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Abstract

Every linear code satisfies the property of “correlated agreement”, meaning that if πL, πR

are two vectors in Fn and if πL + rπR is close in Hamming distance to some codeword in C,
then πL and πR each agree with a codeword in C in positions indexed by elements of S ⊂ [n].
In this work, we prove something stronger – that if πL + rπR is close to C, then πL, πR and
(πL+rπR) all agree with codewords at positions indexed by elements of S, except with negligible
probability over r ← F. Our result holds as long as |S| > (1 − ∆C + ϵ)1/3, and with failure
probability smaller than 2

ϵ2|F| . Furthermore, our results extend to any finite field and any linear

code.
We use this result to prove that BaseFold(Crypto 2024), an efficient multilinear polynomial

commitment scheme, is secure in the list decoding regime, which significantly reduces its com-
munication complexity. Our result is agnostic with respect to both the field and code, and
therefore can be used to reduce the communication complexity of a wide class of coding-based
multilinear polynomial commitment schemes.

1 Introduction

In recent years, error-correcting codes have emerged as a key ingredient in the construction
of efficient SNARKs. A prover of a code-based SNARK commits to its witness by encoding
it with a linear error-correcting code, which uses relatively cheap operations such as finite-
field addition and multiplication. The verifier tests the proximity of the prover’s codeword to
the error-correcting code by engaging with the prover in an interactive oracle proof of prox-
imity1(IOPP) [5, 22]. Then, using a collision-resistant hash function, we obtain a polynomial
commitment scheme (PCS) [18], where a prover commits to a polynomial P ∈ F[X] so that it
can later prove evaluation claims of the form P (α) = β. Finally, a PCS compiles a polynomial
interactive oracle proof (PIOP) into a SNARK. We refer to [7, 11, 24, 25] for more details on
this transformation.

Despite their impressive prover efficiency, verifier costs remain a major bottleneck in code-
based SNARKs, due mainly to the query complexity of the underlying IOPP. IOPPs have
multiple rounds; in each round the prover sends an oracle in response to verifier randomness
and the verifier queries and tests elements from these oracles. It would be too expensive for
the verifier to query each element from the oracle. Instead the verifier obtains a probabilistic

1It may be useful to think of an IOPP as a PCPP [4, 13] but with multiple interactive rounds;
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guarantee that a large fraction, β ∈ [0, 1], of elements from each prover oracle pass its tests.
We choose the number of verifier queries to be l such that βl < 2−λ, where λ is a security
parameter of our choosing. In the Fast Reed-Solomon IOPP(FRI) [6], β >

√
1−∆C , where ∆C

is the minimum distance of the code. This setting is the best proven result and is commonly
referred to as the “list-decoding” regime, since by the famous Johnson Bound, there is only a
small list of codewords that agree with any vector in more than

√
1−∆C fraction of locations.

Alternatively, we refer to the (inferior) case when β is greater than (1−∆C/2) as the “unique-
decoding regime”, as there is only one unique codeword that agrees with a vector in that many
locations (due to the distance properties of the error-correcting code).

Since the FRI IOPP is proven secure in the list-decoding regime, its verifier is both asymptot-
ically and concretely efficient. However, the FRI IOPP can only be directly used2 as a univariate
PCS, and SNARKs based on univariates have a higher overhead than those based on multilin-
ear PCS, which is a generalization of PCS to multilinear polynomials, first introduced by [21]3.
BaseFold [25], introduced a technique for using FRI directly as a multilinear PCS by interleav-
ing the sum-check protocol [20] for multilinear polynomial evaluation with (a generalization of)
FRI. It avoids the overhead of univariate SNARKs while maintaining polylogarithmic commu-
nication. Several works ([2, 12, 17, 23]) have already adapted BaseFold to different settings.
However, BaseFold’s soundness proof requires a stronger result than the correlated agreement
result that underpins FRI’s security. As such, it was only proven secure in the unique decod-
ing regime and as a result, it’s proofs are concretely larger than FRI’s. For that matter, no4

multilinear polynomial commitment scheme has been proven secure in the list-decoding regime.
In particular, Brakedown [15], Ligero [1], two other state-of-the-art multilinear PCS, are only
proven secure in the unique decoding regime, and the same is true for two recent multilinear
Polynomial Commitment Schemes, WHIR [2] and Blaze [10]. The results in this paper improve
the verifier costs of all of these protocols.

1.1 Our Contributions

In this work, we prove a new and stronger notion of correlated agreement [3, 8, 9]. Correlated
agreement states the following. For πL, πR ∈ Fn, if ∆C(πL + rπR, C) < 1− β, then except with
negligible probability over choice of r ← F, there exists cL, cR ∈ C such that

|{i ∈ [n] : πL[i] = cL[i] ∧ πR[i] = cR[i]}| > (β − ϵ)n,

where β, ϵ ∈ [0, 1]. In this paper, we prove something stronger - that if (πL + rπR)[S] ∈ C[S],
then except with negligible probability over choice of r ← F, there exists cL, cR ∈ C such that

πL[S] = cL[S] and πR[S] = cR[S].

Actually, we will prove a slight relaxation of the above, where we only guarantee that πL[S
′] =

cL[S
′] and πR[S

′] = cR[S
′] for some large subset S′ ⊂ S such that |S′| ≥ β − ϵ. We show that

when β > (1−∆C + ϵ)1/3+ ϵ, the failure probability is less than 2
ϵ2|F| . In comparison, the result

from [14] only bounds the probability by O( 1
ϵ3 ), also for β > (1−∆C + ϵ)1/3 + ϵ and the result

from [17] only manages to bound this probability by O( n2

|F|ϵ7 ), albeit with β >
√
1−∆C + ϵ.

Using this result, we prove that BaseFold [25] is secure in the list-decoding regime, meaning
that a prover can use BaseFold to commit to a polynomial-size list of polynomials, which requires
fewer queries from the IOPP verifier. Ultimately, this reduces the communication complexity
of any SNARK that uses BaseFold as its PCS.

2There exists a generic transformation for univariate to multilinear PCS, but this incurs further overhead (e.g.
[19])

3See [11, 25] for more details on this comparison
4Actually, recent concurrent work [17] also proves Basefold for RS codes secure in the list decoding regime, and

we discuss this in detail in Section 1.2
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Technical Overview We now give a high level overview of the proof. We would like to
bound the size of a set A ⊂ F, such that for all r ∈ A, there exists large S ⊂ [n], where

πL[S] + rπR[S] ∈ C[S], (1)

but
πL[S], πR[S] /∈ C[S]. (2)

where πL[S] = {πL[i] : i ∈ S} (resp. for πR) and C[S] is the puncturing of C on the set S. First,
suppose that Equation 2 holds for some set S ⊂ [n]. By linearity of C, this implies that there
is only one r ∈ F such that πL[S] + rπR[S] ∈ C[S]. This already gives a naive upper bound on
the size A, as it is at most the number of subsets of [n] that are larger than βn. However, this
is clearly insufficient as we would like |A|/|F| to be negligible.

Our strategy is as follows. First, define a “bad” codeword pair as one where there exists
S ⊂ [n], r ∈ F satisfying Equations 1 and 2. We count the number of “bad” codeword pairs and
then for each one, we count the number of r ∈ F that are witness to it. By a simple counting
argument, this will yield the exact size of A. Counting the number of witnesses for a fixed
codeword pair is easy, because by linearity of C, a fixed codeword pair can have at most 1

ϵ such
witnesses. Thus, the key challenge in computing |A| will be in counting the total number of
“bad” codeword pairs.

We proceed by labeling all the sets by a codeword pair (cL, cR) such that πL[S] + rπR[S] ∈
C[S] for some r ∈ F but πL[S], πR[S] ̸∈ C[S]. There are many possible such labelings, and
without loss of generality we pick the smallest one. Next, we use an observation from Deep-
FRI [8], that if three such sets have large three-way intersection, then there exists a single
codeword pair that is a valid label for all three of them. We proceed by systematically iterating
through sets in [n], and assigning the same codeword pair to sets that share the same large
three-way intersection. This implies that the number of distinct labels is less than the number
of large subsets of [n] with small three-way intersection. We show that his quantity is less than
1
ϵ . The full soundness proof is in Section 3.

1.2 Related Work

In concurrent work entitled “BaseFold In The List Decoding Regime” [17], Haböck proves the
same stronger notion of correlated agreement that we do, but with β >

√
1−∆C + ϵ and where

|A| ∈ O(n2). Furthermore, their result only applies to Reed-Solomon codes. In other concurrent
work, entitled “Linear Proximity Gap for Linear Codes within the 1.5 Johnson Bound” [14], they
also prove stronger correlated agreement, but where |A| ∈ O( 1

ϵ3 ) when β > (1 − ∆C + ϵ)1/3.
In Deep-Fold [16], Guo et al adapts Deep-FRI [8] to Basefold, and in that setting also proves
the bound of β >

√
1−∆C , but this only applies to Reed-Solomon codes and only to the

DeepFRI [8] Protocol, which is a variant of FRI with slightly more overhead.
Additionally, there are several papers [3, 8, 9] that analyze the communication complexity of

FRI [6] using correlated agreement. In “Worst Case To Average Case Reduction For Distance
to a Linear Code” [3], the authors improve upon the original FRI paper by proving that |A| is
small when β ≥ (1−∆C)

1/4 and Deep-FRI [8] improves this to β ≥ (1−∆C + ϵ)1/3. Deep-FRI
additionally introduces a modification of the FRI protocol which further reduces the number
of verifier queries, at the cost of some (slight) prover overhead. Finally, in “Proximity Gaps
of Reed-Solomon Codes” [9], the authors use a list-decoding algorithm for Reed-Solomon codes
to prove correlated agreement for β ≥

√
1−∆C + ϵ, but (as mentioned earlier with regards

to [17]), this result is only meaningful with a field that is at least quadratic in the instance size
and with a suitably small rate, both of which impact prover time.
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2 Preliminaries

2.1 Notation

Sets Let n ∈ Z. Denote by [n] the set [0, n−1]. For a set S, even(S) is the set of even integers
in S, and odd(S) is the set of odd integers in S. Let q ∈ N. Then S/q = {s/q : s ∈ S}, S + q =
{s+ q : s ∈ S}, etc. 2S is the power set of S.

Strings and Functions Let x ∈ F, r ∈ N, then x||r is the string obtained by concatenating
x to itself r times. Let f : S → S be a function and n ∈ N. Then f◦n denotes function
composition of f with itself n times.

Error-Correcting Codes We will use C to denote a linear [n, k, d] code, which is a sub-
space C of Fn with an encoding algorithm EncC : Fk → C (Definition 1). ∆C is the minimum
relative distance of the code C. Let n ∈ N and S ⊂ [n]. For a vector x ∈ Fn, x[S] = {x[i] : i ∈ S}.
Let v ∈ Fn, let C be a linear code, and let S ⊂ [n]. Then we say that v[S] ∈ C[S] if there exists
a codeword c ∈ C such that v[S] = c[S].

2.2 Definitions

We present a standard definition of a linear error-correcting code.

Definition 1 (Linear Code). A linear error-correcting code with message length k and codeword
length n is an injective mapping from Fk to a linear subspace C ⊆ Fn. C is associated with a
generator matrix, G ∈ Fk×n such that the rows of G are a basis of C and the encoding of a vector
v ∈ Fk is v ·G. The minimum Hamming distance of a code is the minimum on the number of
different entries between any two different codewords c1, c2 ∈ C. If C has a minimum distance
d ∈ [n], we say that C is an [n, k, d] code and use ∆C to denote d/n—the relative minimum
distance.

3 A Stronger Notion of Correlated Agreement

In this section, we state and prove our main result. We compute concrete bounds in subsec-
tion 3.2. Our main result is a stronger version of the correlated agreement theorem (Theorem
1.4) from “Proximity Gaps of Reed Solomon Codes” [9].

3.1 Strong Correlated Agreement Within The One-And-A-Half John-
son Bound

Theorem 1 (Strong Correlated Agreement A). Let C be a linear error-correcting code with
n ∈ N, ϵ ∈ [0, 1], and πL, πR ∈ Fn. Let β ≥ (1−∆C + ϵ)1/3 + ϵ. If

Pr
r∈F

[∆(πL + rπR, C) ≤ (1− β)n] ≥ 2

ϵ2|F|
,

then there exists S′ ⊂ S ⊂ [n] and cL, cR ∈ C satisfying

• Density: |S| ≥ βn, |S′| ≥ (β − ϵ)n

• Agreement: πL[S
′] = cL[S

′], πR[S
′] = cR[S

′] and ∀r ∈ F, πL[S]+ rπR[S] = cL[S]+ rcR[S]

Actually, we will find it more useful to prove the following stronger statement, from which
Theorem 1 easily follows.
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Theorem 2 (Strong Correlated Agreement B). Let πL, πR ∈ Fn with π = (πL, πR) and ϵ ∈ [0, 1].
Define βϵ ≥ (1−∆C + ϵ)1/3 + ϵ. Let π = (πL, πR) and define the set Aπ(ϵ)

5 as follows.∣∣∣∣∣∣∣∣
r ∈ F : ∃S ⊂ [n], c ∈ C st

|S| > βϵn,
(πL[S] + rπR[S]) = c[S],
but ∀(cL, cR) ∈ C × C,
|{i ∈ S : πL[i] = cL[i] ∧ πR[i] = cR[i]}| < (βϵ − ϵ)n


∣∣∣∣∣∣∣∣ .

Then ∀π ∈ F2n,

|Aπ(ϵ)| ≤
2

ϵ2
(3)

Remark 1. There are a few other constraints on β and ϵ that we need for the statement to
hold. For ease of exposition, we do not state them here and defer their details to the proof of
Lemma 1 in Appendix A. We emphasize that these constraints hold for most values of β, ϵ.

Proof. First, we define a subset Aπ,≥βϵ
⊆ Aπ(ϵ) as follows, where modifications from Aπ(ϵ) are

in bold.∣∣∣∣∣∣∣∣∣∣∣∣


r ∈ F : ∃S ⊂ [n], c∗L, c

∗
R, c ∈ C st

|S| > βϵn,
(πL[S] + rπR[S]) = c[S],
c∗L + rc∗R = c
|{i ∈ [n] : c∗L[i] = πL[i] ∧ c∗R[i] = πR[i]}| ≥ βϵn
but ∀(cL, cR) ∈ C × C,
|{i ∈ S : πL[i] = cL[i] ∧ πR[i] = cR[i]}| < (βϵ − ϵ)n



∣∣∣∣∣∣∣∣∣∣∣∣
,

and define Aπ,<βϵ
:= Aπ,ϵ \Aπ,≥βϵ

. By definition of set compliment,

|Aπ,ϵ| = |Aπ,≥βϵ
|+ |Aπ,<βϵ

|. (4)

Thus our task reduces to bounding the size of each of these individual sets. To do this, we will
break each set down further by considering the list of pairs of codewords that “explain” the
elements of Aπ,<βϵ , A≥βϵ . To that end, we introduce two new sets.

Definition 2 (F<βϵ ,F≥βϵ). Let L ∈ F<βϵ . Then L ⊂ C×C such that ∀r ∈ Aπ,<βϵ , there exists
(cL, cR) ∈ L and S ⊂ [n], such that

cL[S] + rcR[S] = πL[S] + rπR[S]. (5)

We define F≥βϵ
analogously, where if L ∈ F≥βϵ

then for all r ∈ Aπ,≥βϵ
, there exists (cL, cR) ∈ L

and S ⊂ [n] satisfying Equation 5. We will denote by L<βϵ
,L≥βϵ

the smallest sets in F<βϵ
,F≥βϵ

,
respectively.

Next, for each (cL, cR) ∈ C×C, define the following set, which deals with individual codeword
pairs.

Aπ,cL,cR
=

∣∣∣∣∣∣∣∣
r ∈ F : ∃S ⊂ [ni], c ∈ C st

|S| > βϵn,
(πL[S] + rπR[S]) = c[S],
cL + rcR = c
but {πR[S], πL[S]} ̸⊂ C[S]


∣∣∣∣∣∣∣∣ .

Then,

Aπ,≥βϵ =
⋃

(cL,cR)∈L≥βϵ

Aπ,(cL,cR), (6)

5The set Aπ(ϵ) is a more formal version of A from the technical overview (Section 1.1).
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and
Aπ,<βϵ

=
⋃

(cL,cR)∈L<βϵ

Aπ,(cL,cR). (7)

Therefore,

|Aπ| = |Aπ,<βϵ ∪Aπ,≥βϵ | =
∑

(cL,cR)∈L<βϵ∪L≥βϵ

|Aπ,(cL,cR)| (8)

Thus, our task reduces to bounding the size of the following three quantities:

1. |L≥βϵ |
2. |L<βϵ |
3. |Aπ,(cL,cR)| for each (cL, cR) ∈ L≥βϵ ∪ L<βϵ

We will use the following Lemma to bound the size of items (1) and (2).

Lemma 1. Let β ∈ [0, 1], n ∈ Z. For each x ∈ {2, 3}, define S(x, β) ⊂ 2[n] as follows.

• If S ∈ S(x, β), then |S| > βn

• For any x sets S1, .., Sx ∈ S, there exists ϵ ∈ [0, 1] such that

|
⋂
i∈[x]

Si| < (βx − ϵ)n

.

Then,

|S(x, β)| ≤ 1

ϵ
.

Proof. We defer the proof to Appendix A as it follows the proof of the Johnson Bound6 closely.

Lemma 2.

|L≥βϵ
| ≤ 1

ϵ
.

Proof. For each (cL, cR) ∈ L≥βϵ , let ScL,cR = {i ∈ [n] : πL[i] = cL[i] ∧ πR[i] = cR[i]}. Then we
define,

S = {ScL,cR : (cL, cR) ∈ L≥βϵ
}.

By definition of L≥βϵ
, each set in S is larger than βϵ. Next, we show that any two sets in S must

have pairwise intersection smaller than 1 − ∆C . Let (c′L, c
′
R) be an element of L≥βϵ

distinct
from (cL, cR). Then,

|ScL,cR ∩ Sc′L,c′R
|

= |{i ∈ [n] : i ∈ ScL,cR ∧ i ∈ Sc′L,c′R
}|

= |{i ∈ [n] : πL[i] = cL[i] ∧ πR[i] = cR[i] ∧ πL[i] = c′L[i] ∧ πR[i] = c′R[i]}|
≤ |{i ∈ [n] : πL[i] = cL[i] ∧ πL[i] = c′L[i]}|
≤ (1−∆C)n (by definition of minimum distance)

Since (1 −∆C + ϵ)1/2 < (1 −∆C + ϵ)1/3 < βϵ, it follows that (1 −∆C) ≤ (β2
ϵ − ϵ) and so we

conclude that for any two distinct sets ScL,cR , Sc′L,c′R
∈ S, the following holds.

|ScL,cR ∩ Sc′L,c′R
| ≤ (1−∆C)n ≤ (β2

ϵ − ϵ)n.

6https://www.cs.cmu.edu/~venkatg/teaching/au18-coding-theory/lec-scribes/list-decoding.pdf
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Therefore, by Lemma 1, |S| < 1
ϵ . Finally, it is clear by the definition of S that |L≥βϵ

| = |S|,
which completes the proof.

Lemma 3.

|L<βϵ
| ≤ 1

ϵ
.

Proof. Define S ⊂ 2[n] to be the set such that ∀r ∈ Aπ,<βϵ
,∃S ∈ S, and codeword pair (cL, cR) ∈

C × C, such that
cL[S] + rcR[S] = πL[S] + rπR[S] (9)

We show that there exists L ∈ F<βϵ
(Definition 2) that is smaller than 1

ϵ . Since L<βϵ
is defined

as the smallest set in F<βϵ
, this is enough to prove the Lemma. To define L, we define a graph

G = (V,E) as follows. Every vertex in V is labeled by a set in S and we denote that set by
l(v). For any v1, v2 ∈ V , the edge (v1, v2) is in E if |l(v1) ∩ l(v2)| ≥ (1 − ∆C)n. A useful
observation is that any three sets with large three-way intersection will form a 3-cycle in G.
Next, let G′ = (V ′, E′) be the graph where every v′ ∈ V ′ is labeled by a 3-cycle (v1, v2, v3) in
G, denoted by l′(v′). (v′1, v

′
2) is in E′ if the two 3-cycles, l′(v′1) and l′(v′2), share an edge in G.

To construct L, we present the following protocol. This protocol also constructs an auxiliary
set S ′, which we will use later on in the proof.

Protocol 1 Construct L

1. Initialize S ′ := ∅,L := ∅
2. For each unvisited v ∈ V ′, do label(NULL, v).

3. For each w ∈ V that is not contained in a 3-cycle in G do the following:

• Solve for some (cL, cR) ∈ C × C and r ∈ F such that

cL[l(w)] + rcR[l(w)] = πL[l(w)] + rπR[l(w)]

.

• Add (cL, cR) to L and l(w) to S ′.

Next, we prove that L ∈ F<β . To prove this, we need to show that for all r ∈ Aπ,<β , there
exists S ⊂ [n] and (cL, cR) ∈ L such that Equation 9 holds, i.e. such that

cL[S] + rcR[S] = πL[S] + rπR[S].

We will make use of the following claim, which we prove at the end of this lemma’s proof.

Claim 1. ∀S ∈ S, there exists (cL, cR) ∈ L such that Equation 9 holds for some r ∈ Aπ,<β.

By definition of S, ∀r ∈ Aπ,<β , ∃S ∈ S such that |S| > βϵn and Equation 9 holds for some
(cL, cR) ∈ C × C. By Claim 1, there exists (c′L, c

′
R) ∈ L such that Equation 9 holds for some

r′ ∈ Aπ,β . We now need to prove that r′ = r. To do that, we state another small claim, whose
proof we also defer to the end of this lemma’s proof.

Claim 2. Let πL, πR ∈ Fn. Let S ⊂ [n]. Either πL[S], πR[S] ∈ C[S] or there is exactly one
r ∈ F such that

πL[S] + rπR[S] ∈ C[S]
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Protocol 2 label

1. Inputs: codeword pair ∈ C × C, vertex v ∈ V ′.

2. If codeword pair is NULL, then

• Set codeword pair to be the pair (cL, cR), satisfying

πL[Sx] + rxπR[Sx] = cL[Sx] + rxcR[Sx] (10)

for each x ∈ {1, 2, 3}, where Sx = l(l′(v)[x]) and rx ∈ F.
• Add S1 to S ′ and codeword pair to L.

3. For each w ∈ V ′ such that (v, w) ∈ E, invoke label(codeword pair, w).

It follows directly from Claim 2 that r′ = r. Thus, we can conclude that L ∈ F<β . Next,
we argue that |L| ≤ 1

ϵ . We show that |S ′| ≤ 1
ϵ and that |L| = |S ′|. By construction of

Protocol 1, if l(v1), l(v2), l(v3) ∈ S ′, then v1, v2, v3 must not share a 3-cycle in G, and therefore
|l(v1)∩l(v2)∩l(v3)| < (1−∆C)n. Since βϵ ≥ (1−∆C+ϵ)1/3+ϵ, it follows that (1−∆C) ≤ β3

ϵ −ϵ.
Therefore, by Lemma 1, |S ′| < 1

ϵ . Next, by construction of Protocol 1, a set is added to S ′ if
and only if it is added to L, and therefore |S ′| = |L|. Since Lπ,<β is the smallest set in F<βϵ

, it
is smaller than L, and therefore,

|Lπ,<β | ≤ |L| <
1

ϵ
.

Finally, to complete the proof, we prove the remaining claims.

Proof of Claim 1. To prove this claim, we need to prove the following two statements.

1. A codeword pair (cL, cR) ∈ C × C is added to L for every set in S
2. Every codeword pair added to L satisfies Equation 9.

To prove item (1), note that in Protocol 1, we process every vertex that does not exist in a 3-cycle
in G and in Protocol 2, we process every vertex that does exist in a 3-cycle in G. Therefore, a
codeword pair is added to L for each vertex v ∈ V , (and therefore for each S ∈ S (by definition
of G)). To prove 2) we consider the two steps where a codeword pair is added to L; Step 3 in
Protocol 1 and Step 3 in Protocol 2. In the first case, the pair clearly satisfies Equation 9. In
the second case, it satisfies Equation 9 as long as (cL, cR) in Step 2 of Protocol 2 exists and
satisfies Equation 10. The proof that this exists follows directly from the following claim, whose
proof we defer to the end.

Claim 3 (Intersecting Foldings are Co-linear). Let r1, r2, r3 ∈ F, S1, S2, S3 ⊂ [n] and β ∈ [0, 1]
such that β > (1 −∆C). Let SI =

⋂
x∈{1,2,3} Sx and suppose that |SI | > βn. Suppose that for

all x ∈ {1, 2, 3},
πL[Sx] + rxπR[Sx] ∈ C[Sx].

Then there exists a unique pair of codewords (cL, cR) such that πL[SI ] = cL[SI ], πR[SI ] = cR[SI ]
and for all x ∈ {1, 2, 3},

πL[Sx] + rxπR[Sx] = cL[Sx] + rxcR[Sx].

Next, we prove Claim 2.
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Figure 1: Representation of the graph G, where an edge connects two vertices if their labeled sets
have large intersection.

Proof of Claim 2. Suppose otherwise. Then there exists r1, r2 ∈ F and c1, c2 ∈ C such that

πL[S] + rπR[S] = c1[S],

πL[S] + r′πR[S] = c2[S],

and such that πL[S], πR[S] ̸∈ C[S]. By linearity of the code, we subtract the bottom equation
from the top equation and obtain

(r − r′) · (πR[S]) = (c1 − c2)[S].

Again by linearity of the code, we divide both sides by (r1 − r2), which proves that

πR[S] =
(c1 − c2)

r − r′
[S].

Therefore, πR[S] ∈ C[S]. Furthermore, plugging this back into Equation 1, we find that πL[S] ∈
C[S], which leads to a contradiction and completes the proof.

Finally, we prove Claim 3.

Proof Of Claim 3. By assumption, there exists c1, c2 ∈ C such that

πL[S1] + r1πR[S1] = c1[S1],

πL[S2] + r2πR[S2] = c2[S2].

Let S′
I = S1 ∩ S2. Then since S′

I ⊂ S1, S2,

πL[S
′
I ] + r1πR[S

′
I ] = c1[S

′
I ],

and
πL[S

′
I ] + r2πR[S

′
I ] = c2[S

′
I ].

By Claim 2, this implies that πL[S
′
I ], πR[S

′
I ] are in C[S′

I ]. Since SI ⊂ SI′ , it follows that
πL[SI ], πR[SI ] ∈ C[SI ] and therefore there exists v, v∗ ∈ C such that πL[SI ] = v[SI ], πR[SI ] =
v∗[SI ]. Finally, for each x ∈ {1, 2, 3}, πL[SI ] + rxπR[SI ] = v[SI ] + rxv

∗[SI ]. Since |S′
I | ≥ |SI | ≥

βn ≥ (1 − ∆C)
1/3n > (1 − ∆C)n, it follows from definition of minimum distance of the code

that for each x ∈ {1, 2, 3},

πL[Sx] + rxπR[Sx] = v[Sx] + rxv
∗[Sx],

which completes the proof.
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Finally, bound the size of each Aπ,(cL,cR).

Lemma 4. For all (cL, cR) ∈ C × C,

|Aπ,(cL,cR)| ≤
1

ϵ

Proof. Define ¬ScL,cR ⊂ [n] as

¬ScL,cR = {i ∈ [n] : cL[i] ̸= πL[i] ∧ cR[i] ̸= πR[i]}.

For each r ∈ Aπ,(cL,cR), let Sr be the maximal subset of ¬ScL,cR such that πL[Sr] + rπR[Sr] =

cL[Sr] + rcR[Sr]. Define S ⊂ 2[n] as,

S = {Sr : r ∈ Aπ,(cL,cR)}.

We use the following claim, whose proof we defer.

Claim 4. Let cL, cR ∈ C, and πL, πR ∈ Fn. Let i ∈ [n] where πL[i] ̸= cL[i], πR[i] ̸= cR[i]. Then
there is exactly one r ∈ F satisfying

πL[i] + rπR[i] = cL[i] + rcR[i]

By Claim 4, every two sets in S are disjoint. Therefore

|
⋃
S∈S
S| =

∑
S∈S
|S| ≤ n.

For each r ∈ F, |Sr| > ϵn, because otherwise πL, πR both agree with codewords at ≥ βϵ − ϵ
locations and so r ̸∈ Aπ. Therefore,

|S| · ϵn ≤
∑
S∈S
|S|,

and so, combining the previous two equations,

|S| ≤
∑

S∈S |S|
ϵn

≤ n

nϵ
=

1

ϵ

Since there is a one-to-one relationship between Aπ,(cL,cR) and S, we have

|Aπ,(cL,cR)(ϵ)| = |S| ≤
1

ϵ
.

Finally, we prove Claim 4.

Proof. Suppose otherwise. Then the following two equations are true for distinct r1, r2 ∈ F:

πL[i]− cL[i] + r1(πR[i]− c2[i]) = 0

πL[i]− c1[i] + r2(πR[i]− cR[i]) = 0

Let P (X) = (πL[i]− cL[i]) +X(πR[i]− cR[i]). Since πL[i] ̸= cL[i], πR[i] ̸= cR[i], it follows that
P (X) is a non-zero, degree-one, polynomial. Therefore, by the Schwartz-Zippel Lemma, it has
only one zero and so it is not possible that P (r1) = P (r2) = 0. This is a contradiction and
completes the proof.

Combining these three bounds with Equation 8, we have

|Aπ| ≤
∑

(cL,cR)∈L<βϵ∪L≥βϵ

1

ϵ
= (

2

ϵ
) · 1

ϵ
=

2

ϵ2
,

which completes the proof of Theorem 2.
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3.2 Concrete Bounds and Comparison To Other Work

In the BaseFold IOPP, the verifier needs to check that a) πL + rπR is within the list-decoding
radius of some c ∈ C, and that b) πL, πR are within the list-decoding radius of cL, cR such that
cL + rcR = c. Theorem 2 implies that the verifier needs to check more than βϵ locations, where

βϵ ≥ (1−∆C + ϵ)1/3 + ϵ.

Actually, the verifier will only make a constant number of queries. If no βϵn-sized set exists
satisfying the above conditions, then each query is a Bernulli trial with success rate < βϵ, and so
after q trials, the probability of verifier acceptance is < (βϵ)

q. Moreover, if the verifier accepts
all q queries, then the statement holds accept with probability

≤ 2

ϵ2
|F|.

Next, we compare to the results from [17] and [14]. The bound from [17] over Reed-Solomon
codes (translated to our notation and for a batch of only 2 polynomials) achieves

|Aπ| ≤ 2
(m+ 1/2)√
1−∆C

·max

(
(m+ 1/2)6

3(1−∆C)
· n2, 2 · (B · n+ 1)

)
,

where m is a parameter larger than 3 and for verifier query complexity

β >
√

(1−∆C)(
1

2m
),

i.e. the verifier only needs to query πL, πR in β >
√
1−∆( 1

2m ) locations (which is better than

our bound), but will be incorrect with the probability of O(n2)
|F| (which is worse than our bound).

The authors from [14], on the other hand, prove that for βϵ ≥ (1 −∆C + ϵ)1/3 + ϵ, the failure
probability is only in O( 2

ϵ2|F| ). We show a comparison of concrete results in Figure 1.

Remark 2. It has been proven in a blog post7 that the bound of β > 1 − ∆C/3 is tight for
general linear codes, which seems to contradict the results in this paper. However, upon closer
inspection, they only consider codes where 1−∆C/3 is always less than

√
1−∆C . Thus, there

is no contradiction after all, as we do not expect the Correlated Agreement/Proximity Gaps
statement to hold for β < (1−∆C)

1/3, let alone β <
√
1−∆C .

4 Improved Soundness of the BaseFold Protocol

In this section, we re-prove the soundness theorem of BaseFold, and show that soundness holds
even if the verifier only makes l := λ

log2(βϵ)
queries for βϵ ≥ (1 −∆+ ϵ)1/3 + ϵ. Previously, we

only proved this for βϵ ≥ 1 −∆/3 + ϵ. The BaseFold IOP remains unchanged from [25]8. We
restate the IOPP in Figure 2 for completeness. We also restate the definition of a foldable code9,
which was introduced in BaseFold [25]. A foldable code is a family of codes, which we will denote
(Cd, .., C0), which are characterized by a set of vectors {ti ∈ Fni : i ∈ [1, d]}. Each codeword
ci ∈ Ci is composed of two codewords in Ci−1. Additionally, the structure of a foldable codes
enables local consistency checks between codewords in adjacent codes. These consistency tests
allow the BaseFold10 IOPPs to maintain logarithmic query complexity.

7https://notes.0xparc.org/results/counterexample-proximity-gap/
8The syntax of this description is slightly different than that in [25], but the protocol itself is equivalent
9For ease of exposition, we define the codes according to a different ordering than the original.

10This structure also underlies certain types of Reed-Solomon codes and is the reason for FRI’s efficiency
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Distance (|Aπ|/|F|) βϵ

Hab24

3/4 2−53 2−0.77

7/8 2−51 2−1.2

15/16 2−49 2−1.7

31/32 2−48 2−2.27

GKL24

3/4 2−65 2−0.66

7/8 2−64 2−1

15/16 2−63 2−1.32

31/32 2−62.5 2−1.65

This result

3/4 2−111 2−0.66

7/8 2−111 2−1

15/16 2−111 2−1.32

31/32 2−111 2−1.65

Table 1: We consider instance sizes of 230 over finite field, F such that log2(|F|) = 128.
We report the number of Basefold verifier repetitions needed to achieve a soundness error
below 2−100. For our result and the result from [14], we set ϵ = 0.0005. For [17], we set
m = 3 to minimize |Aπ|/|F|. Smaller is better in all three categories.

Definition 3 (Foldable Code). Let c, d ∈ N and for each i ∈ [d], define ki = 2i, ni = c · ki. A
[nd, kd], foldable code is a family of codes (C0, .., Cd), where the base code, C0, is equal to the
repetition code, {m||c : m ∈ F} and each [ni, ki] code, Ci, and each v ∈ Ci satisfies the following:

v := EncCi
(m) = EncCi−1

(mL) + ti ◦ EncCi−1
(mR)

||EncCi−1
(mL)− ti ◦ EncCi−1

(mR)

where {ti ∈ Fni : i ∈ [1, d]} is given in the description of the code, m = (mL||mR) is a vector
in Fki , and ◦ denotes the Hadamard product.

Remark 3. In the above definition, elements v[i] and v[i + ni/2] are two points on the same
line for each i ∈ [ni/2]. For the remainder of this section, we will assume that the codeword has
been re-ordered, so that v[i],v[i + 1] are on the same line for each i ∈ even([ni]). It is easy to
prove that folding preserves this ordering.

Foldable codes are attractive because a codeword in Ci can be transformed into a smaller
codeword in Ci−1 using only local operations. More specifically, we query the same random
point on each of the ni/2 lines defined by the pairs {(v[j],v[j + 1]) : j ∈ even([ni]), and obtain
a new codeword in Ci−1. We describe this formally with the following definition.

Definition 4 (Fold). Define interp : F2 × F2 → F[X] to be Lagrange Interpolation of a degree-
one univariate polynomial. Let (Cd, .., C0) be a family of foldable codes characterized by {ti ∈

12



Fni : i ∈ [1, d]}. For each v ∈ Ci, and j ∈ even([ni]), define the pair (pj , pj+1) as follows.

(pj , pj+1) = ((t[j],v[j]), (−t[j],v[j + 1])).

Then, the fold of v with respect to r ∈ F is the vector, fold(v, r)[j] satisfying,

fold(v, r)[j] = interp(pj , pj+1)(r).

At times, we will need to work with the univariate polynomials defined by interp(pj , pj+1)
directly. We call these polynomials the unfolding of v. To ease exposition, we denote by vL,vR

the codewords that for all j ∈ even([ni]) satisfy,

interp(pj , pj+1) = vL[j] +XvR[j]. (11)

We remark that fold can also be defined over arbitrary vectors that are not codewords, and
indeed the FRI and Basefold IOPPs rely on this fact. For a generic π ∈ Fni , define the pair of
points (pj , pj+1) = ((t[j], π[j]), (−t[j], π[j + 1])). Then, as before fold(π, r) = interp(pj , pj+1).
Finally, we will sometimes fold over entire sets S ⊂ [ni], and this operation is well defined as
long as S contains j + 1 whenever it contains j. We introduce additional notation for this as
follows.

fold(π, r)[S] = {interp((ti[j], π[j]), (−ti, π[j + 1]))(r) : j ∈ even(S)} (12)

Theorem 3 (Soundness of Basefold IOP). Let λ ∈ N be a security parameter, πd ∈ Fnd , l ∈ N,
and ϵ ∈ [0, 1], with βϵ > (1−∆C + ϵ)1/3 + dϵ, and βl

ϵ ≤ negl(λ). Then, with probability greater
than

1− 2d

ϵ2|F|
,

over verifier randomness (rd, .., r1)← F in the commit phase, and letting {πi ∈ Fni : i ∈ [d+1]}
be the corresponding oracles sent by the prover, either the verifier accepts with probability less
than

βl
ϵ,

or ∃P ∈ F[X1, .., Xd] such that EncC0(P (rd, .., r1)) = π0 and ∆(EncCd
(P ), πd) < (1 − (βϵ −

dϵ))nd.

High Level Overview of Proof In the remainder of the paper, we assume all linear
codes are punctured Reed-Muller codes, that are evaluations of multilinear polynomials over
some subset of Fd. Recall from Lemma 2, that if πL[S] + rπR[S] = c[S] for some c ∈ C, then
πL[S], πR[S] differ from cL[S], cR[S] in very few locations, where cL + rcR = c. We will show in
Lemma 5, that in this case, c is the encoding of polynomial P , cL is the encoding of polynomial
PL and cR is the encoding of polynomial PR where PL+ rPR = P . Next, in Lemma 6, we prove
soundness for just one round of the IOPP, and finally, we show how to extend this to the full,
multi-round IOPP.

Lemma 5. Let n, k ∈ N and let C be an [n, k] linear error-correcting code. Let β, τ1, τ2 ∈ [0, 1]
such that β− (τ1 + τ2) > 1−∆C . Let πL, πR ∈ Fn and d = log2(n). Suppose that S ⊂ [n] where
|S| > βn and there exists PL, PR ∈ F[X1, .., Xd] such that

|{i ∈ S : πL[i] = EncC(PL)[i] ∧ πR[i] = EncC(PR)[i]}| > (β − τ1)n.

Suppose further that there exists c ∈ C such that

|{i ∈ S : πL[S] + rπR[S] = c[S]}| > (β − τ2)n. (13)

Then
c = EncC(PL + rPR). (14)
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Protocol 3 IOPP.commit

Input oracle: πd ∈ Fnd

Output oracles: (πd−1, . . . , π0) ∈ Fnd−1 × · · · × Fn0

• For i from d− 1 downto 0:

1. The verifier samples and sends αi ←$ F to the prover

2. For each index j ∈ even[0, ni+1 − 1], the prover

(a) sets f(X) := interp((diag(Ti)[j], πi+1[j]), (diag(−Ti)[j], πi+1[j + 1]))

(b) sets πi[j] = f(αi)

3. The prover outputs oracle πi ∈ Fni .

Protocol 4 IOPP.query

Oracles: (πd, .., π0)
Repetition Parameter : λ ∈ N

• For j ∈ [0, λ− 1]

– The verifier samples an index µj ←$ even[1, nd − 1]

– For i from d− 1 downto 0, the verifier

1. queries oracle entries πi+1[µj ], πi+1[µj + 1]

2. computes p(X) := interpolate((diag(Ti)[µj ], πi+1[µj ]), (diag(−Ti)[µj ], πi+1[µj+
1]))

3. checks that p(αi) = πi[µj/2]

4. if i > 0 and µj/2 mod 2 = 0, update µj ← µj/2, otherwise update
µj ← µj/2− 1.

– If π0 is a valid codeword w.r.t. generator matrix C0, output accept, otherwise
output reject

Figure 2: The IOPP protocol for foldable codes.

Proof. Let cL := EncC(PL), cR = EncC(PR), π
∗ := πL + rπR, P

∗(X1, .., Xd) = PL + rPR and
c∗ = EncC(P

∗). Then,

|{i ∈ S : π∗[i] = c∗[i]}|
= |{i ∈ S : πL[i] + rπR[i] = cL[i] + rcR[i]}| (By Definition of π∗ and linearity of C)

≥ |{i ∈ S : πL[i] = cL[i] ∧ πR[i] = cR[i]}|
≥ (β − τ1)n.

Let c ∈ C be the codeword satisfying Equation 13. Then by a simple counting argument,

|{i ∈ S : c∗[i] = c[i]}| > (β − (τ1 + τ2))n.

By assumption of the lemma, β−(τ1+τ2) > 1−∆C . Therefore, by minimum distance properties
of C, c∗ = c, which completes the proof.
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Next, we combine Lemma 5 with Lemma 2 to prove soundness over one single round of the
IOPP.

Lemma 6 (One Round Soundness). Let d ∈ N and let Cd, Cd−1 be a pair of codes from an
[nd, kd] foldable code family (Definition 3). Let π ∈ Fnd , ϵ ∈ [0, 1] and let βϵ ∈ [0, 1] be defined
as in Throrem 2. Suppose that βϵ − 2dϵ > 1−∆Cd

, and that ∃S ⊂ [nd] and c ∈ Cd−1 such that

|{i ∈ S : fold(π, r)[i] = c[i]}| > (βϵ − (d− 1)ϵ)nd−1. (15)

Then with probability greater than 1 − 2d
ϵ2|F| (over verifier randomness r) there exists PL, PR ∈

F[X1, .., Xd−1] such that c = EncCd−1
(PL + rPR) and

|{i ∈ S : π[i] = EncCi(PL +XPR)[i]}| > (βϵ − dϵ)nd. (16)

Proof. By Equation 15 and by Definition of fold (Definition 3), it follows that

|{i ∈ S : πL[i] + rπR[i] = c[i]}| > (βϵ − (d− 1)ϵ)nd−1,

where (πL, πR) is the unfolding (Definition 11) of π. Therefore, it follows from Theorem 2 that
if r ̸∈ Aπ(ϵ) then there exists cL, cR ∈ Cd−1 such that cL + rcR = c and,

|{i ∈ S : πL[i] = cL[i] ∧ πR[i] = cR[i]}| > (βϵ − (d− 1)ϵ− ϵ)nd−1 = (βϵ − dϵ)nd−1. (17)

Let PL, PR ∈ F[X1, .., Xd] satisfy cL = EncCd−1
(PL), cR = EncCd−1

(PR). Then by definition
of a foldable code (Definition 3), it follows that

|{i ∈ S : π[i] = EncCd
(PL +XPR)[i]}| ≥ 2(βϵ − dϵ)nd−1 = (βϵ − dϵ)nd.

Furthermore, by Lemma 5,
c = EncCd−1

(PL + rPR).

By Theorem 2, |Aπ(ϵ)| ≤ 2
ϵ2 , and therefore the probability that r ̸∈ Aπ is greater than 1− 2

ϵ2|F| ,

which completes the proof.

Next, we show that if the verifier accepts with probability greater than βl, then this implies
the existence of d large sets, one in each oracle, that are consistent with each other with respect
to the fold operation.

Lemma 7 (Verifier Queries). Let ϵ ∈ [0, 1], let βϵ ∈ [0, 1] be defined as in Theorem 2, and let
l ∈ N. If the verifier accepts the query phase with probability greater than βl

ϵ then there exists d
large sets {fi(S) ⊂ [ni] : i ∈ [d], |fi(S)| > βϵni} such that for all i ∈ [d],

fold(πi+1, r[i+ 1])[fi+1(S)] = πi[even(fi+1(S))/2] (18)

where fold is defined in Equation 12.

Proof. Define the function Q : even([nd]) → {0, 1} as Q(µ) = 1 if the unique verifier query
beginning with µ ← even(nd) (defined in Protocol 4) passes the verifier tests and Q(µ) =
0 otherwise. Let S = Q−1(1). Then, each verifier sample is a Bernoulli trial with success

probability |S|
|even([nd])| . After l queries, the probability of acceptance is ( |S|

|even([nd])| )
l. Therefore,

if the verifier accepts with probability greater than βl, then ( |S|
even([nd])

) must be larger than β,

and so |S| > β|even([nd])| = βnd−1. Next, we define fi(S).
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Definition 5 (fd(S)). Let d ∈ N and S ⊂ even([nd]). Then,

fd(S) = S ∪ (S + 1).

For i ∈ [d], fi(S) satisfies the following:

even(fi(S)) = {even({j/2, j/2− 1}) : j ∈ even(fi+1(S)}

odd(fi(S)) = even(fi(S)) + 1.

To complete the Lemma, we need to prove that for each i ∈ [d+ 1],

fold(πi, r[i])[fi(S)] = πi−1[even(fi(S))/2].

For each µ ∈ S, let ((µd, µd + 1), .., (µ1, µ1 + 1)) be the unique set of queries associated with µ
(defined in Protocol 4). Then, by definition of fold (Definition 12), for each i ∈ [1, d]

fold(πi, ri)[fi(S)] = {πi,L[µi] + riπi,R[µi + 1]} (19)

Furthermore,
πi,L[µi] + riπi,R[µi + 1] = πi−1[µi/2]. (20)

Combining Equations 19 and 20 gives

fold(πi, ri)[fi(S)] = {πi−1[µi/2] : µi ∈ even(fi(S))} = πi−1[even(fi(S)/2)],

which completes the proof.

Finally, we are ready to prove the main statement of the Theorem.

Proof. Suppose by contradiction that the verifier accepts with probability > βl but there does
not exist P ∈ F[X1, .., Xd] such that EncC0

(P (rd, .., r1)) = π0 and ∆(EncCd
(P ), πd) < (1− (βϵ−

dϵ)). By Lemma 7, there exists a set S ⊂ even(nd) such that for each i ∈ [1, d],

fold(πi, r[i])[fi(S)] = πi−1[even(fi(S))/2].

Therefore, since π0 ∈ C0 there must exist a round where Equation 15 holds but Equation 16
does not. By Lemma 6, this only happens with probability 2

ϵ2|F| . Taking the union bound over

d rounds completes the proof.
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Appendix

A Proof of Lemma 1

Proof. Let x ∈ {2, 3}, β, ϵ ∈ {0, 1} such that ϵ < β/100, ϵ ≤ 1 + β2 − β, (β2 − (β3 − ϵ)) < 1/3
and β > 0.0930 (it is easy to check that these constraints are practical). Suppose further that
S(x, β) ⊂ 2[n] defined as in the lemma statement. Recall that our goal is bound the size of
S(x, β). We do this by constructing a bipartite graph, G, where right vertices are labeled by
elements in [n] and left vertices are labeled by subsets of [n]. We place an edge between a
vertex v ∈ L and a vertex w ∈ R if the element associated with w is contained inside the set
associated with v. By definition of S(x, β), this implies that that any vertex in L has more than
βn neighbors but shares less than (βx − ϵ)n neighbors with any other vertex in L. In other
words, letting N(v) denote the neighbor set of v ∈ L:

• ∀v ∈ L, |N(v)| > βn

• ∀v1, .., vx ∈ L, |
⋂

i∈x N(v)| < (βx − ϵ)n

We prove now that in a bipartite graph with these two properties,

|L| ≤ 1

ϵ
.

This proof is a generalization of the proof of the Johnson bound 11. For v1, .., vx ∈ L and w ∈ R,
define an “x-angle” as an (x+1)-tuple, (v1, .., vx, w), such that (vi, w) ∈ E for all i ∈ [x]. Let
d(w) be the degree of node w. Then the number of x-angles in the graph is equal to∑

v∈R

(
d(v)

x

)
11https://www.cs.cmu.edu/~venkatg/teaching/au18-coding-theory/lec-scribes/list-decoding.pdf
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By Jensen’s Inequality, we know that for each x ∈ {2, 3},∑
v∈R

(
d(v)

x

)
≥ |R|

(
(
∑

v∈R d(v))/|R|
x

)
. (21)

Since each vertex in L has more than βn neighbors, it follows that the sum of the degrees of all
vertices in R is greater than |L| · β|R|, i.e.

∑
v∈R d(v) ≥ |L| · β|R|. Thus, by Equation 21, it

follows that for x ∈ {2, 3}, ∑
v∈R

(
d(v)

x

)
≥ n

(
β|L|
x

)
.

On the other hand, for each x ∈ {2, 3}, any x vertices in L can share at most (βx − ϵ)|R| =
(βx − ϵ)n neighbors in R. Thus the total number of angles in G is at most(

|L|
x

)
(βx − ϵ)n

Combining the two inequalities, we have for each x ∈ {2, 3},(
β|L|
x

)
≤

(
|L|
x

)
(βx − ϵ).

Solving for L when x = 2, we have,

β|L|(β|L| − 1)

2
≤ (β2 − ϵ)|L|(|L| − 1)

2
(22)

β|L|(β|L| − 1) ≤ (β2 − ϵ)|L|(|L| − 1) (23)

β(β|L| − 1) ≤ (β2 − ϵ)(|L| − 1) (24)

β2|L| − β ≤ (β2 − ϵ)|L| − (β2 − ϵ) (25)

β2|L| − β2|L|+ ϵ|L| ≤ β − (β2 − ϵ) (26)

|L|ϵ ≤ β − (β2 − ϵ) (27)

(28)

Therefore, since ϵ ≤ 1 + β2 − β,

|L| ≤ β − (β2 − ϵ)

ϵ
≤ 1

ϵ
.

Next, we solve for L when x = 3. Let α := β3 − ϵ. Then,

β|L|(β|L| − 1)(β|L| − 2)

3
≤ α|L|(|L| − 1)(|L| − 2)

3
(29)

β|L|(β|L| − 1)(β|L| − 2) ≤ α|L|(|L| − 1)(|L| − 2) (30)

β(β|L| − 1)(β|L| − 2) ≤ α(|L| − 1)(|L| − 2) (31)

(β2|L| − β)(β|L| − 2) ≤ (α|L| − α)(|L| − 2) (32)

(β3|L|2 − 2β2|L| − β2|L|+ 2β) ≤ (α|L|2 − 2α|L| − α|L|+ 2α (33)

(β3|L|2 − 3β2|L|+ 2β) ≤ (α|L|2 − 3α|L|+ 2α (34)

(β3 − α)|L|2 − 3|L|(β2 − α) + 2(β − α) ≤ 0 (35)
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Let P (X) = (β3−α)X2−3(β2−α)X+2(β−α). Our goal is to solve for L, such that P (L) ≤ 0.
Since P is concave, it is smaller than 0 for X between [x0, x1], where x0, x1 are its two roots and
x0 << x1. Next, we solve for x1, which is an upper bound on L. By the quadratic equation,

x1 =
3(β2 − α)) +

√
(−3(β2 − α))2 − 8ϵ(β − α)

2ϵ

For now, lets assume that x1 is a real root, i.e. that the discriminate is greater than 0. In that
case, it follows that,

x ≤
3(β2 − α)) +

√
(−3(β2 − α))2

2ϵ

=
3(β2 − α)) + 3(β2 − α)

2ϵ

=
2 · (3(β2 − α))

2ϵ
=

3(β2 − α)

ϵ

=
3(β2 − (β3 − ϵ))

ϵ

Since we assume that (β2 − (β3 − ϵ)) < 1/3, it follows that

|L| ≤ x1 ≤
1

ϵ
.

Next, we show that x1 is a real root. To do so, we state the following claim. We do not provide
a proof as it can be easily verified.

Claim 5. Let β, ϵ ∈ [0, 1] such that ϵ < β
100 . Then, for all β > 0.0930,

(−3(β2 − α))2 − 8ϵ(β − α) ≥ 0.
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