
Cryptanalysis of BAKSHEESH Block Cipher

Shengyuan Xu1, Siwei Chen(B)2,5, Xiutao Feng3, Zejun Xiang2,5, and
Xiangyong Zeng4,5

1 Department of Fundamental Courses, Shandong University of Science and
Technology, Taian, Shandong, China xushengyuan@sdust.edu.cn

2 School of Cyber Science and Technology, Hubei University, Wuhan, Hubei, China
chensiwei_hubu@163.com, xiangzejun@hubu.edu.cn

3 Key Laboratory of Mathematics Mechanization, Academy of Mathematics and
Systems Science, Chinese Academy of Sciences, Beijing, China fengxt@amss.ac.cn

4 Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied
Mathematics, Hubei University, Wuhan, Hubei, China xzeng@hubu.edu.cn

5 Key Laboratory of Intelligent Sensing System and Security, Ministry of Education,
Hubei University, Wuhan, Hubei, China

Abstract. BAKSHEESH is a lightweight block cipher following up the well-
known cipher GIFT-128, which uses a 4-bit SBox that has a non-trivial
Linear Structure (LS). Also, the Sbox requires a low number of AND
gates that makes BAKSHEESH stronger to resist the side channel attacks
compared to GIFT-128. In this paper, we give the first third-party se-
curity analysis of BAKSHEESH from the traditional attacks perspective:
integral, differential and linear attacks. Firstly, we propose a framework
for integral attacks based on the properties of BAKSHEESH’s Sbox and its
inverse. By this, we achieve the 9- and 10-round practical key-recovery
attacks, and give a 15-round theoretical attack. Secondly, we re-evaluate
the security bound against differential cryptanalysis, correcting two er-
rors from the original paper and presenting a key-recovery attack for 19
rounds. At last, for linear cryptanalysis, we develop an automated model
for key-recovery attacks and then demonstrate a key-recovery attack for
21 rounds. We stress that our attacks cannot threaten the full-round
BAKSHEESH, but give a deep understanding on its security.

Keywords: BAKSHEESH· Lightweight Block Cipher · Security Evalua-
tion · Key-recovery Attacks

1 Introduction

In today’s world, the Internet of Things (IoT) is pivotal across various do-
mains, including agriculture, healthcare, industry, and transportation. Despite
their widespread use, IoT devices often suffer from resource constraintslimited
computing power and energywhich renders traditional cryptographic methods
insufficient for safeguarding data. To overcome these challenges, the field of
lightweight cryptography has emerged, resulting in the creation of a range of
efficient block ciphers. Notable examples include PRESENT [8], CLEFIA [16],

2 Authors Suppressed Due to Excessive Length

PRINCE [10], SIMON [3], SPECK [3], SKINNY [4], and GIFT [2], each drawing
significant interest from researchers.

Recently, a lightweight block cipher called BAKSHEESH [1] was proposed by
Baksi et al., building upon the well-known cipher GIFT-128. BAKSHEESH runs
for 35 rounds, and the block and key are both 128 bits. Its round function com-
prises four distinct steps: SubCells: 32 4-bit SBoxes are applied to the state;
PermBits: permutes the bits of the state; AddRoundConstants: involving the
XOR operation with a 6-bit constant and an additional bit; and AddRoundKey:
the round key is XORed with the state. BAKSHEESH’s Sbox has a very low num-
ber of AND gates so that it is suitable to side channel counter measures (when
compared to GIFT-128) and other niche applications. But the LS in its Sbox
seems more aggressive than GIFT-128 from the security against traditional at-
tacks like differential cryptanalysis perspective. Aside from the basic security
analysis provided by the designers themselves, there is a notable lack of concrete
third-party security evaluations in the existing literature. To address this gap,
this paper presents intergral cryptanalysis, differential cryptanalysis and linear
cryptanalysis of the BAKSHEESH cipher, offering a comprehensive examination of
its security.

Differential cryptanalysis [7] and linear cryptanalysis [15] are two of the most
important cryptanalysis in block ciphers. At CRYPTO ’90, Biham and Shamir
introduced the concept of differential cryptanalysis, achieving the first theoret-
ical attack on the full-round Data Encryption Standard (DES). Subsequently,
Matsui proposed linear cryptanalysis at EUROCRYPT ’93, enhancing the full-
round attack on DES. Since these seminal contributions, several useful techniques
have been developed based on them, such as related-key differential attack [5],
truncated differential attack [12], impossible differential attack [6] and zero cor-
relation attack [9].

The integral attack [13] is another valuable method for assessing the secu-
rity of symmetric-key primitives. It was introduced by Daemen et al. in 2002 to
evaluate the security of the block cipher Square [11] and was later formalized
by Knudsen and Wagner. The integral attack involves two main steps: the con-
struction of an integral distinguisher followed by a key-recovery process. In 2015,
a novel technique for constructing integral characteristics was introduced [19]
which presented a new concept known as the division property by generalizing
the integral property originally discussed in [13]. By modeling the propagation of
the division property as a Mixed Integer Linear Programming (MILP) problem,
Xiang et al. [20] developed an automated tool to facilitate the search for integral
distinguishers.

1.1 Our Contributions

In this paper, we present a comprehensive third-party cryptanalysis and pro-
pose several key-recovery attacks on BAKSHEESH. Given that integral attacks
yield the longest practical key-recovery, we utilize integral cryptanalysis for our
evaluation and obtain practical key-recovery attacks. Morever, we also search
differential/linear trails automated and provide theoretical key-recovery attacks

Cryptanalysis of BAKSHEESH Block Cipher 3

by leveraging distinguishers based on differential trails and linear trails. Our re-
sults are summarized in Table 1, and the detailed contributions are outlined as
follows.

Practical integral attacks. Based on the properties of BAKSHEESH’s Sbox and
its inverse, we propose a framework for (r + 2)-round key-recovery attacks of
BAKSHEESH using r-round integral distinguishers. Moreover, we introduce an op-
timized search strategy based on the MILP-aided division property to identify
integral distinguishers more efficiently, which are suitable for the attack frame-
work. As a result, we find a 7-round and an 8-round distinguishers with data
complexity 214 and 230, and utilize them to achieve the 9-round and 10-round
practical attacks, repsectively, which can be verified by experiments. Also, we
present a 15-round theoretical attack with time complexity 2127 based on a 13-
round distinguisher.

SAT-aided re-evaluation on the security bound against differential/linear crypt-
analysis. We utilized automated tools to reassess the optimal differential bounds
for BAKSHEESH and identified two errors in the original work concerning differen-
tial trails. Additionally, we present a key-recovery attack for 19-round BAKSHEESH
based on the differential distinguisher we found. Furthermore, we conducted a
thorough automated search for full-round linear trails and verified the correctness
of the original results. Finally, by characterizing the key-recovery state within
the SAT models, we provide a key-recovery attack for 21-round BAKSHEESH.

Table 1. Summary on our attacks for BAKSHEESH. #R: number of attack round.

Method #R Time Data Memory Ref.

Integral 9 232.01 215.59 - Sect. 3.3
Integral 10 232.99 231.59 224.59 Sect. 3.3
Integral 15 2127 2127 223 Sect. 3.3
Differential 19 2121 2122 264 Sect. 4.2
Linear 21 2127.67 2120 212 Sect. 4.4

1.2 Organization of This Paper

This paper is organized as follows: Firstly some necessary notations and pre-
liminaries are introduced in Section 2. In Section 3, integral distinguishers are
constructed using automated tools, and practical key-recovery attacks are pro-
posed. Section 4 re-evaluates the security bounds against differential and linear
cryptanalysis using the SAT method. Finally, we conclude this paper in Section
5. The source codes are publicly available at https://github.com/damash/
Cryptanalysis-of-BAKSHEESH-Block-Cipher.

https://github.com/damash/Cryptanalysis-of-BAKSHEESH-Block-Cipher
https://github.com/damash/Cryptanalysis-of-BAKSHEESH-Block-Cipher

4 Authors Suppressed Due to Excessive Length

2 Preliminaries

In this section, we start by providing a brief overview of some notations in Table
2, then give the specification on BAKSHEESH block cipher as well as some basis
on integral, differential, and linear cryptanalyses.

Table 2. The notations used throughout the paper. Moreover, Xr+1 is also the r-round
output state for 1 ≤ r ≤ 34.

Notation Description

F2 The finite field only contains two elements, i.e., {0, 1}
Fn
2 An n-dimensional vectorial space defined over F2

∧, ∨, ⊕ Bit-wise AND, OR, XOR
K The master key
RKr = (rkr

127, · · · , rkr
0) The r-round subkey for 1 ≤ r ≤ 35

X = (x127, · · · , x0) The 128-bit internal state
X0 = (x0

127, · · · , x0
0) The 128-bit plaintext

Xr = (xr
127, · · · , xr

0) The input of r-round SubCells for 1 ≤ r ≤ 35
Y r = (yr

127, · · · , yr
0) The output of r-round SubCells for 1 ≤ r ≤ 35

Si The i-th Sbox

2.1 BAKSHEESH Block Cipher

BAKSHEESH, proposed by Baksi et al. [1] at 2023, is a lightweight block cipher
that designed by following up the popular block cipher GIFT-128 [2]. The block
and key of BAKSHEESH are both 128 bits, and the full iteration round is 35. The
round function of BAKSHEESH is based on SPN structure, and consists of the
following 4 steps:

– SubCells: applying 32 parallel 4 × 4 Sboxes to the internal state, namely,
the state is updated as:

X ← S(x127||x126||x125||x124)|| · · · ||S(x7||x6||x5||x4)||S(x3||x2||x1||x0).

Table 3 gives the truth table of the Sbox.

Table 3. The truth table of BAKSHEESH’s Sbox.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 3 0 6 d b 5 8 e c f 9 2 4 a 7 1

– PermBits: permute the bit positions of internal state as xP (i) ← xi for
0 ≤ i ≤ 127, where P is the permutation as given in Table 4.

Cryptanalysis of BAKSHEESH Block Cipher 5

Table 4. The bit permutation P of BAKSHEESH. For instance, P (1) = 33, P (16) = 4.

0 33 66 99 96 1 34 67 64 97 2 35 32 65 98 3
4 37 70 103 100 5 38 71 68 101 6 39 36 69 102 7
8 41 74 107 104 9 42 75 72 105 10 43 40 73 106 11
12 45 78 111 108 13 46 79 76 109 14 47 44 77 110 15
16 49 82 115 112 17 50 83 80 113 18 51 48 81 114 19
20 53 86 119 116 21 54 87 84 117 22 55 52 85 118 23
24 57 90 123 120 25 58 91 88 121 26 59 56 89 122 27
28 61 94 127 124 29 62 95 92 125 30 63 60 93 126 31

– AddRoundConstants: XORing a 6-bit constant Cr = (cr106, c
r
67, c

r
35, c

r
19, c

r
13, c

r
8)

for 1 ≤ r ≤ 35 to the 6 bits x8, x13, x19, x35, x67, x106, i.e.,

x8 ← x8 ⊕ cr8, x13 ← x13 ⊕ cr13, x19 ← x19 ⊕ cr19,

x35 ← x35 ⊕ cr35, x67 ← x67 ⊕ cr67, x106 ← x106 ⊕ cr106,

where the round constants Cr are given respectively by: (2, 33, 16, 9, 36, 19,
40, 53, 26, 13, 38, 51, 56, 61, 62, 31, 14, 7, 34, 49, 24, 45, 54, 59, 28, 47, 22,
43, 20, 11, 4, 3, 32, 17, 8). For example, C1 = 2, (c1106, c167, c135, c119, c113, c18) =
(0, 0, 0, 0, 1, 0).

– AddRoundKey: XORing a 128-bit round key RKr = (rkr127, rk
r
126, · · · , rkr0)

for 0 ≤ r ≤ 35 to the state, i.e., Xr+1 ← Xr ⊕ RKr. Note that RK0 is the
whitening key.

For the key schedule, BAKSHEESH uses the master key as the whitening key,
and the round keys are simply generated by circular right rotation on the master
key. In particular, the r-th round key RKr is represented as

RKr = K ≫ r, for 0 ≤ r ≤ 35.

In addition, we give two properties about BAKSHEESH’s Sbox that will be used
in our attacks.

Property 1. For BAKSHEESH’s Sbox, there is a linear trail 1000 → 0111 with
correlation 1.

Property 2. For the inverse of BAKSHEESH’s Sbox, there is a differential tran-
sition 1111→ 1000 with probability 1.

2.2 Integral Cryptanalysis

Integral cryptanalysis, inspired by square attack [11], was originally proposed by
Knudsen and Wagner [13] at FSE ’02. The core idea is to find a set of plaintexts
such that the state after several rounds have a certain integral property, i.e., the
XOR sum of the all corresponding states at some or all bit positions is equal to
0. Specifically, the set of plaintexts is generated by traversing all the values of

6 Authors Suppressed Due to Excessive Length

SubCells

PermBits

AddConstants

Key Schedule

AddRoundKey

Plaintext

Ciphertext

Key

35 rounds

Fig. 1. Schematic of BAKSHEESH

some input bits called active bits and fixing the other input bits as constants.
By XORing all the corresponding outputs, if some bit positions of the XOR sum
are key-independently equal to zero, then we say these output bits are balanced
bits or they have the balanced integral property. Also, the other bit positions of
the XOR sum, whose values are always inconstant with different keys, are called
unknown bits.

For a block cipher E with the block size of n, D is a set of plaintexts generated
by d (d < n) active bits. If the r-round output is CT = Er(PT,K) and has a
balanced integral property at bit position i, then we can use the XOR sum of
CTi under D to get ⊕

PT∈D

CTi = 0,

which can be utilized to distinguish the r-round E from a pseudorandom per-
mutation. In general, the most significant step of integral cryptanalysis is to
find a good integral distinguisher. Previously, a common way to construct an
integral distinguisher was to investigate the structure property of block ciphers.
Since the division property introduced [19], searching integral distinguishers for
block ciphers has been automated with the help of MILP or SAT/SMT based
tools [17,20].

2.3 Differential Cryptanalysis

Differential cryptanalysis is a method of key-recovery that utilizes differential
trails with high-probability to construct differential distinguishers. This method
was introduced by Biham and Shamir [7]. The core idea is to distinguish an en-
cryption algorithm from a random permutation by studying the effect of plain-

Cryptanalysis of BAKSHEESH Block Cipher 7

text pair differences on ciphertext pair differences. The definition and probability
calculation of a differential trail are as follows:

Definition 1. An r-round differential trail Ω is defined as the following se-
quence of differences:

α0 → α1 → · · · → αr,

where α0 is the difference of the plaintext pair X and X ′, i.e., α0 = X ⊕X ′ and
αi, 1 ≤ i ≤ r, is the difference of the output ciphertext pair after the i-th round.

The core of differential cryptanalysis is finding high-probability r-round dif-
ferential trails. To allow the calculation of high-round differential trail proba-
bilities through a round-by-round approach, Lai et al. proposed the "Random
Equivalence Hypothesis" [14].

Definition 2. For most keys, the differential propagation probability under a
fixed key is approximately equivalent to the differential propagation probability
under the assumption that each round key is independent and uniformly dis-
tributed.

Therefore, for a given differential trail, under the assumption that the round
keys are uniformly randomly distributed, the approximate probability can be
calculated as the product of the differential probabilities for each round:

Definition 3. The probability PΩ of an r-round differential trail Ω can be cal-
culated as follows:

PΩ = PΩ
1 × PΩ

2 × · · · × PΩ
r ,

where PΩ
i is the propagation probability of the differential from the input to the

output of the i-th round.

2.4 Linear Cryptanalysis

Linear cryptanalysis is a method that exploits linear approximations to construct
linear distinguishers and recover the key [15]. The linear approximation of a
cipher can be represented as:

ΓP · P ⊕ ΓC · C = ΓK ·K, (1)

where ΓP , ΓC and ΓK are called the linear masks of P,C and K, respectively.
Denote ΓK · K = κ, if Eq. (1) holds with probability 1/2 ± ϵ, Matsui showed
that with about |ϵ|−2 plaintexts, the one bit information κ of the key can be
recovered.

Let f be a transformation over Fn
2 . A linear approximation over f consists of

a pair (α, β) of selection vectors over Fn
2 , known as the input mask and output

mask, respectively. The correlation C(α, β) of a linear approximation (α, β) is
the correlation between the Boolean functions aT · x and bT · f(x), defined as:

C(α, β) =
|
{
x ∈ Fn

2

∣∣αTx+ βT f(x) = 0}
∣∣

2n−1
− 1.

8 Authors Suppressed Due to Excessive Length

Similar to a differential trail, an r-round linear trail is defined as a sequence
of linear masks. A linear trail can be represented as

α0 → α1 → · · · → αr,

where α0 is the input mask and αr is the output mask. This can be extended
to more than two random binary variables, X1 to Xn, with probabilities p1 =
1/2+ε1 to pn = 1/2+εn. Matsui’s piling-up lemma [15] can be used to calculate
the probability bias for r rounds.

Lemma 1. (Matsui’s piling-up lemma [15]) For random binary variables X1,X2, . . . ,Xn

and X1 ⊕X2 ⊕ · · · ⊕ Xn = 0, the total bias can be derived as

ε = 2n−1
n∏

i=1

εi,

where εi represents the bias of Xi.

3 Integral Attacks on Round-reduced BAKSHEESH

In this section, we will first give an overview of our framework for mounting an
(r + 2)-round key-recovery attack using a given r-round integral distinguisher.
Based on this, we will introduce how to find proper distinguishers, and then use
the found 7- and 8-round distinguishers to achieve 9- and 10-round practical at-
tacks, and a 13-round distinguisher to mount a theoretical 15-round key-recovery
attack.

3.1 An Overview of the (r + 2)-round Key-recovery Attack

In our attack, the main idea is to exploit the so-called equivalent integral prop-
erty to extend an r-round integral distinguisher by one round and then recover
the (r + 2)-round subkey. The equivalent integral property of BAKSHEESH is il-
lustrated as following proposition.

Proposition 1. For any 0 ≤ i ≤ 31 and 1 ≤ r ≤ 34, the integral property of
the bit xr

4i+3 is equivalent to that of xr+1
P (4i) ⊕ xr+1

P (4i+1) ⊕ xr+1
P (4i+2), i.e., given an

arbitrary set of plaintexts denoted by D, we have⊕
X0∈D

xr
4i+3 =

⊕
X0∈D

(xr+1
P (4i) ⊕ xr+1

P (4i+1) ⊕ xr+1
P (4i+2)). (2)

Proof. From Property 1, we know xr
4i+3 = yr4i+2 ⊕ yr4i+1 ⊕ yr4i always holds in

the i-th Sbox Si of the r-th round. Moreover, the round function indicates that

xr+1
P (j) = yrP (j) ⊕ rkr+1

P (j) ⊕ rcrP (j), 0 ≤ j ≤ 127, (3)

Cryptanalysis of BAKSHEESH Block Cipher 9

where rcrP (j) = crP (j) if P (j) ∈ {8, 13, 19, 35, 64, 106}, otherwise rcrP (j) = 0.
Therefore, the bit xr

4i+3 can be represented as

xr
4i+3 = xr+1

P (4i) ⊕ xr+1
P (4i+1) ⊕ xr+1

P (4i+2) ⊕ ckri , (4)

where ckri = rkr+1
P (4i)⊕rkr+1

P (4i+1)⊕rkr+1
P (4i+2)⊕rcr+1

P (4i)⊕rcr+1
P (4i+1)⊕rcr+1

P (4i+2). Note
that ckri is a constant determined by the subkey and round constant of (r+1)-th
round, which gives that ⊕

X0∈D

ckri = 0.

Thus, we have⊕
X0∈D

xr
4i+3 =

⊕
X0∈D

(xr+1
P (4i) ⊕ xr+1

P (4i+1) ⊕ xr+1
P (4i+2) ⊕ ckri)

=
⊕
X0∈D

(xr+1
P (4i) ⊕ xr+1

P (4i+1) ⊕ xr+1
P (4i+2)).

(5)

⊓⊔

Explore the related key bits. For a given r-round distinguisher, assume that its
output bit at the position 4i+3 (0 ≤ i ≤ 31), i.e., xr+1

4i+3 has the balanced integral
property, then we can filter the guessed values of partial bits of the subkey
RKr+2 that related to xr+1

P (4i), x
r+1
P (4i+1) and xr+1

P (4i+2) by detecting the balanced
property of xr+2

P (4i) ⊕ xr+2
P (4i+1) ⊕ xr+2

P (4i+2), whose value can be computed by the
known (r + 2)th round output, i.e., Xr+3 and the guessed rkr+2. Specifically,
for the instance of xr+2

P (4i+j) (j ∈ {0, 1, 2}), we first need to compute the 4 bits
(yr+2

4ℓij+3
, yr+2

4ℓij+2
, yr+2

4ℓij+1
, yr+2

4ℓij
) as

yr+2
4ℓij+m

= xr+3
P (4ℓij+m)

⊕ rkr+2
P (4ℓij+m)

, 0 ≤ m ≤ 3 (6)

according to the round function, where ℓij =
⌊
P (4i+j)

4

⌋
and rkr+2

P (4ℓij+m)
is a

guessed key bit. Then by inverting the Sbox Sℓij
, the value of xr+2

P (4i+j) is ob-
tained. It is worth noting that we omit the AddRoundConstants step here for
the sake of simplification, but it does not matter as we can combine this step
with AddRoundKey. Therefore, there are in total 12 key bits that need to be
guessed for detecting the balanced property of xr+1

4i+3. We list the key bits of
RKr+2 corresponding to each xr+1

4i+3(0 ≤ i ≤ 31) in Table 5.
Denote Ki (0 ≤ i ≤ 31) the set that contains the bit positions of RKr+2

corresponding to xr+1
4i+3, we have an observation from Table 5 as follows.

Observation 1. The union of any b (b ≥ 2) sets among the s-th (0 ≤ s ≤ 7)
set tuple (K4s,K4s+1,K4s+2K4s+3) is a constant set denoted by K′

s that contains
16 bit positions.

10 Authors Suppressed Due to Excessive Length

Table 5. The corresponding bit positions of RKr+2 that need to be guessed for de-
tecting the integral property of Xr+1 at the bit position 4i+ 3 (0 ≤ i ≤ 31).

Xr+1 Guessed key RKr+2 Set Constant Set
3 0, 33, 66, 99, 8, 41, 74, 107, 16, 49, 82, 115 K0

K′
0

7 24, 57, 90, 123, 0, 33, 66, 99, 8, 41, 74, 107 K1

11 16, 49, 82, 115, 24, 57, 90, 123, 0, 33, 66, 99 K2

15 8, 41, 74, 107, 16, 49, 82, 115, 24, 57, 90, 123 K3

19 96, 1, 34, 67, 104, 9, 42, 75, 112, 17, 50, 83 K4

K′
1

23 120, 25, 58, 91, 96, 1, 34, 67, 104, 9, 42, 75 K5

27 112, 17, 50, 83, 120, 25, 58, 91, 96, 1, 34, 67 K6

31 104, 9, 42, 75, 112, 17, 50, 83, 120, 25, 58, 91 K7

35 64, 97, 2, 35, 72, 105, 10, 43, 80, 113, 18, 51 K8

K′
2

39 88, 121, 26, 59, 64, 97, 2, 35, 72, 105, 10, 43 K9

43 80, 113, 18, 51, 88, 121, 26, 59, 64, 97, 2, 35 K10

47 72, 105, 10, 43, 80, 113, 18, 51, 88, 121, 26, 59 K11

51 32, 65, 98, 3, 40, 73, 106, 11, 48, 81, 114, 19 K12

K′
3

55 56, 89, 122, 27, 32, 65, 98, 3, 40, 73, 106, 11 K13

59 48, 81, 114, 19, 56, 89, 122, 27, 32, 65, 98, 3 K14

63 40, 73, 106, 11, 48, 81, 114, 19, 56, 89, 122, 27 K15

67 4, 37, 70, 103, 12, 45, 78, 111, 20, 53, 86, 119 K16

K′
4

71 28, 61, 94, 127, 4, 37, 70, 103, 12, 45, 78, 111 K17

75 20, 53, 86, 119, 28, 61, 94, 127, 4, 37, 70, 103 K18

79 12, 45, 78, 111, 20, 53, 86, 119, 28, 61, 94, 127 K19

83 100, 5, 38, 71, 108, 13, 46, 79, 116, 21, 54, 87 K20

K′
5

87 124, 29, 62, 95, 100, 5, 38, 71, 108, 13, 46, 79 K21

91 116, 21, 54, 87, 124, 29, 62, 95, 100, 5, 38, 71 K22

95 108, 13, 46, 79, 116, 21, 54, 87, 124, 29, 62, 95 K23

99 68, 101, 6, 39, 76, 109, 14, 47, 84, 117, 22, 55 K24

K′
6

103 92, 125, 30, 63, 68, 101, 6, 39, 76, 109, 14, 47 K25

107 84, 117, 22, 55, 92, 125, 30, 63, 68, 101, 6, 39 K26

111 76, 109, 14, 47, 84, 117, 22, 55, 92, 125, 30, 63 K27

115 36, 69, 102, 7, 44, 77, 110, 15, 52, 85, 118, 23 K28

K′
7

119 60, 93, 126, 31, 36, 69, 102, 7, 44, 77, 110, 15 K29

123 52, 85, 118, 23, 60, 93, 126, 31, 36, 69, 102, 7 K30

127 44, 77, 110, 15, 52, 85, 118, 23, 60, 93, 126, 31 K31

For example, regarding (K0,K1,K2,K3), we have
K′

0 = K0 ∪K1 = K0 ∪K2 = K0 ∪K3 = K1 ∪K2 = K1 ∪K3 = K2 ∪K3

= K0 ∪K1 ∪K2 = K0 ∪K1 ∪K3 = K1 ∪K2 ∪K3

= K0 ∪K1 ∪K2 ∪K3

={0, 33, 66, 99, 8, 41, 74, 107, 16, 49, 82, 115, 24, 57, 90, 123}.

Cryptanalysis of BAKSHEESH Block Cipher 11

Thus, if there are b0 (b0 ≥ 2) balanced bits among (xr+1
3 , xr+1

7 , xr+1
11 , xr+1

15), then
we can simultaneously use these balanced bits to filter the guessed key bits,
whose positions are contained in K′

0. In particular, the filtering strength is 2−b0 ,
i.e., a wrongly guessed key can pass one time filtering with a probability of 2−b0 .
Here we define detecting the balanced property for the all remaining guessed-
key candidates as one time filtering. For example, assuming all the 4 bits of
(xr+1

3 , xr+1
7 , xr+1

11 , xr+1
15) are balanced. At the beginning, there are in total 216

guessed values for the 16 bits of subkey RKr+2 whose positions are shown in
K′

0. For each guessed value, we decrypt 2d Xr+3 generated by the chosen X0 to
get the information of (xr+1

3 , xr+1
7 , xr+1

11 , xr+1
15), and compute the XOR sum at

these 4 bits. If the XOR sum at 4 bits are all 0s, then we keep this guessed value
as a candidate, otherwise we discard this guessed value. After 216 times (we call
one time filtering), there are 212 remaining candidates in theory. Repeat above
process once again, i.e., filtering one more time, there are 28 candidates left.

Analyze the filtering. For an r-round distinguisher, we denote bs the number of
balanced bits among the s-th bit group (xr+1

16s+3, x
r+1
16s+7, x

r+1
16s+11, x

r+1
16s+15) where

0 ≤ s ≤ 7. We denote Cs the set that contains the candidates of the 16 key
bits whose positions are in K′

s for 0 ≤ s ≤ 7. Especially, Cs has in total 216

candidates before the first filtering. In theory, after ts times filtering for Cs,
216−ts×bs candidates will survive in Cs. Particularly, when ts × bs ≥ 16, the
correct value can be recovered. However, it is not consistent with the reality as
indicated in the following observation.

Observation 2. For each 0 ≤ s ≤ 7, there are always 24 surviving candidates
(including the correct value) in Cs, no matter how many times we filter them.

In order to illustrate this observation more intuitively, we use the case of s = 0 as
an example. The related bits of state and subkey for detecting the integral prop-
erty of (xr+1

15 , xr+1
11 , xr+1

7 , xr+1
3) are simply depicted in Figure 2. Coincidentally,

the 12 related bits of Xr+2 are distributed as the 3 LSBs of 4 Sboxes. Assuming
all bits of (xr+1

15 , xr+1
11 , xr+1

7 , xr+1
3) are balanced, then the filtering strength is 2−4

and 24 candidates will survive in C0 after 3 filterings. Let us focus on S0. From
Property 2, we know that the value of (xr+2

2 , xr+2
1 , xr+2

0) will not be changed if
we simultaneously turn over the 4 bits (yr+2

3 , yr+2
2 , yr+2

1 , yr+2
0). Note that

yr+2
3 = rkr+2

99 ⊕ xr+3
99 , yr+2

2 = rkr+2
66 ⊕ xr+2

66

yr+2
1 = rkr+2

33 ⊕ xr+3
33 , yr+2

0 = rkr+2
0 ⊕ xr+2

0 .

That is to say, if the correct value of (rkr+2
99 , rkr+2

66 , rkr+2
33 , rkr+2

0) is (v3, v2, v1, v0),
then the guessed value (v3 ⊕ 1, v2 ⊕ 1, v1 ⊕ 1, v0 ⊕ 1) will always survive in the
filtering. In other words, there are two values of 4-bit key can pass the filtering
for each of the 4 Sboxes, one is the correct value, the other is the negation of
the correct one. So, there are in total 24 candidates that will retained in C0.

Observation 2 tells us that we can recover at most 96 bits information of 128-
bit subkey using integral distinguishers. Then, the remaining 32-bit information
can be determined by exhausted searching.

12 Authors Suppressed Due to Excessive Length

S3 S2 S1 S0

S24 S16 S8 S0

x8
15 x8

11 x8
7 x8

3

y8
14y

8
13y

8
12

x9
98x

9
97x

9
96

y8
10y

8
9 y

8
8 y8

6 y8
5 y8

4 y8
2 y8

1 y8
0

y9
2 y9

1 y9
0y9

3

x9
66x

9
65x

9
64 x9

34x
9
33x

9
32 x9

2 x
9
1 x9

0

Fig. 2. The related bits of state and subkey for detecting the integral property of
(xr+1

15 , xr+1
11 , xr+1

7 , xr+1
3) using 7-round distinguisher, i.e., r = 7.

3.2 Searching for Proper Integral Distinguishers

According to the above analysis, the framework of our (r+2)-round key-recovery
attack requires that the r-round integral distinguisher has balanced bits at posi-
tions 4i+3 (0 ≤ i ≤ 31) as many as possible. For this, we utilize the MILP-aided
tool based on division property, which is the state-of-the-art technique to find
integral distinguishers. Here, we omit the MILP modeling details (see [20]), and
only illustrate how we obtain the proper integral distinguishers.

For practical attack. Assuming the number of active bits of an integral distin-
guisher is d, then we need to prepare at least 2d chosen plaintexts for our attack.
To ensure that the attack can be mounted in real time on a PC, we first fix
d = 32. With the MILP-based tool, we can efficiently evaluate with d = 32
that the longest integral distinguisher is 8-round and all the 8-round output
bits are balanced. Also, there exists no 9-round distinguisher. Note that our
framework only focuses on the integral properties of bits whose positions are
4i+ 3 (0 ≤ i ≤ 31), so we can further decrease the number of active bits. As for
the positions of active bits, in order to find integral distinguishers fastly, we only
try 129− d cases where the d active bits are continuously arranged on X0, i.e.,
(x0

d+j−1, · · · , x0
j) for 0 ≤ j ≤ 128− d are active bits, instead of enumerating all

the
(
128
d

)
trials. In each case, we count the number of balanced bits at positions

4i + 3 for 0 ≤ i ≤ 31, and retain the the one, which has the maximal balanced
bits, to mount the practical attack. With this approach, we obtain a 7-round
distinguisher with 14 active bits and an 8-round distinguisher with 30 active
bits. We denote the two distinguishers by ID7 and ID8 respectively, and give

Cryptanalysis of BAKSHEESH Block Cipher 13

their details in Table 6. Note that both of ID7 and ID8 have 32 balanced bits
at positions 4i+ 3 (0 ≤ i ≤ 32).

Table 6. The specification of ID7 and ID8. Notice that the bit position ‘0’ is the LSB.

Dist. Active bits Number
ID7 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 14

ID8
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31

30

For theoretical attack. In order to find the longest integral distinguisher, we
straightforwardly set d = 127 and obtain a 13-round distinguisher with 128 bal-
anced bits denoted by ID13. This result is actually consistent with the evaluation
in [1]. Also, there exists no longer distinguisher. Moreover, all the 13-round out-
put bits will become unknown once we decrease the number of active bits. So,
for the theoretical attack, we choose the distinguisher ID13.

3.3 Key-recovery Attacks

In this part, we will utilize the prepared distinguishers to mount two practi-
cal and a theoretical key-recovery attacks based on our framework. First, we
give some notations. For an r-round distinguisher, we denote bs the number of
balanced bits among the s-th bit group (xr+1

16s+3, x
r+1
16s+7, x

r+1
16s+11, x

r+1
16s+15) where

0 ≤ s ≤ 7. We denote Cs the set that contains the candidates of the 16 key bits
whose positions are in K′

s for 0 ≤ s ≤ 7. At the beginning, Cs has in total 216
candidates.

A 9-round practical attack. In this attack, we use the 7-round integral disin-
guisher ID7 as shown in Table 6. To be more specific, we have r = 7, d = 14
and bs = 4 for all 0 ≤ s ≤ 7. To ensure that there are only 24 candidates left in
each Cs, we have to filter each Cs 3 times. Note that for a fixed s, every time
for filtering Cs requires 214 different chosen plaintexts, but for different s, the
chosen plaintexts can be reused. As a result, the data complexity of this attack
is 3× 214 ≈ 215.585.

As for the time complexity, we first need to evaluate the cost of one time
filtering, which is composed of two parts: partial decryptions and XOR sum
computations. In this attack, we regard 9-round BAKSHEESH as a unit time. For
each s ∈ {0, 1, · · · , 7}, we can see that it takes 16+2×4 = 24 bitwise XORs and
4 lookup-table operations (for the 4-bit inverse Sbox) to get the information of
the s-th 4-bit group (xr+1

16s+3, x
r+1
16s+7, x

r+1
16s+11, x

r+1
16s+15) under a guessed key and

known X10. We have tested the latency of a bitwise XOR and a lookup-table in
a usual PC. The experimental result shows that the latency of a bitwise XOR is
almost equal to that of a lookup-table. For the sake of convenience, we regard
a lookup-table as a bitwise XOR. So, the cost of the above partial decryption
can be converted to 28 bitwise XORs. In addition, an XOR sum computation
at one bit costs 214 − 1 bitwise XORs under a guessed key. Note that 9-round

14 Authors Suppressed Due to Excessive Length

BAKSHEESH contains 128× 10 bitwise XORs and 32× 9 lookup-table operations,
which can be integrated into 1568 bitwise XORs. Now, let us to compute the
9-round time complexity that composed of the following parts:

1. To filter guessed values by integral distinguisher, we need to prepare 214× 3
X10;

2. To filter Cs for each s ∈ {0, · · · , 7} 3 times to get 24 candidates, we need
214×(216+212+28) ≈ 230.093partial decryptions and 216+212+28 ≈ 216.093

XOR sum computations at 4 bits, which can be transformed to [230.093 ×
28 + 216.093 × (214 − 1)× 4]÷ 1568 ≈ 224.478;

3. To determine the remaining 32-bit information, we need additional 232 9-
round encryptions.

Summing up all the parts, the time complexity to recover 128 key bits is

214 × 3 + 224.478 × 8 + 232 ≈ 232.009.

Apparently, the time complexity is mainly caused by filtering the remaining 232

candidates. Both of the time and data complexity of this 9-round attack are
practical. Actually, on the platform with i7-8700 CPU @ 3.20GHz and 24 GB
RAM, it takes at most 62 minutes to recover all the key bits using single thread.

A 10-round practical attack. In this attack, we use the 8-round distinguisher ID8

in Table 6, from which we have r = 8, d = 30 and bs = 4 for each s ∈ {0, · · · , 7}.
Similarly, we first filter the guessed values by integral distinguisher, and then
determing the remaining subkey bits by 10-round encryptions. Therefore, the
data complexity of this attack is 3× 230 ≈ 231.585.

However, different from the 9-round attack, we do not have to do partial
decryptions under the all 230 128-bit X11 in one time filtering. It is worth men-
tioning that to get the 4-bit information of (x9

16s+3, x9
16s+7, x9

16s+11, x9
16s+15),

we only exploit 16-bit information of X11. In order to decrease the complexity of
detecting integral property, we can truncate the values of the 16 bits from X11

under 230 128-bit X11, and save them in a table. The process is described in
Algorithm 1. Note that the elements of P are actually consistent to that of K′

s.
Moreover, the number of elements of T is at most 216 as there are in total 216
possible values for (x11

P[0], · · · , x
11
P[15]). Namely, the memory complexity to save a

table is at most 216 × 16 = 220 bits. Consequently, to detect the integral prop-
erties of the 4 bits under a 16-bit guessed key, we only need at most 216 instead
of 230 partial decryptions and bs XOR sum computations, where an XOR sum
computation is derived by 216 − 1 instead of 230 − 1 bitwise XORs.

Now, let us compute the time and memory complexity as follows:

1. To filter guessed values by integral distinguisher, we need to prepare 230× 3
X11;

2. To filter Cs for each s ∈ {0, · · · , 7} 3 times, we need 216 × (216 + 212 +
28) ≈ 232.093 partial decryptions and 216 + 212 + 28 ≈ 216.093 XOR sum
computations at 4 bits, which can be transformed to [232.093× 28+216.093×
(216 − 1)× 4]÷ 1728 ≈ 226.338;

Cryptanalysis of BAKSHEESH Block Cipher 15

Algorithm 1: Truncating the 16-bit information of X11

Input: The 230 chosen X0; A given list P that contains 16 bit positions.
Output: A table contains 16-bit information of X11.

1 Initialize T as an empty table;
2 for each X0 do
3 Obtain X11 by asking 10-round BAKSHEESH;
4 Truncate 16 bits indexed by P from X11;
5 Denote this 16-bit value by (x11

P[0], · · · , x11
P[15]); /* P[i] denotes the i-th

element of P. */
6 if (x11

P[0], · · · , x11
P[15]) not in T then

7 Add (x11
P[0], · · · , x11

P[15]) into T;
8 else
9 Remove (x11

P[0], · · · , x11
P[15]) from T;

10 end
11 end
12 return T.

3. To determine the remaining 32-bit information, we need additional 232 10-
round encryptions.

In summary, the time complexity to recover the 128 key bits is at most

230 × 3 + 226.338 × 8 + 232 ≈ 232.932.

Note that each K′
s (0 ≤ s ≤ 7) corresponds to an exclusive table Ts, which can

obtained in parallel by Algorithm 1. Therefore, the memory complexity is at
most 220 × (3× 8) = 224.585 bits.

A 15-round theoretical attack. We use the 13-round distinguisher, which has 127
active bits and 128 balanced bits, to mount a theoretical 15-round attack. For
all 0 ≤ s ≤ 7, bs = 4 and we can only filter once for Cs. The data complexity
is 2127 chosen plaintexts, the memory complexity is 220 × 8 = 223 bits. As for
the time complexity, to filter Cs by one time, we need at most 216 × 216 =
232 partical decryptions and 216 XOR sum computations at 4 bits, which costs
[232× 28+ 216× (216− 1)× 4]÷ 2528 ≈ 225.696 15-round encryptions. Note that
there are in total 12× 8 = 96 unknown bits for the 128-bit subkey, in which the
correct one can be determined by exhausted searching. Therefore, the final time
complexity is

225.696 × 8 + 2127 + 296 ≈ 2127.000.

4 Differential and Linear Attacks on Round-reduced
BAKSHEESH

In this section, we use SAT models to search for optimal differential and lin-
ear trails of BAKSHEESH. We adopt the automated models utilized in previous

16 Authors Suppressed Due to Excessive Length

researches [18], with the results presented in Table 7 and Table 9. It should be
noted that we also tried MILP-based automation, but the number of rounds
it could achieve was not as high as SAT. Therefore, we ultimately provide the
description and analysis based on the SAT model.

4.1 Finding Differential Trails

In our SAT model, we use CNF language to describe the constraints. For the
DDT of BAKSHEESH’s S-Box, since the DDT values are even, only one extra vari-
able needs to be introduced to describe DDT values: p = 1 for DDT[i][j]=4
and p = 0 for DDT[i][j]=16. As a result, 9 variables are sufficient to describe
the propagation rules and corresponding probabilities (8 for input and output
differences and 1 for probability), with each S-Box using 27 CNF clauses. More-
over, Matsuis bounding conditions are adopted to accelerate the model-solving
process.

The optimal differential bounds for BAKSHEESH are present in Table 7. It
should be noted that, although our results align closely with the original paper,
the differential bound for 12-round was incorrectly written as 70 instead of 68
in the original paper.

We conducted experimental validation of short-round differential trails, and
the probabilities obtained from the experiments matched the search results. Ad-
ditionally, to verify that there are no errors in the differential trails, we wrote
programs to separately compute the output values of the linear and nonlinear
layers of the differential trails. The results indicate that the identified differen-
tial trails are valid. It is worth mentioning that the 22-round differential trails
provided in [1] both showed errors under the aforementioned two verification
methods. Moreover, we have also modeled the AddRoundKey operation within

Table 7. Optimal differential bounds for BAKSHEESH (single trail), where p denotes the
probability.

Round 1 2 3 4 5 6 7 8 9 10 11
− log2 p 0 2 4 8 14 20 30 40 48 54 60

Round 12 13 14 15 16 17 18 19 20 21 22
− log2 p 68 76 84 92 100 110 120 126 132 140 148

the aforementioned automated framework, enabling the search for related-key
differential trails. The results for the first 9 rounds are shown in Table 8 below,
marking the first related-key analysis for BAKSHEESH.

4.2 A 19-round Differential Key-recovery Attack

Considering the 18-round differential trail with a probability of 2−120, as illus-
trated in Table 7, we present a key-recovery attack on the 19-round BAKSHEESH

Cryptanalysis of BAKSHEESH Block Cipher 17

Table 8. Optimal related-key differential bounds (single trail) for BAKSHEESH.

Round 1 2 3 4 5 6 7 8 9
− log2 p 0 2 4 6 8 12 16 26 36

cipher by extending the distinguisher with one additional round. The input differ-
ence for this distinguisher is (0x0d00940040a00000, 0x0000000000000000), and
the output difference is (0x8800890044004c00, 0x2200260011001300). The spe-
cific steps for key-recovery are as follows:

1. Choose 2121 pairs of plaintexts with differences equal to the input differences
of the 19-round differential trail;

2. Filter out incorrect pairs using the inactive bits of the ciphertexts, there are
257 pairs remaining, given that the output difference contains 16 inactive
Sboxes;

3. Initialize a list of 264 empty counters to guess 64 bits of the subkey RK19;
4. For all 257 pairs, perform a guess-and-filter procedure to identify candidate

keys and update the corresponding counters.

We pick the candidate subkey whose counter is maximum as the right sub-
key. The data complexity of this process is approximately 2122, the memory
complexity is 264 and the time complexity is 2121. For the 128-bit master key, we
have already determined 64 bits. To recover the remaining 128 − 64 = 64 bits,
a brute-force search can be adopted and the time complexity is 264, while the
memory and data complexities are negligible. Then the total time complexity to
recovery all the 128-bit key is 2121.

4.3 Finding Linear Trails

In our model, we use CNF language to describe the constraints. For the LAT of
BAKSHEESH’s S-Box, since the LAT values has three value: 4, -4, 8, we introduce
a new variable to describe the corrlation. In total, 9 variables are sufficient to
describe the propagation rules and corresponding corrlations, with each S-Box
using 36 CNF clauses. Moreover, Matsuis bounding conditions are adopted to
accelerate the model-solving process.

We have completed the search for all the optimal linear bounds of BAKSHEESH,
the results are presented in Table 9. Given that the known results align with those
presented in the original paper, it can be argued that 35 rounds of BAKSHEESH
would be sufficient to withstand linear attacks since the the upper linear bound
reaches 2−64 at the 22 round.

4.4 A 21-round Linear Key-recovery Attack

In the key-recovery attack, we choose to add an extra round after obtaining
the linear trail. For an R-round attack based on an R − 1 round linear trail,
the number of plaintexts required is 22c, where c is the correlation of the linear

18 Authors Suppressed Due to Excessive Length

Table 9. Optimal linear bounds for BAKSHEESH (single trail), where c denotes the
correlation.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
− log2 c 0 1 3 5 8 12 14 18 22 26 30 34 37 40 43 46 49 52

Round 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
− log2 c 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 103

trail. Denote 4N as the number of key bits that need to be guessed for the
additional round. Then the time complexity for partial decryption on ciphertexts
is 22c+4N ÷R, allowing for the recovery of m bits of information, where m is the
number of bits which have non-zero output masks. The complexity for exhaustive
search of the remaining key bits is 2128−m. To complete the attack, the condition
2c+ 4N ≤ 128 + log2(R) must be satisfied.

To perform the key-recovery attack, we extended the original SAT model by
incorporating the additional round key bits to search for key-recovery-friendly
distinguishers. We searched for different parameter sets with this extension, as
detailed below.

To perform a 22-round key-recovery, we need to search 21-round trails. In
this case, c ≥ 61, hence N ≤ 2 should be satisfied to surpass brute-force search.
Similarly, to perform a 21-round key-recovery, N ≤ 4 needs to be satisfied due
to the fact that c ≥ 58 in this scenario. We searched several sets of param-
eters to obtain distinguishers that meet the requirements. For example, the
parameters (r, c,N) = (21, 62, 2) indicate a 21-round scenario where c ≤ 62
and the key bits to guess is 4N . In addition, we also tested the parameters
(r, c,N) = (21, 54, 1), (20, 58, 4), (20, 60, 3), (20, 62, 2), (20, 64, 1).

Based on the above search results, a 22-round attack cannot be completed
within this attack framework. Considering the 20-round linear trail with a corrla-
tion of 2−60, we present a key-recovery attack on the 21-round BAKSHEESH cipher
by extending the distinguisher with one additional round. The input mask for
this distinguisher is (0x0900000000140000,0x0000000000000000), and the out-
put mask is (0x50000000a0000000,0x0000000000800000). The specific steps for
key-recovery are as follows:

1. The number of plaintext-ciphertext pairs required in the key-recovery is
equal to 2120 ;

2. To complete one round of decryption, 12 bits of the key need to be guessed
and 5 bits key information can be obtained. The time complexity of this step
is 2120 · 212 ÷ 21 = 2127.61;

3. The exhaustive search complexity for the remaining 123 bits is 2123.

Hence, the time complexity is 2127.67, the memory complexity is 212, and the
data complexity is 2120.

Cryptanalysis of BAKSHEESH Block Cipher 19

5 Conclusion

In this paper, we evaluate the security of BAKSHEESH from three perspectives: 1)
practical and theorical key-recovery attack based on integral cryptanalysis; 2) a
SAT-aided re-evaluation on the security bound against differential cryptanalysis
as well as a key-recovery attack; 3) an automated model for linear key-recovery
attacks, featuring a 21-round attack. Overall, this paper not only corrects previ-
ous inaccuracies but also provides a more detailed cryptographic analysis from
both theoretical and practical time perspectives.

Acknowledgement. We would like to thank all the anonymous reviewers for
their professional and insightful comments, which help us to significantly im-
prove the quality of this paper. This work was supported by Shandong Provincial
Natural Science Foundation (Grant No. ZR2024QA205), the National Natrual
Science Foundation of China (Grant No. 62272147, 12471492, 62072161, and
12401687), the Innovation Group Projectof the Natural Science Foundation of
Hubei Province of China (Grant No. 2023AFA021), the Science and Technology
on Communication Security Laboratory Foundation (Grant No. 6142103012207),
the National Key Research and Development Project (Grant No. 2018YFA0704705),
and the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-
035).

References

1. Baksi, A., Breier, J., Chattopadhyay, A., Gerlich, T., Guilley, S., Gupta, N., Hu,
K., Isobe, T., Jati, A., Jedlicka, P., Kim, H., Liu, F., Martinasek, Z., Sakamoto,
K., Seo, H., Shiba, R., Shrivastwa, R.R.: BAKSHEESH: similar yet different from
GIFT. IACR Cryptol. ePrint Arch. p. 750 (2023)

2. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
small present - towards reaching the limit of lightweight encryption. In: Fischer,
W., Homma, N. (eds.) Cryptographic Hardware and Embedded Systems - CHES
2017, Taipei, Taiwan, September 25-28, 2017, Proceedings. LNCS, vol. 10529, pp.
321–345. Springer (2017)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
SIMON and SPECK families of lightweight block ciphers. IACR Cryptol. ePrint
Arch. p. 404 (2013)

4. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sas-
drich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency vari-
ant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology - CRYPTO
2016, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II. LNCS,
vol. 9815, pp. 123–153. Springer (2016)

5. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptol. 7(4),
229–246 (1994)

6. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) Advances in Cryptology
- EUROCRYPT ’99, Prague, Czech Republic, May 2-6, 1999, Proceeding. LNCS,
vol. 1592, pp. 12–23. Springer (1999)

20 Authors Suppressed Due to Excessive Length

7. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

8. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded Sys-
tems - CHES 2007, Vienna, Austria, September 10-13, 2007, Proceedings. LNCS,
vol. 4727, pp. 450–466. Springer (2007)

9. Bogdanov, A., Rijmen, V.: Zero-correlation linear cryptanalysis of block ciphers.
IACR Cryptol. ePrint Arch. p. 123 (2011)

10. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing ap-
plications - extended abstract. In: Wang, X., Sako, K. (eds.) Advances in Cryptol-
ogy - ASIACRYPT 2012, Beijing, China, December 2-6, 2012. Proceedings. LNCS,
vol. 7658, pp. 208–225. Springer (2012)

11. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher square. In: Biham, E.
(ed.) Fast Software Encryption, FSE ’97, Haifa, Israel, January 20-22, 1997, Pro-
ceedings. LNCS, vol. 1267, pp. 149–165. Springer (1997)

12. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) Fast
Software Encryption, Leuven, Belgium, 14-16 December 1994, Proceedings. LNCS,
vol. 1008, pp. 196–211. Springer (1994)

13. Knudsen, L.R., Wagner, D.A.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) Fast Software Encryption, FSE 2002, Leuven, Belgium, February 4-6, 2002,
Revised Papers. LNCS, vol. 2365, pp. 112–127. Springer (2002)

14. Lai, X., Massey, J.L.: A proposal for a new block encryption standard. In: Damgård,
I. (ed.) Advances in Cryptology - EUROCRYPT ’90, Aarhus, Denmark, May 21-24,
1990, Proceedings. LNCS, vol. 473, pp. 389–404. Springer (1990)

15. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
Advances in Cryptology - EUROCRYPT ’93, Lofthus, Norway, May 23-27, 1993,
Proceedings. LNCS, vol. 765, pp. 386–397. Springer (1993)

16. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) Fast Software Encryp-
tion, FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected
Papers. LNCS, vol. 4593, pp. 181–195. Springer (2007)

17. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for
ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T. (eds.)
Advances in Cryptology - ASIACRYPT 2017, Hong Kong, China, December 3-7,
2017, Proceedings, Part I. LNCS, vol. 10624, pp. 128–157. Springer (2017)

18. Sun, L., Wang, W., Wang, M.: Accelerating the search of differential and linear
characteristics with the SAT method. IACR Trans. Symmetric Cryptol. 2021(1),
269–315 (2021)

19. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I. LNCS, vol. 9056, pp. 287–314. Springer
(2015)

20. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching in-
tegral distinguishers based on division property for 6 lightweight block ciphers.
In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology - ASIACRYPT 2016,
Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I. LNCS, vol. 10031, pp.
648–678 (2016)

	Cryptanalysis of BAKSHEESH Block Cipher

