
LightCROSS: A Secure and Memory Optimized
Post-Quantum Digital Signature CROSS

-Authors’ Version-

Harry Hart∗1, Puja Mondal∗2, Suparna Kundu3, Supriya Adhikary2,
Angshuman Karmakar2 and Chaoyun Li1

1 University of Surrey, UK
{h.hart,c.li}@surrey.ac.uk

2 Department of Computer Science and Engineering, IIT Kanpur, India
{pujamondal,adhikarys,angshuman}@cse.iitk.ac.in

3 COSIC, KU Leuven, Kasteelpark Arenberg 10, Bus 2452, B-3001 Leuven-Heverlee, Belgium
suparna.kundu@esat.kuleuven.be

Abstract. CROSS is a code-based post-quantum digital signature scheme based on
a zero-knowledge (ZK) framework. It is a second-round candidate of the National
Institute of Standards and Technology’s additional call for standardizing post-quantum
digital signatures. The memory footprint of this scheme is prohibitively large,
especially for small embedded devices. In this work, we propose various techniques
to reduce the memory footprint of the key generation, signature generation, and
verification by as much as 50%, 52%, and 74%, respectively, on an ARM Cortex-M4
device. Moreover, our memory-optimized implementations adapt the countermeasure
against the recently proposed (ASIACRYPT-24) fault attacks against the ZK-based
signature schemes.
Keywords: Post-quantum cryptography · Digital signatures · Code-based digital
signatures · CROSS · Software implementation · ARM Cortex-M4 · Countermea-
sure

1 Introduction
In August 2022, the National Institute of Standards and Technology (NIST) released
its first set of standards (FIPS 203-5) [NIS24a, NIS24b, NIS24c] for post-quantum (PQ)
key-encapsulation mechanisms and digital signature (DS) schemes. One observation that
immediately stands out is that these standard schemes are heavily dependent on hard
lattice problems. Therefore, one major cryptanalysis breakthrough may jeopardize the
whole migration plan from classical to PQC. Further, the current standard DS schemes
i.e. Dilithium [DLL+17], Falcon [FHK+20], and SPHIINCS+ [BHK+19] have very large
signatures. This is very problematic for many real-world scenarios, e.g. chain-of-trust-based
authentication mechanisms. NIST has also acknowledged these issues and initiated another
standardization procedure for additional post-quantum DS schemes [NIS23]. It aims to
diversify the portfolio of digital signature schemes and to develop digital signatures with
small signature sizes and fast verification.

CROSS [BBB+24] is a promising new code-based scheme currently in the second round
of the NIST’s additional DS standardization procedure [NIS24d]. It is based on the hard
restricted syndrome decoding problem (RSDP) [BBC+21] in an interactive zero-knowledge

∗Starred authors contributed equally to this research.

mailto:{h.hart,c.li}@surrey.ac.uk
mailto:{pujamondal,adhikarys,angshuman}@cse.iitk.ac.in
mailto:suparna.kundu@esat.kuleuven.be

2 LightCROSS: A Secure and Memory Optimized PQ Digital Signature CROSS

framework. One major drawback of this scheme is the huge memory footprint. It is
prohibitively large for small microcontrollers, and some of its parameters do not even fit on
these platforms. Therefore, reducing the memory footprint is a crucial step for widespread
real-world deployment. It is also essential for further progress in the standardization
procedure, as evident from the previous NIST standardization procedures. Therefore,
addressing this issue is our major focus in this work. In particular, our contributions are
as follows.

• Memory optimized key generation: We have analyzed the key generation routine
and observed that two big matrices (V and W) are the most significant contributors
to the large memory footprint consuming almost 2118 − 15150 bytes∗ of memory
to generate a vector η. We have shown that storing the full matrices at a time is
unnecessary. Instead, η can be generated on the fly. With this modification, we have
reduced memory requirement 43%− 50% on an ARM Cortex-M4 microcontroller.

• Memory efficient signature generation and verification: In several applications
of DS, the key generation is usually performed once and, if required, can be done
outside the device. On the other hand, signature generation and verification are
performed more frequently and must be performed on-device. Therefore, memory-
efficient implementations of these two procedures are even more important. First,
in CROSS, these procedures use a large Merkle tree of size 2t− 1 (9760− 127424
bytes) and an array of commitments (4896− 63744 bytes) to generate the Merkle
root and MerkleProof consuming significant memory. We show a memory-efficient
technique of Merkle root generation without storing the commitments. Second, in
some cases, the input of HASH is stored in a big array before applying the HASH (e.g.,
the digests d1 and db generation). We have exploited the sponge construction of
SHAKE [KjCP16]. We have streamlined the input generation and xof_shake_update
function to reduce the memory requirement of the input array to a fraction of the
original requirement. Third, we removed many redundant memory usages through a
thorough execution flow analysis.

• Countermeasure against ZKFault: Recently, a fault attack ZKFault [MAKK24],
has been shown on zero-knowledge based signature schemes. The authors have shown
that their attack can recover the full signing key of CROSS from a single faulted
signature. We have observed that this attack is also valid for the latest version
of CROSS-v1.2. The paper [MAKK24] also proposed a secure implementation of
LESS [BMPS20] against the fault attack. In this work, we have adapted their
countermeasure technique for CROSS-v1.2. Further, we have also integrated our
memory reduction techniques into this countermeasure. Finally, our implementations
of the signature generation and verification algorithm reduce the memory consumption
40%− 52% and 52%− 74% compared to the original implementations with minuscule
performance overhead even after the addition of the countermeasure.

We want to note that all our implementations† are constant-time, and we do not introduce
any secret dependent branches or any other new side-channel vulnerability. Also, our
implementations are fully compatible with the original implementation of CROSS.

2 CROSS and its memory footprint
In this section, we briefly describe the CROSS digital signature. We also describe the
primary factors responsible for its large memory requirements. We begin with the notions

∗Since the CROSS scheme has several parameter sets, we present the smallest and largest values of
the corresponding parameter sets. We follow this notation throughout the text.

†Our code is available at https://github.com/s-adhikary/pqm4-CROSS

https://github.com/s-adhikary/pqm4-CROSS

Harry Hart, Puja Mondal∗, Suparna Kundu, Supriya Adhikary, Angshuman Karmakar
and Chaoyun Li 3

used in the text. Fp and F∗
p represent the finite field of prime order p and the corresponding

multiplicative group. The set of all size k vectors over the field Fp is denoted by Fk
p and

all k × n matrices over the field Fp is indicated by Fk×n
p . We denote elements of Fp or

scalars with lowercase letters, elements of Fk
p and Fk×n

p with bold lowercase letters and
bold uppercase letters. Im and Im denote the set {0, 1, . . . , m− 1} and identity matrix
of dimension m, respectively. We denote a[i] and A[i, j] to represent the i-th element
of the vector a and (i, j)-th element of the matrix A respectively. Let J ⊂ In be an
ordered set, then the notation a(J) and A(∗, J) (corresponding A(J , ∗)) represents the
subvector of a and submatrix of A formed by selecting the entries of the vector a and
columns (rows) of A with indices specified in the set J .

2.1 CROSS signature scheme
Let g be a generator of the multiplicative group F∗

p of order z. Given the matrix H ∈
Fn×(n−k)

p and s ∈ F(n−k)
p , the RSDP problem is to decide if there exists a vector e ∈ En(={

gi : i ∈ Iz

}n) such that it satisfies s = eH . CROSS has another compact variant called
RSDPG [BBP+24]. Here, the problem is to decide if there exists a vector e ∈ G such that
the equality s = eH holds where G is a subgroup of En with cardinality zm < zn. For
each of these two variants, CROSS provides three primary parameters satisfying three
NIST security levels of 1, 3, and 5. For each of these primary parameters, CROSS further
has three optimization corners, namely (i) fast, (ii) balanced, and (iii) small. The fast
version aims to attain speed, the small version targets to reduce the signature size, and
the balanced version strikes a trade-off between them.

In this section, we discuss the key generation and signature generation algorithms and
explain some portions of these algorithms that are required for our work. However, the
verification algorithm is quite similar to the signature generation algorithm. Due to the
page restriction, we do not describe the verification algorithm in our paper. For more
details, we refer to the CROSS documentation [BBB+24].

2.1.1 Key generation algorithm (Alg. 1)

The parity check matrix in CROSS_KeyGen() is H =
[

V
In−k

]
, where the matrix V can

be generated from the Seedpk using CSPRNG function. On the other hand, the restricted
vector e is generated from Seede using CSPRNG. However, for the RSDPG variant, a vector
ζ and a matrix G are generated from Seede and Seedpk respectively. Then the matrix
MG = [W |Im] and the vector ζ are used to compute the restricted vector e. The Seedpk
and s = eH is set as public key and Seedsk is our secret key.
Memory footprint of CROSS_KeyGen(): Here, we have observed that the matrices V of
order k× (n− k) and W of order m× (n−m) occupy 1368− 15150 bytes and 750− 2784
bytes of memory, respectively. Therefore, for RSDP variant 1368− 15150 bytes (for matrix
V) and for RSDPG, 2118 − 15150 bytes (for V and W) are required in CROSS_KenGen()
Alg. 1.

This algorithm mostly uses CSPRNG function. The above two matrices are generated
using CSPRNG function, which will take seed as input and return a random element from
the domain D as outputs. Fig. 1 shows the procedure of generating the matrices V and
W for both RSDP and RSDPG. The algorithm initialized_csprng first initializes a
state. Then, csprng_randombytes generates a buffer say buf of length r from the state,
where r is a fixed value depending on the domain D and the parameter sets. Next, the
CSPRNG_mat function generates each element of the domain using the buffer. All of these
functions are explained in the documentation of CROSS [BBB+24].

4 LightCROSS: A Secure and Memory Optimized PQ Digital Signature CROSS

Figure 1: Generation of V and W from the seed seedpk

Algorithm 1 CROSS_KeyGen() [BBB+24]
Input: Security parameter λ
Output: Public key: (Seedpk, s), Private key: Seedsk

1: Seedsk
$←− {0, 1}λ

2: (Seede, Seedpk)←−CSPRNG
(

Seedsk, {0, 1}λ × {0, 1}λ
)

3: if RSDP then
4: V ←−CSPRNG

(
Seedpk, Fk×(n−k)

p

)
5: η←− CSPRNG(Seede, Fn

z)
6: if RSDPG then
7: (V , W)←− CSPRNG

(
Seedpk, Fk×(n−k)

p × Fm×(n−m)
z

)
8: MG ←− [W | Im]
9: ζ←− CSPRNG(Seede, Fm

z)
10: η ←− ζMG

11: e(In) ←− gη(In)

12: H ←−
[

V
In−k

]
13: s←− eH
14: return Public key: (Seedpk, s), Private key: Seedsk

2.1.2 Signature generation algorithm (Alg. 2)

The signature generation algorithm first constructs t many ephemeral seeds Seed[0], . . . ,
Seed[t− 1] from the master seed MSeed and a random salt Salt. The seeds are generated
in different ways depending on the parameter sets of the CROSS signature. For “fast"
parameter sets of CROSS, the method does not use the Goldreich-Goldwasser-Micali
(GGM) [GGM86] tree construction or Merkle tree construction. In this case, using MSeed ∈
{0, 1}λ, Salt ∈ {0, 1}λ as input seeds we generate all the Seeds using CSPRNG function.
The remaining parameter sets of CROSS construct a GGM tree called SeedTree to generate
t many random ephemeral seeds. These seeds and the Salt are utilized to compute uuu′

and η′, which are also used to generate two sets of commitments cmt0[0], . . . , cmt0[t− 1]
(5216 − 63744 bytes) and cmt1[0], . . . , cmt1[t − 1] (5216 − 63744 bytes) utilizing the
SeedTree, and has a good contribution in memory-footprint.

After the SeedTree generation, the Merkle tree T is constructed with commitments
cmt1[i], i ∈ It. Then Hash is applied on the commitments cmt0 and cmt1. The output is
stored in d01 and sent as part of the signature. Next, the first challenge beta is generated
using the message and commitments. After that, η′, u′ and beta are used to generate

Harry Hart, Puja Mondal∗, Suparna Kundu, Supriya Adhikary, Angshuman Karmakar
and Chaoyun Li 5

y, which is utilized to construct the second challenge b = (b[0], . . . , b[t − 1]). Here,
b[i] ∈ {0, 1}, ∀i ∈ It and let us assume J = {i ∈ It : b[i] = 1}. Then, to ensure that
all the seed tree leaves Seed[i], i ∈ J can be recomputed, SeedPath is calculated by
assembling intermediate seeds from GGM tree. Here, another complete binary tree x,
called ReferenceTree is generated from the digest b, which decides which seed node
will be published. Then, the intermediate seed SeedTree[c − missing_nodes[h′]] will
be published if all the leaf nodes corresponding to the subtree rooted as x[c] have to
be published. SeedPath is also added as part of the signature together with (yi, σi)
(or (yi, δi)), cmt1[i], i ∈ J . Lastly, for the remaining leaves of the seed tree i ̸∈ J ,
MerkleProofs is constructed with cmt0[i], i ̸∈ J and sent as part of the signature.
Memory footprint of CROSS_Sign(): In the signature generation algorithm, when hash
functions are computed, the hash inputs are large and are loaded into the main memory.
We have shown that we do not need to load the complete input for hash computation.
Rather, we can compute small portions of hash in part. Also, The variables in the signature
algorithm are allocated memory when computations are needed, but once the computations
are complete, the memory is not reclaimed, even if the data is no longer required for
subsequent processes. Finally, in the Merkle proof generation process, the cmt0 array is
copied to the leaf nodes of the Merkle tree. After the tree generation, we compute the
Merkle proof; thus, storing cmt0 array requires considerably large memory (5216− 63744
bytes). We have discussed our technique to avoid this extra memory consumption.

3 Our memory optimization of CROSS
This section describes our techniques to reduce the memory footprint of CROSS key
generation, signature generation, and verification algorithms.

3.1 Our memory optimization of CROSS key generation
As we described earlier, the method CSPRNG_mat generate each of the matrix elements of
the matrices V ∈ Fk×(n−k)

p , W ∈ Fm×(n−m)
z sequentially and stores it. The vectors η,

e(= gη) are also computed and stored. The public vector s is computed by multiplying
the stored matrix V and vector e. Similarly, for the RSDPG variant, the private vector ζ is
stored and multiplied with W . The results of these multiplications are as follows:

s[j] = e[k + j] +
k∑

i=0
e[i]V [i, j], for each 0 ≤ j ≤ n− k − 1 .

η[j] = ζ[m + j] +
m∑

i=0
ζ[i]W [i, j], where 0 ≤ j ≤ n−m− 1 .

Observe that, each entry V [i, j] and W [i, j] is required only once to generate the
vectors s and η respectively. Therefore, we compute ζ before the computation of W
and initialized each η[j] by ζ[m + j]. After that we generate (i, j)-th element of W say
w := W [i, j], we can update η[j] as η[j] ← η[j] + ζ[i] · w. Therefore, we do not need
to store the complete matrix W at all. The final vector η is still the multiplication of
matrix W and vector ζ. Similarly, multiplication of V and e is possible without storing
V . In Alg. 3, we have shown the matrix generation technique the authors of CROSS have
used. We have modified the method to directly compute multiplication at the time of
matrix generation. We have struck through the parts that we have omitted in our updated
method, and the parts that we have included instead are coloured blue. As we discussed,
to merge the generation process of matrix V and the computation of s, only modification
of the function CSPRNG_mat is not enough as we need to initialize s to some values of η.

6 LightCROSS: A Secure and Memory Optimized PQ Digital Signature CROSS

Algorithm 2 CROSS_Sign(Msg, Seedsk)
Input: Message: Msg and private key: Seedsk.
Output: Signature: signature

1: if RSDP then (η, H)←− ExpandPrivateSeed (Seedsk)
2: else (η, ζ, H, MG)←− ExpandPrivateSeed (Seedsk)
3: MSeed $←− {0, 1}λ

, Salt $←− {0, 1}2λ

4: if No_Tree then
5: (Seed[0], . . . , Seed[t− 1])←− ComputeRoundSeed (Mseed, Salt)
6: else
7: Seed_Tree←− SeedTreeGen(Mseed, Salt)
8: (Seed[0], . . . , Seed[t− 1])←− SeedTreeLeaves (Seed_Tree)
9: for i = 0 to t− 1 do

10: (Seedu′ , Seede′)←− CSPRNG
(

Seed[i], {0, 1}λ × {0, 1}λ
)

11: if RSDP then η′
i, u′

i←− CSPRNG(Seed[i]||Salt||i + c, Fn
z × Fn

p)
12: else
13: ζ′, u′

i←− CSPRNG(Seed[i]||Salt||i + c, Fm
z × Fn

p)
14: δi ←− ζ − ζ′, η′

i ←− ζ′MG

15: σi ←− η − η′
i

16: v(In) = gσi(In)

17: u = v ∗ u′
i // ∗ represents component-wise product

18: s̃←− uH
19: if RSDP then cmt0[i]←− Hash (s̃||σi||Salt||i + c + dsc)
20: else cmt0[i]←− Hash (s̃||δi||Salt||i + c + dsc)
21: cmt1[i]←− Hash (Seed[i]||Salt||i + c + dsc)
22: d0, Merkle_Tree←− MerkleRoot(cmt0[0], . . . , cmt0[t− 1])
23: d1 ←− Hash(cmt1[0]|| . . . ||cmt1[t− 1])
24: d01 ←− Hash(d0||d1), dm ←− Hash(Msg)
25: dβ ←− Hash(dm||d01||Salt)
26: beta←− CSPRNG

(
dβ , (F∗

p)t
)

27: for i = 0 to t− 1 do
28: e′

(In) ←− gηi′(In)

29: yi ←− u′
i + beta[i]e′

i

30: db ←− Hash(y0|| . . . ||yt−1||dβ)
31: b←− CSPRNG (db, Bt

w)
32: if No_Tree then
33: MerkleProofs←− MerkleProof(cmt0[0], . . . , cmt0[t− 1], b)
34: SeedPath←− SeedTreePaths(Seed, b)
35: else
36: MerkleProofs←− MerkleProof(Merkle_Tree, b)
37: SeedPath←− SeedTreePaths(Seed_Tree, b)
38: j ←− 0
39: for i = 0 to t− 1 do
40: if b[i] = 0 then
41: if RSDP then rsp0[j]←− (yi, σi)
42: else rsp0[j]←− (yi, δi)
43: rsp1[j]←− cmt1[i]
44: j ←− j + 1
45: return signature←− Salt||d01||db||MerkleProofs||SeedPath||rsp0||rsp1

Harry Hart, Puja Mondal∗, Suparna Kundu, Supriya Adhikary, Angshuman Karmakar
and Chaoyun Li 7

Algorithm 3 CSPRNG_mat_update(buf, D(= Fk×n
q), a)

Input: A buffer buf, a domain D = Fk×n
q of the matrix that is generated from the buffer,

a vector a.
Output: The matrix A is generated from buf The resultant multiplication b = aA

1: mask = 2log q − 1
2: placed = 0, i = 8
3: j = 64, i′ = 0, j′ = 0
4: s_buf = buf[0]
5: while placed < kn do
6: if j ≤ 32 then
7: r_buf = buf[i]
8: i = i + 4
9: s_buf = (s_buf ∨ r_buf)× 2j

10: j = j + 32
11: v[placed, =]s_buf ∧ mask ▷ This value is equivalent to A[i′, j′]
12: if v[placed] < q (s_buf ∧ mask) < q then
13: s[j′] = s[j′] + (η[i′]× (s_buf ∧ mask))
14: j′ = j′ + 1
15: if j′ = n− k then j′ = 0, i′ = i′ + 1
16: placed = placed + 1
17: s_buf = s_buf/2log q

18: j = j − log q
19: else
20: s_buf = s_buf/2, j = j − 1

We need to generate the vector s before the generation of V . This step will not hamper
the security, as the generation of η and V are independent of each other. Similarly, we
also need to re-organize the part for the RSDPG variant. So, we have modified the steps of
CROSS_KeyGen in Alg. 1 and provided the modified version as Updated_CROSS_KeyGen in
Alg. 4.

3.2 Optimizing signature generation and verification
This section explains our techniques for memory-efficient signature generation and verifica-
tion algorithms. Although this work explains the strategy for memory optimization of the
signature generation procedure, we have used similar techniques in the verification.

3.2.1 Just-in-time strategy for HASH function

The latest CROSS (v1.2) [BBB+24] uses SHAKE as the HASH function. It takes an input
buffer (message), say buf, of arbitrary length, say len, and returns a fixed length string
as output. However, in the CROSS signature, the hash input is first stored separately
e.g., the arrays of cmt1 (5216− 63744 bytes) and y (16830− 242968 bytes). However, we
do not have to generate the complete hash input at once. Instead, we can only generate
the first few commitments and proceed with hash generation. After that, the next batch
of commitments is generated and fed to the hash generation procedure. This process is
repeated until all commitments are passed.

SHAKE has a parameter r, called the rate of the hash. SHAKE takes an input message
buf of length len. Then, it divides the whole buffer into blocks of r bits and updates the
state. It works as follows:

8 LightCROSS: A Secure and Memory Optimized PQ Digital Signature CROSS

Algorithm 4 Updated_CROSS_KeyGen()
Input: None
Output: Public key: (Seedpk, s), Private key: Seedsk

1: Seedsk
$←− {0, 1}λ

2: (Seede, Seedpk)←−CSPRNG
(

Seedsk, {0, 1}λ × {0, 1}λ
)

3: if RSDP then
4: η←− CSPRNG(Seede, Fn

z)
5: state←− initialized_csprng(seedpk, len)
6: buffer←− csprng_randombytes(state, r)
7: if RSDPG then
8: ζ←− CSPRNG(Seede, Fm

z)
9: state←− initialized_csprng(seedpk, len)

10: buffer←− csprng_randombytes(state, r)
11: buffer1←− csprng_randombytes(state, r′)
12: η(In−m) = 0
13: η({n−m,··· ,n−1}) = ζ(Im)
14: η ←− CSPRNG_mat_update(buffer1, Fn

z , ζ)
15: e(In) = gη(In)

16: s(In−k) = e({k,··· , n−1})

17: s←− CSPRNG_mat_update(buffer, Fk×(n−k)
p , η)

18: return Public key: (Seedpk, s), Private key: Seedsk

• First, state is initialized using the function xof_shake_init. After initialization,
the function xof_shake_update takes the buffer buf and the length of the buffer
len as inputs and modifies the state. For each message, this function takes the
block of r bits and XORs the first r bits of state with it. Then, it permutes the
updated state to introduce a pseudorandomness. We continue this process until the
remaining bits in the buffer are less than r bits, after which the remaining buffer is
only XOR-ed with the state.

• Next, the function xof_shake_final function finalize the value of state. Finally,
the function xof_shake_extract is used to extract the fixed length digest value
from the state state.

We have observed that the functions xof_shake_init, xof_shake_final and
xof_shake_extract take equal memory for different sizes of input buffers. Therefore,
we keep these functions unchanged. However, the function xof_shake_update takes the
complete buffer as input, but what can be observed is that only a small part of the buffer
is used at each step of the hash computation. Therefore, we do not need to generate the
complete buffer at once. We have used a technique that only generates a small amount of
the buffer and operates on it before generating the next part of the buffer. This approach
helps us reduce the memory required to store the complete buffer. We have explained the
technique in detail.

• Step 1: We initialize state.

• Step 2: We generate the first few commitments and store them until the total
length is ≥ r. A small part of the generated commitments may not fit in the buffer.
Therefore, we fix the buffer size to ℓ = r + digest length bits to store the excess bits.

• Step 3: If the loaded elements in buffer ℓ1 bits, and ℓ1 ≥ r in the previous step, then
we set our flag “Flag" to 0. If ℓ1 = 0 then we go to Step 6. Otherwise, we set “Flag"

Harry Hart, Puja Mondal∗, Suparna Kundu, Supriya Adhikary, Angshuman Karmakar
and Chaoyun Li 9

Figure 2: Our streamlined integration of Hash function with input array. Here F denotes
the KeccakF1600_StatePermute function.

to 1.

• Step 4: If the Flag is 0, then we use the method xof_shake_update and update the
state. Next put the stored excess part from the previous step at the beginning of
the buffer and generate the next few commitments to fill the rest of the buffer and
repeat the process from step 2.

• Step 5: If the Flag is 1 then the input of the buffer is XORed with the state.

• Step 6: After all the commitments are generated and went through the above process
we apply the final xof_shake_final and xof_shake_extract function to get the
digest.

Fig. 2 illustrates the method we have implemented. Our technique does not generate a
new hash digest but generates the same digest as the original method.

3.2.2 Efficient memory utilization through execution flow analysis

We performed a thorough analysis of the execution flow of the signature generation
algorithm to remove the redundant memory usage leading to a compact implementation.
Note that we need to keep a value stored in the memory only if it is going to be used
by any operation in subsequent steps. Otherwise, we can overwrite it with any different
value without affecting the correctness. We observed that in CROSS_Sign (Alg 2), the
value yi ∈ Fn

p is computed as yi = u′
i + beta[i]e′

i (line: 29 of Alg 2), where u′
i, e′

i ∈ Fn
p ,

beta[i] ∈ F∗
p, for each i ∈ In. Also, the value u′

i is not used after the above computation.
Therefore, we can overwrite u′

i with the value of yi and the resultant computation would
be the same. Therefore, replacing the variables yi by u′

i saves us 16830− 242968 bytes
(size tn log p) memory as y = (y0, · · · , yt−1) ∈ (Fn

p)t.
In Alg 2, for each i ∈ It the vector σi is computed as σi = η − ηi (line: 15). The

vector σi is used only to compute the commitment cmt0[i] for RSDP parameter set and
to compute v. Therefore, we do not need to store the vector σi once we have generated
vector v and commitment cmt0[i]. However, later we need to store the i-th value σi for the
output response component rsp0[i] for RSDP parameter set which satisfies b[i] = 0, where

10 LightCROSS: A Secure and Memory Optimized PQ Digital Signature CROSS

b is a fixed length random digest vector. For this reason, all the vectors σi, ∀i ∈ It are
stored. However, we observe that the cardinality of the set {i ∈ It : b[i] = 0} rather small
(usually in the range 22− 158). So, if we re-compute the σi corresponding to b[i] = 0, then
some computations needed to be add-on in lieu of storing the vector σ. This way, we can
save 16720− 242717 bytes of (size (t− 1)n log p) memory by incurring small computation
costs.

3.2.3 Re-formulate the Merkle root generation

We have found that two of the most memory-intensive functions in the CROSS_Sign
algorithm are Merkle_Root and Merkle_Proof generation. However, this Merkle tree
generation is not used for “fast" parameter sets of CROSS. Therefore, the techniques
described in this section do not contribute towards memory reduction for the “fast"
parameters.

The function Merkle_Root uses a Merkle_Tree and the commitment array cmt0 to
compute the root. Array cmt0 and the Merkle tree occupy t× digest length (5216− 63744
bytes) and (2t− 1)× digest length (10400− 127424 bytes) amount of memory, respectively.
Also, the function Merkle_Proof uses the cmt0 array and Merkle tree with another binary
flag tree with 2t− 1 nodes. These two functions (Merkle_Root and Merkle_Proof) use a
huge amount of memory. Therefore, the memory reduction in this part will significantly
reduce the scheme’s memory consumption.

The Merkle_Root function copies each element of the vector cmt0 one by one to the
leaf nodes of the Merkle_Tree in an intermediate step. This is the only location where
the stored commitment vector cmt0 is used. We can do the same work by copying the i-th
element cmt0[i] of cmt0 to the i-th leaf node of Merkle_tree just after cmt0[i] generation.
To maintain the execution flow of the algorithm, we have to re-organize the steps of the
Merkle_Root function. We first allocate the required memory for the Merkle tree and
then start generating the commitments cmt0. After each element of cmt0 is generated, it
is stored in the corresponding leaf node of the Merkle tree. This way, we do not need
to allocate memory to store cmt0. Finally, we can generate the Merkle root using the
remaining parts of the Merkle root generation after the storing process of the leaf nodes of
Merkle_Tree.

3.3 Countermeasure
The paper [MAKK24] proposed a countermeasure strategy for LESS against ZKFault and
claimed that it can be applied to the initial version of CROSS. However, recently, the
CROSS signature scheme’s algorithms and implementation have been modified significantly
in the updated version. Unfortunately, the prior fault attack is still possible on the new
version of CROSS. Therefore, we adapted the countermeasure strategy against the ZKFault
attack for the current version of CROSS, along with the memory-optimized implementation
in this work. We elaborate on this below.

3.3.1 ZKFault attack on CROSS

The binary vector b has been checked twice in Alg. 2 (lines: 34/37 depending on RSDP/RSDPG
variant and 40). First, whether b[i] = 1 is checked, and if satisfies then the information
of Seed[i] is published using the function SeedTreePaths. Second, whether b[i] = 0 is
checked, and if satisfies then rsp0 is computed (lines:41-42 in Alg. 2). Let us assume
that for some i-th location, b[i] is zero. Then, depending on the RSDP or RSDPG parameter
set, the pair (yi, σi) or (yi, δi) is stored in rsp0. The Seed[i] information will not be

Harry Hart, Puja Mondal∗, Suparna Kundu, Supriya Adhikary, Angshuman Karmakar
and Chaoyun Li 11

public in this case. However, if a fault is injected in SeedTreePaths algorithm and Seed[i]
information is retrieved then η′

i or ζ′ can be calculated from Seed[i]. These values help us
to find the secret vector η or ζ by computing η = σi + η′

i for RSDP version (or ζ = δi + ζ′

for RSDPG). The security of the scheme will be compromised as the attacker can generate
a valid signature of any message from recovered η or ζ.

In the CROSS version v1.2 [BBB+24], SeedTreePaths is defined for two cases: one
is for “fast" parameters, which does not use any tree construction, and the remaining
parameter sets that use SeedTree. We explain the attack for both cases as follows:
Attack on “fast" parameters: For each i ∈ It, this function SeedTreePaths checks
whether b[i] = 1. If b[i] = 1 for some i ∈ It, then it stores Seed[i] in SeedPath, which
is a component of signature. In this case, if we skip the checking condition for some i
which satisfies b[i] = 0, then we will get corresponding seed Seed[i]. The next checking
condition, we will get (yi, σ′

i). As mentioned earlier if we can get both Seed[i] and the
corresponding pair (yi, σ′

i) (or (yi, δ′
i)), then the ZKFault attack will work.

Attack on other parameters: These schemes use a technique that compactly store
the Seed’s in SeedPath. The function SeedTreePaths computes a complete binary tree
called as Reference_Tree x using another function compute_seeds_to_publish. The
leaf nodes of x are assigned by the digest vector b and the remaining nodes are computed
as x[i] =x[Left_child(i)] ∧x[Right_child(i)]. After the computation of x, for each
node x[i] (from top to bottom), it checks whether x[i] = 1 and x[Parent(i)] = 0. If
satisfies, then SeedPath stores Seed_Tree[i− missing_nodes[h′]], where h′ is the height
of the node x[i]. Let x[i] = b[i− l + 1] = 0 for some i-th leaf node of the of the tree x. But,
if we change the value of the node x[i] to 1 by injecting ZKFault, then the SeedTreePaths
stores the information of the seed Seed[i− l + 1] = Seed_Tree[i− missing_nodes[log t]]
in SeedPath. Therefore, the attack will work.

3.3.2 Countermeasure against ZKFault attack

Now, we describe the countermeasure strategy against ZKFault for the fast and other
parameter sets of CROSS.
Countermeasure for “fast" parameters: To counter this attack, we will check each
value of b once. For each i ∈ It, if we observe that b[i] = 0, then we will store (yi, σi) or
(yi, δi) in rsp0, otherwise we will store Seed[i] in SeedPath. Since for each digest value
b[i] either (yi, σi)(or corresponding (yi, δi)) or Seed[i] will be published; therefore the
attacker can not get both values at a time. Therefore, this attack can be prevented.
Countermeasure for other parameters: To prevent the ZKFault attack in this scenario,
we have to compute SeedPath and two responses by checking each digest element only once.
We can observe that the path of each leaf node of x toward the root will be of the form 1r0s

due to the computation process of the tree x. We check this path of each leaf node starting
from the leftmost node of x (x[l− 1]). Then, we must find the location of the last 1, which
contains the index c′ and the node height (h′) that satisfies the storage condition. Suppose
that there is no 1 in this path for node x[i]. In that case, the corresponding element of the
digest vector d[i− l + 1] is zero. We store the corresponding rsp0 and rsp1. Otherwise, we
will store Seed_Tree[c′ − missing_nodes[h′]] in SeedPath and ignore the next 2log t−h′

many nodes. The algorithm CROSS_Countermeasure_Others in Alg. 5 shows the exact
process of the rsp0, rsp1 and SeedPath generation.

Let a value of a node x[i] be changed from 0 to 1 by the ZKFault attack. Let x[i′′] be
the leftmost leaf node corresponding to the subtree rooted as x[i] and x[i′] be the highest
ancestor of node x[i] (with height h) having the value 1. Therefore, SeedPath must store
the seed SeedTree[i′−missing_nodes[h]] and the next 2log t−h leaf nodes will be skipped.
Therefore, we cannot get both the values (yi, σi) and Seed[i] from this fault preventing
the attack.

12 LightCROSS: A Secure and Memory Optimized PQ Digital Signature CROSS

Algorithm 5 CROSS_Countermeasure_Others()
Input: b: the digest vector, For RSDP parameter set, (yi, σi), and (yi, σi) otherwise for

all 0 ≤ i ≤ t− 1.
Output: Compute rsp0, rsp1, SeedPath

1: x←− compute_seeds_to_publish(b)
2: i = 0, j = 0, j′ = 0
3: while i < t do
4: c = l − 1 + i, c′ = c, h′ = log t
5: flag = 0, h = log t
6: while c ̸= 0 do
7: if x[c] = 1 then
8: c′ = c, h′ = h, flag = 1
9: c = Parent(c), h = h− 1

10: if flag = 0 then
11: if RSDP then rsp0[j]←− (yi, σi)
12: else rsp0[j]←− (yi, δi)
13: rsp1[j]←− cmt1[i]
14: j ←− j + 1, i←− i + 1
15: else
16: SeedPath[j′] = Seed_Tree[c′ − missing_nodes_before[h′]
17: j′ ←− j′ + 1, i←− i + 2log t−h′

18: Return rsp0, rsp1, SeedPath

4 Results

In this section, we present the results of our implementation of CROSS on the STM32
Nucleo-144 development board with STM32L4R5ZI MCU, featuring an ARM Cortex-M4
chip. For our implementation, we have used the popular post-quantum cryptographic
framework PQM4 [KRSS], along with the arm-none-eabi-gcc compiler, version 10.3.1.

We provide the improvement in memory consumption of CROSS RSDPG-1 after applying
the optimizations described in this paper in Table 1. S-1 represents the key generation
optimization steps described in Sec. 3.1 and the signature generation and verification
optimization steps illustrated in Sec. 3.2.1. S-2 and S-3 denote the optimization strategy for
the signature generation and verification explained in Sec. 3.2.2 and Sec. 3.2.3, respectively.
CM represents the countermeasure of ZKFault described in Sec. 3.3. We also provide
the implementation results of the original CROSS-v1.2, along with our improvements for
comparison. We observe that S-1 provides a 43% improvement in memory consumption
for key generation in all the versions. Signature generation improves memory consump-
tion by 27%/15%/16% for fast/balanced/small versions in S-1. Verification improves
memory consumption by 35%/10%/11% for fast/balanced/small versions in S-1. Signa-
ture generation and verification improves memory consumption by 37%/32%/33% and
56%/41%/44%, respectively, for fast/balanced/small versions in S-2 compared to S-1.
In S-3, signature generation and verification improve memory consumption by 9%/9% and
19%/21%, respectively, for balanced/small versions. Finally, after including the counter-
measure, the overall memory requirements of our CROSS implementation with respect to
the original one decreased by 43% for the key generation, 54%/47%/49% for signature
generation in fast/balanced/small versions, and 71%/57%/60% for the verification in
fast/balanced/small versions with negligible performance overhead.

In Table 2, we present the memory consumption of our secure implementations of all
the versions of CROSS for all the security categories and compare them with the original

Harry Hart, Puja Mondal∗, Suparna Kundu, Supriya Adhikary, Angshuman Karmakar
and Chaoyun Li 13

Table 1: Improvement steps of our implementations for CROSS RSDPG-1 on ARM Cortex-
M4. bal. denotes the balanced version.

SDPG Performance (kcycles) Memory (bytes)
I Opt. Steps KG Sign Verify KG Sign Verify

S-1 248 13,586 7,958 2,216 67,600 30,184
S-2 248 13,544 7,961 2,216 42,408 13,344
S-3 248 13,544 7,960 2,216 42,408 13,344

This
work

CM 248 13,548 7,960 2,216 42,408 13,344
v1.2[BBB+24]

f
a
s
t 182 12,710 7,958 3,920 93,096 46,772

S-1 248 25,021 14,972 2,216 123,792 64,996
S-2 248 25,107 14,954 2,216 83,784 38,252
S-3 248 25,069 14,954 2,216 76,568 31,120

This
work

CM 248 25,101 14,961 2,216 76,864 31,120
v1.2[BBB+24]

bal.

182 24,624 15,030 3,920 145,484 71,860
S-1 248 88,592 53,674 2,216 431,220 220,132
S-2 248 87,905 53,543 2,216 287,668 124,316
S-3 248 88,238 53,429 2,216 261,620 98,660

This
work

CM 248 88,297 53,409 2,216 263,356 98,668
v1.2[BBB+24]

s
m
a
l
l 182 86,124 53,618 3,920 512,284 247,092

Table 2: Comparison of memory consumption (in bytes) between our implementations
of different versions of CROSSv1.2 with the state-of-the-art implementation on ARM
Cortex-M4. KG denotes the key generation algorithm, bal. denotes the balanced version.

CROSS-v1.2 This work Reduction (%)Algo. &
sec. Opt. KG Sign Verify KG Sign Verify KG Sign Verify

bal. 7,984 203,436 92,524 4,232 99,368 33,480 46.99 51.16 63.81
RSDP 1 fast 7,984 120,416 58,296 4,232 59,136 15,120 46.99 50.89 74.06

small - - - 4,232 351,800 108,780 - - -
bal. 16,616 471,268 211,444 8,352 227,536 73,580 49.74 51.72 65.20

RSDP 3 fast 16,616 264,160 127,024 8,352 158,016 60,936 49.74 40.18 52.03
small - - - 8,352 514,128 157,796 - - -
bal. - - - 14,368 386,672 121,688 - - -

RSDP 5 fast - - - 14,368 227,864 51,640 - - -
small - - - - - - - - -
bal. 3,920 145,484 71,860 2,216 76,856 31,128 43.47 47.17 56.68

RSDPG 1 fast 3,920 80,664 43,568 2,216 42,400 13,344 43.47 47.44 69.37
small 3,920 512,284 247,092 2,216 263,152 98,660 43.47 48.63 60.07
bal. 7,336 223,656 110,604 3,936 118,320 48,336 46.35 47.10 56.30

RSDPG 3 fast 7,336 174,680 93,368 3,936 90,136 26,536 46.35 48.40 71.58
100,small - - - 3,936 416,968 155,284 - - -
bal. 11312 412636 203212 6296 215384 84352 44.34 47.80 58.49

RSDPG 5 fast 11,312 306,368 162,140 6,296 156,096 42,084 44.34 49.05 74.04
100,small - - - 6,296 577,256 214,100 - - -

CROSS-v1.2 [BBB+24] implementations on the PQM4 framework [KKPY24]. Thanks
to our memory optimizations, we could run all parameter sets except one on the board,
whereas only 11 out of 18 parameter sets of CROSS-v1.2 fit on the board. Finally, we show
43-50% decrease in memory requirement for the key generation, 40-52% for the signature
generation, and 52-74% for the verification compared to the original CROSS.

We have also applied our optimization method to CROSS v2 [BBB+25]. The results
are presented in Table 3.

14 LightCROSS: A Secure and Memory Optimized PQ Digital Signature CROSS

Table 3: Comparison of memory consumption (in bytes) between our implementations
of different versions of CROSSv2.0 with the state-of-the-art implementation on ARM
Cortex-M4. KG denotes the key generation algorithm, bal. denotes the balanced version.

CROSS-v2.0 This work Reduction (%)Algo. &
sec. Opt. KG Sign Verify KG Sign Verify KG Sign Verify

bal. 8,112 210,000 113,160 1,104 133,240 36,208 86.39 36.55 68.00
RSDP 1 fast 8,112 116,200 5,6704 1,104 74,392 14,760 86.39 35.98 73.97

small 8,112 421,384 223,816 1,104 264,608 67,008 86.39 37.21 70.06
bal. 16,840 463,376 248,672 1,240 292,616 77,920 92.64 36.85 68.67

RSDP 3 fast 16,840 257,968 124,624 1,240 163,504 29,952 92.64 36.62 75.97
small - - - 1,240 436,432 111,784 - - -
bal. - - - 1,384 520,504 135,944 - - -

RSDP 5 fast 29,624 463,008 222,424 1,384 292,256 51,496 95.33 36.88 76.85
small - - - - - - - - -
bal. 3,952 156,688 94,356 2,480 97,128 34,640 37.25 38.01 63.29

RSDPG 1 fast 3,952 77,736 42,152 2,480 48,472 12744 37.25 37.65 69.77
small 3,952 309,592 184,616 2,480 189,664 64,492 37.25 38.74 65.07
bal. 7,416 240,880 145,148 4,120 149,880 54,996 44.44 37.78 62.11

RSDPG 3 fast 7,416 170,416 91,304 4,120 105,272 25,896 44.44 38.23 71.64
small 7,416 453,160 270,904 4,120 278,520 96,568 44.44 38.54 64.35
bal. 11,752 423,232 255,752 6,536 260,512 92,984 44.38 38.45 63.64

RSDPG 5 fast 11752 300,704 159,864 6,536 183,028 41,808 44.38 39.13 73.85
100,small - - - 6,536 461,256 158,680 - - -

5 Conclusion
CROSS uses a novel zero-knowledge framework with a quantum hard problem to design
a PQ DS scheme. Compared to the other DS schemes such types of constructions are
relatively newer has not been explored much. Many practical aspects of such designs, such
as efficient and secure implementations, side-channel resistance, and countermeasures, etc.,
have not been investigated properly yet. Due to their structures, these schemes often have
huge memory requirements. We would like to note that our optimization methods are
not limited to CROSS and can be applied to other code-based schemes that use similar
ZK frameworks, like LESS [BMPS20]. It is another second-round candidate in the NIST
additional signature standardization competition. Due to its massive dynamic memory
allocation of the commitment array, the implementation of LESS can not run on the board‡.
We believe that our memory optimization process will help resolve LESS’s memory issues.
As memory-optimized implementations are essential for real-world applications, we believe
this work will benefit the overall advancement of PQC DS schemes.

Acknowledgements
This work was partially supported by Horizon 2020 ERC Advanced Grant (101020005
Belfort), CyberSecurity Research Flanders with reference number VR20192203, BE QCI:
Belgian-QCI (3E230370) (see beqci.eu), Intel Corporation, Secure Implementation of Post-
Quantum Cryptosystems (SECPQC) DST-India, BELSPO, Google India Research and
IIT Kanpur initiation grant. Puja Mondal is supported by C3iHub, IIT Kanpur. Supriya
Adhikary is supported by the Prime Minister’s Research Fellowship (PMRF), India.

References
[BBB+24] Marco Baldi, Alessandro Barenghi, Sebastian Bitzer, Patrick Karl, Felice

Manganiello, Alessio Pavoni, Gerardo Pelosi, Paolo Santini, Jonas Schupp,
‡https://github.com/mupq/pqm4/issues/278

Harry Hart, Puja Mondal∗, Suparna Kundu, Supriya Adhikary, Angshuman Karmakar
and Chaoyun Li 15

Freeman Slaughter, Antonia Wachter-Zeh, and Violetta Weger. CROSS: Codes
and Restricted Objects Signature Scheme - Specification Document, February
2024.

[BBB+25] Marco Baldi, Alessandro Barenghi, Sebastian Bitzer, Patrick Karl, Felice
Manganiello, Alessio Pavoni, Gerardo Pelosi, Paolo Santini, Jonas Schupp,
Freeman Slaughter, Antonia Wachter-Zeh, and Violetta Weger. CROSS: Codes
and Restricted Objects Signature Scheme - Specification Document, January
2025.

[BBC+21] Marco Baldi, Massimo Battaglioni, Franco Chiaraluce, Anna-Lena Horlemann-
Trautmann, Edoardo Persichetti, Paolo Santini, and Violetta Weger. A new
path to code-based signatures via identification schemes with restricted errors,
2021.

[BBP+24] Marco Baldi, Sebastian Bitzer, Alessio Pavoni, Paolo Santini, Antonia Wachter-
Zeh, and Violetta Weger. Zero knowledge protocols and signatures from the
restricted syndrome decoding problem. In Qiang Tang and Vanessa Teague,
editors, Public-Key Cryptography - PKC 2024 - 27th IACR International
Conference on Practice and Theory of Public-Key Cryptography, Sydney,
NSW, Australia, April 15-17, 2024, Proceedings, Part II, volume 14602 of
Lecture Notes in Computer Science, pages 243–274. Springer, 2024.

[BHK+19] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The SPHINCS+ Signature Frame-
work. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’19, page 2129–2146, New York, NY,
USA, 2019. Association for Computing Machinery.

[BMPS20] Jean-François Biasse, Giacomo Micheli, Edoardo Persichetti, and Paolo Santini.
LESS is More: Code-Based Signatures Without Syndromes. In Abderrahmane
Nitaj and Amr Youssef, editors, Progress in Cryptology - AFRICACRYPT
2020, pages 45–65, Cham, 2020. Springer International Publishing.

[DLL+17] Leo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehle. CRYSTALS – Dilithium: Digital Signatures
from Module Lattices. Cryptology ePrint Archive, Paper 2017/633, 2017.
https://eprint.iacr.org/2017/633.

[FHK+20] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon: Fast-Fourier Lattice-based Compact
Signatures over NTRU, 2020. https://falcon-sign.info/falcon.pdf.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, August 1986.

[KjCP16] John Kelsey, Shu jen Chang, and Ray Perlner. SHA-3 Derived Functions:
cSHAKE, KMAC, TupleHash and ParallelHash, 2016-12-22 00:12:00 2016.

[KKPY24] Matthias J. Kannwischer, Markus Krausz, Richard Petri, and Shang-Yi Yang.
pqm4: Benchmarking NIST additional post-quantum signature schemes on
microcontrollers. Cryptology ePrint Archive, Paper 2024/112, 2024.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://github.
com/mupq/pqm4.

https://eprint.iacr.org/2017/633
https://falcon-sign.info/falcon.pdf
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4

16 LightCROSS: A Secure and Memory Optimized PQ Digital Signature CROSS

[MAKK24] Puja Mondal, Supriya Adhikary, Suparna Kundu, and Angshuman Karmakar.
ZKFault: Fault attack analysis on zero-knowledge based post-quantum digital
signature schemes. In Advances in Cryptology - ASIACRYPT, 2024. just
accepted.

[NIS23] NIST. NIST Announces Additional Digital Signature Candidates for the PQC
Standardization Process. Online. Accessed 10th November, 2024, 2023.

[NIS24a] NIST. FIPS 203 Module-Lattice-Based Key-Encapsulation Mechanism Stan-
dard. Online. Accessed 10th November, 2024, 2024.

[NIS24b] NIST. FIPS 204 Module-Lattice-Based Digital Signature Standard. Online.
Accessed 10th November, 2024, 2024.

[NIS24c] NIST. FIPS 205 Stateless Hash-Based Digital Signature Standard. Online.
Accessed 10th November, 2024, 2024.

[NIS24d] NIST. PQC digital signature second round announcement. Online. Accessed
10th November, 2024, 2024.

	Introduction
	CROSS and its memory footprint
	CROSS signature scheme

	Our memory optimization of CROSS
	Our memory optimization of CROSS key generation
	Optimizing signature generation and verification
	Countermeasure

	Results
	Conclusion

