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Abstract. We introduce the notion of non-interactive zero-knowledge
(NIZK) proofs with certified deletion. Our notion enables the recipient
of a (quantum) NIZK proof to delete the proof and obtain a (classical)
certificate proving such deletion. We define this notion and propose two
candidate constructions from standard cryptographic assumptions. Our
first construction is based on classical NIZK proofs and quantum-hard
one-way functions, but needs both the prover and verifier to run quantum
algorithms. We then present an extension that allows the prover to be
classical; this is based on the learning with errors problem and requires an
instance-independent interactive setup between the prover and verifier.
Our results have applications to revocable signatures of knowledge and
revocable anonymous credentials, which we also define and construct.
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1 Introduction

Quantum computation enables novel cryptographic capabilities that are known
to be impossible in the classical world. These include primitives such as quantum
money [50], unconditionally secure key agreement [16], one-shot signatures [7],
copy protection [1], secure software leasing [8], unclonable encryption [28,20], and
certified deletion [19,11]. Many of these results rely on the no-cloning property
of quantum states. Quantum copy protection [1] guarantees that, given a single
copy of a protected function f , no adversary can generate two copies of f .

Although copy protection has notable applications, e.g., public-key quantum
money [2], building copy protection schemes from standard assumptions remains
a challenging open problem. Motivated by this, Ananth et al. [8] introduced the
weaker notion of secure software leasing (which also goes by the names revocation
or certified deletion). At a high level, this notion enables a function f to be
encoded into a quantum state that can be securely leased to a user; later, the
user can provably delete that state, at which point the user is no longer able to
⋆ Work supported in part by NSF award CNS-2154705.



execute f . Roughly speaking, then, copy protection prevents cloning altogether,
whereas when using a revocation scheme, cloning is possible but not once a user
wishes to later produce a deletion certificate.

Several prior works studied secure software leasing for specific cryptographic
functionalities. Ananth et al. [9] and Agrawal et al. [5] independently introduced
revocable public key encryption, where a decryption key is leased to a user; when
the key is returned, the user loses the ability to decrypt. Morimae et al. [40]
studied digital signatures with revocable signing keys or revocable signatures.
In the former case, a party can lease a signing key to a user; once the key is
revoked, the user cannot generate new signatures. In the latter case, a signature
is leased, which can be deleted after being verified.

We extend this line of research and consider non-interactive zero-knowledge
(NIZK) proofs [17]. An NIZK proof system enables a prover holding a witness
for an NP statement to generate a proof of the truth of the statement without
leaking any information about the witness. A fundamental barrier of a classical
NIZK proof is that it can be verified arbitrarily many times by anyone who
obtains it; in some settings, a prover may wish to allow verification for a limited
time. To address this, we define NIZK with certified deletion (NIZK-CD), which
enables recipients to certifiably delete the proofs they are given. The deletion
certificate can be validated by the prover who generated the original proof; once
a verifier generates a valid certificate, they can no longer return accepting proofs.

1.1 Our Contributions

We define NIZK-CD and propose constructions in the common reference string
(CRS) model based on quantum-secure NIZK proofs and one-way functions.
Deletion certificates and their corresponding validation algorithm are classical.
In our first construction, the prover and verifier run quantum algorithms. We
then extend this construction, based on learning with errors (LWE) [46], to allow
for a classical prover who remotely prepares the proof for the (quantum) verifier.

As a natural application, we construct revocable signature of knowledge from
NIZK-CD. We then use this to obtain revocable anonymous credentials, without
relying on conventional blocklisting or expiration-based approaches [15,4,21].

Concurrent work. Concurrent work by Çakan et al. [22] defines NIZK with
certified deniability, a stronger guarantee than certified deletion. Roughly, NIZK
with certified deletion guarantees that once a user certifiably deletes a proof,
the user cannot generate a proof that will be accepted by the honest verification
algorithm; NIZK with certified deniability ensures that once a user certifiably
deletes a proof, they have no advantage in convincing even a dishonest verifier
about the truth of the corresponding statement. Çakan et al. [22] proposed a con-
struction of NIZK with certified deniability in the random-oracle model. Their
construction, however, carries quantum deletion certificates; hence, the prover
runs quantum algorithms for both proof generation and certificate validation. It
is an interesting open problem to realize NIZKs with certified deniability where
the deletion certificate – or, ideally, the entire communication – is classical.
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On the negative side, Çakan et al. [22] further showed the impossibility of
NIZK with certified deniability in the plain model, where the security reduction
makes use of the adversary in a black-box way. We believe that the same result
would hold in the CRS model as long as the common reference is a classical
string. Another interesting open problem is bypassing this impossible barrier.

1.2 Related Work

We discuss prior work on copy protection and certified deletion.

Copy protection and unclonable primitives. Aaronson [1] defined copy
protection and presented a copy protection scheme for any unlearnable Boolean
function relative to a quantum oracle. Later, it was shown that a classical oracle
suffices [3]. Coladangelo et al. [25] proposed copy protection for (multi-bit) point
functions and compute-and-compare functions in the quantum random-oracle
model. Copy protection for decryption schemes and pseudorandom functions can
be realized from compute-and-compare program obfuscation for unpredictable
distributions, indistinguishability obfuscation (iO), and one-way functions [5].
Liu et al. [37] built bounded collusion-resistant copy protection for functionalities
including pseudorandom functions from iO and the LWE assumptions.

Goyal et al. [29], and Jawale et al. [33] studied copy-protection for NIZK
proofs, also called unclonable NIZK. They showed that this notion is equivalent
to public-key quantum money [2], which is currently only known to exist under
the assumption of iO. In this work, we consider the weaker notion of NIZK-CD,
and show how to realize this notion based on weaker assumptions while also
reducing the need for quantum communication (in our second construction).

Certified deletion and revocable cryptography. Unruh [49] introduced
revocable encryption where the recipient of a quantum ciphertext can return
it and lose all information about the message. Broadbent et al. [19] studied
quantum one-time pad encryption with certified deletion, where a quantum
ciphertext can be collapsed into a classical deletion certificate. Several recent
works [31,44,11,10,12,23] extend this idea to advanced functionalities such as
public-key and attribute-based encryption. Kitagawa et al. [36] and Bartusek et
al. [13] replaced privately verifiable certificates with publicly verifiable ones under
the assumption of one-way functions and one-way state generators [41]. Certified
deletion has also been studied for the revocation of cryptographic keys [5,9,23],
digital signatures [40], secret sharing [14,34], and obfuscation [10].

Revocation has also been considered for general programs by Ananth et al. [8].
However, their scheme relies on quantum-secure iO.

2 Technical Overview

In this section, we give a high-level overview of our techniques.
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2.1 Definition of NIZK-CD

We define NIZK-CD, a tuple of algorithms ⟨Setup,Prove,Verify,Delete,Certify⟩.
The first three algorithms, Setup, Prove, and Verify, are defined similarly to the
standard NIZK. In particular, Setup generates the CRS and its trapdoor. Prove
and Verify are used to generate and verify a quantum NIZK proof π, respectively.
The only difference is that Prove additionally outputs a private and classical
certification key ck. Delete collapses π into a classical deletion certificate cert.
The certificate is validated by running Certify on input cert and ck.

The primitive satisfies the basic security requirements of a standard NIZK,
i.e., completeness, computational soundness, and computational zero knowledge.
One can naturally strengthen single-theorem zero knowledge to a multi-theorem
variant [27] and then also soundness to simulation extractibility [47,48].

We can achieve the security goal of deletion by two definitions. The first,
followed by simplicity, relies on the concept of efficiently samplable (quantumly)
hard distributions over NP instance-witness pairs. Consider (X ,W) as such a
distribution where X and W are the instances and the witnesses, respectively.
Let (x,w)← (X ,W) be a hard instance-witness pair, and π be a NIZK-CD proof
generated on inputs x and w. We require that no efficient quantum adversary
given the instance x and the proof π can return both a proof π∗ and a certificate
cert such that π∗ passes Verify and cert pass Certify algorithms successfully.

However, this definition does not capture the case in which the adversary
receives more than one proof for different instances, and it does not support any
security guarantees against malleability attacks. To address this limitation, we
strengthen the definition to ensure that from any adversary that returns both
an accepting proof and a valid certificate, one can extract the witness even in
the case that the adversary is given oracle access to the prover algorithm.

2.2 Constructions of NIZK-CD

We propose a generic compiler to transform any classical NIZK to a NIZK-CD.
The only assumption that we require is a quantum-secure commitment, which
can be realized from quantum-hard one-way functions [26] in the CRS model.

Let c← Com(crs,m, r) be a commitment to a message m under a randomness
r and a common reference string crs. Given an NP relation R, we generate a
NIZK-CD proof for an instance-witness pair (x,w) ∈ R as follows. The prover
samples strings r0 and r1 and generates ∀b ∈ {0, 1} : cb = Com(crs, b, rb). Then,
the prover produces a NIZK proof σ for (x,w) ∈ R

∨
∧bcb = Com(crs, 1−b, rb).

Given σ, c0, and c1, one can validate whether x is satisfied if σ accepts, and they
have at least one rb that refutes the commitment part of the relation.

The prover generates |ψ⟩ := |0⟩|r0⟩ + |1⟩|r1⟩ and sends the NIZK-CD proof
π := (|ψ⟩,σ, {cb}b∈{0,1}). Let ck := (r0, r1) be the certification key and U com

c0,c1 as

|b⟩|r⟩|0⟩
U com

c0,c1−−−−→ |b⟩|r⟩|Cmt− Cmp(crs, b, rb, cb)⟩,

where Cmt− Cmp is a commit-and-compare function that commits to b using
randomness r, returns 1 if it equals cb, and returns 0 otherwise. The verifier
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can verify the proof by applying U com
c0,c1 to |ψ⟩ and measure commit-and-compare

register. If the measured result is 1, i.e., there exists at least one rb such that
cb = Com(crs, b, rb) and it suffices to infer ∃w : (x,w) ∈ R, if σ also passes the
verification algorithm of the classical NIZK. Moreover, for honestly-generated
proofs, the commit-and-compare register is always 1, and the post-measurement
state remains the same as |ψ⟩; hence, π can be re-verified for arbitrary times.
The verifier can delete |ψ⟩ by applying a Hadamard measurement, which yields
a string d such that d · (r0⊕ r1) = 0 and then all information about strings r0, r1
is lost as the state collapses to |0⟩ + (−1)d·(r0⊕r1)|1⟩. The deletion certificate is
cert := d, and the prover validates it using (r0, r1), tracked as certification key.

More precisely, deletion security follows the adaptive hardcore bit-property of
one-way functions, showed by several recent works [13,40]. This property states
that given any one-way function f , no efficient adversary on input y0 = f(r0)
and y1 = f(r1) and a superposition |r0⟩ + |r1⟩ can output both a preimages r
such that f(r) ∈ {y0, y1} and an string d such that d · (r0 ⊕ r1) = 0 with an
advantage more than 1/2. Since the commitment scheme satisfies hiding and
binding, one can view Com as a one-way function, and the adaptive hardcore bit
property holds for the commitment function. This implies that the recipient of a
NIZK-CD proof cannot output both an accepting deletion certificate cert and a
proof π∗; due to the definition of U com

c0,c1 , measuring the quantum state included
in π∗ in the computational basis should yield a valid commitment randomness rb
for cb = Com(crs, b, rb), and this contradicts the adaptive hardcore bit property.
The advantage can be reduced to negligible via parallel repetition. Completeness,
zero knowledge, and extractability are borrowed from the classical NIZK σ.

Classical prover. We can observe that the prover only needs quantumness
to create the state |ψ⟩ and send it to the verifier. Other components of proof
generation and deletion are based on classical computation and communication.
We present an extension of our construction that allows a classical prover to
remotely prepare |ψ⟩ on the verifier’s device, while the verifier does not learn
any further information about the strings r0, r1, and the bit u. Then, the rest
of the NIZK-CD construction remains the same as what was described above.

We first recall the notion of noisy trapdoor claw-free (NTCF) functions. Given
a fixed key k, a pair of functions fk,0, fk,1 : X → Y of an NTCF family satisfy the
following properties. fk,0 and fk,1 share the same range. It is computationally
hard to find a claw, i.e., a pair (r0, r1) where fk,0(r0) = fk,1(r1). There exists a
trapdoor td that allows to efficiently find two preimages r0 and r1 of any image
y, i.e., for all b ∈ {0, 1} we have fk,b(rb) = y. Moreover, the adaptive hardcore
bit property holds, i.e., given y and |r0⟩+ |r1⟩, where r0 and r1 are preimages of
y, no adversary can return both one of the preimages and a string d such that
d · (r0 ⊕ r1) = 0. The NTCF family can be constructed under LWE [18].

Assume that the key k for an NTCF functions and its trapdoor td are sampled
and sent by the prover. The verifier generates the state |ϕ⟩ defined as follows.

|ϕ⟩ :=
∑
r∈X
|0⟩|r⟩ + |1⟩|r⟩
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Let Ufk,0,fk,1
be a unitary quantum operation defined as below.

|b⟩|r⟩|0⟩
Ufk,0,fk,1−−−−−−→ |b⟩|r⟩|fk,b(r)⟩

The verifier applies Ufk,0,fk,1
to |ϕ⟩ and measures the image register to obtain

an image y and a state |0⟩|r0⟩+ |1⟩|r1⟩, where (r0, r1) is the claw. |ψ⟩ is used for
NIZK-CD. The verifier sends y, and the prover recovers (r0, r1) using td.

We remark that state preparation is instance-independent and although the
prover and verifier communicate for multiple rounds, π is still a non-interactive
proof as it can be verified as many times without need for further interactions.

2.3 Revocable Signatures of Knowledge

A signature of knowledge is a digital signature in which messages are signed
with respect to an instance of an NP language using the corresponding witness
as signing key. Informally, it requires that if an adversary, given a signature to a
message m with respect to an instance x, can output two signatures for m with
respect to the same instance x, they must know the witness. Revocable signature
of knowledge enables the recipient of the signature to delete the signature after it
has been verified. This primitive can be constructed from simulation extractable
NIZK-CD, where it just suffices to attach the message m to the proved instance.
Revocable signatures of knowledge are used for revocable anonymous credentials,
where the signed messages represent access tokens. Goyal et al. [29] and Jawale
et al. [33] previously built (anonymous) revocable credentials from unclonable
NIZKs. Despite ours, their schemes are based on post-quantum iO and inherently
require quantum communication for the credential generation and deletion.

3 Preliminaries

We use λ to denote the security parameter. We use negl as a generic negligible
function. For a set S, we use x ← S to indicate that x is sampled uniformly
from S. We define [n] := {0, 1, . . . ,n−1}. The term PPT stands for probabilistic
polynomial time and QPT stands for quantum polynomial time.

Quantum conventions. A register X is a Hilbert space C2n. An n-qubit pure
state on register X is a unit vector |ψ⟩ ∈ C2n. A mixed state on register X,
described by a density matrix ρ ∈ C2n×2n, is a positive semi-definite Hermitian
operator with trace 1. Also, a quantum operation F is a completely positive
trace-preserving map from a register X to a register Y , i.e., on input a density
matrix ρ on register X, the operation F returns F (ρ) on register Y . A unitary
operation U : X → X is a quantum operation that satisfies U†U = UU† = IX ,
where IX is identity. A projector Π is a Hermitian operator such that Π2 = Π.
A projective measurement is a collection of projectors {Πi}i with

∑
iΠi = I.

Densities and distances. Let X be a finite domain. A density on X is a
function f : X → [0, 1] such that

∑
x∈X f(x) = 1. DX denotes the set of densities
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on X . For any f ∈ DX , Supp(f) = {x ∈ X : f(x) > 0}. Given two densities f0
and f1 on X , the Hellinger distance is defined as follows.

H2(f0, f1) := 1−
∑
x∈X

√
f0(x)f1(x)

For two density matrices ρ and σ, their trace distance is defined as follows.

∥ρ− σ∥tr =
1

2
∥ρ− σ∥1 =

1

2
Tr

[√
(ρ− σ)2

]
,

where ∥ · ∥1 is the trace norm.

Lemma 3.1. Let X be a finite set, f0, f1 ∈ DX , and |ψb⟩ :=
∑

x∈X
√
fb(x) |x⟩

for b ∈ {0, 1}. We have

∥|ψ0⟩⟨ψ0| − |ψ1⟩⟨ψ1|∥tr =
√
1− (1−H2(f0, f1))2.

Theorem 3.1. (Holevo-Helstrom) [30,32] Consider the experiment in which
one of two quantum states ρ and σ is given to some distinguisher, each with
probability 1

2 . The advantage of any distinguisher that can correctly determine
which state was sent is at most 1

2 + 1
2∥ρ− σ∥tr.

3.1 The Learning with Errors Hardness Assumption

We recall the definition of the learning with errors (LWE) problem. For real
positive B and integer q, the discrete truncated Gaussian distribution over Zq

with parameter B is a distribution on {x ∈ Zq : ∥x∥ ≤ B} with a density as

DZq ,B(x) :=
e

−π∥x∥2
B∑

x′∈Zq ,∥x′∥≤B e
−π∥x′∥2

B

.

For some higher dimension d, the truncated discrete Gaussian distribution over
Zd
q with parameter B is a distribution on {x ∈ Zd

q : ∥x∥ ≤ B
√
d} with the density

∀x = (x1,x2, . . . ,xd) ∈ Zd
q : DZd

q ,B
(x) = DZq ,B(x1),DZq ,B(x2), . . . ,DZq ,B(xd).

We then define LWE that underlies several hardness assumptions in this paper.

Definition 3.1. (LWE) Let n(λ),m(λ), q(λ) be polynomials in λ. Moreover,
let X = X (λ) be a distribution over Z. The LWEm,n,q,X problem is to distinguish
between the distributions (A,As + e) and (A,u), where A ← Zm×n

q , s ← Zn
q ,

e← Xm, u← Zm
q , such that m is, at most, polynomial in n log q.

We assume no QPT algorithm can solve LWEm,n,q,X with some non-negligible
advantage in λ, even when given access to a quantum polynomial-size advice
state depending on the parameters m, n, q, and X of the problem. We refer
to this assumption as the LWEm,n,q,X assumption. It can be shown [46,42] that
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for any α > 0 such that σ = αq ≥ 2
√
n, LWEm,n,q,DZq,σ

is at least as hard
as the shortest independent vector problem within a factor of γ = Õ(n/α),
where Õ hides logarithmic factors, in the worst case dimension n in lattices.
The best known algorithm to solve the problem runs in time 2Õ(n/logγ). We
assume the hardness against polynomial-time quantum adversaries where γ is
super-polynomial in n. We also recall two additional properties. The first shows
that it is possible to generate LWE samples (A,As + e) with a trapdoor that
can recover s from the samples. We state this in the following Theorem.

Theorem 3.2. [39] Let n,m ≥ 1 and q ≥ 2 be such that m = Ω(n log q).
There is an efficient randomized algorithm Gen(1n, 1m, q) that returns a matrix
A ∈ Zn×m

q and a trapdoor td such that the distribution of A is negligibly close
to uniform. There is an efficient deterministic algorithm Inv such that on input
A, td, and a sample As + e, where ∥e∥ ≤ q/(c

√
n log q) and c is a universal

constant, outputs vectors s and e with a high overwhelming probability.

The second property is the existence of a “lossy mode” for LWE.

Theorem 3.3. [6] X = X (λ) is an efficiently sampleable distribution on Zq.
Define a lossy sampler Ã← LSY(1m, 1n, 1ℓ, q,x), s.t. Ã = BC +F , B ← Zm×ℓ

q ,
C ← Zℓ×n

q , F ← Zm×n
q . Under LWEm,ℓ,q,X assumption, the distribution of Ã is

computationally indistinguishable from uniform Ã← Zm×n
q .

3.2 Noisy Trapdoor Claw-Free Hash Function Families

We recall noisy trapdoor claw-free (NTCF) hash functions introduced by [18].
Given two finite sets X and Y, a trapdoor claw-free family of functions satisfies
the following properties. For a public key k, the functions {fk,b : X → Y}b∈{0,1}
are both injective and have the same range and are invertible given a trapdoor td,
i.e., on input td and an image y ∈ Y it is feasible to efficiently output x0,x1 ∈ X
such that f0(x0) = f1(x1) = y. Furthermore, the pair of functions should be
claw-free, i.e., it is computationally hard for an attacker to find two preimages
x0,x1 such that f0(x0) = f1(x1) without the trapdoor. The functions also satisfy
the adaptive hardcore bit property, which states that it is computationally hard
for an attacker to generate a non-trivial tuple (b, d,xb) with a non-negligible
probability more than 1

2 the such that the equation d · (x0⊕ x1) = 0 is satisfied;
note that x1−b is a unique element such that f1−b(x1−b) = fb(xb).

Unfortunately, we are not aware of any exact constructions of the trapdoor
claw-free functions. Instead, Brakerski et al. [18] proposed a construction for
noisy trapdoor claw-free functions, which relaxes the requirements as follows.
First, the range of functions is not Y, but instead DY , the set of probability
densities over Y. The trapdoor injective pair property is then defined according
to the support of the output densities. The use of densities as the output of the
functions requires considering additional requirements. In this paper, we need
a quantum polynomial-time algorithm that efficiently prepares a superposition
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over the range of the function, i.e., given a function key k and a bit b ∈ {0, 1},
the algorithm can prepare the following quantum state.

1√
X

∑
x∈X ,y∈Y

√
fk,b(x)y|x⟩|y⟩

The construction proposed in [18] is unable to exactly produce the above
state; however, it is possible to create a superposition with coefficients such that
fk,b(x) is approximated by another function f ′k,b(x) and the resulting state is
within a negligible distance from the above state. f ′k,b(x) supports membership
checks efficiently without the need for the trapdoor, and the inversion algorithm
should operate properly on the images in the support of f ′k,b(x). The adaptive
hardcore bit property needs to also be slightly modified. The set X might not be
a subset of binary strings. We first assume the existence of an injective, efficiently
invertible map J : X → {0, 1}w and consider the adaptive hardcore bit property
to hold for a subset of all non-zero strings. The formal definition is as follows.

Definition 3.2. (NTCF) [18] F := {fk,b : X → DY}k∈K,b∈{0,1} is a NTCF
hash function family if the following properties are satisfied.

Key generation: A PPT, NTCF.GenF , samples a key k ∈ K and a trapdoor td.

Trapdoor Injective Pair: For all k ∈ K, b ∈ {0, 1}, distinct x,x′ ∈ X ,
Supp(fk,b(x)) ∩ Supp(fk,b(x

′)) = ∅. An efficient deterministic algorithm InvF
exists such that for all k ∈ K, b ∈ {0, 1}, x ∈ X , and y ∈ Supp(fk,b(x)), it
holds that Inv(td, b, y) = x. Moreover, given a key k ∈ K, there exists a perfect
matching Rk ⊆ X ×X such that fk,0(x0) = fk,1(x1) if and only if (x0,x1) ∈ Rk.

Range Superposition: For all k ∈ K, b ∈ {0, 1}, f ′k,b : X → DY exists where:

• For any claw (x0,x1) ∈ Rk with image y ∈ Supp(f ′k,b(xb)) it holds that
InvF (td, b, y) = xb as well as InvF (td, b⊕ 1, y) = xb⊕1.

• There exists an efficient deterministic algorithm ChkF where on input k ∈ K,
b ∈ {0, 1}, x ∈ X , y ∈ Y, it outputs 1 if y ∈ Supp(f ′k,b(x)) and 0 otherwise.

• For all k ∈ K, b ∈ {0, 1}, we have Ex←X [H2(fk,b(x), f
′
k,b(x))] ≤ negl(λ). In

addition, there exists a QPT algorithm SampF such that on input k ∈ K and
b ∈ {0, 1} outputs the following quantum state.

|ψ′⟩ = 1√
|X |

∑
x∈X ,y∈Y

√
(f ′k,b(x))(y)|x⟩|y⟩.

Given |ψ⟩ = 1√
|X |

∑
x∈X ,y∈Y

√
(fk,b(x))(y)|x⟩|y⟩, Lemma 3.1 implies that

∥|ψ⟩⟨ψ| − |ψ′⟩⟨ψ′|∥tr ≤ negl(λ).

Adaptive Hardcore Bit: For all keys k ∈ K and a polynomial ℓ(λ):
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• For all b ∈ {0, 1}, x ∈ X , there exists a subset of strings Gk,b,x ⊆ {0, 1}ℓ(λ)
such that Prd←{0,1}ℓ(λ) [d /∈ Gk,b,x] ≤ negl(λ). Moreover, there exists a PPT
algorithm to efficiently check membership in Gk,b,x given k, b,x and td.
• There exists an efficiently computable injection J : X → {0, 1}ℓ(λ) such that
J can also be efficiently inverted on its range, and the following holds. Let

Hk := {(b,xb, d, d · (J(x0)⊕ J(x1))|b ∈ {0, 1}, (x0,x1) ∈ Rk, d ∈ Gk,0,x ∩ Gk,1,x},
H̄k := {(b,xb, d,u⊕ 1)|(b,xb, d,u) ∈ Hk}.

For any QPT algorithm A it holds that∣∣∣∣ Pr
td,k←NTCF.Gen(1λ)

[A(k) ∈ Hk]− Pr
td,k←NTCF.Gen(1λ)

[A(k) ∈ H̄k]

∣∣∣∣ ≤ negl(λ).

Theorem 3.4. [18] Assuming the polynomial-time quantum hardness of LWE,
there exists an NTCF hash function family.

One can consider an amplified adaptive hardcore bit property such that the
adversary cannot return a set {(bi,xi,bi , di,ui)}i∈[n] where n is polynomial in the
security parameter λ, and each tuple satisfies di · (xi,bi ⊕ xi,1−bi) = ui, so that
(xi,bi ,xi,1−bi) is a claw. The property is formally defined as follows.

Definition 3.3. (Amplified Adaptive Hardcore Bit) An NTCF function
family F satisfies the amplified adaptive hardcore bit property if, for any QPT
algorithm A and a polynomial n = ℓ(λ), the following is at most negl(λ).

Pr

 ∀i ∈ [n] : (ki, tdi)← NTCF.Gen(1λ)
{(bi,xi,bi , di,ui)}i∈[n] ← A({ki}i∈[n])
∀β ∈ {0, 1} : xi,β = Inv(tdi,β, yi)

:
∀i ∈ [n] : di ∈ Gk,0,x ∩ Gk,1,x

∧
ui = di · (J(xi,0)⊕ J(xi,1))


Theorem 3.5. [45,35] Any NTCF family of functions satisfies the amplified
adaptive hardcore bit property.

We also note that recently Morimae et al. [40] introduced a similar notion of
adaptive hardcore bit property for general one-way functions (OWFs), beyond
those based on the LWE assumption, and showed the following result.

Theorem 3.6. [40] Given ℓ(λ),κ(λ),n(λ) ∈ N, for any quantum-hard OWF
f : {0, 1}ℓ(λ) → {0, 1}κ(λ), and any QPT adversary A,

Pr

 ∀i ∈ [n] : xi,0,xi,1 ← {0, 1}2ℓ(λ),ui ← {0, 1}
{(xi, di)}i∈[n] ← A(⊗i∈[n]

|xi,0⟩+(−1)ui |xi,1⟩√
2

, {f(xi,b)}i,b)

:
∧i∈[n]f(xi) ∈ {f(xi,0), f(xi,1)}

∧
∧i∈[n]di · (xi,0 ⊕ xi,1) = ui

 ≤ negl(λ).
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3.3 Other Useful Cryptographic Primitives and Lemmas

We recall the notion of commitment schemes in the CRS model, which is a
central building block for our NIZK-CD constructions throughout this paper.

Definition 3.4. (Commitment) Let n(λ), ℓ(λ),κ(λ) be polynomials. Com is a
quantum-secure commitment if the following syntax and properties hold.

• (crs, td)← Setup(1λ) : on input λ, output crs, and trapdoor td.
• c← Com(crs,m, r): on input crs, a message m ∈ {0, 1}n(λ), and a randomness
r ∈ {0, 1}ℓ(λ), output a commitment c ∈ {0, 1}κ(λ).

Statistical Binding: For any algorithm A and any sufficiently large λ ∈ N,

Pr

[
(crs, td)← Setup(1λ)

(m0, r0,m1, r1)← A(crs)
:
Com(crs,m0, r0) = Com(crs,m1, r1)

∧ m0 ̸= m1

]
≤ negl(λ).

Computational Hiding: For any QPT distinguisher D, any sufficiently large
λ ∈ N, parameters (crs, td)← Setup(1λ), and any m0,m1 ∈ {0, 1}n(λ),∣∣∣∣∣Pr

[
r0 ← {0, 1}ℓ(λ)

c0 ← Com(crs,m0, r0)
: D(crs, c0) = 1

]

−Pr

[
r1 ← {0, 1}ℓ(λ)

c1 ← Com(crs,m1, r1)
: D(crs, c1) = 1

] ∣∣∣∣∣ ≤ negl(λ).

Theorem 3.7. [26] Assuming a quantum-hard one-way function, there exists
a statistically binding and computationally hiding commitment.

We recall the notion of non-interactive zero-knowledge (NIZK) arguments in
the CRS model. We provide two definitions of NIZK as follows. The first one is a
single-theorem definition and ensures that no efficient adversary can output an
accepting proof for any unsatisfied instance. The second one is a multi-theorem
definition and ensures that from any efficient adversary that can output an
accepting proof, one can efficiently extract a valid witness to the relation.

Definition 3.5. (NIZK for NP) Let any NP relation R with a corresponding
language L. Π = ⟨Setup,Prove,Verify⟩ is a quantum-secure NIZK for NP in the
CRS model if it satisfies the following syntax and security properties.

• (crs, td)← Setup(1λ) : on input λ, output crs and a trapdoor td.
• π ← Prove(crs,x,w) : on input crs and a pair (x,w) ∈ R, output a proof π.
• {0, 1} ← Verify(crs,x,π) : on input crs, x, and π, output accept or reject.

Perfect Completeness: For every security parameter λ ∈ N and (x,w) ∈ R,

Pr

[
(crs, td)← Setup(1λ)
π ← Prove(crs,x,w)

: Verify(crs,x,π)

]
= 1.
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Adaptive Computational Soundness: For any QPT adversary algorithm A
and any sufficiently large security parameter λ,

Pr

[
(crs, td)← Setup(1λ)

(x,π)← A(crs) : Verify(crs,x,π) = 1 ∧ x /∈ L
]
≤ negl(λ).

Adaptive Computational Zero-Knowledge: There exists a QPT simulator
Sim = (Sim0,Sim1) where for every QPT adversary A, every QPT distinguisher
D, and any sufficiently large λ ∈ N,∣∣∣∣∣Pr

 (crs, td)← Setup(1λ)
(x,w, ξ)← A(crs)
π ← Prove(crs,x,w)

: D(crs,x,π, ξ) = 1

−
Pr

 (crs, td)← Sim0(1
λ)

(x,w, ξ)← A(crs)
π ← Sim1(crs, td,x)

: D(crs,x,π, ξ) = 1

 ∣∣∣∣∣ ≤ negl(λ).

Theorem 3.8. [43] Assuming polynomial quantum hardness of LWE, there
exists a quantum-secure non-interactive, adaptively computationally sound, and
adaptively computationally zero-knowledge argument for NP.

We also propose a definition with stronger security properties.

Definition 3.6. (Simulation-Extractable NIZK for NP) Let R be any NP
relation with language L. Then, Π = ⟨Setup,Prove,Verify⟩ is a quantum-secure
simulation-extractable NIZK for NP in the CRS model if it satisfies the properties
of Definition 3.5 and also the following additional properties.

Adaptive Multi-Theorem Computational Zero-Knowledge: There exists
QPT simulator Sim = (Sim0,Sim1), such that for any QPT adversary algorithm
A and sufficiently large λ ∈ N,∣∣∣Pr [(crs, td)← Setup(1λ) : AProve(crs,·,·)(crs) = 1

]
−

Pr
[
(crs, td)← Sim0(1

λ) : ASim1(crs,td,·,·)(crs) = 1
] ∣∣∣ ≤ negl(λ),

where the simulator algorithm Sim1 discards its fourth input value.

Simulation Soundness: Let Sim = (Sim0,Sim1) be the simulator given by the
adaptive multi-theorem computational zero-knowledge. For every QPT algorithm
A and sufficiently large λ ∈ N, the following probability is, at most, negl(λ).

Pr

[
(crs, td)← Sim0(1

λ)
(x,π)← ASim1(crs,td,·,·)(crs)

: Verify(crs,x,π) = 1 ∧ x /∈ L ∧ x /∈ Q
]
,

where Q is the list of queries from A to Sim1.

Simulation Extractability: Let Sim = (Sim0,Sim1) be the simulator given by
the adaptive multi-theorem computational zero-knowledge property. There exists
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a QPT extractor Ext such that for every QPT algorithm A and sufficiently large
λ ∈ N, the following probability is, at most, negl(λ).

Pr

 (crs, td)← Sim0(1
λ)

(x,π)← ASim1(crs,td,·,·)(crs)
w ← Ext(crs, td,x,π)

: Verify(crs,x,π) = 1 ∧ (x,w) /∈ R ∧ x /∈ Q

 ,

where Q is the list of queries from A to Sim1.

Remark 3.1. It is known [27,47,48,33] that multi-theorem simulation-extractable
NIZK, i.e., Definition 3.5, satisfies Definition 3.6 since adaptive multi-theorem
zero-knowledge implies adaptive single-theorem zero-knowledge property, and
also simulation-soundness implies adaptive computational soundness. Moreover,
one can show that the simulation extractability implies simulation soundness.

Theorem 3.9. [48,33] Assuming a quantum-secure one-way function and a
quantum-secure IND-CPA secure encryption scheme, any quantum-secure NIZK
for NP can be transformed into a quantum-secure simulation-extractable NIZK.

Corollary 3.1. Assuming polynomial quantum hardness of learning with errors,
there exists a quantum-secure simulation-extractable NIZK for NP exists.

Proof. This follows from Theorems 3.8 and 3.9; IND-CPA encryption can be
achieved from the quantum hardness of learning with errors [46].

Finally, we provide the cryptographic definition of the signature of knowledge.

Definition 3.7. (Signature of Knowledge) Let R be an NP relation with
language L and message spaceM. Σ = ⟨Setup,Sign,Verify⟩ is a quantum-secure
SimExt-secure signature of knowledge if the following syntax and properties hold.

• (crs, td)← Setup(1λ) : on input λ, output a crs and trapdoor td.
• σ ← Sign(crs,x,w,m) : on input crs, pair (x,w) ∈ R, and message m ∈ M,

output a signature of knowledge σ to the message m.
• {0, 1} ← Verify(crs,x,m,σ) : on input crs, x, m, and σ, accept or reject.

Correctness: For every λ ∈ N, pair (x,w) ∈ R and message m ∈M,

Pr

[
(crs, td)← Setup(1λ)
σ ← Sign(crs,x,w,m)

: Verify(crs,x,m,σ) = 1

]
= 1.

Simulation: There exist a QPT simulator algorithm Sim = (Sim0,Sim1) such
that for every QPT algorithm A and sufficiently large λ ∈ N,∣∣∣Pr [(crs, td)← Setup(1λ) : ASign(crs,·,·,·)(crs) = 1

]
−

Pr
[
(crs, td)← Sim0(1

λ) : ASim1(crs,td,·,·,·)(crs) = 1
] ∣∣∣ ≤ negl(λ),
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where the simulator algorithm Sim1 discards its fifth input value.

Extraction: Let Sim = (Sim0,Sim1) be the simulators given by the simulation
property. There exist a QPT extractor algorithm Ext such that for every QPT
algorithm A and sufficiently large λ ∈ N,

Pr

 (crs, td)← Sim0(1
λ)

(x,m,σ)← ASim1(crs,td,·,·,·)(crs)
w ← Ext(crs, td,x,m,σ)

:
Verify(crs,x,m,σ) = 1
∧ (x,w) /∈ R ∧ (x,m) /∈ Q

 ≤ negl(λ).

where Q is the list of queries from A to Sim1.

Theorem 3.10. [24,33] Given quantum-secure simulation extractable NIZK
for NP, there exists a quantum-secure SimExt-secure signature of knowledge.

4 NIZK Arguments with Certified Deletion

In this section, we introduce the notion of a non-interactive zero-knowledge with
certified deletion (NIZK-CD) and define its security properties. This primitive
allows to transform any NIZK argument for NP to a NIZK construction where
proofs can be deleted by the recipients after being verified, and deletion can be
substantiated via a deletion certificate. We provide two different definitions of
NIZK-CD. The first one is motivated by simplicity, establishes a single-theorem
NIZK-CD, and guarantees that no adversary receiving honestly generated proofs
for hard NP instances can output both an accepting proof and a valid deletion
certificate. In the second definition, we present a multi-theorem NIZK-CD with
a guarantee that from any adversary, even having the oracle access to NIZK-CD
simulators, returning both an accepting proof and deletion certificate for some
instance, one can extract a valid witness corresponding to the instance.

Definition 4.1. (Hard Distribution) Given an NP relation R, an efficiently
samplable distribution (X ,W) over R is hard if for every QPT algorithm A and
sufficiently large security parameter λ,

Pr[(x,w)← (X ,W) : (x,A(x)) ∈ R] ≤ negl(λ).

Definition 4.2. (NIZK with Certified Deletion) Let any NP relation R
with language L. Γ = ⟨Setup,Prove,Verify,Delete,Certify⟩ is a NIZK-CD if it
satisfies the following syntax and properties.

• (crs, td)← Setup(1λ): on input λ, output a classical crs and trapdoor td.
• (π, ck) ← Prove(crs,x,w): on input crs and a hard NP instance-witness pair
(x,w) ∈ R, output a quantum proof π and a classical certification key ck.
• {0, 1} ← Verify(crs,x,π): on input crs, x, and π, output accept or reject.
• cert← Delete(π): on input π, output a classical deletion certificate cert.
• {0, 1} ← Certify(ck, cert): on input ck and cert, output accept or reject.
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Perfect Completeness: For every λ ∈ N and every (x,w) ∈ R,

Pr

 (crs, td)← Setup(1λ)
(π, ck)← Prove(crs,x,w)

cert← Delete(π)
:

Verify(crs,x,π) = 1
∧

Certify(ck, cert) = 1

 = 1.

Adaptive Computational Soundness: For every QPT algorithm A and a
sufficiently large security parameter λ,

Pr

[
(crs, td)← Setup(1λ)

(x,π)← A(crs) : Verify(crs,x,π) = 1 ∧ x /∈ L
]
≤ negl(λ).

Adaptive Computational Zero-Knowledge: There exists a QPT algorithm
Sim = (Sim0,Sim1) such that for every QPT algorithm A, QPT distinguisher D,
sufficiently large λ,∣∣∣∣∣Pr

[
(crs, td)← Setup(1λ)
(x,w, ξ)← A(crs)

(π, ck)← Prove(crs,x,w)
: D(crs,x,π, ξ) = 1

]
−

Pr

[
(crs, td)← Sim0(1

λ)
(x,w, ξ)← A(crs)

(π, ck)← Sim1(crs, td,x)
: D(crs,x,π, ξ) = 1

]∣∣∣∣∣ ≤ negl(λ).

Deletion Security: For every QPT algorithm A, sufficiently large λ, and hard
distribution (X ,W) over R,

Pr


(crs, td)← Setup(1λ)
(x,w)← (X ,W)

(π, ck)← Prove(crs,x,w)
(π∗, cert)← A(crs,x,π)

:
Verify(crs,x,π∗) = 1

∧
Certify(ck, cert) = 1

 ≤ negl(λ).

We present the definition of multi-theorem simulation-extractable NIZK-CD.

Definition 4.3. (Simulation-Extractable NIZK with Certified Deletion)
Let R be an NP with language L. Γ = ⟨Setup,Prove,Verify,Delete,Certify⟩ is a
simulation-extractable NIZK-CD if it satisfies the properties in Definition 4.2
and the following zero-knowledge, simulation extraction, and deletion properties.

Adaptive Multi-Theorem Computational Zero-Knowledge: There exists
QPT simulator algorithm Sim = (Sim0,Sim1) such that for every QPT algorithm
A and sufficiently large λ ∈ N,∣∣∣Pr [(crs, td)← Setup(1λ) : AProve(crs,·,·)(crs) = 1

]
−

Pr
[
(crs, td)← Sim0(1

λ) : ASim1(crs,td,·,·)(crs) = 1
] ∣∣∣ ≤ negl(λ),

where A only receives proofs from the oracles, and certifying keys are discarded.
Moreover, the simulation algorithm Sim1 discards its fourth input.
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Simulation Extractability: Let Sim = (Sim0,Sim1) be the simulator given
by the adaptive multi-theorem computational zero-knowledge property. A QPT
extractor Ext exists where for any QPT adversary A and sufficiently large λ ∈ N,

Pr

 (crs, td)← Sim0(1
λ)

(x,π)← ASim1(crs,td,·,·)(crs)
w ← Ext(crs, td,x,π)

:
Verify(crs,x,π) = 1
∧(x,w) /∈ R ∧ x /∈ Q

 ≤ negl(λ),

where Q is the list of queries from A to Sim1, and A only receives the proof.

Simulation Extractability with Deletion: Let (Sim0,Sim1) be simulators
given by the multi-theorem zero knowledge. There exists a QPT extractor Ext-Del
s.t. for every QPT algorithm A = (A0,A1) and every sufficiently large λ ∈ N,

Pr


(crs, td)← Sim0(1

λ)

(x, ξ)← ASim1(crs,td,·,·)
0 (crs)

(π, ck)← Sim1(crs, td,x,⊥)
(π∗, cert)← ASim1(crs,td,·,·)

1 (crs, ξ,x,π)
w ← Ext-Del(crs, td,x,π∗, cert)

:

Verify(crs,x,π∗) = 1
∧

[Certify(ck, cert) = 1 ∨ (x,w) /∈ R] ∧ x /∈ Q

 ≤ negl(λ),

where Q is the list of queries, and A only receives the proof from the oracle Sim1.

Remark 4.1. In our constructions, Setup and Certify are classical while Prove,
Verify, and Delete are quantum algorithms. Moreover, the Prove algorithm might
be interactive between a classical prover and a quantum verifier, i.e., the prover
remotely prepares required quantum states in the verifier’s device.

We note that the connection between different notions of zero-knowledge,
soundness, and extraction for NIZK arguments that are described in Remark 3.1
also holds for NIZK-CD. The following states that the simulation extractability
with deletion implies both simulation extractibility and deletion security.

Theorem 4.1. Simulation extractability with deletion defined in Definition 4.3
implies simulation extractibility as defined in Definition 4.3 and deletion security
as defined in Definition 4.2.

Proof. First, consider an adversary B that breaks simulation extractibility with a
non-negligible advantage. One can build an adversary A = (A0,A1) that breaks
simulation extractibility with deletion with the same advantage. In particular,
A0 runs B to get an instance x and a corresponding proof π∗. The instance x
is submitted to the simulator Sim1, and π∗ is included in ξ. The algorithm A1

receives a proof π from Sim1, which can be deleted to generate a valid deletion
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certificate cert. Afterwards, A1 can return produced cert as a valid certificate
and π∗ included in ξ as an accepting proof corresponding to the instance x.

Similarly, consider an adversary B that can break the deletion security with
a non-negligible advantage. One can build an adversary A = (A0,A1) where
A0 samples a hard instance x and submits it to Sim1. A1 receives a proof π
corresponding to the instance x from the oracle. Then, A1 runs B on input x
and π to get a valid deletion certificate and an accepting transcript where the
success probability is the same as the success probability of B.

5 Constructions of NIZK-CD from Standard Assumptions

In this section, we propose NIZK-CD constructions from standard cryptographic
assumptions. First, we propose a construction where the required assumption is
a quantum-hard one-way function. Second, we replace quantum communication
with entirely classical communication under the standard LWE assumption.

5.1 NIZK-CD from OWF with Classical Certificates

We show that NIZK-CD can be constructed from one-way functions.

Theorem 5.1. Assuming quantum-hard one-way functions and quantum-secure
simulation-extractable NIZK, there exists a simulation-extractable NIZK-CD.

Proof. Assume Σ = ⟨Setup,Com⟩ to be a quantum secure, statistically binding
and computationally hiding which can be realized from one-way functions [26],
and Π = ⟨Setup,Prove,Verify⟩ to be any simulation-extractable NIZK. Our
NIZK-CD construction is as follows.

• (crs, td)← Setup(1λ): crsΣ , tdΣ ← Σ.Setup(1λ) and crsΠ , tdΠ ← Π.Setup(1λ),
and output the parameters crs := (crsΣ , crsΠ) and td := (tdΣ , tdΠ).

• (π, ck)← Prove(crs,x,w): For n(λ), ℓ(λ), sample randomness ri,b ← {0, 1}ℓ(λ),
and ∀i ∈ [n],∀b ∈ {0, 1} compute ci,b = Com(crsΣ , b

n(λ), ri,b). Then, given the
instance x∗ := (x, {ci,b}i∈[n],b∈{0,1}) and witness w∗ := (w, {ri,b}i∈[n],b∈{0,1}),
invoke Π.Prove(crs,x∗,w∗) and generate a NIZK proof σ for the relation R∗,

(x,w) ∈ R
∨
i∈[n]

∧b∈{0,1} ci,b = Com(crsΣ , (1− b)n(λ), ri,b). (1)

Given uniform bits ui ← {0, 1} for all i ∈ [n], prepare

|ψ⟩ :=
⊗
i∈[n]

1√
2
(|0⟩|ri,0⟩+ (−1)ui |1⟩|ri,1⟩) . (2)

Output π := ({ci,b}i∈[n],b∈{0,1},σ, |ψ⟩) and ck := {ui, ri,b}i∈[n],b∈{0,1}.
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• {0, 1} ← Verify(crs,x,π): Parse π as {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩, run the verifier
vσ ← Π.Verify(crs,x∗,σ), where x∗ := (x, {ci,b}i∈[n],b∈{0,1}). Let U com

c0,c1 be a
unitary operation with respect to the commitments c0 and c1 as follows.

|b⟩|r⟩|0⟩
U com

c0,c1−−−−→ |b⟩|r⟩|Cmt− Cmp(crsΣ , b, r, cb)⟩, (3)

where the commit-and-compare function is defined as below.

Cmt− Cmp(crsΣ , b, r, cb) =

{
1, Com(crsΣ , b

n(λ), r) = cb

0, Otherwise
(4)

Add ancilla qubits, and apply U =
⊗

i∈[n] U
com
ci,0,ci,1 to |ψ⟩,

U−→
⊗
i∈[n]

1√
2
(|0⟩|ri,0⟩|Cmt− Cmp(crsΣ , 0, ri,0, ci,0)⟩

+ (−1)ui |1⟩|ri,1⟩|Cmt− Cmp(crsΣ , 1, ri,1, ci,1)⟩). (5)

∀i ∈ [n], measure the right-most registers vi = Cmt− Cmp(crsΣ , 0, ri,0, ci,0).
Output v = vσ

∧
i∈[n] vi, where v = 1 indicates accept and v = 0 otherwise.

• cert ← Delete(π): Parse π as {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩ =
⊗

i∈[n]|ψi⟩ such that
|ψi⟩ =

∑
b∈{0,1}

1√
2
(−1)b·ui |b⟩|ri,b⟩. ∀i ∈ [n], measure each state |ψi⟩ in the

Hadamard basis, yielding an outcome string di ∈ {0, 1}ℓ(λ) such that it holds
that di · (ri,0 ⊕ ri,1) = ui. We define the deletion certificate cert := {di}i∈[n].

• {0, 1} ← Certify(ck, cert): Parse ck as {ui, ri,b}i∈[n],b∈{0,1} and cert as {di}i∈[n].
Validate whether for all i ∈ [n] it holds that di · (ri,0 ⊕ ri,1) = ui.

Next, we prove each of the security properties of the proposed construction.

Perfect Completeness: Completeness must be shown with respect to both
proof verification and certificate validation. Consider the former case. Following
the perfect completeness ofΠ, we ensure that the proof σ is accepting and vσ = 1
with a probability of 1. Then, it suffices to show that for all i ∈ [n], vi = 1. As the
commitment algorithm Com is deterministic, and the commitments are generated
honestly, i.e., ci = Com(crsΣ , b

n(λ)
i , ri,b), we ensure that ∀i ∈ [n] and ∀b ∈ {0, 1},

we have Cmt− Cmp(crsΣ , bi, ri,b, ci,b) = 1. Therefore, the bit vi is measured as
one with a probability of 1. Consider completeness with respect to deletion. We
parse the sate |ψ⟩ as

⊗
i∈[n]|ψi⟩, s.t. |ψi⟩ =

∑
b∈{0,1}

1√
2
(−1)b·ui |b⟩|ri,b⟩. The

verifier measures each |ψi⟩ in the Hadamard basis, which yields an outcome
string di ∈ {0, 1}ℓ(λ), and it holds that ui = di · (ri,0 ⊕ ri,1). Therefore, the
Certify algorithm always accepts the deletion certificate cert.

Adaptive Multi-Theorem Computational Zero-Knowledge: Consider the
simulators Π.Sim = (Π.Sim0,Π.Sim1). We then show Sim = (Sim0,Sim1) for
adaptive multi-theorem computational zero-knowledge of our construction.
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• (crs, td) ← Sim0(1
λ) : Run the algorithms (crsΠ , tdΠ) ← Π.Sim1(1

λ) and
(crsΣ , tdΣ)← Σ.Setup(1λ). Output crs := (crsΠ , crsΣ) and td := (tdΠ , tdΣ).

• (π, ck) ← Sim1(crs, td,x) : Sample r′i,b ← {0, 1}ℓ(λ) and ∀i ∈ [n],∀b ∈ {0, 1}
compute c′i,b = Com(crsΣ , b

n(λ), r′i,b). Given x∗ := (x, {c′i,b}i∈[n],b∈{0,1}), query
Π.Sim1 on input x∗ to get σ′. Sample u′i ← {0, 1}, prepare |ψ′⟩, and output the
proof π := ({c′i,b}i∈[n],b∈{0,1},σ′, |ψ′⟩) and certificate ck := {u′i, r′i,b}i∈[n],b∈{0,1}.

Reduction: Suppose that there exists a QPT adversary algorithm A such that
for some polynomial p(λ),∣∣∣Pr [crs, td← Setup(1λ) : AProve(crs,·,·)(crs) = 1

]
−

Pr
[
crs, td← Sim0(1

λ) : ASim1(crs,td,·,·)(crs) = 1
] ∣∣∣ ≥ 1

p(λ)
.

We construct a QPT adversary B for the adaptive multi-theorem computational
zero-knowledge property of the underlying NIZK Π as follows.

1. Receive crsΠ from Π.Setup or Π.Sim0, crsΣ from Σ.Setup, and then send
crs := (crsΠ , crsΣ) to the adversary A.

2. For each query (x,w), ri,b ← {0, 1}ℓ(λ), ci,b = Com(crsΣ , b
n(λ), ri,b) for all

i ∈ [n] and b ∈ {0, 1}. Then, given instance x∗ := (x, {ci,b}i∈[n],b∈{0,1}) and
witness w∗ := (w, {ri,b}i∈[n],b∈{0,1}), receive the real or simulated proof σ
by query either Prove on input (x∗,w∗) or Π.Sim1 on input x∗. Moreover,
sample bits ui ← {0, 1} and prepares |ψ⟩ as defined in Equation 2. The proof
π = {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩ is sent to the adversary algorithm A.

3. Output the result of A.

As commitment randomnesses {ri,b}i∈[n],b∈{0,1} and exponents {ui}i∈[n],b∈{0,1}
are uniformly sampled, the real and simulated quantum states, i.e., |ψ⟩ and
|ψ′⟩, respectively, are statistically indistinguishable. Moreover, computational
hiding of the commitment scheme Com ensures that two sets {ci,b}i∈[n],b∈{0,1}
and {c′i,b}i∈[n],b∈{0,1} are computationally indistinguishable. Thus, B would have
a similar and non-negligible polynomial advantage to A in breaking the adaptive
multi-theorem computational zero-knowledge property of Π, i.e., 1

p(λ) − negl(λ).

Simulation Extractability with Deletion: One can view the commitment
algorithm Com : {0, 1}ℓ(λ)+1 as one-way function. Assume that there exists an
adversary that, on input Com(crsΣ , b

n(λ), r), can invert the function and extract
b and r with a non-negligible probability. Then, the adversary can break the
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hiding or binding properties with the same advantage. Lemma 3.6 implies that,

Pr

 ∀i ∈ [n] : ri,0, ri,1 ← {0, 1}2ℓ(λ),ui ← {0, 1}
∀i ∈ [n] : ci,0 = Com(crsΣ , 0

n(λ), ri,0) ∧ ci,1 = Com(crsΣ , 1
n(λ), ri,1)

{(bi, ri, di)}i∈[n] ← A(⊗i∈[n]
|0,ri,0⟩+(−1)ui |1,ri,1⟩√

2
, {ci,b}i,b)

:

∧i∈[n]Com(crsΣ , b
n(λ)
i , ri) ∈ {ci,0, ci,1}
∧

∧i∈[n]di · (ri,0 ⊕ ri,1) = ui

 ≤ negl(λ)

Let Π.Sim = (Π.Sim0,Π.Sim1) be the simulators of Π and Sim = (Sim0,Sim1)
be the simulators of our construction given by the corresponding multi-theorem
zero-knowledge. Let Π.Ext be the extractor given by the simulation extractibility
of Π. We show an extractor Ext-Del that satisfies simulation extractibility with
deletion for our proposed construction as follows.

1. On input crs, td, x, π, and cert, parse the proof π as {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩.
2. Query Π.Ext on input x∗ and σ and receive the witness w∗.
3. Output w∗ as w.

Reduction: Consider the case that simulation extractibility with deletion does
not hold, i.e., there exists a QPT adversary algorithm A = (A0,A1) such that
given the extractor Ext-Del, and some polynomial p(λ),

Pr


(crs, td)← Sim0(1

λ)

(x, ξ)← ASim1(crs,td,·,·)
0 (crs)

(π, ck)← Sim1(crs, td,x)

(π∗, cert)← ASim1(crs,td,·,·)
1 (crs, ξ,x,π)

w ← Ext-Del(crs, td,x,π∗, cert)

:

Verify(crs,x,π∗) = 1
∧

[Certify(ck, cert) = 1 ∨ (x,w) /∈ R] ∧ x /∈ Q

 ≥ 1

p(λ)
,

Since Sim1 forwards queries to Π.Sim1, we know that x∗ is not queried to
Π.Sim1. We parse π∗ as {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩. Since Verify(crs,x,π∗) = 1,
we know that vσ = Π.Verify(crsΠ ,x∗,σ) = 1. The witness w∗ returned by
Π.Ext is a valid witness for R∗. Thus, w∗ must include w s.t. (x,w) ∈ R,
or, for an i ∈ [n], it includes {ri,b}b∈{0,1} s.t. ci,0 = Com(crsΣ , 1

n(λ), ri,0) and
ci,1 = Com(crsΣ , 0

n(λ), ri,1). As Verify(crs,x,π∗) = 1, we can conclude that the
measurement outcomes are accepted, i.e., vi = 1 for all i ∈ [n]. According to the
definition of U in Equation 5, each commitment ci,b is statistically bound to the
message b. Thus, w∗ must include a satisfying witness w for R; otherwise, the
statistical binding property of the commitment scheme can be broken by running
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Ext-Del to obtain one of the openings and measuring |ψ⟩ in the standard basis
to obtain the other opening for the same commitment value.

Then, as (x,w) ∈ R, the adversary needs to output a valid cert = {di}i∈[n] to
pass the experiment, that is, ∀i ∈ [n], di ·(ri,0⊕ri,1) = ui. In this case, measuring
|ψ⟩ in the standard basis yields {ri,b}i∈[n] such that ci,0 = Com(crsΣ , b

n(λ), ri,b);
This contradicts the adaptive hard-core bit property. More precisely, we can build
an algorithm B to break adaptive hard-core bit, where on input {ci,b}i∈[n],b∈{0,1},
|ψ⟩ = ⊗i∈[n]

|ri,0⟩+(−1)ui |ri,1⟩√
2

, for an instance x, queries x∗ = (x, {ci,b}i∈[n],b∈{0,1})
to Π.Sim1 and obtains a proof σ, generates π := ({ci,b}i∈[n],b∈{0,1},σ, |ψ⟩), and
queries (x,π) to A1 to receive an accepting proof π∗ and a valid certificate cert. B
can parse π∗ as {c∗i,b}i∈[n],b∈{0,1},σ∗, |ψ∗⟩ and cert as {di}i∈[n]. Measuring |ψ∗⟩
in the standard basis yields {r∗i }i∈[n] such that c∗i,0 = Com(crsΣ , 0

n(λ), r∗i ) or
c∗i,1 = Com(crsΣ , 1

n(λ), r∗i ). B returns {(bi, r∗i , di)}i∈[n] to pass the experiment.
As we see, having A, one can attack the binding property of the commitment

scheme, simulation extractability of Π, or adaptive hard-core bit property of the
commitments with advantage ≥ 1

p(λ) − negl(λ).

5.2 NIZK-CD from LWE with Classical Communication

In this section, we show that our NIZK-CD with classical communication.
Theorem 5.2. Assuming quantum hardness of LWE and any quantum-secure
simulation-extractable NIZK, there exists a simulation-extractable NIZK-CD s.t.
the entire communication and the prover algorithm are classical.

Proof. It is well known [38] that, given LWE, there exists a statistically binding,
computationally hiding, and computationally equivocal commitment, which we
denote by Σ = ⟨Setup,Com⟩. Let F := {fk,b : X → DY}k∈K,b∈{0,1} be an NTCF
family. Let Π = ⟨Setup,Prove,Verify⟩ be a simulation-extractable NIZK. Our
NIZK-CD construction with classical communication is described as follows.
• (crs, td)← Setup(1λ): crsΣ , tdΣ ← Σ.Setup(1λ) and crsΠ , tdΠ ← Π.Setup(1λ),

and output the parameters crs := (crsΣ , crsΠ) and td := (tdΣ , tdΠ).
• (ck,π)← Prove(crs,x,w): For n(λ), ℓ(λ), it proceeds in two phases.

State Preparation: Executed interactively between the prover and the verifier.
1. The prover runs NTCF.GenF , generates keys {ki}i∈[n], trapdoors {tdki

}i∈[n],
and sends the keys to the verifier. The verifier prepares the following state.

|ϕ⟩ :=
⊗
i∈[n]

1√
|X |

∑
x∈X
|0⟩|x⟩+ |1⟩|x⟩ (6)

From Definition 3.2, |ϕ′⟩ can be turned into the following superposition.

|ϕ′⟩ :=
⊗
i∈[n]

1√
2|X |

∑
x∈X ,y∈Y

√
(f ′ki,0

(x))(y)|0⟩|x⟩|y⟩

+
1√
2|X |

∑
x∈X ,y∈Y

√
(f ′ki,1

(x))(y)|1⟩|x⟩|y⟩ (7)
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The verifier measures images, i.e., |y⟩, in the standard basis, yielding,⊗
i∈[n]

1√
2
(|0⟩|xi,0⟩+ |1⟩|xi,1⟩) (8)

Here, for all i ∈ [n], the tuple (xi,0,xi,1) ∈ X 2 is a claw with respect to
the measured image yi ∈ Y. Finally, the verifier sends the images {yi}i∈[n]
to the prover and applies the injection J : X → {0, 1}ℓ(λ), as defined in
Definition 3.2, in the above superposition and prepares the state |ψ⟩ as

|ψ⟩ :=
⊗
i∈[n]

1

2
(|0⟩|ri,0⟩+ |1⟩|ri,1⟩)

∀i ∈ [n], b ∈ {0, 1} : ri,b = J(xi,b). (9)

2. For all i ∈ [n], b ∈ {0, 1}, prover runs Inv(tdk, b, yi) and J(xi,b) to get ri,b.

Proof Generation: The remaining parts are similar to Section 5.1. The prover
generates commitments ∀i ∈ [n],∀b ∈ {0, 1}, ci,b = Com(crsΣ , b

n(λ), ri,b).
Given x∗ := (x, {ci,b}i∈[n],b∈{0,1}), w∗ := (w, {ri,b}i∈[n],b∈{0,1}), the prover
runs Π.Prove(crs,x∗,w∗) and generates a NIZK proof σ for R∗, as defined in
Equation 1. Output π = {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩ and ck = {ri,b}i∈[n],b∈{0,1}.

• {0, 1} ← Verify(crs,x,π): The verifier runs vσ ← Π.Verify(crs,x∗,σ). Let U com
c0,c1

and U be as before, i.e., Equation 3. Using U , the state in Equation 5 is
prepared. Then, the verifier for all i ∈ [n], measures the commit-and-compare
registers vi = Cmt− Cmp(crsΣ , 0, ri,0, ci,0). The outcome is v = vσ

∧
i∈[n] vi.

• cert← Delete(π): The proof π is parsed as {ci,b}i∈[n],b∈{0,1},σ, |ψ⟩ and also the
state |ψ⟩ as

⊗
i∈[n]|ψi⟩ such that |ψi⟩ =

∑
b∈{0,1}

1
2 |b⟩|ri,b⟩. The verifier then

for all i ∈ [n] measures the state |ψi⟩ in the Hadamard basis to get strings
di ∈ {0, 1}ℓ(λ) such that di · (ri,0 ⊕ ri,1) = 0. We define cert := {di}i∈[n].

• {0, 1} ← Certify(ck, cert): The key ck is parsed as {ri,b}i∈[n],b∈{0,1} and cert as
{di}i∈[n]. Validate whether for all i ∈ [n] it holds di · (ri,0 ⊕ ri,1) = 0.

Then, we prove each of the security properties of our NIZK-CD. Reductions
for perfect completeness, adaptive multi-theorem computational zero-knowledge,
and simulation extractability with deletion work basically similar to Section 5.1.

Perfect Completeness: Again, we first show completeness with respect to
proof verification and then certificate validation. Consider the former case. The
perfect completeness of Π ensures that vσ = 1 with a probability of 1. As
the inversion function Inv and the map J are deterministic, the randomnesses
computed by the prover using trapdoor tdk and the map J are the same as the
randomnesses encoded in the state |ψ⟩. Moreover, as Com is deterministic and the
commitments are generated honestly, we have Cmt− Cmp(crsΣ , bi, ri,b, ci,b) = 1.
For all i ∈ [n], vi is measured as 1. For completeness with respect to deletion, we
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have |ψ⟩ =
⊗

i∈[n]|ψi⟩, s.t. |ψi⟩ =
∑

b∈{0,1}
1
2 |b⟩|ri,b⟩. The verifier measures each

|ψi⟩ in the Hadamard basis to obtain di ∈ {0, 1}ℓ(λ), where di · (ri,0 ⊕ ri,1) = 0.

Adaptive Multi-Theorem Computational Zero-Knowledge: Algorithms
Π.Sim = (Π.Sim0,Π.Sim1) are simulators of Π. Sim = (Sim0,Sim1) is as:

• (crs, td) ← Sim0(1
λ) : Run the algorithms (crsΠ , tdΠ) ← Π.Sim1(1

λ) and
(crsΣ , tdΣ)← Σ.Setup(1λ). Output crs := (crsΠ , crsΣ) and td := (tdΠ , tdΣ).

• (π, ck) ← Sim1(crs, td,x) : Run NTCF.GenF , generate {k′i}i∈[n], {tdk′
i
}i∈[n],

and send the key k′ to the adversary. For all i ∈ [n], on input the image
y′i ∈ Y, compute x′i,0 ← Inv(tdk′ , 0, y′i) and x′i,1 ← Inv(tdk′ , 1, y′i), and the
randomnesses r′i,0 = J(x′i,0) and r′i,1 = J(x′i,1). Compute ∀i ∈ [n],∀b ∈ {0, 1},
c′i,b = Com(crsΣ , b

n(λ), r′i,b). Let x∗ := (x, {c′i,b}i∈[n],b∈{0,1}). Query Π.Sim1 on
input x∗ to get a proof σ′. Prepare |ψ′⟩, as in Equation 9, and output the proof
π := ({c′i,b}i∈[n],b∈{0,1},σ′, |ψ′⟩) and the certificate ck := {u′i, r′i,b}i∈[n],b∈{0,1}.

Reduction: It proceeds similarly to the reduction in Section 5.1. The additional
note is that the keys k′ are uniformly sampled by NTCF.GenF ; therefore, they
are indistinguishable from the real key k.

Simulation Extractability with Deletion: We can build an extractor Ext-Del
that satisfies simulation extractibility with deletion and present the reduction
the same as Section 5.1. The adaptive hard-core bit property of NTCF hash
functions, as defined in Definition 3.2, prevents the adversary from deviating
from the protocol. Otherwise, one can use adversary A to violate at least one
of these properties: the statistical binding of the commitment, the simulation
extractability of Π, or the adaptive hard-core bit of the NTCF functions.

6 Revocable Signatures of Knowledge and Credentials

In this section, we discuss several applications of NIZK-CD including revocable
signature of knowledge and revocable anonymous credentials.

6.1 Revocable Signature of Knowledge

We present the definition and construction of revocable signature of knowledge.

Definition 6.1. (Revocable Signature of Knowledge) Let NP relation R
with language L and message spaceM. ΣR = ⟨Setup,Sign,Verify,Delete,Certify⟩
is a revocable signature of knowledge if it satisfies the following.

• (crs, td)← Setup(1λ) : on input λ, output crs and trapdoor td.
• (σ, ck) ← Sign(crs,x,w,m) : on input crs, (x,w) ∈ R, m ∈ M, output a

signature of knowledge σ and a certification key ck.
• {0, 1} ← Verify(crs,x,m,σ) : on input crs, x, m, σ, accept or reject.
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• cert← Delete(σ): on input σ, output a deletion certificate cert.
• {0, 1} ← Certify(ck, cert): on input ck and cert, output accept or reject.

Correctness: For every λ ∈ N, pair (x,w) ∈ R and message m ∈M,

Pr

 crs← Setup(1λ)
(σ, ck)← Sign(crs,x,w,m)

cert← Delete(σ)
:
Verify(crs,x,m,σ) = 1

∧
Certify(ck, cert) = 1

 = 1.

Simulation: There exist a QPT simulator algorithm Sim = (Sim0,Sim1) such
that for every QPT algorithm A and sufficiently large λ ∈ N,∣∣∣Pr [crs← Setup(1λ) : ASign(crs,·,·,·)(crs) = 1

]
−

Pr
[
(crs, td)← Sim0(1

λ) : ASim1(crs,td,·,·,·)(crs) = 1
] ∣∣∣ ≤ negl(λ).

where Sim1 discards its fifth input value.

Extraction with Deletion: Let Sim = (Sim0,Sim1) be from the simulation
property. There exists a QPT extractor algorithm Ext-Del such that for every
QPT algorithm A = (A0,A1) and sufficiently large λ ∈ N,

Pr


(crs, td)← Sim0(1

λ)

(x,m)← ASim1(crs,td,·,·)
0 (crs)

(σ, ck)← Sim1(crs, td,x,m)

(σ∗, cert)← ASim1(crs,td,·,·)
1 (crs,σ)

w ← Ext-Del(crs, td,x,m,σ∗, cert)

:

Verify(crs,x,m,σ∗) = 1
∧

[Certify(ck, cert) = 1 ∨ (x,w) /∈ R] ∧ (x,m) /∈ Q

 ≤ negl(λ),

where Q is the list of queries from A to Sim1.

Remark 6.1. Similarly to NIZK-CD, in our constructions, Setup and Certify are
classical, while Sign, Verify, and Delete are quantum algorithms. Except for σ,
which includes quantum information, other parameters are classical. Moreover,
Sign might be interactive between a classical signer and a quantum verifier.

Remark 6.2. The extraction with deletion as defined in Definition 6.1 implies the
extraction as defined in Definition 3.7; it can be proved similarly to Theorem 4.1.

Theorem 6.1. Assuming any non-interactive simulation-extractable, adaptive
multi-theorem computational zero-knowledge with certified deletion, there exists
a revocable signature of knowledge.
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Proof. Let Γ = ⟨Setup,Prove,Verify,Delete,Certify⟩ be a simulation-extractable
NIZK-CD.

• crs← Setup(1λ): Output crs← Γ .Setup(1λ).

• (σ, ck)← Sign(crs,x,w,m): Let x∗ = (x,m) be instance, w∗ = w witness for

L∗ = {(x,m) : ∃w s.t. (x,w) ∈ R}.

Then, we have (σ, ck)← Γ .Prove(crs,x∗,w∗) with respect to L∗.

• {0, 1} ← Verify(crs,x,m,σ): Given x∗ = (x,m), output v = Γ .Verify(crs,x∗,σ).

• cert← Delete(σ): Output cert = Γ .Delete(σ).

• {0, 1} ← Certify(ck, cert): Output v = Γ .Certify(ck, cert).

Next, we prove the correctness, simulation, and extraction with deletion.

Correctness: Since the scheme Γ satisfies perfect completeness, for any honestly
generated σ and cert, both satisfy Verify and Certify, respectively.

Simulation: Let Γ .Sim = (Γ .Sim0,Γ .Sim1) be the simulators of Γ . We build
Sim = (Sim0,Sim1) for our construction as follows.

• (crs, td)← Sim0(1
λ) : Output (crsΓ , tdΓ )← Γ .Sim1(1

λ).

• σ, ck← Sim1(crs, td,x,m) : Output (σ, ck)← Γ .Sim1(crs, td,x
∗ := (x,m)).

Reduction: Suppose a QPT adversary A exists such that for polynomial p(λ), it
breaks the simulation property of ΣR with an advantage greater than 1

p(λ) . We
construct a QPT adversary B for the zero-knowledge property of Γ as follows.

1. Receive real or simulated crsΓ and send it to the adversary A.

2. For each query (x,m,w), define x∗ := (x,m) and witness w∗ := w, receive
the signature σ by a query to Sign or Γ .Sim1, and send σ to A.

3. Output the result of A.

B has the same advantage 1
p(λ) in breaking the zero-knowledge property of Γ .

Extraction with deletion: Let Γ .Sim = (Γ .Sim0,Γ .Sim1) be the simulators
of Γ and Sim = (Sim0,Sim1) be the simulators of our construction. Let Γ .Ext be
the extractor of Γ . We show an extractor Ext-Del for extractibility with deletion.

1. On input crs, td, x, m, σ, and cert, run Π.Ext(crs, td, (x,m),σ, cert), and
receive the witness w∗.

2. Output w∗ as w.

Reduction: Let A = (A0,A1) a QPT algorithm such that given the extractor
Ext-Del, and a polynomial p(λ), it breaks the extraction with deletion property
of ΣR with an advantage greater than 1

p(λ) . Then, one can build an adversary
algorithm B = (B0,B1) to break the simulation extractibility with deletion of Γ ;
B0 outputs x∗ = (x,m) from A0 and B1 outputs (σ∗, cert) from A1.
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Corollary 6.1. Assuming quantum-hard one-way functions and quantum-secure
simulation-extractable NIZK, there exists revocable signature of knowledge.

Proof. This follows from Theorem 5.1 and Theorem 6.1.

Corollary 6.2. Given polynomial quantum hardness of the LWE problem and
quantum-secure simulation-extractable NIZK, there exists a revocable signature
of knowledge with classical communication and classical signing algorithms.

Proof. This follows from Theorem 5.2 and Theorem 6.1.

6.2 Revocable Anonymous Credentials

We define and construct revocable anonymous credentials.

Definition 6.2. (Revocable Anonymous Credentials) [33] Any scheme
∆R = ⟨Setup,Sign,Verify,Delete,Certify⟩ is a revocable anonymous credentials
with respect to a set of accesses {Sλ}λ∈N if it satisfies the following.

• (nym, sk)← IssuerSetup(1λ) : output a pseudonym nym with a secret key sk.
• (cred, ck) ← Issue(nym, sk, access) : on input nym, sk and requested access
access, output an anonymous credential cred and a certification key ck.
• {0, 1} ← VerifyCred(nym, access, cred) : on input nym, access, and cred, output
1 as accept or 0 as reject for validating the anonymous credentials.
• cert← Delete(cred): on input cred, output a deletion certificate cert.
• {0, 1} ← Certify(ck, cert): on input ck and cert, accept or reject.

Correctness: For every λ ∈ N, pair (x,w) ∈ R and m ∈M, following is 1.

Pr


crs← Setup(1λ)

(σ, ck)← Sign(crs,x,w,m)
cert← Delete(σ)

:
Verify(crs,x,m,σ) = 1

∧
Certify(ck, cert) = 1


Revocation: For every QPT algorithm A, sufficiently large λ, and access access,
the following probability is, at most, negl(λ).

Pr

 (nym, sk)← IssuerSetup(1λ)
(cred, ck)← Issue(nym, sk, access)

(cred∗, cert)← A(nym, cred)
:
VerifyCred(nym, access, cred∗) = 1

∧Certify(ck, cert) = 1


Theorem 6.2. Assuming any revocable signature of knowledge, there exists a
revocable anonymous credentials.

Proof. Let (X ,W) be some hard NP distribution. Let ΣR be revocable signature
of knowledge. Our construction of anonymous credentials is presented as follows.
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• (nym, sk) ← IssuerSetup(1λ): Generate crs ← ΣR.Setup(1
λ), sample a pair

(x,w)← (X ,W), and output nym = (crs,x) and sk = w.

• (cred, ck)← Issue(nym, sk, access): Output cred, ck← ΣR.Sign(crs,x, access,w).

• {0, 1} ← VerifyCred(nym, access, cred): Output v = Γ .Verify(crs,x, access,σ).

• cert← Delete(cred): Output cert = Γ .Delete(σ).

• {0, 1} ← Certify(ck, cert): Output v = Γ .Certify(ck, cert).

Next, we prove the correctness and revocation of the proposed construction.

Correctness: Since ΣR satisfies correctness, for honestly generated credentials
cred and certificate cert, both satisfy Verify and Certify, respectively.

Revocation: Suppose that there exists a QPT adversary algorithm A such that
for some polynomial p(λ), it breaks revocation property of ∆. We construct a
QPT adversary B to break the extraction with deletion of ΣR as described below.

1. Receive simulated crsΣR
from ΣR.Sim0, sample a pair (x,w) ← (X ,W),

sample an access access, query ΣR.Sim1 on input (x, access) to get σ, and
send nym = (crs,x), cred = σ to A.

3. Output the credential cred∗ as signature and cert as deletion certificate.

B has the same advantage 1
p(λ) in breaking the extraction with deletion of ΣR.

Corollary 6.3. Assuming quantum-hard one-way functions and quantum-secure
simulation-extractable NIZK, there exists revocable anonymous credentials.

Proof. This follows from Corollary 6.1 and Theorem 6.2.

Corollary 6.4. Given polynomial quantum hardness of the LWE problem and
quantum-secure simulation-extractable NIZK, there exists revocable anonymous
credentials with classical communication and classical issuer.

Proof. This follows from Corollary 6.2 and Theorem 6.2.
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