
IO-Optimized Design-Time Configurable Negacyclic Seven-Step
NTT Architecture for FHE Applications

Emre Koçer
kocer@sabanciuniv.edu

Sabancı University
Istanbul, Turkey

Selim Kırbıyık
selim.kirbiyik@sabanciuniv.edu

Sabancı University
Istanbul, Turkey

Tolun Tosun
toluntosun@sabanciuniv.edu

Sabancı University
Istanbul, Turkey

Ersin Alaybeyoğlu
ersin.alaybeyoglu@sabanciuniv.edu

Sabancı University
Istanbul, Turkey

Erkay Savaş
erkays@sabanciuniv.edu

Sabancı University
Istanbul, Turkey

Abstract
Fully Homomorphic Encryption (FHE) enables computations on
encrypted data, proving itself to be an essential building block for
privacy-preserving applications. However, it involves computation-
ally demanding operations such as polynomial multiplication, with
the Number Theoretic Transform (NTT) being the state-of-the-art
solution to perform it. Considering that most FHE schemes oper-
ate over the negacyclic ring of polynomials, we introduce a novel
formulation of the hierarchical Four-Step NTT approach for the
negacyclic ring, eliminating the need for pre- and post-processing
steps found in the existing methods. To accelerate NTT operations,
the Field-Programmable Gate Array (FPGA) devices offer flexible
and powerful computing platforms. We propose an FPGA-based,
high-speed, parametric and fully pipelined architecture that im-
plements the improved Seven-Step NTT algorithm, which builds
upon the four-step algorithm. Our design supports a wide range
of parameters, including ring sizes up to 216 and modulus sizes
up to 64-bit. We focus on achieving configurable throughput, as
constrained by the bandwidth of High-Bandwidth Memory (HBM),
which is an additional in-package memory common in high-end
FGPA devices such as Alveo U280. We aim to maximize throughput
through an IO parametric design on the Alveo U280 FPGA. The
implementation results demonstrate that the average latency of
our design for batch NTT operation is 8.32𝜇𝑠 for the ring size 216
and 64-bit width; a speed-up of 7.96× compared to the current
state-of-the-art designs.

CCS Concepts
• Hardware→ Hardware accelerators; • Security and privacy
→ Security in hardware; • Computer systems organization
→ Parallel architectures.

Keywords
FHE, FPGA, Hardware Acceleration, Four-Step, Seven-Step, fully-
pipelined, NTT, negacyclic

This work is licensed under a Creative Commons Attribution 4.0 International License.
GLSVLSI ’25, New Orleans, LA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1496-2/2025/06
https://doi.org/10.1145/3716368.3735514

ACM Reference Format:
Emre Koçer, Selim Kırbıyık, Tolun Tosun, Ersin Alaybeyoğlu, and Erkay
Savaş. 2025. IO-Optimized Design-Time Configurable Negacyclic Seven-
Step NTT Architecture for FHE Applications. In Great Lakes Symposium on
VLSI 2025 (GLSVLSI ’25), June 30-July 2, 2025, New Orleans, LA, USA. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3716368.3735514

1 Introduction
FHE is an advanced cryptographic solution that allows to perform
arithmetic operations, including both addition and multiplication,
directly on ciphertexts without requiring decryption. This capability
is particularly critical for applications such as privacy-preserving
machine learning. The most practical of the existing FHE schemes
found in the literature are lattice-based [3, 5, 6, 8] which are com-
putationally involved, rendering their deployment in real-world
applications a challenging task.

The core operation in lattice-based cryptographic schemes is
the multiplication of polynomials of very high degrees. Efficient
implementations employ the Number Theoretic Transform (NTT)
algorithm to perform this operation, with a time complexity of
O(𝑛 log(𝑛)), where 𝑛 refers to the degree of the polynomial mod-
ulus, which is typically between 210 and 216 for FHE applications.
The polynomial modulus is generally the cyclotomic polynomial
of the form 𝑥𝑛 + 1 for FHE applications, leading to the negacyclic
ring of R𝑞 = Z𝑞 [𝑥]/⟨𝑥𝑛 + 1⟩. The coefficient modulus, a prime
number used to perform modular arithmetic on the polynomial
coefficients, is generally in the range of [232, 264] for implementa-
tions that employ the residue number system (RNS). It is highly
challenging to develop a generic approach that enables efficient
hardware designs across a broad range of parameter spaces for ring
dimensions as well as coefficient bit sizes. Many solutions in the
literature operate only with primes of special forms to tackle some
of the design challenges [4, 13, 19].

Recently, there has been a surge of interest among researchers
in hierarchical NTT algorithms. These methods are based on the
four-step approach [2], which treats the input as a 2-D matrix and
compute smaller NTTs on both the rows and columns of that ma-
trix. Building on this approach, the seven-step NTT extends the idea
by treating the input as a 4-D hypercube. Hierarchical algorithms
have garnered attention of implementers due to their capacity to
reduce data dependency and create highly parallelizable NTT ar-
chitectures [4, 11, 14, 17]. An algorithmic drawback of the existing

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3716368.3735514
https://doi.org/10.1145/3716368.3735514

GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA Kocer et al.

four-step approach is that it is tailored for the cyclic ring, where
the polynomial modulus is 𝑥𝑛 − 1. Consequently, using it for the
negacyclic case necessitates additional pre- and post-processing
steps [4, 17, 20, 21].

Except for [14], existing solutions do not offer high throughput,
as they do not employ a fully pipelined architecture and concen-
trate only in the latency of the computation. Given that the NTT
is a highly data-intensive operation for high-degree polynomials,
the primary bottleneck in its computation lies in the communi-
cation between memory (or host device) and FPGA. Accordingly,
throughput-oriented approaches optimized for IO bandwidth gen-
erally prove to be better than those that focus solely on minimiz-
ing latency [25, 29]. Moreover, they enable high-speed designs for
multiple NTT computations, particularly in the context of FHE
applications.

Our contributions to the design of hardware architectures for
the fast and efficient computation of NTT can be summarized as
follows:
• We modify the four-step algorithm to work directly over
the negacyclic ring, removing the requirement for both pre-
processing and post-processing steps found in existing meth-
ods. We also demonstrate that our novel solution directly
applies to all hierarchical approaches that decompose the
input polynomial into any dimension. The 4-D decompo-
sition of the NTT input results in an improved seven-step
algorithm proposed in this paper.
• Based on the improved seven-step algorithm, we present a
novel, high-speed FPGA-based NTT architecture that targets
FHE applications. Our solution is unique in the literature as it
is fully pipelined and designed for high throughput. Our pro-
posed architecture offers a scalable and high-performance
accelerator that accommodates a wide range of parameter
configurations. It achieves IO efficiency by maximizing the
utilization of FPGA-host bandwidth . Our approach is adapt-
able to constraints arising from memory bandwidth limi-
tations and resource utilization. Additionally, the design is
configurable at design time, supporting a wide range of pa-
rameters, offering flexibility to meet different throughput
and FHE parameter set requirements.
• We provide implementation results of our design on the
Alveo U280 FPGA used as data center accelerator as well as
on the older generation of Virtex-7 FPGA for a fair compari-
sonwith the literature.We also suggest a performancemetric,
average latency, which is the average execution time of a sin-
gle NTT when many of them are executed on the pipelined
architecture. This metric proves to be useful to evaluate NTT
architectures within the FHE context. We demonstrate that
our design scales well for high-speed computation of multi-
ple NTT operations compared to latency-oriented designs
found in the literature. The implementation results indicate
that the proposed solution significantly outperforms existing
work in the literature, more than an order of magnitude in
terms of average latency for certain sets of parameters.

2 Background
2.1 Notation
• Lowercase italic letters denote integers, such as𝑎. Bold upper-
case letters denote matrices, such as A. Similarly, bold low-
ercase letters are used to denote vectors, such as a. Elements
of matrices (vectors) are accessed using the square brackets,
such as A[𝑖] [𝑗] (a[𝑖]). ⊙ is used to represent element-wise
multiplication of vectors or matrices, such as a ⊙ b.
• R𝑞,𝑛 denotes the cyclotomic ring of polynomialsZ𝑞 [𝑥]/(𝑥𝑛+
1). Polynomials are represented by lowercase italic letters,
such as 𝒂(𝑥). Coefficients of polynomials are represented by
the sub-index, such as 𝒂𝑖 .

2.2 Number Theoretic Transform (NTT)
NTT is the state-of-the-art approach for polynomial multiplication.
For two polynomials 𝒂(𝑥), 𝒃 (𝑥) ∈ R𝑞,𝑛 , multiplication using the
NTT algorithm is performed as follows:

𝒂(𝑥) · 𝒃 (𝑥) = INTT𝑛
(
NTT𝑛

(
𝒂(𝑥)

)
⊙ NTT𝑛

(
𝒃 (𝑥)

))
(1)

The multiplication in R𝑞,𝑛 is also known as the negative wrapped
convolution. Similarly, the NTT in R𝑞,𝑛 is referred to as negacyclic
NTT, which requires 𝑞 = 1 mod 2𝑛. Then, a primitive 2𝑛-th root
of unity exists in Z𝑞 , which is denoted by𝜓 where𝜓𝑛 = −1 mod 𝑞.
For â = NTT𝑛 (𝒂(𝑥)), the transformation is equivalent to the evalua-
tion â[𝑖] = 𝒂(𝜓2𝑖+1). Forward and backward NTT can be efficiently
implemented using so-called butterfly circuits. Most applications
use Cooley-Tukey (CT) [7] butterflies for NTT𝑛 and Gentleman-
Sande (GS) [10] butterflies for INTT𝑛 . NTT algorithm utilizing
CT or GS butterflies, commonly referred to as the iterative NTT
[16, 26]. At each iteration, also known as a stage, 𝑛/2 butterflies are
computed, and there are log𝑛 stages, resulting in 𝑂 (𝑛 log𝑛) time
complexity. Note that a traditional schoolbook multiplication has a
time complexity of 𝑂 (𝑛2).

2.2.1 Four-Step NTT. Bailey’s four-step NTT, widely adopted in
various studies [4, 11, 14, 17, 28], is a hierarchical approach that
transforms the larger NTT into smaller and independent NTTs.
Particularly, the input polynomial with 𝑛 coefficients is decom-
posed into a matrix of size 𝑛1 × 𝑛2. The four steps constituting
this algorithm, and which form the basis of its name, are outlined
below:

(1) Perform 𝑛2 independent NTT𝑛1 .
(2) Transpose the matrix.
(3) Multiply every element by twiddle factors, element at (𝑖, 𝑗)

is multiplied by 𝜔𝑖 𝑗

(4) Perform 𝑛1 independent NTT𝑛2 .
As mentioned in Section 1, the existing literature on the four-step

NTT focused on the cyclic NTT case, where the reduction polyno-
mial is (𝑥𝑛 − 1). In particular, the NTT of 𝒂(𝑥) ∈ Z𝑞 [𝑥]/(𝑥𝑛 − 1)
satisfies â[𝑖] = 𝒂(𝜔𝑖), where𝜔 is a primitive𝑛-th root of unity, with
𝜔𝑛/2 = −1 mod 𝑞. To use a cyclic NTT algorithm for performing
negative wrapped convolution, such as the above described four-
step NTT, additional steps are necessary [21]. To compute 𝒄 = 𝒂 · 𝒃
for 𝒂, 𝒃, 𝒄 ∈ R𝑞,𝑛 , the following pre-processing stepsmust be carried
out:

IO-Optimized Design-Time Configurable Negacyclic Seven-Step NTT Architecture for FHE Applications GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA

𝒂𝑖 = 𝒂𝑖 ·𝜓 𝑖 , 𝒃𝑖 = 𝒃𝑖 ·𝜓 𝑖 for 0 ≤ 𝑖 < 𝑛 (2)
Next, 𝒂 and 𝒃 are multiplied according to Equation (1) but using
the cyclic NTT routines, with 𝜔 = 𝜓2. Let 𝒄 represent the result of
the multiplication after applying the inverse NTT. Following this,
post-processing is done:

𝒄𝑖 = 𝒄𝑖 ·𝜓−𝑖 , for 0 ≤ 𝑖 < 𝑛 (3)
For the iterative NTT, the pre- and post-processing steps are merged
into the existing butterfly circuits by appropriately selecting the
twiddle factors [22, 26]. However, for the four-step NTT, these steps
are explicitly performed [9].

2.2.2 Seven-Step NTT. In general, the input of the NTT can be
decomposed into any dimensional hyperplane, allowing smaller
NTTs to be performed at each dimension. The seven-step NTT is a
specific case involving 4-D decomposition, which can be viewed
as a one-level recursive application of the previously described
four-step approach. Figure 1 provides and outline of the seven-step
NTT.

7S-NTT𝑛11,𝑛12,𝑛21
𝑛

4S-NTT𝑛11
𝑛1

It-NTT𝑛11 It-NTT𝑛12

4S-NTT𝑛21
𝑛2

It-NTT𝑛21 It-NTT𝑛22

Figure 1: Illustration of seven-step NTT with recursive four-
step NTTs. 7S-NTT𝑛11,𝑛12,𝑛21

𝑛 denotes seven-step NTTwith 4-D
decomposition 𝑛 = 𝑛11×𝑛12×𝑛21×𝑛22. 4S-NTT𝑛1

𝑛 denotes four-
step NTTwhere𝑛 = 𝑛1×𝑛2 while It-NTT denotes the iterative
NTT. Twiddle multiplications are not visualized.

2.3 Memory types and hierarchical memory in
FPGA

In contemporary computing, both GPUs and FPGAs are equipped
with on-chip and off-chip memories. FPGAs feature an on-chip
memory component referred to as Block RAM (BRAM), as well
as off-chip memory known as HBM. BRAM enables read/write
operations to be completed in a single clock cycle (cc), whereas
HBM requires multiple cc for read/write operations. Specifically
for Alveo U280, HBM offers a storage of 8 GB, while the on-chip
BRAM can hold up to 41 MB of data. Since FHE applications handle
large data volumes, the use of HBM is essential for FPGA-based
implementations, though HBM bandwidth can be a bottleneck for
data movement. Alveo U280’s HBM provides a bandwidth of 8192-
bit (4096-bit read and 4096-bit write) at 450 MHz.

3 Negacyclic Four-Step NTT
To address the pre- and post-processing overhead associated with
the four-step algorithm described in Section 2.2.1, we present a
modified version that directly operates in R𝑞,𝑛 . For completeness, 1
details the negacyclic four-step NTT. A key aspect of our solution
is the formulation of the twiddle factors (Line 7) used during the
multiplication loop between two sets of NTTs.

Proof: By the definition of negacyclic NTT as explained in Sec-
tion 2.2, the 𝑛1-point column NTTs block in lines 2-4 of 1 performs
the following transformation.

A′ [𝑖] [𝑗] =
𝑛1−1∑︁
𝑘=0

𝜓𝑛2 (2𝑖+1)𝑘 · A[𝑘] [𝑗] (4)

which is equivalent to evaluating the polynomial in the column
A𝑇 [𝑖] at𝜓𝑛2 · (2𝑖+1) . The output of the twiddle multiplication in lines
5-9 is as follows:

A′′ [𝑖] [𝑗] = A′ [𝑖] [𝑗] ·𝜓 (2𝑖−𝑛1+1) 𝑗

A′′ [𝑖] [𝑗] =
𝑛1−1∑︁
𝑘=0

𝜓𝑛2 · (2𝑖+1)𝑘+(2𝑖−𝑛1+1) 𝑗 · A[𝑘] [𝑗] (5)

We plug Equation (5) into the row NTTs computed in lines 10-12:

A′′′ [𝑖] [𝑗] =
𝑛2−1∑︁
𝑡=0

𝜓𝑛1 (2𝑗+1)𝑡 · A′′ [𝑖] [𝑡]

=

𝑛2−1∑︁
𝑡=0

𝜓𝑛1 (2𝑗+1)𝑡

·
(𝑛1−1∑︁
𝑘=0

𝜓𝑛2 (2𝑖+1)𝑘+(2𝑖−𝑛1+1)𝑡 · A[𝑘] [𝑡]
)

=

𝑛2−1∑︁
𝑡=0

𝑛1−1∑︁
𝑘=0

𝜓𝑛12𝑗𝑡+(2𝑖+1) (𝑡+𝑛2𝑘)A[𝑘] [𝑡] (6)

The output is flattened with transpose operation:

â[𝑖 + 𝑛1 𝑗] =
𝑛2−1∑︁
𝑡=0

𝑛1−1∑︁
𝑘=0

𝜓2𝑛1 𝑗𝑡+(2𝑖+1) (𝑡+𝑛2𝑘)A[𝑘] [𝑡] (7)

On the other hand, the 𝑛-point NTT computes the following by
definition:

â[𝑧] =
𝑛−1∑︁
𝑙=0

𝒂 [𝑙]𝜓 (2𝑧+1)𝑙

â[𝑗 + 𝑛2𝑖] =
𝑛2−1∑︁
𝑡=0

𝑛1−1∑︁
𝑘=0

𝜓 (2(𝑗+𝑛2𝑖)+1) (𝑡+𝑛2𝑘)A[𝑘] [𝑡]

â[𝑖 + 𝑛1 𝑗] =
𝑛2−1∑︁
𝑡=0

𝑛1−1∑︁
𝑘=0

𝜓 (2(𝑖+𝑛1 𝑗)+1) (𝑡+𝑛2𝑘)A[𝑘] [𝑡]

=

𝑛2−1∑︁
𝑡=0

𝑛1−1∑︁
𝑘=0

𝜓 (2𝑖+1) (𝑡+𝑛2𝑘)+(2𝑛1 𝑗𝑡)+(2𝑛1 𝑗𝑛2𝑘)A[𝑘] [𝑡]

=

𝑛2−1∑︁
𝑡=0

𝑛1−1∑︁
𝑘=0

𝜓2𝑛1 𝑗𝑡+(2𝑖+1) (𝑡+𝑛2𝑘)A[𝑘] [𝑡] (8)

Note that 2𝑛1𝑛2 = 2𝑛 = 0 in the exponent as𝜓2𝑛 = 1. Equation (7)
is equal to Equation (8). ■

4 Proposed IO-optimized seven-step NTT
Architecture

This section presents a IO-optimized and pipelined hardware ar-
chitecture that implements the seven-step NTT algorithm detailed

GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA Kocer et al.

Algorithm 1 Negacyclic Four-Step NTT
Input: 𝒂(𝑥) ∈ R𝑞,𝑛
Input: a primitive 2𝑛-th root of unity𝜓 ∈ Z𝑞 , 𝑛1 · 𝑛2 = 𝑛

Output: â ∈ Z𝑛𝑞 where â = NTT𝑛 (𝒂(𝑥))
1: A ∈ Z𝑛1×𝑛2

𝑞 ← 𝒂 ⊲ represent 𝒂 as a matrix s.t.
A[𝑖] [𝑗] = 𝒂𝑖 ·𝑛2+𝑗

2: for 𝑖 = 0→ 𝑛2 − 1 do
3: A𝑇 [𝑖] = NTT𝑛1 (A𝑇 [𝑖]) ⊲ using𝜓𝑛2

4: end for
5: for 𝑖 = 0→ 𝑛1 − 1 do
6: for 𝑗 = 0→ 𝑛2 − 1 do
7: A[𝑖] [𝑗] = A[𝑖] [𝑗] ·𝜓 (2𝑖−𝑛1+1) 𝑗

8: end for
9: end for
10: for 𝑖 = 1→ 𝑛1 − 1 do
11: A[𝑖] = NTT𝑛2 (A[𝑖]) ⊲ using𝜓𝑛1

12: end for
13: â← A𝑇 ⊲ flatten A s.t. â[𝑗 · 𝑛1 + 𝑖] = A[𝑖] [𝑗]
14: return â

#BUs Twiddle Factor Storage
without OTF with OTF

Iterative O(𝑛 log𝑛) O(𝑛) -
4-Step O(𝑛1/2 log𝑛1/2) - -
7-Step O(𝑛1/4 log𝑛1/4) O(𝑛) O(𝑛1/4)∗

∗ : This number is O(
√
𝑛) in our implementation because of throughput requirements

(see Section 4.4.2).
Table 1: Comparison of the number of Butterfly Units (BUs)
needed for NTT-unrolling and the number of pre-computed
twiddle factors. OTF refers to on-the-fly computation of twid-
dle factors for intermediate multiplication (Line 7 of 1).

in Section 2.2.2 incorporating the negacyclic four-step approach
outlined in 1.

4.1 Design Principles
4.1.1 Row Independence. Recall that the four-step algorithm lever-
ages the independence of rows by processing them separately, mean-
ing there is no dependency between different rows in the matrix
representation (see Lines 2-4 and Lines 10-12 in 1). This characteris-
tic enables the parallelization of multiple NTT stages. In this work,
the advantage of this feature is fully exploited, which is critical for
achieving the primary design goal of maximizing throughput.

a[0]

a[1]

.

.

.
a[𝑛 − 1]

BU1,1

BU1,2

.

.

.
BU1,𝑛2

BU2,1

BU2,2

.

.

.
BU2,𝑛2

. . .

. . .

. . .

. . .

. . .

. . .

BUlog𝑛,1

BUlog𝑛,2

.

.

.
BUlog𝑛,𝑛2

b[0]

b[1]

.

.

.
b[𝑛 − 1]

Figure 2: Loop unrolling, as illustrated for iterative NTT𝑛 ,
requires log𝑛 · (𝑛/2) BUs.

4.1.2 NTT-unrolling. NTT-unrolling involves assigning dedicated
BUs to each stage of the iterative NTT, allowing each stage to be
processed in every clock cycle, as shown in Figure 2. Ideally, this
results in pipelined execution with one output per clock cycle with
no stalls. However, this approach demands an impractically large
number of BUs for large NTT sizes, specifically 𝑛/2 · log𝑛 BUs (e.g.,
𝑛 = 216 would require 215 · 16 BUs, which is unfeasible with current
technology). The four-step and seven-step NTTs reduce resource
requirements by breaking down the NTT into smaller, more man-
ageable stages, as discussed earlier. In particular, the seven-step
algorithm provides an improved approach for pipelined architec-
tures for large 𝑛. Recall that there exist four independent iterative
NTT operations of size O(𝑛1/4) in the seven-step approach, each
necessitating O(𝑛1/4 · log𝑛1/4) BUs for unrolling (𝑛 = 216 would
require 4 · 24/2 · 4 BUs, which is feasible with current technology).
A comparison of these methods is presented in Table 1.

4.1.3 Coefficient Throughput. Our solution introduces a unique
feature: a parametric hardware generator that operates based on
the throughput, denoted by 𝜏 , as well as the seven-step parame-
ters 𝑛11, 𝑛12, 𝑛21, 𝑛22 for any given R𝑞,𝑛 . As previously mentioned,
modern FPGAs with HBM face limited bandwidth, which restricts
the throughput of the NTT engine. Our approach addresses this
issue by considering the I/O bandwidth during the generation of
throughput-optimized hardware, aiming to fully utilize the avail-
able communication bandwidth. The 𝜏 parameter also defines the
level of parallelism in our design. Given that 𝜏 ≥ 𝑛11, 𝑛12, 𝑛21, 𝑛22
and is a power-of-two, iterative NTT blocks are duplicated by 𝜏/𝑛𝑖 𝑗
to achieve the desired throughput, as explained in Section 4.4.1.

4.1.4 Address Generation. Existing methods in the literature [1, 13,
15, 17, 29] entail complex address generation units for computing
NTTs. In this study, we focus on smaller NTTs compared to previous
works, allowing twiddle factors to be efficiently stored in registers.

4.1.5 Reduced Twiddle Storage. FHE applications necessitate per-
forming NTT with multiple primes. For instance, approximately
60 distinct primes with log𝑞 = 32 and 𝑛 = 216 are used in RNS
representation for the R-LWE instance to ensure a promising level
of security. Consequently, the set of twiddle factors must be com-
puted for each prime modulus. Classical algorithms necessitate pre-
computing and storing O(𝑛) twiddles. In contrast, the seven-step
algorithm requires O(𝑛1/4) twiddle factors for the four iterative
NTT executions (see Figure 1) and O(𝑛) twiddle factors for interme-
diate multiplications, as illustrated in Table 1. Our design employs
an on-the-fly twiddle generation strategy reducing the cost of the
pre-computation for the intermediate multiplications to O(

√
𝑛), as

detailed in Section 4.3.

4.2 Modular Multiplication
For integer multiplication, we adopt the uneven partitioning tech-
nique proposed in [23]. Given that the DSPs in the targeted FPGA,
Alveo U280, support 26x17 unsigned multiplication, we partition
the multiplication operands into 26-bit and 17-bit parts accord-
ingly. For 64x64-bit multiplication, this approach uses 12 DSPs. For
the modular reduction, several approaches have been proposed
in the literature. In this work, we adopt Montgomery reduction

IO-Optimized Design-Time Configurable Negacyclic Seven-Step NTT Architecture for FHE Applications GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA

[18] and its specialized word-level variant, the Word-Level Mont-
gomery (WLM) [16]. This technique is particularly well-suited for
efficient hardware implementations.

We employ the WLM as it significantly reduces the number of
required multiplications. This approach exploits the fact that the
Montgomery factor is −1 for NTT friendly primes which are in
the form 𝑞 = 𝑞𝐻 .2log 2𝑛 + 1. For log𝑞 = 64 and 𝑛 = 216, the word
size is set to 17, requiring a total of 8 DSP multiplications. Modular
Multiplication Units (MMUs) are fully pipelined. The latency of the
integer multiplication is 2 cc. Similarly, each iteration in the word-
level reduction takes 2 cc. Consequently, for 64-bit, the latency of
MMU is 2 ·

⌈
64

log𝑛+1

⌉
+ 2 clock cycles.

4.3 On-the-fly Twiddle Generation
Recall that the four-step algorithm includes a twiddle multiplication
step, where each matrix element is multiplied by a power of 𝜓 ,
as described in Line 7 of 1. It uses 𝑛 twiddle factors, which are
subsequently used. For large values of𝑛, precomputing these factors
may become impractical due to the significant memory demands.
Consider that FHE applications usually work with multiple values
of 𝑞, and one needs the set of twiddle factors for all 𝑞. Several works
can be found in the literature that discusses on-the-fly generation
of these twiddle factors. We adapt the strategy discussed in [28]
to a fully pipelined design and negacyclic NTT. Let p𝑗 [𝑖] denotes
𝜓 (2·𝑖−𝑛1+1) · 𝑗 . Then, p𝑗+1 [𝑖] = p𝑗 [𝑖] · p1 [𝑖] = 𝜓 (2·𝑖−𝑛1+1) · (𝑗+1) .
Notice that one can compute p𝑗 for all 𝑗 > 2 by only pre-computing
p1. This approach reduces storage requirements to only 𝑛1 twiddle
factors. For pipelined designs such as ours, the number of pre-
computed twiddle factors can be slightly more in practice. In order
to produce 𝜏 twiddle factors at each cc using the above explained
strategy, p1 to p𝑘 are pre-computed where 𝑘 = ⌈(𝜏 · L)/𝑛1⌉ and
L denotes the latency of the MMU. Then, the On-the-fly Twiddle
Generation Unit (TGU) outputs p𝑗+𝑘 [𝑖′] at each cc, computed based
on p𝑗 [𝑖′] in L clock cycles, for 𝑗 > 𝑘 , 𝜏 · 𝑡 ≤ 𝑖′ < min(𝜏 · (𝑡 + 1), 𝑛1)
and some integer 𝑡 ≤ ⌊𝑛1/𝜏⌋.

4.4 Architecture Overview
In the proposed architecture, there are 11 main modules. These
are namely the Iterative NTT Units (INUs) 1-4, Authomorphism
(Rotator) Units (AUs) 1-3, Twiddle Multiplication Units (TMUs) 1-3,
and TGU. The details of this structure can be found in Figure 3. All
the implementation is fully pipelined to maximize the throughput.
Generally speaking, INUs perform relatively small NTT operations.
TMUs are responsible for multiplying the intermediate coefficients
by powers of𝜓 in between iterative NTTs. AUs are responsible for
rotating coefficient outputs for providing correct BRAM read/write
addresses for the subsequent iterative NTTs. TGU generates the
twiddles used by TMU 2 by implementing the strategy discussed
in Section 4.3. Observe that INUs 1-2, along with TMU 1 and AU
1, form a four-step NTT as described in 1, referred to as Four-Step
NTT Unit (4NU) 1. Similarly, INUs 3-4, TMU 3, and AU 3 constitute
another four-step NTT, referred to as 4NU 2. As shown in Figure 1,
the seven-step approach is essentially a recursive application of the
four-step algorithm.

The proposed seven-step architecture is designed for high through-
put. In each cc, the proposed seven-step NTT architecture takes 𝜏

new coefficients as its input and produces 𝜏 coefficients as the re-
sult of the corresponding NTT operation. The throughput of all the
above-mentioned units matches this value, 𝜏 . Naturally, the output
stream becomes valid after a certain number of cc, depending on
the architecture’s latency.

4.4.1 Iterative NTT Units (INUs). INUs 1-4 implement a number
of parallel iterative NTTs of size 𝑛11, 𝑛12, 𝑛21 and 𝑛22, respectively.
The number of parallel NTTs are decided by the parameter 𝜏 and the
decomposition. For instance, the INU instantiates 𝜏 /𝑛11 iterative
NTTs. For the sake of simplicity, we assume 𝜏 is a multiple of all
𝑛11, 𝑛12, 𝑛21, 𝑛22. As previously explained, NTT stages are unrolled.
Consequently, for INU 1 as en example, there are (𝑛11/2) ·𝑙𝑜𝑔(𝑛11) ·
𝜏 /𝑛11 BUs. Twiddle factors are also stored in registers. INU 1 does
not use BRAMs while INUs 2-4 stores output of the preceding AUs
from the pipeline in BRAMs to efficiently and correctly operate.
As explained in the previous section, the reason to utilize BRAMs
is to perform a set of iterative NTTs on transpose of the matrix
compared to the preceding INU. For instance, INU 4 operates on
rows while INU 3 operates on columns. As the preceding INU must
complete producing all the input coefficients to start the operation.
Additionally, newly produced coefficients must be stored in BRAMs.
In particular, the size of BRAMs is two times the number of points
in the implemented iterative NTT (e.g. 2𝑛12 for INU 2). At a given
time, one half of BRAM blocks are in read mode and the other half
of BRAM blocks are in write mode.

4.4.2 Twiddle Multiplication Units (TMUs). TMUs implement the
twiddle multiplication loop presented in Line 8 of 1. TMU 1 and
3 contain a set of Flip-flop (FF)s to store necessary pre-computed
twiddle factors. For TMU 1 and 3; 𝑛1, and 𝑛2 twiddles are stored
in FFs, respectively. On the other hand, TMU 2 receives the set of
twiddles to multiply from TGU, which reduces its twiddle storage
requirement significantly. We would like to note that, the on-the-fly
generation is not advantageous for TMU 1 and 3, since the number
of pre-computed twiddle factors would be close to the case without
the on-the-fly generation (see the computation of 𝑘 in Section 4.3).
To implement the multiplication by twiddles, each TMU contains 𝜏
independently operating and pipelined MMUs to align with the 𝜏
constraint.

4.4.3 Authomorphism (Rotator) Units (AUs). Each AU has an inter-
nal counter and rotates its input by some pre-defined offset input
with respect to the current value of its counter. The bit-length of
the counters are distinct for each AU and depends on the parame-
ters decomposition of 𝑛, and 𝜏 . Rotation of the coefficients ensure
that these coefficients are stored in the desired locations of BRAMs
for the subsequent INUs. Thanks to the rotation, the input set of
coefficients to be processed by INUs, are stored in independent
BRAMs, and therefore they can be accessed in a single cc. Note that
it is necessary to access the inputs of subsequent INUs within a
single cc to maintain the pipeline. The working principle of AUs
are exemplified in Figure 4.

5 Evaluation
In this section, a comprehensive evaluation of our proposed solution
is presented.

GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA Kocer et al.

....

....

....

....

....

....

....

....

....

....

....

Figure 3: Pipelined Seven-Step NTT architecture. At each cc, 𝜏 coefficients (each of them are log𝑞-bit) are passed to the next
stage in the pipeline, represented by the solid array.

BRAM0 BRAM1 BRAM2 BRAM3
rotate write read rotate
0 1

1 2

2 3

3 4

5 6

6 7

7 8

8 9

Figure 4: Operational principle of the AU is illustrated for a four-step NTT example with parameters 𝑛 = 16, 𝜏 = 𝑛1 = 𝑛2 = 4.
The toy example contains two INUs, and single AU. TMU which is a necessary component in a four-step NTT, is omitted for
simplicity. At each cc, the unit receives 𝜏 = 4 coefficients and outputs 𝜏 = 4 coefficients. Along with the BRAM read and write
operations, the rotations organize the data for the subsequent INU. In this example, the preceding INU processes coefficients
with a stride of 4, whereas the subsequent INU handles coefficients with a stride of 1. Note that the number of independent
BRAMs is equal to 𝜏 and the BRAM status in the figure corresponds to 4𝑡ℎ cc.

5.1 Implementation
The presented seven-step architecture is implemented using Verilog
HDL. For configurability, Python scripts that automates generation
of RTL designs are created with respect to given 𝑛, 𝑛11, 𝑛12, 𝑛21, 𝑛22,
𝑞 and the desired throughput 𝜏 . Implemented ring sizes vary from
𝑛 = 210 to 𝑛 = 216 for coefficient moduli log𝑞 = 32 to log𝑞 = 64.
The target FPGA devices are AMD-Xilinx Alveo U2801 (XCU280)
and VC709 FPGA, and Vivado 2023.22 is used for synthesis and
implementation.

For the decomposition of 𝑛, we use a symmetric partition where
𝑛11 = 𝑛12 = 𝑛21 = 𝑛22 if such a configuration is feasible. Otherwise,
we prioritize assigning a larger size for first dimensions. For exam-
ple, in the case of 𝑛 = 213, we set 𝑛11 = 24 and 𝑛12 = 𝑛21 = 𝑛22 = 23.
Similarly, for 𝑛 = 215, we assign 𝑛11 = 𝑛12 = 𝑛21 = 24, while
𝑛22 = 23. This approach is motivated by the observation that the
initial blocks carry a smaller computational load compared to sub-
sequent ones.

1https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
2https://www.xilinx.com/products/design-tools/vivado.html

5.2 Results and Comparison
Tables 2 and 3 provide a comprehensive comparative analysis of our
implementations against state-of-the-art designs. The analysis is
segmented into two categories to align with the two primary classes
of FPGAs: high-performance and moderate-performance devices.
High-performance FPGAs, exemplified by the Alveo and Ultrascale
families, typically deliver superior performance compared to their
moderate-performance counterparts, such as the Virtex devices.
To ensure a fair comparison, the results pertaining to moderate-
performance FPGAs are evaluated against those of the Virtex-7,
while the results for high-performance FPGAs are benchmarked
against the Alveo U280.

Average latency is computed over the execution times of 100
subsequent NTT operations. The Area-Time-Product (ATP) is a
metric used in literature [30], computed as Latency (𝜇𝑠) × (LUT +
FF/2 + 100 × DSP + 300 × BRAM). Average latency is used in ATP
computation since the main consideration of this study is to maxi-
mize throughput. Most of the compared implementations are based
on iterative NTT architectures [12, 13, 15, 27] while some recent
works are based on hierarchical approaches [4, 11, 14, 17, 28] as

https://www.xilinx.com/products/boards-and-kits/alveo/u280.html

IO-Optimized Design-Time Configurable Negacyclic Seven-Step NTT Architecture for FHE Applications GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA

Table 2: Comparison with Literature (Alveo & Ultrascale FPGAs)

Work Arch. Platform log𝒒 𝒏 𝝉 LUT / FF / DSP / BRAM F (MHz) Lat. (cc) Avg. (𝜇𝑠) ATP (·10−3)
[29] Iter. XCU200 28 210 32 95 / 104 / 640 / 80 210 236 1.12 (4.25x) 0.264 (4.60x)
Ours 7-Step XCU280 32 210 16 76.1 / 94.6 / 864 / 24 250 66 0.26 (1.00x) 0.057 (1.00x)
Ours 7-Step XCU280 64 211 16 185 / 204 / 2640 / 40 250 130 0.52 (1.00x) 0.293 (1.00x)
Ours 7-Step XCU280 32 212 32 137 / 160 / 1632 / 40 250 130 0.52 (1.00x) 0.204 (1.00x)
[13] ‡ Iter. V.Ultrascale+ 60 212 - 74.5 / 61.4 / 288 / 155 250 951 3.804 (7.26x) 0.687 (1.22x)
[11] 4-Step XCU280 64 212 - 523 / 1478 / 6518 / 34.5 300 351 1.17 (2.23x) 2.251 (4.01x)
Ours 7-Step XCU280 64 212 32 356.2 / 375.5 / 5040 / 72 250 131 0.52 (1.00x) 0.560 (1.00x)
[1] Iter. XCU280 32 213 - 29.1 / 21.5 / 224 / 64 181.8 1690 9.29 (4.47x) 0.84 (1.60x)
Ours 7-Step XCU280 32 213 16 89.8 / 107.9 / 1008 / 32 250 518 2.07 (1.00x) 0.53 (1.00x)
[1] Iter. XCU280 32 214 - 29.1 / 21.5 / 224 / 96 181.8 3612 19.87 (4.79x) 1.81 (1.61x)
Ours 7-Step XCU280 32 214 16 94.2 / 112.2 / 1056 / 48 250 1036 4.14 (1.00x) 1.12 (1.00x)
[13] ‡ Iter. V.Ultrascale+ 60 214 - 74.5 / 61.4 / 288 / 155 250 4340 17.36 (4.18x) 3.13 (1.05x)
Ours 7-Step XCU280 64 214 16 234.1 / 255.7 / 3280 / 96 250 1036 4.14 (1.00x) 2.97 (1.00x)
[13] ‡ Iter. V.Ultrascale+ 60 215 - 74.5 / 61.4 / 288 / 155 250 8435 33.74 (8.14x) 6.09 (1.09x)
Ours 7-Step XCU280 64 215 32 444.6 / 459.6 / 6160 / 176 250 1036 4.14 (1.00x) 5.56 (1.00x)
Ours 7-Step XCU280 32 216 32 169.5 / 191.5 / 2016 / 152 250 2070 8.28 (1.00x) 4.24 (1.00x)
[13] ‡ Iter. V.Ultrascale+ 60 216 - 74.5 / 61.4 / 288 / 155 250 16627 66.5 (7.96x) 12.00 (1.01x)
[28] 3-D† XCU250 64 216 - 267.1 / 328.4 / 2736 / 2126 165 62700 380 (45.5x) 510.2 (43.3x)
Ours 7-Step XCU280 64 216 32 460 / 470 / 6320 / 280 248 2070 8.34 (1.00x) 11.78 (1.00x)

† : employs 3-D decomposition of 𝑛 as 26 · 26 · 24 . ‡ : restricted to special primes.

Table 3: Comparison with Literature (Virtex-7 FPGAs)

Work Arch. Platform log𝒒 𝒏 𝝉 LUT / FF / DSP / BRAM F (MHz) Lat. (cc) Avg. (𝜇𝑠) ATP (·10−3)
[12] Iter. Virtex-7 28 210 - 6.4 / 3.7 / 18 / 2 150 1035 6.9 (18.82x) 0.073 (1.78x)
Ours 7-Step Virtex-7 32 210 16 27.5 / 41.2 / 576 / 17 180 66 0.37 (1.00x) 0.041 (1.00x)
Ours 7-Step Virtex-7 32 211 16 30.5 / 44.4 / 624 / 17 180 130 0.722 (1.00x) 0.087 (1.00x)
[15] Iter. Virtex-7 32 212 - 24.6 / 23.9 / 352 / 80 207 777 3.75 (2.60x) 0.359 (1.94x)
[17] 4-Step Virtex-7 32 212 - 70 / 70 / 599 / 129 200 460 2.30 (1.59x) 0.468 (2.53x)
Ours 7-Step Virtex-7 32 212 16 32.4 / 47.2 / 666 / 18 180 260 1.44 (1.00x) 0.185 (1.00x)
[12] Iter. Virtex-7 60 212 - 21.8 / 19 / 220 / 16 150 2070 13.80 (8.81x) 0.802 (1.22x)
[27] Iter. Virtex-7 60 212 - 19.1 / 17.86 / 216 / 88 270 6144 22.76 (14.52x) 1.73 (2.63x)
[30] Iter. Virtex-7 60 212 - 17 / 11 / 286 / 24.5 150 4125 27.50 (17.56x) 1.61 (2.45x)
[14] 4-Step Virtex-7 64 212 - 18.9 / 26.7 / 266 / 24 211 2490 11.80 (7.53x) 0.779 (1.19x)
[14] 4-Step Virtex-7 64 212 - 9.2 / 12.6 / 133 / 24 241 4596 19.07 (12.18x) 0.687 (1.05x)
Ours 7-Step Virtex-7 64 212 16 112 / 140 /2220 / 52 166 260 1.57 (1.00x) 0.657 (1.00x)
Ours 7-Step Virtex-7 32 213 16 35.8 / 51.7 / 720 / 28 181 520 2.87 (1.00x) 0.41 (1.00x)
[4] 4-Step Virtex-7 32 214 - 26.9 / 26.9 / 144 / 32.5 200 4320 21.6 (3.74x) 1.39 (1.54x)
Ours 7-Step Virtex-7 32 214 16 39 / 55 / 768 / 44 180 1040 5.78 (1.00x) 0.904 (1.00x)
Ours 7-Step Virtex-7 64 214 16 134 / 161 / 2560 / 104 166 1040 6.27 (1.00x) 3.14 (1.00x)
Ours 7-Step Virtex-7 64 215 16 166 / 195 / 3120 / 170 164 2060 12.56 (1.00x) 7.87 (1.00x)
[24] Iter. Virtex-6 30 216 - 72.6 / 63.1 / 250 / 84 100 47795 477.95 (20.4x) 73.77 (13.71x)
[4] 4-Step Virtex-7 30 216 - 30.8 / 36.2 / 160 / 128 196 16758 85.5 (3.65x) 8.83 (1.64x)
Ours 7-Step Virtex-7 32 216 16 53 / 70 / 984 / 144 175 4100 23.43 (1.00x) 5.38 (1.00x)
[12] Iter. Virtex-7 64 216 - 31.3 / 30 / 300 / 255 135 59400 440 (16.42x) 67.23 (3.58x)
Ours 7-Step Virtex-7 64 216 16 181 / 200 / 3264 / 310 153 4100 26.80 (1.00x) 18.77 (1.00x)

ours. In all cases, our proposed design provides better timing and
ATP results. For each class, we report the design for the maximum
value of 𝜏 that is implementable in the target FPGA.

In a standard FHE configuration with 𝒏 = 212 and log q = 32,
the proposed design demonstrates 1.94× and 2.53× lower ATP
compared to the existing solutions presented in [15] and [17], re-
spectively, for Virtex-7 devices (Table 3). This performance improve-
ment is attributed to the utilization of the NTT architecture, which
facilitates higher computational throughput. As a result, the pro-
posed architecture executes an NTT operation in an average time
of 1.44 𝜇𝑠 , achieving up to 2.60× speed-up over the state-of-the-art
solutions. The advantages of our proposed design remain evident
in the 64-bit scenario with 𝑛 = 212 on high-performance FPGAs,
as shown in Table 2, achieving an average latency improvement
of 2.23× over the best design in the literature [11], which offers

the minimum average latency among existing solutions. It is note-
worthy that, except for [11], none of the other implementations
provide a fully pipelined architecture. In comparison to iterative
NTT architectures with a near 64-bit word size and 𝑛 = 212, our
design achieves 7.26× and 8.81× lower average latency than [13]
on high-performance FPGAs and [12] on moderate-performance
FPGAs, respectively. Furthermore, while accelerating the NTT op-
eration at this scale, our design attains up to 4.01× higher ATP
compared to state-of-the-art implementations (Table 2), underscor-
ing the resource efficiency of the proposed speed-optimized design.

Consistent with the established design objectives, the proposed
solution demonstrates superior scalability across ring sizes ranging
from 𝒏 = 210 to 𝒏 = 216. For log𝑞 = 32, the design surpasses
the state-of-the-art solutions [4] for 𝒏 = 214 (Table 3) and [1] for

GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA Kocer et al.

𝒏 = 213 (Table 2), achieving 3.74× and 4.47× improvements in av-
erage latency, respectively. Furthermore, for log𝑞 = 64, the solution
delivers up to 4.18× speed-up at 𝒏 = 213 (Table 2). At 𝒏 = 215 with a
64-bit word size, the proposed architecture achieves an 8.14× speed-
up on high-performance FPGAs, as shown in Table 2. For the largest
ring size 𝒏 = 216 in FHE applications, [13] represents the closest
competitor to our proposed solution for high-performance FPGA
devices (see Table 2). Nevertheless, our design demonstrates a 7.96×
improvement in average latency while maintaining a comparable
ATP. It should be emphasized that [13] supports only special primes,
which inherently offer benefits in resource utilization compared to
general NTT primes. Furthermore, the fixed prime modulus in their
design restricts its applicability in operations involving multiple
prime moduli, a critical aspect of FHE applications. In contrast, the
proposed design introduces runtime configurability for both the
prime modulus and the twiddle factors, significantly enhancing
its practicality for diverse FHE scenarios. For more generic im-
plementations, our solution achieves 3.65× and 45.5× reductions
in average latency for log2 𝑞 = 32 and log2 𝑞 = 64, respectively,
compared to [4] and [28]. Additionally, our design surpasses these
alternative designs in terms of ATP, as corroborated by the broader
performance analysis.

6 Conclusion
In this paper, we presented a modified four-step NTT algorithm that
directly operates in the negacyclic ring R𝑞,𝑛 . Then, we proposed an
FPGA-based hardware accelerator that implements the seven-step
NTT algorithm, which is a direct extension of the modified four-
step NTT algorithm. Our solution supports a wide-range of 𝑞 and 𝑛
values typically employed in practical FHE applications. Our imple-
mentation prioritizes high throughput, low BRAM utilization, and
scalability for diverse FHE applications. This architecture has been
implemented on the Alveo U280 FPGA and VC709 FPGA, achieving
up to two orders of magnitude speed-up compared to the existing
literature. Possible directions for future research would be to focus
on optimizing resource efficiency by applying different dimensional
decompositions of the ring dimension 𝑛 and integrating modular
reduction for special primes.

Acknowledgments
This work was supported in part by the European Union’s Horizon
Europe Research and Innovation Program under Grant 101079319
(Emre Koçer, Tolun Tosun, Ersin Alaybeyoglu and Erkay Savas) and
in part by The Scientific and Technological Research Council of
Turkey (TUBITAK) under Grant 122E222 (Selim Kirbiyik).

References
[1] Can Ayduman, Emre Koçer, Selim Kırbıyık, Ahmet Can Mert, and Erkay Savaş.

2023. Efficient Design-Time Flexible Hardware Architecture for Accelerating
Homomorphic Encryption. In 2023 IFIP/IEEE VLSI-SoC.

[2] D. H. Bailey. 1989. FFTs in external of hierarchical memory. In 1989 ACM/IEEE
Conference on Supercomputing (Supercomputing ’89). ACM.

[3] Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus Switch-
ing from Classical GapSVP. 868–886. https://doi.org/10.1007/978-3-642-32009-
5_50

[4] Xiaojie Chen, Weicong Lu, Tao Su, and Dihu Chen. 2024. SHP-FsNTT: A Scalable
and High-Performance NTT Accelerator Based on the Four-step Algorithm. In
2024 IEEE International Symposium on Circuits and Systems (ISCAS). 1–5.

[5] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2016. Homomor-
phic Encryption for Arithmetic of Approximate Numbers. Cryptology ePrint
Archive, Report 2016/421. https://eprint.iacr.org/2016/421.

[6] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.
TFHE: Fast Fully Homomorphic Encryption Over the Torus. 33, 1 (Jan. 2020),
34–91. https://doi.org/10.1007/s00145-019-09319-x

[7] James W Cooley and John W Tukey. 1965. An algorithm for the machine cal-
culation of complex Fourier series. Mathematics of computation 19, 90 (1965),
297–301.

[8] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-
momorphic Encryption. Cryptology ePrint Archive, Report 2012/144. https:
//eprint.iacr.org/2012/144.

[9] Robin Geelen, Michiel Van Beirendonck, Hilder VL Pereira, Brian Huffman, Tynan
McAuley, Ben Selfridge, Daniel Wagner, Georgios Dimou, Ingrid Verbauwhede,
Frederik Vercauteren, et al. 2023. BASALISC: programmable hardware accelerator
for BGV fully homomorphic encryption. IACR TCHES (2023).

[10] W Morven Gentleman and Gordon Sande. 1966. Fast fourier transforms: for fun
and profit. In Proceedings of the November 7-10, 1966, fall joint computer conference.
563–578.

[11] Zhenyu Guan, Yongqing Zhu, Yicheng Huang, Luchang Lei, Xueyan Wang,
Hongyang Jia, Yi Chen, Bo Zhang, Jin Dong, and Song Bian. 2024. ESC-NTT: An
Elastic, Seamless and Compact Architecture for Multi-Parameter NTT Accelera-
tion. In DATE 2024.

[12] Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy. 2023. Proteus: A Pipelined
NTT Architecture Generator. (2023). https://eprint.iacr.org/2023/267

[13] Stefanus Kurniawan, Phap Duong-Ngoc, and Hanho Lee. 2023. Configurable
memory-based NTT architecture for homomorphic encryption. IEEE Transactions
on Circuits and Systems II: Express Briefs (2023).

[14] Changxu Liu, Danqing Tang, Jie Song, Hao Zhou, Shoumeng Yan, and Fan Yang.
2024. HMNTT: AHighly EfficientMDC-NTTArchitecture for Privacy-preserving
Applications. In Great Lakes Symposium on VLSI 2024. ACM.

[15] Si-Huang Liu, Chia-Yi Kuo, Yan-Nan Mo, and Tao Su. 2023. An Area-Efficient,
Conflict-Free, and Configurable Architecture for Accelerating NTT/INTT. IEEE
Transactions on VLSI Systems (2023).

[16] Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. 2019. Design and Implemen-
tation of a Fast and Scalable NTT-Based Polynomial Multiplier Architecture. In
2019 22nd Euromicro Conference on DSD.

[17] Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. 2020. Design and Implementa-
tion of Encryption/Decryption Architectures for BFV Homomorphic Encryption
Scheme. IEEE Transactions on VLSI Systems (2020).

[18] Peter L Montgomery. 1985. Modular multiplication without trial division. Math-
ematics of computation 44, 170 (1985), 519–521.

[19] Trong-Hung Nguyen, Binh Kieu-Do-Nguyen, Cong-Kha Pham, and Trong-Thuc
Hoang. 2024. High-speed NTT Accelerator for CRYSTAL-Kyber and CRYSTAL-
Dilithium. IEEE Access (2024).

[20] H. Nussbaumer. 1980. Fast polynomial transform algorithms for digital convolu-
tion. IEEE Transactions on Acoustics, Speech, and Signal Processing (1980).

[21] Thomas Pöppelmann and Tim Güneysu. 2012. Towards efficient arithmetic for
lattice-based cryptography on reconfigurable hardware. In Progress in Cryptology–
LATINCRYPT 2012:. Springer, 139–158.

[22] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. 2015. High-performance
ideal lattice-based cryptography on 8-bit ATxmega microcontrollers. In LATIN-
CRYPT 2015. Springer.

[23] Debapriya Basu Roy, Debdeep Mukhopadhyay, Masami Izumi, and Junko Taka-
hashi. 2014. Tile Before Multiplication: An Efficient Strategy to Optimize DSP
Multiplier for Accelerating Prime Field ECC for NIST Curves. In DAC 2014. ACM.

[24] Sujoy Sinha Roy, Kimmo Järvinen, Jo Vliegen, Frederik Vercauteren, and Ingrid
Verbauwhede. 2018. HEPCloud: An FPGA-based multicore processor for FV
somewhat homomorphic function evaluation. IEEE Trans. Comput. (2018).

[25] Sujoy Sinha Roy, Furkan Turan, Kimmo Jarvinen, Frederik Vercauteren, and
Ingrid Verbauwhede. 2019. FPGA-based high-performance parallel architecture
for homomorphic computing on encrypted data. In 2019 IEEE HPCA. IEEE.

[26] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen,
and Ingrid Verbauwhede. 2014. Compact ring-LWE cryptoprocessor. In Crypto-
graphic Hardware and Embedded Systems–CHES 2014. Springer, 371–391.

[27] Yang Su, Bailong Yang, Jianfei Wang, Fahong Zhang, and Chen Yang. 2023.
Reconfigurable multi-core array architecture and mapping method for RNS-
based homomophic encryption. AEU-International Journal of Electronics and
Communications (2023).

[28] Cheng Wang and Mingyu Gao. 2023. SAM: A Scalable Accelerator for Number
Theoretic Transform UsingMulti-Dimensional Decomposition. In 2023 IEEE/ACM
ICCAD.

[29] Yang Yang, Sanmukh R. Kuppannagari, Rajgopal Kannan, and Viktor K. Prasanna.
2022. NTTGen: a framework for generating low latency NTT implementations
on FPGA. In 19th ACM International Conference on Computing Frontiers. ACM.

[30] Zewen Ye, Ray C. C. Cheung, and Kejie Huang. 2022. PipeNTT: A Pipelined
Number Theoretic Transform Architecture. IEEE Transactions on Circuits and
Systems II: Express Briefs (2022).

https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://eprint.iacr.org/2016/421
https://doi.org/10.1007/s00145-019-09319-x
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2023/267

	Abstract
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Number Theoretic Transform (NTT)
	2.3 Memory types and hierarchical memory in FPGA

	3 Negacyclic Four-Step NTT
	4 Proposed IO-optimized seven-step NTT Architecture
	4.1 Design Principles
	4.2 Modular Multiplication
	4.3 On-the-fly Twiddle Generation
	4.4 Architecture Overview

	5 Evaluation
	5.1 Implementation
	5.2 Results and Comparison

	6 Conclusion
	Acknowledgments
	References

