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Abstract—Fully Homomorphic Encryption (FHE) enables
privacy-preserving computation but imposes significant compu-
tational and communication overhead on the client for the
public-key encryption. To alleviate this burden, previous works
have introduced the Hybrid Homomorphic Encryption (HHE)
paradigm, which combines symmetric encryption with homomor-
phic decryption to enhance performance for the FHE client. While
early HHE schemes focused on binary data, modern versions
now support integer prime fields, improving their efficiency for
practical applications such as secure machine learning.

Despite several HHE schemes proposed in the literature, there
has been no comprehensive study evaluating their performance
or area advantages over FHE for encryption tasks. This paper
addresses this gap by presenting the first implementation of an
HHE scheme- PASTA. It is a symmetric encryption scheme over
integers designed to facilitate fast client encryption and homomor-
phic symmetric decryption on the server. We provide performance
results for both FPGA and ASIC platforms, including a RISC-V
System-on-Chip (SoC) implementation on a low-end 130nm ASIC
technology, which achieves a 43–171× speedup compared to a
CPU. Additionally, on high-end 7nm and 28nm ASIC platforms,
our design demonstrates a 97× speedup over prior public-key
client accelerators for FHE. We have made our design public and
benchmarked an application to support future research.

Index Terms—HHE, RISC-V, Hardware Implementation, FPGA

I. INTRODUCTION

Data breaches have raised serious privacy concerns among
clients using computational or storage services offered by the
service providers. While the advent of Fully Homomorphic
Encryption (FHE) [1] has fulfilled the need for a privacy-
preserving cryptographic protocol, it faces several challenges
before practical realization. The FHE schemes transform plain-
text data into much larger polynomials when homomorphically
encrypted, resulting in substantial communication and compu-
tational overhead, often ranging from 10, 000× to 100, 000×
[2]. Generating and transmitting these large ciphertexts is very
expensive for the clients due to limited processing capabilities.

To address these, ‘Hybrid’ Homomorphic Encryption (HHE)
was introduced [3], preventing expensive data expansion. It
essentially involves using Symmetric key-based Encryption
(SE) methods that can be decrypted in a homomorphic manner.
The data flow from HHE to FHE is illustrated in Fig. 1.
Initially, HHE schemes were designed to work with binary data
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Fig. 1. Workflow of HHE schemes is illustrated here. Symmetrically encrypted
ciphertexts are sent to the server. The server performs a ‘homomorphic HHE
decryption’ and obtains a homomorphically encrypted ciphertext.

(Z2), such as RASTA [4], Flip [5], Filip [6], Kreyvium [7],
and AgRasta [4]. However, in response to the growing need
for better performance and application support, especially in
integer FHE, they have evolved into schemes like MASTA [8],
PASTA [9], HERA [10], and RUBATO [11] that can encrypt
messages in prime fields Fp, enabling operations on integers.

A. Research Gap

■ Difference with Traditional SE. Modern SE primitives used
within the HHE framework are significantly different from
traditional SE primitives such as AES [12] or ASCON [13].
The primary difference is the data type. While the traditional
SE schemes are defined over boolean values (Z2), new HHE
enabling SE schemes are defined over integers (Fp). Thus, the
data path increases significantly based on the size of modulus
p. This also affects the operations/functions computed on the
data. Traditional SE schemes use boolean AND, OR, and XOR
operations, which are very cheap compared to integer multipli-
cation, addition, and subtraction required by HHE enabling SE.

The SE schemes have two layers, substitution (S-box) and
permutation, which provide necessary confusion and diffusion.
While the traditional schemes can use a look-up-table-based
S-box, this is not feasible for the new schemes due to the
sheer size of the data (32-128 state elements each of size 17-
60 bits). Similarly, permutation in traditional schemes involves
shifting rows or columns and mixing within columns where
state sizes are small (e.g., 128 bits). The permutation in new
SE schemes requires expensive invertible matrix generation and
multiplication of size 32 × 32-128 × 128. Furthermore, while
the traditional schemes have standalone descriptions, the new
SE schemes utilize another expensive cryptographic standard-
SHAKE128 (based on Keccak) as a pseudo-random number
generator. Thus, they are bound to consume significantly more
area and time than traditional SE schemes.
■ The Challenge. While the above subsection brings forth
an important discussion regarding the new HHE enabling SE



schemes being more expensive than traditional SE schemes,
it does not give an idea of the challenge of implementing
them and the expected results compared to existing public-key
encryption (PKE) client-side routines. In most prior PKE client-
side acceleration works, the polynomial degree is N = 213,
and for polynomial multiplication (the most expensive routine),
a Number Theoretic Transform (NTT) based technique is
utilized. Each NTT transform requires N ·logN

2 multiplications.
The number of such transformations required is three per
modulus, which is done for three different moduli. Thus, the
total number of multiplications required is ≈ 219.

For the HHE enabling SE scheme- PASTA, there are two
variants- PASTA-3 and PASTA-4. PASTA-3 the state comprises
256 elements, split into two parts of 128 each. The number of
rounds is three, and each round involves a 128 × 128 invert-
ible matrix generation and multiplication. The multiplicative
complexity of both operations is the same- 128 ·128, and eight
such operations are required. This brings the total multiplication
cost to 218. It is interesting to note that, while FHE encrypts
212 elements in 213 degree polynomials, PASTA-3 can only
encrypt 128 = 27. Therefore, although PASTA-3 encrypts 32
elements twice as fast, it will need 26 more encryptions to
encrypt 212 elements, resulting in 32× slower computation for
data-intensive applications.

Furthermore, HHE, unlike FHE, requires SHAKE128, a
giant building block even in Post-Quantum schemes [14]. Thus,
while the new SE schemes offer an advantage in terms of 6×
lower communication, any performance or area consumption
advantage is not apparent. Given that communication overhead
plays a crucial role, HHE requires a thorough design explo-
ration to offer accelerated computation and determine if the
communication advantage justifies potential trade-offs.
■ The Implementation Gap. To the best of our knowledge,
an HHE scheme has not yet been implemented in hardware.
While several accelerators exist for the server [15]–[17], there
are very few addressing the needs of the FHE client. The
prior works on FHE PKE accelerators [18]–[22] can mitigate
computation costs, but communication overhead remains a
major bottleneck in practical use. Additionally, the platforms
these accelerators target (e.g., AlveoU250) are prohibitively
expensive for typical clients. As a result, clients face both
computational and communication overheads. This makes it es-
sential to explore how efficiently HHE schemes, which prevent
communication overhead, can be implemented on resource-
constrained hardware or as System-on-Chip (SoC).

B. Our Contribution

This work addresses the aforementioned research gap and
proposes a hardware accelerator for an HHE scheme- PASTA.
This is the first hardware realization of any HHE scheme. As a
system supporting FHE client, it reduces the communication
overhead due to its use of HHE and offers several orders
better performance and energy efficiency than software and
prior client-side PKE accelerators. The primary design tech-
nique includes the optimal realization of the invertible matrix
generation and multiplication step. The design further features

Fig. 2. The PASTA-t permutation (π) takes as input the key (K), nonce (n),
and counter (ctr), and generates the truncated result- key stream (KS).

efficient resource sharing amongst all the routines. The ASIC
results show a speedup of 97× compared to prior PKE client
accelerators. This design is further realized as a RISC-V SoC
on a low-end 130nm ASIC technology and delivers up to 171×
speedup compared to CPU. We report a 857-3, 439× reduction
in clock cycles compared to [9] on CPU. Furthermore, we make
our design publicly available1 to support further research.

II. BACKGROUND

Notations: We denote numbers as small letters (e.g., x), vectors
of numbers as capital letters (e.g., X), and matrices as bold and
capital letters (e.g., M). The subscripts Xi are used for indexing
coefficients in matrix (or elements in vector) or names (XL, V4),
and the superscripts Xi are used for indexing rows in a matrix.

A. Hybrid Homomorphic Encryption

• The client uses the FHE public key to encrypt the SE
private key- K homomorphically and sends it to the server
at the beginning. After this, clients use HHE Encryption
to encrypt the message blocks mi using K and send the
resultant ciphertext to the server whenever they need to
store or process data on the cloud.

• The server evaluates the HHE decryption circuit homo-
morphically. This results in a homomorphically encrypted
ciphertext, which the server can process.

• The client can retrieve the homomorphic ciphertext and
decrypt the result using FHE secret key.

B. HHE Scheme Design Overview

In the context of HHE, the variables can be categorized into
two types: public and private. As illustrated in Fig. 2, the nonce
(n) and the counter (ctr) are considered public data, as they are
known to both the client and the server. In contrast, the key (K)
is private and exclusively known to the client. For HHD, this
key is encrypted and securely transmitted to the server (done
only once initially). Hence, both K and the client’s message
(mi) remain concealed from the server.

With the public and private variables clearly defined, we now
describe the PASTA HHE scheme. We have chosen PASTA [9]
for our implementation as other HHE scheme designs can be
viewed as adaptations or variations of PASTA. This scheme
operates as a stream cipher and comprises two variants: 3-round
PASTA-3 and 4-round PASTA-4. Fig. 2 demonstrates the PASTA
permutation (π). It is important to note that the operations

1The design and its RISC-V integration are available at https://github.com/
aikata10/Pasta RISCV



outside the square box, denoted as XOF (extendable-output
function), are public. SHAKE128 is used for this. Contrarily,
the operations within the box are considered private (key-
dependent) and involve either addition or multiplication using
modular arithmetic in Zp. Here, p can be any prime between
16 and 60 bits depending on the specific requirements of the
underlying FHE scheme.

The state size (2t) varies between the PASTA-3 and PASTA-
4 variants of the scheme, where t is the size of one block.
Specifically, for PASTA-3, 2t = 128 coefficients, while for
PASTA-4, it is 64. These 2t coefficients are divided into two
halves, XL and XR, and then processed via permutation. The
resulting KS (KeyStream) is added to the plaintext block (size
t) for encryption. Each PASTA round consists of several layers,
described as follows:

• Ai (Affine Layer): For this layer, an invertible matrix Mi

and a round constant vector RCi are generated using the
SHAKE128 XOF output. Then, the layer performs Mi ·
Xi + RCi operation, where Xi represents the input state
comprising t coefficients.

• Mix (Mixing Layer): Following Ai, the two halves of the
state are mixed using the Mix operation. This operation
transforms the state into (2 · XL + XR, 2 · XR + XL).
This step is crucial for spreading values evenly across the
two-state halves.

• S′/S (S-Box Layer): The next layer involves the S-Box
operation. For the final round, the cube S-Box (S) is
applied, while for all previous rounds, a Feistel S-Box
(S′) is utilized. Both these S-boxes are invertible.

S′(Xj) =

{
Xj (mod p) if j = 0,

Xj + (Xj−1)2 (mod p) otherwise,

• Truncation Layer (Trunc): It returns the XL state as the
final output. This is applied at the end (pre-final) and
truncates the output to prevent round inversion.

C. Invertible Matrix Generation Method

The affine layer in PASTA requires invertible matrices Mi

to ensure one-to-one mapping between input and output. The
steps for generating them are as follows.

• Generate a vector of t elements using SHAKE128 XOF.
This constitutes the first row of the matrix M0

i =
[α0, α1, · · · , αt−1].

• Next, use this row to generate the remaining rows using
(1) [23], [24]. This ensures that the matrix is invertible

Mj+1
i = Mj

i ·

 0 1 0 · · · 0
· · · · · · ·
α0 α1 α2 · · · αt−1

 ∀ 0 ≤ j < t

(1)

III. DESIGN METHODOLOGY

In [9], the authors have reported the clock cycle count
for PASTA encryption (also stated in Tab. II). They further
give a small breakdown showing that the affine generation
alone consumes 54-60% of the total clock cycles. Thus, apart

Fig. 3. The schedule for one round of the PASTA-π permutation.

from the invertible matrix generation and matrix multiplication,
the pseudo-random number generation plays a significant role
in determining the overall performance. With this important
observation from the scheme designers of PASTA, we explore
techniques for designing a highly parallel, high-performance
pipelined design for modulus p in the 17-54 bits range. We do
not perform round-unrolling so that the design can fit in small
FPGAs (e.g., Artix-7), which are more suitable for clients.

A. XOF and Rejection Sampling Unit

A significant challenge arises in the efficient generation of
pseudo-random data required by the PASTA-3/-4 cryptographic
schemes, which demand 2048/640 coefficients. After consum-
ing the nonce and counter, the XOF unit generates one 64-bit
coefficient per clock cycle, followed by a rejection sampling
step. This process continues until all 21 pseudo-random coef-
ficients are utilized. At this point, the XOF performs another
24-round Keccak permutation and generates the next set of 21
coefficients. This cycle repeats until the necessary amount of
data is produced. A key challenge is that rejection sampling
can result in up to half of the generated data being discarded,
placing strain on the throughput.

To address this, we implemented a high-performance
SHAKE128 design [14] that tackles this bottleneck by exe-
cuting Keccak permutations in parallel with the squeeze opera-
tion, nearly doubling performance. However, this enhancement
requires two 1600-bit state buffers, increasing resource usage.
Further, the rejection sampling procedure for matrix and round
constant vector generation is identical, necessitating an effi-
cient integration with the XOF routine. We addressed this by
incorporating a DataGen unit, which operates in a ping-pong
configuration: while one vector is used to generate the matrix,
the other stores XOF results for the subsequent computation.
This optimization, as illustrated in Fig. 4, enables continuous
data flow and improves overall throughput.

B. Operation Schedule

To ensure high performance, the XOF output must be con-
sumed as soon as it is generated. The rate for the rejection
sampling utilized can be any value between 1-2×; thus, an XOF
data vector can be ready in at least t clock cycles. Each round
requires the generation of four random vectors for the affine
transformation: the first two are used for matrix generation,
while the latter two serve as round constants for addition.
Matrix generation is followed by matrix multiplication, while
Mix and S-box operations follow the round constant addition.
The challenge lies in ensuring full parallelization—matrix
multiplications and Mix/S-box operations must be completed
in time for the next round of XOF data to become available.



Fig. 4. The Data Generation and Adder-Tree units utilized in Matrix Generation
and Multiplication. The log operation has base 2.

Fig. 5. The Invertible Matrix Generation and Multiplication Units.

Careful coordination is needed to prevent bottlenecks and
maintain continuous data flow between rounds.

The overall flow, illustrated in Fig. 3, shows how the random
vectors generated by the XOF (denoted as Vi) are either fed into
the MatGen or VecAdd. Matrix multiplications are concurrent
to matrix generation, while Mix and S-Box operations follow
vector addition. This design ensures the on-time completion of
each computation before the next round of data is generated,
enabling a balance between parallelism and throughput.

C. Invertible Matrix Generation & Multiplication Unit Design

Matrix generation and multiplication introduce a computa-
tional challenge, as they require 2t2 modular multiplications.
To finish both tasks within the stipulated time of t clock cycles,
we instantiate two multiplication sets, each consisting of t
modular multipliers. One set is dedicated to invertible matrix
generation. As shown in (1), matrix generation also requires
addition. Therefore, the unit instantiated for MatGen is a MAC
(Multiply-and-Accumulate) unit, as illustrated in Fig. 5.

The matrix generation unit generates the matrix row-wise.
Therefore, the multiplication is also done row-wise using
MatMul unit, shown in Fig. 5. The state vector is multiplied
with a row for matrix multiplication, and all the resultant
elements are accumulated, similar to a vector dot-product. The
multiplication is done via the second set of t multipliers. We use
a pipelined adder-tree unit for additions, illustrated in Fig. 4.
The time consumed for matrix generation and multiplication is
6+ t+log2 t clock cycles, accounting for the additional cycles
needed to support the pipelined data flow between the MAC
and matrix generation/multiplication stages.

This technique not only achieves high performance but also
addresses another significant challenge— memory efficiency.
By eliminating the need to store large 32 × 32 or 128 × 128
element matrices, our approach significantly reduces the mem-
ory footprint. For matrix generation, we only store the minimal

Fig. 6. The overall architecture of the hardware design for PASTA.

set of two required rows (α0,αj) to generate subsequent (αj+1)
ones, as highlighted in Fig. 5. This is due to the fact that the
resultant (αj+1) is immediately consumed for matrix multipli-
cation, resulting in substantial area savings in terms of memory
without compromising the throughput.

D. VectorAddition, Mix, and S-Box Unit Design

Similar to multiplication units, we employ t vector addition
units. The number of vector additions required per state is
t. Therefore, this unit barely consumes three clock cycles,
wondering pipelining. The reason for instantiating it in a fast
mode becomes evident when considering the fact that Vector
Addition (RC Add), Mix, and S-Box operations need to finish
in parallel with the generation of V4 in Fig. 3. The Mix
operation requires the computation of (2·XL+XR, 2·XR+XL).
We compute this solely using additions. Thus, three additions
are required: (i) XR + XL, (ii) XR + (XR + XL), and (iii)
XL+(XR+XL). The addition unit used for vector addition is
also utilized for these additions, thus ensuring resource sharing.

Following this, the S-Box operations present an additional
challenge. PASTA employs two S-Boxes: the cube S-Box (S),
which requires two multiplications, and the Feistel S-Box (S’),
which involves one multiplication and one addition. As a result,
each round must compute four additions and two multipli-
cations (or five additions and one multiplication) in parallel
with the generation of t elements. The same multiplication
(Mul) and addition (Add) units used in the affine transformation
(MatMul, RC Add) are reused for these operations, increasing
resource sharing. Since addition units are relatively low-cost,
t instantiations avoid the overhead of pipelined intermediate
storage using additional flip-flops.

All the multiplication and addition units operate modulo a
prime- p. We observe that the moduli chosen by the authors
in [9] have a Mersenne structure (e.g., 17-bit prime 65,537),
enabling the use of an add-shift-based modular reduction unit
following each multiplication. This technique is also utilized
by prior FHE acceleration works [16].

E. Overall Architecture Design

The overall architecture of the design is shown in Fig. 6.
The user provides a nonce (η), counter (ctr), and message
block m, with the output being the ciphertext c. The ciphertext
c is produced by performing a modular addition between
the input message and the keystream (KS), which is the
result of the PASTA-π permutation. The DataGen, Modular



TABLE I
THE IMPLEMENTATION RESULTS OF PASTA-3/4 ON THE ARTIX-7 BOARD

TARGETING 75MHZ CLOCK FREQUENCY.
Scheme ω† LUT FF DSP
PASTA-3 17 65,468 49% 36,275 13% 256 35%

PASTA-4
17 23,736 18% 11,132 4% 64 9%
33 42,330 32% 20,783 8% 256 35%
54 67,324 50% 32,711 12% 576 78%

† ‘ω’ denotes the size of the Mersenne moduli.
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Fig. 7. Module-wise area utilization. The first pie chart shows the distribution
for FPGA and the second for ASIC platforms. Rem. implies Remaining Area.

Multiplier (Mul), and Adder (Add) units are instantiated within
a wrapper, enabling their reuse by both the MatMul and
RC Add/Mix+S-box units for efficient resource utilization.

IV. RESULTS

A. Evaluation Platforms and Area

We choose three evaluation platforms to analyze the design
for varying use cases comprehensively.
1 FPGA. We set our target as the low-cost Artix-7 AC701

(xc7a200tfbg676-2) FPGA at 75MHz. This FPGA features
134k Look-Up-Tables (LUTs), 269k Flip-Flops (FFs), 740
Digital Signal Processors (DSPs), and 365 Block Random
Access Memories (BRAMs) with 36kb capacity. We used
Xilinx Vivado 2022.2 to run synthesis, place & route. FPGA
Area results are reported in Tab. I, and the area breakdown is
reported in Fig. 7. The design does not require any BRAM or
URAM-based memory storage. Therefore, it is not reported in
the table. For PASTA-4, we place the design for a bit-width up
to 54-bit to perform a comprehensive analysis.
2 ASIC. We also present ASIC-synthesis results using TSMC

28nm and ASAP7 [25] 7nm libraries to compare with prior
ASIC works [19], [20]. The synthesis is performed using
Cadence Genus 2019.11, and clock-gating is employed to
help reduce power consumption with clock frequency target as
1GHz. It reports an area consumption of 0.24 mm2 and 0.03
mm2 on the 28nm and 7nm processes. The maximum power
consumed by the design is 1.2W. For a bit-width of 33 and 54,
the area increases by ≈ 2.1× and ≈ 4.3×.
3 RISC-V. A peripheral has been developed to integrate

the PASTA encryption module into the 32-bit RISC-V [26]
architecture. It is connected to the central Ibex core data bus
using a loosely coupled design. This peripheral is connected
to the RAM via an extra bus where the peripheral acts as
a master, allowing direct read access to obtain the plaintexts
to be processed and subsequently encrypted. The RISC-V
SoC targets 100MHz on older 130nm and 65nm technology
nodes and requires 1.8 mm2 (4.6 mm2 with Ibex core). The
peripheral processes data block-by-block, allowing a flexible

TABLE II
THE PERFORMANCE RESULTS FOR PASTA-3/4 ENCRYPTION OF ONE BLOCK

ALONG WITH THE RESULTS FOR CPU REPORTED IN PASTA.

Scheme Elements clock FPGA ASIC RISC-V
Processed cycles (µs) (µs) (µs)

PASTA-3 [9] 128 17,041,380† - - -
PASTA-3 128 4,955 66.1 4.96 45.5

PASTA-4 [9] 32 1,363,339† - - -
PASTA-4 32 1,591 21.2 1.59 15.9

† The results are reported on an Intel Xeon E5-2699 v4 CPU [9].

number of blocks to be encrypted. This design choice improves
area utilisation by reducing memory to a 544-bit PASTA state.
Another limiting factor in the design is the use of the data bus
connecting the core to the peripherals. The latter, as a slave,
handles the encryption start signal, the memory address for
reading into RAM, reading the key and nonce, and writing the
encrypted data, all on a single bus. This prevents simultaneous
reading and writing of data blocks. So, the processing of one
block must be completed before the next block can be started.
■ Bitlength Comparison. The performance stays the same for
different bit lengths thanks to our design strategy. The area-time
product increases as the area is more than doubled when the
bit length is doubled. Therefore, we will consider the design
with a bit-length of 17 bits for comparisons unless specified.

B. Performance Benchmarks.

In Sec. III, we described our design strategy tailored to offer
high speed, which is limited by the Keccak permutation imple-
mentation. SHAKE128 instance of Keccak has a rate of 1, 344
bits and generates 21 words (64-bit) after one permutation.
Each permutation takes 24 clock cycles (cc). One round of
PASTA-4 requires 32 × 4 pseudo-random state elements, one
each for the two matrix multiplication and two round constant
additions. PASTA-4 has five such rounds. Thus, a minimum of
31 Keccak permutation rounds is required.

A rejection sampling follows the pseudo-random number
generation. In our case, we have a high rate of rejection
sampling (≈ 2×) for the stated prime- 65, 537 (0x10001).
Therefore, the sampling rate almost doubles, and we require,
on average, 60 Keccak permutation rounds. Overall, the Keccak
round function alone consumes 1,440 cc (60 × 24). Sampling
21 elements would add another 21 cc after every round.
Therefore, the clock cycle almost doubles for a naive Keccak
implementation. However, the Keccak implementation utilised
in this work allows us to perform Keccak permutation in
parallel with the squeeze operations, adding only an extra five
clock cycles between two squeezes. This helps us reduce the
clock cycles by half (60 · (21 + 5) = 1, 560cc).

The total clock cycle count is appended with t = 32 clock
cycles required by the last remaining Mix operation after all the
data has been generated, bringing the overall cycle count for
PASTA-4 encryption to 1, 592, as given in Tab. II. Similarly, for
PASTA-3, the state size increases fourfold while operating for
one less round. This gives the average number of Keccak calls
as 186 and clock cycles for Keccak round function alone as
4, 836cc (186·(21+5)cc). The entire PASTA-3 encryption costs
4, 964cc due to an additional 128cc from the last mix operation.



TABLE III
COMPARISONS OF PASTA-4 PERFORMANCE, AREA WITH PRIOR WORKS.

Work Platform Area Encr.‡
kLUT kFF DSP BRAM (µs)

[21] Zynq US+ - - - - 7.79k (1.91)
[22] AlveoU250 1,179 1,036 12,288 828.5 16.9k (0.51)
[18] Kintex-7 20.7 17.6 100 82.5 1.87k (0.46)
TW Artix-7 23.7 11.1 64 0 21.2 (0.67)
[20] 12nm 0.06 mm2 110k (26.9)
[19] 12nm† 0.11 mm2 20k (4.88)
TW 7/28nm 0.03/0.24 mm2 1.59 (0.05)
TW 65/130nm† 0.74/1.80 mm2 15.9 (0.50)
‡ Runtime is reported for one encryption and per element in bracket.

† refers to RISC-V SoC, and ‘k’ refers to 1,000.

These bounds on the number of clock cycles are based on
the rejection sampling rate. Consequently, the number of clock
cycles upon experimentation varies with a small deviation based
on the initiating nonce and counter.
■ PASTA-3 vs. PASTA-4. Area-Performance Comparisons.

Tab. II lists the performance estimates upon experimentation
on various platforms. While PASTA-3 consumes more runtime
than PASTA-4 for their respective state size, PASTA-3 reports
22% less processing time than PASTA-4 for the same amount of
data. In the previous section, we saw that PASTA-3 consumes
approximately 3× more area than PASTA-4. This shows us that
PASTA-4 offers a better area-time trade-off than PASTA-3 and
should be preferred for client-side devices irrespective of the
choice of the implementation platform.

C. Comparisons with Prior Works

Tab. II reports that our design requires 857-3, 439× fewer
clock cycles than CPU results presented in [9]. This translates
to a speedup of 43-171× as the CPU runs at ≈ 20× higher
clock frequency- 2.2GHz. Prior works [18]–[22] for FHE
client-side encryption routine present designs targetting the
PKE algorithm involving expensive polynomial arithmetic. No
prior work has implemented new and more efficient arithmetic
symmetric HHE enabling schemes. The parameters supported
by the prior works are also insufficient to support bootstrapping
in FHE. In contrast, implementing an HHE enabling SE scheme
does not prevent bootstrapping.
1 FPGA works. To ensure fair comparisons, the performance

is also reported per element encrypted. The number of elements
is 32 in our case, 212 for [18], [21], and 215 for [22]. Prior
works [18], [21], [22] utilize Zynq UltraScale+, AlveoU250,
and Kintex-7 FPGAs. These boards have 2-10× more resources
than our target Artix-7 board. Tab. III shows that our design
consumes relatively less area and no BRAMs while delivering
similar performance. Furthermore, we deliver similar perfor-
mance while running our design at almost 2-3× lower clock
frequency, thus lowering the overall energy consumption. For
ML inference applications encrypting low amounts of data (e.g.,
32 coefficients), we deliver much better performance (21.2 µs)
as FHE will necessitate the same amount of computations
(1,884 µs) for any amount of data upto 212 coefficients.
2 RISC-V works. The existing RISC-V client-side FHE

acceleration works [19], [20] present a hardware-software co-
design targeting 1GHz clock frequency on 12nm Technology.
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Minimum (12.5 MBps, right) 5G available bandwidth. The graphs are on a
logarithmic scale. TW refers to this work.

Their parameters choice can pack 212 elements per encryption.
The comparisons in Tab. III reported with these works showcase
that the design for HHE enabling SE schemes offers 98-338×
better performance as a standalone chip. The proposed RISC-V
SoC on the old technology nodes (130nm, 65nm) performs 10-
34× better while targeting 10× less clock frequency for low
power. Note that the design consumes an area similar to [19]
post-technology normalization.

V. APPLICATION BENCHMARK

We evaluate an application benchmark of the video frame
encryption [19], [27] application, which sends videos to the
cloud processors for surveillance [28]. The video is split into
frames as per the required resolution, which can range from
QQVGA (160×120 pixels), QVGA (320×240 pixels), to VGA
(640×480 pixels). A grayscale pixel requires 8 bits of storage.
The available bandwidth for data transfer ranges between 12.5
and 112.5 MBps (e.g., mid-band 5G network [29]). Our results
compared with [19] are reported in Fig. 8. RISE [19] can
encode one QQVGA frame per ciphertext (N = 214, logQ =
390) and requires three such ciphertexts for a QVGA frame.
One ciphertext size is 1.5MB (214 · 2 · 390). Therefore, they
can send 70 QQVGA frames per second at the maximum 5G
bandwidth. Our ciphertext for (N = 25, log q0 = 33) is only
132 Bytes in size (25 · 17). Hence, we can send up to 712×
more frames per second. [19] cannot send a VGA frame at
minimum bandwidth.

VI. CONCLUSION AND FUTURE SCOPE

In this work, we realized an HHE enabling SE scheme-
PASTA in hardware. This is the first such realization of any
efficient and new SE scheme defined over integer and presents
results useful for promoting this field. It highlights certain prob-
lems, for example, the performance bottleneck due to heavy
reliance on the XOF, and its significant area consumption. An
interesting future scope is to implement the other HHE enabling
SE schemes and show the impact of the changes across these
schemes post-hardware realization. Another direction would be
to analyze the effect of adding countermeasures against side-
channel or fault analysis [30] and compare them against the cost
of adding the same countermeasures on public-key encryption.
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