mUOV: Masking the Unbalanced Oil and Vinegar Digital
Signature Scheme at First- and Higher-Order

Suparna Kundu”
COSIC, KU Leuven
Leuven, Belgium
suparna.kundu@esat.kuleuven.be

Uttam Kumar Ojha
Indian Statistical Institute
Kolkata, India
uttamkumarojhal729@gmail.com

ABSTRACT

In the recent search for additional post-quantum designs, multivari-
ate quadratic equations (MQE) based designs have been receiving
attention due to their small signature sizes. Unbalanced Oil and
Vinegar (UOV) is an MQE-based digital signature (DS) scheme pro-
posed over two decades ago. Although the mathematical security of
UOV has been thoroughly analyzed, several practical side-channel
attacks (SCA) have been shown on UOV based DS schemes. In this
work, we perform a thorough analysis to identify the variables in
UOV based DS schemes that can be exploited with passive SCA,
specifically differential power attacks (DPA). Secondly, we introduce
masking as a countermeasure to protect the sensitive components
of UOV based schemes. We propose efficient masked gadgets for
all the critical operations, including the masked dot-product and
matrix-vector multiplication. We show that our gadgets are secure
in the t-probing model through formal proofs, mechanically verified
using the maskVerif tool. We implemented and demonstrated the
practical feasibility of our arbitrary-order masking algorithms for
UOV-Ip and UOV-III. We show that the masked signature generation
of UOV-Ip performs up to 62% better than Dilithium2 or ML-DSA
and 99% better than Falcon 512 or FN-DSA. In addition, the security
of our implementation is practically validated using the test vector
leakage assessment (TVLA) methodology.

CCS CONCEPTS

«Security and privacy — Digital signatures; Side-channel anal-
ysis and countermeasures.

KEYWORDS
Post-Quantum Cryptography, Digital Signatures, Masking, UOV.

1 INTRODUCTION

The National Institute of Standards and Technology (NIST) recently
published the first set of post-quantum (PQ) digital signature al-
gorithm (DSA) standards [1]. Currently, this set constitutes ML-
DSA [33] (CRYSTALS-Dilithium) and SLH-DSA [34] (Sphincs+),
while FN-DSA [23] (Falcon) will be released in the near future. One
common characteristic of these standard schemes is their large sig-
nature size, which is multiple orders (10—120x) the size of existing
elliptic curve discrete signature algorithm (EC-DSA) signatures. This

“Two authors contributed equally to this research.

Quinten Norga”
COSIC, KU Leuven
Leuven, Belgium
quinten.norga@esat.kuleuven.be

Anindya Ganguly
Indian Institute of Technology
Kanpur, India
anindyag@cse.iitk.ac.in

Angshuman Karmakar
Indian Institute of Technology
Kanpur, India
angshuman@cse.iitk.ac.in

Ingrid Verbauwhede
COSIC, KU Leuven
Leuven, Belgium
ingrid.verbauwhede@esat.kuleuven.be

creates serious bottlenecks for many critical applications. For exam-
ple, in a chain-of-trust-based authentication in the transport layers
security (TLS) where an entity, e.g a website, is authenticated by a
series of certificates i.e. root certificate-intermediate certiﬁcatel -leaf
certificate, [> 1, this results in a huge blowup in the required trans-
mission bandwidth. This problem has led to the proposal of some
unorthodox approaches, such as KEMTLS [44] or KEMTLS with
redistributed public-keys [45].

Nonetheless, the adoption and integration of current PQC stan-
dards pose a significant challenge for devices with constrained re-
sources, such as the Internet of Things devices, sensor nodes, etc.
These devices use constrained radio networks (CRN) such as Low-
Power Personal Area Networks (LPPANSs) g.s Bluetooth Low Energy
with a range from a few centimeters to a few meters, and Low Power
Wide Area Networks (LPWANS) such as LoRaWAN, Sigfox, IEEE
802.11ah, etc. which have ranges of several kilometers. Due to op-
erational constraints, CRNs have very small frame sizes, ultra-low
speeds, and very high latency. For example, LoRaWAN has 51 bytes
frames and 11 bytes frames in Europe and the United States, respec-
tively. The small frame size combined with approximately 1% duty
cycle i.e. a device sends data for 36 seconds and waits for an hour,
basically means that it may take a few days (or even more in case
of transmission errors) to transmit the 2.4KB signature payload of
ML-DSA. Furthermore, in resource-constrained devices (RCD), the
energy cost for radio transmission is significantly larger compared
to the computational costs [20, 31, 38]. Similarly, the signature size
of SLH-DSA and its large signing time, makes the scheme unsuitable
for integration into RCDs. Interestingly, FN-DSA produces relatively
small signatures (666 bytes) but due its complex data structures (Fal-
con tree) and floating point arithmetic it is challenging to implement
(securely) on embedded devices [1].

Table 1: Signature sizes (bytes) of pre- and post-quantum DSAs.

Algorithm ‘ EC-DSA ML-DSA FN-DSA SLH-DSA UOV
Assumption ECDLP SIS NTRU Hash MQE
Signature [B] 64 2420 666 7856 96

As aresult, NIST explicitly mentions the need for PQ DSASs suit-
able for RCDs in their call for the standardization of additional
PQ DSAs [32], which has advanced to its second round. Signature
schemes based on the hardness of solving multivariate quadratic

https://orcid.org/0000-0003-4354-852X
https://orcid.org/0000-0003-0983-5664
https://orcid.org/0000-0003-2594-588X
https://orcid.org/0009-0006-1640-4191
https://orcid.org/0009-0007-0219-9139
https://orcid.org/0000-0002-0879-076X

Suparna Kundu, Quinten Norga, Angshuman Karmakar, Uttam Kumar Ojha, Anindya Ganguly, and Ingrid Verbauwhede

equations (MQE) [9, 13, 40, 41], which is an NP-complete prob-
lem [29] offer relatively much smaller signature sizes compared to the
PQ DS schemes based on other hard problems and only slightly larger
than EC-DSA (Table 1). In this paper, we focus on the Unbalanced Oil
and Vinegar (UOV) DSA [11], which was originally proposed by Kip-
nis et al. [30] and is a Round 2 candidate. Several other MQE-based
DSAs have been constructed using the UOV framework. Among
them, QR-UOV [24], SNOVA [49], and MAYO [10], which have also
advanced to Round 2 of the NIST additional DSA standardization pro-
cess [36]. Another scheme, MQ-Sign [47], was a finalist candidate in
the recently concluded Korean PQC standardization procedure [42].

Side-Channel attacks (SCA) exploit the physical phenomena of
devices which are performing cryptographic operations dependent
on secret key material. Examples of such phenomena include secret-
dependent execution time, power consumption, electromagnetic ra-
diation, etc. For a real-world deployment of cryptographic schemes,
especially those running on small RCD, such attacks are one of the
most potent threats [3, 39, 51]. Therefore, integrating countermea-
sures against side-channel attacks is a crucial and necessary step for
a real world deployment of any cryptographic scheme. NIST also
stressed on this criterion in its call for standardization [32]. Mask-
ing is a well-known and provably secure countermeasure against
differential power attacks (DPA), first introduced by Chari et al. [12].
Here, secret values are split into multiple randomized shares and
computations are performed in such a way that an adversary who
is not able to recover all shares, cannot construct the full secret.

Contribution. In this work, we present a complete analysis and
methodology for masking and protecting the full UOV digital sig-
nature scheme against first- and higher-order DPAs, which we for-
mally and empirically validate. There are many works that have
proposed secure masking algorithms for current NIST PQC DSA
standards [8, 14, 18]. To the best of our knowledge and in spite of be-
ing in existence for a long time, there are no masking schemes for the
UOV DSA. Therefore, the primary motivation for this work is to close
this gap in research. More specifically, our contributions are below.

o First, we perform a systematic and rigorous sensitivity anal-
ysis on the complete UOV scheme. We identify critical vari-
ables and operations that require protection against DPAs.

e Second, we propose novel masked gadgets for all sub-operat-
ions and provide formal proofs in the t-probing model, which
are verified using the maskVerif tool [5]. We propose an ef-
ficient, arbitrary-order masked algorithm for matrix-vector
multiplication based on our SecDotProd gadget. We pro-
pose a lazy compression technique, which requires only a
single, costly mask refresh when performing the masked dot
product between two vectors of [coefficients, compared to
the standard approach requiring ! refresh operations. Our
approach allows the delay of the expensive share re-masking
and final compression and performs it once, combining all
cross-products at once. Our gadget allows us to construct
efficient and secure matrix-vector multiplications, on which
all MQE-based schemes heavily rely.

o Third, we combine our novel and efficient gadgets with meth-
ods from prior work to present an open-sourced, arbitrary-
order masked implementation of all sensitive UOV routines

of key generation, secret key expansion, and signature gen-
eration.

e Fourth, we experimentally validate the security of the first-
order implementations of our proposed gadgets using test
vector leakage assessment (TVLA) methodology (1M execu-
tions). We demonstrate how to eliminate physical leakages
due to micro-architectural effects in masked implementa-
tions and identify compiler optimization flags, which allow
for the use of aggressive compiler optimization (-03) without
impacting security.

o Fifth, we compare the performances of masked UOV imple-
mentations with other PQ DSAs. Additionally, we demon-
strate the benefits of using our techniques and implemen-
tation to deploy PQ-secure cryptography in embedded en-
vironments.

We make the source code of our implementation and the scripts for
formal verification of our proofs in the t-probing model (maskVerif)
available for reviewers at https://anonymous.4open.science/r/mUOV-
CCS-EB53/. (see Appendix A).

Outline. We first introduce the notation and definitions used
throughout this work and a description of the UOV DSA in Section 2.
Subsequently, in Section 3, we analyze the UOV scheme from side-
channel perspective and analyze which components are sensitive
and require protection against DPAs. We propose novel, arbitrary-
order masked gadgets for efficient vector & matrix arithmetic in
Section 4. In Section 5, we propose mUOV, which includes the masked
key generation and signature generation algorithms. We present and
discuss our implementation, including an extensive performance
and security evaluation in Section 6. Finally, we conclude with ap-
plications of masked UOV in Section 7.

2 PRELIMINARIES
2.1 Notation

We use Fy to denote a finite field with g elements and q a power-
of-two positive integer. All vectors and matrices are defined over
Fgy. Lower-case letters (e.g., x) denote field elements/ coefficients,
lower-case bold letters (e.g., v) represent vectors and upper-case bold
letters denote matrices (e.g., M). All vectors are in the column form,
and the transpose of the matrix M is denoted by M. The identity
matrix of size m is denoted by I;,, while Oy is the zero column vector.
x « S represents the (random) sampling of x from the set S. The
ith bit position of a field element x is represented with xli] The
Jjth element of the vector v is indicated as v[j]. The (j,k)th element
of the matrix M is represented as M[k] and the elements of the
positions (j,k) to (j,k+1I) of the matrix M is represented collectively
asM[j,k:k+]. A sequence of n shares (xi,...,x,) of a sensitive variable
x is represented as (x;)1<i<n Or (x;), when the number of shares n
is clear from context. In this work, we use Boolean masking, where
X=xX1+...+xp, and the addition is a logical XOR (&).

2.2 Masking

Ishai et al. [28] introduced the ¢-probing model, a theoretical frame-
work to argue about the practical security of the masking counter-
measure. It allows an adversary to probe t intermediate values in a
masked implementation: if any such ¢ probes do not leak information

https://anonymous.4open.science/r/mUOV-CCS-EB53/
https://anonymous.4open.science/r/mUOV-CCS-EB53/

mUOV: Masking the Unbalanced Oil and Vinegar Digital Signature Scheme at First- and Higher-Order

about the unshared secret, the implementation is t-probing secure.
Barthe et al. [6] introduced several security notions, which allow us
to prove the probing security of the composition of sub-operations
(gadgets). We now recall the security notions used in this work, as
presented in [43].

Definition 2.1 (t-(Strong-)Non-Interference (t-(S)NI) security). A
gadget with one output sharing and m; input shares is t-NI (resp.
t-SNI) secure if any set of at most 1 probes on its internal wires and
t2 probes on wires from its output sharings such that t; +¢, <t can be
simulated with 1 +1; (resp. t1) shares of each of its m; input sharings.

We also recall two extensions for these notions, which are required
when masking digital signature schemes. These involve making val-
ues public, such as the computed signatures.

Definition 2.2 (free-t-Strong-Non-Interference (free-t-SNI) security
[19]). A gadget with one output sharing b; and m; input sharings is
free-t-SNI secure if any set of at most t; probes on its internal wires
such that #; <t there exists a subset I of input indices with |I| < t1,
such that the 1 intermediate variables and the output variables b|;
can be perfectly simulated from a7, while for any O C [1,n] \I the
output variables in ¢|p are uniformly and independently distributed,
conditioned on the probed variables and ;.

Definition 2.3 (t-Non-Interference with public outputs (t-Nlo) se-
curity [7]). A gadget with public output b and m; input sharings is
t-Nlo secure if, for any set of t; <t intermediate variables, there ex-
ists a subset I of input indices with |I| < t;, such that #; intermediate
variables can be perfectly simulated from x|; and b.

2.3 UOV-DSA

This work specifically targets the UOV digital signature scheme, as
submitted to the latest NIST standardization process [11]. Its Round
2 specification defines three variants: classic, pkc, and pkc+skc.
These variants are designed to offer different trade-offs between
memory utilization and performance. The classic variant employs
a standard key generation process, resulting in the expanded secret
and publickeys (epk,esk). The pkc (public key compact) variant intro-
duces a compact representation for the public key (cpk), significantly
reducing memory requirements (Figure 1). The ExpandPK algorithm
is invoked during the verification phase to expand the public key
before it can be used in verification computations, at the cost of
increased latency (Fig. 2). Finally, the pkc+skc (public & secret key
compact) variant further optimizes storage by employing compact
representations for both the secret and public keys (csk,cpk). In addi-
tion to the modifications during the verification phase, the ExpandSK
algorithm is executed during the signature generation phase to ex-
pand the secret key. This variant minimizes storage overhead at
the expense of increased computation time during both signature
generation and verification. We present the parameter set of the
different variants of UOV in Table 2. Throughout this text, we will
denote vector/matrix dimension n—m as [.

3 SENSITIVITY ANALYSIS OF UOV-DSA

Performing a sensitivity analysis is a crucial first step in order to
determine which variables require masking or protection to mitigate
SCAs. We identify ExpandSK, CompactKeyGen,and Sign (Fig. 3 - 5) as
vulnerable to differential power attacks, as they involve the secret key.

CompactKeyGen()
(1) seedg « {0,1}5k-seed len
(2 (seedpy, O) :=Expandg (seedgy)

N (1) p(2)
© {Pi P }ie[mj
(4) fori=1uptomdo

5) PES) ::Upper(—OTPgl)O—OTsz))

(6) cpk::(seedpk,{Pgs)}ie[m])

(7) csk:=seedg
(8) return (cpk,csk)

sk_seed_len=256
pk_seed_len=128

:=Expandp (seedpy)

Sign(esk,u)

(1) salte {0,1}salt len

(2) t:=Hash(p||salt)

3) for ctr=0upto 255 do

##salt_len=128

4 v:=Expand, (p||salt||seedg||ctr)
(5) L:=0,nxm
(6 for i=1upto m do
%) Set i-throw of Ltov'S;
1
® y:= [VTPE Vlietm

(9) x:=L71(t-y)
(10) if x#1 then

##x=1if det(L)=0

an s::[V]+ ij
Om Im

(12) o:=(s,salt)

13) return o

(14) return L

Verify(epk,u,0)
(1) t:=Hash(p||salt)
2) returnt==[s"P;s];cm]

Figure 1: Main UOV-DSA (pkc) routines [11]

ExpandSK(csk)

(1) (seedpy, O) :=Expandg (seedgy)

{P(.l) P(z)} :=Expandp (seedpy)
ie[m]

@ i i

(3) fori=1uptomdo

@ Si=(p{V+p{VT)o+p”

(5) esk:= (seedsk,O,{Pgl),Si})
ie[m]

(6) return esk

ExpandPK (cpk)
(1) p(2)

o {Pi P }ie[m]

(2) fori=1uptomdo

1 2

P p?

o pY
12

) epk:={Pi}ic(m)

(5) return epk

:=Expandp (seed,y)

) P;=

Figure 2: UOV-DSA secret- and public-key expansion [11]

They contain colour-coded representations of the sensitive compo-
nents within the UOV scheme. All public data, including (compact/-
expanded) public key, message and signature of a message, are non-
sensitive and indicated in blue. All sensitive data, and operations deal-
ing with them, are highlighted in red. In contrast, both ExpandPK and

Suparna Kundu, Quinten Norga, Angshuman Karmakar, Uttam Kumar Ojha, Anindya Ganguly, and Ingrid Verbauwhede

Table 2: Parameter sets for all UOV-DSA variants.

Scheme Security Parameters
Level n m q
UOV-Tp I 12 4 256
UOV-Is 160 64 16
UOV-IT | T | 184 72 256
Uovv | V| 244 96 256

Verify are not sensitive, as they operate exclusively on public inputs
and variables that do not facilitate signature forgery or key recovery.

UOV. CompactKeyGen. The compact key generation algorithm
first samples the seed seedy, from which seedpy and secret ma-
trix O, which corresponds to the oil space, are derived. Here seedyy, is
a sensitive variable and Expandyy is a sensitive algorithm. Both need
protection and are targets for applying masking, while the public
key seed seed,, can be unmasked after generation.

Figure 3: Sensitivity analysis of UOV.CompactKeyGen.

The seed, is used as input in Expandp to construct two public ma-
trices: Pgl) and sz), which are used to compute PES) .Here, seedpk,
P;l), sz) and P§3) are non- sensitive. However, the computation
of PES) is a sensitive operation due to its dependence on the secret

vector O, as illustrated in the lower portion of the Figure 3. It is
crucial to emphasize that, despite this dependence, the (final) value

of PES) does not leak any information regarding the secret vector O.

UOV.ExpandSK. The algorithm ExpandSK operates on the secret
key, so it is sensitive and requires protection. As shown in Figure 4,
the computation of §; involves the sensitive variable O. An adversary
could derive the secret O from the matrices S; and hence it requires
P

masking. The variables PEI) and are public and not sensitive.

Cfrd (D00

Figure 4: Sensitivity analysis of UOV.ExpandSK.

UOV. Sign. Thesignature generation algorithm takes the expanded
secret key esk and message i as input. It first samples a random salt,
and computes the message digest t as Hash(p||salt). These variables
are public and non-sensitive. We then compute the pre-image s of t
using the secret key via rejection sampling. This requires uniformly
sampling a vinegar vector v € Fg. This sampling can be done by run-
ning Expandy on input seedg,y, and salt. This computation is sensi-
tive, since it may leak information about seedg, and it may influence

the distribution of v (Figure 5). Subsequently, y = [VTPEI)V] ie[m]
is computed. This operation (and its variables) are sensitive because
the adversary can perform a SCA to retrieve v, which leads to a key
recovery.

Figure 5: Sensitivity analysis of UOV.Sign.

Once the vinegar variable is fixed, then the quadratic system
P (s) =tis converted to a linear system Lx=t—y. Clearly L is sensi-
tive and should be masked, as it can lead back to the oil space. Now,
if L is invertible, then x can be computed by performing Gaussian
elimination (GE), allowing the computation of s, finally. Otherwise, v
is re-sampled and the previous process is repeated. The GE operation
must be masked because it can reveal information about the secret oil
space O. However, x is part of the public signature s and can thus be
revealed after its computation. The execution time of signature gen-
eration leaks ctr value, so we can consider ctr is also non-sensitive.

Differences with [2]. While this work was ongoing, a similar work
appeared onIACR ePrint and was subsequently published in PQCrypto
’25. As the contents in our work differ from several claims and con-
clusions related to masking in the other work[2, Section 5.5], we
explicitly go over those differences.

Protecting S; and O. First, we would like to explicitly highlight the
need for applying the masking countermeasure on CompactKeyGen
and ExpandSK routines to prevent DPAs in embedded environments.
In such a scenario, the matricesS; and O will be generated in a shared
manner, as it involves the secret oilspace.

Protecting v. Second, the authors of [2] propose to unmask the sen-
sitive variable v during the quadratic evaluation and computation of

y= [VTPEI) V]ic[m]- Instead, they propose to mask the public values

P;l) . The main argument provided by the authors is an SPA [3]. As
this matrix is public, it does not require side-channel protection and
unmasking the sensitive value exposes an implementation against
DPAs. Additionally, masking is not an appropriate technique for
protecting against SPAs. Instead, our approach protects against any
DPA and alternative countermeasures can be integrated to protect
against SPAs. This includes shuffling the operations in the multiplica-
tions with the public values and performing a mask refreshing on v,
between the multiplication of each share with Pl(l) .In this case, if an
attacker is able to obtain one share of (v;) via a profiling attack, the
next share will be randomly masked via a different random. As such,
even if an attacker obtains all shares, the original (v;) can never be
reconstructed as all shares belong to a different set of fresh masks. We
note that all multiplications of sensitive variables with a public value
are vulnerable against such SPAs and require appropriate hardening.

mUOV: Masking the Unbalanced Oil and Vinegar Digital Signature Scheme at First- and Higher-Order

Protecting L. In contrast to the claims in prior work, the sensitive
matrix L requires protection against DPAs (through masking). This
includes solving the system of linear equations Lx = t—y through
masked gaussian elimination, instead of the unmasked variant pro-
posedin [2].

4 EFFICIENT MASKED GADGETS

In this section we propose and introduce masking techniques for all
sub-operations in the UOV DSA. All novel gadgets are described by
a t-order algorithm (n =t+1 shares) and accompanied with a detailed
description. More specifically:

e SecDotProd and SecMatVec: efficient masked dot product
on two Boolean masked vectors, based on our novel lazy
compression. It is the main building block for matrix-vector
multiplication, as used during key generation and signing.

e SecQuad: masked evaluation of a quadratic form, based on
masked matrix-vector multiplication, as used during signing.

All components, including gadgets from literature, required to
achieve fully masked UOV (Section 5) are listed in Table 3.

Table 3: Overview of used gadgets, with n=¢+1 shares.

Algorithm Description Security Reference
SecREF Refresh of Boolean masking t-SNI [6,17]
FullAdd Secure unmasking of Boolean shares t-NI [7,16] & Alg. 7
SecDotProd Dot prod. of two Boolean masked vectors t-SNI Algorithm 1
SecMatVec Matrix-vector multiplication t-SNI Algorithm 2
SecQuad Evaluation of a quadratic form t-SNI Algorithm 3
SecRowEch Matrix conversion to row echelon form t-Nlo [37] & Alg. 8
SecBackSub Masked back substitution with public output ¢-Nlo [37] & Alg. 9

Methodology. We prove all algorithms/gadgets to be t-(S)NI secure
in the probing model via simulation. We show how probes on in-
termediate variables and output shares of a gadget can be perfectly
simulated with only a limited number of input shares. For algorithms
which are composed from multiple gadgets, we rely on the ¢-(S)NI
properties of the sub-gadgets to argue about simulatability of all
values. For example, the set of probes required from the input shares
of a t-SNI gadget is independent from the amount of probes on its
output shares. By iterating over all possible intermediate (and output)
variables of each sub-gadget, starting at the output and moving to the
input of the algorithm, all required probes for simulation are summed.
Additionally, we mechanically verify all (first- and second-order)
t-(S)NI claims/proofs using the verification tool maskVerif.

4.1 Masked Dot Product

The (masked) matrix-vector multiplication operation is critical in
multivariate-based post-quantum crypto. As highlighted in Section
2, it is also the case for the UOV scheme. We propose a method to
efficiently compute the masked dot product (SecDotProd) using lazy
compression. The typical computation of a masked multiplication
involves three stages: computation of cross-products, re-sharing and
compression into the final n shares. Computing a dot-product of two
I-dimensional vectors naively thus requires performing / masked
multiplications (i.e. re-sharing and compression) and summing the
I results. We propose a more efficient technique: by delaying the
re-sharing and compression of the cross-products, until completing
them for all] elements in the input vectors x and y, we only need to

perform them once at the end. We now discuss our approach in detail,
which is inspired by the approach in [26], modifying the domain-
oriented ISW multiplication [27, 28] by delaying the compression
stage when chaining multiplications.

Algorithm 1: SecDotProd

Data: Boolean sharings (x;) and (y;) of vectors x,yeFfI.
Result: A Boolean sharing (z;) of a coefficient z=x"y € Fq.
1 (uij),(wi)=0
2 ## Compute and sum [cross-products
3 for k=1 uptol do

4 fori=1uptondo

5 for j=i+1 uptondo

6 L ujj=ujj+x[kl;ylkl;
7 uji=uji+x[k];ylkl;

8 | (wi)=(wi+x[k];y(k];)
9 ## Resharing

o fori=1uptondo
1 for j=i+1 uptondo

12 rij < Fq
13 Ujij =Ujj+Tij
14 Uji=Uji+Tij

n
15 (z;)=(wi+ X uij) ## Compression

J=1,j#i

16 return (z;)

Computation of] cross-products. The cross-products for ! input
coefficients of (x;) and (y;) are computed and summed. We observe
here that since no cross-products are combined, and all input coef-
ficients are independent, they can be computed independently and
each summed together.

Resharing. The cross-products which contain shares of both inputs
with different share indices (i # j) are now refreshed using a fresh
random share. This is to prevent the re-combination of all shares of
a single coefficient in the following step.

Compression. The refreshed partial sums are now combined into
the final output values z;. As proposed in [22], it is critical (for secu-
rity) that the result of the computation of z; is stored in a memory
element and only the full result is returned. This is not necessary for
probing security, but required for £-SNI security. It is clear that only
performing the re-sharing and compression step once, as proposed
here, is more efficient than performing it for every input coefficient
pair and summing the results of those multiplications.

4.1.1 Complexity. Here, we discuss the run-time complexity (num-
ber of operations) and randomness complexity of the SecDotProd op-
eration, following the approach proposed in [15, 43]. We denote the
run-time and randomness complexity of an operation Operation by
Toperation and Roperation, respectively. We also assume that the run-
time cost of random number generation is unit time and operands
are w = [log(g)] bits wide. The run-time and randomness complexity
of SecDotProd are:

Suparna Kundu, Quinten Norga, Angshuman Karmakar, Uttam Kumar Ojha, Anindya Ganguly, and Ingrid Verbauwhede

2n(n-1)

3n(n—-1
Tsecpotprod (Ln) =1-n-(2 +1)+n- ()

+n(n-1)

3 1
=3 —In+In+=n®— —nz—n,
2 2
nn-t) o 1s Lo
2 2 2
4.1.2 Security. We now show that the SecDotProd gadget is t-SNI
secure with n=t+1 shares, providing resistance against a probing
adversary with ¢ probes and allowing us to use the gadget in larger
compositions.

Rsecpotprod (Ln,w)=n-

LEmMMA 4.1. The gadget SecDotProd (Algorithm 1) is t-SNI secure.

Proof. The full proof is included in Appendix B. Additionally, we
verify its t-SNI notion using maskVerif, for first- and second-order.

4.2 Masked Matrix-Vector Multiplication

We now show how the optimized SecDotProd gadget is used to
compute a masked matrix vector multiplication (SecMatVec) in an
efficient manner. As shown in Algorithm 2, by applying the dot prod-
uct on each row (m in total) of a Boolean masked matrix (A;), the
shared vector (b;) withb=Axe IF;" can be computed (m iterations,
m coefficients).

Algorithm 2: SecMatVec

Data: 1. A Boolean sharing (A;) of a matrix A€ IF’;"XZ.
2. A Boolean sharing (x;) of a vector x € F{I
Result: A Boolean sharing (b;) of the vectorb=Axe FZI”
1 for j=1 uptom do
2 | (blj1;):=SecDotProd((A[):1,).(x:))

3 return (b;)

4.2.1 Complexity & Security. The run-time and randomness com-
plexity of SecMatVec are:

3 1
Tsecmatvec (Lm,n) =Imn> —Imn® +Imn+ Emn3 - Emn2 —mn,

1 1
Rsecmatvec (l;mJl,W) == mn3W - 7mn2w.
We now prove Algorithm 2 to be t-SNI secure with n=¢+1 shares,
providing resistance against a probing adversary with t probes and

allowing us to use the gadget in larger compositions.
LEMMA 4.2. The gadget SecMatVec (Algorithm 2) is t-SNI secure.

Proof. This is a direct result from the SecDotProd gadget being #-SNI
secure. As each iteration is t-SNI secure and independent, the whole
loop is t-SNI too. It is clear that if an adversary can probe ¢ times in
total across different iterations or independent outputs, these can
be simulated with no more number of input shares.]

Additionally, we verified that the SecMatVec gadget satisfies the
t-SNI notion at first- and second-order using maskVerif.

4.3 Masked Quadratic Form Evaluation

The quadratic form evaluation is used in the UOV scheme to com-
pute the vector y=[x'P X] je[m]- Our masked gadget operates on
the Boolean shares (x;) and public matrices {P;} je[y,, and it is

described in Algorithm 3. The computation happens in two steps:
first the masked matrix (T;) = (P;x;) is computed in a share-wise
manner, using m public matrices to compute its m columns. After
which the SecMatVec gadget is used to compute the matrix-vector
multiplication (y;) = (xiT) (T;) on two Boolean shared operands.
Computation of T={P;} ;c [, . As the m matrices {P;} are public,
they can be multiplied in a share-wise manner with the sensitive
vector (x;). Each masked multiplication (Line 3) is a column of matrix
(T5).

Computation of y = x”T. After the full Boolean masked matrix
(T;) is constructed, it is multiplied with Boolean masked (x;) on
Line 4. Here, we rely on the property (x T)T = TTx to calculate the
desired result through the SecMatVec gadget. Also, the masking of
vector (x;) is first refreshed to ensure both inputs of the gadget are
independent (Line 1).

Algorithm 3: SecQuad

Data: 1. Public matrices {P; EFéXl}jE[m] .
2. A Boolean sharing (x;) of the vector x € Fﬁl
Result: A Boolean
sharing (y;) of the vector y = [XTPjX]jE (m] €Fg'

1 (s;):=SecREF((x;))
2 for j=1uptomdo
s | (e =@jx)
4 (yi):=SecMatVec((TT),(s;))
5 return (y;)

/x T €FLXm %/
/eyt = ITHT = TTx %/

4.3.1 Complexity. The run-time and randomness complexity of
SecQuad are:

3 3 1 1
TSecQuad (Lmn)=(Elnz - Eln)+(ilzm2n+ Elzmn)

3 1
+(Imn® —Imn®+Imn+ Emn3 - Emn2 —mn),

1 1 1 1
Rsecquad (Lm,n,w) =(gln2w+§lnw)+(5mn3w— Emnzw)A

4.3.2 Security. We now argue about the first- and high-order se-
curity of Algorithm 3 by proving it to be ¢-SNI secure with n=¢+1
shares. This means it provides resistance against an adversary with
t probes and allows using the algorithm in larger compositions.

LEmMA 4.3. The gadget SecQuad (Algorithm 3) is t-SNI secure.

Proof. Figure 9c depicts an overview of the construction of Algorithm
3 from its elementary gadgets. Apart from those listed in Table 3, we
model the loop of linear operations in Line 2-3 as a t-NI gadget G
(‘Loop’), which we prove first. Subsequently, we prove the security
of the larger composition.

We first argue that a single iteration (Line 3) is ¢-NI, which is trivial
as the inputs are processed in a share-wise manner. Similar as before,
if an attacker can probe across different independent iterations, the ¢
intermediate values can be simulated with no more number of shares
of input (x;). As aresult, the whole loop is considered to be executed
in parallel and modeled as single ¢-NI gadget G,.

We now prove that the combination of all operations (whole gad-
get) are t-SNI (Lemma 4.3). An adversary can probe each gadget

mUOV: Masking the Unbalanced Oil and Vinegar Digital Signature Scheme at First- and Higher-Order

SecREF

(xi) s
' SecMatVec o9
Gz

Loop
Figure 6: An abstract diagram of SecQuad (Algorithm 3). The ¢-NI

gadgets are depicted with a single border, the #-SNI gadgets with a
double border.

(G;) internally or at its output. The number of internal and output
probes for each gadget are denoted as ¢, and og;, respectively. The
total number of probes t4, and output shares |O| of Algorithm 3 are:
tas= Z?:1 Ze? +212:loci’ |0]=0g,.

We show that the internal and output probes can be perfectly
simulated with <4, input shares. Firstly, to simulate the internal
and output probes on gadget Gs, only g, shares of both inputs are
required. This is a direct result of the ¢-SNI property of Gs: the simu-
lation of a t-SNI gadget can be performed independent of the number
of probed output shares. As a direct result, the propagation of output
shares to the input shares is stopped. The simulation succeeds on a
column-levelas G, produces mindependent outputs and ¢, shares of
m independent columns are required Secondly, the simulation of tg,
internal and oG, output probes on gadget G, requires ¢, +0g, shares
ofitsinput, asitis t-NI Finally, due to the ¢-SNI property of gadget G1,
tG, input shares are required to simulate ¢, intermediate probes and
oG, output shares. Finally, we sum up the required shares of the in-
puts for simulation of all gadgets |I|. As |I| =tg, +tg, +0G, +tG, <ta,
and independent from |O| , Algorithm 3 is £-SNI. O

Finally, we mechanically verify that the SecQuad gadget satisfies
the t-SNI notion at first- and second-order, using maskVerif.

4.4 Other Auxiliary Gadgets

4.4.1 FullAdd (Alg. 7). For securely unmasking sensitive values
and making them public, e.g. the signature after signing, we rely on
the FullAdd gadget. Its two main steps are a strong (free-t-SNI) mask
refreshing and combining all shares. The free-t-SNI notion allows
for the simulation of all outputs of the refresh (y;) with all but one
share of the input (x;), and the unmasked value y [17]. As a result,
the subsequent unmasking (which involves all shares) can be per-
fectly simulated. In contrast, standard ¢-(S)NI refresh would result
in unsound simulation as all shares of its input would be required,
which is not probing secure. It is shown in [17] that the £-SNI refresh
in [6] also satisfies the free-t-SNI notion. We refer to [17, 18] for the
security proof of its ¢-NIo with public output y notion.

4.4.2 SecRowEch & SecBackSub (Alg. 8 & 9). A method for solv-
ing a masked system of linear equations using (masked) Gaussian
elimination with back substitution was proposed in [37]. We recall
the SecRowEch and SecBackSub gadgets in Appendix C. Their ap-
proach relies on converting a shared matrix (T;) to its row-echelon
representation by making leading pivot-elements 1. If the matrix
is invertible, and thus has a unique solution x, it can be found by
performing back substitution on the reduced matrix. We refer to the
original work for the complexity and security analysis, including
their t-Nlo security proofs. Additionally, we integrate the early stop
during the initial phase of masked gaussian elimination to improve
performance, as proposed in the UOV specification [11]. As a result,

only a few instead of all rows are conditionally added to the pivot
row in an attempt to make it non-zero.

5 MASKING UOV AT ARBITRARY ORDER

In this section, we combine the different masked gadgets described
in Sec. 4 to design masked components of UOV [11]. The main algo-
rithms are masked key generation (nCompactKeyGen, Alg. 4), secret
key expansion (mExpandSK, Alg. 5) and signing (mSign, Alg. 6). As
the signature verification procedure operates only on public values,
no masking is required.

5.1 Masked UOV (Compact) Key Generation

The compact key generation of UOV is used to generate the compact
public key cpk and compact secret key csk. Our approach consists
of splitting secret key components and derived (ephemeral) secrets
into multiple shares and performing their operations in a masked
fashion. Our masking strategy is formally described in Algorithm 4.
When masked, the compact secret key csk is defined as (seed
(seedsy ;)1<i<n) With the secret-key component seedgy returned as
aBoolean sharing. Each share is a randomly sampled binary string of
length sk_seed_len. Since the Round 2 specification, the public seed
is derived from the (shared) secret key seed. Both compact secret
key components are used to compute the upper-triangluar matrix

PJ(.3) , which is unmasked after computation and returned as part of
the compact public key cpk= (seedpk,{P(.B) }). This procedure
T Jjelm]

is explained below.

Algorithm 4: mCompactKeyGen

Result: Compact public key
and Boolean shared compact secret key (cpk,csk)

1 (seedg ;)1<i<n ¢ {0,1)5K-seed len
(seedp, (01)) :=mExpandyi ((seedgy,;))
3 {Pj(l),Pj(Z) }]E [m] = Expandp(seedpk)
4 (Q)) = SecREF((0)))

/% 0; €FLXM %/
(1) _gixl
/* F(’j) e]Fq */
2 1%
/% P}. qu m %/

)

5 for j=1uptomdo

s | an=(p"oy
7 | Ar=A;-P
8 for k=1 uptom do

o | | (Bl:k];)=SecMatVec((A]),(Q[:k1;))

o (C;) :=Upper(B;) /% CieFg™ %/

" P§.3) =FullAdd((Cy))

/% AieFfIX"’ */

=
1Y)

return (cpkz(seedpk,{Pf)} []) , csk=(seedgy j)1<i<n)
jelm

Generation of O. The shares of the secret matrix O are obtained
by expanding the masked seed ((seedgy ;)1<i<n) using the masked
PRNG mExpandgy in Line 2. The masked PRNG is instantiated using
masked shake256 (), derived from the Keccak primitive, and pro-
duces Boolean shares (O;). Additionally, the public key seed seed,|
is derived in this step, but can be unmasked and made public after
its generation.

Suparna Kundu, Quinten Norga, Angshuman Karmakar, Uttam Kumar Ojha, Anindya Ganguly, and Ingrid Verbauwhede

Computationof{Aj}jE (m]= {—Pj_l)O—P](.Z) }je - The mupper-
triangular matrices P; consist of three sub-matrices. The first two
{P;l) ,P;.Z) } je[m) can be computed in the clear (Line 3), and are used
to compute the third {P§3)}
matrices {Aj}je[m

the m iterations, only share-wise (linear) matrix multiplication and

) . The first step is to compute m
jelm]

] in a masked fashion (Line 6). During each of

subtraction are required. The public matrix P;.l) is multiplied with

each share of secret matrix (O;). As sub-matrix P?) is also public,
it is only subtracted from one (first) share of each A (Line 7).

_ Ta .
jetm =10 A}
to compute m matrices {B ;i }j e[m) in a masked fashion, which re-

Computation of {B j} . The second step is

quires multiplying two masked matrices. Each of the resulting m
sub-matrices is computed in a column-wise fashion, using our pro-
posed SecMatVec gadget. This gadget securely multiplies a shared
matrix (AiT) with a shared vector (Q[:k];) in Line 9, which is column
k of a masked matrix Q. The matrix Q is a full mask refreshing of
secret matrix O. We refresh one of the inputs, to ensure both input
sharings of the SecMatVec gadget are independent.

Recombining the shares of {Pj(.3) } . The Upper function is

Jjelm]
applied share by share, on each of m matrices {B j} inLine 10. Finally,

one can securely recombine the shares of each B; to obtain each

P§.3) , using the FullAdd gadget (Line 11). Its details are discussed in
Section 4.4 and its security in a larger composition is explained below.

5.1.1 Security. To argue about the first- and high-order security

of Algorithm 4, we prove it to be ¢-Nlo secure with n=t+1 shares

and public output {P;S) }) , providing resistance against a prob-
m

jelm]
ing adversary with t probes. The proof requires us to show how

probes on intermediate and output variables in the algorithm can
be perfectly simulated with only a limited set of input shares.

LEMMA 5.1. The gadget mCompactKeyGen (Algorithm 4) is t-Nlo

secure with public output {P(.S) } .

7T jelm]

Proof. We model a single iteration j of Algorithm 4 as a sequence
of t-(S)NI gadgets, which is visually shown in Figure 7. In addition
to the gadgets listed in Table 3, we model the linear operations in
Line 6-7 and Line 10 as t-NI gadgets G, and Gy, respectively. This
can be trivially shown as the operations are share-wise. Note that
the algorithm is independent of the specific masked implementation
used for mExpandgg, which produces a uniformly masked matrix O.
We also consider the iterations of the loop in Line 8-9 to be indepen-
dent and executed in parallel, each generating one of m columns.
This means the probes are defined on a column level here (and not
variable level) to ensure successful simulation. We summarize the
inner loop into a single gadget Gs.

We complete the full proof in two steps: we first prove the com-
position of gadgets G; - G4 to be t-SNI. Finally, we prove the full
Algorithm 4 to be ¢-Nlo, thanks to the final gadget Gs (FullAdd).
Part I: As shown in Figure 7, an adversary can place a number of
probes at the output (0g;) and internally (¢g;) in each gadget G;. The
number of probes of gadget G1-G4 of Algorithm 4 are defined as t4,
and output shares |O| with t4, =Z?:1 tG, +Z?:10(;i, [Ol=0g,.

Gz
Linear (1n. 6+7)

Gs Gy Gs p®
SecMatVec Upper FullAdd J
Gy
SecREF

Figure 7: An abstract diagram of an iteration j in mCompactKeyGen
(Alg. 4). The ¢-NI gadgets are depicted with a single border, the ¢-SNI
gadgets with a double border.

©:)

We now prove Part I of Lemma 5.1 by showing that the inter-
nal and output probes can be perfectly simulated with <4, of the
input shares (O;), and is independent of |O|. To simulate the inter-
nal probes and output shares of gadgets G3 and G4, we require tg,
shares of both inputs of G3. This is because the t-SNI gadget G3 stops
the propagation of probes at its output (e.g. G4) to the input shares.
Following the flow through gadgets G, and G, the simulation of
G1 - G4 of Algorithm 4 requires |I| = tg, +tg, +0g, +tG, of the in-
put shares (O;). Note that without ¢-SNI refresh Gy, the simulation
would require at least 2- £, shares of the input and hence would not
be sound. As |I| <t4, (no duplicate entries) and independent of og,,
the first part of Algorithm 4 is ¢-SNL
Part II: Gadget Gs satisfies the ¢-NI property if the simulator has
access to the public value P§.3), which is also the output of the full
algorithm. As the composition of G1-G4 is t-SNI and Gs is ¢-N1, its
composition and iteration j of the mCompactKeyGen algorithm is
t-Nlo with public output P§.3) .

Finally, as each iteration j is independent and can be executed in
parallel, we can summarize the gadgets in each iteration as a single
gadget across all iterations. As a result, the entire Alg. 4 is t-Nlo with
public output {P(.3) } . O

J) jeim]

We verify the ¢t-SNI property (Part I) of gadgets G1-G4 using
maskVerif, at first- and second-order. Due to the tool’s limitation
with handling the NIo notion, we are not able to mechanically verify
the full composition in Algorithm 4.

5.2 Masked UOV Secret Key Expansion

The secret key expansion in UOV derives the expanded secret key
esk, as used during signing, from the compact secret key csk. We
propose our masking approach in Algorithm 5. Our strategy con-
sists of using the shared compact secret key to generate the shared
expanded key in a masked fashion.

Again, the sensitive secret key csk contains the Boolean masked
(seeds ;)1<i<n- It is used to compute the masked expanded secret
key components: matrix (O;) and matrices {(Sj,i)1<i<n}je[m]-
Generation of O and {PJ(.I),Pﬁ.Z) }je[m)- We refer to Section 5.1, as
this procedure (Line 1 - 2) is identical in mCompactKeyGen.
Computation of {Sf}je[m] = {(pﬁl) +P§1)T)0+P;2) }je]’ The
sequence of matrices {S 3 }j e[m] is computed in a masked fashion,
by performing share-wise matrix multiplication and addition. Both
{P;.l),Pj.z) } je[m) are public values: the sum ofPﬁ.l) and its transpose
is first multiplied with each share of matrix (O;) (Line 4). Subse-
quently, Pj.z) is added to the first share, to obtain the final m matrices

{(Sji)1<i<n}je[m] (Line 5).

mUOV: Masking the Unbalanced Oil and Vinegar Digital Signature Scheme at First- and Higher-Order

Algorithm 5: mExpandSK

Algorithm 6: mSign

Data: Boolean
shared compact secret key csk = (seedgy ;)1<i<n
Result: Boolean shared expanded secret key esk

1 (seedpy,(0;)) :=mExpandgy ((seedgy ;)
2 {Pj.l),Pj(.Z)}jelm] :=Expandp (seedpy)
3 for j=1uptom do

1 (Sj,i)lsiSn::((P;1)+P;1)T)Oi)

5 | 8j1=8;1+P\7

s return esk=((seedg;).(0:). (" (S})1<i<n} je m])

/* Sj}i eFf]Xm */

5.2.1 Security. To argue about the first- and high-order security
of Algorithm 5, we prove it to be ¢t-NI secure with n =t +1 shares,
providing resistance against a probing adversary with ¢ probes.

LEMMA 5.2. The gadget mExpandSK (Algorithm 5) is t-NI secure.

Proof. This is a direct result that the operations in a single iteration
(multiplication and addition) are linear and performed share-wise
(t-NI). If an attacker places t probes across different (independent)
iterations, the intermediate values can be simulated with no more
number of shares of the input (O;). m

The composition of Algorithm 5 is mechanically verified to be
t-NI secure at first- and second-order, using maskVerif.

5.3 Masked UOV Signature Generation

The UOV signing procedure generates a valid signature o of an
incoming message p via rejection sampling. As the computation in-
volves the expanded secret key esk, we propose to split all secret key
and ephemeral components into multiple shares. All computations
are performed in a masked manner, as described in Algorithm 6.
Following its expansion (see previous section), the expanded se-
cret key consists of three Boolean shared components: (seedgy ;),
(0;) and {(Sj,i)1<i<n} je[m]- The secret (seedyy ;) is used to derive
the vinegar vector (v;). In combination with the public matrices
{Pﬁ.l) }je[m]- all components are used to securely compute the un-
masked s. Together with a uniformly random string (salt), they form
the signature o = (s,salt).
Generation of v. The shares of the secret vinegar vector v are sam-
pled from a masked PRNG mExpandy in Line 4, based on the message
4, the masked secret seed (seeds ;), a counter and random salt. It
is instantiated with a masked shake256 (), producing the Boolean
shared (v;).
Computation of L=v'S. We compute the Boolean shared matrix
(L;) in a column-wise fashion in Line 5-6. The m Boolean shared ma-
trices {(S;,i)1<i<n} je[m] are multiplied with Boolean shared vector
(vi), using the SecMatVec gadget. We rely on the transpose property
LT = (vIS)T =8Ty.
Computation of y= [VTP;l)v] je[m]- We propose to compute the
Boolean masked vector (y;) using the previously introduced gadget
SecQuad (Line 7). Th public matrices P;l) 1je[m) are first multiplied
with the Boolean shared vector (v;) and then again with its transpose
to obtain (y;).

Data: 1. Boolean shared expanded secret key
esk=((seedge),(0:), (" (8).)1i<n} re[m))
2. Message p

Result: Signature o
1 salt {0, saltten
2 t:=Hash(y||salt)
3 for ctr=0 upto 255 do
s | (vi):=mExpandy (ul|salt||(seedg)lctr) /% v; R, */
5 for j=1uptom do /% LT = vIs)T = 8Ty x/
6 L (L[:,j]i)=SeCMatVeC((SL)lsiSn,(Vi))

7| (yi)=SecQuad({P{} ¢ u.(vi))
8 y1=y1+t

/* yi€Fg */

9 | (T:):=SecRowEch((L:),(y:)) /% T e ™)

o if (T;) #1 then

11 x:=SecBackSub((T;) /* XEFZI */

12 (u,-) = (Vi+0iX)

13 w:=FullAdd((u;)) /% weFL */
w

14 S:= X]

15 return o= (s,salt)

16 return L

Solving Lx =t—y. The system of linear equations is solved using
masked Gaussian elimination, using the techniques introduced in
[37]. The Boolean shared matrix (L;) is first converted to its row-
echelon form (SecRowEch, Line 9). Finally, if the resulting (extended)
matrix (T;) has a non-zero pivot element in each row, the system
is back substituted and the public result x is obtained (SecBackSub,
Line 11). We securely unmask and make the output public, as it is
a part of the public signature s (Line 15).

Computation and unmasking of w. The second part of the sig-
nature, w, is computed in a share-wise fashion: each share of (v;) is
added to the product of the public vector x and Boolean shared matrix
(O;) in Line 12. Finally, the resulting shares are securely combined
(FullAdd, Line 13) and the vector w is made public as part of the
signature s.

5.3.1 Security. We now discuss the first- and high-order security
of Algorithm 6 and prove it to be ¢t-Nlo secure with n=t+1 shares
and public outputs s and c. The signature s is public, while ¢ is made
public by gadget SecRowEch and indicates if all pivot-elements are
non-zero. As a result, our masked algorithm provides resistance
against a probing adversary with ¢ probes.

LEMMA 5.3. The gadgetmSign (Algorithm 6) is t-Nlo secure with
public outputs s (w,x) andc.

Proof. We model a single iteration of Algorithm 6 as a composition
of t-(S)NI gadgets, which is visually shown in Figure 8. Apart from
the gadgets listed in Table 3, we model the share-wise operations
in Line 8 and 12 as t-NI gadgets G3 and Gs, respectively. It is trivial
to show that linear operations are ¢-NI. We also model all iterations

Suparna Kundu, Quinten Norga, Angshuman Karmakar, Uttam Kumar Ojha, Anindya Ganguly, and Ingrid Verbauwhede

{(S;,)}je[m]

Gy Ge
SecMatVec SecRowEch H SecBackSub J—n(

(vi)

Gr
(01) FullAdd
Figure 8: An abstract diagram of an iteration ctr in mSign (Alg. 6). The
t-NI gadgets are depicted with a single border, the ¢-SNI gadgets with

a double border.

in the inner loop (Line 5-6) as a single t-SNI gadget G;. As the iter-
ations are independent and we define probes on a column level, the
simulation is successful. Each iteration produces one of m indepen-
dent columns of (T;) and is assumed to be executed in parallel. We
note that the algorithm and its security proof are independent of the
specific masked implementation used for the PRNG mExpandy. An
adversary can probe any intermediate values in any gadget (tg,), and
their output shares og,. The total number of probes in Algorithm 6
is ta, = 31116, + 27, 0G;-

We now show that all probes in a single iteration of mSign can be
simulated with no more number of shares of its inputs (|I|): |I| <ta,
if the simulator has access to x,w and c. The simulation of ¢;, and
tg, intermediate probes requires an equal amount of shares of the
outputs of G4 and Gs, respectively. This is due to the ¢-NI property of
both gadgets. Similarly, the simulation of ¢, +0g, probes requires
tg, +0g, shares of both the output of G3 and G1, and giving the simu-
lator access to . The simulation of G, +0g, probes requires the same
amount of shares of inputs (v;) and (O;). Due the #-SNI property
of G1 and Gy, the simulation of probed intermediate values and out-
put shares only requires tg, and tg, shares of inputs {(S]T.’ Dtiem
and/or (v;), respectively. We now follow the flow from the output
to the input and sum all required shares of the input for simulation
of Algorithm 6: |I| = tg, +tg, +tG, +0G, +1G, < ta,. As aresult, the
iteration is £-NI secure with public outputs s and c.

Finally, we note that the signing procedure only requires multi-
ple iterations if the system of linear equations is unsolvable and no
unique solution x can be found. In that case, all masked computa-
tions are performed again using a new vinegar vector (v;) and thus
are different from the previous iteration. As different iterations are
independent, the entire outer loop (Line 3-15) is also ¢-NI secure with
public outputs s and c. O

We verify the t-SNI property of the composition of gadgets Gy,
G2 & Gs using maskVerif, at first- and second-order. Due to the
tool’s limitation with handling the Nlo notion, we are not able to
mechanically verify the full composition in Algorithm 6.

6 IMPLEMENTATION AND EVALUATION

We complement our theoretical analysis from Section 4 & 5 with a
practical side-channel leakage evaluation and performance analysis
of our masked implementation of UOV.

6.1 Practical Security Evaluation

In this section we complement our theoretical and formal security
analysis of the proposed gadgets with a practical side-channel leak-
age evaluation on a real-world device. We confirm the theoretical
results of the previous sections and demonstrate how our proposed

10

techniques lead to efficient and practically secure implementations
on real-world devices.

6.1.1 Micro-Architectural Effects & Compiler Optimization. To en-
sure our implementation is secure, we take explicit measures to
mitigate side-channel leakage due to micro-architectural effects,
such as transitional leakage in memory elements. This effect leads
to unexpected leakages and is a result of successively writing both
shares (r and x @ r) of a (first-order masked) sensitive variable x
into one (pipeline) register or ALU unit. This will cause the power
consumption of the device to be correlated to the original secret
x,as HD(x @ r, r) = HW(x). We carefully craft and deploy various
clearing routines, written in assembly, to mitigate leakages due to
micro-architectural effects. They pre-load affected memory elements
with a random value, before loading the second share, to break such
secret dependencies.

Prior work typically relies on turning off compiler optimizations
(-00) to ensure masking countermeasures (written in C) are not op-
timized away [4, 52], at the cost of performance degradation. For
example, allowing (aggressive) compiler optimizations might result
in the removal of intentional dummy-operations or re-ordering of
instructions. However, as demonstrated below, we find our imple-
mentation remains secure when using compiler optimization flag
-03, allowing for high optimization. By ensuring the compiler does
not re-order any (security-critical) operations through the compiler
flags -fno-schedule-insns and -fno-schedule-insns2, the re-
sulting machine code is efficient and remains secure.

6.1.2 Measurement Setup. We conduct our measurements from the
dedicated measurement port on a NewAE CW308 UFO board with an
STM32F415RG Arm Cortex-M4! microcontroller as target. We supply
the target board with an external 8 MHz clock and configure it to
internally run at a 24 MHz operating frequency. For trace acquisition,
we use a 6426E PicoScope with 12-bit resolution and the sampling
rate set to 125 MS/s. We synchronize the oscilloscope with the ex-
ternal clock during all measurements and use the on-chip TRNG
for on-the-fly randomness generation. The micro-controller sends
a trigger signal before (and after) the target operation, indicated
by vertical red lines in each figure below. The initial sharings are
computed randomly and sent directly to the micro-controller. As is
common practice, we choose a reduced (UOV) parameter set (m=4,
n=10) for our practical security evaluation to ensure practical fea-
sibility. The operations performed in all gadgets are not impacted
by the choice of m or n and only the amount of iterations are.

6.1.3 TVLA Methodology. The side-channel security of our masked
implementation is evaluated using the Test Vector Leakage Assess-
ment (TVLA) methodology [25] and the non-specific, fixed vs. random
t-test statistic. More specifically, power measurements are taken
from the target device which is operating on either a fixed or random
input, in a random fashion. Subsequently, two sets of power traces
are constructed: S i and S,. Finally, the Welch’s two-tailed ¢-test
is computed for each sample point in the trace to determine if the
masking countermeasure is secure. If the t-value doesn’t exceed a
threshold value, typically +4.5, the samples from both sets cannot
be distinguished with high confidence (« = 0.01), i.e. no leakage.
We recall that this threshold value is not universal, as computing

larm-none-eabi-gcc 10.3.1 20210621

mUOV: Masking the Unbalanced Oil and Vinegar Digital Signature Scheme at First- and Higher-Order

the t-value on many samples (long traces) will, with high probabil-
ity, introduce false positives which exceed +4.5 (see [21, Table 1]
and [4, Appendix A]). Below, we adapt the threshold value for each
experiment accordingly (Appendix E).

6.1.4 Results. The first-order TVLA results with RNG ON for the
SecDotProd, SecMatVec and SecQuad gadgets are shown in Figure 9.
The results confirm our theoretical expectation, as the ¢-value does
not cross the threshold value after acquiring one million traces and
thus the implementations under test are considered secure. Addi-
tionally, we include the mean power traces and first-order statistical
moments with the masking countermeasure disabled (randomness
set to zero) in Appendix E (Fig. 12 - 14). For SecDotProd, significant
leakages can be detected with only 50 thousand traces, guaranteeing
the soundness of our set-up.

©
@
% 0
g
T s
0 1000 2000 3000 4000 5000 6000 7000
time [samples]
(a) SecDotProd

5
©
@
% 0
g
s

0 5000 10000 15000 20000 25000
time [samples]
(b) SecMatVec

v
@
% 0
g

-5

0 10000 20000 30000 40000 50000 60000 70000 80000
time [samples]

(c) SecQuad
Figure 9: TVLA analysis of 1t-order SecDotProd, SecMatVec & SecQuad
(RNG ON) with 1M traces. The ¢-test threshold is marked by red lines.

Additionally, we adapt the implementation of [37] for solving the
system of linear equations in the masked signing procedure, with
early stop (Section 4.4). Figure 10 shows the first-order TVLA results
of masked Gaussian elimination. We successfully apply our method-
ology to remove leakages due to micro-architectural effects and do
not allow the compiler to re-order instructions. As can be seen, no
leakage is detected after acquiring 100K traces, while significant
leakages are detected with our countermeasure turned off after 1K
traces (Fig. 10c).

In summary, we have successfully demonstrated how our masked
gadgets (Section 4 & 5) result in efficient and first-order secure imple-
mentations on the Arm Cortex-M4. We find minimal performance
overhead can be achieved through enabling compiler optimizations,
without impacting side-channel security in practice. We leave the
investigating of the applicability of aggressive compiler optimization
(-03) without instruction re-ordering to other masked implementa-
tions as future work.

11

T 10000
=
g
= 0
w
©
£ -10000
0 25000 50000 75000 100000 125000 150000
time [samples]
(a) Mean Trace
o 5
&
w 0
@
< -5
0 25000 50000 75000 100000 125000 150000
time [samples]
(b) RNG ON

20
=
o=
o
W 0
i)
9Q

-20

0 25000 50000 75000 100000 125000 150000
time [samples]

(c) RNG OFF
Figure 10: TVLA analysis of 1°t-order SecRowEch [37]. Mean trace and
t-test results with RNG ON (100K traces) and RNG OFF (1K traces).
The + 5.423 threshold is marked by red lines.

6.2 Performance Evaluation and Comparison

This section presents the implementation results of masked UOV al-
gorithms and compares them with the state-of-the-art post-quantum
masked digital signature algorithms. We have used a DELL Latitude
E7470 laptop with an Intel (R) Core (TM) i7-6600 CPU running at 2.60
GHz and the GCC 6.5 compiler with optimization flag 03 to calculate
the performance of our algorithms in cpucycle counts.

The performance of our masked key generation and masked sig-
nature generation of the UOV schemes is presented in Table 4. We
have implemented and documented the performance results for the
UOV parameter sets UOV-Ip and UOV-III, the pkc variant. How-
ever, our code can be extended to other variants of the UOV scheme.
The performance overhead factor in the masked key generation of
UOV-Ip for the first-, second-, and third-order are 13X, 38X, and
62X, respectively. The masked signature generation algorithm of
UOV-Ip has 12X, 48X, and 78 overhead for first-, second-, and third-
order masking. These overhead factors for the masked algorithms
of UOV-III are similar to or slightly larger than those of UOV-Ip.

We also compare the performance result of the masked signa-
ture generation of UOV-Ip with the masked signature generation
of Dilithium and Falcon in Table 4. We also compare the perfor-
mance result of the masked signature generation of UOV-Ip with
the state-of-the-art masked signature generation of Dilithium [14]
and Falcon [8] in Table 4. Although the unmasked signature genera-
tion of the NIST standard Dilithium2 and UOV-Ip requires a similar
amount of CPU cycles, the first-order, second-order, and third-order
masked signature generation of UOV-Ip perform, respectively, 62%,
19%, and 25% better than Dilithium2. For easier visualization, we

Suparna Kundu, Quinten Norga, Angshuman Karmakar, Uttam Kumar Ojha, Anindya Ganguly, and Ingrid Verbauwhede

Table 4: Comparing the performance of masked implementations of UOV with the state-of-the-art PQ masked digital signature schemes. The

performances are in 1000X cpucycles unless otherwise mentioned.

‘ Key-generation (1000x cpucycles)

‘ Sign (1000x cpucycles or seconds)

Scheme unmasked Masked unmasked Masked
1st 2nd 3rd 1st 2nd 3rd
UOV-Ip [TW] | 58772 791,871 (13x) 2,215,190 (38X) 36,616,77 (62X) 1,268 15,490 (12x) 61,420 (48x) 99,469 (78x)
Dilithium2 [14] - - - - 1,228 40,368 (33x) 76,173 (62x) 133,508 (109x)
Falcon 512* [8] - - - - - 3.199s 6.368 s -
UOV-II [TW] | 370483 5,670,203 (15x) 16,241,454 (44x) 25,509,566 (69x) | 5064 62,110(12x) 259,969 (51x) 415,293 (82x)

*: The performances are in seconds as the processor frequency was not provided. Except this, all others are measured using the same laptop.

compare the execution time (in seconds) of first-, second-, and third-
order masked signature generations of UOV-Ip with Dilithium2 in
Figure 11. The masked signature generation of UOV compared to
Falcon 512 performs 99.8% better for first-order and 99.6% better for
second-order masking.

0.051 ® UOV-p 109X @

® Dilithium

o o o
o =1 1=
R @ kS

Performance in second

o
o
=

12X
0.00

Unmasked

1st-order 2nd-order 3rd-order

Masking order

Figure 11: Comparison of masked UOV-Ip with Dilithium2

Finally, we also want to note that our primary objective in this
work was to design the masking algorithms and provide theoreti-
cal and empirical proofs for security. Our implementations can be
considered as a small improvement over proof-of-concept and not
a fully optimized version. Therefore the efficiency can be improved
further. This is in contrast to ML-DSA, which, due to its popularity,
has gone through a larger cycle of optimizations and improvements.
Further, we would like to note that our approach is not limited to the
UOV scheme but can be extended to other UOV-based multivariate
schemes, such as Mayo, QR-UOV, SNOVA, and MQ-Sign.

7 IMPACT AND DISCUSSIONS
Resource-constrained devices such as IoT, sensor nodes, medical
monitoring devices, etc., usually operate under very stringent op-
erational constraints [31]. Throughout this work, we shed light on
another important aspect of deploying PQC in the real world, es-
pecially on RCD: masking PQ DSA schemes. Due to the ubiquitous
nature of RCDs, they are often easy targets for SCA adversaries. One
such compromised device can jeopardize the security of the whole
network. Therefore, from the perspective of widespread deployment,
it is crucial to protect these devices from such adversaries. However,
due to their limited resources, it is also difficult to incorporate so-
phisticated and strong SCA countermeasures.

However, the public key (verification key) is quite large for UOV
and its MQE-based variants. As mentioned in Section 1, for the Round

12

2 specification of UOV [11], the signature size is 96 bytes, yet the
verification key is approximately 66 KB. Therefore, UOV is particu-
larly useful where the public key does not need to be transmitted, or
in a hybrid with other PQ DSAs. In many cases, public keys can be
pre-distributed to reduce the overhead as the work [45] suggests. Al-
ternatively, following the example (TLS handshake) given in [50], a
minimum of two public keys (public key of intermediate and terminal
server) need to be transmitted along with five signatures (certificates
of root, intermediate, and leaf certificates along with two signed
certificates timestamps according to current standards), assuming
only one intermediate certificate. Since root servers and signed cer-
tificate timestamps do not carry their public keys during handshake,
one can use UOV DSA there, and ML-DSA can be used in the rest
of the fields. This reduces the required bandwidth during the TLS
handshake to 7.2 KB from 14.7 KB if ML-DSA is used everywhere.
In constrained radio networks, ephemeral Diffie-Hellman over
COSE (EDHOC) [46] is a lightweight Diffie-Hellman key-exchange
protocol used in RCD design by the Internet Engineering Task Force
(IETF). In typical use cases it needs to send 3 messages of size 37,
45, and 19 bytes (total 101 bytes) using classical cryptography. If a
combination of ML-KEM [35] with ML-DSA [33] is used, these sizes
would be 773, 3194, and 2433 bytes or 6400 bytes in total. However,
a hybrid of ML-KEM and UOV reduces the sizes of the messages to
773, 870, and 109 bytes or 1752 bytes in total. Although the large size
of ML-KEM dominates the total size in the latter case it still offers ap-
proximately 3.6x improvement over the ML-KEM + ML-DSA hybrid.
Another protocol used in CRN and also designed by IETF is Group
OSCORE [48], which provides end-to-end security for group com-
munications in RCD. Here, a non-interactive key-exchange (NIKE) is
used. Therefore, the payload size is equal to the signature size in addi-
tion to some headers. In this protocol and others where the public key
is not sent while sending the certificate and signing is performed on
the RCD, using UOV DSA has almost similar overhead as compared
to the classical signatures and a clear advantage over other PQ DSAs.
Our results show that in the context of masking on RCD, UOV is a
far better alternative than ML-DSA and a strong candidate for easing
PQ DSA migration. Although several works [20, 31, 38] mentioned
that the energy cost for computations is less energy intensive than
radio transmission, an overhead of (33-109x%) for masked implemen-
tations is significant. UOV with smaller overhead has much better
leeway to provide higher-order security for a similar costin energy. It
alsoleaves room to incorporate other types of countermeasures, such
as duplication countermeasures, to prevent fault injection attacks.
Acknowledgements. This work was partially supported by Hori-
zon 2020 ERC Advanced Grant (101020005 Belfort), Horizon Europe

mUOV: Masking the Unbalanced Oil and Vinegar Digital Signature Scheme at First- and Higher-Order

(101070008 ORSHIN), CyberSecurity Research Flanders with refer-
ence number VOEWICS02, BE QCI: Belgian-QCI (3E230370) (see
beqci.eu), and Intel Corporation. Uttam Kumar Ojha worked on this
work during his internship at COSIC. With utmost gratitude, Uttam
Kumar Ojha thanks Professors Bart Preneel & Bimal K. Roy for the
internship opportunity at COSIC. Anindya Ganguly is supported
by TCS Research fellowship. The work of Angshuman Karmakar is
partially supported by the Research-I foundation from Infosys, the
Initiation grant from II'T Kanpur, the Google India research fellow-
ship, and PM ECRG by ANREF, Govt. of India.

REFERENCES

(1]

(6]

(71

(9]

[10]

[11]

[12]

[13]

Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John
Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene
Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone. 2022.
Status Report on the Third Round of the NIST Post-Quantum Cryptog-
raphy Standardization Process. Online. Accessed 26th January, 2024.
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf

Thomas Aulbach, Fabio Campos, and Juliane Kramer. 2025. SoK: On the Physical
Security of UOV-Based Signature Schemes. In Post-Quantum Cryptography,
Ruben Niederhagen and Markku-Juhani O. Saarinen (Eds.). Springer Nature
Switzerland, Cham, 199-231.

Thomas Aulbach, Fabio Campos, Juliane Kramer, Simona Samardjiska, and Marc
Stottinger. 2023. Separating Oil and Vinegar with a Single Trace Side-Channel
Assisted Kipnis-Shamir Attack on UOV. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2023, 3 (2023), 221-245. https://doi.org/10.46586/TCHES.V2023.13.221-245
Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and Francois-
Xavier Standaert. 2014. On the Cost of Lazy Engineering for Masked Software
Implementations. In Smart Card Research and Advanced Applications - 13th
International Conference, CARDIS 2014, Paris, France, November 5-7, 2014. Revised
Selected Papers (Lecture Notes in Computer Science, Vol. 8968), Marc Joye and Amir
Moradi (Eds.). Springer, 64-81. https://doi.org/10.1007/978-3-319-16763-3_5
Gilles Barthe, Sonia Belaid, Gaétan Cassiers, Pierre-Alain Fouque, Benjamin
Grégoire, and Francois-Xavier Standaert. 2019. maskVerif: Automated
Verification of Higher-Order Masking in Presence of Physical Defaults. In
Computer Security — ESORICS 2019: 24th European Symposium on Research
in Computer Security, Luxembourg, September 23-27, 2019, Proceedings, Part
I (Luxembourg, Luxembourg). Springer-Verlag, Berlin, Heidelberg, 300-318.
https://doi.org/10.1007/978-3-030-29959-0_15

Gilles Barthe, Sonia Belaid, Francois Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. 2016. Strong Non-Interference
and Type-Directed Higher-Order Masking. In ACM CCS 2016, Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi
(Eds.). ACM Press, 116-129. https://doi.org/10.1145/2976749.2978427

Gilles Barthe, Sonia Belaid, Thomas Espitau, Pierre-Alain Fouque, Benjamin Gré-
goire, Mélissa Rossi, and Mehdi Tibouchi. 2018. Masking the GLP lattice-based sig-
nature scheme at any order. In Advances in Cryptology-EUROCRYPT 2018: 37th An-
nual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Tel Aviv, Israel, April 29-May 3, 2018 Proceedings, Part I1 37. Springer, 354-384.
Pierre-Augustin Berthet, Justine Paillet, Cédric Tavernier, Lilian Bossuet, and
Brice Colombier. 2024. Masked Computation of the Floor Function and Its
Application to the FALCON Signature. IACR Commun. Cryptol. 1, 4 (2024), 9.
https://doi.org/10.62056/AY73ZL7S

Ward Beullens. 2021. Improved Cryptanalysis of UOV and Rainbow. In Advances
in Cryptology — EUROCRYPT 2021, Anne Canteaut and Frangois-Xavier Standaert
(Eds.). Springer International Publishing, Cham, 348-373.

Ward Beullens, Fabio Campos, Sofia Celi, Basil Hess, and Matthias J.
Kannwischer. 2025. MAYO Specification Document Version 2.0.
https://csrc.nist.gov/csre/media/Projects/pqe-dig-sig/documents/round-
2/spec-files/mayo-spec-round2-web.pdf

Ward Beullens, Ming-Shing Chen, Jintai Ding, Boru Gong, Matthias J.
Kannwischer, Jacques Patarin, Bo-Yuan Peng, Dieter Schmidt, Cheng-Jhih
Shih, Chengdong Tao, and Bo-Yin Yang. 2025. UOV: Unbalanced Oil and
Vinegar Algorithm Specifications and Supporting Documentation Version
2.0. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-
2/spec-files/uov-spec-round2-web.pdf

Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. 1999.
Towards Sound Approaches to Counteract Power-Analysis Attacks. In Advances
in Cryptology — CRYPTO’ 99, Michael Wiener (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 398-412.

Benoit Cogliati, Pierre-Alain Fouque, Louis Goubin, and Brice Minaud. 2024. New
Security Proofs and Techniques for Hash-and-Sign with Retry Signature Schemes.
Cryptology ePrint Archive, Paper 2024/609. https://eprint.iacr.org/2024/609

13

(14]

[15]

[16]

(18]

(19]

[20]

[21]

[22

[23

[24]

[25

[26]

[27]

[28

[29

[30

(31]

@
5,

[33

[34

Jean-Sébastien Coron, Francois Gérard, Tancreéde Lepoint, Matthias Trannoy,
and Rina Zeitoun. 2024. Improved High-Order Masked Generation of Masking
Vector and Rejection Sampling in Dilithium. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2024, 4 (2024), 335-354. https://doi.org/10.46586/TCHES.V2024.14.335-354
Jean-Sébastien Coron. 2017. High-Order Conversion from Boolean to Arithmetic
Masking. In CHES 2017 (LNCS, Vol. 10529), Wieland Fischer and Naofumi Homma
(Eds.). Springer, Cham, 93-114. https://doi.org/10.1007/978-3-319-66787-4_5
Jean-Sébastien Coron, Johann Grof3schidl, and Praveen Kumar Vadnala. 2014.
Secure conversion between boolean and arithmetic masking of any order. In
International Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 188-205.

Jean-Sébastien Coron, Francois Gérard, Simon Montoya, and Rina Zeitoun.
2022. High-order Polynomial Comparison and Masking Lattice-based En-
cryption. IACR Trans. Cryptogr. Hardw. Embed. Syst. (11 2022), 153-192.
https://doi.org/10.46586/tches.v2023.i11.153-192

Jean-Sébastien Coron, Francois Gérard, Matthias Trannoy, and Rina Zeitoun.
2023. Improved Gadgets for the High-Order Masking of Dilithium.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023, 4 (Aug. 2023), 110--145.
https://doi.org/10.46586/tches.v2023.i4.110- 145

Jean-Sébastien Coron and Lorenzo Spignoli. 2021. Secure Wire Shuffling in the
Probing Model. In Advances in Cryptology — CRYPTO 2021, Tal Malkin and Chris
Peikert (Eds.). Springer International Publishing, Cham, 215-244.

Giacomo de Meulenaer, Frangois Gosset, Francois-Xavier Standaert, and
Olivier Pereira. 2008. On the Energy Cost of Communication and Cryptog-
raphy in Wireless Sensor Networks. In 2008 IEEE International Conference on
Wireless and Mobile Computing, Networking and Communications. 580-585.
https://doi.org/10.1109/WiMob.2008.16

A. Adam Ding, Liwei Zhang, Francois Durvaux, Francois-Xavier Standaert, and
Yunsi Fei. 2018. Towards Sound and Optimal Leakage Detection Procedure. In
Smart Card Research and Advanced Applications, Thomas Eisenbarth and Yannick
Teglia (Eds.). Springer International Publishing, Cham, 105-122.

Sebastian Faust, Vincent Grosso, Santos Pozo, Clara Paglialonga, and Francois-
Xavier Standaert. 2018. Composable Masking Schemes in the Presence of Physical
Defaults & the Robust Probing Model. IACR Trans. Cryptogr. Hardw. Embed. Syst.
(08 2018), 89-120. https://doi.org/10.46586/tches.v2018.i3.89-120

Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte,
and Zhenfei Zhang. 2020. Falcon: Fast-Fourier Lattice-based Compact Signatures
over NTRU. https://falcon-sign.info/falcon.pdf.

Hiroki Furue, Yasuhiko Ikematsu, Fumitaka Hoshino, Tsuyoshi Takagi, Haruhisa
Kosuge, Kimihiro Yamakoshi, Rika Akiyama, Satoshi Nakamura, Shingo Orihara,
and Koha Kinjo. 2025. QR-UOV Specification Document. https://csrc.nist.gov/
csre/media/Projects/pqc-dig-sig/documents/qruov-spec-round2-web.pdf
Gilbert Goodwill, Benjamin Jun, Joshua Jaffe, and Pankaj Rohatgi. 2011. A
testing methodology for side channel resistance. Online. Accessed 8th January,
2025. https://csre.nist.gov/csre/media/events/non-invasive-attack-testing-
workshop/documents/08_goodwill.pdf

Hannes Gross, Rinat Iusupov, and Roderick Bloem. 2018. Generic Low-Latency
Masking in Hardware. IACR Transactions on Cryptographic Hardware and
Embedded Systems (05 2018), 1-21. https://doi.org/10.46586/tches.v2018.i2.1-21
Hannes Gross, Stefan Mangard, and Thomas Korak. 2016. Domain-Oriented
Masking: Compact Masked Hardware Implementations with Arbitrary Protection
Order. In Proceedings of the 2016 ACM Workshop on Theory of Implementation
Security (Vienna, Austria) (TIS ’16). Association for Computing Machinery, New
York, NY, USA, 3. https://doi.org/10.1145/2996366.2996426

Yuval Ishai, Amit Sahai, and David Wagner. 2003. Private circuits: Securing
hardware against probing attacks. In Advances in Cryptology-CRYPTO 2003:
23rd Annual International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 2003. Proceedings 23. Springer, 463-481.

David S Johnson and Michael R Garey. 1979. Computers and Intractability: A
Guide to the Theory of NP-completeness. WH Freeman.

Aviad Kipnis, Jacques Patarin, and Louis Goubin. 1999. Unbalanced Oil and
Vinegar Signature Schemes. In Advances in Cryptology — EUROCRYPT °99, Jacques
Stern (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 206-222.

John Preufl Mattsson, Goran Selander, Ben Smeets, and Erik Thormarker.
2022. Constrained Radio Networks, Small Ciphertexts, Signatures, and
Non-Interactive Key Exchange. Fourth PQC Standardization Conference (2022),
10. https://csre.nist.gov/csre/media/Events/2022/fourth-pqc-standardization-
conference/documents/papers/constrained-radio- networks-pqc2022.pdf

NIST. 2023. NIST Announces Additional Digital Signature Candidates for
the PQC Standardization Process. Online. Accessed 10th November, 2024.
https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates
NIST. 2024. FIPS 204 Module-Lattice-Based Digital Signature Standard. Online.
Accessed 10th November, 2024. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.204.pdf

NIST. 2024. FIPS 205 Stateless Hash-Based Digital Signature Standard. Online.
Accessed 10th November, 2024. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.205.pdf

https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
https://doi.org/10.46586/TCHES.V2023.I3.221-245
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.62056/AY73ZL7S
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-2/spec-files/mayo-spec-round2-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-2/spec-files/mayo-spec-round2-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-2/spec-files/uov-spec-round2-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-2/spec-files/uov-spec-round2-web.pdf
https://eprint.iacr.org/2024/609
https://doi.org/10.46586/TCHES.V2024.I4.335-354
https://doi.org/10.1007/978-3-319-66787-4_5
https://doi.org/10.46586/tches.v2023.i1.153-192
https://doi.org/10.46586/tches.v2023.i4.110-145
https://doi.org/10.1109/WiMob.2008.16
https://doi.org/10.46586/tches.v2018.i3.89-120
https://falcon-sign.info/falcon.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/qruov-spec-round2-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/qruov-spec-round2-web.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://doi.org/10.46586/tches.v2018.i2.1-21
https://doi.org/10.1145/2996366.2996426
https://csrc.nist.gov/csrc/media/Events/2022/fourth-pqc-standardization-conference/documents/papers/constrained-radio-networks-pqc2022.pdf
https://csrc.nist.gov/csrc/media/Events/2022/fourth-pqc-standardization-conference/documents/papers/constrained-radio-networks-pqc2022.pdf
https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf

[35]

[36

[37]

[38]

[39]

[40

[41]
[42]

[43

[44]

[45]

[46]

[47]

[48]

[50]

[51]

[52]

Suparna Kundu, Quinten Norga, Angshuman Karmakar, Uttam Kumar Ojha, Anindya Ganguly, and Ingrid Verbauwhede

NIST. 2024. Module-Lattice-Based Key-Encapsulation Mechanism Standard.
Online. Accessed 10th April, 2025. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.203.pdf

NIST. 2024. PQC digital signature second round announcement. Online. Accessed
10th November, 2024. https://csrc.nist.gov/News/2024/pqc-digital-signature-
second-round-announcement

Quinten Norga, Suparna Kundu, Uttam Kumar Ojha, Anindya Ganguly,
Angshuman Karmakar, and Ingrid Verbauwhede. 2025. Masking Gaussian
Elimination at Arbitrary Order with Application to Multivariate-and Code-Based
PQC. In Topics in Cryptology — CT-RSA 2025, Arpita Patra (Ed.). Springer Nature
Switzerland, Cham, 249-272.

Markku-Juhani O. Saarinen. 2020. Mobile Energy Requirements of the Upcoming
NIST Post-Quantum Cryptography Standards. In 2020 8th IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud).
23-30. https://doi.org/10.1109/MobileCloud48802.2020.00012

Aesun Park, Kyung-Ah Shim, Namhun Koo, and Dong-Guk Han. 2018. Side-
channel attacks on post-quantum signature schemes based on multivariate
quadratic equations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 3 (Aug.
2018), 500-523. https://doi.org/10.13154/tches.v2018.i3.500-523

Pierre Pébereau. 2024. One Vector tonbsp;Rule Them All: Key Recovery
fromnbsp;One Vector innbsp;UOV Schemes. In Post-Quantum Cryptography: 15th
International Workshop, PQCrypto 2024, Oxford, UK, June 12-14, 2024, Proceedings,
Part II (Oxford, United Kingdom). Springer-Verlag, Berlin, Heidelberg, 92-108.
https://doi.org/10.1007/978-3-031-62746-0_5

Pierre Pébereau. 2024. Singular points of UOV and VOX. Cryptology ePrint
Archive, Paper 2024/219. https://eprint.iacr.org/2024/219

Quantum-Resistant Cryptography Research Group. 2025. KpqC Competition
Round 2. https://www.kpqc.or.kr/competition_02.html Accessed: 2025-04-09.
Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Giineysu. 2019.
Efficiently Masking Binomial Sampling at Arbitrary Orders for Lattice-Based
Crypto. In Public-Key Cryptography — PKC 2019: 22nd IACR International
Conference on Practice and Theory of Public-Key Cryptography, Beijing, China,
April 14-17, 2019, Proceedings, Part II (Beijing, China). Springer-Verlag, Berlin,
Heidelberg, 534-564. https://doi.org/10.1007/978-3-030-17259-6{_}18

Peter Schwabe, Douglas Stebila, and Thom Wiggers. 2020. Post-Quantum
TLS Without Handshake Signatures. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (Virtual Event, USA) (CCS
’20). Association for Computing Machinery, New York, NY, USA, 1461-1480.
https://doi.org/10.1145/3372297.3423350

Peter Schwabe, Douglas Stebila, and Thom Wiggers. 2021. More Efficient Post-
quantum KEMTLS with Pre-distributed Public Keys. In Computer Security — ES-
ORICS 2021: 26th European Symposium on Research in Computer Security, Darmstadt,
Germany, October 4-8, 2021, Proceedings, Part I (Darmstadt, Germany). Springer-
Verlag, Berlin, Heidelberg, 3-22. https://doi.org/10.1007/978-3-030-88418-5_1
Goran Selander, John Preufl Mattsson, and Francesca Palombini.
2024. Ephemeral Diffie-Hellman Over COSE (EDHOC). RFC 9528.
https://doi.org/10.17487/RFC9528

Kyung-Ah Shim, Jeongsu Kim, and Youngjoo An. 2023. MQ-Sign: A New
Post-Quantum Signature Scheme based on Multivariate Quadratic Equations:
Shorter and Faster. https://www.kpqc.or.kr/images/pdf/MQ-Sign.pdf

Marco Tiloca, Géran Selander, Francesca Palombini, John Preuff Mattsson,
and Jiye Park. 2022. Group OSCORE - Secure Group Communication for CoAP.
Internet-Draft draft-ietf-core-oscore-groupcomm-14. Internet Engineering Task
Force. https://datatracker.ietf.org/doc/draft-ietf-core-oscore-groupcomm/14/
Work in Progress.

Lih-Chung Wang, Chun-Yen Chou, Jintai Ding, Yen-Liang Kuan, Jan Adri-
aan Leegwater, Ming-Siou Li, Bo-Shu Tseng, Po-En Tseng, and Chia-
Chun Wang. 2025. SNOVA Specification Document Version 2.0.
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-
2/spec-files/snova-spec-round2-web.pdf

Bas Westerbaan and Luke Valenta. 2024. A look at the latest post-quantum sig-
nature standardization candidates. online. https://blog.cloudflare.com/another-
look-at-pq-signatures/.

Haibo Yi and Zhe Nie. 2018. Side-channel security analysis of UOV signature
for cloud-based Internet of Things. Future Gener. Comput. Syst. 86 (2018), 704-708.
https://doi.org/10.1016/]. FUTURE.2018.04.083

Jannik Zeitschner and Amir Moradi. 2024. PoMMES: Prevention of Micro-
architectural Leakages in Masked Embedded Software. IACR Transactions on
Cryptographic Hardware and Embedded Systems 2024, 3 (Jul. 2024), 342-376.
https://doi.org/10.46586/tches.v2024.i3.342-376

14

APPENDICES
A Artifact & Data Availabiltiy

We make the source-code of our arbitrary-order masked implemen-
tation of UOV available, which we plan to open-source. Additionally,
we make the scripts for formally verifying the security notions of
our proposed gadgets at first- and second-order using maskVerif
available.

B Proof Lemma4.1

The security proof follows from the potential observations that a
probing adversary can make. We note that probes are defined on
the coefficient-level: the output of the gadget is a coefficient and the
inputs are vectors, consisting of | independent coefficients. We now
show that all potential observations can be perfectly simulated using
a limited amount of shares of each of the [(independent) inputs.

Let Q=(7, O) be a set of t observations made by an adversary on
the internal and output values, respectively, where |7 |=t4,, such
that 4, +|O| <t. We construct a perfect simulator of the adversary’s
probes, which makes use of at most ¢4, shares of the secret input
coefficients x[k] and y[k] (1 <k <I).

Let wy,...,w; be the set of probed values. We classify the internal
wires in the following groups:

(1)
@)
®3)
4)
(5)
(6)
()
The output variables are the final values of (z;).

We define two arrays of sets of indices I and Ji (1 <k <I) such
that |I;| <t4, and |Ji| < t4, and the values of the probes can be per-
fectly simulated given only knowledge of (x[k];)ier, and (y[k];)icj, -
The sets are constructed as follows.

x[kli, ylklj, x[kl;ylk]; at iteration i,j,k,
ujj, ujj+x[k];y[k]; at iteration i,j,k,
x[k1j, ylkl;, x[k];y[k]; at iteration i,j,k,
uji, uji+x[k]jylkl; at iteration i, j,k,
x[kl;, ylkl;, x[k];y[k]; at iteration ik,
wi, wi+x[k];y[k]; at iteration i,k,
ujj+rij with i,j=1,...,t+1,

o Initially all I and Jj are empty (1 <k <I).
e For every probe as in group (1) add i to I and j to Jg.
e For every probe as in group (2) and (7) add i to I, and j to
Jm withm=1,...k.
e For every probe as in group (3) add j to I and i to Ji.
e For every probe as in group (4) add j to I, and i to Ji,;, with
m=1,...k.
e For every probe as in group (5) add i to Iy and J.
e For every probe as in group (6) add i to I, and J,, with
m=1,...k.
An adversary is allowed to make t4, internal probes at most, thus
itholds that |I; | <t4, and | Ji| <ta, (1<k<I).

We now construct the simulator with the probed wires denoted
wy, with h=1,...,t and show it is able to simulate any internal wire
wy,. For each variable r;; entering in the computation of any probe,
the simulator assigns a random value.

1. For each observation as in group (1) (or (3)), by definition of
I and Ji the simulator has access to x[k]; and y[k]; (or x[k]; and
y[k];, respectively) and thus the values are perfectly simulated.

2. For each observation as in group (2) (or (4)), by definition of
{Im}1<m<k and {Jm}1<m<k the simulator has access to x[m]; and

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf
https://csrc.nist.gov/News/2024/pqc-digital-signature-second-round-announcement
https://csrc.nist.gov/News/2024/pqc-digital-signature-second-round-announcement
https://doi.org/10.1109/MobileCloud48802.2020.00012
https://doi.org/10.13154/tches.v2018.i3.500-523
https://doi.org/10.1007/978-3-031-62746-0_5
https://eprint.iacr.org/2024/219
https://www.kpqc.or.kr/competition_02.html
https://doi.org/10.1007/978-3-030-17259-6{_}18
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1007/978-3-030-88418-5_1
https://doi.org/10.17487/RFC9528
https://www.kpqc.or.kr/images/pdf/MQ-Sign.pdf
https://datatracker.ietf.org/doc/draft-ietf-core-oscore-groupcomm/14/
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-2/spec-files/snova-spec-round2-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-2/spec-files/snova-spec-round2-web.pdf
https://blog.cloudflare.com/another-look-at-pq-signatures/
https://blog.cloudflare.com/another-look-at-pq-signatures/
https://doi.org/10.1016/J.FUTURE.2018.04.083
https://doi.org/10.46586/tches.v2024.i3.342-376

mUOV: Masking the Unbalanced Oil and Vinegar Digital Signature Scheme at First- and Higher-Order

ylm]; (or x[m]; and y[m];, respectively) for m=1,....k and thus the
values are perfectly simulated.

3. For each observation as in group (5), by definition of I and Ji.
the simulator has access to x[k]; and y[k]; and thus the values are
perfectly simulated.

4.For each observation as in group (6), by definition of {I;m } 1 < m <k
and {Jm}1<m<k the simulator has access to x[m]; and y[m]; for
m=1,...k and thus the values are perfectly simulated.

5. For each observation as in group (7), by definition of {Ij }1 <x <;
and {Jx }1<k<; the simulator hasaccesstox[k]; and y[k] ; fork=1,...,]
and we distinguish three cases:

e Ifi=j, the simulator assigns r;; to 0 and perfectly simulates
the value wy, using x[k]; and y[k]; for k=1,....I.

e If jelandie€ J, then by definition the adversary has also
probed uji and thus a value containing in its computation
the random value r;;. The simulator then perfectly simulates
wy, using x[k]; and y[k]; for k =1,...,] and the r;; assigned
previously.

o In all other cases, r;; does not enter in the computation of
any other probe and wy, is assigned a fresh random value
and thus perfectly simulated.

We now consider the observations of the output values. We dis-
tinguish two cases:

e Ifanintermediate sum is also observed, then the previously
probed partial sums are already simulated. By definition
of the gadget, there always exists one random bit r,, in
wy, which does not appear in the computation of any other
observed element. Thus, the simulator can assign a fresh
random value to wy,.

e Ifno internal values have been probed by an adversary, then
by definition of the gadget, each output share contains t
random values and at most one of them can enter in the com-
putation of each other output variable z;. An adversary may
have probed ¢ —1 other values and thus there exists one ran-
dom value rop in wy, which does not enter in the computation
of any other observed value. The simulator can thus simulate
wy, using a fresh random value, completing the proof. O

C Auxiliary Algorithms

Algorithm 7: FullAdd, from [7, 16]
Data: A Boolean sharing (y;)

n
Result: Unmasked value y such that y= 3 y;
i=1
1 (a;):=SecREF((y;)) /* free-t-SNI %/
2 y:=ay+--+an

3 returny

15

Algorithm 8: SecRowEch, from [37]

Data: 1. A Boolean sharing (A;) of matrix A € qu><m
2. A Boolean sharing (b;) of the vector be Fa"
Result: Masked conversion to row echelon form or L

1 (Ti):=[A; | b /% TreFpX ™)

2 for j=1uptomdo
3 ## Try to make pivot (T[j,j]) non-zero
4 for k=j+1 uptom do

5 (z;):=SecNonzero((T[j.j1;))
6 (zi)=SecNOT((z,~))
7 (T(j.jim+1];) =

SecCondAdd((T[j,j:m+11;),(T [k, j:m+11;),(2i))

8 ## Check if pivot is non-zero
9 (t;) :=SecNonzero((T[}.j1;))

o c[j]:=FullAdd((t;))

h1 if c[j]#0 then

12 ##Multiply row jwith the inverse of its pivot
13 (pi) =B2Minv((T[j.j1;))
14 (T[j.j:m+1];) =SecScalarMult ((T[j,j:m+1];),(pi))
15 ## Subtract scalar
multiple of row j from the rows below
16 for k=j+1 uptomdo
17 (si) :==SecREF ((T[k.j1;))
18 (T[k.j:m+1];) =
SecMultSub((T[j.j:m+11;),(T[k.j:m+11;),(s1))

no else return L

po return (T;)

Algorithm 9: SecBackSub, from [37]

Data: A Boolean sharing
(T;)=[Aj|b;] of matrix A € F;”X'” and vectorbe F"I"
Result: Unique, public solution x € IF;" such that Ax=b
1 for j=m downto2 do
2 | x[j]=FullAdd((b[;l;))
3 for k=1 upto j—1do
o || (b)) = (b)) ALk, 1)
5 x[1]=FullAdd((b[1];))

6 returnx

Suparna Kundu, Quinten Norga, Angshuman Karmakar, Uttam Kumar Ojha, Anindya Ganguly, and Ingrid Verbauwhede

D Complexity Algorithm 6 (mSign()) g 5000
The run-time and randomness complexity of mSign are: £ o
©
TmSign(lsm,n)=1+THash(m,n)+Ctr'(TmExpandv(Ln) £ ~5000
0 1000 2000 3000 4000 5000 6000 7000
+(m-TsecMatvec (L,m,n)) +(Tsecquad (L,m,n)) time [samples]
+(m)+(Tsecrowech (M.1)) +(Tsecacksub (M.1)) (a) Mean Trace
+(Imn+In)+(I-Try11add (1)) LS
:1+THash(m,n)+Ctr'(TmExpand‘,(l,") % 0
3 1 g
+(Im?n3 —Im?n? +Im?n+=m?n® — —m®n? < 5
3 3 12 12 0 1000 2000 3000 4000 5000 6000 7000
i [
—m2n)+ (2 In? =2 In)+ (= Pm?n+ = 2mn) time [samples]
2 2 2 2
5 . (b) RNG ON
+(lmn3—lmn2+lmn+5mn3—Emnz—mn) 40
2 20
m®—m v
+(m)+(-(((5n*+2n—1)+[log(w+1)]- i,
©
2m3+3m?+m 8
(5n2—n+z))+1)+7-(5n2—3n)+m- 20
—40
2 2
((5n"+2n-1)+[log(w+1)]-(5n" ~n+2)) 0 1000 2000 3000 4000 5000 6000 7000
3n2—n—2 5n%—5n+4 time [samples]
+m-———+m+m- ———
2 2 (c) RNG OFF
m?+3m (5 2_g)+m2—m Figure 12: TVLA analysis of 15'-order SecDotProd. Mean trace and
——(5n"=3n

t-test results with RNG ON (1M traces) and RNG OFF (50K traces).

3n2_3n .\ om3+3m2+m Tn?—3n The + 4.849 threshold is marked by red lines.

2 6 2)
3 3 €
+(En2m—5mn—m+m2n)+(lmn+ln) £ 5000
[
3.5 3 2 0
+((Eln —Eln+ln—l)), 2 5000
0 5000 10000 15000 20000 25000
time [samples]
Rusign(Lm,n,w)=ctr-(Ruexpand, (Ln,w)+(m-RsecMatvec (I,m,n,w)) (a) Mean Trace
+(Rsecquad (Lm.n,w)) +(Rsecrowtch (m.n,w)) o 5
@
+(RsecBacksub (M., w)) + (1 Rru11add (m.W))) 0
_ 1 23 1 39 “ s
=ctr(Rogxpand, (Ln.w)+ (5 mn"w——m"n"w) 0 5000 10000 15000 20000 25000
1 1 1 1 time [samples]
+(=In*w+=Inw)+(=mn*w—=mn®w)
2 2 2 2 (b) RNG ON
m?—m [log(w+1)1?—[log(w+1)] Figure 13: TVLA analysis of 1%t-order SecMatVec. Mean trace and
+(2 2 ’ t-test results with RNG ON (1M traces). The + 5.079 threshold is
) om3+3m2+m) marked by red lines.
(n —n)+T-(n —n)w+m-
Mog(w+1)1*~[log(w+1)] ,
“(n"=n)
2
(n®—n)w n%—n m®+3m
+m- +m- W+ .
2 2 2
2 2 3 2
m°—m n“-n 2m’+3m°+m
(n*-n)w+ -(“w)+ .
2 2 6
2 2
-n (n“—n)mw 1,5, 1
“w)+ +(=In“w—=Inw)).
) () e lnw))

E Other TVLA Results

16

mUOV: Masking the Unbalanced Oil and Vinegar Digital Signature Scheme at First- and Higher-Order

‘€ 10000

QJ

£

g

F 0

©

s

0 10000 20000 30000 40000 50000 60000 70000 80000
time [samples]
(a) Mean Trace

U 5

a

s 0

5

o

=5

0 10000 20000 30000 40000 50000 60000 70000 80000
time [samples]
(b) RNG ON

Figure 14: TVLA analysis of 15t-order SecQuad. Mean trace and ¢-test
results with RNG ON (1M traces). The + 5.283 threshold is marked
by red lines.

17

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Masking
	2.3 UOV-DSA

	3 Sensitivity Analysis of UOV-DSA
	4 Efficient masked gadgets
	4.1 Masked Dot Product
	4.2 Masked Matrix-Vector Multiplication
	4.3 Masked Quadratic Form Evaluation
	4.4 Other Auxiliary Gadgets

	5 Masking UOV at Arbitrary Order
	5.1 Masked UOV (Compact) Key Generation
	5.2 Masked UOV Secret Key Expansion
	5.3 Masked UOV Signature Generation

	6 Implementation and Evaluation
	6.1 Practical Security Evaluation
	6.2 Performance Evaluation and Comparison

	7 Impact and Discussions
	References
	A Artifact & Data Availabiltiy
	B Proof Lemma 4.1
	C Auxiliary Algorithms
	D Complexity Algorithm 6 (mSign())
	E Other TVLA Results

