
On Threshold Signatures from MPC-in-the-Head

Eliana Carozza1 and Geoffroy Couteau2

1 IRIF, Université Paris Cité, Paris, France.
carozza@irif.fr

2 CNRS, IRIF, Université Paris Cité, Paris, France.
couteau@irif.fr

Abstract. We initiate the study of threshold signatures built from MPC-in-the-Head signa-
tures. While recent impossibility results (Doerner, Kondi and Rosenbloom, CRYPTO’24) show
that any such construction must have a signature size that grows with the number n of users
(or else require a prohibitive non-black-box use of cryptography), we show that this depen-
dency in the number of users can be confined to a term of the form λ2n + O(1), where λ is a
security parameter and O(1) a constant that depends on the signature scheme. We provide a
concrete instantiation of our framework by building a threshold signature on top of the scheme
of (Carozza, Couteau and Joux, EUROCRYPT’23).

keywords. Signatures, MPC-in-the-Head, threshold signatures

1 Introduction

With the upcoming advent of quantum computers, an important research effort is devoted to the con-
struction of post-quantum primitives such as key encapsulations and signatures. The NIST call for
post-quantum KEMs and signatures has accelerated this trend. More recently, a second NIST call for
additional post-quantum signature proposals, targeted more specifically at non-lattice-based propos-
als, has led to a flurry of works. Among the many candidates, the MPC-in-the-Head paradigm [39] has
emerged as one of the most promising paradigms to construct quantum-resistant signature schemes,
with the most recent schemes in this category achieve signature sizes in the 3 5kB range [8,38,44] even
while being (sometimes) based on the hardness of inverting well-studied symmetric primitives such as
AES [9]. MPC-in-the-Head (MPCitH) offers an appealing combination of concrete efficiency and no
requirement of any algebraic structure of the underlying assumption, which increases our confidence
in their security.

Threshold signatures. Yet, signature schemes are far from the end of the story: many crypto-
graphic and real-world applications require signature schemes equipped with more advanced features
(this includes ring and group signatures, anonymous credentials, multisignatures, and many more).
Among them, threshold signatures figure among the most widely studied. A threshold signatures lets
a group of participants jointly sign a document such that only a subset of the participants larger
than the threshold can produce an accepting signature. Threshold signatures enjoy several attractive
features: they are resilient to failures or loss of data and they add a layer of decentralization, among
other benefits. In the past decades, a widespread research effort has been devoted to the design of
efficient threshold signature schemes, and a call for standardizing threshold schemes has been recently
announced by the National Institute of Standards and Technology (NIST) [23].

Unfortunately, the impressive success of the MPC-in-the-Head, that has led to a large number
of new efficient schemes in the past few years [1–6, 8–11, 13, 24, 26, 29, 30, 33, 34, 38, 41, 42, 44, 52],
does not seem to extend to the desirable setting of threshold signatures. In fact, and while there are
several threshold signature schemes in the post-quantum setting (e.g. [45]), there is to our knowl-
edge no known efficient candidate threshold signature based on an MPC-in-the-Head signature (and,
more generally, no efficient threshold signature whose underlying signature relies solely on symmetric
assumptions).

Barrier towards efficient MPCitH threshold signatures. To anyone familiar with the inner
working of MPC-in-the-Head signatures, this should not come as a surprise: efficient MPCitH sig-
natures rely on primitives such as GGM trees which seem particularly complex to securely evaluate
in a distributed setting. Plugging an MPCitH signature into a generic MPC protocol results in a
prohibitive communication and computation, due in particular to the need to run expensive protocol

mailto:carozza@irif.fr
mailto:couteau@irif.fr

2 Eliana Carozza and Geoffroy Couteau

making non-black-box use of cryptographic primitives. Unfortunately, this complexity appears to be
inherent: in a recent work [32], Doerner, Kondi and Rosenbloom proved that every threshold MPC-
in-the-Head signature scheme must necessarily make a non-black-box use of hash functions / PRGs,
or else tolerate signature sizes that grow with the number of signers.

1.1 Our Contribution

In this work, we explore the extend to which it is feasible to design efficient threshold signatures
from MPCitH signatures in spite of the strong impossibility result of [32]. Our main contribution is a
general recipe for converting any MPCitH signature into a “threshold-friendly” signature scheme. In
doing so, we do not circumvent the impossibility result of [32]: rather, we bite the bullet and let the
size of the signature scheme grow with the number of users. Equivalently, one can view the approach
taken in our work as follows: given that [32] implies that all threshold-friendly MPCitH signatures
must grow with the number of users (or else make expensive non-black-box use of cryptography), we
ask how much we can reduce this linear dependency in the number of users.

Our main finding is the following: there is a general template transforming any MPCitH signature
into a threshold-friendly signature of size λ2n+O(1) bits, where the constant depends on the concrete
scheme. When λ = 128, this amounts to a size of 2kB per user. This represent a significant improve-
ment over the naive strategy where all users concatenate independent signatures. Of course, these
numbers might feel somewhat underwhelming, and in particular, are not competitive with lattice-
based threshold signatures such as [45]. However, we believe that they represent a useful datapoint
regarding the best-possible signature size that can be achieved in a threshold-friendly setting. We
hope that it will motivate further works in the area.

An interesting consequence of our result is that in the context of threshold signatures, the size
difference between existing MPCitH candidates gets pushed to the O(1) term, which becomes largely
dominated as n grows. It has the conceptually intriguing effect of inverting, in this context, the notion
of the “best” MPCitH signature: we found that older schemes, which are not state-of-the-art anymore
and have larger sizes, tend to have a much simpler structure, which in turn results in much more
efficient threshold signature schemes (when considering the communication and computation required
to distributively generate a signature). We illustrate this behavior by providing a detailed case study
of applying our template to the MPCitH scheme from [26], a scheme based on the regular syndrome
decoding assumption which has since been superseded by more recent works [24,29,44] (which achieve
significantly more compact signatures), but whose simple structure allows to build a very simple and
efficient distributed signing procedure on top of its threshold-friendly variant.

To provide concrete numbers: using the parameters K = 1842, k = 1017, w = 307, τ = 11
and N = 213 from [26], our threshold signature scheme has amortized communication 71.2kB per
user (when instantiating the underlying “modulus-switching” functionality using the protocol given
in Appendix A) and produces signatures of size approximately 2n+ 6 kilobytes.

2 Preliminaries

In this work, we will always call parties the virtual participants emulated in its head by the prover of
an MPC-in-the-Head protocol, and users actual participants that interact to distributively generate
a signature.

Given a set S, we write s←$ S to indicate that s is uniformly sampled from S. Given a probabilistic
Turing machine A and an input x, we write y ←$A(x) to indicate that y is sampled by running A on x
with a uniform random tape, or y ← A(x; r) when we want to make the random coins explicit. Given
an integer n ∈ N, we denote by [n] the set {1, · · · , n}. We use λ to denote the computational security
parameter. For every n,w such that w divides n, we let Regw(Fn

2) denote the set of all w-regular
vectors over Fn

2 (that is, vectors which are a concatenation of w length-n/w unit vectors).
Given an integer n, we let Perm[n] denote the set of all permutations of [n]. In this work, we

typically use permutations over [n] to shuffle the entries of a length-n vector. Given a vector v ∈ Fn

and a permutation π : [n]→ [n], we write π(v) to denote the vector (vπ(1), vπ(2), · · · , vπ(n)).
Given a vector x of length 6n, viewed as a concatenation of n “blocks” of size 6, we let BHW6(x)

denote the vector over F3 whose i-th entry is the Hamming weight of the i-th block of x modulo 3.

On Threshold Signatures from MPC-in-the-Head 3

2.1 Regular Syndrome Decoding Problem

Code parameters. In this work, K always denotes the number of columns in the parity-check
matrix H, and k denote the number of its rows. Equivalently, K is the codeword length, and K − k
is the dimension of the code. We let w denote the weight of the noise, which will always divide K.
We let bs ← K/w denote the block size: a w-regular noise vector is sampled as a concatenation of
w random unit vectors (the blocks) of length bs. We write Regw to denote the set of all length-K
w-regular vectors.

RSD. Given a weight parameter w, the syndrome decoding problem asks to find a solution of
Hamming weight w (under the promise that it exists) to a random system of linear equations H · x
over F2. There exist several well-established variants of the syndrome decoding problem, with different
matrix distributions, underlying fields, or noise distributions. In this work, we focus on a relatively
well-studied variant known as the regular syndrome decoding (RSD) problem, introduced in 2003 in [7]
as the assumption underlying the FSB candidate to the NIST hash function competition. In RSD,
the solution x is sampled randomly from the set Regw of w-regular vectors (i.e., x is a concatenation
of w unit vectors of length K/w). This variant has been used (and analyzed) quite often in the
literature [7, 12,17–21,28,37,46,49,51].

Definition 1 (Regular Syndrome Decoding Problem). Let K, k,w be three integers, with K >
k > w. The syndrome decoding problem with parameters (K, k,w) is defined as follows:

– (Problem generation) Sample H ←$ Fk×K
2 and x←$ Regw. Set y← H · x. Output (H,y).

– (Goal) Given (H,y), find x ∈ Regw such that H · x = y.

2.2 The MPC-in-the-Head Paradigm

The MPC-in-the-head paradigm was initiated by the work of Ishai et al [39] and provided a compiler
that can build honest-verifier zero-knowledge (HVZK) proofs for arbitrary circuits from secure MPC
protocols. Assume we have an MPC protocol with the following properties:

– N parties (P1, · · · , PN) securely and jointly evaluate a function f : {0, 1}∗ → {0, 1} on x while
each party possess an additive share JxKi of input x,

– Secure against passive corruption of N − 1 parties i.e any (N − 1) parties can not recover any
information about the secret x.

Then the HVZK proof of knowledge of x such that f(x) = 1 is constructed as:

– Prover generates the additively shares of the witness x into (Jx1K, · · · , JxN)K) among N virtual
parties (P1, · · · , PN) and emulate the MPC protocol "in-the-head".

– Prover commits to the view of each party and sends commitments to the verifier.
– Verifier chooses randomly (N − 1) parties and asks the prover to reveal the view of these parties

except one. Verifier later accepts if all the views are consistent with an honest execution of MPC
protocol with output 1 and agrees with the commitments.

Security of MPC protocol implies that the verifier learns nothing about the input x from the N − 1
shares, and MPC correctness guarantees that the Prover can only cheat with probability 1/N . Security
can then be amplified with parallel repetitions.

3 Technical Overview

Our starting point is the observation that all modern MPC-in-the-Head and VOLE-in-the-Head sig-
natures share a common high level template (up to, sometimes, minor variations). A rough outline of
the template is as follows:

– The signer, using a root key and some random salt, derives root keys and salts for each round
(where the rounds correspond to the number of repetitions τ of the underlying identification
scheme to achieve negligible soundness error).

4 Eliana Carozza and Geoffroy Couteau

– For each round k ≤ τ , using the round root key and salt, the signer expands the root key into
N = 2d pseudorandom (leaf seed, commitment) pairs, denoted (sdki , com

k
i), using a full binary tree

a la GGM, where each internal nodes has two children, computed by applying a length-doubling
pseudorandom generator on the value of the parent node.

– The concatenation of all commitments of the rounds is hashed with a collision-resistant hash
function, and all hashes of all rounds are hashed together into a single hash.

– For each round, the leaf seeds are further expanded via a PRG into 2d pseudorandom additive
shares (skj)j≤N of a target tuple, that usually consists of the witness together with (potentially)
some correlated random coins. An auxiliary string, or shift is constructed to offset the sum of
the shares such that it reconstructs to the target tuple (alternatively, the shifts can be computed
after the collapsing step that follows).

– For each round k, the 2d shares are collapsed into d aggregated values, where the i-th value is
computed by aggregating all shares skj such that the i-th bit of j (viewed as a bitstring over {0, 1}d)
is 0. The MPC-in-the-Head view on this process is that of collapsing one 2d-party (virtual) MPC
instance into d 2-party (virtual) MPC instances by aggregating the shares along the hyperplanes
of the d-dimensional boolean hypercube. The VOLE-in-the-Head view differs in semantics (the
collapsing process is viewed as a reduction from an (N − 1)-out-of-N oblivious transfer instance
to a (subspace) vector-OLE correlation over the subspace Zd) but the process is identical.

– (Optional) A consistency challenge (for each round) is derived from the shifts and the hash of
the commitments. This challenge will be used to check the consistency of the shifted aggregated
shares with respect to the correlation they are supposed to satisfy.

– (Optional) A proof of consistency is derived from the challenge and the aggregated shares. Usually,
this proof has a very simple structure and involves only challenge-dependent linear combinations
of the aggregated shares.

– A protocol challenge (for each round) is derived from the shifts and the hash of the commitments
(or, if a consistency challenge was used, from the consistency challenge and the consistency proof).
This challenge is used for the execution of the main virtual MPC protocol (for MPC-in-the-Head
proofs) or VOLE-based ZK proof (for VOLE-in-the-Head proofs) and is typically a “Schwartz-
Zippel” challenge (used to collapse the verification of a set of multivariate polynomial equations).

– For each round, the virtual MPC protocol, or the designated-verifier VOLE-based ZK proof, is
run.

– An opening challenge for each round is derived from the previous challenge. This challenge is used
to define the virtual parties to open in the MPC-in-the-Head protocol (or, in VOLE-in-the-Head
language, it defines the VOLE MAC key for the designated-verifier VOLE-based ZK proof).

– Eventually, an opening of each round is computed. It contains the opening to all-but-one of the
leaf seeds (if the challenge is ∆k ∈ {0, 1}d in round k, the opening contains the values on the
nodes of the co-path from the root to the leaf ∆k in the k-th GGM tree) as well as comk

∆k
.

3.1 Challenges in thresholdizing MPCitH signatures

Any signature scheme can be generically converted into a threshold signature scheme via generic
maliciously secure MPC. However, the structure of MPC-in-the-Head signature schemes makes them
especially ill-suited for such generic approaches, and results in extremely inefficient constructions.
Concretely, the main challenge lies in the construction of the GGM tree: to generate a signature, the
signer starts by sampling τ root keys (and salts) and uses them to generate τ full binary trees via a
length-doubling PRG (instantiated in practice with SHA3 [3], AES in counter mode [9] or fixed-key
AES [24]). The number of leaves in the tree is a tunable parameter that typically ranges from N = 28

(“fast”) to N = 216 (“shortest”). We represent such a tree with N = 24 on Figure 1. Then, each leaf
is stretched (via a PRG) into a commitment and a virtual party share, represented respectively in
green and purple on Figure 1. Afterwards, an auxiliary string is constructed from the (aggregated) N
virtual party shares (to correct the share of the N -th virtual party so that the shares reconstruct to
the right values, typically the witness and some correlated randomness) and the N commitments are
concatenated and hashed (to create a succinct commitment of the tuple). Finally, once the challenge
leaf i is determined, a succinct opening to all leaves except i is added to the signature by including
all seeds on the co-path to the selected leaf node (the co-path is represented in blue on Figure 1, and
the selected leaf in red).

On Threshold Signatures from MPC-in-the-Head 5

Fig. 1: A full GGM tree with N = 16. The seeds on the leaves are stretched into two strings, a commitment
string (in green) and a virtual party share (in purple) The red-colored leaf denotes the seed that is not revealed
in the signature, and the blue nodes denote the seeds on the co-path to the selected leaf. The signature contains
the co-path seeds as well as the commitment string to the red leaf (denoted by a green-filled blue rectangle).
The N -th virtual party share, represented in a darker purple, is computed from the aggregated virtual party
shares from 1 to N − 1 instead of being pseudorandomly generated from the N -th leaf seed.

The cost of distributing MPCitH signatures. Now, to distributively generate an MPC-in-the-
Head signature, the users would have to

– Run (τ times in parallel) a maliciously secure protocol that, given shares of a root seed, expands
it into a full binary tree of PRG evaluations, and stretches each leaf seed via a PRG. Crucially, no
individual user should see any virtual party share in this process, hence the virtual party hares
must remain secretely shared between the parties.

– Reveal the N commitments (they can be made public and locally hashed into a short digest by
the users)

– Securely compute the N -th virtual party share (the auxiliary string, or shift) from the aggregated
virtual party shares from i = 1 to N − 1.

– Once the non-opened leaf node is determined, reconstruct the seeds on the co-path to the selected
leaf, and include them into the signature.

The above procedure is, however, extremely inefficient. To give a back-of-the-enveloppe estimate,
even in the two-party setting, using a state-of-the-art maliciously secure constant-round protocol for
AES [47] requires on average 6.7ms per AES computation, and 5.2MB of total communication. The τ
full binary trees each have 2N nodes. Assuming a minimal number of two additional AES evaluations
on the leaf nodes (to create the commitment and the virtual party share – note that in most MPCitH
schemes, this number is actually much higher), we get a total of 4τN AES evaluations. Using the
parameters of FAEST-128s [9], we have N = 212 and τ = 11. This translates to a total communication
of almost a Terabyte (937GB) and more than 20 minutes of computation only to expand the binary
tree. For a larger number of users, the numbers would get significantly worse.

At a more abstract level, there are two clear downsides to the above strategy: (1) the protocol
makes a non-black-box use of the underlying PRG, resulting in high computational costs, and (2)
the communication scales with N , when the entire purpose of N in MPCitH protocol is to enable a
communication/computation tradeoffs, where larger values of N result in more computation but less
communication, since the computation of the full binary tree happens entirely in the signer’s head.
When distributively generating the signature, this computation must be taken “out of the signer’s
head”, defeating its purpose.

A black-box barrier. The strategy outlined above is, of course, nothing more than the naive direct
approach to distributing an MPCitH proof. Even though distributively computing the GGM trees
seems unavoidable, could there be a more clever strategy that circumvents the need for a non-black-
box use of the PRG? Unfortunately, the answer turns out to be no as soon as the size of the signature
does not scale with the number of users: in a recent work [32], Doerner, Kondi and Rosenbloom proved
that every threshold MPC-in-the-Head signature scheme must necessarily make a non-black-box use
of hash functions / PRGs, or else tolerate signature sizes that grow with the number of signers.
Concretely, this implies that there is no hope to do much better than the naive strategy outlined
above without modifying the signature scheme. In fact, [32] explicitely mentions FAEST (and Picnic)
as MPCitH signatures that are captured by their impossibility result.

6 Eliana Carozza and Geoffroy Couteau

3.2 Biting the bullet: MPCitH signatures that grow with the number of users

The impossibility result of [32] is quite strong, and we do not see any way to circumvent it. Instead, we
choose to bite the bullet: we modify the MPC-in-the-Head approach to make it “threshold-friendly”.
In doing so, we let the size of the signature grow with a bound on the number of signers.

There is a trivial and uninteresting way of making a signature scheme threshold-friendly by increas-
ing its size with the number of users: given n signing keys (sk1, · · · , skn), define Sign′(m, (sk1, · · · , skn)) :=
Sign(m, sk1)|| · · · ||Sign(m, skn). Clearly, Sign′ can be easily computed among n users U1, · · · ,Un by
letting each user Uj sample its own signing key skj , and concatenating the signatures locally produced
by each user. Our main observation is that in the context of MPC-in-the-Head signatures, one can
do much better: we only let the number of GGM trees scale with the number of users.

Concretely, an MPC-in-the-Head signature always contains τ “co-path”, corresponding to seeds on
the co-path from the root node of each GGM tree to the selected leaf. The total size of these co-paths
is actually independent of N , and identical for essentially all existing MPC-in-the-Head schemes:3
the size of each co-path is λ · logN (where λ is set to 128) and τ is chosen approximately equal to
λ/ logN (to achieve soundness 1/2λ after τ repetitions, since each round gives soundness 1/N). This
yields a total size of τλ logN ≈ λ2, which amounts to 2kB using λ = 128. This yields a significant
reduction in size for n users compared to naively concatenating n signatures.

For example, FAEST-128s and FAEST-128f signatures have size 5kB and 6.3kB respectively. In
the n-user setting, this translates to 2n+ 3 and 2n+ 4.3 kilobytes respectively, compared to 5n and
6.3n. For other MPCitH signatures, the gain is much higher: for example, for the signature scheme
of [26] has signature sizes ranging from 12.5kB (fast variant) to 9kB (short variant). Plugged in our
compiler, this yields signatures of size 2n + 10.5 or 2n + 7 kilobytes, much smaller than the 12.5n
and 9n cost of the naive approach. As discussed in the introduction, a major effect of this transform
is that it asymptotically erases the size difference between different signature schemes: for a largeish
n, 2n + 10.5 is not much worse than 2n + 3. This changes the efficiency metric to compare among
MPCitH signatures in the threshold setting: signature size does not matter much anymore, and a
much more relevant metric is the (computational, communication) cost of distributively computing
the signature. As we will see, some signature schemes such as [26] which are not state-of-the-art
anymore (due to their sub-standard signature size) fare especially well in this setting, while other
state-of-the-art signature schemes such as FAEST [9] appear much harder to distributively evaluate
with reasonable concrete efficiency.

Our approach. In slightly more details, in our approach, we let the signature generate n independent
GGM trees from n independent roots (for each of the τ rounds), and we view the pseudorandom strings
computed from the seed leaves of each tree as n-user shares of the commitments and virtual party
shares. Equivalently, we define the i-th virtual party commitment and share to be the XOR of the
i-th leaf strings of each of the n GGM trees. In a threshold setting, this implies that we can let each
user locally generate its own GGM tree. This way, the users hold without any communication n-wise
shares of the virtual party shares. Given these shares, distributively computing a signature boils down
to the following four tasks:

1. computing the hash of the concatenation of all commitments,
2. distributively computing the auxiliary string,
3. distributively computing the virtual MPC protocol,
4. appending all the τ · n co-path to the final signature.

Items 2 and 3 can typically be performed efficiently: the auxiliary string is computed via a dis-
tributed protocol from the locally-aggregated strings of each of the n users. Hence, the total commu-
nication is independent of the number N of leaves. Furthermore, by design, the virtual MPC protocol
operates on d = logN virtual party shares (after collapsing the N shares into d 2-party shares via
the hypercube technique [4]); the threshold version amounts to extending this virtual protocol to an
n ·N -party protocol (where each user controls the shares of N out of n ·N virtual parties). For several
schemes of interests, the extension to n ·N parties is almost for free. Item 4 yields an increase in the
signature size (of 2(n − 1)kB when using λ = 128), but as discussed earlier, a linear-in-n increase is

3 The recent works of [8] and [38] introduced techniques to —slightly— reduce the size of these co-path,
using respectively a “one tree to rule them all” strategy and the half-tree technique from [36], but both
techniques can be applied to all existing MPCitH signatures.

On Threshold Signatures from MPC-in-the-Head 7

unavoidable for schemes whose threshold version makes a black-box use of the underlying primitive.4
Eventually, item 1 requires some care: the natural approach would be to let all parties reconstruct
the N commitments (for each of the τ rounds) and locally hash them. However, this would have a
significant impact on communication for large value of N : 5.8MB per user for τ = 11, N = 212, or
even up to 75.5MB per user for τ = 9, N = 216 (a “short” parameter set used in many recent works,
e.g. [4, 24,38]).

To avoid this large communication overhead, we proceed differently: instead of reconstructing the
commitments as the XOR of the commitment shares before hashing, we let each party locally hash
the concatenation of its commitment shares, and broadcast the hash. Then, all uses locally hash the
concatenation of the n hashes. This dramatically reduces the communication (to 32 bytes per user) at
the cost of increasing again slightly the signature size (by 16 · n bytes) as all n shares of the selected
leaf commitment (the blue rectangle on Figure 1) must now be included into the signature to allow
the verification of the hashes.
An MPC-in-the-Head template. We represent on Figure 2 a more precise description of the
typical MPC-in-the-Head template, indicating the subroutines involved, their inputs and outputs,
and using colors to provide a high level overview of the difficulties that arise in a threshold setting.
The term “PPRF” stands for puncturable pseudorandom function [16,22,43] and captures the abstract
primitive realized by the GGM PRF [35]: a pseudorandom function with domain size N equipped with
an efficient puncturing algorithm that, given a PPRF key K and a point ∆ ≤ N , generates a succinct
key K{∆} that allows to recompute the PPRF on all points except ∆. “VOLE” stands for vector
oblivious linear evaluation, and denotes the (linear) aggregation procedure that converts a 2-party
(N − 1)-out-of-N oblivious transfer into additive shares of ∆ ·u, where ∆ is the punctured point (the
selected leaf) and u is a pseudorandom string known to the signer. This step is syntactically identical
to the hypercube technique [4] that collapses an N -party virtual MPC protocol into d = logN
instances of a 2-party protocol (but the alternative VOLE-style view has proven conceptually useful
and is at the heart of the line of work on VOLE-in-the-Head signatures).

We outline below the color code of Figure 2:
: the red color denotes the subroutines that are challenging to generate in a distributed setting,

and their naive distributed evaluation is highly non black-box. We handle it by duplicating the PPRF
instances, letting each user locally run its own PPRF instances and compute the VOLEs / hypercube
aggregated shares. The VOLEs obtained by each users are viewed as additive shares of the global
VOLE of the signature.

: the blue color denotes calls to a hash function on the private outputs of the PPRF function-
ality. We let instead each party locally hash its shares of the commitments, and all parties hash the
concatenation of the local hashes.

: the green color denotes functionalities which are typically much simpler to distributively
evaluate (often involving mostly linear operations). When adapting our high-level template to a
concrete choice of MPCitH signature, the bulk of the work is the design of efficient MPC protocols
for computing the green subroutines.

: the gray color denotes the optional Quicksilver proof challenge [50]. This check is typically
present in VOLE-in-the-Head protocols [8–10,29,44], but absent from MPC-in-the-Head protocols [1–
6, 11, 13, 24, 26, 30, 33, 34, 38, 41, 52] that directly rely on a virtual MPC protocol to prove the target
relation (though in principle, such a protocol can also receive a challenge, typically to introduce
batching and make verification more efficient).

: the red arrow denotes outputs that will be directly appended to the signature, or that can
be computed from values included in the signature.

While the above template is described at an abstract level, we provide later on a full-fledged case
analysis of the application of this template to a concrete MPC-in-the-Head signature scheme. Before
we move on to this concrete case analysis, however, we shall discuss important technical subtleties
that arise when attempting to prove security of the resulting threshold signature scheme.

3.3 Threshold signatures from threshold-friendly MPCitH signatures

Given a threshold-friendly MPCitH signature scheme (KeyGen,Sign,Verify) that follows the template
outlined in the previous section, we sketch a distributed signing procedure. Let Commit denote an
4 It is an interesting open question whether the cost could be lowered below 2kB/user. We leave it to future

work, but note that it seems particularly challenging.

8 Eliana Carozza and Geoffroy Couteau

(salt,K)

derive

(salt1,K1) (salt2,K2) · · · (saltτ ,Kτ)

PPRF PPRF · · · PPRF

(sd1i)i≤N , (com1
i)i≤N (sd2i)i≤N , (com2

i)i≤N (sdτi)i≤N , (comτ
i)i≤N

VOLE H VOLE H HVOLE

(u1, v1)

u∗
1

(u2, v2)

u∗
2

(uτ , vτ)

u∗
τ

sk

Shift

H

VOLE Challenge

VOLE consistency check

· · ·

· · ·

· · ·

Quicksilver Challenge

Quicksilver proof / virtual MPC protocol

τ opening Challenges

(salt1,K1) (salt2,K2) · · · (saltτ ,Kτ)

PPRF co-path1 PPRF co-path2

· · ·

PPRF co-pathτ

Fig. 2: High level representation of the common structure of existing MPC-in-the-Head and VOLE-in-the-
Head signature schemes. sk denotes the secret key, or witness (the preimage of some one-way function). We
refer the reader to Section 3.2 for a breakdown of the components and an outline of the color code of the
template.

extractrable and equivocable commitment scheme. We use the notations from the template of Figure 2.
The protocol involves n users U1, · · · ,Un. We assume that the setup is executed by a trusted dealer.5

Trusted setup. Sample (sk, pk)← KeyGen(1λ). Sample n shares (sk1, · · · , skn) of sk. Output pk as
a public output, and send skj to each user Uj . // Additionally, the trusted setup might append
other correlated material to facilitate the executions of distributed protocols during the signing
phases, such as e.g. PCG seeds.

Commit-and-open phase. Each user Uj samples τ root keys (K1,j , · · · ,Kτ,j). A master salt salt
is sampled via a secure coin-flipping protocol, and τ salts (salt1, · · · , saltτ) are derived from salt
using a PRG modelled as a random oracle. Each user Uj locally computes (sde,ji , come,j

i)i≤N ←
PPRF(salte,Ke,j) for e = 1 to τ and sets hj ← H(com1,j

1 , · · · , com1,j
N , · · · , comτ,j

1 , · · · , comτ,j
N).

5 This is a reasonable assumption in the common scenario where a signer wants to delegate its signing
capability to n untrusted servers. In other contexts, no signer is assumed to know the full secret key and
the trusted setup must be replaced by a distributed protocol. For simplicity, we focus on the former scenario
in this work.

On Threshold Signatures from MPC-in-the-Head 9

Commit: each user Uj sends cj ←$ Commit(hj).
Open: each user Uj opens cj to hj .
Hash: all users compute h1 ← H(h1, · · · , hn).

Shift. Each user Uj generates τ VOLE pairs (ue,j , ve,j) ← VOLE(sde,j1 , · · · , sde,jN) (equivalently, τ
pairs of hypercube-aggregated shares). For every e, the pairs ue,j , ve,j)j≤n are viewed as additive
shares of a single VOLE pair (ue, ve). All parties engage in a maliciously secure MPC protocol
to securely instantiate the n-party functionality Fshift that takes as input shares of (ue, ve)e≤τ

and publicly outputs the shift shift (in VOLE-in-the-Head terminology) or auxiliary string aux
(in MPC-in-the-Head terminology).

VOLE consistency check. All parties derive from (h1, shift) a first challenge chall1. In the VOLE-
in-the-Head setting user Uj locally computes shares of the VOLE consistency check from (chall1, shift, (ue,j , ve,j)e≤τ).
The users broadcast their shares and reconstruct the VOLE consistency check (this is possible
because the check is performed via a linear universal hash function). In the MPC-in-the-Head
setting, the auxiliary string typically has a more complex structure (e.g. Beaver triples in [3,11],
shares of the same pseudorandom bit over F2 and F3 in [26], or shares of a pseudorandom inte-
ger and its one-hot-vector representation in [24]). Accordingly, the check becomes more involved.
Nevertheless, in existing MPC-in-the-Head protocol, this consistency check remains fully linear
(it involves sacrificing in [3,11] and randomly shuffling the correlated randomness in [24,26] using
a public random permutation derived from the challenge).

(Optional) Quicksilver challenge. All parties publicly derive from (h1, shift) and from the VOLE
consistency check a challenge chall2 for the Quicksilver proof.

Quicksilver proof / virtual MPC protocol. In this step, the parties distributively run the vir-
tual MPC protocol (alternatively, distributively generate the quicksilver proof). We note that
the cost of this step varies widely from one signature scheme to the other: in some signature
schemes such as [24, 26] the virtual MPC protocol is reduced to a bare minimum, involving only
local linear operations and broadcasting shares. As a consequence, distributively emulating this
virtual MPC protocol among n users is straightforward. In contrast, in schemes such as FAEST
(and all VOLE-in-the-Head schemes), this step requires executing a maliciously secure protocol
for distributively generating a Quicksilver proof, which appears considerably more challenging.
In particular, in FAEST, it requires running a maliciously secure n-user evaluation of the AES
circuit over an extension field.6

Opening. Eventually, all parties publicly derive from (h1, shift) and the transcript π of the vir-
tual MPC protocol / the Quicksilver proof π a challenge chall3 that encodes the τ positions
(i1, · · · , iτ) ∈ [N]τ that should not be opened. Each user Uj computes (CoPathe,j , come

ie
)e≤τ ,

where CoPathe,j denotes the logN -sized tuple of seeds on the co-path from the root Ke,j to the
ie-th leaf. They output the final signature

σ = (salt, h1, (chall2), chall3, (CoPath
e,j , come

ie)e≤τ,j≤n, π, shift).

Obstacles towards proving security. The above template threshold signature seems intuitively
secure. However, we cannot reduce security to the unforgeability of the underlying (threshold-friendly)
MPC-in-the-Head scheme. To understand the issue, let us run through the first steps of the security
analysis. Assume that all users except Uj are corrupted, and let Sim denote a simulator that emulates
Uj . In the setup phase, Sim receives pk from the signature functionality, and samples n − 1 random
shares (skℓ)ℓ ̸=j . Then, during the commit-and-open phase, Sim commits to a dummy string (it can
adapt its opening later on as the commitment scheme is equivocable) and extracts (hℓ)ℓ ̸=j from the
commitments (cℓ)ℓ ̸=j .

However, this is where the proof gets essentially stuck. Recall that the goal of Sim is to play the
role of an interface between the corrupted parties and the signing oracle. To this end, Sim is not given
access to the secret key, and must be able to simulate given only access to the signing oracle. By the
unforgeability of the signature scheme, this implies that the only way for Sim to properly simulate a
threshold signing session on a message m is to somehow force the signing session to output the exact
same signature as it received from the signing oracle.7

6 The work of [48] reports more than 20s of computation for 14 parties, and about 3 minutes for 128 parties,
when evaluating the plain AES circuit; the version we need here would be a large constant factor larger,
since the AES circuit must be evaluated over an extension field.

7 Technically, Sim could possibly force outputting a different signature if the signature scheme is unforgeable
but not strongly unforgeable. However, to our knowledge all known MPCitH schemes are plausibly strongly
unforgeable so it seems unlikely that one could implement such a strategy.

10 Eliana Carozza and Geoffroy Couteau

Now, given access to a signing oracle, Sim receives a signature σ = (salt, h1, (chall2), chall3, (CoPath
e,j , come

ie
)e≤τ,j≤n, π, shift)

on a message m. From the signature, it obtains h1 = H(h̃1, · · · , h̃n). To simulate, Sim should at this
stage find hj such that H(h1, · · · , hn) = H(h̃1, · · · , h̃n), which would break the collision-resistance
of H (hence also the security of the signature scheme). Worse, the co-paths and commitments
(CoPathe,j , come

ie
) included in the signature allow recomputing the h̃ℓ. Because Sim must force the

signing session to output the same co-paths as contained in σ, the adversary will necessarily notice
from the final signature of the signing session that the h̃ℓ recomputed from the co-paths are not equal
to the hℓ. In other words, Sim cannot possibly simulate the interaction at this stage.

Candidate workarounds. First, we note that this issue is a direct consequence of our handling of
item 1 in Section 3.2: if the parties were instead computing h1 as a hash of the XOR of their indi-
vidual commitment shares, then Sim could reconstruct from σ the commitment tuple (come

i)i≤N,e≤τ ,
extract the commitment shares of the corrupted users from the (cℓ)ℓ ̸=j , and adapt the opening of
its commitment cj to the XOR of the commitment tuple and the corrupted parties’ commitment
shares. This is in fact similar to the strategy employed in standard threshold signature schemes such
as threshold variants of Schnorr. But as we saw, in the MPCitH context this would incur a prohibitive
communication.

To preserve the low communication of our solution, the most natural candidate workaround would
be to modify the threshold signing protocol to give the ability to Sim to somehow force the corrupted
users to output the same hashes h̃ℓ as contained in σ. However, the only way to achieve this is
to compute the hash of each user via a distributed protocol instead of letting the user compute it
locally. But computing the hash values hℓ via a distributed protocol would again incur a prohibitive
communication overhead, because the size of the input to each hash is very large, completely negating
the communication advantage of our method! Furthermore, this distributed computation would have
to make a non-black-box use of H, which would again require heavy computations.

3.4 Our solution: corruptible existential unforgeability

To resolve this conundrum, we adopt a different strategy: we do not change the threshold signing
protocol, and instead modify the unforgeability game of the signature. Our main observation, which
is very natural in retrospect, is the following: in the course of modifying the signature scheme to make
it threshold-friendly, we also made it more secure in a specific sense that we will clarify shortly. The
security proof of existential unforgeability of an MPCitH signature relies at some point on a sequence
of game hops to replace the co-path and the selected leaf seed with uniformly random strings, by
invoking log n times the security of the PRG. In turns, this allows to replace the share generated from
the selected leaf with a random string. As a portion of this string is used to mask the witness, this
guarantees that the witness remains hidden (statistically, at this point).

Now, in our threshold-friendly variant, there are n GGM trees and n co-paths, and the n · N
strings stretched from the leaf seeds of all trees form additive shares of the N virtual parties’ shares.
The same analysis as with a single co-path carries over to this setting, but crucially, it suffices to
replace the selected leaf share of a single GGM tree with a random string (this is easy to see: the
“shares of shares” form a n · N -party additive sharing of the witness, and replacing a single share
with a random string suffices to statistically mask the witness). This implies that the scheme satisfies
the following stronger security property: it remains secure even if all but one of the root keys are
controlled by the adversary (instead of being randomly sampled by the signing oracle), as long as one
root key is guaranteed to remain honestly and secretly sampled by the signing oracle. In other words,
our threshold-friendly variant achieves a form of resistance against partial corruption of the random
tape of the signature scheme.

We formalize this observation by introducing the notion of corruptible existential unforgeability.
Informally, a signature scheme (KeyGen,Sign,Verify) satisfies (n-users) corruptible existential un-
forgeability against chosen-message attacks (CEUF-CMA) if the randomness of Sign is an n-tuple
(r1, · · · , rn), and no adversary can forge a signature after making an arbitrary polynomial number of
queries to the following corruptible signing oracle: the oracle receives queries (m, i, (rj)j ̸=i), samples
ri, and returns σ ← Sign(m, sk; (r1, · · · , rn)).

Going back to the security analysis of the threshold signature scheme, Sim can now emulate the
commit-and-open phase of the protocol as follows:

– It extracts the hashes (hℓ)ℓ ̸=j from the corrupted users’ commitments

On Threshold Signatures from MPC-in-the-Head 11

– From each hℓ, Sim extracts the root keys (K1,ℓ, · · · ,Kτ,ℓ). We will come back to this extraction
step later (but in short, it relies on modeling H as a random oracle, and the AES cipher used to
instantiate the GGM PPRF as an ideal cipher, and letting Sim observe the queries).

– Sim sends (m, j, (K1,ℓ, · · · ,Kτ,ℓ)ℓ ̸=j) to the corruptible signing oracle, and receives a signature σ.
Note that by design, the hash h1 contained in σ is of the form H(h1, · · · , hj , · · · , hn), where the
(hℓ)ℓ̸=j are the same as extracted from the commitments cℓ (as they have been computed from
the same root keys).

– Sim recomputes hj from σ using (CoPathe,j , come
ie
)e≤τ and adapts the opening of cj to hj using

equivocability.

3.5 A dummy attack

Alas, the strategy given above does not yet quite work, due to an annoying “dummy attack” that a
corrupted party could run. In the analysis above, we assumed that given the hashes hℓ extracted from
Uℓ’s commitments (where Uℓ denotes the ℓ-th user), Sim could recover the root keys (K1,ℓ, · · · ,Kτ,ℓ)
of Uℓ by observing its queries to the random oracle and to the ideal cipher. But what happens if Sim
does not find a preimages (K1,ℓ, · · · ,Kτ,ℓ) among the queries which are consistent with hℓ? There are
a few reasons why this could happen. Perhaps Uℓ created a query collision, or did simply not query
anything and sampled hℓ at random. These are easy to rule out: with overwhelming probability, the
collision-resistance and the one-wayness of the random oracle guarantees that the user will fail to
produce an accepting signature, and Sim can proceed through the simulation with dummy values.

However, there is one specific way that Uℓ could never query one of the root keys Ke,ℓ, yet still
manage to produce an accepting signature with non-negligible probability: Uℓ can guess a selected
leaf i∗, sample uniformly random seeds on the co-path to i∗ (the blue nodes on Figure 1) and sample
a uniformly random seed on i∗ (the red node on Figure 1). With these “fake” seeds, Uℓ can recompute
all seed leaves of the GGM tree, and run the entire threshold signing protocol. At the end of the
protocol, during the opening phase, a challenge ie will be generated. With probability 1/N , it might
happen that ie = i∗, in which case by adding its fake co-path to the signature, Uℓ will create a valid
signature! (Meaning, not a honestly distributed signature, but a signature that passes the verification
nonetheless). This is of course a dummy attack that achieves nothing —Uℓ must still know a share skℓ
of sk to compute the rest of the signature unless it manages to produce fake co-paths for all e ∈ [τ],
which happens only with negligible probability— but it still implies that our simulation breaks down,
as Sim cannot simply assume that if it fails to extract a root key, then the signature will necessarily
not verify.

We handle this last challenge by returning to the (corruptible) threshold-friendly signature scheme
construction. We modify the syntax of the scheme to let it take as random input either root seeds, or
pairs (co-path, selected leaf seed). Then, the signature algorithm proceeds as before, reconstructing
the leaf seeds either from the root or from the co-path. If some root Ke,ℓ was replaced with a co-path
to a leaf i∗ but i∗ ̸= ie, the signing algorithm raises a flag flag = ⊥ (indicating that the signature
generation failed to produce a valid signature), but outputs the invalid signature anyway. Fortunately,
this syntactic change has almost no impact on the CEUFCMA security analysis of the scheme (as the
analysis relies essentially on replacing the uncorrupted root seed by a random co-path to the right
selected leaf), though it makes the description of the scheme more tedious.

With this modification, we can circumvent this dummy attack as follows: during the commit-and-
open phase, Sim will attempt to extract either root keys Ke,ℓ or pairs (co-path, selected leaf seed)
from the preimages. If neither extraction attempt succeeds, Sim proceeds through the rest of the
simulation with dummy values, and the signature is guaranteed to be invalid (with overwhelming
probability over the choice of the random oracle and ideal cipher). Else, if extraction succeeds, Sim
feeds the extracted values to the corruptible signing functionality (which accepts either root keys or
(co-path, leaf) pairs as randomness input) and can proceed with the rest of the simulation using the
signature returned by the functionality (which might or might not be a valid signature, depending on
whether a corrupted party attempted a dummy guess attack and guessed wrongly).

3.6 Case analysis: RSD-based threshold signatures

Our template is not an automated compiler: we cannot, unfortunately, produce a full-fledged abstract
template from which one could automatically derive a threshold signature scheme given any MPC-in-
the-Head scheme as input, with an accompanying formal proof of security. This stems from the fact

12 Eliana Carozza and Geoffroy Couteau

that existing MPC-in-the-Head schemes often differ on subtle low-level details: in how exactly they
instantiate the GGM PPRF, in how they inject salt into the PRG evaluations to avoid the collision
attack of [31], in how they hash the τ ·N commitments (either hashing the full concatenation, or first
hashing individually the τ blocks of N commitments before hashing the τ hashes), in whether they
compute the auxiliary string directly from the virtual party share or from the VOLE, etc, etc.

Each MPCitH scheme also comes with its own security analysis, and though many broadly follow
the same template, some again differ in their low-level details. Furthermore, there are two broad
template security analysis which all schemes more or less choose between: most MPC-in-the-Head
protocols follow the original Picnic analysis [52], sometimes updated to either model directly the
GGM PPRF in the random oracle model to facilitate extraction [3] or modelling instead the GGM
PPRF as a multi-instance PPRF to achieve tight security while relying only on AES instead of a
hash function for better efficiency [24, 38]. In parallel, VOLE-in-the-Head protocols typically follow
the proof methodology introduced by FAEST [9], which differs significantly from the analysis of
previous schemes. At a high level, while other MPC-in-the-Head scheme prove standard soundness
and suffer from the Kales-Zaverucha attack [40] when the underlying identification scheme has more
than three rounds (and must therefore adjust their parameters accordingly), the VOLE consistency
check used in FAEST and follow-up works allows them to achieve the stronger notion of round-
by-round soundness [25, 27] that, in particular, does not result in any security loss when compiling
multi-round identification schemes via Fiat-Shamir.

As a result of these discrepancies, we view our abstract template as more of a recipe: a methodology
that signature designers can adopt to convert their favorite signature scheme into a threshold-friendly
signature scheme, prove its CEUF-CMA security as a relatively direct adaptation of the original EUF-
CMA proof of the base scheme, and construct a threshold signing scheme from that. We believe that
it would be possible in theory to have a “grand unification” of all MPC-in-the-Head and VOLE-in-the-
Head security analyses in a general formal framework, and from there to provide a formal generic way
to derive a CEUF-CMA threshold-friendly scheme and an accompanying threshold signing protocol.
However, coming up with such a grand unification framework is out of the scope of this work (and
we expect it to be challenging, to say the least).

Instead, we provide in the body of the paper a detailed case analysis of applying our “recipe” to a
concrete MPCitH signature scheme. We expect (but do not formally claim) our concrete analysis to
carry over in a very similar form to most other MPC-in-the-Head [1–6,11,13,24,26,30,33,34,38,41,52]
and VOLE-in-the-Head [8–10, 29, 44] protocols. We select the scheme from [26], which is based on
the regular syndrome decoding assumption, because of the very simple structure of its virtual MPC
protocol: concretely, securely computing the auxiliary string and distributively running the virtual
MPC protocol boils down to securely instantiating a functionality that converts “modulo 2” shares into
“modulo 3” shares of the same value. As we will see, recent results from the MPC literature provide
efficient instantiations of this functionality. This simple structure makes it an especially favorable
candidate for our transform, even though the signature scheme itself is not state-of-the-art (we are
aware of at least three MPCitH signature schemes based on regular syndrome decoding that achieve
shorter signature sizes [24, 29, 44], but we expect all three of them to yield less efficient threshold
signatures).

4 Threshold-Friendly MPC-in-the-Head Signatures

4.1 Corruptible existential unforgeability

We introduce the Corrupted Existential Unforgeability under Chosen Message Attack (CEUF-CMA)
security model built upon the classical EUF-CMA notion by introducing adversarial control over
specific seed inputs. In this model the adversary interacts with the challenger by querying signatures
on tuples (m, i, (rj)j ̸=i), where the chosen seeds will be used in the signature by the challenger for
all-but-one of the trees in the MPC. The security of the scheme hinges on ensuring that even with
such control, the adversary cannot produce a valid forgery on a fresh message-seed pair. This model
captures a more refined adversarial advantage, strengthening the analysis of existential unforgeability
in scenarios with partial input corruption.

Notation 2 Let n = n(λ) be a polynomial, and let Σ = (KeyGen,Sign,Verify) be a signature scheme.
We say that Σ is an (n+ 1)-source signature scheme if there exists n+ 1 sets (R,R1, · · · ,Rn) such
that the random tape of Sign is sampled from the randomness domain R×R1 × · · · × Rn.

On Threshold Signatures from MPC-in-the-Head 13

Definition 3. Let n = n(λ) be a polynomial, and let Σ = (KeyGen,Sign,Verify) be an (n+ 1)-source
signature scheme with randomness domain R × R1 × · · · × Rn. Consider the following experiment
ExpCEUFCMA

Σ (A) played between a challenger and an adversary A:

1. The challenger generates a key pair (pk, sk)← KeyGen(1λ), and gives the public key pk to A.
2. The adversary A may adaptively request signatures on tuples (m, i, (rj)j ̸=i), where i ∈ [n] is

chosen by the adversary himself. For each query (m, i, (rj)j ̸=i), the challenger randomly chooses
r ←$R (the “uncorruptible” part of the randomness) and the remaining uncorrupted coin ri ←$Ri,
computes a signature σ ← Sign(sk,m, (r, r1, . . . , rm)), and returns σ to A.

3. Finally, the adversary outputs a forgery (m∗, σ∗). The experiment outputs 1 if:
– Verify(pk,m∗, σ∗) = 1, and
– no tuple (m∗, i, (rj)

∗
j ̸=i) was previously queried by the adversary.

Otherwise, the experiment outputs 0.

We define the advantage of an adversary A in breaking the CEUFCMA security of the scheme Σ
as:

AdvCEUFCMA
Σ (A) = Pr

[
ExpCEUFCMA

Σ (A) = 1
]

where ExpCEUFCMA
Σ (A) is defined as above. We say that a signature scheme Σ is n-user CEUFCMA-

secure if the advantage AdvCEUFCMA
Σ (A) of any polynomial-time adversary A is negligible.

We note that every signature scheme can trivially be converted into a corruptible (n+ 1)-source
signature scheme as defined above, simply by defining Sign∗(m, sk; (r, r1, · · · , rn)) := Sign(m, sk; r)
(that is, ignoring the corruptible part of the randomness and using only the uncorruptible part).
However, not every (n+ 1)-source signature scheme is a (n+ 1)-source corruptible signature scheme.
Our results build upon the observation that specific constructions of (n+1)-source MPC-in-the-Head
schemes are CEUFCMA secure. Looking ahead, r in our construction will correspond to the salt (which
must be sampled randomly for each signature scheme, but is publicly revealed by the signature), and
each ri will be a τ -tuple of seed roots for computing GGM trees.

4.2 A Threshold-Friendly variant of the signature scheme

We outline below a threshold-friendly variant of the signature scheme from [26], which is based on
the regular syndrome decoding assumption. We refer the reader to [26] for detailed discussions on
the RSD assumption, its cryptanalysis, and the parameter selection process. We note however that in
light of existing cryptanalysis, RSD appears to be a conservative assumption and has attracted some
attention in the context of MPC-in-the-Head signatures [24,26,29,44].

Beyond modifying the construction of [26] using the recipe introduced in the technical overview
to make it “threshold-friendly”, we also update it along the way to include some optimizations that
appeared more recently, such as the hypercube technique (and a few more minor optimizations). As
such, the reader might find that the description differs significantly from that of [26] (but we stress
that it is the same signature scheme with a few modern generic optimizations). In the following, we
let D = logN denote the logarithm of the number N of virtual parties.

The PPRF. Our construction relies on a multi-instance puncturable pseudorandom function, as
defined in [24]. In short, a multi-instance puncturable PRF remains secure if the adversary is allowed
to query punctured keys for a large number of different keys, and must distinguish whether the
challenges have all been computed by evaluating the PPRF at the punctured points, or have all been
sampled at random. For completeness, we recall the formal definition of multi-instance PPRFs in
Appendix B.

We introduce some notations. We let F denote the GGM PPRF, instantiated with a length-
doubling PRG. When the length doubling PRG is instantiated as PRGsalt(x) = (AESsalt0(x)⊕x,AESsalt1(x)⊕
x), where salt0, salt1 are two λ-bit random strings (parsed from the 2λ-bit random salt salt given as
input to the multi-instance PPRF), and when AES is modelled as an ideal cipher, [24] proved that
the resulting PPRF is indeed (tightly) multi-instance secure. Given a salt salt, a root seed sd, and an
index i, we write sdi ← Fsalt(sd, i) to denote the i-th leaf of the GGM tree computed using PRGsalt.

To simplify notation, given a tuple cp = (i∗, v1, · · · , vD, sd∗), we denote Fsalt(cp, i) the following
procedure that computes the PPRF outputs from a co-path instead of a root seed:

14 Eliana Carozza and Geoffroy Couteau

– view v1, · · · , vD as the λ-bit seeds on the nodes of the co-path from the root to the i∗-th leaf (i.e.,
the blue nodes on Figure 1);

– if i ̸= i∗, compute sdi using PRGsalt from its closer ancestor on the co-path (for example, if i = 1,
that would be the seed v2 on the leftmost blue node on Figure 1);

– else, if i = i∗, output sdi∗ = sd∗.

Eventually, given a salt salt, a root seed sd, and a leaf index i, we let CoPathsalt(sd, i) denote the
procedure which recomputes the entire GGM tree and outputs the D-tuple of seeds on the nodes on
the co-path to the leaf i.

Key generation. In our signature scheme, the key generation algorithm randomly samples a syn-
drome decoding instance (H, y) with solution x. We describe it on Figure 1.

Algorithm KeyGen(1λ)

Inputs: A security parameter λ.
1. Sample sd← {0, 1}λ and set H ← PRG(sd) where H = (H ′|I) ∈ Fk×K

2 is a parity-check
matrix in systematic form.

2. Sample (x|x2)←$ Regw(FK
2) with x ∈ FK−k

2 and set y ← H ′ · x⊕ x2.
3. Divide x into n additive shares x̃i for i ∈ [n];
4. Set pk = (sd, y) and sk = (H, (x̃1, · · · , x̃n), y).

Algorithm 1: Key generation algorithm of the signature scheme

Signing. We represent the signing algorithm below.

Algorithm Sign(m, sk; (r, r1, · · · , rn))

Inputs: A message m ∈ {0, 1}2λ and secret key sk = (H, (x̃1, · · · , x̃n), y).
Randomness:

– Parse r as salt ∈ {0, 1}2λ and derive (salt1, · · · , saltτ)← PRG(salt).
– Parse each rj as (Ke,j)e≤τ and further parse each Ke,j as either sde,j ∈ {0, 1}λ or as

cpe,j = (i∗e,j , v
1
e,j , · · · , vDe,j , sd

∗
e,j) ∈ [N] × ({0, 1}λ)D+1. // cpe,j corresponds to using as

randomness input a co-path to a leaf i∗e,j and a i∗e,j-th leaf seed sd∗e,j instead of a root
seed sde,j . Note that forcing a choice of co-path to a leaf i∗e,j yields a correct signature
only in the event that ie = i∗e,j in Phase 4. This randomness input is never used in an
honest use of the signing algorithm, but is allowed in order to specify the behavior of
Sign given corrupted inputs.

Phase 1. For each iteration e ∈ [τ] and each j ∈ [n]:
– For d = 1 to D, set (Xe,j

d,0, R
e,j
d,0, U

e,j
d,0)← (0, 0, 0) ∈ FK−k

2 × FK−k
2 × FK−k

3 ;
– Set xe,j

N ← x̃j , ue
N ← 0, and re,j ← 0;

– For i = 1 to N − 1:
1. Compute sde,ji ← Fsalt(sd

e,j , i); // Fsalt(cp
e,j , i) if Ke,j = cpe,j

2. (xe,j
i , re,ji , ue,j

i , come,j
i)← PRG(sde,ji);

// (xe,j
i , re,ji , ue,j

i , come,j
i) ∈ FK−k

2 × FK−k
2 × FK−k

3 × {0, 1}λ.
3. xe,j

N ← xe,j
N ⊕ xe,j

i , re,j ← re,j ⊕ re,ji and ue,j
N ← ue,j

N + ue,j
i mod 3;

4. Compute the virtual parties’ views

(xe
i , r

e
i , u

e
i) =

⊕
j

xe,j
i ,

⊕
j

re,ji ,
∑
j

ue,j
i mod 3

 .

– On node N : // computing the auxiliary string
1. Compute sde,jN ← Fsalt(sd

e,j , N) // Fsalt(cp
e,j , N) if Ke,j = cpe,j

2. Set (re,jN , come,j
N)← PRG(sde,jN);

3. Set re,j ← re,j⊕re,jN , re ←
⊕

j r
e,j , ue ←

∑N−1
i=1 ue

i mod 3, and ue
N ← re−ue mod 3.

On Threshold Signatures from MPC-in-the-Head 15

4. Set the N -th virtual party’s view

(xe
N , reN , ue

N) =

⊕
j

xe,j
N ,

⊕
j

re,jN , ue
N mod 3


5. Define auxeN ← (xe

N , ue
N);

– For i = 1 to N : // hypercube aggregation
• For all d ≤ D such that i[d] = 0, set: // i[d] is the d-th bit of i.

∗ Xe,j
d,0 ← Xe,j

d,0 ⊕ xe,j
i ;

∗ Re,j
d,0 ← Re,j

d,0 ⊕ re,ji ;
∗ Ue,j

d,0 ← Ue,j
d,0 + ue,j

i mod 3;
• Set the hypercube-aggregated views to

(
Xe

d,0, R
e
d,0, U

e
d,0

)
=

⊕
j

Xe,j
d,0,

⊕
j

Re,j
d,0,

∑
j

Ue,j
d,0 mod 3

 .

– Get hj
1 ← H1(com

1,j
1 , · · · , com1,j

N , · · · , comτ,j
1 , · · · , comτ,j

N); // Accumulate the commit-
ments inside the hash rather than storing and hashing all at once.

– Set h1 ← H1(m, salt, h1
1, · · · , hn

1);
Phase 2.

1. (πe)e≤τ ← PRG1(h1). // πe ∈ Perm([K − k]).
Phase 3. For each iteration e ∈ [τ]:

1. ze1 ← x⊕ πe(re), ze2 ← H ′ · ze1 ⊕ y,
and ze ← (ze1||ze2);

2. For d = 1 to D, set:
– zed,0[1]← Xe

d,0 ⊕ πe(Re
d,0), z

e
d,0[2]← H ′ · zed,0[1]⊕ y, and zed,0 ← (zed,0[1]||zed,0[2]);

– zed,1[1]← ze1 ⊕ zed,0, z
e
d,1[2]← ze2 ⊕ zed,0[2], and zed,1 ← (zed,1[1]||zed,1[2]);

– x̄e
d,0 ← ze + (1− ze) · πe(Ue

d,0);
– x̄e

d,1 ← x− x̄e
d,0 mod 3.

– For b = 0, 1, set msged,b ← (zed,b,BHW3(x̄
e
d,b)).

3. Get h2 ← H2(m, salt, h1, (msged,b)d≤D,b∈{0,1},e≤τ);
Phase 4.

– Set (ie)e≤τ ← PRG2(h2). // ie ∈ [N].
– For e = 1 to τ , if there exists j ∈ [n] such that Ke,j = cpe,j , denoting i∗e,j the first

component of cpe,j , if i∗e,j ̸= ie, raise a flag flag = ⊥. Else, raise a flag flag = ⊤.
– For all e, j such that Ke,j = cpe,j = (i∗e,j , v

1
e,j , · · · , vDe,j , sd

∗
e,j), define copathe,j =

(v1e,j , · · · , vDe,j).
– For all e, j such that Ke,j = sde,j , define copathe,j = CoPathsalt(sd

e,j , ie).
Phase 5. Output

σ =

(
salt, h1, h2,

(
copathe,j , come,j

ie

)
e≤τ, j≤n

, (ze, auxeN)e≤τ

)
, flag.

Algorithm 2: Signing algorithm of the signature scheme

Verification. We represent the verification algorithm below.

Algorithm Verify(m, pk, σ)

Inputs. A public key pk = (H, y), a message m ∈ {0, 1}∗, a signature σ.
1. Parse the signature as follows:

σ =

(
salt, h1, h2,

(
copathe,j , come,j

ie

)
e≤τ, j≤n

, (ze, auxeN)e≤τ

)

16 Eliana Carozza and Geoffroy Couteau

2. Recompute (πe)e≤τ ← PRG1(h1), where πe ∈ Perm([K − k]);
3. Recompute (ie)e≤τ ← PRG2(h2) and parse each ie as a D-bit string (bed)d≤D.
4. For each iteration e ∈ [τ],

– For d = 1 to D:
• Denote b = 1− bed;
• Set (Xe

d,b, R
e
d,b, U

e
d,b)← (0, 0, 0) ∈ FK−k

2 × FK−k
2 × FK−k

3 ;
• For each i ̸= ie:

∗ Recompute sde,ji from copathe,j for each j ∈ [n];
∗ If i ̸= N , recompute (xe,j

i , re,ji , ue,j
i , come

i) ← PRG(sde,ji); else, parse auxeN as
(xe

N , ue
N), and compute reN =

⊕
j r

e,j
N where re,jN ← PRG(sde,jN);

∗ If i[d] = b, update:
- Xe

d,b ← Xe
d,b ⊕

⊕
j x

e
i ;

- Re
d,b ← Re

d,b ⊕
⊕

j r
e
i ;

- Ue
d,b ← Ue

d,b +
∑

j u
e
i mod 3;

• Recompute (msged,b)d≤D,b∈{0,1},e≤τ by simulating the Phase 3 of the signing al-
gorithm as below:
∗ zed,0 ←

(
Xe

d ⊕ πe(Re
d,0)||H ′ · zed,0[1]⊕ y

)
;

∗ zed,1 ←
(
ze1 ⊕ zed,0||ze2 ⊕ zed,0[2]

)
;

∗ x̄e
d,b ← ze + (1− ze) · π(Ue

d,b);
∗ msged,b ← (zed,b,BHW6(x̄

e
d,b));

∗ msged,1−b ← (zed,1−b, 1− BHW6(x̄
e
d,b) mod 3)

5. Check if h1 = H1(m, salt, h1
1, · · · , hn

1) where

hj
1 ← H1(com

1,j
1 , · · · , com1,j

N , · · · , comτ,j
1 , · · · , comτ,j

N);

6. Check if h2 = H2(m, salt, h1, (msged,b)d≤D,b∈{0,1},e≤τ);
7. Output 1 iff both conditions are satisfied.

Algorithm 3: Verification algorithm of the signature scheme

4.3 Security Analysis of the Threshold-Friendly Signature Scheme

In this section, we prove that the signature scheme described on ‌Algorithm 1, ‌Algorithm 2 and
‌Algorithm 3 satisfies n-user corruptible existential unforgeability against chosen-message attacks. We
recall in Appendix B the notion of existential unforgeability against key-only attacks. Note that since
the adversary is not allowed any signature query in the EUFKO game, we do not need to consider a
corruptible variant of the notion.
Corruptible existential unforgeability

Theorem 4. Assume that F is a (qs, τ)-instance (t, ϵF)-secure PPRF, that PRG is a (qs, τ)-instance
(t, ϵPRG)-secure PRG, and that any adversary running in time t has at advantage at most ϵSD against
the regular syndrome decoding problem. Model the hash functions H1,H2 as random oracles with output
of length 2λ-bit and the pseudorandom generator PRG2 as a random oracle. Then corrupted chosen-
message adversary against the signature scheme described in Figure 2, running in time t, making qs
signing queries, and making q1, q2, q3 queries, respectively, to the random oracles H1,H2 and PRG2,
succeeds in outputting a valid forgery with probability

AdvCEUFCMA
Σ (A) ≤ qs (qs + q1 + q2 + q3)

22λ
+ ϵF + εPRG + ϵSD + Pr[X + Y = τ] +

1

2λ
,

where εSD bounds the advantage of A against the regular syndrome decoding problem, X =
maxα∈Q1{Xα} and Y = maxβ∈Q2{Yβ} with Xα ∼ Binomial(τ, p) and Yβ ∼ Binomial

(
τ −X, 1

N

)
where Q1 and Q2 are sets of all queries to oracles H1 and H2 and p is a statistical failure event
bounded in Lemma 7 of [26], and set to 2−132 in their concrete parameter choices.

Proof. The security analysis proceeds in two parts: first bounding AdvEUFKO(A), then bounding
AdvCEUFCMA(A) using AdvEUFKO(A). The first half of the analysis, bounding AdvEUFKO(A), is identical

On Threshold Signatures from MPC-in-the-Head 17

to the analysis in [26] (up to replacing the single GGM tree by n GGM trees whose leaves are summed
everywhere in the analysis) and yields

AdvEUFKOΣ (A) ≤ ϵSD + Pr[X + Y = τ] +
1

2λ
,

where εSD, X, Y are as as defined in the statement of Theorem 4. The crux of the analysis in
our context lies in reducing corruptible existential unforgeability against chosen message attacks to
EUFKO security. This is captured by the following lemma:

Lemma 5 (EUFKO =⇒ CEUFCMA).

AdvCEUFCMA(A) ≤ AdvEUFKO(A) + qs (qs + q1 + q2 + q3)

22λ
+ ϵF + ϵPRG

We now prove Lemma 5. Let us consider an adversary A against the CEUFCMA property of the
signature scheme. To prove security we will define a sequence of experiments involving A, where the
first corresponds to the experiment in which A interacts with the real signature scheme, and the last
one is an experiment in which A is using only random element independent from the witness.
Game 1 (Gm1). This corresponds to the actual interaction of A with the real signature scheme. Upon
receiving a query (m, j, (rj)i̸=j) from A, the signing oracle samples rj := (sde,j)e≤τ ←$ ({0, 1}λ)τ , and
return σ ← Sign(m, sk; (r1, · · · , rn)). We denote Gmℓ(Forge), the event that after interacting with the
corruptible signing oracle in Game ℓ, A generates a valid signature σ∗ for a message m∗ that were
not previously queried to the signing oracle.
Game 2 (Gm2). In this game, we abort if the sampled salt salt collides with the value sampled in
any of the previous queries to the hash functions H1 or H2, or if the input to PRG2 collides with the
value obtained in any of the previous queries. Therefore we can bound this probability by

|Pr[Gm1(Forge)]− Pr[Gm2(Forge)]| ≤ qs · (qs + q1 + q2 + q3)

22λ

Game 3 (Gm3). The difference with the previous game is that now before signing a message we choose
uniformly random values h1, h2 and (ie)e≤τ . Since Phase 1, Phase 3 and Phase 5 are computed as
before and the only change compared to the previous game is that we randomly set the output of
H1 as h1, the output of H2 as h2 and the output of PRG2(h2) as (ie)e≤τ . A difference in the forgery
probability can only happen in the event that a query to H1, H2 or PRG2 was made before; however,
in this scenario, Game 2 aborts. Therefore,

Pr[Gm2(Forge)] = Pr[Gm3(Forge)].

Game 4 (Gm4) in this game, upon receiving a query (m, j, (ri)i ̸=j) from A, after sampling rj :=

(sde,j)e≤τ ←$ ({0, 1}λ)τ , compute the leaf seed sde,jie
= Fsalt(sd

e,j , ie) and the corresponding co-path
copathe,j = CoPathsalt(sd

e,j , ie). Set cpe,j = (ie, copathe,j , sde,jie) for e = 1 to τ and rj = (cpe,j)u≤τ .
Run σ ← Sign(m, sk; (r1, · · · , rn)).
This game is a purely syntactic change: by design of the signing algorithm, it will output exactly the
same signature as in Game 3 (observe that since PRG2 is programmed to output (ie)e, no aborts of
the signing algorithm will be triggered). Therefore, we have

Pr[Gm3(Forge)] = Pr[Gm4(Forge)].

Game 5 (Gm5) in this game, upon receiving a query (m, j, (ri)i ̸=j) from A, instead of sampling
rj := (sde,j)e≤τ ←$ ({0, 1}λ)τ , sample for e = 1 to τ a uniformly random leaf seed sde,jie

and a
uniformly random corresponding co-path copathe,j (note that from Game 3, the indices ie are sampled
ahead of time). Set cpe,j = (ie, copathe,j , sde,jie) for e = 1 to τ and rj = (cpe,j)u≤τ . Run σ ←
Sign(m, sk; (r1, · · · , rn)).
The only difference between Game 3 and Game 4 is that the leaf seed sde,jie and its corresponding
co-path copathe,j are sampled uniformly at random. Distinguishing between the two games reduces
therefore immediately to breaking the (Q, τ)-instance strong security of the PPRF, where Q is a
bound on the number of signing queries from A (cf 11). Therefore, we have

|Pr[Gm5(Forge)]− Pr[Gm4(Forge)]| ≤ AdvF(A) = εF.

18 Eliana Carozza and Geoffroy Couteau

Game 6 (Gm6). In this game, upon receiving a query (m, j, (ri)i ̸=j) from A and for e = 1 to τ , we
sample (xe,j

ie , re,jie , ue,j
ie , come,j

ie) ←$ FK−k
2 × FK−k

2 × FK−k
3 × {0, 1}λ at random. As the seed sde,jie is

uniformly random (independent of copathe,j and never revealed by the signature (it is only used in
Game 5 to construct (xe,j

ie , re,jie , ue,j
ie , come,j

ie) ← PRG(sde,jie)), this game is indistinguishable from the
previous one by a direct application of the multi-instance security of PRG (Definition 9), and we have

|Pr[Gm5(Forge)]− Pr[Gm4(Forge)]| ≤ AdvPRG(A) = ϵPRG.

Game 7 (Gm7). In this game, we modify the behavior of the emulation in Phase 3. Namely, we
construct the messages (msged,b)d≤D,b∈{0,1},e≤τ using instead the same procedure as the verifier in
step 4 of the Verify algorithm (‌Algorithm 3). Note that this process yields an identical construction
of the msged,b by correctness of the verification algorithm, and can be used in the emulation because
we sample the challenges ie ahead of time. Note also that the witness x is at this stage only used in
two places: in the computation of xe

N in auxeN , and in the computation of ze1 = x⊕ πe(re). We have

Pr[Gm7(Forge)] = Pr[Gm6(Forge)].

Game 8 (Gm8). In this game, we instead sample auxeN ←$ FK−k
2 × FK−k

3 and ze1 ←$ FK−k
3 for e = 1

to τ . Note that auxeN = (xe
N , ue

N) is constructed as

xe
N = x⊕

N⊕
i=1

n−1⊕
j=1

xe,j
i , ue

N = re −
N−1∑
i=1

n∑
j=1

ue,j
i mod 3.

Because each of these terms is masked by a uniformly random value (respectively xe,j
ie and ue,j

ie), and
because x ⊕ πe(re) is masked by πe(re,jie), all are uniformly random over FK−k

2 , FK−k
3 , and FK−k

2

respectively, and we have
Pr[Gm8(Forge)] = Pr[Gm7(Forge)].

Observe that in Game 8, the emulation does not use the witness x anymore, hence it does not need
the secret key sk. Therefore, an adversary outputting a forgery in Game 8 immediately implies an
adversary with the same success probability against the EUFKO security of the signature scheme:

Pr[Gm8(Forge)] = AdvEUFKO(A).

This concludes the proof of Lemma 5 and Theorem 4.

5 Threshold signatures from threshold-friendly signatures

In this section, we introduce a threshold signature scheme constructed from the threshold-friendly
signature scheme introduced in section 4. Our construction assumes the following building blocks and
functionalities:

– We let Commit denote an extractable and equivocable commitment scheme. Concretely, a possible
instantiation of Commit is as Commit(m; r) = H′(m; r), where H′ is a random oracle to which the
simulator will be given programmable access.

– Fsalt is a random coin-sampling functionality: upon receiving the signing session id from all users,
it samples salt ←$ {0, 1}2λ and outputs it to all users. This functionality can be instantiated via
a simple commit-and-open protocol.

– F2,3 denotes the “mod2-to-mod3” functionality, that converts additive shares of a vector mod-
ulo 2 into additive shares of the same vector modulo 3. We represent the ideal functionality
on ‌Functionality 1. In Appendix A, we introduce efficient protocols for securely instantiating the
functionality using pseudorandom correlation generators.

5.1 The functionality F2,3

We represent on ‌Functionality 1 the mod2-to-mod3 functionality. We describe a “corruptible” variant
of the functionality, where we let the corrupted parties define their output shares, and sample the
honest parties’ output share consistently with the corrupted parties’ shares.

On Threshold Signatures from MPC-in-the-Head 19

Functionality F2,3

Parameters. The functionality interacts with n users U1, · · · ,Un. We let C denote the (possibly
empty) subset of corrupted users.

Input. Each user Uj sends a vector uj ∈ Ft
2. Additionally, each corrupted user Uj sends a vector

u′
j ∈ Ft

3. The functionality aborts if it receives incorrectly formatted inputs, or if they do
not all have the same length.

Functionality. – Compute u =
⊕

j≤n uj .
– Compute u′ =

∑
j∈C u

′
j .

– Sample n− |C| uniformly random shares (u′
j)j∈[n]\C of u− u′ mod 3 over F3.

– Output u′
j to each honest user Uj .

Functionality 1: ideal functionality for converting sums from mod2 to mod3

5.2 The threshold signing protocol

Protocol Threshold Signing

Key-generation (trusted setup).
Inputs: A security parameter λ.
1. Run (pk, sk)←$ KeyGen(1λ).
2. Parse sk = (H, (x̃1, · · · , x̃n). Output skj = (H, x̃j , y) to each Uj .

Sampling the salt. All parties invoke Fsalt and receive a global salt salt ∈ {0, 1}2λ. All parties
derive (salt1, · · · , saltτ)← PRG(salt).

Building the trees. For each iteration e ∈ [τ], each user Uj proceeds as follows:
– Sample sde,j ←$ {0, 1}λ;
– For d = 1 to D, set (Xe,j

d,0, R
e,j
d,0, U

e,j
d,0)← (0, 0, 0);

– Set xe,j
N ← x̃j , ue

N ← 0, and re,j ← 0;
– For i = 1 to N − 1:

1. Compute sde,ji ← Fsalt(sd
e,j , i);

2. (xe,j
i , re,ji , ue,j

i , come,j
i)← PRG(sde,ji);

3. xe,j
N ← xe,j

N ⊕ xe,j
i , re,j ← re,j ⊕ re,ji and ue,j

N ← ue,j
N + ue,j

i mod 3;
– On node N :

1. Compute sde,jN ← Fsalt(sd
e,j , N)

2. Set (re,jN , come,j
N)← PRG(sde,jN)

3. Set re,j ← re,j ⊕ re,jN

4. Send re,j to the F2,3 functionality in order to obtain ue,j . // This is the Shift phase
of the template protocol in Section 3.3.

5. Set ue,j
N ← ue,j − ue,j

N mod 3

6. Broadcast (xe,j
N , ue,j

N). Upon receiving all shares, all user reconstruct auxeN =

(xe
N , ue

N) =
(⊕

j x
e,j
N ,

∑
j u

e,j
N mod 3

)
;

– For i = 1 to N , for all d ≤ D such that i[d] = 0, set: // i[d] is the d-th bit of the integer
i.
• Xe,j

d,0 ← Xe,j
d,0 ⊕ xe,j

i ;
• Re,j

d,0 ← Re,j
d,0 ⊕ re,ji ;

• Ue,j
d,0 ← Ue,j

d,0 + ue,j
i mod 3.

Commit-and-open phase. For each iteration e ∈ [τ], each user Uj proceeds as follows:
– Set hj

1 ← H1(com
1,j
1 , · · · , com1,j

N , · · · , comτ,j
1 , · · · , comτ,j

N).
– Broadcast cj ←$ Commit(hj).
– Upon receiving all (cℓ)ℓ∈[n], broadcast hj and the opening of cj .
– If an opening does not verify, abort the protocol. Else, all users compute h1 ←

H1(m, salt, h1
1, · · · , hn

1).
– Compute (πe)e≤τ ← PRG1(h1). // The use of a permutation to shuffle the correlated

randomness replaces the VOLE consistency check in [26].

20 Eliana Carozza and Geoffroy Couteau

Distributed virtual protocol. Let (1pj)j∈[n] denote arbitrary shares of 1 modulo p = 2 or 3.
– Each user Uj sets ze,j1 ← x̃⊕ πe(re,j), ze,j2 ← H ′ · ze,j1 ⊕ y · 12j , and ze,j ← (ze,j1 ||ze2).
– All users broadcast ze,j and reconstruct ze =

⊕
j z

e,j .
– For d = 1 to D, set:
• ze,jd,0[1]← Xe,j

d,0 ⊕ πe(Re,j
d,0), z

e,j
d,0[2]← H ′ · ze,jd,0[1]⊕ y, and ze,jd,0 ← (ze,jd,0[1]||z

e,j
d,0[2]);

• ze,jd,1[1]← ze,j1 ⊕ ze,jd,0, z
e,j
d,1[2]← ze,j2 ⊕ ze,jd,0[2], and ze,jd,1 ← (ze,jd,1[1]||z

e,j
d,1[2]);

• x̄e,j
d,0 ← ze · 13j + (1− ze) · πe(Ue,j

d,0) mod 3

• x̄e
d,1 ← x̃j − x̄e,j

d,0 mod 3.
• For b = 0, 1, set msge,jd,b ← (ze,jd,b,BHW6(x̄

e,j
d,b)).

• For b = 0, 1, all users broadcast msge,jd,b and reconstruct msged,b =
∑

j msge,jd,b mod 3.
– Set h2 ← H2(m, salt, h1, (msged,b)d≤D,b∈{0,1},e≤τ).
– Set (ie)e≤τ ← PRG2(h2).
– Each user Uj broadcasts copathe,j = CoPathsalt(sd

e,j , ie) and come,j
ie

for e = 1 to τ . //
This is the Opening phase in the template protocol of Section 3.3.

Output. The parties abort if the signature σ below does not verify.

σ =

(
salt, h1, h2,

(
copathe,j , come,j

ie

)
e≤τ, j≤n

, (ze, auxeN)e≤τ

)
.

5.3 Security analysis

Theorem 6. Let A denote an adversary corrupting at most n− 1 users, engaging in any polynomial
number Ns of threshold signing sessions, making at most Q queries to the random oracle H1 and to
the ideal cipher, and outputting a forgery (m∗, σ∗) after all sessions, where m∗ is a message that was
never signed during a signing session. Then in the (Fsalt,F2,3)-hyrid model, it holds that

Pr[Verify(m, pk, σ∗) = 1] ≤ Q2 + NsnQ

22λ
+ AdvCommit(A) + AdvCEUFCMA(A).

Proof. Let A denote an adversary corrupting all users except Uℓ (the case of a smaller number of
corrupted parties proceeds similarly to the all-but-one corruption case). We describe below a simulator
Sim that interacts with the corruptible signing functionality and is given (non-programming) access
to the random oracle H1 and to the ideal cipher underlying the multi-instance PPRF.

KeyGen. Sim invokes the key generation of the corruptible signing oracle and receives pk = (sd, y).
It recomputes H ← PRG(sd) and picks (x̃j)j ̸=ℓ ←$ (FK−k

2)n−1 uniformly at random. It outputs
skj = (H, x̃j , y) to each corrupted user Uj .

Sampling the salt. Sim honestly emulate Fsalt.
Building the trees. Sim stores the inputs r̃e,j of all corrupted users to F2,3 and randomly samples

(ue,j)j ̸=ℓ ←$ (FK−k
3)n−1. It returns ue,j to each corrupted user Uj .

Commit-and-open phase. Sim broadcasts a dummy commitment cℓ. Upon receiving all commit-
ments (cj)j ̸=ℓ, for each j ̸= ℓ,
– Sim extracts the value h̃j contained in cj

– Sim searches among all queries to H1 for a preimage of h̃j of the form comj =
(com1,j

1 , · · · , com1,j
N , · · · , comτ,j

1 , · · · , comτ,j
N). If there is no such preimages, or if there are

multiple preimages, or if the preimage is not correctly formatted, Sim raises a flag fail.
– For all tuples comj for which Sim did not raise a flag fail, for e = 1 to τ , Sim searches among

all queries to the ideal cipher for preimages on the nodes of a GGM tree with salt salte and
commitments (come,j

1 , · · · , come,j
N) at the leaves. If it does not find either a root seed sdj,e or

a set of seeds (v1e,j , · · · , vDe,j) on the co-path to a leaf i∗e,j together with the i∗e,j-th leaf seed
sd∗e,j , it raises a flag fail. Else, it sets Ke,j to be either sde,j or cpe,j = (i∗e,j , v

1
e,j , · · · , vDe,j , sd

∗
e,j)

and rj ← (Ke,j)e≤τ .
– If Sim did not raise a flag fail, it sends (m, ℓ, (rj)j ̸=ℓ) to the corruptible signing functional-

ity. Upon receiving a signature σ, it recomputes hℓ
1 from the signature via the verification

algorithm.

On Threshold Signatures from MPC-in-the-Head 21

– Else, Sim picks random root seeds sde,ℓ and constructs hℓ
1 as a honest user, using ue,ℓ ←$ FK−k

3

as simulated output of F2,3.
– Sim adapts the opening of cℓ to hℓ

1.
Distributed virtual protocol (flag ̸= fail). Provided that it did not raise a flag fail, Sim can re-

compute at this stage from the rj all values ze,j ,msge,jd,b for j ̸= ℓ, e = 1 to τ , d = 1 to D, and
b ∈ {0, 1}. From σ, by running the verification algorithm, Sim obtains ze and msged,b for e = 1 to
τ , d = 1 to D, and b ∈ {0, 1}.
– For e = 1 to τ , Sim defines ze,ℓ ← ze ⊕

⊕
j ̸=ℓ z

e,j and broadcasts ze,ℓ.
– For e = 1 to τ , d = 1 to D, and b ∈ {0, 1}, Sim broadcasts msge,ℓd,b ← msged,b−

∑
j ̸=ℓ msge,jd,b mod

3.
– Eventually, Sim obtains from σ and broadcasts (copathe,ℓ, come,ℓ

ie) for e = 1 to τ .
Distributed virtual protocol (flag = fail). If flag = fail, Sim broadcasts uniformly random

ze,ℓ,msge,ℓd,b, as well as the correct co-path and commitment (copathe,ℓ, come,ℓ
ie) computed from

its random root seeds.

As Sim is only given access to the corruptible signing functionality, it is clear that the advantage of A
in outputting a valid forgery (m∗, σ∗) after interacting polynomially many times with Sim is at most
AdvCEUFCMA(A). We now show that Sim’s emulation is indistinguishable from a real interaction with
Uℓ. We proceed via a sequence of game hops.
Game 1 (Gm1). This is the real game. The game honestly runs the key generation and distributes
skj to each corrupted user Uj . In each signing phase, the game honestly emulates Uℓ.
Game 2 (Gm2). In this game, we raise a flag fail if any collision occurs in H1 or in the ideal cipher. As
the total number of queries to either H1 or the ideal cipher is at most Q, we have Pr[fail(Gm2)] ≤ Q2

22λ
.

Game 3 (Gm3). In this game, we raise a flag fail if a signature contains hj
1 = H1(com

j) such that
comj was not queries to H1 prior to sending cj , and a flag ver if any of the two checks of this same
signature verifies. By the one-wayness of H1, we have Pr[ver | fail(Gm3)] ≤ NsnQ

22λ
, where the bound

is reached only if all signing sessions are performed in parallel and the adversary attempts to find a
preimage to any cj of any signing session after sending cj (and before running the distributed virtual
protocol).
Game 4 (Gm4). In this game, when flag = fail, we emulate Uℓ as the simulator Sim, computing a
honest GGM tree but sampling dummy ue,ℓ, ze,ℓ, msge,ℓd,b. Conditioned on flag = fail, with probability
at least 1 − NsnQ

22λ
, both checks (for h1 and h2) fail due to an incorrect hj

1. In this case, all honestly
computed ze,ℓ, msge,ℓd,b are distributed as random elements over FK

2 and FK
3 × Fw

3 respectively (they
are random share of values for which one share is missing).
Game 5 (Gm5). This game is the simulation, where Sim does not use the secret key sk. Instead, Sim
interacts with the corruptible signing oracle. Observe that whenever flag ̸= fail, the only difference
between the transcript of the simulated interaction and the transcript of Game 4 is the commitment
cℓ, which Sim computes as an equivocable commitment to a dummy string. Therefore, the advantage
of any adversary A in distinguishing Game 4 from Game 5 is at most AdvCommit(A). This concludes
the proof of Theorem 6.

References

1. Aaraj, N., Bettaieb, S., Bidoux, L., Budroni, A., Dyseryn, V., Esser, A., Gaborit, P., Kulkarni, M., Mateu,
V., Palumbi, M., Perin, L., Tillich, J.: PERK. Tech. rep., National Institute of Standards and Technology
(2023), available at https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

2. Adj, G., Rivera-Zamarripa, L., Verbel, J., Bellini, E., Barbero, S., Esser, A., Sanna, C., Zweydinger, F.:
MiRitH — MinRank in the Head. Tech. rep., National Institute of Standards and Technology (2023),
available at https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

3. Aguilar-Melchor, C., Feneuil, T., Gama, N., Gueron, S., Howe, J., Joseph, D., Joux, A., Persichetti,
E., Randrianarisoa, T.H., Rivain, M., Yue, D.: SDitH — Syndrome Decoding in the Head. Tech. rep.,
National Institute of Standards and Technology (2023), available at https://csrc.nist.gov/Projects/
pqc-dig-sig/round-1-additional-signatures

4. Aguilar-Melchor, C., Gama, N., Howe, J., Hülsing, A., Joseph, D., Yue, D.: The return of the SDitH. pp.
564–596. LNCS (2023)

5. Aragon, N., Bardet, M., Bidoux, L., Chi-Domínguez, J.J., Dyseryn, V., Feneuil, T., Gaborit, P., Joux, A.,
Rivain, M., Tillich, J., Vinçotte, A.: RYDE. Tech. rep., National Institute of Standards and Technology
(2023), available at https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

22 Eliana Carozza and Geoffroy Couteau

6. Aragon, N., Bardet, M., Bidoux, L., Chi-Domínguez, J., Dyseryn, V., Feneuil, T., Gaborit, P., Neveu,
R., Rivain, M., Tillich, J.: MIRA. Tech. rep., National Institute of Standards and Technology (2023),
available at https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

7. Augot, D., Finiasz, M., Sendrier, N.: A fast provably secure cryptographic hash function. Cryptology
ePrint Archive, Report 2003/230 (2003), https://eprint.iacr.org/2003/230

8. Baum, C., Beullens, W., Mukherjee, S., Orsini, E., Ramacher, S., Rechberger, C., Roy, L., Scholl, P.: One
tree to rule them all: Optimizing GGM trees and OWFs for post-quantum signatures. In: ASIACRYPT
2024 (to appear) (2024), https://eprint.iacr.org/2024/490

9. Baum, C., Braun, L., de Saint Guilhem, C.D., Klooß, M., Majenz, C., Mukherjee, S., Orsini, E., Ramacher,
S., Rechberger, C., Roy, L., Scholl, P.: FAEST. Tech. rep., National Institute of Standards and Technology
(2023), available at https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

10. Baum, C., Braun, L., de Saint Guilhem, C.D., Klooß, M., Orsini, E., Roy, L., Scholl, P.: Publicly veri-
fiable zero-knowledge and post-quantum signatures from vole-in-the-head. In: Handschuh, H., Lysyan-
skaya, A. (eds.) Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology
Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part V. Lec-
ture Notes in Computer Science, vol. 14085, pp. 581–615. Springer (2023), https://doi.org/10.1007/
978-3-031-38554-4_19

11. Baum, C., Delpech de Saint Guilhem, C., Kales, D., Orsini, E., Scholl, P., Zaverucha, G.: Banquet: Short
and fast signatures from AES. pp. 266–297. LNCS (2021)

12. Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Really fast syndrome-based hashing. In: Nitaj, A.,
Pointcheval, D. (eds.) AFRICACRYPT 11. LNCS, vol. 6737, pp. 134–152 (Jul 2011)

13. Bettale, L., Kahrobaei, D., Perret, L., Verbel, J.: Biscuit. Tech. rep., National Institute of
Standards and Technology (2023), available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures

14. Bombar, M., Bui, D., Couteau, G., Couvreur, A., Ducros, C., Servan-Schreiber, S.: FOLEAGE: F4OLE-
based multi-party computation for boolean circuits. In: ASIACRYPT 2024 (to appear) (2024), https:
//eprint.iacr.org/2024/429

15. Bombar, M., Couteau, G., Couvreur, A., Ducros, C.: Correlated pseudorandomness from the hardness of
quasi-abelian decoding. pp. 567–601. LNCS (2023)

16. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar,
P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300 (Dec 2013)

17. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie, D., Mannan, M., Backes,
M., Wang, X. (eds.) ACM CCS 2018. pp. 896–912. ACM Press (Oct 2018)

18. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Resch, N., Scholl, P.: Correlated pseudorandomness
from expand-accumulate codes. pp. 603–633. LNCS (2022)

19. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.: Efficient two-round OT
extension and silent non-interactive secure computation. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J.
(eds.) ACM CCS 2019. pp. 291–308. ACM Press (Nov 2019)

20. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation gen-
erators: Silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 489–518 (Aug 2019)

21. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation
generators from ring-LPN. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol.
12171, pp. 387–416 (Aug 2020)

22. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519 (Mar 2014)

23. Brandão, L.T.A.N., Peralta, R.: NIST First Call for Multi-Party Threshold Schemes. Tech. Rep. NIST
IR 8214C (Initial Public Draft), National Institute of Standards and Technology (January 2023), https:
//doi.org/10.6028/NIST.IR.8214C.ipd, public comment period closed on April 10, 2023.

24. Bui, D., Carozza, E., Couteau, G., Goudarzi, D., Joux, A.: Short signatures from regular syndrome
decoding, revisited. In: ASIACRYPT 2024 (to appear) (2024), https://eprint.iacr.org/2024/252

25. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum, R.D., Wichs, D.: Fiat-
Shamir: from practice to theory. In: Charikar, M., Cohen, E. (eds.) 51st ACM STOC. pp. 1082–1090.
ACM Press (Jun 2019)

26. Carozza, E., Couteau, G., Joux, A.: Short signatures from regular syndrome decoding in the head. pp.
532–563. LNCS (2023)

27. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random oracle model. In:
Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 1–29 (Dec 2019)

28. Couteau, G., Rindal, P., Raghuraman, S.: Silver: Silent VOLE and oblivious transfer from hardness of
decoding structured LDPC codes. pp. 502–534. LNCS (2021)

29. Cui, H., Liu, H., Yan, D., Yang, K., Yu, Y., Zhang, K.: ReSolveD: Shorter signatures from regular syndrome
decoding and VOLE-in-the-head. pp. 229–258. LNCS (2024)

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2003/230
https://eprint.iacr.org/2024/490
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1007/978-3-031-38554-4_19
https://doi.org/10.1007/978-3-031-38554-4_19
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2024/429
https://eprint.iacr.org/2024/429
https://doi.org/10.6028/NIST.IR.8214C.ipd
https://doi.org/10.6028/NIST.IR.8214C.ipd
https://eprint.iacr.org/2024/252

On Threshold Signatures from MPC-in-the-Head 23

30. Delpech de Saint Guilhem, C., De Meyer, L., Orsini, E., Smart, N.P.: BBQ: Using AES in picnic signatures.
In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 669–692 (Aug 2019)

31. Dinur, I., Nadler, N.: Multi-target attacks on the Picnic signature scheme and related protocols. In: Ishai,
Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 699–727 (May 2019)

32. Doerner, J., Kondi, Y., Rosenbloom, L.N.: Sometimes you can’t distribute random-oracle-based proofs.
pp. 323–358. LNCS (2024)

33. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter signatures from zero-knowledge
proofs. pp. 541–572. LNCS (2022)

34. Feneuil, T., Rivain, M.: MQOM — MQ on my Mind. Tech. rep., National Institute of
Standards and Technology (2023), available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures

35. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the ACM 33(4),
792–807 (Oct 1986)

36. Guo, X., Yang, K., Wang, X., Zhang, W., Xie, X., Zhang, J., Liu, Z.: Half-tree: Halving the cost of tree
expansion in COT and DPF. pp. 330–362. LNCS (2023)

37. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: TinyKeys: A new approach to efficient multi-party
computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 3–33
(Aug 2018)

38. Huth, J., Joux, A.: MPC in the head using the subfield bilinear collision problem. pp. 39–70. LNCS (2024)
39. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation.

In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC. pp. 21–30. ACM Press (Jun 2007)
40. Kales, D., Zaverucha, G.: An attack on some signature schemes constructed from five-pass identification

schemes. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 20. LNCS, vol. 12579, pp. 3–22 (Dec
2020)

41. Kales, D., Zaverucha, G.: Improving the performance of the Picnic signature scheme. IACR TCHES
2020(4), 154–188 (2020), https://tches.iacr.org/index.php/TCHES/article/view/8680

42. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-
quantum signatures. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 525–537.
ACM Press (Oct 2018)

43. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions
and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 669–684. ACM
Press (Nov 2013)

44. Ouyang, Y., Tang, D., Xu, Y.: Code-based zero-knowledge from VOLE-in-the-head and their applications:
Simpler, faster, and smaller. In: ASIACRYPT 2024 (to appear) (2024), https://eprint.iacr.org/2024/
1414

45. Pino, R.D., Katsumata, S., Maller, M., Mouhartem, F., Prest, T., Saarinen, M.J.O.: Threshold raccoon:
Practical threshold signatures from standard lattice assumptions. pp. 219–248. LNCS (2024)

46. Rindal, P., Schoppmann, P.: VOLE-PSI: Fast OPRF and circuit-PSI from vector-OLE. pp. 901–930.
LNCS (2021)

47. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously secure two-party
computation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 21–37.
ACM Press (Oct / Nov 2017)

48. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 39–56. ACM Press (Oct / Nov 2017)

49. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. pp. 1074–1091. IEEE Computer Society Press
(2021)

50. Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: Efficient and affordable zero-knowledge proofs for
circuits and polynomials over any field. pp. 2986–3001. ACM Press (2021)

51. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for correlated OT with small
communication. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 20. pp. 1607–1626. ACM
Press (Nov 2020)

52. Zaverucha, G., Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig,
D., Katz, J., Wang, X., Kolesnikov, V., Kales, D.: Picnic. Tech. rep., National Institute of Standards
and Technology (2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions

A Instantiating the functionality

In this section, we provide simple protocols to securely instantiate F2,3 in the malicious setting
using recent results on pseudorandom correlation generators [17,19,20]. Before we proceed with their
description, we make two observations:

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://tches.iacr.org/index.php/TCHES/article/view/8680
https://eprint.iacr.org/2024/1414
https://eprint.iacr.org/2024/1414
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

24 Eliana Carozza and Geoffroy Couteau

– The simulation of our threshold signing protocol is oblivious to whether the output of F2,3 is
correct or not. This is because Sim emulates the protocol without using the share output by F2,3

(or using a random share instead when flag = fail), and because the protocol does not verify that
the corrupted parties are actually using the correct output obtained via the functionality. This
is a relatively standard behavior in threshold signatures: the correct behavior of the participants
is guaranteed by the validity of the signature produced by the protocol (in fact, many existing
threshold signatures leverage a similar observation to obtain more efficient constructions). In our
context, this means that we only need to instantiate the functionality which guarantees correctness
when the users are honest, and privacy of the honest parties’ inputs when some participants are
malicious. This dispenses us from the need to use any expensive zero-knowledge proofs or similar
mechanisms.

– In our model, where the key generation is executed by a trusted entity (typically the owner of
sk), we can assume that the trusted dealer additionally generates and include in the key shares
skj helper strings (e.g. correlated randomness) that the parties can use to facilitate the secure
instantiation of F2,3.

A construction for n = 2. Equipped with these observations, we now proceed with our con-
structions, starting with the two-party setting (n = 2). We first recall some background on PCGs. A
PCG for a target correlation C (a 2-party correlation is a distribution over pairs of values) is a pair
(Setup,Expand) such that

– Setup(1λ) produces short keys c0, c1, and
– Expand(σ, cσ) outputs a long string yσ,

such that (y0, y1) are indistinguishable from a random sample from C. We refer the reader to Sec-
tion B.4 of the Appendix B for a more formal definition (taken almost verbatim from [15]). The
(length-t) OLE correlation over a field F refers to the following correlation: the two users U1,U2
receive (z1,x) ∈ (Ft)2 and (z2,y) ∈ (Ft)2 respectively, such that

z0 + z1 = x⊙ y,

where ⊙ denotes the Schur (i.e., component-wise) product. We say that a PCG for the OLE correlation
is programmable if, informally, the randomness used to generate x or y can be fixed across different
instances (such that U1 can obtain an OLE (z1,x) with a user U2, and a second tuple (z′1,x) with
the same x with another user U3. We again refer the reader to Appendix B.4 for a formal definition.
We use the following result from [14,15]:

Lemma 7. Assuming the quasi-abelian syndrome decoding assumption, there exists a programmable
PCG for the length-t OLE correlation over Fq for any q > 2. Furthermore, the key size is bounded by
O(λ3 log t) and the runtime of Expand is Õ(t).

We note that the work of [14] introduces a number of algorithmic and low-level optimizations that
demonstrate that this PCG achieves a very good concrete performance over small fields: [14] reports
generating 12 millions OLEs over F4. While our setting is slightly different as we work over F3, most of
their optimizations carry over directly to our setting and we expect a similar, if not better, efficiency.

Protocol Π2
2,3

Parameters. A PCG (Setup,Expand) for length-t OLEs over F3

Trusted setup. The dealer generates (c1, c2) ←$ Setup(1λ) and adds them to the secret keys
of U1,U2 respectively.

Protocol.
1. For i = 1, 2, given inputs ri ∈ Ft

2, user Ui generates (zi,xi)← Expand(i, ci) and broadasts
vi = xi + ri mod 3.

2. User U1 outputs z1 − v2 ⊙ x1 + r1 mod 3.
3. User U2 outputs z2 + v1 ⊙ r2 + r2 mod 3.

Protocol 1: A 2-party protocol for securely instantiating the functionality F2,3

On Threshold Signatures from MPC-in-the-Head 25

We first show that ‌Protocol 1 is correct. Over F3, we have

(z1 − v2 ⊙ x1 + r1) + (z2 + v1 ⊙ r2 + r2)

=(z1 + z2) + (r1 + x1)⊙ r2 − (r2 + x2)⊙ x1 + r1 + r2

= x1 ⊙ x2 + r1 ⊙ r2 + x1 ⊙ r2 − r2 ⊙ x1 − x1 ⊙ x2 + r1 + r2

= r1 ⊙ r2 + r1 + r2

= r1 ⊕ r2.

Then, security follows immediately from the fact that by the PCG security, xi is computationally
indistinguishable from a random vector over Ft

3 given c3−i, hence vi computationally masks ri over
F3.

General case. For an arbitrary number of users, we rely on a generalization of protocol Π2,3 in
a tree-based fashion. First, we start by describing a protocol Π2i

xor where 2i parties, given as input
additive shares over F3 of two bits a, b, generate additive shares over F3 of the xor a⊕ b.

Protocol Π2i

xor

Trusted setup. The dealer samples (u, v) ←$ F2
3 and set (uj , vj , wj)j≤2i to be random shares

of (u, v, u · v) over F3. Each user Uj receives (uj , vj , wj).
Protocol. The users have F3-shares (aj)j≤2i and (bj)j≤2i of bits a, b.

1. Each user Uj broadcasts uj +aj mod 3 and vj + bj mod 3. All users reconstruct
∑

j(uj +
aj) = u+ a and

∑
j(vj + bj) = v + b.

2. Each user Uj outputs zj = (a+ u)bj − (v + b)uj + wj + aj + bj mod 3.

Protocol 2: A 2i-party protocol for computing shares of the XOR of two bits shared over F3

Correctness follows again easily by inspection, as
∑

j zj = (a+u)b−(v+b)u+uv+a+b = ab+a+b =
a ⊕ b over F3, and security follows from the fact that each aj (resp. bj) is perfectly masked by uj

(resp. vj) over F3. Equipped with protocol Π2i

xor, we describe a protocol (in the F2i

xor-hybrid model)
that securely instantiates F2,3 with n users.

Protocol Πn
2,3

Input. The parties Uj each have an input rj ∈ F2.
Protocol. Assume that n = 2d is a power of 2. Place the n on the leaves of a full binary tree

of depth d. The protocol proceeds in d rounds. In round i, all users who share a common
ancestor on the i+ 1-th layer interact. Set i = 1 to be the leaf layer.
1. Every 2i-tuples S of users who have an ancestor on the layer i + 1 (there are 2d−i−1

disjoint tuples) partition S into two equal-sized sets S0, S1 of users that share a common
ancestor on the i-th layer. The users (Uj)j∈Sb

have additive shares of a bit rSb
over F3.

By adding dummy 0 shares, we equivalently assume that all users (Uj)j∈S have 2j-user
shares of (rS0

, rS1
).

2. The users (Uj)j∈S invoke F2i

xor to obtain shares of rS := rS0
⊕ rS1

and set i = i+ 1
3. When i = d, all users output their F3-shares of r[2d] =

⊕
rj .

Protocol 3: An n-party protocol for securely instantiating the functionality Fn
2,3 in the F2i

xor-hybrid
model

The proof of correctness and privacy against malicious users of ‌Protocol 3, in the F2i

xor-hybrid, is
straightforward. The protocol Πn

2,3 can be generalized to producing F3-shares of the XOR of Ft
2-

vectors via a direct parallel repetion.

26 Eliana Carozza and Geoffroy Couteau

Eventually, instantiating F2i

xor via Π2i

xor requires access to a trusted source of random 2i-user Beaver
triples over F3. This can be instantiated efficiently using again the PCG for OLEs over F3 from [15]:
as their PCG is programmable, and as explained in their work, if each pair of users is given a pair
of (programmed) PCG seeds, they can locally recombine the pseudorandom outputs into a 2i-user
F3-Beaver triples. This yields the following efficient instantiation of F2,3: in the trusted setup phase,
the trusted dealer generates as many pairwise PCG seeds as required to instantiate Π2i

xor at every
level of the tree-based construction from ‌Protocol 3. Then, the parties locally expand their seeds into
arbitrary length Beaver triples over F3, and run the efficient protocol from ‌Protocol 3 to convert
F2-shares into F3-shares.

B Additional Preliminaries

B.1 Existential Unforgeability against Key-Only Attacks

Definition 8 (EUF-KO security). Given a signature scheme Sig = (KeyGen,Sign,Verify) and se-
curity parameter λ, we say that Sig is EUFKO-secure if any PPT algorithm A has negligible advantage
in the EUF-KO game, defined as

AdvEUFKOA = Pr

[
Verify(pk, µ∗, σ∗) = 1

(sk, pk)← Setup({0, 1}λ)
(µ∗, σ∗)← A(pk)

]
.

B.2 Multi-instance PRGs

We recall the notion of multi-instance PRG from [24]. We use (F0,F1) to denote functions that compute
the left half and right half of the length-doubling PRG output. The definitions of this section are
taken essentially verbatim from [24].

Definition 9 ((Q, τ)-instance (t, ϵ)-secure PRG). A PRG PRG = (F0,F1) with Fb : {0, 1}2λ →
{0, 1}λ is an (Q, τ)-instance (t, ϵ)-secure length-doubling PRG if for every non-uniform PPT distin-
guisher D running in time at most t, it holds that for all sufficiently large λ,

AdvPRG(D) = |Pr[Exprw-prg
D (λ) = 1]− Pr[Expiw-prg

D (λ) = 1]| ≤ ϵ(λ),

where Exprw-prg
D (λ) and Expiw-prg

D (λ) are defined below.

Exprw-prg
D (λ) :

– (salt1, salt2, . . . , salt2Q)←r {0, 1}λ
– (sdi,e)i≤Q,e≤τ ←r ({0, 1}λ)Q·τ

– ∀i ≤ Q, e ≤ τ :
• y2i−1,e ← F0(sdi,e, salt2i−1)
• y2i,e ← F1(sdi,e, salt2i)

Output b← D
(
(salti, (yi,e)e≤τ)i≤2Q

)

Expiw-prg
D (λ) :

– (salt1, salt2, . . . , salt2Q)←r {0, 1}λ

– (yi,e)i≤2Q,e≤τ ←r ({0, 1}λ)2Q·τ

Output b← D
(
(salti, (yi,e)e≤τ)i≤2Q

)
The definition extends immediately to PRGs that stretch their seeds by a larger factor. The definition
assumes each of F0 and F1 to take a distinct λ-bit salt, in line with how the salt is actually used in
the concrete AES-based construction, where Fb(sd, saltb) is defined to be AESsaltb(sd).

B.3 Multi-instance puncturable pseudorandom functions

Pseudorandom functions [35], are families of keyed functions Fk such that no adversary can distinguish
between a black-box access to Fk for a random key k and access to a truly random function. A
puncturable pseudorandom function (PPRF) [16,22,43] is a PRF F such that given an input x, and a
PRF key k, one can generate a punctured key, denoted k{x} = F.Punc(K,x), which allows evaluating
F at every point except for x (i.e., there is an algorithm F.Eval such that F.Eval(k{x}, x′) = FK(x′)
for all x′ ̸= x), and such that Fk(x) is indistinguishable from random given k{x}. The definition of
multi-instance PPRF below is taken essentially verbatim from [24].

On Threshold Signatures from MPC-in-the-Head 27

Definition 10 ((Q, τ)-instance (t, ϵ)-secure PPRF). A function family F = {FK} with input
domain [2D], salt domain {0, 1}s, and output domain {0, 1}λ, is an (Q, τ)-instance (t, ϵ)-secure PPRF
if it is a PPRF which additionally takes as input a salt salt, and for every non-uniform PPT distin-
guisher D running in time at most t, it holds that for all sufficiently large λ,

AdvPPRF(D) = |Pr[Exprw-pprf
D (λ) = 1]− Pr[Expiw-pprf

D (λ) = 1]| ≤ ϵ(λ)

where the experiments Exprw-pprf
D (λ) and Expiw-pprf

D (λ) are defined below.

Exprw-pprf
D (λ) :

– ((Kj,e)j≤Q,e≤τ ←$ ({0, 1}λ)Q·τ

– salt := (salt1, . . . , saltQ)←$ {0, 1}s
– i := ((i1,e)e≤τ , . . . , (iQ,e)e≤τ)←$ [2D]Q·τ

– ∀j ≤ Q, e ≤ τ : K
ij,e
j,e ← F.Punc(Kj,e, ij,e)

– (yj,e)j≤Q,e≤τ ← (FKj,e
(ij,e, saltj))j≤Q,e≤τ

Output b← D
(
salt, i, (K

ij,e
j,e , yj,e)j≤Q,e≤τ

)

Expiw-pprf
D (λ) :

– ((Kj,e)j≤Q,e≤τ ←$ ({0, 1}λ)Q·τ

– salt := (salt1, . . . , saltQ)←$ {0, 1}s
– i := ((i1,e)e≤τ , . . . , (i1,e)e≤τ)←$ [2D]Q·τ

– ∀j ≤ Q, e ≤ τ : K
ij,e
j,e ← F.Punc(Kj,e, ij,e)

– (yj,e)j≤Q,e≤τ ←$ ({0, 1}λ)Q·τ

Output b← D
(
salt, i, (K

ij,e
j,e , yj,e)j≤Q,e≤τ

)
We also recall a stronger property, satisfied by the AES-based construction of [24], in which indistin-
guishability is preserved even the ideal world experiment does not only sample (y1, · · · , yQ) uniformly
at random, but also samples “fake” punctured keys Kxk

j uniformly at random over an appropriate
domain:

Definition 11 ((Q, τ)-instance strongly (t, ϵ)-secure PPRF). A function family F = {FK} with
input domain [2D], salt domain {0, 1}s, output domain {0, 1}λ, and punctured key domain ({0, 1}λ)D
is an (Q, τ)-instance (t, ϵ)-secure PPRF if it is a PPRF which additionally takes as input a salt
salt, and for every non-uniform PPT distinguisher D running in time at most t, it holds that for all
sufficiently large λ,

AdvPPRF(D) = |Pr[Exprw-pprf
D (λ) = 1]− Pr[Expiw-spprf

D (λ) = 1]| ≤ ϵ(λ),

where the experiment Expiw-spprf
D (λ) is defined as Expiw-pprf

D (λ), except that the line ∀j ≤ Q, e ≤ τ :

K
ij,e
j,e ← F.Punc(Kj,e, ij,e) is replaced by ∀j ≤ Q, e ≤ τ : K

ij,e
j,e ←$ ({0, 1}λ)D.

B.4 Pseudorandom correlation generators

We recall the notion of pseudorandom correlation generator (PCG) from [20]. At a high level, a PCG
for some target ideal correlation takes as input a pair of short, correlated seeds and outputs long
correlated pseudorandom strings, where the expansion procedure is deterministic and can be applied
locally. The definitions below are taken almost verbatim from [21].

Definition 12 (Correlation generator). A PPT algorithm C is called a correlation generator, if
C on input 1λ outputs a pair of elements in {0, 1}n × {0, 1}n for n ∈ poly(λ).

The security definition of PCGs requires the target correlation to satisfy a technical requirement,
which roughly says that it is possible to efficiently sample from the conditional distribution of R0

given R1 = r1 and vice versa. It is easy to see that this is true for the correlations considered in this
paper.

Definition 13 (Reverse-sampleable correlation generator). Let C be a correlation generator.
We say C is reverse sampleable if there exists a PPT algorithm RSample such that for σ ∈ {0, 1} the
correlation obtained via:

{(R′
0,R′

1) |(R0,R1)←$ C(1λ),R′
σ := Rσ,R′

1−σ ←$ RSample(σ,Rσ)}

is computationally indistinguishable from C(1λ).

Definition 14 (Pseudorandom Correlation Generator (PCG)). Let C be a reverse-sampleable
correlation generator. A pseudorandom correlation generator (PCG) for C is a pair of algorithms
(PCG.Setup,PCG.Expand) with the following syntax:

28 Eliana Carozza and Geoffroy Couteau

– PCG.Setup(1λ) is a PPT algorithm that given a security parameter λ, outputs a pair of seeds
(c0, c1);

– PCG.Expand(σ, cσ) is a polynomial-time algorithm that given a party index σ ∈ {0, 1} and a seed
cσ, outputs a bit string Rσ ∈ {0, 1}n.

The algorithms (PCG.Setup,PCG.Expand) should satisfy the following:

– Correctness. The correlation obtained via:

{(R0,R1) | (c0, c1)←$ PCG.Setup(1λ), Rσ ← PCG.Expand(σ, cσ) for σ ∈ {0, 1}}

is computationally indistinguishable from C(1λ).
– Security. For any σ ∈ {0, 1}, the following two distributions are computationally indistinguish-

able:

{(c1−σ,Rσ) | (c0, c1)←$ PCG.Setup(1λ),Rσ ← PCG.Expand(σ, cσ)} and

{(c1−σ,Rσ) | (c0, c1)←$ PCG.Setup(1λ),R1−σ ← PCG.Expand(σ, c1−σ),

Rσ ←$ RSample(σ,R1−σ)}

where RSample is the reverse sampling algorithm for correlation C.

Note that PCG.Setup could simply output a sample from C. To avoid this trivial construction, we also
require that the seed size is significantly shorter than the output size.
Programmable PCGs. At a high level, a programmable PCG allows generating multiple PCG keys
such that part of the correlation generated remains the same across different instances. Programmable
PCGs are necessary to construct n-party correlated randomness from the 2-party correlated random-
ness generated via the PCG. Informally, this is because when expanding n-party shares (e.g. of Beaver
triples) into a sum of 2-party shares, the sum will involve many “cross terms”; using programmable
PCGs allows maintaining consistent pseudorandom values across these cross terms. We recall the
formal definition below.

Definition 15 (Programmable PCG). A tuple of algorithms
PCG = (PCG.Setup,PCG.Expand) following the syntax of a standard PCG, but where PCG.Setup(1λ)
takes additional random inputs ρ0, ρ1 ∈ {0, 1}∗, is a programmable PCG for a simple bilinear 2-party
correlation Cn

e (specified by e : G1 ×G2 → GT) if the following holds:

• Correctness. The correlation obtained via:{
((R0, S0), (R1, S1))

∣∣∣∣∣ρ0, ρ1 $← $, (k0, k1)←$ PCG.Setup(1λ, ρ0, ρ1),
(Rσ, Sσ)← PCG.Expand(σ, kσ) for σ ∈ {0, 1}

}

is computationally indistinguishable from Cn
e (1

λ).
• Programmability There exist public efficiently computable functions ϕ0 : {0, 1}∗ → Gn

1 , ϕ1 :
{0, 1}∗ → Gn

2 such that

Pr

ρ0, ρ1 ← $, (k0, k1)←$ PCG.Setup(1λ, ρ0, ρ1)
(R0, S0)← PCG.Expand(0, k0),
(R1, S1)← PCG.Expand(1, k1)

:
R0 = ϕ0(ρ0)
R1 = ϕ1(ρ1)

 ≥ 1− negl(λ),

where e : Gn
1 ×Gn

2 → Gn
T is the bilinear map obtained by applying e componentwise.

• Programmable security The distributions{
(k1, (ρ0, ρ1)) | ρ0, ρ1 ← $, (k0, k1)←$ PCG.Setup(1λ, ρ0, ρ1)}

}
and{

(k1, (ρ0, ρ1)) | ρ0, ρ1, ρ̃0 ← $, (k0, k1)←$ PCG.Setup(1λ, ρ̃0, ρ1)}
}

as well as {
(k0, (ρ0, ρ1)) | ρ0, ρ1 ← $, (k0, k1)←$ PCG.Setup(1λ, ρ0, ρ1)}

}
and{

(k0, (ρ0, ρ1)) | ρ0, ρ1, ρ̃0 ← $, (k0, k1)←$ PCG.Setup(1λ, ρ̃0, ρ1)}
}

are computationally indistinguishable.

	On Threshold Signatures from MPC-in-the-Head
	Introduction
	Our Contribution

	Preliminaries
	Regular Syndrome Decoding Problem
	The MPC-in-the-Head Paradigm

	Technical Overview
	Challenges in thresholdizing MPCitH signatures
	Biting the bullet: MPCitH signatures that grow with the number of users
	Threshold signatures from threshold-friendly MPCitH signatures
	Our solution: corruptible existential unforgeability
	A dummy attack
	Case analysis: RSD-based threshold signatures

	Threshold-Friendly MPC-in-the-Head Signatures
	Corruptible existential unforgeability
	A Threshold-Friendly variant of the signature scheme
	Security Analysis of the Threshold-Friendly Signature Scheme

	Threshold signatures from threshold-friendly signatures
	The functionality F2,3
	The threshold signing protocol
	Security analysis

	Instantiating the functionality
	Additional Preliminaries
	Existential Unforgeability against Key-Only Attacks
	Multi-instance PRGs
	Multi-instance puncturable pseudorandom functions
	Pseudorandom correlation generators

