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Abstract—With the increasing integration of crowd comput-
ing, new vulnerabilities emerge in widely used cryptographic
systems like the RSA cryptosystem, whose security is based
on the factoring problem. It is strongly advised to avoid using
the same modulus to produce two pairs of public-private
keys, as the cryptosystem would be rendered vulnerable to
common modulus attacks. Such attacks can take two forms:
one that aims to factorize the common modulus based on
one key pair and the other that aims to decrypt certain
ciphertexts generated by two public keys if the keys are
co-prime. This paper introduces a new type of common
modulus attack on the RSA cryptosystem. In our proposed
attack, given one public-private key pair, an attacker can
obtain the private key corresponding to a given public key
in RSA decryption. This allows the adversary to decrypt any
ciphertext generated using this public key. It is worth noting
that the proposed attack can be used in the CRT model
of RSA. In addition, we propose a parallelizable factoring
algorithm with an order equivalent to a cyclic attack in the
worst-case scenario.

1. Introduction

The RSA algorithm, invented in 1997 by Rivest,
Shamir, and Adelman, is one of the earliest public key
encryption schemes known [1]. It is a public key cryp-
tosystem extensively studied and widely implemented for
securing the digital realm. It has been shown that a
quantum computer is required to factorize the 2048-bit
RSA modulus [2]. Some implementations of RSA are
vulnerable to attacks even without quantum computation.

As an overview of Euler’s theorem and the RSA
cryptosystem, according to [3], let Z∗

n denote the set of
all positive integers that are less than and coprime to n,
and ϕ(n) = |Z∗

n|. The Euler’s theorem states that aϕ(n) =
1 mod n for all a ∈ Z∗

n. Let N = pq, where p and q are
two large prime numbers. Then, ϕ(N) = (p− 1)(q − 1).
In the RSA cryptosystem, the public key is represented
by the pair (e,N), where gcd(e, ϕ(N)) = 1, and the d
represents the private key, where e·d = 1 mod ϕ(N). This
means that e·d = k ·ϕ(N)+1 for an integer k. The public-
private key pair is usually denoted by (e, d), for simplicity.
In the RSA cryptosystem, the ciphertext for message m
is defined as C = me (mod N), the decryption is simply
performed as Cd = med = m1+k·ϕ(N) = m · (mk)ϕ(N) =
m · 1 = m (mod N). It is evident that modular exponen-
tiation, a computationally expensive operation, is required

for both encryption and decryption processes. Recently,
[4] proposed a technique for efficient computation of mod-
ular exponentiation. To increase efficiency in encryption,
the value of e is selected as small as possible, for instance,
e = 3. However, the most common choice for public key
is the value of e = 216 + 1 [5].

It should be noted that when the public key is selected,
the value of the secret key may become a large number
that is out of control. Section 1.3 explains how to reduce
the computational complexity of decryption.

As of contribution, we propose a common modulus
attack that surpasses existing methods in efficiency and
broad applicability across various RSA variants, such
as the Carmichael function, black-box CRT mode, and
Euler’s ϕ function. Unlike traditional attacks, it does
not require specific access to many elements, making it
more versatile and dangerous by leveraging any available
cryptosystem data. Additionally, we present a factoring
algorithm based on this attack, which achieves a worst-
case time complexity similar to cyclic attacks and operates
independently of private or public keys, offering a poten-
tially more efficient solution in certain cases.

1.1. Real World Applications of RSA

Adopting RSA encryption within the perspective of
cloud systems is of great interest since large amounts
of sensitive information are vulnerable due to big data
security risks. There exist many real-world applications
still using traditional public-key cryptosystems like RSA
[1]; these include but are not limited to Google Workspace
Single Sign-On [6], Telegram [7], OpenVPN [8], Secure
Shell (SSH) [9], and OpenPGP [10]. However, the fast
pace of big data implementation within cloud environ-
ments puts organizations at risk of various cyber-attacks,
including denial-of-service and injection attacks. In [11],
the use of RSA algorithms to enhance security features
for large volumes, high velocity, and veracity of big
data has been suggested to help mitigate all risks. They
conclude from their results that RSA enhances the security
of computing services on the cloud, e.g. AWS [12, 13,
14]. Also, regarding wireless sensor networks, RSA still
has a high potential. Devi and Sampradeepraj in [15] pre-
sented a hybrid encryption protocol based on RSA with an
integrated symmetric-asymmetric methodology. This two-
phase approach bolsters efficiency in both the encryption
process and key management and underlines the fact that
strong RSA encryption plays a serious role in enabling



secure data transit on cloud services. Moreover, even when
it comes to fog computing, in [16], researchers refer to
secure authentication and load balancing-related problems
as an effective solution using RSA. The integration of
those methodologies also shows the potential of RSA
in enhancing cloud computing frameworks upon newly
identified threats to improve the security management of
the data by better and more effective practices.

1.2. On the Structure of RSA

Factoring a large number into its prime factors is a
hard problem when the factors p and q are sufficiently
large. The size of p and q directly influences the security
level of the encryption. Recently, a technique based on the
smooth integers has been developed to address this issue
[17].

The RSA cryptosystem also works for the Carmichael
function instead of the Euler function. Carmichael func-
tion of a positive integer n which is shown with λ(n) is
the smallest positive integer r such that for any integer a
coprime to n the relation of ar = 1 mod (n) is satisfied.
This is clear that λ(N)|ϕ(N). In the RSA case λ(N) =
lcm(p− 1, q− 1) where lcm(a, b) denotes the least com-
mon multiplier of a and b [18]. This means that the public-
private key pair (e, d) is selected as e · d = 1 mod λ(N).
So, we will have Cd = m · (mk)λ(N) = m. In the rest of
this paper, we will be using the Euler function. However,
it is worth noting that all of our arguments remain valid
for the Carmichael function if we substitute ϕ(N) with
λ(N) in our analysis.

The RSA cryptosystem is a multiplicative homomor-
phic scheme [4]. This means that if you have the cipher-
texts of two messages, you can compute the encryption
of their multiplication without knowing the plaintexts.
Assume that we have two messages, m1 and m2, and their
respective RSA encryptions under the same key, C1 and
C2. This means that C1 = me

1 and C2 = me
2. To obtain the

ciphertext of their product, m1 ·m2, we simply multiply
the two ciphertexts: C1 · C2 = me

1 ·me
2 = (m1 ·m2)

e.

1.3. CRT-decryption

In [19], the Chinese Reminder Theorem (CRT) is used
to increase decryption efficiency. This technique involves
performing computations in Zp and Zq, instead of ZN ,
which reduces complexity in two ways. Firstly, computing
in Zp and Zq is more efficient than computing in ZN .
Secondly, the Lagrange theorem allows for the replace-
ment of a large secret key d with two smaller secret keys,
dp = d mod (p − 1) and dq = d mod (q − 1), for the
computation in Zp and Zq, respectively. To use the CRT-
decryption Algorithm 1, the secret key is (d, p, q) instead
of just d.

CRT decryption, in theory, is cheaper than normal
decryption by a factor of about 25 percent, and as it
handles data with half the RSA modulus size, RSA with
CRT is theoretically about four times faster and is there-
fore better suited to embedded devices [20]. Additionally,
CRT decryption can be parallelized for faster decryption.
It’s important to note that Algorithm 1 can still be used
even when dp = dq = d; however, we cannot use CRT
decryption in such a scenario.

Algorithm 1 CRT-decryption
1: Input: dp, dq, and C ∈ ZN

2: Output: m
3: Cp ← Cdp mod p
4: Cq ← Cdq mod q
5: m′ ← (Cp − Cq) · q−1 mod p
6: m← m′ · q + Cq

7: return m

In the rest of this work, we assume that the user
does not know the factors of N in the CRT model. This
implies we treat Algorithm 1 as a black box. The user
will only import the secret keys and ciphertext of the
RSA encryption scheme into this algorithm and receive
the message m without knowing the intermediate values
such as p and q. Also, inspired by [21], the following
lemma holds.

Lemma 1.1. Let (e1, d1) and (e2, d2) be two distinct RSA
public-private key pairs sharing a common modulus N =
pq, with e1 and e2 chosen such that g = gcd(e1 · d1 −
1, e2 · d2 − 1). Suppose that there exist values α, β ∈ Z
such that α ≡ d1 mod ϕ(N) and β ≡ d2 mod ϕ(N).
Then the equation α · e2 + β · e1 ≡ 1 (mod ϕ(N)) holds.

Proof. Assume that e1 · d1 = 1 + k · ϕ(N) and e2 · d2 =
1 + j · ϕ(N) for some integers k, j. Expanding α and β
using their definitions in terms of d1 and d2 for integers
m,n:

α = d1 +m · ϕ(N) and β = d2 + n · ϕ(N),

α · e2 + β · e1 = (d1 +m · ϕ(N)) · e2
+ (d2 + n · ϕ(N)) · e1.

Since e1 · d1 ≡ 1 (mod ϕ(N)) and e2 · d2 ≡ 1
(mod ϕ(N)):

α · e2 + β · e1 ≡ 1 (mod ϕ(N)).

1.4. Common Modulus Attacks

The original common modulus attack is a type of
attack that assumes the existence of two RSA public keys,
denoted by e and e′, that share the same modulus N ,
where gcd(e, e′) = 1. With this assumption, an adversary
can decrypt any encrypted message using both of these
public keys [22].

The Common Modulus Attack is not applicable turns
into a trivial attack in the CRT variant of RSA, since
the key owner needs to know the values of p and q,
in Algorithm 1. However, suppose that Algorithm 1 is
executed as a black box, equivalently, the key owner does
not know the factors of N . It is not possible to apply
any kind of common modulus attacks to the RSA system
that operates in this black box CRT decryption, since it is
impossible to compute d only with dp and dq, and without
knowing p and q, as gcd(p−1, q−1) ̸= 1. The attacker can
only apply the above attacks by listing all possible p and
q that satisfy e.dp−1 = k(p−1) and e.dq−1 = k′(q−1)
and then checking with N = pq to recover the correct
solution. This technique requires factoring of at least one
of k(p−1) or k′(q−1), which can be inefficient for large
numbers, as the goal is to avoid factoring.



1.5. Cyclic Attack

Suppose we have an RSA ciphertext c for message
m, where c = me mod (N). An attacker may try to re-
encrypt the ciphertext c by computing ce mod (N) and
then repeating this process by computing ce

i

mod (N)
in each iteration until an integer k is found such that
ce

k

= c mod (N). Once k is found, the attacker can
retrieve the original message m by computing ce

k−1

mod (N). In this case, the goal is to find k such that
gcd(ce

k−c,N) ̸= 1. To protect against cyclic attacks, the
safest choice of system parameters is discussed in [23]
and [24]. This attack was first presented in [25] and was
later generalized in [26] and [24] to factor N . Note that
this attack does not require factoring N and has shown
that it can be applied to any Abelian finite group [27]. In
[28], an algorithm has been proposed to compute ϕ(N)
after finding k and ek.

2. Related Works

In 2019, a survey of the attacks on RSA in the
forty years of its life has been published [22]. In this
survey, the attacks on RSA are classified into four groups:
elementary attacks, weak public exponent attacks, weak
private exponent attacks, and large private exponent at-
tacks. Except for elementary attacks on RSA, all of the
attacks originate from wrong choices in the public or
private key. There are two elementary attacks on RSA:
the common modulus attack and the blind signature attack
[29]. The conventional common modulus attack assumes
two coprime RSA public keys ea and eb in the same
modulus N , i.e. gcd(ea, eb) = 1. Then, the adversary can
decrypt any message m encrypted by public keys ea and
eb [22]. One can classify the attacks based on factorizing
N given a public-private key pair [30, 31] as the common
modulus attack, where the condition of gcd(ea, eb) = 1 is
not required anymore.

In the original paper of RSA, [1], it is clearly men-
tioned that given the public-private key pair (e, d), one
can factorize N . This works off [32], which showed that
N could be factored, given any multiple of ϕ(N) with
the complexity of O(log3N). Miller shows [32] how
knowing the public-private key pair (e, d) is probabilis-
tically equivalent to the factorization of N . Also, [31]
presented the first deterministic polynomial time algorithm
that factorizes N using the public-private key pair (e, d)
with the complexities of O(log9N) and O(log2N), when
ed < N2 and ed < N3/2, respectively. It is obvious that if
the same modulus is used for Alice and Bob, then Bob can
use his own exponents (eb, db) to factorize the modulus N
[30] and recover Alice’s private key da given her public
key ea and the factorization of N .

The public key of RSA is usually set to a small
number to provide fast encryption. Hastad presents [33]
a small public exponent attack for a broadcast use case
based on Coppersmith’s method in [34]. In [35], a general
version of the small public exponent was proposed. Al-
though choosing a small exponent for the RSA private key
provides a fast RSA signature, it makes the scheme vul-
nerable to small private exponent attacks. Wiener in [36]
shows that the RSA system is insecure when d < N0.25.

However, this attack is useless if e > N1.5. Boneh and
Durfee in [37] improves Wiener’s attack for a higher
bound d < N0.292. Their attack, which uses the LLL
(Lenstra–Lenstra–Lovász) algorithm [38], is effective for
e < N

15
8 = N1.875. Although they can not prove that

it always succeeded, they have not found evidence of
their attack’s ineffectiveness [39]. Recently, a special case
of Boneh and Durfee’s attack is investigated by Mumtaz
and Ping in [40], where the running time of the attack
is improved. Mumtaz and Ping propose a large RSA
decryption exponent attack in [41]. A cryptanalysis of the
RSA cryptosystem with smooth prime sum is proposed in
[42]. Moreover, [43] tries to inject backdoors into RSA
and other cryptographic primitives based on the integer
factoring problem.

3. Proposed Attack

Suppose two RSA public-private key pairs are gener-
ated using a common modulus for two different users.
Then the following theorem shows that each user can
compute during decryption a number equivalent to the
private key of the other user, and hence can decrypt any
ciphertext that was encrypted for the other user.

Theorem 3.1. Let (e1, d1) and (e2, d2) be two public-
private key pairs in a common modulus N = pq, and s2
is the second Bézout coefficient for gcd( e1d1−1

g , e2), i.e.
e1d1−1

g ·s1+e2·s2 = 1, where g = gcd(e1d1−1, e2). Then,
s2 = d2 mod ϕ(N), i.e. s2 is equivalent to the private key
d2 in the decryption of RSA.

Proof. Since e1d1 = 1 mod ϕ(N), so

e1d1 − 1 = k · ϕ(N); k ̸= 0 (1)

Based on (1), set g = gcd(e1d1 − 1, e2) = gcd(k ·
ϕ(N), e2). Since gcd(e2, ϕ(N)) = 1, we have g =
gcd(k, e2), which means that g|k, and hence k′ = k

g is an
integer. On the other hand, since g = gcd(e1d1 − 1, e2),
it can be concluded that gcd( e1d1−1

g , e2) = 1. Therefore,
we have:

gcd

(
e1d1 − 1

g
, e2

)
= gcd

(
k · ϕ(N)

g
, e2

)
= gcd

(
k

g
· ϕ(N), e2

)
= gcd(k′ · ϕ(N), e2) = 1 (2)

Using the extended Euclidean algorithm, we can find
Bézout coefficients s1 and s2 ∈ Z such that k′ϕ(N) ·s1+
e2 · s2 = 1. This equation implies that,

e2 · s2 = k′′ · ϕ(N) + 1 (3)

where k′′ = −k′ ·s1 is an integer. Equation (3) shows that
s2 is the modular inverse of e2 and is equivalent to d2 in
the decryption of ciphertexts encrypted by e2. To verify
the claim, assume we have the ciphertext C of a message
m encrypted by e2, written as C = me2 (mod N). To
decrypt C, all we need to do the following calculation:

Cs2 = (me2)s2 = mk′′ϕ(N)+1 = m mod N (4)

So, we can use s2 for decryption instead of d2.



Algorithm 2 presents a summary of our attack. Ac-
cording to Theorem 3.1, this algorithm is guaranteed to
succeed. It is evident that the algorithm in Algorithm 2 is
fast, as it only involves one multiplication, one gcd com-
putation, one division, and finally, one Bézout algorithm.

Algorithm 2 The Proposed Common Modulus Attack
1: Input: e1, d1, and e2
2: Output: s2
3: a← e1 · d1 − 1
4: g ← gcd(a, e2)
5: a← a/g
6: Find s1 and s2 such that a · s1 + e2 · s2 = 1 ▷ Since

a and e2 are co-prime
7: return s2

Remark 1. The complexity of the attack based on The-
orem (3.1) is O(logN) since it requires two (extended)
Euclidean Algorithm runs. It has no extra condition on
the key pairs, the common modulus, or the ciphertext to
be decrypted.

Remark 2. The proposed attack is valid also when
(e1, d1) are in Euler RSA system and (e2, d2) are
Carmichael or Euler. If both have Euler secret keys, this is
already proved in Theorems 3 and 3.1. To prove the second
type, suppose that ϕ(N) = t.λ(N). Set g = gcd(e1d1 −
1, e2) = gcd(k.ϕ(N), e2) = gcd(k.t.λ(N), e2). Note that
gcd(e2, λ(N)) = 1. The rest of the proof is similar to
Theorem 3.1 by replacing k with k.t. To find s2 in these
types, Algorithm 2 is run, too.

Remark 3. We prove that the proposed attack is valid
when (e1, d1) are in Carmichael’s RSA system and
(e2, d2) are either Carmichael or Euler. The following
theorems prove this:

Theorem 3.2. The attack is valid if (e1, d1) are in
Carmichael RSA system and (e2, d2) are either in
Carmichael or Euler.

Proof. If both parties have Carmichael’s secret keys, it
can be demonstrated easily by substituting λ(N) for
ϕ(N) in equations (1), (2), and (3). To prove the sec-
ond type, it should be noted that gcd(e2, λ(N)) = 1
because gcd(e2, ϕ(N)) = 1 and λ(N) divides ϕ(N).
The remainder of the proof is similar to the previous
one. To determine s2 in these instances, Algorithm 2 is
applied.

Corollary 3.2.1. The attack proposed in Theorem 3.2 can
be applied to the RSA system without considering Euler
or Carmichael using Theorems of 3.2 and 3.3.

Theorem 3.3. Let (e1, d1p, d1q) and (e2, d2p, d2q) be two
public-private key pairs for CRT decryption in a common
modulus N = pq. Then, Algorithm 2 is valid to compute
s2p = d2p mod (p − 1) and s2q = d2q mod (q − 1), i.e.
s2p and s2q are equivalent to the private keys d2p and d2q
respectively in the CRT decryption of RSA.

Proof. In this case, the Algorithm 2 is run twice with
inputs of the first (e1, d1p, d1q) and then (e2, d2p, d2q). In
the case of (e1, d1p, e2), we have e1d1p− 1 = k · (p− 1).
Set g = gcd(e1.d1p − 1, e2) = gcd(k · (p− 1), e2). Since

gcd(e2, ϕ(N)) = 1 and (p−1)|ϕ(N) then gcd(e2, p−1) =
1. Similar to the discussion in the proof of Theorem 3.1,
we can write

gcd

(
e1d1p − 1

g
, e2

)
= gcd

(
k · (p− 1)

g
, e2

)
= gcd

(
k

g
· (p− 1), e2

)
= gcd(k′ · (p− 1), e2) = 1 (5)

So, there are s1p and s2p such that

k′(p− 1) · s1p + e2 · s2p = 1

=⇒ e2 · s2p = k′′ · (p− 1) + 1

=⇒ s2p = d2p mod (p− 1) (6)

The proof for d2q is the same as for the previous case.

Remark 4. If an attacker has the secret keys of RSA
in the CRT model (without knowing the factors), then
they can attack other users that use the same module.
This becomes from the fact that if gcd(ϕ(N), e2) =
1 or gcd(λ(N), e2) = 1 then we can conclude that
gcd(p − 1, e2) = gcd(q − 1, e2) = 1. On the other side,
we know that gcd(dp1, p − 1) = gcd(dq1, q − 1) = 1
is held. Therefore, we can write gcd(e2.dp1, p − 1) =
gcd(e2.dq1, q − 1) = 1, e2.dp1 = 1 mod (p − 1) and
e2.dq1 = 1 mod (q − 1). So, the attacker can use Algo-
rithm 1 to recover message m.

Corollary 3.3.1. Based on Corollary 3.2.1 and Remark
4, if an attacker has a public-private key pair in any of
the Euler, Carmichael, and black-boxed CRT RSA models,
they can attack the ciphertexts of other users in a common
modulus in any of the Euler, Carmichael, and black-boxed
RSA models.

4. Generalization and Factoring Algorithm

In this section, we present a generalized version of
the presented attack. Unlike before, the attacker no longer
needs to be the owner of the (e1, d1) key pair in modulus
N . Instead, the attacker only needs to have leaked infor-
mation of the form (α, β), where f(α) = β mod (ϕ(N))
holds under the condition k ̸= 0 in f(α) = β + k.ϕ(N).
Here, f can be any function composed of multiplication,
division, summation, extraction, or exponentiation.

In the our attack case, assume that α = d1, β =
1, and f(x) = e1 · x mod (ϕ(N)). Then we have
f(α) = β = 1. For the cyclic attack, we have α = β = e
and f(x) = xk such that f(α) = β. By computing
f(α)−β = k ·ϕ(N), the attacker can apply the proposed
attack in Theorem 3.1. This yields f(α)−β

k = ϕ(N)
and g = gcd(f(α) − β, e2). The remaining steps of the
attack are identical to those outlined in Theorem 3.1. To
apply this generalized attack, follow the Algorithm 3. In
the generalized version of Theorem 3, suppose that the
attacker knows f(α) = β mod (p − 1) and g(α′) = β′

mod (q − 1). In this case, Algorithm 3 is run twice to
return s2p and s2q .

Now, we propose an algorithm for breaking RSA
encryption, which is inspired by Algorithm 3 and can
be executed without prior knowledge of the RSA secret
key. To do this, we can run the Algorithm 4 with only



TABLE 1. COMPARISON OF THE COMMON MODULUS ATTACKS ON RSA

Attack Aim Data required Success Rate Conditions Complexity Reference
Factoring N ((e1, d1), N) Probabilistic (1/2) - O(log3N) [32]
Factoring N ((e1, d1), N) Deterministic e1d1 < N2 O(log9N) [31]
Factoring N ((e1, d1), N) Deterministic e1d1 < N3/2 O(log2N) [31]
Obtaining Plaintext1 (e1, e2,m

e1 ,me2 , N) Deterministic gcd(e1, e2) = 1 O(logN) [30]
Obtaining Plaintext ((e1, d1), e2, N) Deterministic - O(logN) Ours
Obtaining Plaintext ((e1, dp1, dq1), e2, N) Deterministic - O(logN) Ours
Obtaining Plaintext (e,N), f(α) Deterministic - O(logN) Ours

the knowledge of the public key N to find the function
f(x). Once we have found the function f , we can apply
Algorithm 3’s algorithm to break RSA encryption suc-
cessfully. Line 11 in Algorithm 4 guarantees k ̸= 0 in
relation β = a · αk + k · λ(N).

In the worst case, the algorithm’s running time is
equivalent to the cyclic attack if we set α = e and
f(x) = xk. However, unlike a cyclic attack, Algorithm
4 can be used for factoring in cases beyond RSA. This
means that Algorithm 4 does not need the value of e,
which can be an added advantage. Moreover, the Algo-
rithm 4 can run be parallelized for multiple α and β, a
noteworthy feature.

Algorithm 3 Generalization of the Proposed Attack
1: Input: α, β, f(x) and e2
2: Output: s2
3: b← f(β)
4: a← α · b− 1
5: g ← gcd(a, e2)
6: a← a/g
7: Find s1 and s2 such that a · s1 + e2 · s2 = 1 ▷ Since

a and e2 are co-prime
8: return s2

Algorithm 4 Finding Function f

1: Input: N
2: Output: α, β, and f(x)
3: k ← 1,m← 2 ▷ Or any m ∈ ZN . The function f is

independent of m
4: α, β, a← random elements from ZN

5: c1 ← ma·α mod N
6: c2 ← mβ mod N
7: while c1 ̸= c2 do
8: k ← k + 1
9: c1 ← cα1 mod N

10: end while
11: if β = a · αk then
12: k ← k + 1
13: c1 ← cα1 mod N
14: goto line 8
15: end if
16: return α, β, f(x) = a · xk

To factorize N , we can use the algorithm’s function.
By computing gcd(mf(α) −mβ , N) using this function,
we can find the factors of N . Another way to factorize N
using the Algorithm 4 is to compute f(α)− β = kλ(N),
where k ̸= 0, and then run the Miller algorithm to recover

factors of N . The complexity order of Algorithm 4’s
algorithm is equivalent to the order of cyclic attack in the
worst case, as the cyclic attack is a special case of ours.
While the complexity order of the cyclic attack on the
RSA cryptosystem is not explicitly stated in the provided
search results, we can say that our factoring attack can
achieve a complexity order of less than the cyclic attack’s
complexity order.

5. Conclusion

We introduced a new method of attack on the RSA
cryptosystem, which is a type of common modulus attack.
This attack involves using one of the public-private key
pairs to obtain the other private key in the decryption
process. Our proposed attack can work with both variants
of RSA, namely ϕ(N) and λ(N), and has a complexity
of O(logN). Two types of common modulus attacks have
been previously identified. The first type assumes that
the two public keys are coprime, enabling the attacker
to decrypt a message encrypted by both public keys. The
second type, proposed in our attack, is when the attacker
possesses one of the public-private key pairs and can
factorize the modulus under specific conditions outlined
in Table 1. Our proposed attack has several advantages,
including the ability to be applied to the black-boxed CRT
mode of the RSA cryptosystem. Additionally, the attack
can be generalized to the known function in ϕ(N) or
λ(N), which can be a subset of a side-channel attack.
Finally, we outline an algorithm for factoring inspired
by the proposed attack. In the worst case, the order of
complexity of this algorithm is equal to the cyclic attack.
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