
ToFA: Towards Fault Analysis of GIFT and
GIFT-like Ciphers Leveraging Truncated

Impossible Differentials
Anup Kumar Kundu1 , Shibam Ghosh2,3 , Aikata Aikata4 and

Dhiman Saha5

1 Indian Statistical Institute, Kolkata 700108, India
anupkundumath@gmail.com

2Department of Computer Science, University Of Haifa, Haifa, Israel
3Inria, Paris, France

shibam.ghosh@inria.fr
4Institute of Information Security,

Graz University of Technology, Austria
aikata@tugraz.at

5de.ci.phe.red Lab, Department of Computer Science & Engineering,
Indian Institute of Technology Bhilai, Chhattisgarh - 491002, India

dhiman@iitbhilai.ac.in

Abstract. In this work, we introduce ToFA, the first fault attack (FA) strategy
that attempts to leverage the classically well-known idea of impossible differential
cryptanalysis to mount practically verifiable attacks on bit-oriented ciphers like
GIFT and BAKSHEESH. The idea stems from the fact that truncated differential
paths induced due to fault injection in certain intermediate rounds of the ciphers
lead to active SBox-es in subsequent rounds whose inputs admit specific truncated
differences. This leads to a (multi-round) impossible differential distinguisher, which
can be incrementally leveraged for key-guess elimination via partial decryption. The
key-space reduction further exploits the multi-round impossibility, capitalizing on the
relations due to the quotient-remainder (QR) groups of the GIFT and BAKSHEESH
linear layer, which increases the filtering capability of the distinguisher. Moreover,
the primary observations made in this work are independent of the actual SBox.
Clock glitch based fault attacks were mounted on 8-bit implementations of GIFT-
64/GIFT-128 using a ChipWhisperer Lite board on an 8-bit ATXmega128D4-AU
micro-controller. Unique key recovery was achieved for GIFT-128 with 3 random
byte faults, while for GIFT-64, key space was reduced to 232, the highest achievable
for GIFT-64, with a single level fault due to its key-schedule. To the best of our
knowledge, this work also reports the highest fault injection penetration for any
variant of GIFT and BAKSHEESH. Finally, this work reiterates the role of classical
cryptanalysis strategies in fault vulnerability assessment by showcasing the most
efficient fault attacks on GIFT.
Keywords: Fault Analysis, Impossible Differential, GIFT, BAKSHEESH

1 Introduction
Fault analysis has attained a top spot in the list of physical attacks over time with the
Differential Fault Analysis (DFA) being the most widely used variants. Beyond the basic
power of fault injection, DFA generally benefits from the classical differential cryptanalysis

https://orcid.org/0000-0003-0305-7347
https://orcid.org/0000-0002-4966-1681
https://orcid.org/0000-0003-0934-2982
https://orcid.org/0000-0002-4668-073X
anupkundumath@gmail.com
shibam.ghosh@inria.fr
aikata@tugraz.at
dhiman@iitbhilai.ac.in

2 ToFA: Fault Analysis of GIFT and GIFT-like Ciphers

(DC) paradigm. DFA can essentially be visualized as the round-reduced DC of a cipher
being applied to its full-round version by using the fault as the source of inducing the
input difference to the differential trail. The basic difference is that while classical DC is a
Chosen Plaintext Attack (CPA), DFA actually relies on the fault model to determine what
kind of intermediate differences can be induced and can be referred to as a Restricted
Intermediate Difference Attack (RIDA). As the nature of the intermediate difference is
dictated by the fault model, it plays a very important role in making physical attacks like
fault attacks realistic.

Since the introduction of fault analysis in public key cryptography (RSA-CRT im-
plementations by Boneh et al. [BDL97] [BDL01]) and subsequently in symmetric cryp-
tography (DFA on DES by Biham and Shamir [BS97]), the idea has been extended
along various verticals. One vertical constitutes the nature of the faults and how it
is interpreted, viz., Statistical Fault Analysis (SFA) [FJLT13], Collision Fault Analysis
(CFA) [BK06], Persistent Fault Analysis (PFA) [ZLZ+18], Statistically Ineffective Fault
Analysis (SIFA) [DEG+18], and Statistically Effective Fault Analysis (SEFA) [VZB+22].
On the other vertical we can find classical cryptanalysis being used for developing new types
of fault attacks, viz., Integral Fault Analysis (IFA) [SSL15], Slow Diffusion Fault Analysis
(SDFA) [DP20, AKS20, KAKS22], Internal Differential Fault Analysis (InDFA) [SC16],
Meet-in-the-Middle and Impossible Differential Fault Analysis (ImpDFA) [DFL11]. The
current work is an attempt to add to the state-of-the-art in the latter vertical while
reporting the most efficient fault attacks on GIFT exploiting impossible differential trails. It
is worth mentioning that though the current work constitutes an application of impossible
differentials in FA, it not the first such attempt. The first instance of this is attributed to
Derbez et al. for their fault analysis on AES [DFL11].

The block cipher GIFT [BPP+17] proposed by Banik et al. in CHES 2017, is an excellent
attempt at achieving lightweightness where the design exploits the interaction of both
the SBox and linear layers to beat its predecessor PRESENT [BKL+07] in terms of ASIC
chip-area as well as latency. The interest in GIFT has been recently renewed after the
lightweight authenticated cipher GIFT-COFB [BCI+20] moved to the final round of the
NIST Lightweight Cryptography Competition [Tec17]. The authors of GIFT introduce
BOGI (Bad Output must go to Good Input) permutation which can be interpreted as the
concatenation of 16-bit sub-permutations using what is referred to as quotient-remainder
(QR) groups. GIFT has two variants namely, GIFT-64 and GIFT-128 which support state-
sizes of 64 and 128 bits with 28 and 40 rounds respectively, however, with the same key-size
of 128-bits. It is interesting to see that despite being outdated, there seems to be only a few
efforts in the FA of GIFT. This constitutes one of the primary motivations of the current
work. A multi-round fault based DFA was reported by Luo et al. on GIFT-64 by injecting
random nibble faults in round 27, 26, 25, and 24 in a phased manner to recover the master
key [LCMW21]. It is worth noting that this DFA does not exploit the permutation layer
of GIFT and merely recovers round-keys incrementally injecting faults in preceding rounds
while peeling the cipher with every recovered round-key. Min et al. [MFJ21] used a random
nibble fault attack on GIFT to recover the master key using 31 and 32 faults on GIFT-64
and GIFT-128 respectively. Liu et al. [LGH22] present a fault attack on authenticated
modes of GIFT. Both the works rely on peeling the cipher since faults injected at a single
round are insufficient for their success. In this work, we avoid this peeling by leveraging
the permutation layer and hence need faults to be injected in only one round. This also
makes strategy more attacker-friendly since the fault injection set-up required is simpler
and would require syncing/triggering once in the temporal domain while injecting the
fault. Moreover, reliance on solely the random byte fault model makes it more attractive
in the real-world realization perspective.

To emphasize on the versatility of the attack strategy devised here, we also target the
very recently proposed lightweight cipher BAKSHEESH [BBC+23] by Bakshi et al. which

Kundu et al. 3

claims to be an improvement over GIFT. It has a state-size of 128-bits and borrows the BOGI
permutation from GIFT, differing from GIFT in the SBox, number of rounds (35 instead
of 40), key-schedule and the round-key addition which adds the round key to the entire
state. An interesting aspect of the design of BAKSHEESH SBox is the presence of a linear
structure (LS). In a recent work, Jana et al. [JKP24] mounted a DFA on BAKSHEESH using
random but known bit faults in R32. Based on the knowledge of location and value of the
induced faults they leveraged three round deterministic trails using the LS in BAKSHEESH
SBox and uniquely recovered the key space using 12 faults. The current work, as stated
earlier, uses a random-byte fault model without needing the value or location of the fault
while making a full key-recovery with only 4 faults. A potential target for ToFA could
be DEFAULT [BBB+21] given its resemblance to GIFT albeit with a different SBox. It
was claimed to be fault-resistant by design owing to the linear structures in the SBox.
However, in this work we have chosen to exclude DEFAULT as a target due to reasons
discussed in Section 7. We now briefly enumerate the contribution of this work.

1.1 Our Contribution
Truncated Differential Based Fault Invariants The primary contribution constitutes
the identification of truncated differential trails to create fault-invariants. The main
observation is that for GIFT-64, clusters of two round truncated differential trails exist
that exhibit invariant properties in terms of the permissible patterns of the entire output
truncated difference.1 Moreover, for GIFT-128 and BAKSHEESH we observe clusters of
three round truncated differentials that exhibit invariant truncated differentials. These
properties are exploited as fault invariants, when random byte faults are injected in an
intermediate round of the cipher. The byte-faults induce state differences that conform
to the input truncated difference thereby leading to restricted patterns after two/three
rounds. Any pattern that is beyond this set of permissible patterns implies an impossible
differential distinguisher and can be leveraged to eliminate key candidates after partially
decrypting the faulty/fault-free ciphertexts.

Multi-round Impossible Truncated Differential Filter in the Secret SBox Model The
second contribution lies in turning the above distinguisher into a multi-round elimination
filter which fully exploits the GIFT/ BAKSHEESH construction. The ability to invert
multiple rounds with partial key guess is facilitated by the quotient-remainder (QR)
groups in the BOGI permutation of GIFT/ BAKSHEESH. It can be noted that these
groups are independent and hence two-rounds can be visualized as a concatenation of
four (for GIFT-64) or eight (for GIFT-128/ BAKSHEESH) QR groups. Guessing the
partial round-key separately for each such group for Round r and Round (r − 1), we
can verify if the intermediate state difference at the input of Round (r − 1) admits an
impossible truncated difference. This filter is further augmented by combining (computing
the Cartesian product) the reduced key-spaces pertaining to consecutive QR groups and
re-verifying the corresponding truncated patterns at the Round (r − 1). We repeat this
process while doubling the number groups used for the Cartesian product of the key-spaces
until all the groups are involved at which point we verify the complete truncated pattern
at Round (r − 1) input. This incremental procedure drastically reduces the key-space
which can be propagated backwards to leverage the expected truncated pattern in Round
(r − 2).

For 128-bit variant of the ciphers the pattern is exploitable until Round (r − 3).
This gives us a multi-round impossible truncated differential distinguisher that fully

1It is worth noting that Min et al. [MFJ21] make a some-what similar observation of two round
truncated differential but do not seem to fully exploit this and thus have to resort to peeling the cipher to
recover master key, making their work an instance of multiple round fault attack.

4 ToFA: Fault Analysis of GIFT and GIFT-like Ciphers

exploits the round function. Combining all these we propose ToFA which is the first
multi-round impossible (truncated) differential FA on GIFT and BAKSHEESH. Further, the
impossibilities leveraged in this work are independent of the actual SBox and essentially
exploit the bit permutation of GIFT. In case of BAKSHEESH, further reduction in key-space
is done using the key-schedule. Here, we would like to emphasize that the design decision
of BAKSHEESH to use add-round-keys to the entire state makes the initial key-space
quadratically bigger than GIFT-128 making the attack difficult. On the other hand, the
simpler key-schedule ends up making the attack easier as it works like a secondary filter to
reduce the key-space. Figure 1 gives the high-level abstraction of ToFA. The first plane
on the left shows the fault induced truncated difference which diffuses as a multi-round
truncated differential. The cipher-text plane shows the evolution of the trail in the reverse
direction with partial key-guess. The intermediate planes show multiple opportunities of
key-guess eliminations.

Random Byte
Fault

Fault-Induced
Truncated
Difference

Ciphertext

Key Elimination Via
Partial Decryption

ContradictionContradiction

Further Elimination

f-round

(Deterministic Truncated Difference)

z-round

(ZeroDifference)

b-round

(Backward Truncated Difference)

Exploits

group structures

Figure 1: Overview of ToFA. The three vertical squares illustrate the structural bifurcation
of the cipher rounds. The lower arrows indicate the properties that emerge before and
after fault injection. The intermediate planes highlight the contradiction between forward
and backward truncated differences, which we leverage to filter the round keys.

Fault Penetration The third contribution is in terms of fault penetration. Fault penetra-
tion (FP) refers to the earliest round (counting from the last) in which a fault is induced
during an attack. It is well established in the literature that the higher the FP, the more
challenging the attack becomes due to fault diffusion. For example, if key recovery requires
injecting faults in the 8th round of a cipher (e.g., AES-128), the FP is 10− 8 = 2. Another
attack targeting the 7th round has FP=3, making it more effective. Most existing fault
attacks fail if the fault is injected earlier than the round specified by the authors. On the
other hand, a higher FP implies that more rounds require protection. From a fault attack
countermeasure perspective, there is an inherent trade-off between the number of protected
rounds and the associated overhead. As a result, designers typically limit protection to
rounds where successful state-of-the-art FA techniques have been demonstrated against
the cipher.

Given these challenges, developing attacks with a higher FP is difficult and significantly
impacts countermeasure strategies. This is particularly relevant for lightweight ciphers
such as GIFT. Prior to our work, the highest recorded FP for a fault attack on GIFT-64/128
was 2. In our attack, for r round GIFT-64 variant, the faults can be injected as early as
in round (r − 4), while for r round GIFT-128/BAKSHEESH, the faults can be injected
as early as in round (r − 5). This makes the attacks reported here most efficient in

Kundu et al. 5

terms of fault penetrations as we achieve an FP of 4 for GIFT-64 and an FP of 5 for
GIFT-128/BAKSHEESH.

Experimentally Verified Practical Key-space Reduction All claims are substantiated
by real-world fault attacks on 8-bit implementations of GIFT and BAKSHEESH on the
ATXmega128D4-AU micro-controller with random byte faults. The fault-injection frame-
work constitutes clock-glitching using the ChipWhisperer Lite (CW1173) board. We also
furnish a fault profiling of the ATXmega128D4-AU micro-controller by injecting faults in
the last round and characterize the fault distribution by observing the ciphertext differences
to establish the effectiveness of the random byte model.

Detailed experimental results give empirical evidence confirming the theoretical claims
of ToFA. ToFA on GIFT-64 results in a reduced key-space of 232 with 22 random byte faults.
It is important to note that due to the key-schedule of GIFT-64, 232 is the maximum
reduction theoretically possible for the 128-bit key with random byte faults exploiting
only truncated differential patterns across three rounds. ToFA on GIFT-128 recovers the
unique 128-bit master key with 3 random byte faults while 2 faults give a reduction of
2128 → 23. For BAKSHEESH we retrieve the full key with 4 faults. To the best of our
knowledge, the figures reported here are the best across literature considering that we are
able to recover the master-key while targeting just a single round and hence do not need
to peel the cipher while recovering individual round-keys. Table 1 summarizes the results
reported in this work.

Table 1: Summary of fault attacks on GIFT and BAKSHEESH
Primitive Fault Model #faults FI Point⋆ Key-Space Ref Remarks

GIFT-128
Random Byte 3 35 1 Sec. 6 Single-Round

Fault2 23

Random Nibble 32 38 217 [MFJ21]‡ Multilevel
Fault†

GIFT-64

Random Byte 22 24 232 Sec. 6 Single-Round
Fault

Random Nibble
31 26 216 [MFJ21]‡ Multilevel

Fault†

64 27→ 26→ 25→ 24 211.91 [LCMW21]‡ Multilevel
Fault†

BAKSHEESH Random Byte 4 30 1 Sec. 4.2‡ Single-Round
FaultRandom but

Known Bit 12 32 1 [JKP24]‡

† Require multiple round faults due to reliance on onion peeling strategy for master key recovery.
⋆ Number of rounds in GIFT-64, GIFT-128, and BAKSHEESH is 28, 40, and 35 resp. (0 → 27/39/34).
‡ Based on simulated FI.

Organization of the paper In Section 2, we define the notation for the paper as well
as an overview of the targeted ciphers GIFT and BAKSHEESH. Then, in Section 3, we
introduce ToFA as our main contribution. Section 4 represents the applicability of ToFA
on the ciphers GIFT-128 and BAKSHEESH. In Section 5 we apply the same technique
on GIFT-64. The experimental results along with practical verification of the attack is
discussed in Section 6. Some countermeasures are also detailed. Finally, after giving a
brief discussion on the cryptanalytic strategies of both the ciphers in Section 7 we conclude
the paper in Section 8.

6 ToFA: Fault Analysis of GIFT and GIFT-like Ciphers

2 Preliminaries and Background
2.1 Notations
In this section we introduce the notations which we intend to use to illustrate the properties
exploited to mount the fault attacks described later. We use bold lowercase letters to
represent vectors in a binary field.

• For any n-bit vector x ∈ Fn
2 , its i-th coordinate is denoted by xi, thus we have

x = (xn−1, ..., x0).

• 0 represents the binary vector with all elements being 0.

• The Hamming weight of a ∈ Fn
2 is H(a) =

∑i=n
i=1 ai

• For any bit-vector a, we often call the bit positions with value 1 as the active bit
positions.

• In this paper, Rℓ denotes the ℓ-th round function of an r-round iterative cipher for
ℓ = 0, 1, ..., r − 1 and consequently R−ℓ denotes inverse of the ℓ-th round function.

• The input state and round key of Rℓ are denoted by Sℓ and Kℓ, respectively.

• In the current work, we concentrate on GIFT-like ciphers, which have 4-bit SBox-es
and hence a nibble based representation. In this regard, the i-th nibble of Sℓ is
denoted as N ℓ

i and the j-th bit of this nibble is denoted as N ℓ
i,j .

• In terms of endianness, the right most nibble is considered as the 0-th nibble while
the right most bit is considered as the 0-th bit.

• For two n-bit vectors u and v, we call u as the successor of v denoted as u ⪰ v if
ui ≥ vi for all i = 0, 1, ..., n− 1. Alternatively, v is referred to as the predecessor of u.

• For any n-bit vector x ∈ Fn
2 , k-bit circular right shift and k-bit circular left shift are

denoted by x ≫ k and x ≪ k, respectively. For, e.g., [00110] ≫ 2→ [10001].

2.2 GIFT [BPP+17]
The GIFT family of block ciphers is designed to prioritize hardware efficiency while
maintaining a high level of security. The family includes two versions: GIFT-64 and
GIFT-128. Both the versions utilize a 128-bit key, but they differ in terms of state size and
the number of rounds. The GIFT-64 cipher consists of 28 rounds and has a state size of 64
bits, while GIFT-128 incorporates 40 rounds and features a larger state size of 128 bits.
Each round of both ciphers comprises four operations: the SBox-Layer, Bit Permutation
Layer, Addition of round keys, and Addition of Round Constants.

At the beginning of the encryption process, the cipher takes a 128-bit master key and
generates round keys for each round. For GIFT-64, each round key is 32 bits, whereas for
GIFT-128, the round keys are 64 bits. Within each round, the 4-bit SBox operation is
applied to each nibble of the state bits. The resulting bits are then permuted through the
permutation layer. Next, the round keys and round constants are XOR-ed with specific
positions within the state. For GIFT-64, the round keys are XOR-ed with the 0-th and 1-st
bit of each nibble, while for GIFT-128, the round keys are XOR-ed with the 1-st and 2-nd
bit of each nibble. Additionally, 6-bit round constants are XOR-ed with specific positions
within the state in both versions of the cipher.

In the key schedule process, depending on the version, two or four 16-bit words are
extracted from the key state to generate a round key. Some key words undergo circular
rotation to produce the next round keys. In round Ri+1, different 32 or 64-bit words are

Kundu et al. 7

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

Upper Trail︷ ︸︸ ︷
H(b4i · · · b4i+3) ≤ 1

0≤i≤15︷ ︸︸ ︷
Contradiction

Lower Trail︷ ︸︸ ︷
H(b4i · · · b4i+3) > 1

Figure 2: The Quotient-Remainder Group QR-0 in the GIFT-64 permutation

selected for key derivation. If an attacker obtains the round keys of two consecutive rounds
for GIFT-128 or four for GIFT-64, they can recover the master key. This property is utilized
for both GIFT versions in later sections.

2.2.1 The QR Structures in GIFT Permutation

GIFT is an SPN structure whose permutation layer consists of bit permutation only. This
can be grouped in 4 or 8 groups of 16-bit to 16-bit permutation structures depending upon
the versions, called the QR structures (Refer Figure 2). This follows the convention that
the output bits of 4 nibbles map to the input bits of 4 nibbles in the next round. Consider
a nibble N l

i with i = 4 ∗ a + b. This belongs to the a-th quotient group in Rl and b-th
remainder group in Rl+1 for GIFT. The number of permutation group is different for the
versions of GIFT and thus makes 4 QR groups for GIFT-64 and 8 groups for GIFT-128.
From this convention, it can be seen that to recover the round keys of two consecutive
rounds, the attacker does not have to guess the full round key of the cipher. She can guess
the round keys for individual groups. The original round key remains in the Cartesian
product of the QR group keys. We exploit this structuring technique in our attack to
recover the round keys for the both versions of GIFT. We call the i-th QR group as QRi.

2.3 BAKSHEESH [BBC+23]
The BAKSHEESH block cipher is designed to optimize both hardware and software aspects
of its implementation and has been claimed by its designers to be an improvement over
GIFT. It consists of 35 rounds and operates on a state size of 128-bits. Each round of
the cipher encompasses four operations: SBox-Layer, bit-permutation, addition of round
constant, and addition round key. The linear layer of the cipher employs bit-permutation,
which is the same as that used in GIFT-128. In the add round constants layer, a 6-bit round
constant is added to specific positions within the state. Unlike GIFT-128, BAKSHEESH has
key whitening layer at the beginning of the encryption function, which makes a total of 36
round keys for the cipher. The initial whitening key is same as the master key. Subsequent
round keys are derived through a one-bit circular right shift of the previous round key, i.e.,
ki+1 ← ki ≫ 1. The key schedule represents a notable difference between GIFT-128 and
BAKSHEESH, which plays a crucial role in our attack. Additionally, another significant
difference is how the round key is incorporated during the encryption process. Unlike

8 ToFA: Fault Analysis of GIFT and GIFT-like Ciphers

GIFT-128, in BAKSHEESH, the round key is added to the full state rather than specific
bits, using a bitwise XOR operation.

It is worth noting that the key schedule process is invertible even with the knowledge
of single round key. This invertibility of the key schedule mechanism in BAKSHEESH, is
fully exploited in our attack.

3 ToFA: Impossible Differential Induced Fault Analysis
In this section we introduce the idea of ToFA starting with the notion of truncated
differentials in the state of GIFT. It can be noted that in this part of the attack we
primarily leverage the QR group structure. Due to the random byte fault model used
in this work, we capture the state-wide input differences that are permissible though the
following.
Definition 1 (Admissible Input Difference (AID)). An admissible input difference is
a non-zero truncated difference whose Hamming-weight is at most 8 belonging to the
following set.

S∆
b =

{ [
∗80b−8]

≫ k
∣∣ 0 ≤ k < b− 8, ∗8 ∈ {0, 1}8 \ 0

}
(1)

Here b denotes the state-size. For e.g., in case of GIFT-64, S∆
64 captures the set of all

differences that can be induced by a random byte-fault in the intermediate state.
Definition 2 (Spread of an AID (SAID)). The Spread of an AID is the distance between
the most significant non-zero bit and the least significant non-zero bit values. For e.g.
SAID(0x013 · 1e · 0 ∈ S∆

64) = 3.
The notion of SAID is introduced for conveniently capturing the maximal fault diffusion.

The maximum SAID for a random byte fault is 7 while minimum is zero corresponding to
single bit being non-zero. Table 2 shows the maximum number of SBox-es and QR-groups
that can be activated by a random byte fault based on the SAID of the induced input
difference.

Table 2: SAID relation with activity pattern considering maximum diffusion of the fault
SAID Max #Active SBox-es Max #Active QR-groups

0 1 1
1,2,3,4 2 2
5,6,7 3 2

Observation 1 (AID - QR Correlation). Any AID, s ∈ S∆
b will diffuse following the QR

group structure and can activate at most two QR groups.
Remark 1. This observation is evident from Table 2. For any SAID > 0, there are at least
two active bits. Now since max SAID is 7, these active bits will activate two SBox-es which
can at max be separated by another SBox. Additional bits active in between the most
and least significant active bits can activate the intermediate SBox as well leading to max
of three SBox-es being active. Now, based on the location of the induced byte fault, the
active SBox-es can all belong to the same QR group (referred to as Type-I correlation -
Refer Figure 3a) or can be divided between at most two adjacent QR groups (referred to
as Type-II correlation - Refer Figure 3c). In the remainder of the work, we always assume
that the AID affects three consecutive SBox-es. It can be noted that any sub-case (i.e., if
the induced fault affects two or one nibble) is captured through this assumption. From the
fault-model perspective this can be visualized as a further relaxation of the random-byte
model, where our fault model can tolerate the injected fault to spread to up to any three
contiguous nibbles.

Kundu et al. 9

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

052||0010||1110||0100 ∈ S∆
64︷ ︸︸ ︷

(a) Type-I correlation for 054 ∗8 02 ∈ S∆
64

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

016||0101||1101||1000||036 ∈ S∆
64︷ ︸︸ ︷

(b) Type-I correlation for 017 ∗8 039 ∈ S∆
64

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

044||0011||1010 ||0100||08 ∈ S∆
64︷ ︸︸ ︷

(c) Type-II correlation for 046 ∗8 010 ∈ S∆
64

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

08||0001||1110||1110||044 ∈ S∆
64︷ ︸︸ ︷

(d) Type-II correlation for 011 ∗8 045 ∈ S∆
64

Figure 3: Demonstration of AID - QR group correlation in GIFT-64

10 ToFA: Fault Analysis of GIFT and GIFT-like Ciphers

Observation 2 (One-Round Truncated Cluster). Based on the correlation induced by any
AID in the rth round, one can enumerate the cluster of permissible truncated difference
patterns (T ∆1

b) after (r + 1)th round using the predecessor set (P∆1
b) which is represented

as below for b = 64. For b = 128, please refer Appendix A.

T ∆1
64 =

{
t ∈ {0, 1}64|t ⪯ p

}
, where

p ∈ P∆1
64 =

Type-I︷ ︸︸ ︷
[000b 000d 000e 0007]
[0007 000b 000d 000e]
[00b0 00d0 00e0 0070]
[0070 00b0 00d0 00e0]
[0b00 0d00 0e00 0700]
[0700 0b00 0d00 0e00]
[b000 d000 e000 7000]
[7000 b000 d000 e000]

Type-II︷ ︸︸ ︷
[0086 0043 0029 001c]
[0094 00c2 0061 0038]
[0860 0430 0290 01c0]
[0940 0c20 0610 0380]
[8600 4300 2900 1c00]
[9400 c200 6100 3800]

Remark 2. The above observation is completely dictated by the QR structures that are
an inherent part of GIFT design. It has an interesting implication considering the entire
cluster. Any one-round truncated pattern (t′) which is not a predecessor of p i.e., t′ ̸⪯ p is
an impossible truncated differential. Alternately, for s ∈ S∆

64 and t′ ̸⪯ p where p ∈ P∆1
64 ,

we have Pr[s 1-Round GIFT-64−−−−−−−−−−→ t′] = 0.

Observation 3 (Two-Round Truncated Cluster). Observation 2 can easily be extended
over two rounds so as to enumerate permissible truncated difference patterns after (r + 2)th

round (T ∆2
b) due to any AID at the rth round using the corresponding predecessor set (P∆2

b)
given as below for b = 64. Again refer Appendix A for the predecessor set for state-size
128.

P∆2
64 =

Type-I︷ ︸︸ ︷

[8888 4444 2222 1111]
[1111 8888 4444 2222]
[2222 1111 8888 4444]
[4444 2222 1111 8888]

Type-II︷ ︸︸ ︷
[9999 cccc 6666 3333]
[3333 9999 cccc 6666]
[6666 3333 9999 cccc]

Remark 3. This is also due to the two-round diffusion property of GIFT-64 and shows a
way to achieve two-round impossible differential trails. In the subsequent round truncated
differentials will fully diffuse in the state and will no longer be viable.

Observation 4 (Three-Round Truncated Cluster (GIFT-128, BAKSHEESH)). This obser-
vation is only applicable to 128-bit state-size where the truncated differentials induced due
to AID in rth round can be propagated to the (r + 3)th round to enumerate (T ∆3

128) based on
(P∆3

128).

P∆3
128 =

{
[aaaa aaaa 5555 5555 aaaa aaaa 5555 5555]
[5555 5555 aaaa aaaa 5555 5555 aaaa aaaa]
[ffff ffff ffff ffff ffff ffff ffff ffff]

}

Remark 4. The last element of P∆3
128 is interesting as it implies full diffusion. This is

attributed to the fact that there exist a few AIDs ∈ S∆
128 (7 out of 120 to be precise)

for which truncated differentials can only be propagated for two rounds. This further
shows that if a random-byte fault induces those AIDs then three-round cluster will not
be formed. However, the probability of such cases is less and hence we ignore this in the
rest of the work. Based on the above three observations we have the following generalized
impossibility.(

∀t ∈ {0, 1}b|t ̸⪯ p ∈ P∆r

b

)
and

(
∀s ∈ S∆

b

)
, Pr

[
s

r−Round−−−−−−→
GIFT−b

t

]
= 0,{

1 ≤ r ≤ 2, b = 64
1 ≤ r ≤ 3, b = 128

(2)

Kundu et al. 11

Equation 2 is the basis of the following property which leads us to build restricted
truncated difference based fault invariants. Since BAKSHEESH borrows the bit-permutation
from GIFT-128, all the above observations are applicable to it as well.

3.1 Truncated Differential Induced Fault Invariants
Property 1 (Two-Round Fault-Invariants (GIFT-64)). Any random byte fault injected in
the input of rth round will result in a difference ∈ S∆

64, and after two rounds of GIFT-64
will result in a output difference ∈ T ∆2

64 that will satisfy Equation 2.

For the sake of completeness, we also state the equivalent property pertaining to 128-bit
block-size due to Equation 2.

Property 2 (Three-Round Fault-Invariants (GIFT-128/ BAKSHEESH)). Any random byte
fault injected in the input of rth round will admit a difference ∈ S∆

128, and after three
rounds of GIFT-128/BAKSHEESH will admit an output difference ∈ T ∆3

128 that will satisfy
Equation 2.

3.1.1 Exploiting Local Patterns with QR Structures

It is interesting to note that the invariants due to Property 1 and 2 need not be only
exploitable globally. They can also be exploited locally which is due to the already beneficial
QR structure and reduces the key-guessing complexity. For the rest of this paragraph
refer to Figure 4. We consider the case of GIFT-128 which has Property 2. Random byte
faults can be injected at the input of R35 and will induce truncated differential trails
∈ T ∆1

128 , T ∆2
128 and T ∆3

128 at the input of R36, R37 and R38 respectively. We need to partially
guess the R38 and R39 round-keys but only pertaining to SBox-es belonging to the same
QR group (different colors in R38 and R39 in Figure 4 depict different QR groups) to
partially decrypt two-rounds. If the resultant bit patterns that emerge corresponding to
the QR group of round (r − 1) do not conform to the corresponding part of T ∆3

128 , we
eliminate the key-values guessed since they violate Equation 2 and imply an impossibility.
We repeat this step independently for each QR group. While this reduces key-spaces of
individual QR groups, we also leverage their combinations and do so in a hierarchical
way. First we take groups of two and use the Cartesian product of reduced key-spaces
to decrypt and verify the sub-patterns. Next we combine groups of four and finally all
the eight QR groups are used together to to eliminate the candidates for K39 and K38

exploiting non-conformance to T ∆3
128 . At this stage, we have a reduced key-space for R39

and R38. The strategy is same for BAKSHEESH while it adapts easily for GIFT-64.

3.1.2 Exploiting Multi-Round Impossibility

As stated earlier, truncated differentials develop over multiple rounds which can be exploited
incrementally as we decrypt further rounds. In case of GIFT-128, owing to the key-schedule
K39 and K38 are sufficient to invert the key-schedule and get candidates for K37 and
K36 which can be eliminated using T ∆2

128 and T ∆1
128 respectively. For BAKSHEESH, the

key-schedule is more simpler and only the last round-key is sufficient to invert it. Thus
for BAKSHEESH relation between last and second-last key acts a secondary filter for
key-elimination along with T ∆2

128 and T ∆1
128 where we exploit multi-round impossibility.

Though GIFT-64 requires the last four round-keys to invert the key-schedule, impossible
truncated differential patterns can still be leveraged to recover three of the last four round
keys.

With the basic framework of ToFA in place, we are now ready to delve into cipher-
specific instantiations of the attack. In the next section, we illustrate ToFA in further
detail starting with the 128-bit ciphers targeted in this work.

12 ToFA: Fault Analysis of GIFT and GIFT-like Ciphers

4 ToFA on GIFT-128 and BAKSHEESH
In this section, we will explore the process of recovering the master-key for GIFT-128
and BAKSHEESH using ToFA. Our approach involves utilizing the fault induced 3−round
truncated differential trail in the random byte fault model. The attacker is free to induce
a random byte fault and induce and AID which is exploited as per properties and insights
gained from the impossible differential trail observation discussed in Section 3.

⊕⊕

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

⊕⊕

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

⊕⊕

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

Upper Trail ∈ T ∆1
128

︷ ︸︸ ︷
Contradiction Lower Trail /∈ T ∆1

128

Upper Trail ∈ T ∆2
128

︷ ︸︸ ︷
Contradiction Lower Trail /∈ T ∆2

128

Upper Trail ∈ T ∆3
128

︷ ︸︸ ︷
Contradiction Lower Trail /∈ T ∆3

128

R37

K37

R38

K38

R39

K39

R36

K36

R35

K35

Figure 4: Multi-round contradiction that can be exploited in GIFT-128 due to 3-round
truncated differential trail. The figure represents one instance of the fault injection in R35.
Here SAID (0104||0011||1111||1100||012) = 7

Suppose the fault is given at any random byte of Sr at the r-th round. Based on
Observation 1, the resulting difference propagates to a maximum of two remainder groups

Kundu et al. 13

(the specific groups depend on the fault location) of Sr+1 in the next round. This
propagation generates a cluster of permissible truncated difference patterns denoted as
T ∆1

128 , which is detailed in Observation 2. In the subsequent round, the difference further
spreads to a maximum of 16 out of 32 nibbles in accordance with Observation 3, resulting in
another cluster of permissible truncated difference patterns denoted as T ∆2

128 . If we examine
one more round, we observe that the outputs of these specific SBox-es are connected
to precisely two inputs of each SBox of Sr+3. This connection generates a cluster of
permissible truncated difference patterns denoted as T ∆3

128 (see Observation 4). We employ
this three-round trail to launch an attack on GIFT-128 and BAKSHEESH. An overview of
this trail is presented in Figure 4.

Next, we show the process of utilizing this trail to recover the master keys for both
GIFT-128 and BAKSHEESH. The core idea, like any DFA, behind our attack lies in the
introduction of random faults at arbitrary locations during the Rr round. By doing so, we
aim to disrupt the encryption process and observe the effects of these faults on the resulting
faulty ciphertext. After injecting the faults, we proceed to decrypt the corresponding fault-
free ciphertext and faulty ciphertext pairs obtained from the output of Rr+5, by guessing
the round keys. During this decryption phase, we analyze the decrypted ciphertext-faulty
ciphertext pairs for specific patterns. If the decrypted pairs exhibit certain predetermined
patterns that align with the expectations derived from the three-round trail we discussed
earlier, it indicates that our guessed key might be correct. On the other hand, if the
decrypted pairs do not conform to these expected patterns, we discard the guessed key.
This elimination forms the basis of ToFA.

Algorithm 1 CheckPattern-T ∆3
128

Input: A list of (C, C ′) ∈ C, Key, A shift value s
Output: True/False

1: (Key38, Key39)← Key
2: for (C, C ′) ∈ C do ▷ Decrypt each pair of ciphertext through last two rounds
3: D = SBox−1(P −1(SBox−1(C ⊕ Key39)⊕ Key38 ⊕RC38))
4: D′ = SBox−1(P −1(SBox−1(C ′ ⊕ Key39)⊕ Key38 ⊕RC38))
5: ∆← D ⊕D′

Check permissible truncated difference pattern conformance
6: if (0(128−(2∗s))||∆i||0s) /∈ T ∆3

128 then
7: return False
8: return True

4.1 Master-Key Recovery GIFT-128
One may recall that GIFT-128 is an 128-bit state SPN block cipher with 40 rounds. We start
our discussion with the recovery strategy for the round keys of the last two rounds (i.e., K39

and K38) focusing on each QR group independently, as described in Subsubsection 3.1.1.
The QR groups for the key-guesses are shown in Figure 4 with different colors. For
example, the green color in R38 and R39 represents QR1. The fault is injected at the input
of R35 and we get a pair (C, C ′) at the output of GIFT-128. It is important to note that
during the encryption process, each nibble of the state is XOR-ed with only two key bits.
As a result, there are 216 possible keys for each QR group. So, to decrypt the ciphertexts
through a specific QR group in R39 and R38, we need to guess 16 key bits. This includes
an 8-bit key required to decrypt the four SBox-es in the remainder group of R39, as well as
another 8-bit key needed to decrypt the four SBox-es in the corresponding quotient group
of R38. Therefore, for each QR group in rounds 39 and 38, we make a 16-bit key guess
and decrypt each ciphertext pair (C, C ′) to obtain the 16 input bits of the quotient group

14 ToFA: Fault Analysis of GIFT and GIFT-like Ciphers

in R38 and compute the difference.
At this stage, we examine the obtained 16-bit difference and check if it conforms to any

of the permissible truncated difference patterns (T ∆3
128). This verification step is performed

in Step 4−9 of Algorithm Algorithm 2. In Step 6, we invoke the CheckPattern-T ∆3
128

subroutine (Algorithm 1), which examines the truncated difference patterns after three
rounds from the fault injection. From this distinguisher, we acquire a reduced candidate
set of 16 key bits for each QR group in R39 and R38. These sets are denoted as Li

1 for
i ∈ {0, 1, ..., 7}. The Cartesian product of these sets, constitutes a set of candidate keys
for R39 and R38. However, if we combine all these 8 sets at once, the size of the Cartesian
product set may go beyond practical limits. Instead, we take an incremental approach
and combine these sets in three steps. At the Step 10 in Algorithm 2 we combine two
consecutive QR groups. In Step 19, we combine four consecutive QR groups. Finally, at
Step 28, we combine all 8 groups together.

By following these step-by-step combinations, we gain a significant advantage. At each
step, we can utilize the CheckPattern-T ∆3

128 subroutine to reduce the size of the key set.
This reduction helps manage the computation and memory requirements and improves
the efficiency of the algorithm. We report the experimental results on the average size of
the remaining key space for various combinations of QR groups in Table 4. At the end
of Algorithm 2, we get a set of K38||K39, representing the candidate values for the round
keys K38 and K39. With these last two round keys, we can invert GIFT-128 key-schedule
due to is very design thereby recovering the master key.

Up until now, we have focused solely on utilizing the impossibilities implied by Ob-
servation 4 to reduce the key-space. However, we have observed that there is additional
potential for further reduction. Using the reduced candidate set K38||K39 of last two
round keys, we can reconstruct the round keys for the preceding two rounds, namely K37

and K36. Using the key K37 we further decrypt each pair of ciphertexts to get input
difference, ∆37 at the input of R37. At this stage, we leverage Observation 3 to further
reduce the key-space. For each candidate derived key, we verify that if ∆37 ∈ T ∆2

128 (as
stated in Observation 3). If the verification fails, we discard that particular key suggestion
from with the candidate for K37 was derived. Similarly, to achieve additional reduction in
the key-space, we utilize Observation 2 by computing ∆36 at the input of R36. The entire
process is outlined in Algorithm 3.

Time Complexity. In this section, we analyze the time complexity associated with the
attack discussed previously. We assume that we are working with f {fault-free, faulty}
ciphertext pairs during the execution of the attack. Initially, we focus on recovering the
round keys R38 and R39 corresponding to the QR groups independently, as outlined in
line 4 of Algorithm 2. Here we call the CheckPattern-T ∆3

128 procedure in Algorithm 1
for all QR groups and all 216 possible keys. Within the CheckPattern-T ∆3

128 procedure
in Algorithm 1, we perform a total of 16 SBox inversions for each QR group and each
key guess. Specifically, this involves two SBox−1 operations for both D and D′ in steps 3
and 4 in Algorithm 1) for each QR group and each guess of the key. Consequently, this
results in a complexity of f × (216 × 8× 16) = 216 × 27 × f SBox inversions.

At this stage, we have effectively reduced the key space corresponding to each QR
group independently. The extent of this reduction is directly proportional to the number
of faults f . In Table 4, we report the reduced key-space size for various values of f . For
simplicity, we denote the reduced key space as κ1(f) (denoted in the column of g = 1
in Table 4).

Next, we proceed to combine two QR groups, as illustrated in 12 of Algorithm 2. Since
each QR group involves 16 SBox−1 operations, the total number of SBox−1 operations
for decrypting two rounds within the CheckPattern-T ∆3

128 procedure amounts to 4× 32.
Hence, the time complexity for this step can be expressed as f × (κ1(f)2 × 4 × 32).

Kundu et al. 15

Algorithm 2 KeyRecovery3839-GIFT-128
Input: A list of (C, C ′) ∈ C
Output: A list of master keys K

1: Invert Each pair (C, C ′) ∈ C of through last bit-permutation and round constant
addition layer and save in the same list C

2: Prepare eight lists Ci for i ∈ {0, 1, ..., 7} of 16 bit values from C for each QR groups
3: Initialize eight lists Li

1 for i ∈ {0, 1, ..., 7} for each QR groups
4: for i = 0 to 7 do ▷ For each QR group
5: for Key = 0 to 216 − 1 do
6: if CheckPattern-T ∆3

128 (Ci, Key, 16 ∗ i) = True then
7: Li

1 = Li
1 ∪ {Key}

8: else
9: Break

Combining Two Consecutive QR Groups
10: Prepare four lists Ci for i ∈ {0, 2, 4, 6} of 32 bit values from C for each two consecutive
QR groups

11: Initialize four lists Li
2 for i ∈ {0, 2, 4, 6} for each two consecutive QR groups

12: for i ∈ {0, 2, 4, 6} do ▷ For each pair of two consecutive QR groups
13: for (Key0, Key1) ∈ Li

1 × Li+1
1 do

14: Key← Key0||Key1
15: if CheckPattern-T ∆3

128 (Ci, Key, 16 ∗ i) = True then
16: Li

2 = Li
2 ∪ {Key}

17: else
18: Break

Combining Four Consecutive QR Groups
19: Prepare two lists Ci for i ∈ {0, 4} of 64 bit values from C for each four consecutive QR

groups
20: Initialize two lists Li

3 for i ∈ {0, 4} for each four consecutive QR groups
21: for i ∈ {0, 4} do ▷ For each four consecutive QR groups
22: for (Key0, Key1) ∈ Li

2 × Li+2
2 do

23: Key← Key0||Key1
24: if CheckPattern-T ∆3

128 (Ci, Key, 16 ∗ i) = True then
25: Li

3 = Li
3 ∪ {Key}

26: else
27: Break

Combining All QR Groups
28: Initialize a list K ▷ For full round keys
29: for (Key0, Key1) ∈ L0

3 × L4
3 do

30: if CheckPattern-T ∆3
128 (C, Key, 0) = True then

31: K = K ∪ {Key0||Key1}
32: return K.

16 ToFA: Fault Analysis of GIFT and GIFT-like Ciphers

Algorithm 3 MasterKeyRecovery-GIFT-128
Input: List of (C, C ′) ∈ Lc, Candidate list K of K38||K39

Output: A list of keys K
1: for K38||K39 ∈ K do ▷ For each key suggestion
2: Prepare K37 and K36 from K38||K39

3: Pass = True
4: for (C, C ′) ∈ Li

c do ▷ Decrypt each ciphertext pair’s last three rounds
5: D = R−37(R−38(R−39(C, K39), K38), K37)
6: D′ = R−37(R−38(R−39(C ′, K39), K38), K37)
7: ∆37 ← D ⊕D′

8: if ∆37 ∈ T ∆2
128 then

9: D = R−36(D), D′ = R−36(D′)
10: ∆36 = D ⊕D′

11: if ∆36 ∈ T ∆1
128 then

12: Continue
13: else
14: Pass = False; Break
15: else
16: Pass = False; Break
17: if Pass = True then
18: Reverse key-schedule to get master key K from K38||K39

19: K = K ∪ {K}
20: return K

Following a similar approach, we can compute the time complexities for combining four
QR groups and eight QR groups, which yield the expressions f × (κ2(f)2 × 2× 64) and
f × (κ4(f)2 × 128), respectively (estimation of κ2(f) and κ4(f) are given in the columns
of g = 2 and g = 4 in Table 4, respectively). Consequently, the theoretical estimation of
the total time complexity Algorithm 2 can be summarized as the total number of SBox−1

operations

(27 × 216 + 27κ1(f)2 + 27κ2(f)2 + 27κ4(f)2)f = (216 + κ1(f)2 + κ2(f)2 + κ4(f)2)27f.

Finally, to recover the master key, we utilize Algorithm 3, which applies the decryption
oracle for three rounds over the reduced key space. The time complexity of Algorithm 3
is thus dominated by the previously discussed time complexity of Algorithm 2. The
time requirements for practical implementations of the aforementioned attack are detailed
in Table 5 for various values of f .

For the above attack, the key space can be reduced to unique by using only 3 {fault-free,
faulty} ciphertext pairs, i.e., f = 3.

4.2 Master-Key Recovery BAKSHEESH
In this section, we illustrate ToFA on BAKSHEESH which has been proposed very recently as
an improvement over GIFT. This attack constitutes a third-party fault based cryptanalysis of
this lightweight 128-bit block-cipher with 35 rounds. The attack procedure for BAKSHEESH
follows the same approach as we discussed for GIFT-128 in Subsection 4.1 and Algorithm 2.
Since GIFT-128 and BAKSHEESH share the same bit-permutation, we can leverage all
the impossible trails that we discussed for GIFT-128 in the context of BAKSHEESH as
well. The fault is injected at round R30, and we obtain a ciphertext pair (C, C ′) at
the output of BAKSHEESH. Similar to GIFT-128, we recover the last two round keys

Kundu et al. 17

(i.e., K33 and K34) for each QR group independently and combine them in three steps.
However, BAKSHEESH provides additional avenue of key-space reduction due to its simple
key-schedule as elaborated next.

4.2.1 Exploiting BAKSHEESH Key-Schedule as a Secondary Key-Filter

In the subsequent paragraphs we highlight two properties of BAKSHEESH primarily
pertaining to its key-schedule that have kind of orthogonal effect on complexity of ToFA
on BAKSHEESH.

Property 3 (Quadratic Increase in QR Key-Space for BAKSHEESH). The QR key-size
for BAKSHEESH is double with regards to GIFT-128 leading to a cardinality of 232 instead
of 216

Remark 5. BAKSHEESH is highly inspired by GIFT with some deviations, one of which is
the decision to add round-keys to the full-state. The direct implication is the doubling
of #key-bits added to individual QR groups which leads to the quadratic increase in the
number of keys to be guessed for each QR group.

Property 4 (Rotational Relation in BAKSHEESH Adjacent Round-Keys). The ith round-
key (Ki) and the (i + 1)th round-key (Ki+1) of BAKSHEESH are related as Ki+1 ← Ki ≫ 1

Remark 6. According to the designers of BAKSHEESH, a simple key-schedule was an
important decision and another deviation from its predecessor GIFT. However, it also
implies that recovering the last round-key leads to the master-key by simple left rotations.

As stated above Property 3 and Property 4 have an orthogonal effect on the key-
elimination strategy adopted here implying that while Property 3 makes it difficult to
mount ToFA, Property 4 makes it easier. Due to quadratic increase in key-guessing
complexity due to Property 3, the impossible truncated differential filter (T ∆3

128) becomes
less effective. This leads to reduced key-spaces of individual QR groups which are so large
that the incremental combination strategy (as shown earlier to be effective for GIFT-128)
fails due to combinations being prohibitively large in sizes. Here Property 4 comes to the
rescue. We note that the relation between successive round-keys can act as a secondary
filter. However, such a filter cannot be used in its entirety (due to impractical-size of
last round-key after exploiting the primary impossibility filter) and thus we resort to the
QR segregation which has been very beneficial until now in ToFA. The idea is to exploit
key-bit relations between last two round-keys across QR groups. Since QR groups can
be leveraged independently, this strategy leads to effective reduction. We explain this by
making the following observation.

Observation 5 (Cross-QR Key-bit Relations between Ki+1 and Ki). Some of the 16-bit
key bits of any remainder group in Ki+1 are equal to some of the 16-bit key bits of the
corresponding quotient group in Ki implying that certain key bits (as outlined in Table 3)
are shared between these two groups.

Table 3: Number of common key-bits between Q and R groups in consecutive round keys
for BAKSHEESH, considering different combinations of QR groups.
QR Group 0 1 2 3 4 5 6 7 01 23 45 67 0123 4567 01234567
#equal key-bits 3 3 3 3 3 3 3 3 8 8 8 8 32 32 128

Remark 7. For example, if we consider the QR0 group, we find that there are 3 key bits in
the quotient group that are equal to some 3 key bits in the remainder group. This key-bit
equality holds true for the other QR groups as well. Consequently, the effective size of the

18 ToFA: Fault Analysis of GIFT and GIFT-like Ciphers

key-space for each QR group becomes 29. Table 3 provides the number of equal key bits
for various combinations of QR groups. This table offers insights into the strength of the
key relations and the filtering effect achieved as more QR groups are combined.

Secondary Key Elimination Filter Leveraging Observation 5 It is now evident that in
addition to checking the truncated difference patterns within T ∆3

128 , we can also examine
the key relations between two consecutive round keys. By considering these key relations,
we can further constrain the key-space and reduce the number of potential candidate
keys for each QR group. This additional constraint adds an extra layer of verification
to the attack process. When combining two consecutive QR groups, we observe that
there are 8 common key bits between the quotient group and the corresponding remainder
group. Furthermore, when considering four consecutive QR groups together, the number
of common bits increases to 32. In other words, as we progressively combine more QR
groups, the key relations become stronger, providing an increasingly effective filtering
mechanism. Thus, at each step, we further reduce the key-space by incorporating the
constraints imposed by the impossible difference patterns and by checking the equality
between two consecutive round keys. As the size of the reduced key space for various
combination directly affects the memory and time requirement, we report the average size
of the remaining key space for various combinations of QR groups in Table 4. This is
further validated with real-world attack realization detailed in Section 6.

Ultimately, through these steps, we obtain a set of K33||K34, representing the candidate
values for the round keys of R33 and R34. By using the last round key K34, we can reverse
the key-schedule process and successfully recover the master key of BAKSHEESH. With a
set of master key in hand, we can proceed to construct the round keys for the previous
two rounds, namely K31 and K32. Using the key K32, we decrypt each pair of ciphertexts
to obtain the input difference, ∆32, at the input of R32. At this point, if required, we
utilize Observation 3 to further reduce the key-space by verifying if ∆32 ∈ T ∆2

128 . To achieve
additional reduction in the key-space, we can also apply Observation 2 by computing ∆31
at the input of R31.

Time Complexity Here the same procedure of Algorithm 2 is followed to reduce the key
space of BAKSHEESH. This cipher uses a 128-bit round key in each intermediate round.
Total 32 key bits are xored with the state in each QR group. Suppose f is the number of
{fault-free, faulty} ciphertext pairs needed for this attack. Like GIFT-128, in a single QR
group, 16 SBox−1 are needed to perform CheckPattern-T ∆3

128 procedure for each faulty
fault-free pair. Hence the complexity to reduce each QR group becomes (f × 232 × 8× 16)
= (f × 232 × 27).

Here also we combine multiple consecutive QR groups and use CheckPattern-T ∆3
128 in

the intermediate round. We also have some extra filtering steps using the key bit relations
of the cipher (given in Table 3). Note that, if κg(f) for g ∈ {1, 2, 4} is the reduced key
space size after combining g consecutive QR groups, then the expression of the time
complexity remains the same as GIFT-128 for the combination of QR groups. Hence the
total time complexity can be expressed as the following:

(27 × 232 + 27κ1(f)2 + 27κ2(f)2 + 27κ4(f)2)f = (232 + κ1(f)2 + κ2(f)2 + κ4(f)2)27f.

The estimated values of κg(f) for g ∈ {1, 2, 4} can be found in Table 4. We find the
best result for BAKSHEESH using 4 faults.

Kundu et al. 19

Table 4: Simulation result of the key space reduction for GIFT-128 and BAKSHEESH. The
result shows the values of κg for g combinations of QR groups where g = 1, 2, 4 and 8.
T = Time complexity in terms of SBox−1.

Primitive # Faults FI point Reduced key-space
T

g = 1 g = 2 g = 4 g = 8

GIFT-128
4

35
23 25 26 1 225.11

3 25 28 211 1 230.63

2 27 212 218 23 244

BAKSHEESH∗

8

30

26 29 211 1 242

6 27 211 212 1 241.59

5 29 213 216 1 242.33

4 212 216 219 1 247.04

⋆ The numbers reported for BAKSHEESH consider both difference patterns and key relations.

5 ToFA on GIFT-64
To perform the ToFA attack on GIFT-64 (a block cipher with a 64-bit state and 28 rounds),
we utilize a 2−round impossible trail within GIFT-64 and execute the attack in a random
byte fault model. Assuming a fault occurs at a randomly chosen byte of Sr during the
r-th round, according to Observation 1, the resulting difference spreads to at most two
remainder groups of Sr+1 in the subsequent round. This propagation generates a set of
valid truncated difference patterns denoted as T ∆1

64 (Observation 2) which leads to T ∆2
64

(Observation 3) in the next round. We employ this two-round trail as a distinguisher to
recover the master key of GIFT-64. An overview of this trail is presented in Figure 5.

To recover the master key, we begin by first retrieving the last two round keys, K27

and K26 and like GIFT-128, we divide-and-conquer using each QR group independently.
Later, we discuss the recovery of the third-to-last round key, K25. The QR groups for the
key-guesses are shown in Figure 5 with different colors (for instance green represents QR0).
The fault is injected at the input of R24 and we get a pair (C, C ′) at the output of GIFT-64.
Similar to GIFT-128, during the encryption process, each nibble of the state is XOR-ed with
only two key bits. As a result, there are 216 possible keys for each QR group. So, for each
QR group in rounds 27 and 26, we make a 16-bit key guess and decrypt each ciphertext pair
(C, C ′) to obtain the 16 input bits of the quotient group in R26 and compute the difference.
The difference is then checked for conformance to any of the permissible truncated difference
patterns from 2-round trails (T ∆2

64). From this distinguisher, we acquire a candidate set
(Li

1 for i ∈ {0, 1, 2, 3}) of 16 key bits for each QR group in R26 and R27. To combine these
sets together, we use similar method as we consider for GIFT-128 and BAKSHEESH, i.e.,
following step-by-step process and use the distinguisher from 2-round trail at each step
as shown in the CheckPattern-T ∆2

64 (Algorithm 4) subroutine to reduce the size of the
candidate key set. The complete procedure is captured by Algorithm 5 at the end of which
we get a set of K26||K27, representing the candidate values for the round keys of R26 and
R27.

Recovering K25 Previously we discussed how to recover last two rounds key (i.e., K27

and K26) of GIFT-64 leveraging impossible truncated difference patterns. However, at this
stage reduced key-space for the master key is still out of practically verifiable range. Hence
to recover K25 without increasing number of faults we guess the round keys of K25 by the
same fashion using the QR groups and use the truncated difference pattern for one round
(given in T ∆1

64). For each suggestion for K27 and K26 form the output of Algorithm 5, we
recover a set of possible keys for the 25-th round. To do this, again we guess 8-bit key

20 ToFA: Fault Analysis of GIFT and GIFT-like Ciphers

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕ ⊕

S

⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

S

⊕⊕⊕

S

⊕ ⊕

S

⊕⊕

S

⊕⊕ ⊕

Upper Trail ∈ T ∆1
64

︷ ︸︸ ︷
Contradiction Lower Trail /∈ T ∆1

64

Upper Trail ∈ T ∆2
64

︷ ︸︸ ︷
Contradiction Lower Trail /∈ T ∆2

64

044||0010||1010||1100||08 ∈ S∆
64︷ ︸︸ ︷

R27

K27

R26

K26

R25

K25

R24

K24

Figure 5: A conforming differential due to fault injection in QR group SBox in R24 of
GIFT-64. For this case, SAID value is 7

Kundu et al. 21

Algorithm 4 CheckPattern-T ∆2
64

Input: A list of (C, C ′) ∈ C, Key, A shift value s
Output: True/False

1: (Key26, Key27)← Key
2: for (C, C ′) ∈ C do ▷ Decrypt each pair of ciphertext through last two rounds
3: D = SBox−1(P −1(SBox−1(C ⊕ Key27)⊕ Key26 ⊕RC26))
4: D′ = SBox−1(P −1(SBox−1(C ′ ⊕ Key27)⊕ Key26 ⊕RC26))
5: ∆← D ⊕D′

Check permissible truncated difference pattern conformance
6: if (0(64−(2∗s))||∆i||0s) /∈ T ∆2

64 then
7: return False
8: return True

Algorithm 5 KeyRecovery2627-GIFT-64
Input: A list of (C, C ′) ∈ C
Output: A list of master keys K

1: Invert Each pair (C, C ′) ∈ C of through last bit-permutation and round constant
addition layer and save in the same list C

2: Prepare eight lists Ci for i ∈ {0, 1, 2, 3} of 16 bit values from C for each QR groups
3: Initialize eight lists Li

1 for i ∈ {0, 1, 2, 3} for each QR groups
4: for i = 0 to 3 do ▷ For each QR group
5: for Key = 0 to 216 − 1 do
6: if CheckPattern-T ∆2

64 (Ci, Key, 16 ∗ i) = True then
7: Li

1 = Li
1 ∪ {Key}

8: else
9: Break

Combining Two Consecutive QR Groups
10: Prepare four lists Ci for i ∈ {0, 2} of 32 bit values from C for each two consecutive QR

groups
11: Initialize two lists Li

2 for i ∈ {0, 2} for each two consecutive QR groups
12: for i ∈ {0, 2} do ▷ For each pair of two consecutive QR groups
13: for (Key0, Key1) ∈ Li

1 × Li+1
1 do

14: Key← Key0||Key1
15: if CheckPattern-T ∆2

64 (Ci, Key, 16 ∗ i) = True then
16: Li

2 = Li
2 ∪ {Key}

17: else
18: Break

Combining All QR Groups
19: Initialize a list K ▷ For full round keys
20: for (Key0, Key1) ∈ L0

2 × L2
2 do

21: if CheckPattern-T ∆2
64 (C, Key, 0) = True then

22: K = K ∪ {Key0||Key1}
23: return K.

corresponding to each remainder group of R25 and decrypt one more round to get the input
state R25. To filter this 8-bit key, we check whether the input difference of R25 conforms
to T ∆1

64 or not and use this as a key-guess elimination filter. This filter suggests a set of 8
key bits for each QR group in R25. Again, we combine the key suggestion incrementally
like before. At first we combine two consecutive QR and check if the combined input
difference at R25 is in T ∆1

64 . Then we combine all four groups together and check the same

22 ToFA: Fault Analysis of GIFT and GIFT-like Ciphers

pattern. The resulting process suggests a set of K25||K26||K27 representing the candidate
values for the round keys of R25, R26 and R27.

Recovering Master Key From the key-schedule algorithm (see [BPP+17]) we can observe
that to reverse the key-schedule algorithm and recover the master key, it is necessary to
have 4 consecutive round-keys. As we have a set of keys for the last three rounds, we can
recover the master key using exhaustive search for rest 32-bits. Thus if the size of the set
of candidate K27||K26||K25 keys is t, our attack recover the master key for GIFT-64 with
complexity t× 232.

Time Complexity Here to reduce the master key space to 232, suppose f {faulty, fault-
free} ciphertext pairs are needed. The procedure to recover the keys of R26 and R27 is
given in Algorithm 5. As described in Section 4.1, here we first reduce the keyspace for 4
distinct QR groups, then combine the key spaces and use CheckPattern-T ∆2

64 to reduce
the combined key space of the cipher. The effort to reduce the keyspace for each QR
group involves (f× 4 × 216 × 16) SBox−1 operations. This reduces each Li

1 to 1 for each
QR group i. Hence, unique key is recovered for the last two rounds. Since, unique key is
recovered for every QR group, no further combinations are necessary. Now to recover K25,
first fully invert 2 rounds and then partially invert each of the QR group of the cipher.
The size of the reduced key space lists after combining 2 and 4 QR groups becomes 24.90

and 1 respectively. After recovering full 3 round keys also, 232 possible keys remain for
K24. Hence the total time complexity becomes dominated by 232 for GIFT-64. We find
the best results using f = 22 for this case.

6 Implementing ToFA: Attack Realization
This section details the practical experimentation executed to realize the ToFA attack in real-
world scenarios. To demonstrate, we utilized the 8-bit micro-controller ATXmega128D4-
AU, which is resource constrained and supports light-weight encryption algorithms like
tinyAES2. For fault injection we use the ChipWhisperer Lite (CW1173)3 board where
this microcontroller is set as the target (XMEGA). A clock-glitch as shown in Figure 6
is induced, resulting in some instructions getting skipped. For example, in a look-up-
table based implementation of sub-bytes operation, the look up instruction or the store
instructions can get skipped. This leads to the necessary faulty computation. The source
codes for all of our experiments are available at the following repository4.

6.1 Simulated Key-Recovery for Validation
Before delving into real-world attack realization, we conducted simulation experiments
to ensure that post realization the key-recovery works as expected. The simulations are
conducted by introducing a fault at any random byte with a random difference for both
the primitives GIFT and BAKSHEESH. Using the strategy given in Subsection 4.1, we
obtain a unique master key with only 3 random byte faults and reduce the key-space
to 8 using only 2 faults for the case of GIFT-128. For the case of BAKSHEESH, we were
able to obtain a unique master key using only 4 random byte faults. Interestingly, for
BAKSHEESH, in most cases, we observed that the unique master key could be recovered
even without utilizing Observation 3 and Observation 2. These findings underscore the

2https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/firmware/
crypto/tiny-AES128-C

3https://rtfm.newae.com/Targets/CW303%20XMEGA/
4https://github.com/ShibamCrS/Tofa.git

https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/firmware/crypto/tiny-AES128-C
https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/firmware/crypto/tiny-AES128-C
https://rtfm.newae.com/Targets/CW303%20XMEGA/
https://github.com/ShibamCrS/Tofa.git

Kundu et al. 23

effectiveness of our attack methodology and highlight that the key-schedule mechanism in
BAKSHEESH forms a prime exploitation point for ToFA on BAKSHEESH.

For the case of GIFT-64, we recover the unique key for the last two rounds (K27||K26)
using only 8 random byte faults. For the last three rounds key (K25|| K26||K27), our
experiments show that on average 22 random byte faults are required to uniquely recover
the last three rounds key and with 15 faults we can reduce the key-space to 29. These
simulation results, although different from the actual attack result (discussed next), provide
good upper and lower bounds on the number of faults required. The difference in the
number of required faults between simulation and actual experimentation is due to the fact
that 79% of the induced faults diffuse to only one nibble (as discussed in Subsection 6.3).

0.1

0

-0.1

0 1 3 4

0.1

0

-0.1

0 1 3 42 2
Samples

(31.25 samples per clock cycle)

Vo
lta

ge
 (V

)

Vo
lta

ge
 (V

)

Clock-glitch
induced

Samples
(31.25 samples per clock cycle)

Figure 6: This diagram illustrates the voltage consumption under two conditions: (a)
without clock glitch and (b) with clock glitch.

6.2 Results on GIFT-128
To program the microcontroller for running GIFT-128 encryption, we transformed its 8-bit
word-size C-implementation into a ‘.hex’ file. A trigger was then set to high and low
before and after the desired round computations, respectively. Given that GIFT-128 is
a constant-time implementation, the fault can always be induced at an estimated offset,
thereby enabling us to inject the fault as discussed above. We induced the fault around the
beginning of the 35th round, as shown in Figure 7. Since the first operation is sub-bytes,
there is a high probability that most faults are induced due to instruction skip around this
operation thereby affecting a single 4-bit word. The values of these faults vary, but since
ToFA is invariant to them, we can achieve full key-recovery with just three faults in the
best case. This demonstrates the feasibility of ToFA in practical settings.

The faults introduced result in faulty ciphertexts, which we utilized to uniquely recover
the secret key by obtaining multiple such faulty and fault free ciphertext pairs. It is worth
noting that with just two faults, the key space is already significantly reduced to only four
potential keys on average. This trend continues with even fewer faults. Following this
practical fault demonstration, we will now discuss other crucial factors, such as the attack
range and success probability.

6.3 Fault Profiling of the ATXmega128D4-AU Micro-controller
Prior to discussing this in detail, we would like to reiterate that our attack imposes no
restrictions on the Hamming-weight (HW) of the fault beyond the requirement that it
must be non-zero (otherwise it is not a valid fault). The theoretical framework enables
that the fault can occur anywhere in the state and requires that it affects a maximum of 3
consecutive nibbles for GIFT-128 to mount a key-recovery attack. In terms of an actual
fault, this translates to fault extendability to three consecutive computations. Notably our
experimentation revealed that the impact of clock-glitches typically propagates to only one

24 ToFA: Fault Analysis of GIFT and GIFT-like Ciphers

0

-0.2

-0.4

0 1000 3000 40002000

Samples
(31.25 samples per clock cycle)

Vo
lta

ge
 (V

)

0.2

Trigger high Trigger low

Figure 7: The diagram displays the faults introduced right at the onset of the 35th round,
where the sub-bytes operation is anticipated to start. This shows a distinct pattern for
every round, and if needed for entire encryption traces, this pattern can be used to partition
the rounds.

computation. Hence, the success probability of achieving the desired faults is significantly
high (79.5%).

The time-window for fault injection is 1.25% of the total GIFT-128 encryption runtime.
This work relies on a random byte fault model which means that we do not need to know
the value or spatial location of the fault. However, to do a feasibility analysis we injected
random byte faults in the final round of GIFT-128 and from the ciphertext difference found
that faults conforming to our attack setting can be achieved with a 79.5% success rate.
The experimentation was carried out on 100 sample runs over the entire available attack
range. This was accomplished by introducing clock glitches during the first 1000 samples
of the last round. This analysis is detailed in Figure 8.

Ineffective
62%

Effective
38%

≤ 3 nibs.
79.5%

> 3 nibs.
20.5%

Figure 8: A pie chart representing the distribution of faults. The first chart shows that
within the favorable time-window of fault injection, only 38% of the faults injected lead
to faulty results. The second chart shows that close to 80% of the injected faults affect a
maximum of 3 nibbles (nibs.) and are thus usable to mount ToFA.

As mentioned earlier, in the best case three faults is sufficient to perform full key-
recovery, however, this is probabilistic event, and to be 100% sure and attacker would
want to induce 12 faults, as shown in Figure 9. A similar study is also carried out for
GIFT-64, which results in full key recovery with 20 faults. Finally, note that although in
our experimentation we employ clock glitches, voltage glitches can also be used to induce
faults. It is worth noting that precise faults, such as bit flips within the state, can also be
mounted on FPGA implementations.

Kundu et al. 25

10 20 30 40 50 60 70 80 90 100

3
4
5
6
7
8
9

10
11
12

15
25

28
33

53
67

81
91

99
100

Fa
ul

ts

Figure 9: A Bar chart representing the percentage of unique key recoveries possible for a
given number of faulty computations averaged over across 100 iterations. Relaxing the
unique key recovery requirement significantly increases success rates. Even with a larger
reduced key space, the correct key is always included, confirming the attack’s correctness,
and the unique key can be retrieved with minimal post-processing.

Countermeasure Analysis

A conventional countermeasure for protecting against fault attacks is redundancy. In ToFA
we extend the attack up to 5 rounds, however, lower rounds are also vulnerable to fault
analysis, without loss of generality. Therefore, we have added this countermeasure and
tested that every fault is detected and results in an all zero ciphertext for GIFT-128. This
protects the design against ToFA with 12.5% extra runtime overhead.

Another effective countermeasure against ToFA would be utilizing bit-sliced implemen-
tation technique. Such an implementation will require very precise faults in the registers
containing data. Such registers are generally at the very least 32 to 64-bit large and cannot
be processed using the 8-bit constraint microcontrollers, such the one utilized to mount
the attack (ATXmega128D4-AU).

To enhance fault detection, we employ a duplication-based countermeasure starting
from round 35. An additional state is created, and the previous state is copied to it. Both
states undergo identical operations, ensuring that the final results match. At the end of the
computation, an equality check is performed. If a fault occurs, this check will fail, effectively
detecting potential attacks. While this approach is straightforward, it can be further
strengthened by incorporating additional checks or XOR-based techniques to make fault
injection more challenging for the attacker. Apart from simple duplication, infection-based
countermeasures [GSSC15] can also be utilized in conjugation with redundancy-based
countermeasure.

6.4 Software Implementation of The Key-recovery
Here, we present an in-depth analysis of the time requirements for the key-recovery,
implemented in C++. We conducted all the experiments on an AMD EPYC 9554P machine,
featuring a 3.7 GHz CPU and a 64-core processor. Given the parallelizable nature of
the attack, we designed the implementation to run as a highly parallelized program,
allowing us to maximize the throughput of the machine’s multiple cores. The practical
time requirements for various instances of the attack, under different number of faults,
are provided in Table 5. The reported times represent the average execution time over 50
experiments, each with random master key and plaintexts. This table illustrates the effect
of varying the number of faults on the total execution time.

26 ToFA: Fault Analysis of GIFT and GIFT-like Ciphers

Table 5: Attack implementation results.
Primitive # Faults Avg. Attack Time Reduced Key-space
GIFT-128 8 2 seconds 1

4 15 seconds 1
3 58 seconds 1
2 29.5 minutes 4

BAKSHEESH 8 3.5 minutes 1
6 3.7 minutes 1
5 7.5 minutes 1
4 40 minutes 1

GIFT-64 22 43 milliseconds 1
20 60 milliseconds 16
16 63 milliseconds 256
15 75 milliseconds 512

7 Discussion

This work provides insights in how classical cryptanalysis strategies can be exploited for
physical attacks and reiterates the role of classical tools in making real-world attacks more
feasible. A key contribution of the current work is complete/practical key-recovery attacks
using a single point of fault injection owing to the independence from the round peeling
strategy which most of the current fault attacks on GIFT rely on.

The ability to work in the random byte fault model makes ToFA an attractive proposition
and helps it in standing out of all contemporary attacks which exploit the more restricted
random nibble fault model. The exploitation of multi-round impossibility induced by the
truncated differentials and hierarchical exploitation of QR group structures showcases
full usage of all cipher properties of GIFT-64, GIFT-128 and BAKSHEESH. Moreover,
for BAKSHEESH we observe that two separate design deviations of BAKSHEESH from
GIFT-128 have an orthogonal effect on effectiveness of ToFA. In the design document of
BAKSHEESH, the designers claim no security against DFA and attribute it to the choice of
SBox that has 1-LS. However, in our analysis we find that it is the choice of the key-schedule
that serves as the most effective key-elimination filter in ToFA.

In the introduction, we highlight that DEFAULT [BBB+21] fits the description of a
GIFT-like cipher and could have been of a potential target of this current work. The
designers of DEFAULT claimed that it is fault resistant by-design owing to the linear
structures in the SBox. However, there have been a couple of interesting differential
faults attacks [NDE22, JKP24] on DEFAULT which both exploit the LS in two different
settings. In [NDE22], authors leverage multi-round linear sub-key bit-relations arising
out of the LS using random nibble faults induced in third-last round of encryption. On
the other hand [JKP24] exploits 5-round deterministic trails arising due to random but
known bit faults induced during encryption. Our research reveals that LS SBox approach
resists key-space reduction strategy introduced in this work provided that we are not
able to exploit the sub-key relations. This is the reason that our attack is successful on
BAKSHEESH (sub-keys related by one circular shift) but struggles on DEFAULT (sub-keys
repeat after every 4-rounds). One workaround could be combing our strategy with the LS
property of the SBox. However, we believe that this would entail a significant effort and
can be taken up as an independent work.

Kundu et al. 27

8 Conclusion
This work introduces and practically verifies ToFA a fresh attempt at applying the idea of
truncated impossible differentials to mount fault attacks on the micro-controller implemen-
tations of the popular lightweight block cipher GIFT and its recent successor BAKSHEESH
using the widely used random byte fault model. This is the first FA on GIFT that recovers
the key-space to practical limits (to the level of unique key-recovery) without peeling the
cipher and is practically verified. So faults need to be induced at a fixed round only. Even
in terms of fault penetration, ToFA outperforms all contemporary FA on GIFT variants.
All this is achieved based on multiple observations due to truncated differential patterns
augmented by QR group structures.

The observations translate to fault invariants which can be leveraged across multiple
rounds for key-elimination. ToFA on GIFT-128 retrieves the unique master-key with only
three random byte faults. On GIFT-64, ToFA gives the maximum theoretically possible
reduction of 232 with 22 random byte faults. This work also reports the first FA on the
block cipher BAKSHEESH and recovers the unique key using four faults. Overall, ToFA
constitutes the best FA on BAKSHEESH and GIFT, uses the widely used random byte
fault model while giving new insights into FA vulnerability assessment of bit-oriented SPN
block ciphers that leverages all facets of their design.

Acknowledgement

Shibam Ghosh was supported by the Israeli Science Foundation through grants No.
880/18 and 3380/19. Aikata was supported by the State Government of Styria, Austria -
Department Zukunftsfonds Steiermark. Dhiman Saha was supported by the R&D in IT
Division, Ministry of Electronics and Information Technology (MeitY), Government of
India through sanction No. 4(4)/2022-ITEA dated 7th December 2023.

References
[AKS20] Aikata, Banashri Karmakar, and Dhiman Saha. PRINCE under differential

fault attack: Now in 3D. In Chip-Hong Chang, Ulrich Rührmair, Stefan Katzen-
beisser, and Patrick Schaumont, editors, Proceedings of the 4th ACM Workshop
on Attacks and Solutions in Hardware Security Workshop, ASHES@CCS 2020,
pages 81–91. ACM, 2020.

[BBB+21] Anubhab Baksi, Shivam Bhasin, Jakub Breier, Mustafa Khairallah, Thomas
Peyrin, Sumanta Sarkar, and Siang Meng Sim. DEFAULT: cipher level resis-
tance against differential fault attack. In Mehdi Tibouchi and Huaxiong Wang,
editors, Advances in Cryptology - ASIACRYPT 2021 - 27th International
Conference on the Theory and Application of Cryptology and Information
Security, volume 13091 of Lecture Notes in Computer Science, pages 124–156.
Springer, 2021.

[BBC+23] Anubhab Baksi, Jakub Breier, Anupam Chattopadhyay, Tomas Gerlich, Syl-
vain Guilley, Naina Gupta, Kai Hu, Takanori Isobe, Arpan Jati, Petr Jedlicka,
Hyunjun Kim, Fukang Liu, Zdenek Martinasek, Kosei Sakamoto, Hwajeong
Seo, Rentaro Shiba, and Ritu Ranjan Shrivastwa. BAKSHEESH: similar yet
different from GIFT. IACR Cryptol. ePrint Arch., page 750, 2023.

[BCI+20] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu,
Mridul Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo.
GIFT-COFB. IACR Cryptol. ePrint Arch., page 738, 2020.

28 ToFA: Fault Analysis of GIFT and GIFT-like Ciphers

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Walter
Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, International
Conference on the Theory and Application of Cryptographic Techniques, volume
1233 of Lecture Notes in Computer Science, pages 37–51. Springer, 1997.

[BDL01] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
eliminating errors in cryptographic computations. J. Cryptol., 14(2):101–119,
2001.

[BK06] Johannes Blömer and Volker Krummel. Fault based collision attacks on AES.
In Luca Breveglieri, Israel Koren, David Naccache, and Jean-Pierre Seifert,
editors, Fault Diagnosis and Tolerance in Cryptography, Third International
Workshop, FDTC 2006, volume 4236 of Lecture Notes in Computer Science,
pages 106–120. Springer, 2006.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, volume 4727 of Lecture Notes in Computer
Science, pages 450–466. Springer, 2007.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present - towards reaching
the limit of lightweight encryption. In CHES, volume 10529 of Lecture Notes
in Computer Science, pages 321–345. Springer, 2017.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Burton S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO
’97, 17th Annual International Cryptology Conference, volume 1294 of Lecture
Notes in Computer Science, pages 513–525. Springer, 1997.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. Statistical ineffective fault attacks on masked
AES with fault countermeasures. In Thomas Peyrin and Steven D. Galbraith,
editors, Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information
Security, volume 11273 of Lecture Notes in Computer Science, pages 315–342.
Springer, 2018.

[DFL11] Patrick Derbez, Pierre-Alain Fouque, and Delphine Leresteux. Meet-in-the-
middle and impossible differential fault analysis on AES. In Bart Preneel and
Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems -
CHES 2011 - 13th International Workshop, volume 6917 of Lecture Notes in
Computer Science, pages 274–291. Springer, 2011.

[DP20] Patrick Derbez and Léo Perrin. Meet-in-the-middle attacks and structural
analysis of round-reduced PRINCE. J. Cryptol., 33(3):1184–1215, 2020.

[FJLT13] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on AES with faulty ciphertexts only. In Wieland Fischer and Jörn-
Marc Schmidt, editors, 2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography, pages 108–118. IEEE Computer Society, 2013.

Kundu et al. 29

[GSSC15] Shamit Ghosh, Dhiman Saha, Abhrajit Sengupta, and Dipanwita Roy Chowd-
hury. Preventing fault attacks using fault randomization with a case study on
AES. In Ernest Foo and Douglas Stebila, editors, Information Security and
Privacy - 20th Australasian Conference, ACISP 2015, volume 9144 of Lecture
Notes in Computer Science, pages 343–355. Springer, 2015.

[JKP24] Amit Jana, Anup Kumar Kundu, and Goutam Paul. More vulnerabilities
of linear structure sbox-based ciphers reveal their inability to resist DFA.
In Kai-Min Chung and Yu Sasaki, editors, Advances in Cryptology - ASI-
ACRYPT 2024 - 30th International Conference on the Theory and Application
of Cryptology and Information Security, Proceedings, Part VIII, volume 15491
of Lecture Notes in Computer Science, pages 168–203. Springer, 2024.

[KAKS22] Anup Kumar Kundu, Aikata, Banashri Karmakar, and Dhiman Saha. Fault
analysis of the PRINCE family of lightweight ciphers. J. Cryptogr. Eng.,
12(4):475–494, 2022.

[LCMW21] Haoxiang Luo, Weijian Chen, Xinyue Ming, and Yifan Wu. General differential
fault attack on PRESENT and GIFT cipher with nibble. IEEE Access, 9:37697–
37706, 2021.

[LGH22] Shuai Liu, Jie Guan, and Bin Hu. Fault attacks on authenticated encryption
modes for GIFT. IET Inf. Secur., 16(1):51–63, 2022.

[MFJ21] XIE Min, TIAN Feng, and LI Jiaqi. Differential fault attack on GIFT. Chinese
Journal of Electronics, 30(4):669–675, 2021.

[NDE22] Marcel Nageler, Christoph Dobraunig, and Maria Eichlseder. Information-
combining differential fault attacks on DEFAULT. In Orr Dunkelman and
Stefan Dziembowski, editors, Advances in Cryptology - EUROCRYPT 2022
- 41st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Proceedings, Part III, volume 13277 of Lecture
Notes in Computer Science, pages 168–191. Springer, 2022.

[SC16] Dhiman Saha and Dipanwita Roy Chowdhury. Encounter: On breaking the
nonce barrier in differential fault analysis with a case-study on PAEQ. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Pro-
ceedings, volume 9813 of Lecture Notes in Computer Science, pages 581–601.
Springer, 2016.

[SSL15] Kazuo Sakiyama, Yu Sasaki, and Yang Li. Security of Block Ciphers - From
Algorithm Design to Hardware Implementation. Wiley, 2015.

[Tec17] N.I.N.I.S. Technology. Report on Lightweight Cryptography: NiSTIR 8114.
CreateSpace Independent Publishing Platform, 2017.

[VZB+22] Navid Vafaei, Sara Zarei, Nasour Bagheri, Maria Eichlseder, Robert Primas,
and Hadi Soleimany. Statistical effective fault attacks: The other side of the
coin. IEEE Trans. Inf. Forensics Secur., 17:1855–1867, 2022.

[ZLZ+18] Fan Zhang, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi Ding,
Samiya Qureshi, and Kui Ren. Persistent fault analysis on block ciphers.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):150–172, 2018.

30 ToFA: Fault Analysis of GIFT and GIFT-like Ciphers

A Predecessor Sets for Truncated Differentials of GIFT-128
and BAKSHEESH

P∆1
128 =

Type-I︷ ︸︸ ︷
[0000 000b 0000 000d 0000 000e 0000 0007]
[0000 0007 0000 000b 0000 000d 0000 000e]
[0000 00b0 0000 00d0 0000 00e0 0000 0070]
[0000 0070 0000 00b0 0000 00d0 0000 00e0]
[0000 0b00 0000 0d00 0000 0e00 0000 0700]
[0000 0700 0000 0b00 0000 0d00 0000 0e00]
[0000 b000 0000 d000 0000 e000 0000 7000]
[0000 7000 0000 b000 0000 d000 0000 e000]
[000b 0000 000d 0000 000e 0000 0007 0000]
[0007 0000 000b 0000 000d 0000 000e 0000]
[00b0 0000 00d0 0000 00e0 0000 0070 0000]
[0070 0000 00b0 0000 00d0 0000 00e0 0000]
[0b00 0000 0d00 0000 0e00 0000 0700 0000]
[0700 0000 0b00 0000 0d00 0000 0e00 0000]
[b000 0000 d000 0000 e000 0000 7000 0000]
[7000 0000 b000 0000 d000 0000 e000 0000]

Type-II︷ ︸︸ ︷
[0000 0086 0000 0043 0000 0029 0000 001c]
[0000 0094 0000 00c2 0000 0061 0000 0038]
[0000 0860 0000 0430 0000 0290 0000 01c0]
[0000 0940 0000 0c20 0000 0610 0000 0380]
[0000 8600 0000 4300 0000 2900 0000 1c00]
[0000 9400 0000 c200 0000 6100 0000 3800]
[0086 0000 0043 0000 0029 0000 001c 0000]
[0094 0000 00c2 0000 0061 0000 0038 0000]
[0860 0000 0430 0000 0290 0000 01c0 0000]
[0940 0000 0c20 0000 0610 0000 0380 0000]
[8600 0000 4300 0000 2900 0000 1c00 0000]
[9400 0000 c200 0000 6100 0000 3800 0000]

P∆2
128 =

Type-I︷ ︸︸ ︷

[0808 0808 0404 0404 0202 0202 0101 0101]
[0101 0101 0808 0808 0404 0404 0202 0202]
[0202 0202 0101 0101 0808 0808 0404 0404]
[0404 0404 0202 0202 0101 0101 0808 0808]
[8080 8080 4040 4040 2020 2020 1010 1010]
[1010 1010 8080 8080 4040 4040 2020 2020]
[2020 2020 1010 1010 8080 8080 4040 4040]
[4040 4040 2020 2020 1010 1010 8080 8080]

Type-II︷ ︸︸ ︷
[0909 0909 0c0c 0c0c 0606 0606 0303 0303]
[0303 0303 0909 0909 0c0c 0c0c 0606 0606]
[0606 0606 0303 0303 0909 0909 0c0c 0c0c]
[9090 9090 c0c0 c0c0 6060 6060 3030 3030]
[3030 3030 9090 9090 c0c0 c0c0 6060 6060]
[6060 6060 3030 3030 9090 9090 c0c0 c0c0]

B Guide to Reproduce the ChipWhisperer Experiments
This guide is with reference to the following repository5. The following two commands
are sufficient to build the necessary dependencies, induce faults, and perform final key
recovery.

$ python setup.py build_ext --inplace
$ python3 attack .py

ToolChain: To mount the attack on the device, we use the ChipWhisperer open-source
toolchain. Please ensure this toolchain is set up before proceeding with the attack. The
folder Setup_Scripts and the TOFA folder pertain to this toolchain’s requirements. The
contents of the TOFA folder build the necessary .hex files required for programming the
microcontroller. To do this, run a make command in the TOFA folder.

Fault Injection: The script used to induce the fault is TOFA_FA.ipynb. This Jupyter
Notebook runs the GIFT-128 encryption and injects faults via clock glitching. It can be
opened and run to see how this is done. Note that the script will only run in the presence
of the hardware (CW1173).

Key-Recovery: The Jupyter Notebook- TOFA_FA.ipynb is called via Python script-
attack.py. This Python file collects the faulty and correct ciphertexts and returns the
number of keys recovered. In the parameters set, a unique key is obtained. The parameters
within this file responsible for the number of faults num_faults can be modified to see
how the key recovery works for fewer faults.

5https://github.com/ShibamCrS/Tofa/tree/main/gift128

https://github.com/ShibamCrS/Tofa/tree/main/gift128

	Introduction
	Our Contribution

	Preliminaries and Background
	Notations
	[] DBLP:conf/ches/BanikPPSST17
	BAKSHEESHcryptoeprint:2023/750

	ToFA: Impossible Differential Induced Fault Analysis
	Truncated Differential Induced Fault Invariants

	ToFA on GIFT-128 and BAKSHEESH
	Master-Key Recovery GIFT-128
	Master-Key Recovery BAKSHEESH

	ToFA on GIFT-64
	Implementing ToFA: Attack Realization
	Simulated Key-Recovery for Validation
	Results on GIFT-128
	Fault Profiling of the ATXmega128D4-AU Micro-controller
	Software Implementation of The Key-recovery

	Discussion
	Conclusion
	Predecessor Sets for Truncated Differentials of GIFT-128 and BAKSHEESH
	Guide to Reproduce the ChipWhisperer Experiments

