
A Fault Analysis on SNOVA

Gustavo Banegas1 and Ricardo Villanueva-Polanco2

1Inria and Laboratoire d’Informatique de l’Ecole polytechnique,
Institut Polytechnique de Paris, Palaiseau, France

gustavo@cryptme.in
2Technology Innovation Institute, UAE

ricardo.polanco@tii.ae

Abstract. SNOVA, a post-quantum signature scheme with compact key
sizes, is a second-round NIST candidate. This paper conducts a fault
analysis of SNOVA, targeting permanent and transient faults during
signature generation. We propose fault injection strategies that exploit
SNOVA’s structure, enabling key recovery with as few as 22 to 68 faulty
signatures, depending on security levels. A novel fault-assisted reconcil-
iation attack is introduced that effectively extracts the secret key space
by solving a quadratic polynomial system. Simulations reveal that tran-
sient or permanent faults in signature generation can severely compro-
mise security. We also suggest a lightweight countermeasure to mitigate
fault attacks with minimal overhead. Our findings emphasize the need
for fault-resistant mechanisms in post-quantum schemes like SNOVA.

1 Introduction

The National Institute of Standards and Technology (NIST) initiated an addi-
tional call for post-quantum digital signature proposals to introduce variability
in the mathematical foundations of digital signatures. In response, NIST received
40 submissions based on diverse mathematical problems. Among these, 10 sub-
missions were based on multivariate polynomial equations over finite fields, a
branch of post-quantum cryptography known as MQ-based cryptography.

MQ-based cryptography relies on the difficulty of solving systems of multi-
variate quadratic equations over finite fields. The fundamental problem can be
defined as follows: given a system of m quadratic equations in n variables over
a finite field Fq, find a solution for x where

x = (x1, . . . , xn) ∈ Fn
q such that


Q1(x) = 0
...

Qm(x) = 0

Author list in alphabetical order; see https://www.ams.org/profession/leaders/

culture/CultureStatement04.pdf. Date of this document: 2025-02-13.

https://orcid.org/0000-0001-5502-2977
https://orcid.org/0000-0002-8682-4830
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

where each Qi is a quadratic polynomial of the form: Qi(x1, x2, . . . , xn) =∑
1≤j≤k≤n aijkxjxk +

∑
1≤j≤n bijxj + ci, with coefficients aijk, bij , ci ∈ Fq.

The security of MQ-based cryptography is based on the computational hard-
ness of the Multivariate Quadratic problem. Specifically, for large values of n,
solving a random system of such equations is known to be NP-hard, making
it computationally infeasible for an attacker to solve within a reasonable time
frame, even with powerful computational resources.

In addition to the inherent mathematical complexity, implementing robust
protections is essential for securing MQ-based cryptographic schemes against
both side-channel and fault attacks. Passive side-channel attacks exploit various
forms of leakage—such as timing variations, power consumption, or electromag-
netic emissions—to gain insights into the cryptographic process. These attacks
take advantage of unintended information leaks that arise during the physical
implementation of a cryptographic algorithm, rather than exploiting weaknesses
in the algorithm itself.

Fault attacks involve deliberately introducing errors during cryptographic
execution, such as memory corruption or bit flips, to extract sensitive informa-
tion by analyzing erroneous outputs. These attacks exploit vulnerabilities in the
physical implementation of cryptographic systems, requiring specific counter-
measures to ensure resilience.

Techniques such as redundancy checks, error detection, and fault-tolerant
designs are commonly employed to mitigate fault attacks. These measures help
detect and correct errors induced by fault injection, ensuring the integrity of
cryptographic operations.

On the other hand, passive side-channel attacks are countered using meth-
ods such as constant-time algorithms, masking techniques, and noise genera-
tion. These safeguards prevent attackers from exploiting unintended information
leaks, such as power consumption or electromagnetic radiation. Together, these
countermeasures enhance the robustness of cryptographic implementations, en-
suring that the theoretical security of MQ-based schemes translates into practical
resilience against active and passive side-channel attacks in the real world.

1.1 MQ signature schemes

The C∗ scheme, introduced in 1988 [19], was one of the first attempts to create
a digital signature scheme from the MQ problem. However, it was broken by
Patarin in 1995 [22]. Since then, significant progress has been made in multi-
variate polynomial-based signature schemes, with the Unbalanced Oil-Vinegar
(UOV) scheme emerging as a notable and secure example [23].

We can briefly define UOV as: let v be the number of vinegar variables:
v1, v2, . . . , vv, and o be the number of oil variables: o1, o2, . . . , oo.

The private key consists of a secret linear map T : Fn
q → Fn

q and a map
F : Fn

q → Fo
q, known as the central map, that consists of o UOV quadratic

polynomials in n = v + o variables.
The public map is defined as P = F ◦T , and therefore consists of o quadratic

polynomials Pi in n variables over a finite field Fq.

2

In the UOV scheme signature process, the message M is first processed to
generate a digest using a cryptographic hash function. This digest is then com-
bined with a random salt, the combined value is used to derive a target vector
Y = (y1, . . . , yo). Next, random values are selected for the vinegar variables
v1, . . . , vv, where v is the number of vinegar variables. These vinegar variables
are substituted into the quadratic polynomials of the central map F , which is
part of the private key. Substituting the vinegar variables reduces the system to
a set of linear equations in the oil variables o1, . . . , oo.

The resulting linear system is then solved to determine the values of the oil
variables. This step typically involves Gaussian elimination or other linear alge-
bra techniques. Once the oil variables are computed, the signature is constructed
by combining the values of both the vinegar and oil variables into a single vector
X = (v1, . . . , vv, o1, . . . , oo). This vector X is then transformed using the pri-
vate linear transformation T to produce the final signature S = T −1(X). The
signature, along with the salt, is output as the signed message.

To verify the signature, the verifier uses the public key, which consists of the
public map P. The verifier substitutes the signature S into the public polyno-
mials and checks if the result matches the target vector Y . If the values match,
the signature is valid; otherwise, it is rejected.

Recently, several UOV-like schemes have been proposed, such as MAYO [5,7]
and SNOVA [18, 28]. They offer benefits such as small signatures, fast verifica-
tion, and reasonable public key sizes.

1.2 Side-channel attacks

Fault attacks are classified as active attacks because they actively manipulate
the data or execution environment of a cryptographic system. Techniques such as
electromagnetic pulses, lasers, clock glitches, voltage glitches, and DRAM row
hammering vary in precision and complexity [1, 15]. For example, laser-based
methods are highly precise but costly, while DRAM row hammering requires ex-
tensive profiling. These attacks often involve repeated attempts to induce specific
faults, enabling the extraction of cryptographic information.

In contrast, passive side-channel attacks do not interfere with the system
but instead observe unintended information leaks, such as power consumption,
electromagnetic radiation, or timing variations. A recent study by [2] provides a
comprehensive overview of passive and active attacks on multivariate quadratic
MQ-based cryptographic systems.

Table 1 compares previous fault injection attacks on multivariate signature
schemes, highlighting key features such as the number of signatures and faults
required, the evaluation method, and any assumptions made.

Recently, [14] presented an attack on a MAYO implementation that success-
fully recovered the private key. This attack targeted a single execution of MAYO.
However, the fault was not in MAYO itself, but rather in the C implementation
of Keccak, which is responsible for generating the Vinegar and Oil variables.
The paper exploits a vulnerability in the pseudorandom function, using a fault
in this component to reveal information leading to private key recovery.

3

Table 1: Comparison of Previous Fault Attacks on Multivariate Signature
Schemes.

Algorithm #Signatures #Faults Evaluation Assumptions

Multiple [12] Multiple Multiple Theoretical None

UOV/Rainbow [16] Multiple Multiple Theoretical None

UOV [26] 44–103 Multiple Theoretical None

LUOV [20] Multiple Multiple Practical Key in F2

Rainbow [3] Multiple 1 Simulation Exact memory reuse

UOV [11] Multiple 2–40 Simulation Enumeration 241–289

MAYO [25] 2 1 Theoretical None

MAYO [4] 1 1 Practical Zero-initialization

MAYO [14] 1 1 Practical, Simulation None

SNOVA
permanent fault strategy 22–68 1 Theoretical, Simulation None

SNOVA
Fault-assisted reconciliation attack 1 Multiple Practical, Simulation None

In this work, we explore a similar attack. However, instead of targeting Kec-
cak, we focus directly on the vinegar variables by inducing faults, that is, fixing
specific bit values, which allows us to recover the private key. Despite this sim-
ilarity, our approach differs in the algorithm used for key recovery. Moreover,
we introduce an SNOVA fault-assisted reconciliation attack that requires only a
single signature. This approach is different from previous work.

1.3 Our contributions

In this paper, we investigate fault injection attacks on SNOVA, showing that
inducing permanent or transient faults during signature generation can reveal
partial private key information. We analyze scenarios where an attacker recovers
rows of the private matrix T by fixing F16 elements or bits in vinegar variables,
demonstrating that enough faulty signatures can compromise the private key.
Additionally, we explore a reconciliation attack where transient faults in vinegar
variable generation allow recovery of the secret space. Simulations support our
findings.

Our detailed examination highlights the critical need for fault attack coun-
termeasures to implement SNOVA. Therefore, we also provide a countermeasure
and its corresponding analysis to counteract our fault attacks. Finally, our find-
ings underscore the importance of incorporating comprehensive security strate-
gies to protect against this type of attack, ensuring the integrity and reliability
of cryptographic systems.

Paper organization The paper is structured as follows: Section 2 outlines the
SNOVA signature scheme. Section 3 details fault attacks on SNOVA, including
attack scenarios and key recovery algorithms. Section Section 4 validates these

4

attacks. Section 5 proposes countermeasures against such attacks. Section 6 con-
cludes with implications and future directions.

2 A simple non-commutative UOV scheme

SNOVA is a recently proposed UOV-like signature scheme, as outlined in [28],
and has been submitted to the NIST competition for Post-Quantum Digital
Signature Schemes.

Let v, o, l ∈ N with v > o and Fq a finite field with q being a power of a
prime number. Set n = v + o and m = o. By [m] we denote the set {1, . . . ,m}
and by R we denote the ring of l × l matrices over the finite field Fq. Also, by
U = (U1, . . . , Un)

t ∈ Rn we denote a column vector with n entries from R. Let
Q ∈ R, we denote by ΛQ, the diagonal matrix of nl × nl, with Q blocks along
the diagonal.

The subring Fq[S] of R is defined as Fq[S] = {a0 + a1S + . . . + al−1S
l−1|a0,

a1, . . . , al−1 ∈ Fq}, where S is a l × l symmetric matrix with irreducible char-
acteristic polynomial. Note that the elements in Fq[S] are symmetric and all
commute. Additionally, the non-zero elements in Fq[S] are invertible. In partic-
ular, Fq[S] is a finite field with Fq[S] ∼= Fql .

The central map is defined as F = [F1,F2, . . . ,Fm] : Rn → Rm, where Fi is

given by Fk(X1, X2, . . . , Xn) =
∑l2

α=1 Aα ·
(∑

(i,j)∈Ω Xt
i · (Qα1Fk,ijQα2)Xj

)
·Bα

where Ω = {(i, j) : 1 ≤ i, j ≤ n} \ {(i, j) : m + 1 ≤ i, j ≤ n}, Fk,ij
$←−

R, Aα, Bα
$←− R (invertibles), and Qα1, Qα2

$←− Fq[S] (invertibles). Set Fk =
[Fk,ij](i,j)∈Ω for each k ∈ [m].

The invertible linear map is defined as T : Rn → Rn corresponding to the
matrix

T =

[
I11 T 12

O I22

]
,

where T 12 is a v × o matrix consisting of nonzero entries T 12
i,j chosen randomly

from Fq[S], and O is a all-zero matrix. Note that T−1 = T , if Fq is of character-
istic 2. In addition, I11 and I22 are identity matrices over R of size v × v and
o× o respectively.

Public map is defined as P := F ◦ T = [P1 = F1 ◦ T , . . . ,Pm = Fm ◦ T]. Set
U = (U1, . . . , Un)

t ∈ Rn, then

Pk(U) =

l2∑
α=1

Aα(TU)tΛQα1FkΛQα2(TU) ·Bα (1)

for any k ∈ [m]. Moreover, Pk(U) can be written as Pk(U) = Fk(T (U)) =∑l2

α=1

∑n
i=1

∑n
j=1 Aα·U t

i (Qα1Pk,ijQα2)Uj ·Bα, where Pk,ij =
∑

(s,t)∈Ω TisFk,stTtj ,

5

by the commutativity of Fq[S] and that the elements in Fq[S] are symmetric.
Set Pk = [Pk,ij](i,j)∈[n]×[n] for each k ∈ [m].

The SNOVA signature scheme [28] consists of a triple of algorithms (KeyGen,
Sign, Verify). Moreover, a SNOVA parameter set is given by values for v, o, l, λ.

The KeyGen function runs a probabilistic algorithm, and outputs a SNOVA
key pair (sk, pk).

The public key pk is a representation of P. A full public key consists of

the list of matrices
{
Pk =

[
P 11
k P 12

k

P 21
k P 22

k

]
: k ∈ [m]

}
and the list of matrices{

Aα, Bα, Qα1, Qα2 : α ∈ [l2]
}
. However, it is enough to store a tuple of the form

(Spublic, {P 22
k }k∈[m]), where Spublic is public seed, which is used to regener-

ate P 11
k , P 12

k and P 21
k for k ∈ [m], and Aα, Bα, Qα1 and Qα2 for α ∈ {1, . . . , l2}.

Therefore, the public key size is m · m2 · l2 field elements plus the size of the
public seed Spublic.

The private key sk is a representation of (F , T). A full private key consists of
a matrix T 12 and the list of matrices

{
Fk : k ∈ [m]

}
. In practice, a private seed

Sprivate is used to generate T 12, and the matrices {Fk}k∈[m] are computed by
exploiting the relation between Fk, Pk along with T 12.

Table 2 summarizes current SNOVA parameters, and public and private keys
sizes, as well as, signature sizes for each security level defined by λ as it is usually
the security parameter.

Table 2: Parameters for SNOVA [18].

Sec. Level (v, o, q, l, λ) Public key (B) Signature (B) Private key (B)

I
(37, 17, 16, 2, 128) 9826(+16) 108(+16) 60008(+48)
(25, 8, 16, 3, 128) 2304(+16) 148.5(+16) 37962(+48)
(24, 5, 16, 4, 128) 1000(+16) 232(+16) 34112(+48)

III
(56, 25, 16, 2, 192) 31250(+16) 162(+16) 202132(+48)
(49, 11, 16, 3, 192) 5990(+16) 270(+16) 174798(+48)
(37, 8, 16, 4, 192) 4096(+16) 360(+16) 128384(+48)

V
(75, 33, 16, 2, 256) 71874(+16) 216(+16) 515360(+48)
(66, 15, 16, 3, 256) 15188(+16) 364.5(+16) 432297(+48)
(60, 10, 16, 4, 256) 8000(+16) 560(+16) 389312(+48)

The Sign function runs a UOV-like signing procedure as shown by Algo-
rithm 1. It digitally signs a message M under the private key sk. It first samples
a salt from {0, 1}2λ, then sets Y ← H1(Spublic||H0(M)||salt) where Y ∈ Rm.
The algorithm then chooses random values V1, . . . , Vv ∈ R as the vinegar vari-
ables. Then, it attempts to find the values (Vv+1, . . . , Vn) by solving the equation
F(V1, . . . , Vv, Vv+1, . . . , Vn) = Y . If no solution to the equation is found, the al-
gorithm will choose random values V ′1 , . . . , V

′
v ∈ R and repeat the procedure

until it finds a solution to the equation. Let X = (V1, . . . , Vv, Vv+1, . . . , Vn)
t be

6

the solution to the equation. This algorithm then computes the signature as
S = T −1(X) and outputs (S, salt).

The Verify function runs a deterministic algorithm. It simply verifies if a
signature (S, salt) for M is valid under the public key pk. If H1(Spublic||H0(M)
||salt) = P(S), then the signature is accepted, otherwise it is rejected. Further
details about this function are provided in Appendix A.

2.1 Reconciliation attack.

Ikematsu, and Akiyama [13], Li and Ding [17], and Nakamura, Tani, and Fu-
rue [21] analyzed the security of SNOVA against key-recovery attacks, unveiling
all known key-recovery attacks for an instance of SNOVA can be seen as key-
recovery attacks to instances of an equivalent UOV signature scheme. Particu-
larly, [13] and [17] concluded that all known key-recovery attacks for SNOVA
with parameters (v, o, l, q) can be seen as attacks to a UOV signature scheme
with lo2 equations and l(v + o) variables over Fq. In particular, for the recon-
ciliation attack, the attacker must find a specific solution u0 ∈ Fln

q from among
many solutions of a quadratic polynomial system of the form

ut
0(ΛSiPkΛSj)u0 = 0 ∈ Fq, (2)

for k ∈ [m], i, j ∈ {0, 1, . . . , l − 1}.
Once u0 is found, any u in the linearly independent set {ΛSju0 : 0 ≤ j ≤ l−1}

will also satisfy Eq. (2). Additionally, the remaining vectors in the secret space
O can be determined by leveraging the fact that for any u,v ∈ O, it holds

vt(ΛSiPkΛSj)u = 0 ∈ Fq for k ∈ [m], 0 ≤ i, j ≤ l − 1. (3)

Finally, for any U ∈ K, it holds Pk(U) = 0 for all k ∈ [m], where

K := O ⊗ Fl
q = {u⊗ et ∈ Rn : u ∈ O, e ∈ Fl

q}. (4)

Thus, the complexity of the reconciliation attack is dominated by finding
a solution to the quadratic system in Eq. (2). A recent paper [9] introduces
a new algorithm that exploits the stability of the quadratic system in Eq. (2)
under the action of a commutative group of matrices, reducing the complexity
of solving SNOVA systems, over generic ones. In particular, they show how
their new algorithm decreases the complexity of solving such a system. On the
other hand, we here explore other directions by introducing a new fault-assisted
reconciliation attack in Section 3.6. This attack leverages induced transient faults
to recover the secret key space by solving the system as mentioned earlier.

3 Fault analysis on SNOVA

3.1 Adversarial Model

We adopt an adversarial model similar to [16], focused on UOV and RAINBOW.
Here, the attacker targets the signature generation process by inducing transient

7

or permanent faults in Algorithm 1, manipulating values during execution. The
attacker may not know the exact number or content of the manipulated values.
By invoking the faulty Algorithm 1 multiple times to collect message-signature
pairs, the attacker aims to analyze these pairs to extract partial private key
information.

3.2 Attack strategy by fixing field elements of the central map

1. The attacker causes a single permanent fault, which affects line 4 of Algo-
rithm 1, such that some Fq elements in Fi ∈ Fln×ln

q , for i ∈ I ⊆ [m] and
|I| ≥ 1, are fixed and unknown. In particular, for Fi, there is a fixed non-
empty subset Ji ⊆ [nl] × [nl], such that F̄i,(r0,r1) ∈ Fq, (r0, r1) ∈ Ji is fixed
and unknown. We remark the line 4 in practice is an expansion of a private
seed along with other operations to compute the list of matrices {Fk}k∈[m].

2. For each ω ∈ [Nmsg], the attacker calls Algorithm 1 for the randomly chosen
message M(ω) ∈ Rm and receives the signatures (S(ω), salt(ω)).

Let F̄ be the faulty central map and P̄ = F̄ ◦ T be the faulty public map.

Recall that the SNOVA public map is defined as Pk(S
(ω)) =

∑l2

α=1 Aα(TS
(ω))t

ΛQα1
FkΛQα2

(TS(ω)) ·Bα for any k ∈ [m]. Therefore, it holds

P̄k(S
(ω))− Pk(S

(ω)) =

l2∑
α=1

Aα(V
ω)tΛQα1

(F̄k − Fk)ΛQα2
Vω ·Bα (5)

where TS(ω) = V(ω) with V(ω) = (V
(ω)
1 , . . . , V

(ω)
n)t, by the line 23 of Algorithm 1.

We remark the attacker can compute the left hand of Eq. (5), since P̄k(S
(ω)) =

H1(Spublic||H0(M
(ω))||salt(ω))k and P is public.

Moreover, for any i ∈ [m] \ I, both sides of Eq. (5) vanish. However, for any
i ∈ I, the left hand of Eq. (5) is expected to be a non-zero element in R, and
F̃i = F̄i−Fi ∈ Fln×ln

q , on the right side of Eq. (5), is expected to become a sparse

matrix, since the entries F̃i,st ∈ Fq with (s, t) ∈ Ji are the only ones expected to
be non-zero.

However, we note that these observations may not be easily exploitable for the
attacker to gain information on T , since the attacker does not know I, F̃i, Ji, V

(ω)

and P̄i. Therefore, our next scenario focuses on inducing a permanent fault
affecting the line 13 of Algorithm 1 to further exploit the relation TS(ω) = V(ω).

3.3 Attack strategy by fixing field elements of vinegar variables

1. The attacker introduces a single permanent fault, which affects line 13 of
Algorithm 1, causing certain Fq elements in Vi ∈ R, for i ∈ I ⊆ [v] with
|I| ≥ 1, to be fixed and unknown. Specifically, for each variable Vi, there is a
fixed non-empty subset Ji ⊆ [l]× [l], such that V̄i,(r0,r1) ∈ Fq for (r0, r1) ∈ Ji
is fixed and unknown.

8

Algorithm 1: Signs message M
Input: v, o, l, λ, sk, spublic, M
Output: (S, salt)

1 Function sign(v, o, l, λ, sk, spublic, M):
2 m← o;
3 n← o + v;

4 ({F 11
k }k∈[m], {F 12

k }k∈[m], {F 21
k }k∈[m], T

12)← sk;

5 {Aα}α∈[l2], {Bα}α∈[l2], {Qα1}α∈[l2], {Qα2}α∈[l2] ← PRG(spublic);

6 digest← H0(M);

7 salt
R←− {0, 1}λ;

8 is done← False;
9 cont← 0;

10 [Y1, Y2, . . . , Ym]← H1(spublic||digest||salt);
11

Fk ←
l2∑

α=1

Aα

 v∑
i=1

v∑
j=1

X
t
i (Qα1F

11
k,ijQα2)Xj

 · Bα

+

l2∑
α=1

Aα

 v∑
i=1

m∑
j=1

X
t
i (Qα1F

12
k,ijQα2)Xj

 · Bα

+

l2∑
α=1

Aα

 m∑
j=1

v∑
i=1

X
t
j(Qα1F

21
k,jiQα2)Xi

 · Bα.

12 while not is done do
13 [V1, V2, . . . , Vv]← PRG(Sprivate||digest||salt||cont);
14 Compute Fk,V V ←

∑l2

α=1 Aα

(∑v
i=1

∑v
j=1 V

t
i(Qα1F

11
k,ijQα2)Vj

)
· Bα for all

k ∈ [m];
15 Express

Yk − Fk,V V =

l2∑
α=1

Aα

 v∑
i=1

m∑
j=1

V
t
i(Qα1F

12
k,ijQα2)Xj

 · Bα

+

l2∑
α=1

Aα

 m∑
j=1

v∑
i=1

X
t
j(Qα1F

21
k,jiQα2)Vi

 · Bα.

for all k ∈ [m] as an equation system on the oil variables
−→
X1,
−→
X2, . . . ,

−−→
Xm;

16

M1,1
−→
X1 + M1,2

−→
X1 + . . . + M1,m

−−→
Xm =

−→
Y1 −

−−−−→
F1,V V

M2,1
−→
X1 + M2,2

−→
X2 + . . . + M2,m

−−→
Xm =

−→
Y2 −

−−−−→
F2,V V

.

.

.

Mm,1
−→
X1 + Mm,2

−→
X2 + . . . + Mm,m

−−→
Xm =

−→
Ym −

−−−−→
Fm,V V

17 Represent this equation system as an (ml2)× (ml2 + 1) matrix A over F16;
18 LO, output← Gauss(A);
19 if output then
20 [Vv+1, Vv+2, . . . , Vn]← LO;
21 V← [V1, V2, . . . , Vv, Vv+1, . . . , Vn];

22 T ←
[
I11 T 12

O I22

]
;

23 S← T · Vt;
24 is done← True;

25 end
26 else
27 cont← cont + 1;
28 end

29 end
30 return (S, salt);

9

2. For each ω ∈ [Nmsg], the attacker calls Algorithm 1 for the randomly chosen
message M(ω) ∈ Rm and receives the signature (S(ω), salt(ω)).

3. The attacker then calls Algorithm 2 with parameters v, o, l, [S(1), . . . , S(Nmsg)]
to obtain dic, a dictionary-like data structure indexed by [v] × [l]2. When
Nmsg > lo + 1, Algorithm 2 will produce dic such that dic[(i, r0, r1)] =
[T 12

i1 , . . . , T
12
io] for i ∈ I and (r0, r1) ∈ Ji, and dic[(i, r0, r1)] = None other-

wise.

Algorithm 2: Partially recovers T 12 from fixed field elements.

1 Function recover F16(v, o, l, [S(1), . . . , S(Nmsg)]):
2 S ← getS(l);
3 dic← {};
4 for (i, r0, r1) ∈ [v]× [l]× [l] do

5 A← F(Nmsg−1)×ol

16 ;

6 Y ← F(Nmsg−1)×1

16 ;
7 for ω ← 2 to Nmsg do

8 S
(ω,1)
i ← S

(1)
i − S

(ω)
i ;

9 for (j, j1) ∈ [o]× [l] do

10 S
(j1,k,1)
v+j ← Sj1−1(S

(ω)
v+j − S

(1)
v+j);

11 A(ω−1),j·l+j1
← S

(j1,k,1)

v+j,(r0,r1)
;

12 end

13 Y(ω−1),0 ← S
(ω,1)

i,(r0,r1)
;

14 end
15 (X, output)← Gauss(A,Y);
16 if output then
17 [T 12

i1 , . . . , T 12
io]← get elements in FqS(X, l);

18 dic[(i, r0, r1)]← [T 12
i1 , . . . , T 12

io];

19 end
20 else
21 dic[(i, r0, r1)]← None;
22 end

23 end
24 return dic;

Why is Step 3 of the attack strategy expected to work correctly? As seen in
Section 2, the invertible linear map T for the SNOVA scheme is given by the
matrix

T =

[
I11 T 12

O I22

]
,

where T 12 is a v × o matrix with nonzero entries T 12
ij chosen randomly from

Fq[S]. From the line 23 of Algorithm 1, it holds TS(ω) = V(ω), that is,

1 0 . . . 0 T 12
11 . . . T 12

1o
...
...
. . .

...
...

. . .
...

0 0 . . . 1 T 12
v1 . . . T 12

vo
...
...
. . .

...
...

. . .
...

0 0 0 . . . 1





S
(ω)
1
...

S
(ω)
v

...

S
(ω)
n


=



V
(ω)
1
...

V
(ω)
v

...

V
(ω)
n


.

Since T 12
ij ∈ Fq[S], it holds T

12
ij =

∑l
j1=1 t

12
ij,j1

Sj1−1, where t12ij,j1 ∈ Fq, and

10

S
(ω)
i +

o∑
j=1

T 12
ij S

(ω)
v+j = S

(ω)
i +

o∑
j=1

l∑
j1=1

t12ij,j1S
j1−1S

(ω)
v+j = V

(ω)
i , i ∈ [v]

S
(ω)
i = V

(ω)
i , v + 1 ≤ i ≤ n

For 2 ≤ ω ≤ Nmsg, we can write

S
(ω)
i − S

(1)
i +

o∑
j=1

l∑
j1=1

t12ij,j1S
j1−1

(
S
(ω)
v+j − S

(1)
v+j

)
= V

(ω)
i − V

(1)
i , i ∈ [v]

S
(ω)
i − S

(1)
i = V

(ω)
i − V

(1)
i , v + 1 ≤ i ≤ n

Let us fix 2 ≤ ω ≤ Nmsg and i ∈ [v]. Also, let us set S
(ω,1)
i = S

(ω)
i − S

(1)
i ,

S
(j1,ω,1)
v+j = Sj1−1(S

(ω)
v+j − S

(1)
v+j) and V

(ω,1)
i = V

(ω)
i − V

(1)
i . Consider

S
(ω,1)
i +

o∑
j=1

l∑
j1=1

t12ij,j1S
(j1,ω,1)
v+j = V

(ω,1)
i . (6)

Since Eq. (6) is defined over R, it is equivalent to l2 equations on lo unknowns
over Fq. Therefore,

S
(ω,1)
i,(r0,r1)

+

o∑
j=1

l∑
j1=1

t12ij,j1S
(j1,ω,1)
v+j,(r0,r1)

= V
(ω,1)
i,(r0,r1)

, for r0, r1 ∈ [l]. (7)

The attacker can compute S(ω,1) and S(j1,ω,1) on the left hand of Eq. (6).
Additionally, for a fixed i ∈ I and for 2 ≤ ω ≤ Nmsg, a linear system of (Nmsg−
1)|Ji| equations and lo unknowns over Fq can be obtained and is given by

{
S
(ω,1)
i,(r0,r1)

+

o∑
j=1

l∑
j1=1

t12ij,j1S
(j1,ω,1)
v+j,(r0,r1)

= 0, for (r0, r1) ∈ Ji

}
2≤ω≤Nmsg

(8)

Furthermore, if Ji is known by the attacker for such a i, collecting Nmsg > o·l
|Ji|+1

would be enough to guarantee an unique solution to the linear system of Eq. (8)
and recover the i-th row of T 12.

However, if the attacker does not know either I or Ji for i ∈ I, the attacker
may still gain knowledge of I and Ji for i ∈ I, and recover T 12

i,j for i ∈ I, j ∈ [o], by

trying to solve v·l2 linear systems separately, i.e. one for i ∈ [v] and (r0, r1) ∈ [l]2,

{S(ω,1)
i,(r0,r1)

+

o∑
j=1

l∑
j1=1

t12ij,j1S
(j1,ω,1)
v+j,(r0,r1)

= 0}2≤ω≤Nmsg
, (9)

11

where each has Nmsg − 1 equations and lo unknowns. If Nmsg > l · o + 1, then
the linear systems for (r0, r1) ∈ Ji, i ∈ I will have a unique solution, while the
other linear systems are expected to have no solution. Therefore, when Nmsg >
lo+1, Algorithm 2 will output dic such that dic[(i, r0, r1)] = [T 12

i1 , . . . , T
12
io] for

i ∈ I, (r0, r1) ∈ Ji and dic[(i, r0, r1)] = None otherwise.
Furthermore, if the attacker is able to fix at least an entry of each vinegar

variable (i.e. I = [v] and so |Ji| ≥ 1) and collect at least lo + 2 signatures,
Algorithm 2 will recover the entire matrix T 12.

3.4 What if the attacker only can fix some bits of Vi for i ∈ I?

In this section, we assume a variable Vi is represented as a bit-string of length
Nbits · l2, where q = 2Nbits as it is the case for SNOVA. The attack strategy is
as follows.

1. The attacker causes a single permanent fault, which affects the line 13 of
Algorithm 1, such that some bits of Vi ∈ R, with i ∈ I ⊆ [v] and |I| ≥ 1, are
fixed and unknown. In particular, for the variable Vi, there is a fixed non-
empty subset Bi ⊆ [l]× [l]× [Nbits], such that V̄i,(r0,r1,b) ∈ F2, (r0, r1, b) ∈ Bi

is fixed and unknown.
2. For each ω ∈ [Nmsg], the attacker calls Algorithm 1 for the randomly chosen

message M(ω) ∈ Rm and receives the signature (S(ω), salt(ω)).
3. The attacker calls Algorithm 3 with parameters v, o, l, [S(1), . . . , S(Nmsg)] to

get dic, a dictionary-like data structure indexed by [v]× [l]2× [Nbits]. When
Nmsg > Nbits·lo+1, Algorithm 3 will output dic such that dic[(i, r0, r1, b)] =
[T 12

i1 , . . . , T
12
io] for i ∈ I, (r0, r1, b) ∈ Bi and dic[(i, r0, r1, b)] = None other-

wise.

Why is Step 3 of the attack strategy expected to work correctly? Since Fq can be
seen as a vector space of dimension Nbits over F2, we can obtain similar equations
to those of Eq. (8). That is, for i ∈ I, we have

{
S
(ω,1)
i,(r0,r1,b)

+
o∑

j=1

l∑
j1=1

κi,j,j1,ω,1
(r0,r1,b)

= 0, for (r0, r1, b) ∈ Bi

}
2≤ω≤Nmsg

(10)

where κi,j,j1,ω,1
(r0,r1)

= t12ij,j1S
(j1,ω,1)
v+j,(r0,r1)

. Eq. (10) represents a linear system with |Bi| ·
(Nmsg − 1) equations and Nbits · l · o unknowns over F2. However, the attacker
does not know either I or Bi. For the attacker to gain knowledge of I and Bi for
i ∈ I, and recover T 12

i,j for i ∈ I, j ∈ [o], the attacker may try to solve Nbits · v · l2
linear systems separately, i.e. one for i ∈ [v] and (r0, r1, b) ∈ [l]× [l]× [Nbits],

{S(ω,1)
i,(r0,r1,b)

+

o∑
j=1

l∑
j1=1

κi,j,j1,ω,1
(r0,r1,b)

= 0}2≤ω≤Nmsg
, (11)

12

Algorithm 3: Partially Recovers T 12 from Fixed Bits

1 recover F2(v, o, l, [S(1), . . . , S(Nmsg)])
2 S ← getS(l)
3 dic← {}
4 for (i, r0, r1, b) ∈ [v]× [l]× [l]× [4] do

5 A← F(Nmsg−1)×4·ol
2

6 Y ← F(Nmsg−1)×1

2
7 for ω ← 2 to Nmsg do

8 S
(ω,1)
i ← S

(1)
i − S

(ω)
i

9 for (j, j1) ∈ [o]× [l] do

10 S
(j1,k,1)
v+j ← Sj1−1(S

(ω)
v+j − S

(1)
v+j)

11 if b = 1 then

12 A(ω−1),j·l+4·j1+1 ← S
(j1,k,1)

v+j,(r0,r1,1)

13 A(ω−1),j·l+4·j1+2 ← S
(j1,k,1)

v+j,(r0,r1,4)

14 A(ω−1),j·l+4·j1+3 ← S
(j1,k,1)

v+j,(r0,r1,3)

15 A(ω−1),j·l+4·j1+4 ← S
(j1,k,1)

v+j,(r0,r1,2)

16 else if b = 2 then

17 A(ω−1),j·l+4·j1+1 ← S
(j1,k,1)

v+j,(r0,r1,2)

18 A(ω−1),j·l+4·j1+2 ← S
(j1,k,1)

v+j,(r0,r1,4)
+ S

(j1,k,1)

v+j,(r0,r1,1)

19 A(ω−1),j·l+4·j1+3 ← S
(j1,k,1)

v+j,(r0,r1,4)
+ S

(j1,k,1)

v+j,(r0,r1,3)

20 A(ω−1),j·l+4·j1+4 ← S
(j1,k,1)

v+j,(r0,r1,3)
+ S

(j1,k,1)

v+j,(r0,r1,2)

21 else if b = 3 then

22 A(ω−1),j·l+4·j1+1 ← S
(j1,k,1)

v+j,(r0,r1,3)

23 A(ω−1),j·l+4·j1+2 ← S
(j1,k,1)

v+j,(r0,r1,2)

24 A(ω−1),j·l+4·j1+3 ← S
(j1,k,1)

v+j,(r0,r1,1)
+ S

(j1,k,1)

v+j,(r0,r1,4)

25 A(ω−1),j·l+4·j1+4 ← S
(j1,k,1)

v+j,(r0,r1,4)
+ S

(j1,k,1)

v+j,(r0,r1,3)

26 else

27 A(ω−1),j·l+4·j1+1 ← S
(j1,k,1)

v+j,(r0,r1,4)

28 A(ω−1),j·l+4·j1+2 ← S
(j1,k,1)

v+j,(r0,r1,3)

29 A(ω−1),j·l+4·j1+3 ← S
(j1,k,1)

v+j,(r0,r1,2)

30 A(ω−1),j·l+4·j1+4 ← S
(j1,k,1)

v+j,(r0,r1,4)
+ S

(j1,k,1)

v+j,(r0,r1,1)

31 Y(ω−1),0 ← S
(ω,1)

i,(r0,r1,b)

32 (X, output)← Gauss(A,Y)
33 if output then
34 [T 12

i1 , . . . , T 12
io]← get elements in FqS from bits(X, l)

35 dic[(i, r0, r1, b)]← [T 12
i1 , . . . , T 12

io]

36 else
37 dic[(i, r0, r1, b)]← None

38 return dic

13

where each has Nmsg − 1 equations and Nbits · l · o unknowns over F2. If Nmsg >
Nbits · l · o + 1, then the linear systems for (r0, r1, b) ∈ Bi, i ∈ I will have a
unique solution, while the other linear systems are expected to have no solution.
Algorithm 3 details the recovery strategy by the attacker and exploits the fact
that F16

∼= F2[x]
/
⟨x4 + x+ 1⟩ for SNOVA.

Therefore, when Nmsg > Nbits · lo+1, Algorithm 3 will output dic such that
dic[(i, r0, r1, b)] = [T 12

i1 , . . . , T
12
io] for i ∈ I, (r0, r1, b) ∈ Bi and dic[(i, r0, r1, b)] =

None otherwise.
We remark that even if a permanent fault fixes all bits for some i and the

attacker knows it, they can adjust Algorithm 3 to reduce the required signatures
to retrieve the row i of T 12 to Nmsg > o

l + 1. However, even in the best-case
scenario, more than two signatures are needed for recovery.

3.5 How can the attacker recover T 12
i,j for a fixed i ∈ [v] \ I, j ∈ [o]?

For 1 ≤ ω ≤ Nmsg, we have

S
(ω)
i +

o∑
j=1

T 12
ij S

(ω)
v+j = S

(ω)
i +

o∑
j=1

l∑
j1=1

t12ij,j1S
j1−1S

(ω)
v+j = V

(ω)
i , i ∈ [v] \ I,

Note that the previous equations can always be arranged as

Si +

o∑
j=1

l∑
j1=1

t12ij,j1Sj1,j = Vi

with Si =


S
(1)
i
...

S
(Nmsg)
i


t

, Sj1,j =


Sj1−1S

(1)
v+j

...

Sj1−1S
(Nmsg)
v+j


t

, Vi =


V
(1)
i
...

V
(Nmsg)
i


t

∈ R1×Nmsg .

This indeed induces an instance of the MinRank problem [8] over Fq. Note

that by setting M = (Si,S1,1, . . . ,Sl,o) ∈ (Fl×(Nmsg·l)
q)l·o+1, there exists a (ti1,1,

. . . , tio,l) ∈ Fol
q and a matrix M ∈ Fl×(Nmsg−1)·l

q such that

(Si +

o∑
j=1

l∑
j1=1

t12ij,j1Sj1,j)

[
I
−M

]
= 0

where I ∈ F(Nmsg−1)·l×(Nmsg−1)·l
q is a non-singular matrix.

Discussion of previous scenarios The scenarios described in Sections 3.3
and 3.4 are examples of related randomness attacks [24]. In these attacks, the
adversary injects a permanent fault to force the reuse of fixed sub-bitstrings
within the Nbitsvl

2 bitstring Vbs representing the vinegar values V1, V2, . . . , Vv.
As a result, partial recovery of the private linear map T becomes feasible using

14

the techniques in Sections 3.3 and 3.4, provided the attacker can find other
methods to fix sub-bitstrings within Vbs and collects enough valid signatures
generated using these fixed values.

Additionally, if the attacker can identify a fixed bit in each Vi during signature
generation, they can use Algorithm 3 to recover T with sufficient signatures.
Define J := [v]× [l]2× [Nbits], G, and OI as in Algorithm 4. The attacker, given
I ← G() and oracle OI , can proceed with the recovery.

Algorithm 4: Definition of functions G and OI .
1 Function G()
2 I ← ∅;
3 for (i← 1 to v) do

4 (r0, r1, b)
$←− [l]× [l]× [Nbits];

5 I ← I ∪ {(i, r0, r1, b)};
6 end
7 return I;

8 Function OI(ι ∈ J , b ∈ F2)
9 if ι ∈ J \ I then

10 c
$←− F2;

11 return c;

12 end
13 Let Vι be the random bit chosen by line 13 of Algorithm 1 in the most recent call.;
14 if b = Vι then
15 return 1;
16 end
17 return 0;

This adversary can leverage his knowledge of I, his access to OI and Algo-
rithm 3 to fully recover the private linear transformation T as follows.

1. The attacker sets S = [], creates the lists Lι = [] and sets bι
$←− F2 for all

ι ∈ I.
2. The attacker calls Algorithm 1 for the random message M(j), which outputs

(S(j), salt(j)), and then updates S.append((S(j), salt(j))).
Additionally, the attacker updates its lists Lι for all ι ∈ I as follows.

(a) For each ι ∈ I, Lι.append(OI(ι, bι)).
3. After collecting sufficient signatures, Nmsg, the attacker stops. In particular,

once
∑Nmsg

i=1 Lι[i] > Nbits · l · o+ 1 for all ι ∈ I, it will stop.
4. The attacker then uses the collected signatures and calls Algorithm 3 |I|

times to recover the matrix T .

(a) For each ι = (i, r0, r1, b) ∈ I, the attacker creates Sι = [S[j] for j ∈
[Nmsg] if Lι[j] = 1] and calls Algorithm 3 with parameters v, o, l and Sι.
From Section 3.4, it follows each call of Algorithm 3 with parameters
v, o, l and Sι will return dic[ι] = [T 12

i1 , . . . , T
12
io].

We remark that the previous example scenario is yet another case of related
randomness attacks, since the attacker at step 2a marks what signatures share
the bit bι in Vι. However, we stress that we do not know how to instantiate this
oracle OI in a real scenario effectively, and therefore this question remains open.

15

3.6 Fault-assisted reconciliation attack

As seen in Section 2.1, for the reconciliation attack, the attacker must find a
specific solution u0 ∈ Fln

q from among many solutions to the quadratic system
of the form

ut
0(ΛSiPkΛSj)u0 = 0 ∈ Fq, (12)

for k ∈ [m], i, j ∈ {0, 1, . . . , l−1}. Furthermore, for any valid signature (S, salt),
it holds S = T−1V, with V = (V1, . . . , Vv, O1, . . . , Oo)

t and T−1 = T . Consequently,
for any β ∈ [l], we have

S:β =



S1,:β
...

Sv,:β
...

Sn,:β

 =



1 0 . . . 0 T 12
1,1 . . . T 12

1,o
...
...
. . .

...
...

. . .
...

0 0 . . . 1 T 12
v,1 . . . T 12

v,o
...
...
. . .

...
...

. . .
...

0 0 0 . . . 1





V1,:β
...

Vv,:β
O1,:β
...

Oo,:β


where S:β denotes the β-th column of S. If an attacker knows V1,:β , . . . , Vv,:β ,
then the attacker can set

u0 =



V1,:β −
∑o

j=1 T
12
1j Oj,:β

...
Vv,:β −

∑o
j=1 T

12
vj Oj,:β

O1,:β
...

Oo,:β


which will satisfy Eq. (12). Therefore, the main task of the attacker is to find
V1,:β , . . . , Vv,:β for a valid signature (S, salt) and some β ∈ [l].

Our fault-assisted reconciliation attack is as follows.

1. The attacker injects transient faults at line 13 of Algorithm 1, targeting Vi,jβ
for all i ∈ [v], j ∈ [l], and β ∈ C ⊆ [l]. For each Vi, there is a fixed non-empty
subset Ji ⊆ [l]× C such that V̄i,(r0,r1) = ω for (r0, r1) ∈ Ji, where ω ∈ Fq is
an unknown fixed value.

2. The attacker calls Algorithm 1 with a random message M ∈ Rm to obtain
the signature (S, salt).

3. If Step 2 succeeds, Algorithm 5 is executed with parameters v, o, l, S, C, Γβ

for β ∈ C1, where Γβ ⊆ [lv]. Here, Fγ represents all subsets of γ integers
from [lv], and Ac = [lv] \A for A ∈ Fγ .

By selecting appropriate Γβ , the attacker ensures the quadratic systems at
line 9 of Algorithm 5 have ol2 equations and lv − γ < ol2 unknowns, typically
yielding no or few solutions.

1 If C is unknown, set C = [l].

16

Let V = (Vt1, . . . , V
t
v)

t ∈ Fvl2

q . If Steps 1 and 2 result in Viβ = ω for i ∈ A,
with A ∈ Fγ and γ ∈ Γβ , Algorithm 5 will find U satisfying Eq. (12) and the
secret space O. Otherwise, the attack restarts. Runtime complexity is analyzed
in Appendix C.

Algorithm 5: Attempts to find O after having run the attack strategy.
Input: v, o, l, S, C, Γβ for β ∈ C
Output: O or ⊥

1 Function fault assisted reconcilation attack(v, o, l, S, C, Γβ):
2 for β ∈ C do
3 for γ ∈ Γβ do
4 for A ∈ Fγ do
5 for ω ∈ Fq do

6 Set Ω ← (x1, . . . , xlv, 0, . . . , 0)
t ∈ Fln

q ;

7 Set Ωi ← w for i ∈ A;
8 X← S:β −Ω;
9 Attempt to solve the quadratic system:

X
t
(ΛSiPkΛSj)X = 0 ∈ Fq,

for k ∈ [m], i, j ∈ {0, 1, . . . , l− 1}. This system has ml2 equations
and lv − γ unknowns, namely xi for i ∈ Ac;

10 if xi for i ∈ Ac are found then
11 Set U as the solution;
12 Recover O from the linearly independent set

{ΛSj U : 0 ≤ j ≤ l− 1};
13 return O;

14 end

15 end

16 end

17 end

18 end
19 return ⊥;

Success Probability of our Attack Strategy. Let Xij ∈ {0, 1} be a Bernoulli
random variable indicating whether Vij is fixed to ω due to a transient fault,

with Pr(Xij = 1) = pij . Define Yβ =
∑lv

i=1 Xiβ . The probability of γ successful
fixes in the β-th column of V is:

Pr(Yβ = γ) =
∑
A∈Fγ

∏
i∈A

piβ
∏
j∈Ac

(1− pjβ).

Let ρβ =
∑

γ∈Γβ
Pr(Yβ = γ), and ρ = max{ρβ : β ∈ C}, representing the

success probability of Algorithm 5. The overall success probability of the attack
strategy is ρ(1 − δ), where δ is the failure probability of Step 2. If pij remains
constant, the attacker expects to run the strategy 1/ρ(1− δ) times.

If Step 1 is implemented via a single transient fault that targets Viβ for all
i ∈ [lv], β ∈ [l], the attacker runs the strategy 1/(1−δ) times if piβ = 1. However,
if ϵ ≤ piβ ≤ 1, choosing a proper Γϵ yields

17

(1− δ)
∑
γ∈Γϵ

(
lv

γ

)
ϵγ(1− ϵ)lv−γ ≤ (1− δ)ρ ≤ (1− δ).

Targeting Viβ for all i ∈ [lv] and β ∈ C with |C| = 1 can further improve
success probability, since, in such cases, δ is expected to be very low. If ϵ ≤ piβ ≤
1, setting Γϵ such that

∑
γ∈Γβ

(
lv
γ

)
ϵγ(1 − ϵ)lv−γ ≈ 1 may allow the attacker to

run the strategy2 once. Simulations in Section 4.2 analyze these scenarios.

3.7 Alternative Versions of SNOVA

The SNOVA team released a preprint [27] that proposes two new versions of
SNOVA to counteract Buellens’ attack [6].

The first alternative version of SNOVA chooses random matrices Ak,α, Bk,α ∈
R and Qk,α1, Qk,α2 ∈ Fq[S], for k ∈ [o] and α ∈ [l2], and define the k-th coordi-
nate of the public map P(U) as

Pk(U1, . . . , Un) =

l2∑
α=1

n∑
i=1

n∑
j=1

Ak,α · U t
i (Qk,α1Pk,i,jQk,α2)Uj ·Bk,α.

The second alternative version of SNOVA defines the k-th coordinate of the
public map P(U) as follows

Pk(U) =

l4∑
α=1

n∑
i=1

n∑
j=1

Aα · U t
i (Qα1Pk,i,jQα2)Uj ·Bα,

where the matrices Aα, Bα ∈ R, and Qα1, Qα2 ∈ Fq[S], for α ∈ [l4], are deter-

mined by fixed matrices Ẽi,j ∈ Fl2×l2
q , for i, j ∈ [l], specified in [27].

We remark that either alternative version would be still vulnerable to our
fault strategies described in Sections 3.3 and 3.4, since these strategies exploit

the related randomness present in the vinegar variables V(ω) = (V
(ω)
1 , . . . , V

(ω)
n)t

when a permanent fault has been established and the relation S(ω) = T−1V(ω).
Additionally, the proposed alternatives do not affect the reconciliation attack.
However, we remark our experiments reported in Section 4 were carried out on
the Round 1 SNOVA reference implementation.

4 Experiments of our fault attacks

We conducted experiments to validate our fault attack, detailing the procedure
and results. We implemented the SNOVA signature scheme in SAGE, following
its specification [18], and used the latest SNOVA code3 to generate signatures.
Faults were introduced by fixing specific values in the vinegar variables, repli-
cating the fault injection process in Section 3.1.

2 Runtime depends on Γϵ.
3 https://github.com/PQCLAB-SNOVA/SNOVA (commit
3d7e8c7cebdd57293d74dc6c2608656697b99597)

18

https://github.com/PQCLAB-SNOVA/SNOVA

4.1 Simulating the Fault Attack from Sections 3.3 and 3.4

We simulate the attack in two scenarios.

In Scenario I, we replace line 13 of Algorithm 1 with Algorithm 6. This
function uses a list L of random F16 elements and a binary string x of size l2v
to determine which elements of Vi are fixed or randomly generated, ensuring
consistent fixed values across executions.

Algorithm 6: Simulates a fault by fixing F16 elements in the vinegar
variables.
1 Function assign values to vinegar variables fault F16(v, o, l, x, L):
2 V← [];
3 for i← 1 to v do

4 Vi ← [0]l×l;
5 for r0 ← 1 to l do
6 for r1 ← 1 to l do
7 if xi·l2+r0·l+r1

= 1 then

8 Vi[r0, r1]← Li·l2+r0·l+r1
;

9 end
10 else

11 Vi[r0, r1]
$←− F16;

12 end

13 end

14 end
15 V.append(Vi);

16 end
17 return V;

In Scenario II, we replace line 13 of Algorithm 1 with Algorithm 7. This
function uses a binary string x of size 4l2v and a list L of random F2 elements to
ensure the same bits in the binary representation of each Vi remain fixed across
executions.

Algorithm 7: Simulates a fault by fixing F2 elements in the vinegar
variables.
1 Function assign values to vinegar variables fault F2(v, o, l, x, L):
2 V← [];
3 for i← 1 to v do

4 Vi ← [0]l×l;
5 for r0 ← 1 to l do
6 for r1 ← 1 to l do
7 e← [0]4;
8 for r2 ← 1 to 4 do
9 if xi·l2+r0·l+4·r1+r2

= 1 then

10 e[r2]← Li·l2+r0·l+4·r1+r2
;

11 end
12 else

13 e[r2]
$←− F2;

14 end

15 end
16 Vi[r0, r1]← e;

17 end

18 end
19 V.append(Vi);

20 end
21 return V;

Our test experiments follow this procedure:

19

1. Select a SNOVA parameter set and generate a key pair (sk, pk) using the
SNOVA key generation algorithm.

2. Create a bitstring x by performing l2v (Scenario I) or 4l2v (Scenario II)
Bernoulli trials with probability 0 < ρ < 1. Generate a list L of random field
elements (F16 for Scenario I, F2 for Scenario II) of size |x|.

3. Collect Nmsg signatures using the modified Algorithm 1. Set Nmsg = o · l+2
for Scenario I and Nmsg = 4 · o · l + 2 for Scenario II.

4. Call the corresponding recovery algorithm: Algorithm 2 for Scenario I or
Algorithm 3 for Scenario II.

5. Compare the recovered part of T with the actual T to verify the recovery
algorithms’ effectiveness.

Our experimental results confirm that the recovery algorithms perform as
expected, successfully recovering the correct components of T with the required
number of faulty signatures, as detailed in Sections 3.3 and 3.4. Table 3 summa-
rizes the minimum number of faulty signatures needed for each SNOVA param-
eter set.

Table 3: Minimum number of signatures per SNOVA parameter set

Recovery from Recovery from
Security (v, o, q, l, λ) fixed field elements fixed bits
Level by Algorithm 2 by Algorithm 3

I
(37, 17, 16, 2, 128) 36 138
(25, 8, 16, 3, 128) 26 98
(24, 5, 16, 4, 128) 22 82

III
(56, 25, 16, 2, 192) 52 202
(49, 11, 16, 3, 192) 35 134
(37, 8, 16, 4, 192) 34 130

V
(75, 33, 16, 2, 256) 68 266
(66, 15, 16, 3, 256) 47 182
(60, 10, 16, 4, 256) 42 162

In addition to the SAGE implementation, we use the C version of SNOVA
to generate faulty signatures by integrating Algorithm 6 into the code. Vinegar
values are generated in the sign digest core ref function (in snova kernel.h)
using Keccak from the XKCP library4. Listing 1.2 shows how these values are
assigned to the matrix X in GF16Matrix.

To create faulty signatures, we modify the get F16 function, which generates
random F16 elements and a binomial random variable array x. This array deter-
mines which entries in X in GF16Matrix are assigned random values instead
of hash-derived values, as shown in Listing 1.3.

4 https://github.com/XKCP/XKCP

20

https://github.com/XKCP/XKCP

Using the faulty X in GF16Matrix, we generate signatures by multiplying
parts of it with the private key matrix ‘T12’, as detailed in Listing 1.4. The
results from SAGE and the C code for generating faulty signatures and executing
recovery algorithms are consistent.

4.2 Simulating the fault-assisted reconciliation attack

We first simulated our fault attack described in Section 3.6 using our SAGE
implementation and the C version.

Let P be a matrix of size v × l × l, where the elements Pijk represent the
probabilities pi,jk as described in Section 3.6. We replace line 13 of Algorithm 1
with a function that takes a set of SNOVA parameters and the matrix P , ran-
domly selects ω ∈ Fq and returns the vinegar variables Vi, where each Vi,jk is
equal to ω with probability Pijk.

We conducted experiments, each consisting of 100 runs of SNOVA and our
algorithms. In each trial, probabilities for Pi,jk are set, and the modified version
of Algorithm 1 is run. A “failure” in Step 2 occurs if the modified algorithm
cannot compute a signature after one iteration. A success in Algorithm 5 occurs
if the secret space can be computed after Step 2 has completed successfully.
Therefore, the success rate of Algorithm 5 is the number of successful compu-
tations divided by the number of trials, excluding those that failed in Step 2.
Finally, the overall success rate of the attack strategy is the number of successes
in Algorithm 5 divided by the total number of trials.

In our experiments we set ϵ ∈ {1, 0.97, 0.95, 0.93} and Γϵ,r = {⌊µ+rσ⌋ , . . . , ⌊µ−
rσ⌋}, where µ = lvϵ, σ =

√
lvϵ(1− ϵ) and r ∈ {1, 2}. Table 4 shows our results

for different assignment for P and the SNOVA parameter (37, 17, 16, 2, 128). Al-
gorithm 5’s runtime was computed by using Eq. (13) and the Cryptographic
Estimators library [10].

Implementing the fault-assisted reconciliation attack We used a ChipWhisperer-
Lite (ARM-based) for clock-glitching attacks on the SNOVA signing process.
The attack targets pseudo-random data generation to bypass a hash function
call (line 5 of Listing 1.1 corresponding to line 9 of Listing 1.2) by skipping a
key instruction with a clock glitch.

Across 200 trials, we observed that in 3 instances, the vinegar matrix V

resulted in all its entries defaulting to zero or another fixed value. In 5 of those
trials, it resulted in at least one column having a value repeated vl − 4 times.

In our attack, we either forced the system to skip invoking the hash function
entirely or induced it to omit critical instructions within the function, thereby
fixing the output to a predetermined value. This aligns with our threat model
and key recovery results in Table 4.

This mirrors the Keccak function-skipping method in [14], confirming that
disrupting critical code segments enables key recovery. We posit that other fault
injection techniques (e.g., voltage glitching) could similarly instantiate our threat
model.

21

Table 4: Table with the results of our experiments for the SNOVA parameter
(37, 17, 16, 2, 128), where Cβ := {(i, j, β) : i ∈ [v], j ∈ [l]} for some β ∈ [l].

Assignments for P Failure Rate Algorithm 5 Attack Strategy Algorithm 5
Step 2 Success Rate Success Rate Runtime (bits)

r = 1 r = 2 r = 1 r = 2 r = 1 r = 2
Pι = 1 for ι ∈ [v]× [l]2 6% 100% 100% 94% 94% 6 7

0.97 ≤ Pι ≤ 1 for ι ∈ [v]× [l]2 6% 44% 100% 41% 94% 42 52
0.95 ≤ Pι ≤ 1 for ι ∈ [v]× [l]2 7% 33% 100% 31% 93% 52 60
0.93 ≤ Pι ≤ 1 for ι ∈ [v]× [l]2 5% 19% 100% 18% 95% 60 67

Pι = 1 for ι ∈ Cβ

Pι = 1/q for ι ∈ [v]× [l]2 \ Cβ 2% 100% 100% 98% 98% 5 6
0.97 ≤ Pι ≤ 1 for ι ∈ Cβ

Pι = 1/q for ι ∈ [v]× [l]2 \ Cβ 8% 41% 100% 38% 92% 41 51
0.95 ≤ Pι ≤ 1 for ι ∈ Cβ

Pι = 1/q for ι ∈ [v]× [l]2 \ Cβ 5% 37% 100% 35% 95% 51 59
0.93 ≤ Pι ≤ 1 for ι ∈ Cβ

Pι = 1/q for ι ∈ [v]× [l]2 \ Cβ 4% 40% 93% 38% 89% 59 66

1 8000416: f000 fb23 bl 8000 a60 <trigger_high >
2 800041a: f107 0310 add.w r3 , r7, #16
3 800041e: 2100 movs r1 , #0
4 8000420: 4618 mov r0, r3
5 8000422: f002 fa45 bl 80028b0 <_etext +0x80 >
6 8000426: f107 01f0 add.w r1, r7 , #240 @ 0xf0
7 800042a: f107 0310 add.w r3 , r7, #16
8 800042e: f44f 62c0 mov.w r2 , #1536 @ 0x600
9 8000432: 4618 mov r0, r3

10 8000434: f002 fa2c bl 8002890 <_etext +0x60 >
11 8000438: f000 fb19 bl 8000 a6e <trigger_low >

Listing 1.1: Assembly code of the attack.

5 Countermeasure

The countermeasure adapts a general strategy designed to defend against fault
attacks targeting multivariate public key cryptosystems. This strategy was ini-
tially proposed in [12] and later extended and tailored for the UOV and Rainbow
schemes in [16].

Specifically, Algorithm 8 implements this countermeasure for SNOVA and
should be invoked by Algorithm 1 immediately after executing line 13.

Algorithm 8 accepts three positive integers, Γ and Λ, with the condition that
Γ < Λ, and Υ , as well as a tuple of finite field elements (α1, . . . , αl2v) of size l

2v.
This tuple represents the SNOVA vinegar values [V1, V2, . . . , Vv] generated at line
13 of Algorithm 1. Furthermore, the function compare, called by Algorithm 8 at
line 14, takes two tuples of size l2v: (α1, . . . , αl2v) and (β1, . . . , βl2v). It returns
a tuple of size l2v where the j-th entry is 1 if αj ̸= βj and 0 otherwise. Finally,
the function checkColumn takes (α1, . . . , αl2v), x, β, Υ and checks if there are at
least Υ occurrences of x in the sequence V1,1β , . . . , V1,lβ , . . . , Vv,lβ .

22

Algorithm 8: Countermeasure by checking and storing vinegar values
Input: Γ,Λ, Υ, (α1, . . . , αl2v)
Output: success or fail

1 Function countermesure(Γ,Λ, Υ, (α1, . . . , αl2v)):
2 for x ∈ Fq do
3 for β ∈ {1, 2, . . . , l} do
4 if checkColumn((α1, . . . , αl2v), x, β, Υ) then
5 return fail ;
6 end

7 end

8 end
9 if L has not been created then

10 L← [];
11 end

12 count← [0]vl2 ;
13 for i← 0 to |L| − 1 do
14 count← count + compare(L[i], (α1, . . . , αl2v));
15 end

16 if count[j] > Γ for some j ∈ [l2v] then
17 return fail ;
18 end
19 if |L| = Λ then
20 L.removeEntryAtIndex(0);
21 end
22 L.append((α1, . . . , αl2v));
23 return success ;

Why does this countermeasure work? Assume the countermeasure is imple-
mented in the signing algorithm with Λ = l · o and Γ < Λ. The check between
lines 2 and 7 targets the attack in Section 3.6. Let V = (Vt1, . . . , V

t
v)

t, and let Zβ

count occurrences of x ∈ Fq in the β-th column of V. Zβ follows a binomial distri-
bution with p = 1/q in the absence of faults. We set Υ such that Pr(Zβ ≥ Υ), the
probability of checkColumn returning True at line 4, is negligible. For SNOVA
parameters, Υ = ⌊l ·v ·p+ r

√
l · v · p(1− p)⌋, where r ≥ 6. If faults fix at least Υ

entries in a column to x, checkColumn returns True; otherwise, it returns False,
making the attack runtime prohibitive (see Appendix C).

Next, we analyze the countermeasure against the attack in Section 3.3. As-
sume |L| = Λ and the countermeasure function is called with Γ , Λ, and (α1, . . . , αl2v).
Let E be the event where line 17 of Algorithm 8 returns fail without fault in-
jection. For E to occur, there must exist j ∈ [l2v] such that count[j] > Γ ,
meaning αj appears more than Γ times in (L[i][j])Λ−1i=0 . Each Xj (counting αj

occurrences) follows a binomial distribution with pj =
1
|Fq| , and the variables are

independent. Thus, the probability of reaching line 17 is:

pfail = 1− Pr(Xj ≤ Γ for all j ∈ [l2v]).

Under permanent fault injection, the signing algorithm aborts after Γ faulty
signatures. The attacker constructs v2l under-determined linear systems (each
with Γ − 1 equations and lo unknowns). Specializing lo − Γ + 1 variables and
solving the system yields a correct solution with probability pΓ−lo−1j , but the
attacker cannot verify correctness. Thus, Γ must ensure both pfail and the attack

23

success probability are negligible. Table 5 provides suitable Γ and Λ values for
each SNOVA parameter set.

Table 5: Suggested values for Γ and Λ.

Security
level (v, o, q, l, λ) Γ Λ

I
(37, 17, 16, 2, 128) 10 34
(25, 8, 16, 3, 128) 10 24
(24, 5, 16, 4, 128) 6 20

III
(56, 25, 16, 2, 192) 14 50
(49, 11, 16, 3, 192) 9 33
(37, 8, 16, 4, 192) 8 32

V
(75, 33, 16, 2, 256) 15 66
(66, 15, 16, 3, 256) 14 45
(60, 10, 16, 4, 256) 9 40

6 Conclusion

In this paper, we presented multiple fault attack strategies against the SNOVA
cryptographic scheme. We introduced two methods for executing fault attacks,
demonstrating that our novel key recovery algorithm can recover the secret
key with as few as 22 to 34 faulty signatures at the lowest security level, and
up to 42 or 68 signatures at the highest level. Experiments implemented in
SAGE and C confirmed the efficiency of our algorithm under various fault condi-
tions. Additionally, we proposed a new fault-assisted reconciliation attack in Sec-
tion 3.6, which exploits transient faults to recover the secret key space by solv-
ing a quadratic system. Evaluations using the lowest security parameter set for
SNOVA showed a high success rate under specific fault probability conditions,
highlighting the attack’s potential to compromise SNOVA’s security.

To address these vulnerabilities, we proposed a lightweight countermeasure
that reduces the likelihood of successful key recovery without significantly af-
fecting SNOVA’s performance. This scalable solution is adaptable to various
SNOVA parameter sets. Our findings emphasize the critical need for robust fault-
resistant implementations in post-quantum cryptographic schemes like SNOVA.
Future research could focus on optimizing countermeasures and investigating the
impact of these attacks on other cryptographic systems.

24

References

1. Subidh Ali, Xiaofei Guo, Ramesh Karri, and Debdeep Mukhopadhyay. Fault At-
tacks on AES and Their Countermeasures, pages 163–208. Springer International
Publishing, Cham, 2016.

2. Thomas Aulbach, Fabio Campos, and Juliane Krämer. SoK: On the physical
security of UOV-based signature schemes. Cryptology ePrint Archive, Paper
2024/1818, 2024.

3. Thomas Aulbach, Tobias Kovats, Juliane Krämer, and Soundes Marzougui. Re-
covering rainbow’s secret key with a first-order fault attack. In AFRICACRYPT
2022, pages 348–368, 2022.

4. Thomas Aulbach, Soundes Marzougui, Jean-Pierre Seifert, and Vincent Quentin
Ulitzsch. Mayo or MAY-not: Exploring implementation security of the post-
quantum signature scheme MAYO against physical attacks. In 2024 Workshop
on Fault Detection and Tolerance in Cryptography (FDTC), pages 28–33, 2024.

5. Ward Beullens. MAYO: practical post-quantum signatures from oil-and-vinegar
maps. In Riham AlTawy and Andreas Hülsing, editors, Selected Areas in Cryp-
tography - 28th International Conference, SAC 2021, Virtual Event, September
29 - October 1, 2021, Revised Selected Papers, volume 13203 of Lecture Notes in
Computer Science, pages 355–376. Springer, 2021.

6. Ward Beullens. Improved cryptanalysis of SNOVA. Cryptology ePrint Archive,
Paper 2024/1297, 2024.

7. Ward Beullens, Fabio Campos, Sof́ıa Celi, Basil Hess, and Matthias J. Kannwis-
cher. MAYO, June 2023. Available at https://pqmayo.org/assets/specs/mayo.
pdf.

8. Jonathan F Buss, Gudmund S Frandsen, and Jeffrey O Shallit. The computational
complexity of some problems of linear algebra. Journal of Computer and System
Sciences, 58(3):572–596, 1999.

9. Daniel Cabarcas, Peigen Li, Javier Verbel, and Ricardo Villanueva-Polanco. Im-
proved attacks for SNOVA by exploiting stability under a group action. Cryptology
ePrint Archive, Paper 2024/1770, 2024.

10. Andre Esser, Javier Verbel, Floyd Zweydinger, and Emanuele Bellini. Sok: Cryp-
tographicEstimators – a software library for cryptographic hardness estimation. In
Proceedings of the 19th ACM Asia Conference on Computer and Communications
Security, ASIA CCS ’24, page 560–574, New York, NY, USA, 2024. Association
for Computing Machinery.

11. Hiroshi Furue, Yuichi Kiyomura, and Takashi Takagi. A new fault attack on UOV
multivariate signature scheme. In Post-Quantum Cryptography - PQCrypto 2022,
pages 124–143, 2022.

12. Yasufumi Hashimoto, Tsuyoshi Takagi, and Kouichi Sakurai. General fault attacks
on multivariate public key cryptosystems. In Bo-Yin Yang, editor, Post-Quantum
Cryptography, pages 1–18, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

13. Yasuhiko Ikematsu and Rika Akiyama. Revisiting the security analysis of SNOVA.
Cryptology ePrint Archive, Paper 2024/096, 2024. https://eprint.iacr.org/

2024/096.
14. Sönke Jendral and Elena Dubrova. MAYO key recovery by fixing vinegar seeds.

IACR Communications in Cryptology, 1(4), 2025.
15. Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,

Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without
accessing them: an experimental study of DRAM disturbance errors. SIGARCH
Comput. Archit. News, 42(3):361–372, June 2014.

25

https://pqmayo.org/assets/specs/mayo.pdf
https://pqmayo.org/assets/specs/mayo.pdf
https://eprint.iacr.org/2024/096
https://eprint.iacr.org/2024/096

16. Juliane Krämer and Mirjam Loiero. Fault attacks on UOV and Rainbow. In
Ilia Polian and Marc Stöttinger, editors, Constructive Side-Channel Analysis and
Secure Design, pages 193–214, Cham, 2019. Springer International Publishing.

17. Peigen Li and Jintai Ding. Cryptanalysis of the SNOVA signature scheme. Cryptol-
ogy ePrint Archive, Paper 2024/110, 2024. https://eprint.iacr.org/2024/110.

18. Chun-Yen Chou Lih-Chung Wang, Jintai Ding, Yen-Liang Kuan, Ming-Siou Li,
Bo-Shu Tseng, Po-En Tseng, and Chia-Chun Wang. Snova: Proposal for nist-
pqc: Digital signature schemes project. Proposal for NISTPQC: Digital Signature
Schemes project, 2023. https://snova.pqclab.org/.

19. Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples for
efficient signature-verification and message-encryption. In Advances in Cryptology
— EUROCRYPT ’88, pages 419–453, Berlin, Heidelberg, 1988. Springer Berlin
Heidelberg.

20. Koksal Mus, Saad Islam, and Berk Sunar. Quantumhammer: A practical hybrid
attack on the LUOV signature scheme. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’20, page 1071–1084,
New York, NY, USA, 2020. Association for Computing Machinery.

21. Shuhei Nakamura, Yusuke Tani, and Hiroki Furue. Lifting approach against the
SNOVA scheme. Cryptology ePrint Archive, Paper 2024/1374, 2024.

22. Jacques Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme of
Eurocrypt’88. In CRYPTO ’95, 15th, volume 963 of Lecture Notes in Computer
Science, pages 248–261. Springer, 1995.

23. Jacques Patarin. The oil and vinegar algorithm for signatures. Dagstuhl Workshop
on Cryptography, 1997. https://cir.nii.ac.jp/crid/1572543024892110208.

24. Kenneth G. Paterson, Jacob C. N. Schuldt, and Dale L. Sibborn. Related random-
ness attacks for public key encryption. Cryptology ePrint Archive, Paper 2014/337,
2014. https://eprint.iacr.org/2014/337.

25. Oussama Sayari, Soundes Marzougui, Thomas Aulbach, Juliane Krämer, and Jean-
Pierre Seifert. Hamayo: A fault-tolerant reconfigurable hardware implementation
of the MAYO signature scheme. In Constructive Side-Channel Analysis and Secure
Design, pages 240–259, Cham, 2024. Springer Nature Switzerland.

26. Kyung-Ah Shim and Namhun Koo. Algebraic fault analysis of UOV and Rainbow
with the leakage of random vinegar values. IEEE Transactions on Information
Forensics and Security, 15:2429–2439, 2020.

27. Lih-Chung Wang, Chun-Yen Chou, Jintai Ding, Yen-Liang Kuan, Jan Adriaan
Leegwater, Ming-Siou Li, Bo-Shu Tseng, Po-En Tseng, and Chia-Chun Wang. A
note on the SNOVA security. Cryptology ePrint Archive, Paper 2024/1517, 2024.

28. Lih-Chung Wang, Po-En Tseng, Yen-Liang Kuan, and Chun-Yen Chou. A simple
noncommutative UOV scheme. Cryptology ePrint Archive, Paper 2022/1742, 2022.

A SNOVA algorithms

Algorithm 9 presents the signature verification process in the SNOVA cryp-
tosystem. The algorithm uses the public key, document digest, and associated
parameters to validate a signature. It begins by generating auxiliary parameters
and random components required for evaluation. A hash value hashs is com-
puted from the public key, document digest, and salt, and is then compared
against hashd, which is derived using Algorithm 12. The signature is accepted
if the two hash values match; otherwise, it is rejected.

26

https://eprint.iacr.org/2024/110
https://snova.pqclab.org/
https://cir.nii.ac.jp/crid/1572543024892110208
https://eprint.iacr.org/2014/337

Algorithm 9: SNOVA Signature Verification
Input: SNOVA parameters (v, o, l),
Public key (spublic, P

22
i for 0 ≤ i < m),

Document digest digest = Hash(D),
Digest length |digest|
Output: Accept or Reject

1 Function VerifySignature()
2 Generate Aα, Bα, Qα1, and Qα2 for 0 ≤ α < l2 using Algorithm 11;
3 m← o;

4 Generate (P 11
1 , P 12

1 , P 21
i for 0 ≤ i < m) using Algorithm 11;

5 hashs ← HashSHAKE256(spublic || digest || salt);
6 Compute hashd using Algorithm 12;
7 if hashs == hashd then
8 return Accept;

9 else
10 return Reject;

Algorithm 10: Generate Invertible Matrix
Input: A l× l matrix M
Output: Invertible matrix M

1 if det(M) = 0 then
2 for a← 1 to 15 do
3 if det(M + aS) ̸= 0 then
4 M ←M + aS;
5 break;

6 return M ;

Algorithm 11: Generate the random part of the public key
Input: SNOVA parameters (v, o, l),

public seed spublic

Output: Matrices (Aα, Bα, Qα1, Qα2 for 0 ≤ α < l2),
(P 11

i , P 12
i , P 21

i , P 22
i for 0 ≤ i < m)

1 Compute HashAES128(spublic) ; // Initialize as AES128 throughout

2 for α from 0 to l2 − 1 do
3 Let Aα, Bα, Qα1, Qα2 be invertible using Algorithm 10;

4 return (Aα, Bα, Qα1, Qα2 for 0 ≤ α < l2) and (P 11
i , P 12

i , P 21
i , P 22

i for 0 ≤ i < m);

27

Algorithm 12: Evaluate the public map
Input: SNOVA parameters (v, o, l),

public key (Aα, Bα, Qα1, Qα2 for 0 ≤ α < l2),
public map (P 11

i , P 12
i , P 21

i , P 22
i for 0 ≤ i < m),

the signature sig
Output: The evaluation hashes of P at sig

1 m← o;
2 for α from 0 to m− 1 do
3 for j from 0 to n− 1 do
4 Leftα[j]← Aα · (sig[j])t ·Qα1 ; // The left term of Pi,dα,dk

5 Rightα[j]← Qα2 · sig[j] · Bα ; // The right term of Pi,dα,dk

6 for i from 0 to m− 1 do
7 hashs[i]← 0;

8 for α from 0 to l2 − 1 do
9 for dj from 0 to v − 1 do

10 for dk from 0 to v − 1 do
11 hashs[i]← hashs[i] + Leftα[dj] · P 11

i [dj][dk] · Rightα[dk];

12 for dj from 0 to v − 1 do
13 for dk from 0 to v − 1 do
14 hashs[i]← hashs[i] + Leftα[dj] · P 12

i [dj][v + dk] · Rightα[dk];

15 for dj from 0 to o− 1 do
16 for dk from 0 to v − 1 do
17 hashs[i]← hashs[i] + Leftα[v + dj] · P 21

i [dj][dk] · Rightα[dk];

18 for dj from 0 to o− 1 do
19 for dk from 0 to o− 1 do
20 hashs[i]← hashs[i] + Leftα[v + dj] · P 22

i [dj][dk] · Rightα[v + dk];

21 hashs ← (hashs[0], . . . , hashs[m− 1])t;
22 return hashs;

28

B Implementation details

1 // generate the vinegar value
2 Keccak_HashInstance hashInstance;
3 Keccak_HashInitialize_SHAKE256 (& hashInstance);
4 Keccak_HashUpdate (& hashInstance , pt_private_key_seed , 8 *

seed_length_private);
5 Keccak_HashUpdate (& hashInstance , digest , 8 * bytes_digest);
6 Keccak_HashUpdate (& hashInstance , array_salt , 8 * bytes_salt);
7 Keccak_HashUpdate (& hashInstance , &num_sign , 8);
8 Keccak_HashFinal (& hashInstance , NULL);
9 Keccak_HashSqueeze (& hashInstance , vinegar_in_byte , 8 * ((v_SNOVA *

lsq_SNOVA + 1) >> 1));
10

11 counter = 0;
12 for (int index = 0; index < v_SNOVA; index ++) {
13 for (int i = 0; i < rank; ++i) {
14 for (int j = 0; j < rank; ++j) {
15 set_gf16m(X_in_GF16Matrix[index], i, j,
16 ((counter & 1) ? (vinegar_in_byte[counter >> 1]

>> 4) : (vinegar_in_byte[counter >> 1] & 0xF)));
17 counter ++;
18 }
19 }
20 }

Listing 1.2: Code snippet of generation of vinegar values.

1 uint8_t x[v_SNOVA*lsq_SNOVA] = {0};
2 uint8_t I[v_SNOVA*lsq_SNOVA] = {0};
3 get_F16(v_SNOVA , o_SNOVA , I, x, 0.5);
4 for (int index = 0; index < v_SNOVA; index ++) {
5 for (int i = 0; i < rank; ++i) {
6 for (int j = 0; j < rank; ++j) {
7 if (x[index * lsq_SNOVA + i * l_SNOVA + j] == 1) {
8 set_gf16m(X_in_GF16Matrix[index], i, j, I[index *

lsq_SNOVA+ i * l_SNOVA + j]);
9 } else {

10 set_gf16m(X_in_GF16Matrix[index], i, j,
11 ((counter & 1) ? (vinegar_in_byte[counter

>> 1] >> 4) : (vinegar_in_byte[counter >> 1]
12 & 0xF)));
13 counter ++;
14 }
15 }
16 }
17 }

Listing 1.3: Code snippet for setting random values as Algorithm 6.

1 for (int index = 0; index < v_SNOVA; ++index) {
2 gf16m_clone(signature_in_GF16Matrix[index], X_in_GF16Matrix[index]);
3 for (int i = 0; i < o_SNOVA; ++i) {
4 gf16m_mul(T12[index][i], X_in_GF16Matrix[v_SNOVA + i],

gf16m_secret_temp0);
5 gf16m_add(signature_in_GF16Matrix[index], gf16m_secret_temp0 ,

signature_in_GF16Matrix[index]);
6 }
7 }
8 for (int index = 0; index < o_SNOVA; ++index) {
9 gf16m_clone(signature_in_GF16Matrix[v_SNOVA + index], X_in_GF16Matrix[

v_SNOVA + index]);
10 }

Listing 1.4: Usage of X in GF16Matrix to generate the final signature.

29

C Agorithm 5’s runtime complexity

Given a homogeneous multivariate quadratic map P : FN
q → FM

q , we denote
MQ(N,M, q) the field multiplications required to find a nontrivial solution u
satisfying P(u) = a ∈ FM

q if such solution exists. The runtime complexity of
Algorithm 5 is bounded by

O(q
∑
β∈C

∑
γ∈Γβ

(
lv

γ

)
· MQ(lv − γ,ml2, q)) (13)

field multiplications.

30

	 A Fault Analysis on SNOVA

