We apply this theorem to the algorithm that checks whether a constructed matrix is QAM,
where instead of checking all possible linear combinations of rows, we exclude those that have the
same rank. This accelerates the QAM check significantly, for example, in the case (n,m) = (10, 2)
checking if all linear combinations of the matrix have the rank n− 1 takes on average 0.08 seconds,
while only 0.04 seconds applying Theorem 3 (on the server with 64 GB of RAM, and 32 VCPUs).
This was tested on QAM matrices, as non-QAM tests terminate quickly.

4 Applying improved QAM method to the particular cases

In this section, we apply the approaches described above to the particular cases of the quadratic
functions F (x) =

∑
0≤i<j≤n−1 ai,jx

2i+2j over F2n with coefficients ai,j in the subfield F2m .

4.1 (n,m) = (8, 2)

Let us set a normal basis {b, b2, . . . , b27} of F28 over F2, where b is a normal element. Considering
homogeneous quadratic functions F : F28 → F28 with coefficients in the subfield F22 , we can
construct its derivative matrix M ∈ F8×8

28
using (5). The structure of M follows a diagonalization

property (6) for m = 2:

12

Mi+2,j+2 = (Mi,j)
22 ,

where 1 ≤ i, j ≤ n, and when we get an index that exceeds the size of the matrix we modulate
it with 8. For example, taking the entry i = 1, j = 2, where the first variable Ω1 is located, we get:

M3,4 = (M1,2)
4,M5,6 = (M3,4)

4,M7,8 = (M5,6)
4,M1,2 = (M7,8)

4.

Continuing doing the same for the variables Ω2, . . .Ω8 step-by-step, we can see that it is enough
to have 8 unknowns to fill the whole matrix. Note, that we fill variables from the first row further
down, depending on the availability of the entry. For example, entry M1,7 is already taken by

the variable Ω2, s.t. M1,7 = (Ω2)
26 , therefore we placed Ω6 on the “non-taken” entry M1,8. As

long as we have only 8 variables, we can use letters in alphabetical order A,B,C,D,E, F,G,H for
convenience:

M =



0 A B C D E B26 F

A 0 F 22 G E24 H C26 G26

B F 22 0 A22 B22 C22 D22 E22

C G A22 0 F 24 G22 E26 H22

D E24 B22 F 24 0 A24 B24 C24

E H C22 G22 A24 0 F 26 G24

B26 C26 D22 E26 B24 F 26 0 A26

F G26 E22 H22 C24 G24 A26 0


. (11)

The variables A,B,C,E, F,G can take any value of F28 \ {0}, and D,H ∈ F24 \ {0} as we have
D = D24 and H = H24 .

Brute-forcing through A,B,C,D,E, F,G,H for checking if the derivative matrix M is QAM,
would require a test of 2556 × 152 ≈ 6.19 × 1016 different matrices. It takes approximately 0.010
seconds at most on our server to check an 8 × 8 matrix for being QAM, which means that per-
forming a test for all possible matrices without placing any restrictions on the search would take
approximately 6.19× 1015 seconds, or 196283612 years.

To use the orbit restriction described in the previous section, firstly, we found all linear permuta-
tions over F28 with the coefficients in F22 . The set of all these permutations L has cardinality 24576.
Let a be the primitive element in F28 corresponding to the primitive polynomial x8+x4+x3+x2+1.
Applying L we get an orbit partition of the field on the first level, using the Algorithm 1:

F28 = Orb(1,L) ∪Orb(a,L) ∪Orb(a7,L) ∪Orb(a17,L).

Thus, instead of brute-forcing A through all 28 − 1 elements, we will only consider 4 elements
of the field - one representative from each orbit (Algorithm 2), i.e.

A = {1, a, a7, a17}.

We choose the orbit representative so that it has the lowest exponent of the primitive element
in the orbit. Also, we denote the set of orbit representatives by a calligraphic letter depending on
the variable we are brute-forcing through, which is A in our case. Continuing further down the
orbit tree, we get different partitions for each variable A ∈ {1, a, a7, a17}. For example, for A = 1
we get the next partition using linear permutations from L that map 1 to itself:

13

F28 = Orb1(1,L) ∪Orb1(a,L) ∪Orb1(a
5,L) ∪Orb1(a

7,L) ∪Orb1(a
13,L) ∪

∪ Orb1(a
17,L) ∪Orb1(a

51,L) ∪Orb1(a
85,L).

Therefore, instead of brute-forcing the second variable B through all possible elements of the
field, we can only check orbit representatives

B1 = {1, a, a5, a7, a13, a17, a51, a85}.

We use calligraphic B in this case which corresponds to the variable name, and the same index
as the orbit representative. The index corresponds to the element chosen on the previous level that
maps to itself in the current partition, for our example l(1) = 1, l ∈ L.

Continuing to the third variable C for chosen B = a and A = 1, the partition is

F28 = Orb1,a(1,L) ∪Orb1,a(a,L) ∪ · · · ∪Orb1,a(a
224,L),

it has 30 orbits, correspondingly 30 orbit representatives

C1,a = {1, a, a2, a3, . . . , a224}.

This is again significantly fewer than 255 elements for an exhaustive search.
We are interested in orbit representatives, moreover in the number of them, to estimate the

time the search will take.
As we can see from the example, #A = 4 which is 4 orbit representatives on the first level, then

#B1 = 8 on the second level for fixed A = 1. When we computed orbits for the third level there
are #C1,a = 30 while if we chose B = a85 branch we will get #C1,a85 = 12, see Figure 3.

·

1

1 a

C1,a,
#C1,a = 30

a5 . . . a85

C1,a85 ,
#C1,a85 = 12

a

Ba

a7

Ba7

a17

Ba17

Figure 3: The number of orbits for every branch on the first three levels for (n,m) = (8, 2)

The orbit tree expands quickly, and we have different cardinalities for C1,B depending on the
choice of B ∈ B1. We can take the average number of orbits created on the third level, as in Table
1.

From the table, we see that the number of orbits increases significantly. Some branches of
the orbit tree take longer to search through, therefore an average time interval taken will not
necessarily give an accurate measurement. Therefore, we will use Algorithm 4 for an upper bound
on the total number of matrices for our search. We could exhaust the whole dimension and describe
computational results in the next section.

14

A Number of orbits of B Average number of orbits of C

1 8 22.1
a 30 56.7
a7 22 43.5
a17 14 41.5

Table 1: Representative elements of the orbits of A, the number of orbits of B and the average
number of orbits of C, taken over all orbits of B

4.2 (n,m) = (8, 4)

Performing the same steps as in the previous subsection, yet for quadratic functions over F28

with coefficients in F24 , we get the structure of the derivative matrix M with Mi+4,j+4 = (Mi,j)
24 .

Therefore, the general representation of the derivative matrix for any quadratic function in this case
is given by (20), see Appendix A. With A,B,C,E, F,G,H, I,K,L,M,O ∈ F28 , and D,J,N, P ∈
F24 - 16 variables for depth-first in total.

The set L of all lineal permutations over F28 with coefficients in the subfield F24 is infeasible
for generation with current computational needs, therefore we use Theorem 1 for partition. Any
nonzero elements of the field α ∈ F2n can be categorized into cases:

· Cat1 = {α : α ∈ F28 \ {0} | α+ α24 = 0},
· CatInd = {α : α ∈ F28 \ {0} | α /∈ Cat1}.

By applying Theorem 1 to the elements in CatInd, we get if there exists a linear function that
maps α 7→ β, then α and β belong to the same orbit, which forms an equivalent class. Thus, we can
denote this relationship as α ∼ β for convenience. Leveraging an algorithm built using Theorem 1
and Lemma 1 we obtain:

A = Cat1 ∪ {a};
Moreover, we can generalize Theorem 1 for the case of one or more fixed variables. Let us set

A on the first level, then to partition the second level, we suggest the following proposition:

Proposition 1. 1. For A ∈ CatInd, if there exist a linear function l(x) =
∑7

i=0 cix
2i , ci ∈ F24

s.t. l(α) = β, l(A) = A; then there exist a linear permutation l′, s.t. l′(A) = A, l′(α) = β.

2. For A ∈ Cat1, if there exist l(x) =
∑7

i=0 cix
2i , ci ∈ F24 s.t. l(α) = β, l(β) = α, l(A) = A;

then there exist a linear permutation l′, s.t. l′(A) = A, l′(α) = β.

Proof. 1. A ∈ CatInd. With the linear function l, we get the mappings:

A 7→ A;A24 7→ A24 ;α 7→ β;α24 7→ β24 .

We consider α and β to belong to the same category, as we automatically assign elements to
different orbits if they belong to the different categories (Lemma 1).

· In the case α, β ∈ CatInd, we obtain a linearly independent set {A,A24 , α, α24} which
can be extended to the basis, proving the existence of the linear permutation.

· In the case α, β ∈ Cat1, we get A 7→ A;A24 7→ A24 ;α 7→ β. Let {A,A24 , α} be linearly
dependent, then A + A24 = α, applying a linear mapping on both sides, we get l(A) +
l(A24) = l(α), so A + A24 = β, leading to α = β, where an identity permutation exist;
otherwise {A,A24 , α} is linearly independent. Therefore this mapping can similarly be
extended to a basis, yielding the desired linear permutation.

15

2. A ∈ Cat1. With the linear function l, we get the mappings:

A 7→ A;α 7→ β;α24 7→ β24 ;β 7→ α;β24 7→ α24 ;

· Let α, β ∈ CatInd, consider ν0A+ ν1α+ ν2α
24 + ν3β + ν4β

24 = 0, νi ∈ F2. Here ν0 ̸= 0,
as α, β ∈ CatInd, so A = ν1α+ ν2α

24 + ν3β + ν4β
24 .

Applying l on both sides, we get A = ν1β + ν2β
24 + ν3α+ ν4α

24 , leading to
(ν1 + ν3)(α + β) + (ν2 + ν4)(α

24 + β24) = 0, giving α = β, or (α + β)15 = 1 which is
impossible as α, β ∈ CatInd. Therefore {A,α, α24 , β, β24} is linearly independent.

· In the case α, β ∈ Cat1, we get A 7→ A;α 7→ β;β 7→ α. Consider ν0A + ν1α + ν2β = 0,
without the loss of generality, we take ν0 = 1, as all three are distinct. Apply l on both
sides: A = ν1β + ν2α, so (ν1 + ν2)(α+ β) = 0 leads to contradiction.

Continuing forward, we can get a general method for partitioning for variables Ωi .

Proposition 2. For Ω1,Ω2, . . . ,Ωk ∈ CatInd. After we fixed k variables, in order to partition
k + 1-level:

1. Choose Ωk+1 ∈ CatInd s.t. {Ω1, . . . ,Ωk+1} - linearly independent set of vectors;

2. Then ∀α, β ∈ F2n: α ∼ β, if there exist l(x) =
∑7

i=0 cix
2i , ci ∈ F24 s.t. l(α) = β, l(β) =

α, ∀i ∈ {1, . . . , k + 1} : l(Ωi) = Ωi.

Using Proposition 1,2 together with Theorem 1, and Lemma 1 — we performed the next par-
tition for 8 levels of the orbit tree, see Figure 4.

·

Cat1 a

1 a2

a32

1

a5

a16

a177

Ha,a2,a32,1,a5,a16,a177 ,
#Ha,a2,a32,1,a5,a16,a177 = 143

Ea,a2,a32,1 \ {a5},
#Ea,a2,a32,1 = 40.

Ca,a2 \ {a32},
#Ca,a2 = 20.

a a3

Ca,a3 ,
#Ca,a3 = 12.

a16

Ca,a16 ,
#Ca,a16 = 6.

a34

Ca,a34 ,
#Ca,a34 = 6.

Figure 4: The partition for (n,m) = (8, 4)

Let us fix the first 8 levels such that A = a, B = a2, C = a32, D = 1, E = a5, F = a16;G =
a177. For this choice of branch, there are 143 candidates for the next level variable H. We perform
a partial search for this case and describe it in the next section.

16

4.3 (n,m) = (9, 3)

Following the same approach as in the previous subsection for quadratic functions over F29 with coef-
ficients in F23 , we get the derivative matrix that has 12 variables: A,B,C,D,E, F,G,H, I, J,K,L ∈
F29 . For the structure of the derivative matrix M see (21) in Appendix A.

In this dimension, the set L of all linear permutations with coefficients in the subfield is also
unfeasible for pre-generation. Therefore, we use Theorem 1 for partition. Elements of the field can
be categorized into disjoint sets:

· Cat1 = {α ∈ F29 \ {0} | α+ α23 = 0};
· Cat2 = {α ∈ F29 \ {0} | α+ α23 + α26 = 0};
· CatInd = {α ∈ F29 \ {0} | α /∈ Cat1, α /∈ Cat2}.

To partition the first level we use Theorem 1 and Lemma 1. Then, we fix A on the first level
and partition the second level using the following proposition:

Proposition 3. For A ∈ CatInd, if there exists a linear function l(x) =
∑8

i=0 cix
2i , c′i ∈ F23 , s.t.

l(α) = β, l(A) = A; then there exist a linear permutation l′, s.t. l′(α) = β, l′(A) = A.

Proof. A ∈ CatInd. For α, β ∈ CatInd, we get linearly independent set of vectors

{A,A23 , A26 , α, α23 , α26}. (12)

For the rest of the cases, we consider ν0A+ν1A
23 +ν2A

26 = ν3α+ν4α
23 +ν5α

26 , νi ∈ F2. Applying
l on both sides: ν0A+ν1A

23 +ν2A
26 = ν3β+ν4β

23 +ν5β
26 , νi ∈ F2, leading to ν3(α+β)+ν4(α

23 +
β23) + ν5(α

26 + β26) = 0
With α, β ∈ Cat1, we get the case of α = β, so (12) is linearly independent.
For α, β ∈ Cat2, we get (ν3 + ν5)(α + β) + (ν4 + ν5)(α

23 + β23) = 0, leading to easier α = β, or
(α+ β)2

3−1 = 1, which cannot happen when α, β ∈ Cat2, so (12) is linearly independent.

4.4 (n,m) = (10, 1)

For the derivative matrix M that correspond to any quadratic function over F210 with coefficients
in the prime field, we have Mi+1,j+1 = (Mi,j)

2. The general representation of the matrix will be
(22), see Appendix A. We get A,B,C,D,E - 5 variables, where A,B,C,D,E ∈ F210 and E ∈ F25 ,
because (M6,10)

2 = E25 = M7,1 = E.
There are just 5 levels in the depth-first search, so the full classification for this case is feasible.

Let a be the primitive element of the finite field given by the primitive polynomial x10 + x6 + x5 +
x3 + x2 + x+ 1. We randomly choose the normal element for the basis of the field F210 on F2, and
fix it to a805.

We have #L = 480 linear permutations over F210 with coefficients in F2, therefore we construct
them explicitly. The partition on the first level is F210 = ∪A∈AOrb(A,L), where a ∈ A are the
orbit representatives as is shown in Figure 5. Thus, instead of brute-forcing A through all 210 − 1
elements, we will only consider 8 elements of the field - one representative from each orbit, i.e.

A = {1, a, a7, a15, a33, a57, a99, a341}.

For every A ∈ A we chose a set LA of permutations from L that fix A, and get orbit represen-
tatives BA by partitioning the second level.

By using the submatrix test, we reduce the number of orbits even more. We also parallelize our
code by running each orbit representative in A separately, detailed description can be found in the
next section.

17

·

1

B1,
#B1 = 8

a

Ba,
#Ba = 767

a5

Ba5 ,
#Ba5 = 1023

a15

Ba15 ,
#Ba15 = 767

a33

Ba33 ,
#Ba = 92

a57

Ba57 ,
#Ba57 = 123

a99

Ba99 ,
#Ba99 = 92

a341

Ba341 ,
#Ba341 = 11

Figure 5: The number of orbits for every branch on the first two levels for (n,m) = (10, 1)

4.5 (n,m) = (10, 2)

When we take functions over F210 with coefficients in the F4, the structure of the derivative matrix
M has Mi+2,j+2 = (Mi,j)

22 property, and is formulated by (23) in Appendix A. It has 9 variables
A,B,C,D,E, F,G,H, I ∈ F2n that correspond to each depth-force search level.

For this case, we could generate the set L using the server with 500 GB of memory, where it is
also possible to partition with Theorem 1 for servers with lower RAM. We got |L| = 367200 that
together with the Algorithm 1 and the Algorithm 2 gave us next partition on the first level:

A = {1, a, a5}.

Partitioning the second level, we got 5 orbits for A = 1, only 3 of which passed the submatrix
test, we again denote the BA = OrbA = {l(α) : l ∈ L | l(A) 7→ A}, and with BSubA - the subset of
elements from BA that passed the submatrix test. Similarly, we get partition for A = a and A = a5,
and further down, see Figure 6.

·

1

a

C1,a,
#C1,a = 50,
#CSub

1,a = 43.

a5

C1,a5 ,
#C1,a5 = 67.

a15

C1,a15 ,
#C1,a15 = 50.

a

Ba,
#Ba = 33,
#BSub

a = 28.

a5

Ba5 ,
#Ba5 = 50,
#BSub

a5 = 46.

Figure 6: The number of orbits for every branch for the first two levels for (n,m) = (10, 2)

The number of orbits increases on each level significantly, which makes partitioning on levels 6
to 9 inefficient. Bruteforcing the last 4 levels takes an infeasible amount of time. We ran the search
for more than 3 months without finding any APN functions, therefore we have chosen the partial
searches, and explain them in the next section.

4.5.1 Equivalence on the right

Let F (x) be any purely quadratic function over F210 with coefficients in F4 with derivative matrix
MF (x) = M of the form (23). As {A, . . . , I} is an ordered set of variables that define the structure
of M , we will denote the derivative matrix with DerMatr(A,B,C,D,E, F,G,H, I).

18

Let us take F (s)(x) = F (x) ◦ αx2s , for any α ∈ F4, s ∈ {0, . . . , 9}. Using Theorem 2, the
derivative matrix MF (s)(x) = M (s) of the equivalent function can be obtained by performing shifts
σs(i) for the derivative matrix MF (x) = M of the original function, i.e.

M (s) =
(
Mσs(i),σs(j)

)
1≤i,j≤10

, where σs(i) = i+ s.

For example, when s = 1 we get F (1) = F (x) ◦ αx2, for any α ∈ F4, and its derivative matrix
can be obtained by shift of 1 row and column, see (24) in Appendix A. Specifically, the first row
and first column of the original matrix are moved to the last row and the last column while the

rest was shifted up: M
(1)
i,j = (Mi+1,j+1)1≤i,j≤10 . We apply i+ 1 mod n (j + 1 mod n), when i+ 1

(j+1) exceeds n. It is not hard to notice that M (1) = DerMatr(G4, H, F 16, I, E64, C256, A,B4, D4).
All equivalent matrices will look like :

F (x) M DerMatr(A,B,C,D,E, F,G,H, I)

F (x) ◦ αx2 M (1) DerMatr(G4, H, F 16, I, E64, C256, A,B4, D4)

F (x) ◦ αx22 M (2) DerMatr(A4, B4, C4, D4, E4, F 4, G4, H4, I4)

F (x) ◦ αx23 M (3) DerMatr(G16, H4, F 64, I4, E256, C,A4, B16, D16)

F (x) ◦ αx24 M (4) DerMatr(A16, B16, C16, D16, E16, F 16, G16, H16, I16)

F (x) ◦ αx25 M (5) DerMatr(G64, H16, F 256, I16, E, C4, A16, B64, D64)

F (x) ◦ αx26 M (6) DerMatr(A64, B64, C64, D64, E64, F 64, G64, H64, I64)

F (x) ◦ αx27 M (7) DerMatr(G256, H64, F, I64, E4, C16, A64, B256, D256)

F (x) ◦ αx28 M (8) DerMatr(A256, B256, C256, D256, E256, F 256, G256, H256, I256)

F (x) ◦ αx29 M (9) DerMatr(G,H256, F 4, I256, E16, C64, A256, B,D)

Table 2: Equivalence on the right with the monomial

Theorem 3 shows us that the rank of the vector is equal to the rank of its conjugates. Therefore,
for example, there is no point in checking DerMatr(A4, B4, C4, D4, E4, F 4, G4, H4, I4) for submatrix
test, if DerMatr(A,B,C,D,E, F,G,H, I) was already checked. We filter Table 2 from conjugates
to only one “important” for the check matrix that corresponds to the equivalent function:

M s = M (1) = DerMatr(G4, H, F 16, I, E64, C256, A,B4, D4). (13)

Next, we will use the fact [13] that adding any two rows and two columns of the derivative
matrix will produce the derivative matrix of an equivalent function. We propose a specific sequence
of adding rows and columns of the matrix M , such that the diagonalization property remains and
we get more ordered sets of variables:

Proposition 4. The derivative matrices that generated with ordered sets of variables:

DerMatr(G,B,A,D,C,E, F,H256, I256), (14)

DerMatr(F,B,G,D,A,C,E,H64, I64), (15)

DerMatr(E,B, F,D,G,A,C,H16, I16), (16)

DerMatr(C,B,E,D, F,G,A,H4, I4) (17)

are of the equivalent functions to the quadratic function over F210 with coefficients in the subfield
F4 with the derivative matrix DerMatr(A,B,C,D,E, F,G,H, I).

19

Proof. Let us numerate the rows and columns from 1 to 10, and 1 ≤ i, j, k, l, r ≤ 10 be distinct inte-
gers that correspond to the particular row and column of the matrix DerMatr(A,B,C,D,E, F,G,H, I).
Choose arbitrary tuple (eli, elj , elk, ell, elr,), where eli is the row (column) located at the posisi-
tion i. We fix the tuple of positions ⟨i, j, k, l, r⟩ and perform the addition of one row and column to
the other, e.g. adding the row and column on the position j to the row and column at the position

i is denoted with eli
+←− elj .

• Add circularly one row and column to another (circular permutation), starting from r to i,
then j to i and so on, s.t. the tuple of rows (columns) becomes:(

eli
+←− elj , elj

+←− elk, elk
+←− ell, ell

+←− (elr + eli), elr
+←− eli,

)
;

• Add a row and column on the position i to k, and j to l:(
eli + elj , elj + elk, elk + ell

+←− (eli + elj), ell + elr + eli
+←− (elj + elk), elr + eli,

)
;

• Add a row and column on the position k to l, l to r, i to k,r to i, i to j, j to k:

(elj , elk, ell, elr, eli,) .

Now, when the general conception is described, we apply this sequence of additions of rows and
columns to particular positions ⟨i, j, k, l, r⟩, such that the diagonalization property (6) remains:

· We get (14) for adding rows and columns at positions {⟨1, 3, 5, 7, 9⟩; ⟨3, 5, 7, 9, 1⟩; . . . }, and
also at positions {⟨2, 10, 8, 6, 4⟩; . . . }.

· We get (15) for adding rows and columns at positions {⟨1, 5, 9, 3, 7⟩; . . . ; }, and also at positions
{⟨2, 8, 4, 10, 6⟩; . . . };

· We get (16) for adding rows and columns at positions {⟨1, 7, 3, 9, 5⟩; . . . ; ⟨2, 6, 10, 4, 8⟩; . . . };

· We get (17) for adding rows and columns at positions {⟨1, 9, 7, 5, 3⟩; . . . ; ⟨2, 4, 6, 8, 10⟩; . . . }.

To make this result even more exhaustive, we apply shifts σs(i) for each (14),(15),(16),(17)
correspondingly; obtaining more derivative matrix that corresponds to the equivalent functions.
We also filter them from conjugates and conclude all the useful findings of the equivalence on the
right in the next table:

M DerMatr(A,B,C,D,E, F,G,H, I)
M s DerMatr(G4, H, F 16, I, E64, C256, A,B4, D4)

M(14) DerMatr(G,B,A,D,C,E, F,H256, I256)

M s
(14) DerMatr(F,H64, E4, I64, C16, A64, G256, B,D)

M(15) DerMatr(F,B,G,D,A,C,E,H64, I64)

M s
(15) DerMatr(E,H16, C4, I16, A16, G64, F 256, B,D)

M(16) DerMatr(E,B, F,D,G,A,C,H16, I16)

M s
(16) DerMatr(C,H4, A4, I4, G16, F 64, E256, B,D)

M(17) DerMatr(C,B,E,D, F,G,A,H4, I4)

M s
(17) DerMatr(A,H,G4, I, F 16, E64, C256, B,D)

Table 3: Derivative matrices of equivalent functions

20

5 Computational results

In this section, we describe computational searches conducted for quadratic APN functions over F2n

with coefficients in the subfield F2m . All computations were performed on a server with a 3.2 GHz
single-core speed and 500 GB of memory. For different cases of (n,m) , the number of cores used in
parallel varies and is listed separately for each, unless is stated otherwise. We use orbit partitioning
(Section 3.1) for each case, applying Theorem 1 where pre-generating the set of linear permutations
L requires a too significant amount of memory. We define a submatrix test as an added condition of
checking if submatrices are proper, where we precompute the set of submatrices using approaches
described in Section 3.4 optimized by Theorem 2. At each level, we assigned candidates to each
variable Ωi of the matrix 8, ultimately constructing a complete derivative matrix. This final matrix
was then tested for the QAM property using an accelerated method based on Theorem 3.

5.1 Searching and classifying complete case of (n,m) = (8, 2)

In this subsection, we conducted a comprehensive search and full classification for the case where
(n,m) = (8, 2). We define an exhaustive search for QAMs in F28 with coefficients in F22 among all
possible derivative matrices of the form (11) with variables A,B,C,E, F,G ∈ F28 \ {0}, D,H ∈
F24 \ {0}. We run a depth-first search for each variable located on a separate level. Moreover, we
run an individual search for each A ∈ {1, a, a7, a17} distributed over 4, 16, 16, 8 parallel processes
respectively. The search ran for approximately 26 days, see Table 4 for details.

Orbit Cores Time

A = 1 4 1 day
A = a 16 26 days
A = a7 16 8 days
A = a17 8 5 days

Table 4: Computation Time and Core Usage

The search process was optimized through parallelization, distributing the workload across 16
cores, with each core assigned to explore a distinct branch segment. Before initiating the search,
we conducted estimations on the time required to explore various orbit paths. This allowed us to
determine the appropriate allocation of cores for each path.

A total of 196863 quadratic APN functions were found in our search, resulting in 27 unique
ortho-derivative differential spectra (ODDS). A complete list of all functions, sorted by CCZ-
equivalence, is available in [1]. Table 10 presents each representative polynomial, with its corre-
sponding ODDS shown in Table 11; both tables are located in Appendix B. All functions with
equal ODDS were tested for CCZ-equivalence using the test from [9] and were verified to be CCZ-
equivalent. Following classification, we discovered a new APN function, highlighted in bold in
Tables 10 and 11. We also provide additional invariants for this new function in Table 5, in-
cluding Γ-rank , ∆-rank, and the automorphism group M(GF) [8]. Additionally, we include the
nonlinearity of the functions denoted by NL, and the Walsh spectrum denoted by WF .

Let us examine the distribution of the functions we identified across the different orbits of A.
As shown in Table 6, although the largest number of functions were found in the orbit A = a,
the same ODDS were also observed in the smaller orbits A = a7 and A = a17. We can see that
functions having the same ODDS were found regardless of which representative was chosen to be
the value of A. While this also occurred in other cases, it may imply that we do not need to search
through every orbit of A to find all CCZ-inequivalent functions.

21

f(x) a170x192 + a170x144 + a85x48 + x36 + a170x24 + a170x18 + x12 + x6

ODDS [038196, 222008, 44608, 6456, 812]

Γ-rank 14034

∆-rank 438

|M(GF)| 3072

NL 112

WF [−322380,−1620400, 016320, 1623120, 323060]

Table 5: Invariants of the new function

Orbits Fs ODDS

A = 1 3360 24
A = a 144379 27
A = a7 40720 27
A = a17 8404 27

Table 6: Number of APN functions found

5.2 Partial search for the case (n,m) = (8, 4)

We fix first 7 levels to the values A = a,B = a2, C = a32, D = 1, E = a5, F = a16, G = a177,
as was partitioned in the previous section. For this particular choice of ordered set of variables
S = {a, a2, a32, 1, a5, a16, a177}, we get 143 orbits for the next variable H, so #HS = 143. After
the submatrix test, we get #HSub

S = 122. For one arbitrary value H ∈ #HSub
S , it takes 4 days

to exhaust the remaining variables I, J,K,L,M,N,O, P with 64 parallel processes. We run this
partial case for every H ∈ HSub

S , exhausting all 9 last levels of the search. We allocated several
servers to perform this search in 128 parallel processes and expect it to finish in 2 months.

5.3 Searching and classifying complete case of (n,m) = (10, 1)

In this subsection, we find and classify all quadratic functions over F210 with coefficients in the
prime field. We improve the method that was used in [12] by orbit partitioning (Section 3.1) and
by accelerating the submatrix text (Section 3.4). We search each case of candidate A from the
partition A = {1, a, a5, a15, a33, a57, a99} separately, see Table 7.

First level representatives A ∈ A
1 a a5 a15 a33 a57 a99 a341

Number of orbits B that passed the submatrix test

0 746 1012 753 71 112 78 8

Number of parallelization that were done

- 32 48 32 8 16 8 16

Time taken

- 19 days 1 month 20 days 3 days 5 days 4 days 6 days

Table 7: Computations performed for (n,m) = (10, 1)

22

After partitioning the second level for each A ∈ A, we got significant reduction for branches
with a33, a57, a99, a341 in the root. Moreover, we could immediately exclude case A = 1, as none of
the orbits B ∈ B1 on the second level passed the submatrix test. We distributed different numbers
of parallel processes depending on how many candidates on the second level we needed to check.

It is easy to notice that Ba341 took longer on the same amount of cores, than Ba57 , even though
the number of orbits is significantly fewer for the first one than for the second. This shows how
significant acceleration with Theorem 2 is, as it was applied for every A ∈ A except A = a341.

After performing the computations, we found 577 APN functions that fell into three CCZ-
inequivalent classes corresponding to x3, x9 and x3 + a−1Trn(a

3x9) [3]. The entire computation
for this case was completed within a month. A key advantage of this method is that it yielded
fewer equivalent APN functions compared to [12], as we excluded linearly equivalent functions using
orbit partitioning. Reducing the number of equivalent APN functions significantly accelerates the
classification process.

5.4 Partial searches for the case (n,m) = (10, 2)

Using the partition described in the previous section, together with Algorithm 4, we estimated
that performing a full classification with the proposed method would be infeasible with current
computational needs. For instance, exhausting the branch with A = 1 will take around a million
years, while for A = a5, it is estimated to take hundreds of millions of years. Therefore we decide
on several partial searches.

Firstly, we take the known APN function F [4]:

F (x) = x288 + a682x96 + a341x9 + x3. (18)

Fixing the normal element a486 for a basis we get the derivative matrix Mf of the APN function
F by (25), see Appendix A.

Motivated by the search conducted in [15] called “backward search”, we derive the first five
values A,B,C,D,E from the derivative matrix (25) and apply brute-force search for the remaining
4 levels. We maintained the orbit representatives chosen in the orbit tree for this case, as shown in
Figure 2. Therefore, we identify the orbits to which each value belongs: a719 ∼ a5 on the first level,
a851 ∼ a358 on the second, and a146 ∼ a10 on the third. Therefore, we select the corresponding:

l(x) = a341x256 + x64 + a682x16 + a341x8 + x4 + a341x2,

which maps a719 7→ a5, a851 7→ a358, a146 7→ a10. This transformation produces a linearly
equivalent function to (18):

F ′ = l(F) = x768 + a682x516 + a341x513 + a682x384 + x258 + a341x192 + x144 + x129+

+a682x72 + a682x48 + a341x36 + a682x24 + x12 + x6. (19)

The derivative matrix MF ′ of the function (19) is (26), see Appendix A.
By aligning the orbit representatives, we see that (18) falls within the largest branch A = a5

(in terms of number of candidates for each level). We fixed the first 5 variables to the variables of
derivative matrix (26), i.e. A = a5, B = a358, C = a10, D = a275, E = a215; see Figure 7.

For this particular choice of the branch, partitioning becomes inefficient from the third level
already, meaning that for C = a10, we get #Da5,a358,a10 = 1023. Therefore, we do not apply orbit
partitioning for this partial search. Meanwhile, for the other choice of C, we get #Da5,a358,C = 63.

23

·

1

1 a a5 a15 a341

a

Ba

a5

1 a . . . a358

. . . a10

. . . a275

. . . a215 a884 a189 a796 a342 a359 . . .

. . .

. . .

. . . a954

Figure 7: Backward search with first 5 level of known APN function

5.4.1 Partial search for {a5,358 , a10, a275, E}

For A = a5, B = a358, C = a10, D = a275, E = a215 brute-forcing last levels F,G,H, I took 12 days
to finish in 32 parallel processes. As we had 1023 candidates on each level, we applied an additional
submatrix test for equivalent functions discovered in Section 4.5.1. Derivative matrices from Table
3 contain submatrices that are fast to check even for lower levels, helping to reduce the number of
candidates for F,G,H.

Despite the large number of derivative matrices examined, only one function, given by (19), was
found. The uniqueness of this result was unexpected, prompting us to explore one level above by
examining other candidates of E ∈ Ea5,a358,a10,a275 \ a215. There are 900 possible values for E after
the submatrix test, therefore it will take around 30 years to try each of the candidates. Therefore,
we decided to randomly pick E and check if there is another APN function inequivalent to 18 for
this particular choice of branch. After trying 5 randomly chosen values for E, we did not find any
APN functions and concluded the partial search, as summarized in Table 8.

Value of E Number of cores Time taken APN functions

a215 32 12 days (19)
a884 64 7 days -
a189 32 8 days -
a796 32 7, 5 days -
a342 32 14 days -
a359 32 8 days -

Table 8: Partial search for 5 levels fixed with the different E

The same pattern, where the first levels determine only one APN function, was observed across
all cases (n,m). Therefore we hypothesize that the first four levels of this branch {a5,358 , a10, a275},
define a single APN function.

5.4.2 Partial search for {a5,358 , a421, a349, E}

For the purposes of exploring other branches among A = a5, B = a358, we randomly selected
C = a421 and D = a349. In this case, the partition remains efficient up to the sixth level. Moreover,

24

there are only four possible values for E in EsSub = {a, a7, a10, a15}, making it feasible to brute-
force all cases of E, unlike in the previous search. We perform the same search with the first
five levels fixed as we did for 18, yet we take A = a5, B = a358; C = a421; D = a349, with
E ∈ {a, a7, a10, a15}, see Table 9.

Value of E Number of cores Time taken APN functions

a 64 10 days -
a7 32 14 days -
a10 32 14 days -
a15 64 10 days -

Table 9: Partial search for another 5 levels fixed

6 Conclusion

In this paper, we presented a series of significant improvements to the known QAM method for
finding APN functions over F2n with coefficients in the subfield F2m . First, we introduced orbit
partitioning across several levels, showing how linear permutations can be used to reduce the
search space on each level of the depth-first search. This allows us to effectively partition the
finite field under the action of groups of linear permutations. Moreover, we propose an alternative
method for cases where explicitly computing all permutations would have been impossible due
to the lack of memory. We also developed a tree-based method to estimate the computation
time of orbit partitioning. This helps us assess the feasibility of various cases, revealing that
certain configurations, like (n,m) = (10, 2), are currently infeasible given computational constraints.
Secondly, we improve the submatrix test that uses submatrices to terminate the check of the
branches that never produce QAM. Applying the linear equivalence on the right, we could not only
accelerate the submatrix test but also add additional conditions that helped us to terminate more
unneeded branches. Finally, we accelerate the QAM check itself using Theorem 3, achieving up to
a 50% increase in computational speed. By integrating all these enhancements into one algorithm,
we completed a full classification for the cases (n,m) = (8, 2) and (10, 1), discovering a new APN
function in (8, 2). Partial searches were also conducted for (n,m) = (8, 4), and (10, 2).

References

[1] Simon Berg. The list of all found 27 inequivalent classes of quadratic functions over F28 with
coefficients in F4. https://github.com/Simon-Berg/thesis, 2023.

[2] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. The user
language, 1997.

[3] Lilya Budaghyan, Claude Carlet, and Gregor Leander. Constructing new APN functions from
known ones. Finite Fields and Their Applications, 15(2):150–159, 2009.

[4] Lilya Budaghyan, Tor Helleseth, and Nikolay Kaleyski. A new family of APN quadrinomials.
IEEE Transactions on Information Theory, 66(11):7081–7087, 2020.

[5] Anne Canteaut, Alain Couvreur, and Léo Perrin. Recovering or testing extended-affine equiv-
alence. Cryptology ePrint Archive, Paper 2021/225, 2021.

25

[6] Claude Carlet. Boolean Functions for Cryptography and Coding Theory. Cambridge University
Press, 2021.

[7] Diana Davidova and Nikolay Kaleyski. Classification of all DO planar polynomials with prime
field coefficients over GF (3n) for n up to 7. Cryptology ePrint Archive, Paper 2022/1059,
2022. https://eprint.iacr.org/2022/1059.

[8] Yves Edel and Alexander Pott. A new almost perfect nonlinear function which is not quadratic.
Cryptology ePrint Archive, Paper 2008/313, 2008.

[9] Yves Edel and Alexander Pott. On the equivalence of nonlinear functions. In Enhancing
cryptographic primitives with techniques from error correcting codes, pages 87–103. IOS Press,
2009.

[10] Satoshi Yoshiara. Equivalences of quadratic APN functions. Journal of Algebraic Combina-
torics, 35(3):461–475, 2012.

[11] Yuyin Yu, Nikolay Kaleyski, Lilya Budaghyan, and Yongqiang Li. Classification of quadratic
APN functions with coefficients in F2 for dimensions up to 9. Finite Fields and Their Appli-
cations, 68:101733, 2020.

[12] Yuyin Yu, Jingchen Li, Nadiia Ichanska, and Nikolay Kaleyski. Construction of quadratic
APN functions with coefficients in F2 in dimensions 10 and 11. Cryptology ePrint Archive,
Paper 2024/1778, 2024.

[13] Yuyin Yu and Leo Perrin. Constructing more quadratic APN functions with the QAM method.
Cryptology ePrint Archive, Paper 2021/574, 2021.

[14] Yuyin Yu, Mingsheng Wang, and Yongqiang Li. A matrix approach for constructing quadratic
APN functions. Cryptology ePrint Archive, Paper 2013/007, 2013.

[15] Yuyin Yu, Mingsheng Wang, and Yongqiang Li. A matrix approach for constructing quadratic
APN functions. Designs, codes and cryptography, 73(2):587–600, 2014.

26

A Derivative matrices

A.1 Derivative matrix in the case (n,m) = (8, 4)

The structure of a derivative matrix for an arbitarary quadratic function over F28 with coefficients
in the F24 is:

M =



0 A B C D E F G

A 0 H I E24 J K L

B H 0 M F 24 K24 N O

C I M 0 G24 L24 O24 P

D E24 F 24 G24 0 A24 B24 C24

E J K24 L24 A24 0 H24 I2
4

F K N O24 B24 H24 0 M24

G L O P C24 I2
4

M24 0


, (20)

where A,B,C,E, F,G,H, I,K,L,M,O ∈ F28 , and D,J,N, P ∈ F24 that makes 16 variable.

A.2 Derivative matrix in the case (n,m) = (9, 3)

The structure for derivative matrices for the quadratic functions over F29 with coefficients in the
F23 is:

M =



0 A B C D E C26 F G

A 0 H F 23 I J D26 I2
6

K26

B H 0 G23 K23 L E26 J26 L26

C F 23 G23 0 A23 B23 C23 D23 E23

D I K23 A23 0 H23 F 26 I2
3

J23

E J L B23 H23 0 G26 K26 L23

C26 D26 E26 C23 F 26 G26 0 A26 B26

F I2
6

J26 D23 I2
3

K26 A26 0 H26

G K26 L26 E23 J23 L23 B26 H26 0


, (21)

where A,B,C,D,E, F,G,H, I, J,K,L ∈ F29 .

A.3 Derivative matrix in the case (n,m) = (10, 1)

The structure for a derivative matrix for the quadratic functions F over F210 with coefficients in
the F2 is:

27

M =



0 A B C D E D26 C27 B28 A29

A 0 A2 B2 C2 D2 E2 D27 C28 B29

B A2 0 A22 B22 C22 D22 E22 D28 C29

C B2 A22 0 A23 B23 C23 D23 E28 D29

D C2 B22 A23 0 A24 B24 C24 D24 E24

E D2 C22 B23 A24 0 A25 B25 C25 D25

D26 E22 D22 C23 B24 A25 0 A26 B26 C26

C27 D27 E23 D24 C24 B25 A26 0 A27 B27

B28 C28 D28 E24 D24 C25 B26 A27 0 A28

A29 B29 C29 D29 E25 D25 C26 B27 A28 0


. (22)

A.4 Derivative matrix in the case (n,m) = (10, 2)

The structure for a derivative matrix for the quadratic functions over F210 with coefficients in the
F22 is:

M =



0 A B C D E D26 F B28 G

A 0 G22 H F 24 I E26 I2
6

C28 H28

B G22 0 A22 B22 C22 D22 E22 D28 F 22

C H A22 0 G24 H22 F 26 I2
2

E28 I2
8

D F 24 B22 G24 0 A24 B24 C24 D24 E24

E I C22 H22 A24 0 G26 H24 F 28 I2
4

D26 E26 D22 F 26 B24 G26 0 A26 B26 C26

F I2
6

E22 I2
2

C24 H24 A26 0 G28 H26

B28 C28 D28 E28 D24 F 28 B26 G28 0 A28

G H28 F 22 I2
8

E24 I2
4

C26 H26 A28 0


, (23)

where A,B,C,D,E, F,G,H, I ∈ F2n .
If MF represent a derivative matrix (23) of the function F , then the derivative matrix of the

equivalent function F ′ = F ◦ αx2, α ∈ F4 will look like:

M (1) =



0 G22 H F 24 I E26 I2
6

C28 H28 A

G22 0 A22 B22 C22 D22 E22 D28 F 22 B

H A22 0 G24 H22 F 26 I2
2

E28 I2
8

C

F 24 B22 G24 0 A24 B24 C24 D24 E24 D

I C22 H22 A24 0 G26 H24 F 28 I2
4

E

E26 D22 F 26 B24 G26 0 A26 B26 C26 D26

I2
6

E22 I2
2

C24 H24 A26 0 G28 H26 F

C28 D28 E28 D24 F 28 B26 G28 0 A28 B28

H28 F 22 I2
8

E24 I2
4

C26 H26 A28 0 G

A B C D E D26 F B28 G 0


. (24)

Take the APN function F (x) = x288 + a682x96 + a341x9 + x3 (18).
Fixing the normal element a486 for a basis we get the derivative matrix MF of the function F :

28

MF =



0 a719 a851 a146 a84 a708 a261 a709 a980 a785

a719 0 a71 a117 a91 a259 a300 a208 a548 a285

a851 a71 0 a830 a335 a584 a336 a786 a21 a790

a146 a117 a830 0 a284 a468 a364 a13 a177 a832

a84 a91 a335 a284 0 a251 a317 a290 a321 a75

a708 a259 a584 a468 a251 0 a113 a849 a433 a52

a261 a300 a336 a364 a317 a113 0 a1004 a245 a137

a709 a208 a786 a13 a290 a849 a1004 0 a452 a327

a980 a548 a21 a177 a321 a433 a245 a452 0 a947

a785 a285 a790 a832 a75 a52 a137 a327 a947 0


. (25)

For the equivalent to (18) functions F ′ (19) which is:

F ′ = l(F) = x768 + a682x516 + a341x513 + a682x384 + x258 + a341x192 + x144 + x129+

+a682x72 + a682x48 + a341x36 + a682x24 + x12 + x6,

the derivative matrix MF ′ for the same basis is:

MF ′ =



0 a5 a358 a10 a275 a215 a209 a659 a601 a651

a5 0 a558 a225 a314 a11 a461 a704 a514 a312

a358 a558 0 a20 a409 a40 a77 a860 a836 a590

a10 a225 a20 0 a186 a900 a233 a44 a821 a770

a275 a314 a409 a186 0 a80 a613 a160 a308 a371

a215 a11 a40 a900 a80 0 a744 a531 a932 a176

a209 a461 a77 a233 a613 a744 0 a320 a406 a640

a659 a704 a860 a44 a160 a531 a320 0 a930 a78

a601 a514 a836 a821 a308 a932 a406 a930 0 a257

a651 a312 a590 a770 a371 a176 a640 a78 a257 0


. (26)

29

B Tables for the classification of the quadratic functions over F28

with coefficients in F4

Index Representative functions

1 x192 + x96 + x72 + x33 + x3

2 a170x144 + a85x72 + a85x48 + a85x24 + a85x12 + x9 + x3

3 x72 + x66 + x48 + x36 + a170x33 + x18 + x9 + a170x6 + a85x3

4 a170x192 + a85x144 + a85x132 + a170x66 + a85x48 + x33 + x24 + a170x18 + a85x6 + x3

5 a170x144 + a85x132 + x96 + a170x72 + a170x36 + x33 + a85x24 + x12 + x3

6 a170x192 + a85x132 + a170x66 + a170x24 + a170x18 + a170x12 + x6 + x3

7 a85x192 + a170x144 + a170x96 + a85x72 + a170x66 + x36 + x12 + x3

8 a85x144 + a170x129 + a170x72 + a170x18 + x12 + a85x9 + x3

9 a170x132 + a170x96 + a85x72 + a85x66 + x48 + a170x18 + x6 + x3

10 a85x96 + a85x72 + a170x24 + x18 + a85x12 + a85x9 + x6 + x3

11 x132 + a85x96 + a170x72 + a85x48 + x33 + x24 + a170x12 + a170x6 + x3

12 a170x144 + a85x132 + x72 + a170x48 + a170x24 + x18 + a170x12 + x3

13 a85x144 + a85x66 + a170x65 + a85x48 + x36 + a170x33 + a170x20 + a170x18 + x9 + x3

14 a170x160 + a85x144 + a85x132 + a85x96 + a85x80 + a85x68 + a85x66 + a85x48 + x18 + a170x5 + x3

15 a85x160 + a85x136 + a85x96 + a170x40 + a85x36 + a85x34 + x20 + a85x17 + x12 + x9 + x3

16 x160 + a170x144 + a85x129 + a170x96 + a170x68 + a170x40 + x20 + a85x18 + a170x12 + x9 + x3

17 a85x192 + a85x160 + a85x132 + a170x72 + x48 + x40 + x34 + x33 + x18 + a170x10 + x3

18 a85x136 + a85x132 + x96 + a170x72 + a85x68 + a85x66 + x48 + x33 + a85x17 + x3

19 a170x192 + a85x132 + x129 + a85x80 + a85x68 + x48 + x24 + x20 + x10 + a85x5 + x3

20 a170x144 + a170x136 + x132 + a170x80 + a85x66 + a170x65 + a170x34 + a170x33 + x24 + a170x18 + x9 + a85x6 + x3

21 a170x144 + x136 + x129 + a85x68 + a85x66 + x65 + a170x48 + a170x40 + a85x36 + x33 + a170x17 + a170x12 + x3

22 x192 + a85x144 + a85x68 + a170x65 + a85x48 + a170x40 + a85x24 + a170x20 + a170x18 + a85x17 + a170x10 + x3

23 a85x192 + a85x144 + x36 + x33 + a170x24 + a170x18 + x12 + x6 + x3

24 x192 + x160 + a85x130 + a85x96 + a170x72 + x66 + a170x48 + x40 + a85x33 + a85x18 + x5 + x3

25 a85x192 + a170x160 + x144 + x130 + a170x129 + x65 + a170x40 + a85x34 + a85x24 + a170x20 + a170x18 + a170x9 + x3

26 a85x129 + a85x96 + x72 + a85x66 + x12 + a170x9 + x6 + x3

27 a170x160 + a170x136 + a85x132 + a170x129 + a85x68 + a170x40 + x33 + a85x24 + a85x9 + a170x6 + x3

Table 10: Representatives up to CCZ-equivalence of all quadratic APN functions over F28 with
coefficients in F22 , with the new found function in bold

30

Index ODDS

1 [035700, 226520, 43060]

2 [036420, 225080, 43780]

3 [037872, 222788, 44068, 6492, 860]

4 [037980, 222272, 44716, 6312]

5 [038004, 222614, 44008, 6630, 1024]

6 [038040, 222461, 44218, 6513, 836, 1012]

7 [038160, 222104, 44536, 6456, 824]

8 [038160, 222164, 44428, 6492, 836]

9 [038184, 222179, 44338, 6531, 848]

10 [038196, 222008, 44608, 6456, 812]

11 [038256, 222116, 44230, 6648, 830]

12 [038592, 221426, 44590, 6654, 818]

13 [038844, 220974, 44764, 6654, 844]

14 [038880, 221165, 44230, 61005]

15 [039174, 220513, 44756, 6749, 876, 108, 124]

16 [039290, 220399, 44686, 6774, 8112, 1015, 124]

17 [039408, 220072, 44922, 6798, 870, 1010]

18 [039408, 220218, 44692, 6838, 8104, 1012, 128]

19 [039444, 220042, 44912, 6762, 8112, 108]

20 [039446, 220067, 44896, 6718, 8138, 1015]

21 [039504, 220127, 44674, 6801, 8138, 1027, 166, 183]

22 [039544, 219996, 44752, 6841, 8130, 1012, 122, 141, 182]

23 [039600, 219680, 45220, 6600, 8180]

24 [039692, 219752, 44756, 6978, 872, 1026, 124]

25 [039750, 219641, 44876, 6845, 8136, 1029, 142, 181]

26 [039780, 221930, 63570]

27 [039840, 219707, 44644, 6900, 8120, 109, 1460]

Table 11: The ortho-derivative differential spectrum of all quadratic APN functions over F28 with
coefficients in F22 , with the ODDS of the new found function in bold

31

