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ABSTRACT
In the recent search for additional post-quantum designs, multivari-

ate quadratic equations (MQE) based designs have been receiving

attention due to their small signature sizes. Unbalanced Oil and

Vinegar (UOV) is an MQE-based digital signature (DS) scheme pro-

posed over two decades ago. Although the mathematical security of

UOV has been thoroughly analyzed, several practical side-channel

attacks (SCA) have been shown on UOV based DS schemes. In this

work, we perform a thorough analysis to identify the variables in

UOV based DS schemes that can be exploited with passive SCA,

specifically differential power attacks (DPA). Secondly, we introduce

masking as a countermeasure to protect the sensitive components

of UOV based schemes. We propose efficient masked gadgets for

all the critical operations, including the masked dot-product and

matrix-vector multiplication. We show that our gadgets are secure

in the 𝑡-probingmodel through formal proofs, mechanically verified

using the maskVerif tool. We implemented and demonstrated the

practical feasibility of our arbitrary-order masking algorithms for

UOV-Ip andUOV-III.We show that themasked signature generation

of UOV-Ip performs up to 62% better than Dilithium2 or ML-DSA

and 99% better than Falcon 512 or FN-DSA. In addition, the security

of our implementation is practically validated using the test vector

leakage assessment (TVLA) methodology.

CCS CONCEPTS
•Securityandprivacy→Digital signatures;Side-channel anal-
ysis and countermeasures.

KEYWORDS
Post-Quantum Cryptography, Digital Signatures, Masking, UOV.

1 INTRODUCTION
The National Institute of Standards and Technology (NIST) recently

published the first set of post-quantum (PQ) digital signature al-

gorithm (DSA) standards [1]. Currently, this set constitutes ML-

DSA [33] (CRYSTALS-Dilithium) and SLH-DSA [34] (Sphincs+),

while FN-DSA [23] (Falcon) will be released in the near future. One

common characteristic of these standard schemes is their large sig-

nature size, which is multiple orders (10−120×) the size of existing
elliptic curve discrete signature algorithm (EC-DSA) signatures. This

∗
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creates serious bottlenecks for many critical applications. For exam-

ple, in a chain-of-trust-based authentication in the transport layers

security (TLS) where an entity, e.g a website, is authenticated by a

series of certificates i.e. root certificate-intermediate certificate𝑙 -leaf
certificate, 𝑙 ≥ 1, this results in a huge blowup in the required trans-
mission bandwidth. This problem has led to the proposal of some

unorthodox approaches, such as KEMTLS [44] or KEMTLS with

redistributed public-keys [45].

Nonetheless, the adoption and integration of current PQC stan-

dards pose a significant challenge for devices with constrained re-

sources, such as the Internet of Things devices, sensor nodes, etc.

These devices use constrained radio networks (CRN) such as Low-

Power Personal Area Networks (LPPANs) g.s Bluetooth Low Energy

with a range from a few centimeters to a fewmeters, and Low Power

Wide Area Networks (LPWANs) such as LoRaWAN, Sigfox, IEEE

802.11ah, etc. which have ranges of several kilometers. Due to op-

erational constraints, CRNs have very small frame sizes, ultra-low

speeds, and very high latency. For example, LoRaWAN has 51 bytes

frames and 11 bytes frames in Europe and the United States, respec-

tively. The small frame size combined with approximately 1% duty

cycle i.e. a device sends data for 36 seconds and waits for an hour,

basically means that it may take a few days (or even more in case

of transmission errors) to transmit the 2.4KB signature payload of

ML-DSA. Furthermore, in resource-constrained devices (RCD), the

energy cost for radio transmission is significantly larger compared

to the computational costs [20, 31, 38]. Similarly, the signature size

of SLH-DSA and its large signing time, makes the scheme unsuitable

for integration into RCDs. Interestingly, FN-DSAproduces relatively

small signatures (666 bytes) but due its complex data structures (Fal-

con tree) and floating point arithmetic it is challenging to implement

(securely) on embedded devices [1].

Table 1: Signature sizes (bytes) of pre- and post-quantumDSAs.

Algorithm EC-DSA ML-DSA FN-DSA SLH-DSA UOV

Assumption EC DLP SIS NTRU Hash MQE

Signature [B] 64 2420 666 7856 96

As a result, NIST explicitly mentions the need for PQ DSAs suit-

able for RCDs in their call for the standardization of additional

PQ DSAs [32], which has advanced to its second round. Signature

schemes based on the hardness of solving multivariate quadratic
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equations (MQE) [9, 13, 40, 41], which is an NP-complete prob-

lem[29]offer relativelymuchsmaller signature sizes compared to the

PQDSschemesbasedonotherhardproblemsandonly slightly larger

than EC-DSA (Table 1). In this paper, we focus on theUnbalancedOil

and Vinegar (UOV)DSA [11], whichwas originally proposed by Kip-

nis et al. [30] and is a Round 2 candidate. Several other MQE-based

DSAs have been constructed using the UOV framework. Among

them, QR-UOV [24], SNOVA [49], and MAYO [10], which have also

advanced toRound 2of theNIST additionalDSA standardization pro-

cess [36]. Another scheme, MQ-Sign [47], was a finalist candidate in

the recently concluded Korean PQC standardization procedure [42].

Side-Channel attacks (SCA) exploit the physical phenomena of

devices which are performing cryptographic operations dependent

on secret key material. Examples of such phenomena include secret-

dependent execution time, power consumption, electromagnetic ra-

diation, etc. For a real-world deployment of cryptographic schemes,

especially those running on small RCD, such attacks are one of the

most potent threats [3, 39, 51]. Therefore, integrating countermea-

sures against side-channel attacks is a crucial and necessary step for

a real world deployment of any cryptographic scheme. NIST also

stressed on this criterion in its call for standardization [32]. Mask-

ing is a well-known and provably secure countermeasure against

differential power attacks (DPA), first introduced by Chari et al. [12].

Here, secret values are split into multiple randomized shares and

computations are performed in such a way that an adversary who

is not able to recover all shares, cannot construct the full secret.

Contribution. In this work, we present a complete analysis and

methodology for masking and protecting the full UOV digital sig-

nature scheme against first- and higher-order DPAs, which we for-

mally and empirically validate. There are many works that have

proposed secure masking algorithms for current NIST PQC DSA

standards [8, 14, 18]. To the best of our knowledge and in spite of be-

ing in existence for a long time, there are nomasking schemes for the

UOVDSA.Therefore, theprimarymotivation for thiswork is to close

this gap in research. More specifically, our contributions are below.

• First, we perform a systematic and rigorous sensitivity anal-

ysis on the complete UOV scheme. We identify critical vari-

ables and operations that require protection against DPAs.

• Second,we propose novelmasked gadgets for all sub-operat-

ionsandprovide formalproofs in the 𝑡-probingmodel,which

are verified using the maskVerif tool [5]. We propose an ef-

ficient, arbitrary-order masked algorithm for matrix-vector

multiplication based on our SecDotProd gadget. We pro-

pose a lazy compression technique, which requires only a

single, costlymask refreshwhen performing themasked dot

product between two vectors of 𝑙 coefficients, compared to

the standard approach requiring 𝑙 refresh operations. Our

approach allows the delay of the expensive share re-masking

and final compression and performs it once, combining all

cross-products at once. Our gadget allows us to construct

efficient and secure matrix-vector multiplications, on which

all MQE-based schemes heavily rely.

• Third,we combineournovel and efficient gadgetswithmeth-

ods from prior work to present an open-sourced, arbitrary-

order masked implementation of all sensitive UOV routines

of key generation, secret key expansion, and signature gen-

eration.

• Fourth, we experimentally validate the security of the first-

order implementations of our proposed gadgets using test

vector leakage assessment (TVLA) methodology (1M execu-

tions). We demonstrate how to eliminate physical leakages

due to micro-architectural effects in masked implementa-

tions and identify compiler optimization flags, which allow

for theuseof aggressivecompileroptimization (-o3)without
impacting security.

• Fifth, we compare the performances of masked UOV imple-

mentations with other PQ DSAs. Additionally, we demon-

strate the benefits of using our techniques and implemen-

tation to deploy PQ-secure cryptography in embedded en-

vironments.

Wemake the source codeofour implementationand the scripts for

formal verification of our proofs in the 𝑡-probingmodel (maskVerif)
available for reviewersathttps://anonymous.4open.science/r/mUOV-

CCS-EB53/. (see Appendix A).

Outline. We first introduce the notation and definitions used

throughout this work and a description of the UOVDSA in Section 2.

Subsequently, in Section 3, we analyze the UOV scheme from side-

channel perspective and analyze which components are sensitive

and require protection against DPAs.We propose novel, arbitrary-

order masked gadgets for efficient vector & matrix arithmetic in

Section 4. In Section 5, we propose mUOV, which includes the masked

key generation and signature generation algorithms.We present and

discuss our implementation, including an extensive performance

and security evaluation in Section 6. Finally, we conclude with ap-

plications of masked UOV in Section 7.

2 PRELIMINARIES
2.1 Notation
We use F𝑞 to denote a finite field with 𝑞 elements and 𝑞 a power-

of-two positive integer. All vectors and matrices are defined over

F𝑞 . Lower-case letters (e.g., 𝑥) denote field elements/ coefficients,

lower-case bold letters (e.g.,v) represent vectors and upper-case bold
letters denote matrices (e.g.,MMM). All vectors are in the column form,

and the transpose of the matrixMMM is denoted byMMM
⊤
. The identity

matrix of size𝑚 is denoted by III𝑚 , while 000𝑘 is the zero column vector.

𝑥 ← 𝑆 represents the (random) sampling of 𝑥 from the set 𝑆 . The

𝑖th bit position of a field element 𝑥 is represented with 𝑥 [𝑖 ] . The
𝑗th element of the vector v is indicated as v[ 𝑗 ]. The ( 𝑗,𝑘)th element

of the matrix MMM is represented as MMM[ 𝑗,𝑘 ] and the elements of the

positions ( 𝑗,𝑘) to ( 𝑗,𝑘+𝑙) of the matrixMMM is represented collectively

asMMM[ 𝑗,𝑘 :𝑘+𝑙 ]. A sequence of𝑛 shares (𝑥1,...,𝑥𝑛) of a sensitive variable
𝑥 is represented as (𝑥𝑖 )1≤𝑖≤𝑛 or (𝑥𝑖 ), when the number of shares 𝑛

is clear from context. In this work, we use Boolean masking, where

𝑥 =𝑥1+ ...+𝑥𝑛 , and the addition is a logical XOR (⊕).

2.2 Masking
Ishai et al. [28] introduced the 𝑡-probing model, a theoretical frame-

work to argue about the practical security of the masking counter-

measure. It allows an adversary to probe 𝑡 intermediate values in a

masked implementation: if any such 𝑡 probes donot leak information
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about the unshared secret, the implementation is 𝑡-probing secure.

Barthe et al. [6] introduced several security notions, which allow us

to prove the probing security of the composition of sub-operations

(gadgets). We now recall the security notions used in this work, as

presented in [43].

Definition 2.1 (𝑡-(Strong-)Non-Interference (𝑡-(S)NI) security). A
gadget with one output sharing and𝑚𝑖 input shares is t-NI (resp.

t-SNI) secure if any set of at most 𝑡1 probes on its internal wires and

𝑡2 probes onwires from its output sharings such that 𝑡1+𝑡2 ≤ 𝑡 can be
simulatedwith 𝑡1+𝑡2 (resp. 𝑡1) shares of each of its𝑚𝑖 input sharings.

Wealso recall twoextensions for thesenotions,whichare required

when masking digital signature schemes. These involve making val-

ues public, such as the computed signatures.

Definition 2.2 (free-𝑡-Strong-Non-Interference (free-𝑡-SNI) security
[19]). A gadget with one output sharing 𝑏𝑖 and𝑚𝑖 input sharings is

free-𝑡-SNI secure if any set of at most 𝑡1 probes on its internal wires

such that 𝑡1 ≤ 𝑡 there exists a subset I of input indices with |𝐼 | ≤ 𝑡1,
such that the 𝑡1 intermediate variables and the output variables 𝑏 |𝐼
can be perfectly simulated from 𝑎 |𝐼 , while for any𝑂 ⊊ [1,𝑛] \𝐼 the
output variables in 𝑐 |𝑂 are uniformly and independently distributed,

conditioned on the probed variables and 𝑐 |𝐼 .

Definition 2.3 (𝑡-Non-Interference with public outputs (𝑡-NIo) se-
curity [7]). A gadget with public output 𝑏 and𝑚𝑖 input sharings is

𝑡-NIo secure if, for any set of 𝑡1 ≤ 𝑡 intermediate variables, there ex-

ists a subset I of input indices with |𝐼 | ≤ 𝑡1, such that 𝑡1 intermediate

variables can be perfectly simulated from 𝑥 |𝐼 and 𝑏.

2.3 UOV-DSA
This work specifically targets the UOV digital signature scheme, as

submitted to the latest NIST standardization process [11]. Its Round

2 specification defines three variants: classic, pkc, and pkc+skc.
These variants are designed to offer different trade-offs between

memory utilization and performance. The classic variant employs

a standard key generation process, resulting in the expanded secret

andpublic keys (𝑒𝑝𝑘,𝑒𝑠𝑘). Thepkc (public keycompact) variant intro-

duces a compact representation for the public key (𝑐𝑝𝑘), significantly

reducing memory requirements (Figure 1). The ExpandPK algorithm
is invoked during the verification phase to expand the public key

before it can be used in verification computations, at the cost of

increased latency (Fig. 2). Finally, the pkc+skc (public & secret key

compact) variant further optimizes storage by employing compact

representations for both the secret and public keys (𝑐𝑠𝑘,𝑐𝑝𝑘). In addi-

tion to themodifications during the verification phase, the ExpandSK
algorithm is executed during the signature generation phase to ex-

pand the secret key. This variant minimizes storage overhead at

the expense of increased computation time during both signature

generation and verification. We present the parameter set of the

different variants of UOV in Table 2. Throughout this text, we will

denote vector/matrix dimension 𝑛−𝑚 as 𝑙 .

3 SENSITIVITYANALYSIS OF UOV-DSA
Performing a sensitivity analysis is a crucial first step in order to

determinewhich variables requiremasking or protection tomitigate

SCAs.We identifyExpandSK,CompactKeyGen, andSign (Fig. 3 - 5) as
vulnerable todifferentialpowerattacks, as they involve thesecretkey.

CompactKeyGen( )
(1) seed

sk
←{0,1}sk_seed_len ## sk_seed_len=256

(2) (seed
pk
,OOO) :=Expand

sk
(seed

sk
) ## pk_seed_len=128

(3)

{
PPP
(1)
𝑖

,PPP
(2)
𝑖

}
𝑖∈ [𝑚]

:=Expand
PPP
(seed

pk
)

(4) for 𝑖 =1 upto𝑚 do
(5) PPP

(3)
𝑖

:=Upper
(
−OOO⊤PPP(1)

𝑖
OOO−OOO⊤PPP(2)

𝑖

)
(6) 𝑐𝑝𝑘 :=

(
seed

pk
,

{
PPP
(3)
𝑖

}
𝑖∈ [𝑚]

)
(7) 𝑐𝑠𝑘 :=seed

sk

(8) return (𝑐𝑝𝑘,𝑐𝑠𝑘 )

Sign(𝑒𝑠𝑘,𝜇 )
(1) salt←{0,1}salt_len ## salt_len=128
(2) t :=Hash(𝜇 | |salt)
(3) for 𝑐𝑡𝑟 =0 upto 255 do
(4) v :=Expandv (𝜇 | |salt | |seedsk | |ctr)
(5) LLL :=000𝑚×𝑚
(6) for 𝑖 =1 upto𝑚 do
(7) Set 𝑖-th row of LLL to v⊤SSS𝑖
(8) y := [v⊤PPP(1)

𝑖
v]𝑖∈ [𝑚]

(9) x :=LLL−1 (t−y) ## x=⊥ if det(LLL) =0
(10) if x≠⊥ then

(11) s :=
[
v
0𝑚

]
+
[
OOO

III𝑚

]
x

(12) 𝜎 := (s,salt)
(13) return 𝜎

(14) return⊥

Verify(𝑒𝑝𝑘,𝜇,𝜎 )
(1) t :=Hash(𝜇 | |salt)
(2) return t== [s⊤PPP𝑖 s]𝑖∈ [𝑚]

Figure 1: Main UOV-DSA (pkc) routines [11]

ExpandSK(𝑐𝑠𝑘 )
(1) (seed

pk
,OOO) :=Expand

sk
(seed

sk
)

(2)

{
PPP
(1)
𝑖

,PPP
(2)
𝑖

}
𝑖∈ [𝑚]

:=Expand
PPP
(seed

pk
)

(3) for 𝑖 =1 upto𝑚 do
(4) SSS𝑖 :=

(
PPP
(1)
𝑖
+PPP(1)⊤

𝑖

)
OOO+PPP(2)

𝑖

(5) 𝑒𝑠𝑘 :=

(
seed

sk
,OOO,

{
PPP
(1)
𝑖

,SSS𝑖

}
𝑖∈ [𝑚]

)
(6) return 𝑒𝑠𝑘

ExpandPK(𝑐𝑝𝑘 )
(1)

{
PPP
(1)
𝑖

,PPP
(2)
𝑖

}
𝑖∈ [𝑚]

:=Expand
PPP
(seed

pk
)

(2) for 𝑖 =1 upto𝑚 do

(3) PPP𝑖 =

[
PPP
(1)
𝑖

PPP
(2)
𝑖

000 PPP
(3)
𝑖

]
(4) 𝑒𝑝𝑘 := {PPP𝑖 }𝑖∈ [𝑚]
(5) return 𝑒𝑝𝑘

Figure 2: UOV-DSA secret- and public-key expansion [11]

They contain colour-coded representations of the sensitive compo-

nents within the UOV scheme. All public data, including (compact/-

expanded) public key, message and signature of a message, are non-

sensitive and indicated inblue.All sensitivedata, andoperationsdeal-

ingwith them, are highlighted in red. In contrast, both ExpandPK and

3
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Table 2: Parameter sets for all UOV-DSA variants.

ParametersScheme Security
Level 𝑛 𝑚 𝑞

UOV-Ip 112 44 256

UOV-Is

I

160 64 16

UOV-III III 184 72 256

UOV-V V 244 96 256

Verify are not sensitive, as they operate exclusively onpublic inputs
and variables that do not facilitate signature forgery or key recovery.

UOV.CompactKeyGen. The compact key generation algorithm

first samples the seed seed
sk
, from which seed

pk
and secret ma-

trixOOO,which corresponds to the oil space, are derived. Here seed
sk
is

a sensitive variable and Expand
sk
is a sensitive algorithm. Both need

protection and are targets for applying masking, while the public

key seed seed
pk

can be unmasked after generation.

Figure 3: Sensitivity analysis of UOV.CompactKeyGen.

The seed
pk

is used as input inExpand
PPP
to construct twopublicma-

trices: PPP
(1)
𝑖

andPPP
(2)
𝑖

, which are used to compute PPP
(3)
𝑖

. Here, seed
pk
,

PPP
(1)
𝑖

, PPP
(2)
𝑖

and PPP
(3)
𝑖

are non- sensitive. However, the computation

of PPP
(3)
𝑖

is a sensitive operation due to its dependence on the secret

vector OOO, as illustrated in the lower portion of the Figure 3. It is

crucial to emphasize that, despite this dependence, the (final) value

of PPP
(3)
𝑖

does not leak any information regarding the secret vectorOOO.

UOV.ExpandSK. The algorithm ExpandSK operates on the secret
key, so it is sensitive and requires protection. As shown in Figure 4,

the computation ofSSS𝑖 involves the sensitive variableOOO.An adversary

could derive the secretOOO from the matrices SSS𝑖 and hence it requires

masking. The variables PPP
(1)
𝑖

andPPP
(2)
𝑖

are public and not sensitive.

Figure 4: Sensitivity analysis of UOV.ExpandSK.

UOV.Sign. Thesignaturegenerationalgorithmtakes theexpanded

secret key 𝑒𝑠𝑘 and message 𝜇 as input. It first samples a random salt,

and computes the message digest t as Hash(𝜇 | |salt). These variables
are public and non-sensitive. We then compute the pre-image s of t
using the secret key via rejection sampling. This requires uniformly

sampling a vinegar vector v∈F𝑛𝑞 . This sampling can be done by run-

ning Expandv on input seedsk,𝜇, and salt. This computation is sensi-

tive, since itmay leak information about seed
sk
, and itmay influence

the distribution of v (Figure 5). Subsequently, y= [v⊤PPP(1)
𝑖

v]𝑖∈[𝑚]
is computed. This operation (and its variables) are sensitive because

the adversary can perform a SCA to retrieve v, which leads to a key
recovery.

Figure 5: Sensitivity analysis of UOV.Sign.

Once the vinegar variable is fixed, then the quadratic system

P(s)= t is converted to a linear systemLLLx= t−y. Clearly LLL is sensi-
tive and should be masked, as it can lead back to the oil space. Now,

if LLL is invertible, then x can be computed by performing Gaussian

elimination (GE), allowing the computation of s, finally. Otherwise, v
is re-sampled and the previous process is repeated. TheGE operation

must bemasked because it can reveal information about the secret oil

space𝑂𝑂𝑂 . However, x is part of the public signature s and can thus be
revealed after its computation. The execution time of signature gen-

eration leaks 𝑐𝑡𝑟 value, so we can consider 𝑐𝑡𝑟 is also non-sensitive.

Differences with [2]. While this work was ongoing, a similar work

appearedonIACRePrintandwassubsequentlypublished inPQCrypto

’25. As the contents in our work differ from several claims and con-

clusions related to masking in the other work[2, Section 5.5], we

explicitly go over those differences.

ProtectingSSS𝑖 andOOO. First, we would like to explicitly highlight the
need for applying the masking countermeasure on CompactKeyGen
and ExpandSK routines to prevent DPAs in embedded environments.

In such a scenario, thematricesSSS𝑖 andOOOwill be generated in a shared

manner, as it involves the secret oilspace.

Protecting v. Second, the authors of [2] propose to unmask the sen-

sitive variable v during the quadratic evaluation and computation of

y= [v⊤PPP(1)
𝑖

v]𝑖∈[𝑚] . Instead, they propose to mask the public values

PPP
(1)
𝑖

. The main argument provided by the authors is an SPA [3]. As

this matrix is public, it does not require side-channel protection and

unmasking the sensitive value exposes an implementation against

DPAs. Additionally, masking is not an appropriate technique for

protecting against SPAs. Instead, our approach protects against any

DPA and alternative countermeasures can be integrated to protect

against SPAs. This includes shuffling the operations in themultiplica-

tions with the public values and performing a mask refreshing on v,
between themultiplication of each share withPPP

(1)
𝑖

. In this case, if an

attacker is able to obtain one share of (v𝑖 ) via a profiling attack, the
next share will be randomly masked via a different random. As such,

even if an attacker obtains all shares, the original (v𝑖 ) can never be
reconstructed as all shares belong to adifferent set of freshmasks.We

note that all multiplications of sensitive variables with a public value

are vulnerable against such SPAs and require appropriate hardening.

4
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ProtectingLLL. In contrast to the claims in prior work, the sensitive

matrix LLL requires protection against DPAs (through masking). This

includes solving the system of linear equations LLLx= t−y through

masked gaussian elimination, instead of the unmasked variant pro-

posed in [2].

4 EFFICIENTMASKEDGADGETS
In this section we propose and introduce masking techniques for all

sub-operations in the UOVDSA. All novel gadgets are described by

a 𝑡-order algorithm (𝑛=𝑡+1 shares) and accompaniedwith a detailed

description. More specifically:

• SecDotProd and SecMatVec: efficient masked dot product

on two Boolean masked vectors, based on our novel lazy
compression. It is the main building block for matrix-vector

multiplication, as used during key generation and signing.

• SecQuad: masked evaluation of a quadratic form, based on

maskedmatrix-vectormultiplication, as used during signing.

All components, including gadgets from literature, required to

achieve fully masked UOV (Section 5) are listed in Table 3.

Table 3: Overview of used gadgets, with𝑛=𝑡+1 shares.
Algorithm Description Security Reference

SecREF Refresh of Boolean masking 𝑡-SNI [6, 17]

FullAdd Secure unmasking of Boolean shares 𝑡-NI [7, 16] & Alg. 7

SecDotProd Dot prod. of two Boolean masked vectors 𝑡-SNI Algorithm 1

SecMatVec Matrix-vector multiplication 𝑡-SNI Algorithm 2

SecQuad Evaluation of a quadratic form 𝑡-SNI Algorithm 3

SecRowEch Matrix conversion to row echelon form 𝑡-NIo [37] & Alg. 8

SecBackSub Masked back substitution with public output 𝑡-NIo [37] & Alg. 9

Methodology.We prove all algorithms/gadgets to be 𝑡-(S)NI secure

in the probing model via simulation. We show how probes on in-

termediate variables and output shares of a gadget can be perfectly

simulatedwith only a limited number of input shares. For algorithms

which are composed frommultiple gadgets, we rely on the 𝑡-(S)NI

properties of the sub-gadgets to argue about simulatability of all

values. For example, the set of probes required from the input shares

of a 𝑡-SNI gadget is independent from the amount of probes on its

output shares.By iteratingover all possible intermediate (andoutput)

variables of each sub-gadget, starting at the output andmoving to the

inputof thealgorithm, all requiredprobes for simulationare summed.

Additionally, we mechanically verify all (first- and second-order)

𝑡-(S)NI claims/proofs using the verification tool maskVerif.

4.1 Masked Dot Product
The (masked) matrix-vector multiplication operation is critical in

multivariate-based post-quantum crypto. As highlighted in Section

2, it is also the case for the UOV scheme. We propose a method to

efficiently compute themasked dot product (SecDotProd) using lazy
compression. The typical computation of a masked multiplication

involves three stages: computation of cross-products, re-sharing and

compression into the final𝑛 shares. Computing a dot-product of two

𝑙-dimensional vectors naïvely thus requires performing 𝑙 masked

multiplications (i.e. re-sharing and compression) and summing the

𝑙 results. We propose a more efficient technique: by delaying the

re-sharing and compression of the cross-products, until completing

them for all 𝑙 elements in the input vectors x and y, we only need to

perform themonce at the end.Wenowdiscuss our approach in detail,

which is inspired by the approach in [26], modifying the domain-

oriented ISWmultiplication [27, 28] by delaying the compression

stage when chaining multiplications.

Algorithm 1: SecDotProd

Data: Boolean sharings (x𝑖 ) and (y𝑖 ) of vectors x,y∈F𝑙𝑞 .
Result:A Boolean sharing (𝑧𝑖 ) of a coefficient 𝑧=x𝑇 y∈F𝑞 .

1 (𝑢𝑖 𝑗 ),(𝑤𝑖 ) :=0
2 ## Compute and sum 𝑙 cross-products

3 for 𝑘 =1 upto 𝑙 do
4 for 𝑖 =1 upto 𝑛 do
5 for 𝑗 =𝑖+1 upto 𝑛 do
6 𝑢𝑖 𝑗 =𝑢𝑖 𝑗 +x[𝑘 ]𝑖y[𝑘 ] 𝑗
7 𝑢 𝑗𝑖 =𝑢 𝑗𝑖+x[𝑘 ] 𝑗y[𝑘 ]𝑖

8 (𝑤𝑖 )= (𝑤𝑖+x[𝑘 ]𝑖y[𝑘 ]𝑖 )
9 ## Resharing

10 for 𝑖 =1 upto 𝑛 do
11 for 𝑗 =𝑖+1 upto 𝑛 do
12 𝑟𝑖 𝑗←F𝑞
13 𝑢𝑖 𝑗 =𝑢𝑖 𝑗 +𝑟𝑖 𝑗
14 𝑢 𝑗𝑖 =𝑢 𝑗𝑖+𝑟𝑖 𝑗

15 (𝑧𝑖 ) := (𝑤𝑖+
𝑛∑

𝑗=1, 𝑗≠𝑖
𝑢𝑖 𝑗 ) ## Compression

16 return (𝑧𝑖 )

Computation of 𝑙 cross-products. The cross-products for 𝑙 input
coefficients of (x𝑖 ) and (y𝑖 ) are computed and summed. We observe

here that since no cross-products are combined, and all input coef-

ficients are independent, they can be computed independently and

each summed together.

Resharing. The cross-productswhich contain shares of both inputs
with different share indices (𝑖 ≠ 𝑗 ) are now refreshed using a fresh

random share. This is to prevent the re-combination of all shares of

a single coefficient in the following step.

Compression. The refreshed partial sums are now combined into

the final output values 𝑧𝑖 . As proposed in [22], it is critical (for secu-

rity) that the result of the computation of 𝑧𝑖 is stored in a memory

element and only the full result is returned. This is not necessary for

probing security, but required for 𝑡-SNI security. It is clear that only

performing the re-sharing and compression step once, as proposed

here, is more efficient than performing it for every input coefficient

pair and summing the results of those multiplications.

4.1.1 Complexity. Here, we discuss the run-time complexity (num-

berofoperations) and randomness complexityof theSecDotProdop-
eration, following the approach proposed in [15, 43]. We denote the

run-time and randomness complexity of an operation Operation by
𝑇Operation and𝑅Operation, respectively.We also assume that the run-

time cost of random number generation is unit time and operands

are𝑤 = ⌈log(𝑞)⌉ bitswide. The run-time and randomness complexity

of SecDotProd are:
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𝑇SecDotProd (𝑙,𝑛)=𝑙 ·𝑛 · (
2𝑛(𝑛−1)

2

+1)+𝑛 · 3𝑛(𝑛−1)
2

+𝑛(𝑛−1)

=𝑙𝑛3−𝑙𝑛2+𝑙𝑛+ 3
2

𝑛3− 1
2

𝑛2−𝑛,

𝑅SecDotProd (𝑙,𝑛,𝑤)=𝑛 ·
𝑛(𝑛−1)

2

·𝑤 =
1

2

𝑛3𝑤− 1
2

𝑛2𝑤.

4.1.2 Security. We now show that the SecDotProd gadget is 𝑡-SNI
secure with 𝑛=𝑡+1 shares, providing resistance against a probing
adversary with 𝑡 probes and allowing us to use the gadget in larger

compositions.

Lemma 4.1. The gadget SecDotProd (Algorithm 1) is 𝑡-SNI secure.

Proof. The full proof is included in Appendix B. Additionally, we

verify its 𝑡-SNI notion using maskVerif, for first- and second-order.

4.2 MaskedMatrix-VectorMultiplication
We now show how the optimized SecDotProd gadget is used to

compute a masked matrix vector multiplication (SecMatVec) in an
efficientmanner. As shown inAlgorithm 2, by applying the dot prod-

uct on each row (𝑚 in total) of a Boolean masked matrix (A𝑖 ), the
shared vector (b𝑖 ) with b=Ax∈F𝑚𝑞 can be computed (𝑚 iterations,

𝑚 coefficients).

Algorithm 2: SecMatVec

Data: 1. A Boolean sharing (A𝑖 ) of a matrixA∈F𝑚×𝑙𝑞 .

2. A Boolean sharing (x𝑖 ) of a vector x∈F𝑙𝑞 .
Result:A Boolean sharing (b𝑖 ) of the vector b=Ax∈F𝑚𝑞

1 for 𝑗 =1 upto𝑚 do
2 (b[ 𝑗 ]𝑖 ) :=SecDotProd((A[ 𝑗,:]𝑖 ),(x𝑖 ))
3 return (b𝑖 )

4.2.1 Complexity & Security. The run-time and randomness com-

plexity of SecMatVec are:

𝑇SecMatVec (𝑙,𝑚,𝑛)=𝑙𝑚𝑛3−𝑙𝑚𝑛2+𝑙𝑚𝑛+ 3
2

𝑚𝑛3− 1
2

𝑚𝑛2−𝑚𝑛,

𝑅SecMatVec (𝑙,𝑚,𝑛,𝑤)= 1

2

𝑚𝑛3𝑤− 1
2

𝑚𝑛2𝑤.

We now prove Algorithm 2 to be 𝑡-SNI secure with𝑛=𝑡+1 shares,
providing resistance against a probing adversary with 𝑡 probes and

allowing us to use the gadget in larger compositions.

Lemma 4.2. The gadget SecMatVec (Algorithm 2) is 𝑡-SNI secure.

Proof.This is a direct result from the SecDotProd gadget being 𝑡-SNI
secure. As each iteration is 𝑡-SNI secure and independent, the whole

loop is 𝑡-SNI too. It is clear that if an adversary can probe 𝑡 times in

total across different iterations or independent outputs, these can

be simulated with no more number of input shares. □
Additionally, we verified that the SecMatVec gadget satisfies the

𝑡-SNI notion at first- and second-order using maskVerif.

4.3 Masked Quadratic Form Evaluation
The quadratic form evaluation is used in the UOV scheme to com-

pute the vector y= [x𝑇PPP𝑗x] 𝑗∈[𝑚] . Our masked gadget operates on

the Boolean shares (x𝑖 ) and public matrices {PPP𝑗 } 𝑗∈[𝑚] , and it is

described in Algorithm 3. The computation happens in two steps:

first the masked matrix (TTT𝑖 ) = (PPP𝑗x𝑖 ) is computed in a share-wise

manner, using𝑚 public matrices to compute its𝑚 columns. After

which the SecMatVec gadget is used to compute the matrix-vector

multiplication (y𝑖 )= (x𝑇𝑖 ) (TTT𝑖 ) on two Boolean shared operands.
ComputationofTTT= {PPP𝑗 } 𝑗∈[𝑚]x.As the𝑚matrices {PPP𝑗 } are public,
they can be multiplied in a share-wise manner with the sensitive

vector (x𝑖 ). Eachmaskedmultiplication (Line 3) is a columnofmatrix

(TTT𝑖 ).

Computation of y = x𝑇TTT. After the full Boolean masked matrix

(TTT𝑖 ) is constructed, it is multiplied with Boolean masked (x𝑖 ) on
Line 4. Here, we rely on the property (x𝑇TTT)𝑇 =TTT

𝑇 x to calculate the
desired result through the SecMatVec gadget. Also, the masking of

vector (x𝑖 ) is first refreshed to ensure both inputs of the gadget are
independent (Line 1).

Algorithm 3: SecQuad

Data: 1. Public matrices {PPP𝑗 ∈F𝑙×𝑙𝑞 } 𝑗∈[𝑚] .
2. A Boolean sharing (x𝑖 ) of the vector x∈F𝑙𝑞

Result:A Boolean

sharing (y𝑖 ) of the vector y= [x𝑇PPP𝑗x] 𝑗∈[𝑚] ∈F𝑚𝑞
1 (s𝑖 ) :=SecREF((x𝑖 ))
2 for 𝑗 =1 upto𝑚 do
3 (TTT[:, 𝑗 ]𝑖 )= (PPP𝑗x𝑖 ) /* TTT𝑖 ∈F𝑙×𝑚𝑞 */

4 (y𝑖 ) :=SecMatVec((TTT𝑇𝑖 ),(s𝑖 )) /* y𝑇 = (x𝑇TTT)𝑇 = TTT𝑇 x */

5 return (y𝑖 )

4.3.1 Complexity. The run-time and randomness complexity of

SecQuad are:

𝑇SecQuad (𝑙,𝑚,𝑛)= ( 3
2

𝑙𝑛2− 3
2

𝑙𝑛)+( 1
2

𝑙2𝑚2𝑛+ 1
2

𝑙2𝑚𝑛)

+(𝑙𝑚𝑛3−𝑙𝑚𝑛2+𝑙𝑚𝑛+ 3
2

𝑚𝑛3− 1
2

𝑚𝑛2−𝑚𝑛),

𝑅SecQuad (𝑙,𝑚,𝑛,𝑤)= ( 1
2

𝑙𝑛2𝑤+ 1
2

𝑙𝑛𝑤)+( 1
2

𝑚𝑛3𝑤− 1
2

𝑚𝑛2𝑤) .

4.3.2 Security. We now argue about the first- and high-order se-

curity of Algorithm 3 by proving it to be 𝑡-SNI secure with 𝑛=𝑡+1
shares. This means it provides resistance against an adversary with

𝑡 probes and allows using the algorithm in larger compositions.

Lemma 4.3. The gadget SecQuad (Algorithm 3) is 𝑡-SNI secure.

Proof. Figure 9c depicts an overviewof the construction ofAlgorithm

3 from its elementary gadgets. Apart from those listed in Table 3, we

model the loop of linear operations in Line 2-3 as a 𝑡-NI gadget𝐺2

(‘Loop’), which we prove first. Subsequently, we prove the security
of the larger composition.

Wefirst argue that a single iteration (Line 3) is 𝑡-NI,which is trivial

as the inputs are processed in a share-wisemanner. Similar as before,

if an attacker can probe across different independent iterations, the 𝑡

intermediate values can be simulatedwith nomore number of shares

of input (x𝑖 ). As a result, the whole loop is considered to be executed
in parallel and modeled as single 𝑡-NI gadget𝐺2.

We now prove that the combination of all operations (whole gad-

get) are 𝑡-SNI (Lemma 4.3). An adversary can probe each gadget
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(x𝑖 )

𝐺1

SecREF

𝐺2

Loop

𝐺3

SecMatVec
(y𝑖 )

Figure 6: An abstract diagram of SecQuad (Algorithm 3). The 𝑡-NI
gadgets are depicted with a single border, the 𝑡-SNI gadgets with a
double border.

(𝐺𝑖 ) internally or at its output. The number of internal and output

probes for each gadget are denoted as 𝑡𝐺𝑖
and 𝑜𝐺𝑖

, respectively. The

total number of probes 𝑡𝐴3
and output shares |𝑂 | of Algorithm 3 are:

𝑡𝐴3
=
∑
3

𝑖=1𝑡𝐺𝑖
+∑2

𝑖=1𝑜𝐺𝑖
, |𝑂 |=𝑜𝐺3

.

We show that the internal and output probes can be perfectly

simulated with ≤ 𝑡𝐴3
input shares. Firstly, to simulate the internal

and output probes on gadget𝐺3, only 𝑡𝐺3
shares of both inputs are

required. This is a direct result of the 𝑡-SNI property of𝐺3: the simu-

lation of a 𝑡-SNI gadget can be performed independent of the number

of probed output shares. As a direct result, the propagation of output

shares to the input shares is stopped. The simulation succeeds on a

column-levelas𝐺2 produces𝑚 independentoutputsand𝑡𝐺3
sharesof

𝑚 independent columns are required Secondly, the simulation of 𝑡𝐺2

internal and𝑜𝐺2
output probes ongadget𝐺2 requires 𝑡𝐺2

+𝑜𝐺2
shares

of its input, as it is 𝑡-NI. Finally, due to the 𝑡-SNIpropertyof gadget𝐺1,

𝑡𝐺1
input shares are required to simulate 𝑡𝐺1

intermediate probes and

𝑜𝐺1
output shares. Finally, we sum up the required shares of the in-

puts for simulation of all gadgets |𝐼 |. As |𝐼 |=𝑡𝐺1
+𝑡𝐺2
+𝑜𝐺2

+𝑡𝐺3
≤ 𝑡𝐴3

and independent from |𝑂 | , Algorithm 3 is 𝑡-SNI. □
Finally, we mechanically verify that the SecQuad gadget satisfies

the 𝑡-SNI notion at first- and second-order, using maskVerif.

4.4 Other Auxiliary Gadgets
4.4.1 FullAdd (Alg. 7). For securely unmasking sensitive values

and making them public, e.g. the signature after signing, we rely on

the FullAdd gadget. Its twomain steps are a strong (free-𝑡-SNI)mask

refreshing and combining all shares. The free-𝑡-SNI notion allows

for the simulation of all outputs of the refresh (𝑦𝑖 ) with all but one
share of the input (𝑥𝑖 ), and the unmasked value𝑦 [17]. As a result,

the subsequent unmasking (which involves all shares) can be per-

fectly simulated. In contrast, standard 𝑡-(S)NI refresh would result

in unsound simulation as all shares of its input would be required,

which is not probing secure. It is shown in [17] that the 𝑡-SNI refresh

in [6] also satisfies the free-𝑡-SNI notion. We refer to [17, 18] for the

security proof of its 𝑡-NIo with public output𝑦 notion.

4.4.2 SecRowEch & SecBackSub (Alg. 8 & 9). A method for solv-

ing a masked system of linear equations using (masked) Gaussian

elimination with back substitution was proposed in [37]. We recall

the SecRowEch and SecBackSub gadgets in Appendix C. Their ap-

proach relies on converting a shared matrix (TTT𝑖 ) to its row-echelon
representation by making leading pivot-elements 1. If the matrix

is invertible, and thus has a unique solution 𝑥 , it can be found by

performing back substitution on the reduced matrix. We refer to the

original work for the complexity and security analysis, including

their 𝑡-NIo security proofs. Additionally, we integrate the early stop

during the initial phase of masked gaussian elimination to improve

performance, as proposed in the UOV specification [11]. As a result,

only a few instead of all rows are conditionally added to the pivot

row in an attempt to make it non-zero.

5 MASKINGUOVATARBITRARYORDER
In this section, we combine the different masked gadgets described

in Sec. 4 to design masked components of UOV [11]. The main algo-

rithms are masked key generation (mCompactKeyGen, Alg. 4), secret
key expansion (mExpandSK, Alg. 5) and signing (mSign, Alg. 6). As
the signature verification procedure operates only on public values,

no masking is required.

5.1 Masked UOV (Compact) Key Generation
The compact key generation of UOV is used to generate the compact

public key 𝑐𝑝𝑘 and compact secret key 𝑐𝑠𝑘 . Our approach consists

of splitting secret key components and derived (ephemeral) secrets

into multiple shares and performing their operations in a masked

fashion. Our masking strategy is formally described in Algorithm 4.

When masked, the compact secret key 𝑐𝑠𝑘 is defined as (𝑠𝑒𝑒𝑑𝑝𝑘 ,
(𝑠𝑒𝑒𝑑𝑠𝑘,𝑖 )1≤𝑖≤𝑛) with the secret-key component seed

sk
returned as

a Boolean sharing. Each share is a randomly sampled binary string of

length sk_seed_len. Since the Round 2 specification, the public seed

is derived from the (shared) secret key seed. Both compact secret

key components are used to compute the upper-triangluar matrix

PPP
(3)
𝑗

, which is unmasked after computation and returned as part of

the compact public key 𝑐𝑝𝑘 = (𝑠𝑒𝑒𝑑𝑝𝑘 ,
{
PPP
(3)
𝑗

}
𝑗∈[𝑚]

). This procedure
is explained below.

Algorithm 4: mCompactKeyGen
Result: Compact public key

and Boolean shared compact secret key (𝑐𝑝𝑘,𝑐𝑠𝑘)
1 (seed

sk,𝑖 )1≤𝑖≤𝑛←{0,1}sk_seed_len

2 (seed
pk
,(OOO𝑖 )) :=mExpandsk ((seedsk,𝑖 )) /* OOO𝑖 ∈F𝑙×𝑚𝑞 */

3 {PPP(1)
𝑗

,PPP
(2)
𝑗
} 𝑗∈[𝑚] :=ExpandPPP (seedpk) /* PPP

(1)
𝑗
∈F𝑙×𝑙𝑞 */

4 (QQQ𝑖 ) :=SecREF((OOO𝑖 )) /* PPP
(2)
𝑗
∈F𝑙×𝑚𝑞 */

5 for 𝑗 =1 upto𝑚 do
6 (AAA𝑖 ) := (−PPP(1)𝑗

OOO𝑖 ) /* A𝑖 ∈F𝑙×𝑚𝑞 */

7 AAA1=AAA1−PPP(2)𝑗

8 for 𝑘 =1 upto𝑚 do
9 (BBB[:,𝑘 ]𝑖 )=SecMatVec((AAA𝑇𝑖 ),(QQQ[:,𝑘 ]𝑖 ))

10 (CCC𝑖 ) :=Upper(BBB𝑖 ) /* C𝑖 ∈F𝑚×𝑚𝑞 */

11 PPP
(3)
𝑗

:=FullAdd((CCC𝑖 ))

12 return (𝑐𝑝𝑘 = (seed
pk
,

{
PPP
(3)
𝑗

}
𝑗∈[𝑚]

) , 𝑐𝑠𝑘 = (seed
sk,𝑖 )1≤𝑖≤𝑛)

Generation ofOOO. The shares of the secret matrix OOO are obtained

by expanding the masked seed ((seed
sk,𝑖 )1≤𝑖≤𝑛) using the masked

PRNG mExpand
sk
in Line 2. The masked PRNG is instantiated using

masked shake256(), derived from the Keccak primitive, and pro-

duces Boolean shares (OOO𝑖 ). Additionally, the public key seed seedpk
is derived in this step, but can be unmasked and made public after

its generation.
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Computationof
{
AAA𝑗

}
𝑗∈[𝑚] =

{
−PPP(1)

𝑗
OOO−PPP(2)

𝑗

}
𝑗∈[𝑚]

. The𝑚upper-

triangular matrices PPP𝑗 consist of three sub-matrices. The first two

{PPP(1)
𝑗

,PPP
(2)
𝑗
} 𝑗∈[𝑚] can be computed in the clear (Line 3), and are used

to compute the third

{
PPP
(3)
𝑗

}
𝑗∈[𝑚]

. The first step is to compute𝑚

matrices

{
AAA𝑗

}
𝑗∈[𝑚] in a masked fashion (Line 6). During each of

the𝑚 iterations, only share-wise (linear) matrix multiplication and

subtraction are required. The public matrix PPP
(1)
𝑗

is multiplied with

each share of secret matrix (OOO𝑖 ). As sub-matrix PPP
(2)
𝑗

is also public,

it is only subtracted from one (first) share of eachAAA𝑗 (Line 7).

Computation of
{
BBB𝑗

}
𝑗∈[𝑚] =

{
OOO𝑇AAA𝑗

}
𝑗∈[𝑚] . The second step is

to compute𝑚 matrices

{
BBB𝑗

}
𝑗∈[𝑚] in a masked fashion, which re-

quires multiplying two masked matrices. Each of the resulting𝑚

sub-matrices is computed in a column-wise fashion, using our pro-

posed SecMatVec gadget. This gadget securely multiplies a shared

matrix (AAA𝑇𝑖 )with a shared vector (QQQ[:,𝑘 ]𝑖 ) in Line 9,which is column

𝑘 of a masked matrix QQQ. The matrix QQQ is a full mask refreshing of

secret matrixOOO.We refresh one of the inputs, to ensure both input

sharings of the SecMatVec gadget are independent.

Recombining the shares of
{
PPP(3)
𝑗

}
𝑗∈[𝑚]

. The Upper function is

applied share by share, on each of𝑚matrices

{
BBB𝑗

}
in Line 10. Finally,

one can securely recombine the shares of each BBB𝑗 to obtain each

PPP
(3)
𝑗

, using the FullAdd gadget (Line 11). Its details are discussed in

Section 4.4 and its security in a larger composition is explained below.

5.1.1 Security. To argue about the first- and high-order security
of Algorithm 4, we prove it to be 𝑡-NIo secure with 𝑛= 𝑡 +1 shares
and public output

{
PPP
(3)
𝑗

}
𝑗∈[𝑚]

, providing resistance against a prob-

ing adversary with 𝑡 probes. The proof requires us to show how

probes on intermediate and output variables in the algorithm can

be perfectly simulated with only a limited set of input shares.

Lemma 5.1. The gadget mCompactKeyGen (Algorithm 4) is 𝑡-NIo

secure with public output
{
PPP(3)
𝑗

}
𝑗∈[𝑚]

.

Proof.We model a single iteration 𝑗 of Algorithm 4 as a sequence

of 𝑡-(S)NI gadgets, which is visually shown in Figure 7. In addition

to the gadgets listed in Table 3, we model the linear operations in

Line 6-7 and Line 10 as 𝑡-NI gadgets𝐺2 and𝐺4, respectively. This

can be trivially shown as the operations are share-wise. Note that

the algorithm is independent of the specific masked implementation

used for mExpandsk, which produces a uniformly masked matrixOOO.

We also consider the iterations of the loop in Line 8-9 to be indepen-

dent and executed in parallel, each generating one of𝑚 columns.

This means the probes are defined on a column level here (and not

variable level) to ensure successful simulation. We summarize the

inner loop into a single gadget𝐺3.

We complete the full proof in two steps: we first prove the com-

position of gadgets 𝐺1 - 𝐺4 to be 𝑡-SNI. Finally, we prove the full

Algorithm 4 to be 𝑡-NIo, thanks to the final gadget𝐺5 (FullAdd).
Part I : As shown in Figure 7, an adversary can place a number of

probes at the output (𝑜𝐺𝑖
) and internally (𝑡𝐺𝑖

) in each gadget𝐺𝑖 . The

number of probes of gadget𝐺1-𝐺4 of Algorithm 4 are defined as 𝑡𝐴4

and output shares |𝑂 | with 𝑡𝐴4
=
∑
4

𝑖=1𝑡𝐺𝑖
+∑3

𝑖=1𝑜𝐺𝑖
, |𝑂 |=𝑜𝐺4

.

(OOO𝑖 )

𝐺1

SecREF

𝐺2

Linear (ln. 6+7)

𝐺3

SecMatVec
𝐺4

Upper
𝐺5

FullAdd
PPP
(3)
𝑗

Figure 7: An abstract diagram of an iteration 𝑗 in mCompactKeyGen
(Alg. 4). The 𝑡-NI gadgets are depicted with a single border, the 𝑡-SNI
gadgets with a double border.

We now prove Part 𝐼 of Lemma 5.1 by showing that the inter-

nal and output probes can be perfectly simulated with ≤ 𝑡𝐴4
of the

input shares (OOO𝑖 ), and is independent of |𝑂 |. To simulate the inter-

nal probes and output shares of gadgets𝐺3 and𝐺4, we require 𝑡𝐺3

shares of both inputs of𝐺3. This is because the 𝑡-SNI gadget𝐺3 stops

the propagation of probes at its output (e.g.𝐺4) to the input shares.

Following the flow through gadgets𝐺2 and𝐺1, the simulation of

𝐺1 -𝐺4 of Algorithm 4 requires |𝐼 | = 𝑡𝐺1
+ 𝑡𝐺2

+𝑜𝐺2
+ 𝑡𝐺3

of the in-

put shares (OOO𝑖 ). Note that without 𝑡-SNI refresh𝐺1, the simulation

would require at least 2·𝑡𝐺3
shares of the input and hence would not

be sound. As |𝐼 | ≤ 𝑡𝐴4
(no duplicate entries) and independent of 𝑜𝐺4

,

the first part of Algorithm 4 is 𝑡-SNI.

Part II : Gadget 𝐺5 satisfies the 𝑡-NI property if the simulator has

access to the public value PPP
(3)
𝑗

, which is also the output of the full

algorithm. As the composition of𝐺1-𝐺4 is 𝑡-SNI and𝐺5 is 𝑡-NI, its

composition and iteration 𝑗 of the mCompactKeyGen algorithm is

𝑡-NIo with public output PPP
(3)
𝑗

.

Finally, as each iteration 𝑗 is independent and can be executed in

parallel, we can summarize the gadgets in each iteration as a single

gadget across all iterations. As a result, the entire Alg. 4 is 𝑡-NIo with

public output

{
PPP
(3)
𝑗

}
𝑗∈[𝑚]

. □

We verify the 𝑡-SNI property (Part I) of gadgets G1-G4 using

maskVerif, at first- and second-order. Due to the tool’s limitation

with handling the NIo notion, we are not able to mechanically verify

the full composition in Algorithm 4.

5.2 Masked UOV Secret Key Expansion
The secret key expansion in UOV derives the expanded secret key

𝑒𝑠𝑘 , as used during signing, from the compact secret key 𝑐𝑠𝑘 . We

propose our masking approach in Algorithm 5. Our strategy con-

sists of using the shared compact secret key to generate the shared

expanded key in a masked fashion.

Again, the sensitive secret key 𝑐𝑠𝑘 contains the Boolean masked

(𝑠𝑒𝑒𝑑𝑠𝑘,𝑖 )1≤𝑖≤𝑛 . It is used to compute the masked expanded secret

key components: matrix (OOO𝑖 ) and matrices {(SSS𝑗,𝑖 )1≤𝑖≤𝑛} 𝑗∈[𝑚] .
Generation ofOOO and {PPP(1)

𝑗
,PPP(2)

𝑗
} 𝑗∈[𝑚] .We refer to Section 5.1, as

this procedure (Line 1 - 2) is identical in mCompactKeyGen.

Computation of
{
SSS𝑗

}
𝑗∈[𝑚] =

{(
PPP(1)
𝑗
+PPP(1)𝑇

𝑗

)
OOO+PPP(2)

𝑗

}
𝑗∈[𝑚]

. The

sequence of matrices

{
SSS𝑗

}
𝑗∈[𝑚] is computed in a masked fashion,

by performing share-wise matrix multiplication and addition. Both

{PPP(1)
𝑗

,PPP
(2)
𝑗
} 𝑗∈[𝑚] are public values: the sumofPPP

(1)
𝑗

and its transpose

is first multiplied with each share of matrix (OOO𝑖 ) (Line 4). Subse-
quently,PPP

(2)
𝑗

is added to the first share, to obtain the final𝑚matrices

{(SSS𝑗,𝑖 )1≤𝑖≤𝑛} 𝑗∈[𝑚] (Line 5).
8
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Algorithm 5: mExpandSK
Data: Boolean

shared compact secret key 𝑐𝑠𝑘 = (seed
sk,𝑖 )1≤𝑖≤𝑛

Result: Boolean shared expanded secret key 𝑒𝑠𝑘

1 (seed
pk
,(OOO𝑖 )) :=mExpandsk ((seedsk,𝑖 ))

2 {PPP(1)
𝑗

,PPP
(2)
𝑗
} 𝑗∈[𝑚] :=ExpandPPP (seedpk)

3 for 𝑗 =1 upto𝑚 do
4 (SSS𝑗,𝑖 )1≤𝑖≤𝑛 :=

((
PPP
(1)
𝑗
+PPP(1)𝑇

𝑗

)
OOO𝑖

)
/* SSS𝑗,𝑖 ∈F𝑙×𝑚𝑞 */

5 SSS𝑗,1=SSS𝑗,1+PPP(2)𝑗

6 return 𝑒𝑠𝑘 = ((seed
sk,𝑖 ),(OOO𝑖 ),{PPP(1)𝑗

,(SSS𝑗,𝑖 )1≤𝑖≤𝑛} 𝑗∈[𝑚] )

5.2.1 Security. To argue about the first- and high-order security
of Algorithm 5, we prove it to be 𝑡-NI secure with 𝑛 = 𝑡 +1 shares,
providing resistance against a probing adversary with 𝑡 probes.

Lemma 5.2. The gadget mExpandSK (Algorithm 5) is 𝑡-NI secure.

Proof. This is a direct result that the operations in a single iteration
(multiplication and addition) are linear and performed share-wise

(𝑡-NI). If an attacker places 𝑡 probes across different (independent)

iterations, the intermediate values can be simulated with no more

number of shares of the input (OOO𝑖 ). □
The composition of Algorithm 5 is mechanically verified to be

𝑡-NI secure at first- and second-order, using maskVerif.

5.3 Masked UOV Signature Generation
The UOV signing procedure generates a valid signature 𝜎 of an

incoming message 𝜇 via rejection sampling. As the computation in-

volves the expanded secret key 𝑒𝑠𝑘 , we propose to split all secret key

and ephemeral components into multiple shares. All computations

are performed in a masked manner, as described in Algorithm 6.

Following its expansion (see previous section), the expanded se-

cret key consists of three Boolean shared components: (seed
sk,𝑖 ),

(OOO𝑖 ) and {(SSS𝑗,𝑖 )1≤𝑖≤𝑛} 𝑗∈[𝑚] . The secret (seedsk,𝑖 ) is used to derive
the vinegar vector (v𝑖 ). In combination with the public matrices

{PPP(1)
𝑗
} 𝑗∈[𝑚] , all components are used to securely compute the un-

masked s. Together with a uniformly random string (salt), they form

the signature 𝜎 = (s,salt).
Generation of v. The shares of the secret vinegar vector v are sam-

pled from amasked PRNG mExpandv in Line 4, based on themessage

𝜇, the masked secret seed (seed
sk,𝑖 ), a counter and random salt. It

is instantiated with a masked shake256(), producing the Boolean
shared (v𝑖 ).
Computation ofLLL=v𝑇SSS.We compute the Boolean shared matrix

(LLL𝑖 ) in a column-wise fashion in Line 5-6. The𝑚 Boolean sharedma-

trices {(SSS𝑗,𝑖 )1≤𝑖≤𝑛} 𝑗∈[𝑚] aremultipliedwith Boolean shared vector

(v𝑖 ), using the SecMatVec gadget.We rely on the transpose property

LLL
𝑇
= (v𝑇SSS)𝑇 =SSS

𝑇 v.
Computation of y= [v𝑇PPP(1)

𝑗
v] 𝑗∈[𝑚] .We propose to compute the

Boolean masked vector (y𝑖 ) using the previously introduced gadget
SecQuad (Line 7). Th public matrices PPP

(1)
𝑗
] 𝑗∈[𝑚] are first multiplied

with theBoolean sharedvector (v𝑖 ) and thenagainwith its transpose
to obtain (y𝑖 ).

Algorithm 6: mSign
Data: 1. Boolean shared expanded secret key

𝑒𝑠𝑘 = ((seed
sk,𝑖 ),(OOO𝑖 ),{PPP(1)𝑗

,(SSS𝑗,𝑖 )1≤𝑖≤𝑛} 𝑗∈[𝑚] )
2. Message 𝜇

Result: Signature 𝜎

1 salt←{0,1}salt_len
2 t :=Hash(𝜇 | |salt)
3 for 𝑐𝑡𝑟 =0 upto 255 do
4 (v𝑖 ) :=mExpandv (𝜇 | |salt| | (seedsk,𝑖 ) | |ctr) /* v𝑖 ∈F𝑙𝑞 */

5 for 𝑗 =1 upto𝑚 do /* LLL𝑇 = (v𝑇SSS)𝑇 = SSS𝑇 v */

6 (LLL[:, 𝑗 ]𝑖 )=SecMatVec((SSS𝑇𝑗,𝑖 )1≤𝑖≤𝑛,(v𝑖 ))

7 (y𝑖 ) :=SecQuad({PPP(1)𝑗
} 𝑗∈[𝑚] ,(v𝑖 )) /* y𝑖 ∈F𝑚𝑞 */

8 y1=y1+t
9 (TTT𝑖 ) :=SecRowEch((LLL𝑖 ),(y𝑖 )) /* TTT𝑖 ∈F𝑚×(𝑚+1)𝑞 */

10 if (TTT𝑖 )≠⊥ then
11 x :=SecBackSub((TTT𝑖 ) /* x∈F𝑚𝑞 */

12 (u𝑖 ) := (v𝑖+OOO𝑖x)
13 w :=FullAdd((u𝑖 )) /* w∈F𝑙𝑞 */

14 s :=
[
w
x

]
15 return 𝜎 = (s,salt)

16 return⊥

Solving LLLx= t−y. The system of linear equations is solved using

masked Gaussian elimination, using the techniques introduced in

[37]. The Boolean shared matrix (LLL𝑖 ) is first converted to its row-
echelon form (SecRowEch, Line 9). Finally, if the resulting (extended)
matrix (TTT𝑖 ) has a non-zero pivot element in each row, the system

is back substituted and the public result x is obtained (SecBackSub,
Line 11). We securely unmask and make the output public, as it is

a part of the public signature s (Line 15).
Computation and unmasking ofw. The second part of the sig-
nature,w, is computed in a share-wise fashion: each share of (v𝑖 ) is
added to theproduct of thepublic vectorx andBoolean sharedmatrix

(OOO𝑖 ) in Line 12. Finally, the resulting shares are securely combined

(FullAdd, Line 13) and the vector w is made public as part of the

signature s.

5.3.1 Security. We now discuss the first- and high-order security

of Algorithm 6 and prove it to be 𝑡-NIo secure with 𝑛= 𝑡+1 shares
and public outputs s and c. The signature s is public, while c is made

public by gadget SecRowEch and indicates if all pivot-elements are

non-zero. As a result, our masked algorithm provides resistance

against a probing adversary with 𝑡 probes.

Lemma 5.3. The gadget mSign (Algorithm 6) is 𝑡-NIo secure with
public outputs s (w,x) and c.

Proof.Wemodel a single iteration of Algorithm 6 as a composition

of 𝑡-(S)NI gadgets, which is visually shown in Figure 8. Apart from

the gadgets listed in Table 3, we model the share-wise operations

in Line 8 and 12 as 𝑡-NI gadgets𝐺3 and𝐺5, respectively. It is trivial

to show that linear operations are 𝑡-NI. We also model all iterations

9
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(v𝑖 )

{(SSS𝑇𝑗,𝑖 )} 𝑗∈[𝑚]

(OOO𝑖 )

𝐺1

SecMatVec

𝐺2

SecQuad
𝐺3

+

𝐺4

SecRowEch
𝐺6

SecBackSub

𝐺5

+ and *
𝐺7

FullAdd

c

x

w

Figure 8: An abstract diagram of an iteration ctr in mSign (Alg. 6). The
𝑡-NI gadgets are depicted with a single border, the 𝑡-SNI gadgets with
a double border.

in the inner loop (Line 5-6) as a single 𝑡-SNI gadget𝐺1. As the iter-

ations are independent and we define probes on a column level, the

simulation is successful. Each iteration produces one of𝑚 indepen-

dent columns of (TTT𝑖 ) and is assumed to be executed in parallel. We

note that the algorithm and its security proof are independent of the

specific masked implementation used for the PRNG mExpandv. An
adversary can probe any intermediate values in any gadget (𝑡𝐺𝑖

), and

their output shares 𝑜𝐺𝑖
. The total number of probes in Algorithm 6

is 𝑡𝐴6
=
∑
7

𝑖=1𝑡𝐺𝑖
+∑5

𝑖=1𝑜𝐺𝑖
.

We now show that all probes in a single iteration of mSign can be
simulated with no more number of shares of its inputs ( |𝐼 |): |𝐼 | ≤ 𝑡𝐴6

if the simulator has access to x,w and c. The simulation of 𝑡𝐺6
and

𝑡𝐺7
intermediate probes requires an equal amount of shares of the

outputs of𝐺4 and𝐺5, respectively. This is due to the 𝑡-NI property of

both gadgets. Similarly, the simulation of 𝑡𝐺4
+𝑜𝐺4

probes requires

𝑡𝐺4
+𝑜𝐺4

shares of both the output of𝐺3 and𝐺1, and giving the simu-

lator access to c. The simulation of 𝑡𝐺5
+𝑜𝐺5

probes requires the same

amount of shares of inputs (v𝑖 ) and (OOO𝑖 ). Due the 𝑡-SNI property
of𝐺1 and𝐺2, the simulation of probed intermediate values and out-

put shares only requires 𝑡𝐺1
and 𝑡𝐺2

shares of inputs {(SSS𝑇𝑗,𝑖 )} 𝑗∈[𝑚]
and/or (v𝑖 ), respectively. We now follow the flow from the output

to the input and sum all required shares of the input for simulation

of Algorithm 6: |𝐼 | = 𝑡𝐺1
+𝑡𝐺2
+𝑡𝐺5
+𝑜𝐺5

+𝑡𝐺7
≤ 𝑡𝐴6

. As a result, the

iteration is 𝑡-NI secure with public outputs s and c.
Finally, we note that the signing procedure only requires multi-

ple iterations if the system of linear equations is unsolvable and no

unique solution x can be found. In that case, all masked computa-

tions are performed again using a new vinegar vector (v𝑖 ) and thus
are different from the previous iteration. As different iterations are

independent, the entire outer loop (Line 3-15) is also 𝑡-NI securewith

public outputs s and c. □
We verify the 𝑡-SNI property of the composition of gadgets G1,

G2 & G5 using maskVerif, at first- and second-order. Due to the

tool’s limitation with handling the NIo notion, we are not able to

mechanically verify the full composition in Algorithm 6.

6 IMPLEMENTATIONANDEVALUATION
We complement our theoretical analysis from Section 4 & 5 with a

practical side-channel leakage evaluation and performance analysis

of our masked implementation of UOV.

6.1 Practical Security Evaluation
In this section we complement our theoretical and formal security

analysis of the proposed gadgets with a practical side-channel leak-

age evaluation on a real-world device. We confirm the theoretical

results of the previous sections and demonstrate how our proposed

techniques lead to efficient and practically secure implementations

on real-world devices.

6.1.1 Micro-Architectural Effects & Compiler Optimization. To en-
sure our implementation is secure, we take explicit measures to

mitigate side-channel leakage due to micro-architectural effects,

such as transitional leakage in memory elements. This effect leads

to unexpected leakages and is a result of successively writing both

shares (𝑟 and 𝑥 ⊕ 𝑟 ) of a (first-order masked) sensitive variable 𝑥

into one (pipeline) register or ALU unit. This will cause the power

consumption of the device to be correlated to the original secret

𝑥 , as HD(𝑥 ⊕𝑟 , 𝑟 ) = HW(𝑥). We carefully craft and deploy various

clearing routines, written in assembly, to mitigate leakages due to

micro-architectural effects. Theypre-load affectedmemory elements

with a random value, before loading the second share, to break such

secret dependencies.

Prior work typically relies on turning off compiler optimizations

(-o0) to ensure masking countermeasures (written in C) are not op-

timized away [4, 52], at the cost of performance degradation. For

example, allowing (aggressive) compiler optimizations might result

in the removal of intentional dummy-operations or re-ordering of

instructions. However, as demonstrated below, we find our imple-

mentation remains secure when using compiler optimization flag

-o3, allowing for high optimization. By ensuring the compiler does

not re-order any (security-critical) operations through the compiler

flags -fno-schedule-insns and -fno-schedule-insns2, the re-
sulting machine code is efficient and remains secure.

6.1.2 Measurement Setup. We conduct our measurements from the

dedicatedmeasurement port on aNewAECW308UFOboardwith an

STM32F415RGArmCortex-M4
1
microcontroller as target.We supply

the target board with an external 8 MHz clock and configure it to

internally run at a 24MHzoperating frequency. For trace acquisition,

we use a 6426E PicoScope with 12-bit resolution and the sampling

rate set to 125 MS/s. We synchronize the oscilloscope with the ex-

ternal clock during all measurements and use the on-chip TRNG

for on-the-fly randomness generation. The micro-controller sends

a trigger signal before (and after) the target operation, indicated

by vertical red lines in each figure below. The initial sharings are

computed randomly and sent directly to the micro-controller. As is

common practice, we choose a reduced (UOV) parameter set (𝑚=4,

𝑛=10) for our practical security evaluation to ensure practical fea-

sibility. The operations performed in all gadgets are not impacted

by the choice of𝑚 or 𝑛 and only the amount of iterations are.

6.1.3 TVLAMethodology. The side-channel security of ourmasked

implementation is evaluated using the Test Vector Leakage Assess-

ment (TVLA)methodology [25] and thenon-specific,fixed vs. random
𝑡-test statistic. More specifically, power measurements are taken

from the target devicewhich is operating on either a fixed or random

input, in a random fashion. Subsequently, two sets of power traces

are constructed: 𝑆𝑓 and 𝑆𝑟 . Finally, the Welch’s two-tailed 𝑡-test

is computed for each sample point in the trace to determine if the

masking countermeasure is secure. If the 𝑡-value doesn’t exceed a

threshold value, typically ±4.5, the samples from both sets cannot

be distinguished with high confidence (𝛼 = 0.01), i.e. no leakage.

We recall that this threshold value is not universal, as computing

1
arm-none-eabi-gcc 10.3.1 20210621
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the 𝑡-value on many samples (long traces) will, with high probabil-

ity, introduce false positives which exceed ±4.5 (see [21, Table 1]
and [4, Appendix A]). Below, we adapt the threshold value for each

experiment accordingly (Appendix E).

6.1.4 Results. The first-order TVLA results with RNGON for the

SecDotProd,SecMatVec andSecQuadgadgets are shown in Figure 9.
The results confirm our theoretical expectation, as the 𝑡-value does

not cross the threshold value after acquiring one million traces and

thus the implementations under test are considered secure. Addi-

tionally, we include the mean power traces and first-order statistical

moments with the masking countermeasure disabled (randomness

set to zero) in Appendix E (Fig. 12 - 14). For SecDotProd, significant
leakages can be detected with only 50 thousand traces, guaranteeing

the soundness of our set-up.
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Figure 9: TVLAanalysis of 1st-order SecDotProd, SecMatVec& SecQuad
(RNGON)with 1M traces. The 𝑡-test threshold ismarked by red lines.

Additionally, we adapt the implementation of [37] for solving the

system of linear equations in the masked signing procedure, with

early stop (Section 4.4). Figure 10 shows the first-order TVLA results

of masked Gaussian elimination. We successfully apply our method-

ology to remove leakages due to micro-architectural effects and do

not allow the compiler to re-order instructions. As can be seen, no

leakage is detected after acquiring 100K traces, while significant

leakages are detected with our countermeasure turned off after 1K

traces (Fig. 10c).

In summary, we have successfully demonstrated how ourmasked

gadgets (Section 4& 5) result in efficient and first-order secure imple-

mentations on the Arm Cortex-M4.We find minimal performance

overhead can be achieved through enabling compiler optimizations,

without impacting side-channel security in practice. We leave the

investigating of the applicability of aggressive compiler optimization

(-o3) without instruction re-ordering to other masked implementa-

tions as future work.
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Figure 10: TVLA analysis of 1st-order SecRowEch [37]. Mean trace and
𝑡-test results with RNG ON (100K traces) and RNG OFF (1K traces).
The ± 5.423 threshold is marked by red lines.

6.2 Performance Evaluation and Comparison
This section presents the implementation results of masked UOV al-

gorithms and compares themwith the state-of-the-art post-quantum

masked digital signature algorithms. We have used a DELL Latitude

E7470 laptopwith an Intel (R) Core (TM) i7-6600CPU running at 2.60

GHz and the GCC 6.5 compiler with optimization flag 03 to calculate

the performance of our algorithms in cpucycle counts.

The performance of our masked key generation and masked sig-

nature generation of the UOV schemes is presented in Table 4. We

have implemented and documented the performance results for the

UOV parameter sets UOV-Ip and UOV-III, the pkc variant. How-

ever, our code can be extended to other variants of the UOV scheme.

The performance overhead factor in the masked key generation of

UOV-Ip for the first-, second-, and third-order are 13×, 38×, and
62×, respectively. The masked signature generation algorithm of

UOV-Ip has 12×, 48×, and 78× overhead for first-, second-, and third-
order masking. These overhead factors for the masked algorithms

of UOV-III are similar to or slightly larger than those of UOV-Ip.

We also compare the performance result of the masked signa-

ture generation of UOV-Ip with the masked signature generation

of Dilithium and Falcon in Table 4. We also compare the perfor-

mance result of the masked signature generation of UOV-Ip with

the state-of-the-art masked signature generation of Dilithium [14]

and Falcon [8] in Table 4. Although the unmasked signature genera-

tion of the NIST standard Dilithium2 and UOV-Ip requires a similar

amount of CPU cycles, the first-order, second-order, and third-order

masked signature generation of UOV-Ip perform, respectively, 62%,

19%, and 25% better than Dilithium2. For easier visualization, we
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Table 4: Comparing the performance ofmasked implementations of UOVwith the state-of-the-art PQmasked digital signature schemes. The
performances are in 1000× cpucycles unless otherwisementioned.

Key-generation (1000× cpucycles) Sign (1000× cpucycles or seconds)
unmasked Masked unmasked MaskedScheme

1st 2nd 3rd 1st 2nd 3rd

UOV-Ip [TW] 58,772 791,871 (13×) 2,215,190 (38×) 36,616,77 (62×) 1,268 15,490 (12×) 61,420 (48×) 99,469 (78×)
Dilithium2 [14] - - - - 1,228 40,368 (33×) 76,173 (62×) 133,508 (109×)
Falcon 512

∗ [8] - - - - - 3.199 s 6.368 s -

UOV-III [TW] 370,483 5,670,203 (15×) 16,241,454 (44×) 25,509,566 (69×) 5,064 62,110 (12×) 259,969 (51×) 415,293 (82×)
*: The performances are in seconds as the processor frequency was not provided. Except this, all others are measured using the same laptop.

compare the execution time (in seconds) of first-, second-, and third-

order masked signature generations of UOV-Ip with Dilithium2 in

Figure 11. The masked signature generation of UOV compared to

Falcon 512 performs 99.8% better for first-order and 99.6% better for

second-order masking.

Figure 11: Comparison ofmasked UOV-Ip with Dilithium2

Finally, we also want to note that our primary objective in this

work was to design the masking algorithms and provide theoreti-

cal and empirical proofs for security. Our implementations can be

considered as a small improvement over proof-of-concept and not

a fully optimized version. Therefore the efficiency can be improved

further. This is in contrast to ML-DSA, which, due to its popularity,

has gone through a larger cycle of optimizations and improvements.

Further, we would like to note that our approach is not limited to the

UOV scheme but can be extended to other UOV-based multivariate

schemes, such as Mayo, QR-UOV, SNOVA, andMQ-Sign.

7 IMPACTANDDISCUSSIONS
Resource-constrained devices such as IoT, sensor nodes, medical

monitoring devices, etc., usually operate under very stringent op-

erational constraints [31]. Throughout this work, we shed light on

another important aspect of deploying PQC in the real world, es-

pecially on RCD: masking PQ DSA schemes. Due to the ubiquitous

nature of RCDs, they are often easy targets for SCA adversaries. One

such compromised device can jeopardize the security of the whole

network. Therefore, from the perspective ofwidespread deployment,

it is crucial to protect these devices from such adversaries. However,

due to their limited resources, it is also difficult to incorporate so-

phisticated and strong SCA countermeasures.

However, the public key (verification key) is quite large for UOV

and itsMQE-basedvariants.Asmentioned inSection1, for theRound

2 specification of UOV [11], the signature size is 96 bytes, yet the

verification key is approximately 66 KB. Therefore, UOV is particu-

larly useful where the public key does not need to be transmitted, or

in a hybrid with other PQ DSAs. In many cases, public keys can be

pre-distributed to reduce the overhead as the work [45] suggests. Al-

ternatively, following the example (TLS handshake) given in [50], a

minimumof twopublic keys (public keyof intermediate and terminal

server) need to be transmitted alongwith five signatures (certificates

of root, intermediate, and leaf certificates along with two signed

certificates timestamps according to current standards), assuming

only one intermediate certificate. Since root servers and signed cer-

tificate timestamps do not carry their public keys during handshake,

one can use UOV DSA there, and ML-DSA can be used in the rest

of the fields. This reduces the required bandwidth during the TLS

handshake to 7.2 KB from 14.7 KB if ML-DSA is used everywhere.

In constrained radio networks, ephemeral Diffie-Hellman over

COSE (EDHOC) [46] is a lightweight Diffie-Hellman key-exchange

protocol used in RCD design by the Internet Engineering Task Force

(IETF). In typical use cases it needs to send 3 messages of size 37,

45, and 19 bytes (total 101 bytes) using classical cryptography. If a

combination of ML-KEM [35] with ML-DSA [33] is used, these sizes

would be 773, 3194, and 2433 bytes or 6400 bytes in total. However,

a hybrid of ML-KEM and UOV reduces the sizes of the messages to

773, 870, and 109 bytes or 1752 bytes in total. Although the large size

ofML-KEMdominates the total size in the latter case it still offers ap-

proximately 3.6𝑥 improvement over theML-KEM +ML-DSA hybrid.

Another protocol used in CRN and also designed by IETF is Group

OSCORE [48], which provides end-to-end security for group com-

munications in RCD.Here, a non-interactive key-exchange (NIKE) is

used. Therefore, the payload size is equal to the signature size in addi-

tion to someheaders. In this protocol andotherswhere the public key

is not sent while sending the certificate and signing is performed on

the RCD, using UOV DSA has almost similar overhead as compared

to the classical signatures and a clear advantage over other PQDSAs.

Our results show that in the context of masking on RCD, UOV is a

far better alternative thanML-DSA and a strong candidate for easing

PQ DSAmigration. Although several works [20, 31, 38] mentioned

that the energy cost for computations is less energy intensive than

radio transmission, an overhead of (33-109×) for masked implemen-

tations is significant. UOVwith smaller overhead has much better

leeway toprovidehigher-order security for a similar cost in energy. It

also leaves roomto incorporate other types of countermeasures, such

as duplication countermeasures, to prevent fault injection attacks.
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APPENDICES
A Artifact & Data Availabiltiy
Wemake the source-code of our arbitrary-order masked implemen-

tation of UOV available, whichwe plan to open-source. Additionally,

we make the scripts for formally verifying the security notions of

our proposed gadgets at first- and second-order using maskVerif
available.

B Proof Lemma 4.1
The security proof follows from the potential observations that a

probing adversary can make. We note that probes are defined on

the coefficient-level: the output of the gadget is a coefficient and the

inputs are vectors, consisting of 𝑙 independent coefficients. We now

show that all potential observations can be perfectly simulated using

a limited amount of shares of each of the 𝑙 (independent) inputs.

Let Ω= (I, O) be a set of 𝑡 observations made by an adversary on

the internal and output values, respectively, where |I | = 𝑡𝐴1
, such

that 𝑡𝐴1
+|O| ≤ 𝑡 . We construct a perfect simulator of the adversary’s

probes, which makes use of at most 𝑡𝐴1
shares of the secret input

coefficients x[𝑘 ] and y[𝑘 ] (1≤𝑘 ≤ 𝑙 ).
Let𝑤1,...,𝑤𝑡 be the set of probed values. We classify the internal

wires in the following groups:

(1) 𝑥 [𝑘 ]𝑖 ,𝑦 [𝑘 ] 𝑗 , 𝑥 [𝑘 ]𝑖𝑦 [𝑘 ] 𝑗 at iteration 𝑖, 𝑗,𝑘 ,
(2) 𝑢𝑖 𝑗 ,𝑢𝑖 𝑗 +𝑥 [𝑘 ]𝑖𝑦 [𝑘 ] 𝑗 at iteration 𝑖, 𝑗,𝑘 ,
(3) 𝑥 [𝑘 ] 𝑗 ,𝑦 [𝑘 ]𝑖 , 𝑥 [𝑘 ] 𝑗𝑦 [𝑘 ]𝑖 at iteration 𝑖, 𝑗,𝑘 ,
(4) 𝑢 𝑗𝑖 ,𝑢 𝑗𝑖+𝑥 [𝑘 ] 𝑗𝑦 [𝑘 ]𝑖 at iteration 𝑖, 𝑗,𝑘 ,
(5) 𝑥 [𝑘 ]𝑖 ,𝑦 [𝑘 ]𝑖 , 𝑥 [𝑘 ]𝑖𝑦 [𝑘 ]𝑖 at iteration 𝑖,𝑘 ,
(6) 𝑤𝑖 ,𝑤𝑖+𝑥 [𝑘 ]𝑖𝑦 [𝑘 ]𝑖 at iteration 𝑖,𝑘 ,
(7) 𝑢𝑖 𝑗 +𝑟𝑖 𝑗 with 𝑖, 𝑗 =1,...,𝑡+1,

The output variables are the final values of (𝑧𝑖 ).
We define two arrays of sets of indices 𝐼𝑘 and 𝐽𝑘 (1≤𝑘 ≤ 𝑙) such

that |𝐼𝑘 | ≤ 𝑡𝐴1
and |𝐽𝑘 | ≤ 𝑡𝐴1

and the values of the probes can be per-

fectly simulated given only knowledge of (x[𝑘 ]𝑖 )𝑖∈𝐼𝑘 and (y[𝑘 ]𝑖 )𝑖∈ 𝐽𝑘 .
The sets are constructed as follows.

• Initially all 𝐼𝑘 and 𝐽𝑘 are empty (1≤𝑘 ≤ 𝑙).
• For every probe as in group (1) add 𝑖 to 𝐼𝑘 and 𝑗 to 𝐽𝑘 .

• For every probe as in group (2) and (7) add 𝑖 to 𝐼𝑚 and 𝑗 to

𝐽𝑚 with𝑚=1,...,𝑘 .

• For every probe as in group (3) add 𝑗 to 𝐼𝑘 and 𝑖 to 𝐽𝑘 .

• For every probe as in group (4) add 𝑗 to 𝐼𝑚 and 𝑖 to 𝐽𝑚 with

𝑚=1,...,𝑘 .

• For every probe as in group (5) add 𝑖 to 𝐼𝑘 and 𝐽𝑘 .

• For every probe as in group (6) add 𝑖 to 𝐼𝑚 and 𝐽𝑚 with

𝑚=1,...,𝑘 .

An adversary is allowed to make 𝑡𝐴1
internal probes at most, thus

it holds that |𝐼𝑘 | ≤ 𝑡𝐴1
and |𝐽𝑘 | ≤ 𝑡𝐴1

(1≤𝑘 ≤ 𝑙 ).
We now construct the simulator with the probed wires denoted

𝑤ℎ with ℎ=1,...,𝑡 and show it is able to simulate any internal wire

𝑤ℎ . For each variable 𝑟𝑖 𝑗 entering in the computation of any probe,

the simulator assigns a random value.

1. For each observation as in group (1) (or (3)), by definition of

𝐼𝑘 and 𝐽𝑘 the simulator has access to 𝑥 [𝑘 ]𝑖 and 𝑦 [𝑘 ] 𝑗 (or 𝑥 [𝑘 ] 𝑗 and
𝑦 [𝑘 ]𝑖 , respectively) and thus the values are perfectly simulated.

2. For each observation as in group (2) (or (4)), by definition of

{𝐼𝑚}1≤𝑚≤𝑘 and {𝐽𝑚}1≤𝑚≤𝑘 the simulator has access to 𝑥 [𝑚]𝑖 and
14
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𝑦 [𝑚] 𝑗 (or 𝑥 [𝑚] 𝑗 and𝑦 [𝑚]𝑖 , respectively) for𝑚=1,...,𝑘 and thus the

values are perfectly simulated.

3. For each observation as in group (5), by definition of 𝐼𝑘 and 𝐽𝑘
the simulator has access to 𝑥 [𝑘 ]𝑖 and𝑦 [𝑘 ]𝑖 and thus the values are
perfectly simulated.

4. For eachobservationas ingroup (6), bydefinitionof {𝐼𝑚}1≤𝑚≤𝑘
and {𝐽𝑚}1≤𝑚≤𝑘 the simulator has access to 𝑥 [𝑚]𝑖 and 𝑦 [𝑚]𝑖 for
𝑚=1,...,𝑘 and thus the values are perfectly simulated.

5. For each observation as in group (7), by definition of {𝐼𝑘 }1≤𝑘≤𝑙
and {𝐽𝑘 }1≤𝑘≤𝑙 thesimulatorhasaccess to𝑥 [𝑘 ]𝑖 and𝑦 [𝑘 ] 𝑗 for𝑘 =1,...,𝑙
and we distinguish three cases:

• If 𝑖 = 𝑗 , the simulator assigns 𝑟𝑖𝑖 to 0 and perfectly simulates

the value𝑤ℎ using 𝑥 [𝑘 ]𝑖 and𝑦 [𝑘 ]𝑖 for 𝑘 =1,...,𝑙 .
• If 𝑗 ∈ 𝐼 and 𝑖 ∈ 𝐽 , then by definition the adversary has also

probed𝑢 𝑗𝑖 and thus a value containing in its computation

the randomvalue 𝑟𝑖 𝑗 . The simulator then perfectly simulates

𝑤ℎ using 𝑥 [𝑘 ]𝑖 and 𝑦 [𝑘 ] 𝑗 for 𝑘 = 1,...,𝑙 and the 𝑟𝑖 𝑗 assigned
previously.

• In all other cases, 𝑟𝑖 𝑗 does not enter in the computation of

any other probe and𝑤ℎ is assigned a fresh random value

and thus perfectly simulated.

We now consider the observations of the output values. We dis-

tinguish two cases:

• If an intermediate sum is also observed, then the previously

probed partial sums are already simulated. By definition

of the gadget, there always exists one random bit 𝑟𝑜𝑝 in

𝑤ℎ which does not appear in the computation of any other

observed element. Thus, the simulator can assign a fresh

random value to𝑤ℎ .

• If no internal values have been probed by an adversary, then

by definition of the gadget, each output share contains 𝑡

random values and atmost one of them can enter in the com-

putation of each other output variable 𝑧𝑖 . An adversary may

have probed 𝑡−1 other values and thus there exists one ran-
domvalue𝑟𝑜𝑝 in𝑤ℎ whichdoesnot enter in the computation

of anyother observed value. The simulator can thus simulate

𝑤ℎ using a fresh random value, completing the proof. □

C Auxiliary Algorithms

Algorithm 7: FullAdd, from [7, 16]

Data:A Boolean sharing (𝑦𝑖 )
Result: Unmasked value𝑦 such that𝑦=

𝑛∑
𝑖=1

𝑦𝑖

1 (𝑎𝑖 ) :=SecREF((𝑦𝑖 )) /* free-𝑡-SNI */

2 𝑦 :=𝑎1+···+𝑎𝑛
3 return𝑦

Algorithm 8: SecRowEch, from [37]

Data: 1. A Boolean sharing (AAA𝑖 ) of matrixAAA∈F𝑚×𝑚𝑞

2. A Boolean sharing (b𝑖 ) of the vector b∈F𝑚𝑞
Result:Masked conversion to row echelon form or⊥

1 (TTT𝑖 ) := [AAA𝑖 | b𝑖 ] /* TTT𝑖 ∈F𝑚×(𝑚+1)𝑞 */

2 for 𝑗 =1 upto𝑚 do
3 ## Try to make pivot (TTT[ 𝑗, 𝑗 ]) non-zero

4 for 𝑘 = 𝑗+1 upto𝑚 do
5 (𝑧𝑖 ) :=SecNonzero((TTT[ 𝑗, 𝑗 ]𝑖 ))
6 (𝑧𝑖 )=SecNOT((𝑧𝑖 ))
7 (TTT[ 𝑗, 𝑗 :𝑚+1]𝑖 )=

SecCondAdd((TTT[ 𝑗, 𝑗 :𝑚+1]𝑖 ),(TTT[𝑘,𝑗 :𝑚+1]𝑖 ),(𝑧𝑖 ))

8 ## Check if pivot is non-zero

9 (𝑡𝑖 ) :=SecNonzero((TTT[ 𝑗, 𝑗 ]𝑖 ))
10 c[ 𝑗 ] :=FullAdd((𝑡𝑖 ))
11 if c[ 𝑗 ]≠0 then

12 ## Multiply row 𝑗 with the inverse of its pivot

13 (𝑝𝑖 ) :=B2Minv((TTT[ 𝑗, 𝑗 ]𝑖 ))
14 (TTT[ 𝑗, 𝑗 :𝑚+1]𝑖 )=SecScalarMult((TTT[ 𝑗, 𝑗 :𝑚+1]𝑖 ),(𝑝𝑖 ))
15 ## Subtract scalar

multiple of row 𝑗 from the rows below

16 for 𝑘 = 𝑗+1 upto𝑚 do
17 (𝑠𝑖 ) :=SecREF((TTT[𝑘,𝑗 ]𝑖 ))
18 (TTT[𝑘,𝑗 :𝑚+1]𝑖 )=

SecMultSub((TTT[ 𝑗, 𝑗 :𝑚+1]𝑖 ),(TTT[𝑘,𝑗 :𝑚+1]𝑖 ),(𝑠𝑖 ))

19 else return⊥
20 return (TTT𝑖 )

Algorithm 9: SecBackSub, from [37]

Data:A Boolean sharing

(TTT𝑖 )= [AAA𝑖 |b𝑖 ] of matrixAAA∈F𝑚×𝑚𝑞 and vector b∈F𝑚𝑞 .

Result: Unique, public solution x∈F𝑚𝑞 such thatAAAx=b

1 for 𝑗 =𝑚 downto 2 do
2 x[ 𝑗 ]=FullAdd((b[ 𝑗 ]𝑖 ))
3 for 𝑘 =1 upto 𝑗−1 do
4 (b[𝑘 ]𝑖 ) := (b[𝑘 ]𝑖+x[ 𝑗 ] ·AAA[𝑘,𝑗 ]𝑖 )

5 x[1]=FullAdd((b[1]𝑖 ))
6 return x
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D Complexity Algorithm 6 (mSign())
The run-time and randomness complexity of mSign are:

𝑇mSign (𝑙,𝑚,𝑛)=1+𝑇Hash (𝑚,𝑛)+ctr· (𝑇mExpand𝑣𝑣𝑣 (𝑙,𝑛)
+(𝑚 ·𝑇SecMatVec (𝑙,𝑚,𝑛))+(𝑇SecQuad (𝑙,𝑚,𝑛))
+(𝑚)+(𝑇SecRowEch (𝑚,𝑛))+(𝑇SecBackSub (𝑚,𝑛))
+(𝑙𝑚𝑛+𝑙𝑛)+(𝑙 ·𝑇FullAdd (𝑛)))
=1+𝑇Hash (𝑚,𝑛)+ctr· (𝑇mExpand𝑣𝑣𝑣 (𝑙,𝑛)
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E Other TVLAResults
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Figure 12: TVLA analysis of 1st-order SecDotProd. Mean trace and
𝑡-test results with RNG ON (1M traces) and RNG OFF (50K traces).
The ± 4.849 threshold is marked by red lines.
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Figure 13: TVLA analysis of 1st-order SecMatVec. Mean trace and
𝑡-test results with RNG ON (1M traces). The ± 5.079 threshold is
marked by red lines.
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Figure 14: TVLA analysis of 1st-order SecQuad. Mean trace and 𝑡-test
results with RNG ON (1M traces). The ± 5.283 threshold is marked
by red lines.
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