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Abstract. This paper focuses on the issue of reducing the bandwidth
requirement for FHE ciphertext transmission. While this issue has been
extensively studied from the uplink viewpoint (transmission of encrypted
inputs towards a FHE calculation), where several approaches exist to
essentially cancel FHE ciphertext expansion, the downlink case (trans-
mission of encrypted results towards an end-user) has been the object
of much less attention. In this paper, we address this latter issue with
a particular focus on the TFHE scheme, for which we revisit a num-
ber of folklore methods, including several approaches for switching to
more compact linearly homomorphic schemes, reducing the precision of
T(R)LWE coefficients (while maintaining acceptable probabilities of de-
cryption errors), and others. We also investigate how to use these meth-
ods in combination, depending on the number of encrypted results to
transmit. We further perform extensive experiments demonstrating that
the downlink TFHE ciphertext expansion factor can be practically re-
duced to values below 10, depending on the setup, with little additional
computational burden.

1 Introduction

Since its inception more than ten years ago, Fully Homomorphic Encryption
has been the subject of a lot of research toward more efficiency and better
practicality, with two main issues to be dealt with: the high computational cost
of homomorphic operators and the large ciphertext expansion induced by FHE
schemes. This paper focuses on the latter of these two issues, which leads to the
following two problems, which are very different in nature depending on whether:

– Encrypted inputs, i.e. freshly encrypted ciphertexts, are transmitted towards
a FHE calculation (which we refer to as the uplink case).

– Encrypted results, i.e. evaluated ciphertexts, obtained following some FHE
calculation are transmitted towards an end-user for decryption (which we
refer to as the downlink case).

⋆ This work was supported by the France 2030 ANR Projects ANR-22-PECY-003
SecureCompute.
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Reducing the expansion factor for the uplink case has received a lot of at-
tention over the last ten years or so. Indeed, FHE ciphertext expansion can be
almost cancelled in this case by a technique usually referred to as transciphering,
which simply consists in transmitting data encrypted by means of a symmetric
scheme (say, AES) and homomorphically turning them into FHE-encrypted data
by running the symmetric scheme decryption algorithm over the FHE scheme. To
do so, one has to pay the FHE expansion factor only to transmit a FHE encryp-
tion of the symmetric scheme key at setup time. As a result, many works focused
on the issue of designing symmetric schemes amenable to practical homomorphic
execution [2, 3, 18, 29, 33, 36, 37] or on optimizing the homomorphic execution of
more standard ones [7, 8, 47]. Other approaches can also be applied to reduce
that expansion factor. For instance, as all practical FHE schemes are based on
(R)LWE, in the symmetric setting (where both encryption and decryption use
the secret vector or polynomial s), it is well known [1, 44] that one can simply
synchronize the sender and the receiver on a PRF to avoid sending the a term in
the (R)LWE pairs. This results in an expansion factor of log2 q/ log2 t, where q
and t respectively denote the ciphertext and plaintext moduli of the scheme. For
typical TFHE parameters, this approach leads to an expansion factor of “only”
8, almost for free.

Unfortunately, techniques such as the above are not applicable to the down-
link case. Indeed, the dream of being able to convert FHE-encrypted results back
to AES form is an ill-posed problem for several reasons, the first of which be-
ing that, as transciphering requires homomorphically executing the decryption
function of the source scheme under the target scheme, the technique applies
only towards a homomorphic scheme, which is of course not the case with AES.
Likewise, the above synchronization technique does not apply to the downlink
case, as the a term in evaluated (R)LWE pairs cannot be a priori chosen. As
such, compressing FHE calculation results for downlink transmission requires
completely different approaches. To the best of our knowledge, the study of this
issue has been initiated in [15], which was the first paper to suggest switching
from an FHE scheme to a more compact linearly homomorphic scheme. For ex-
ample, considering a LWE ciphertext (a, b) ∈ Zn

q × Zq, the idea simply consists
in executing the dot product b − ⟨a, s⟩ under the LHE (given some form of en-
cryption of s under the latter). Then one LHE ciphertext is transferred rather
than n+1 elements in Zq, achieving some compression as soon as the size of an
LHE ciphertext is smaller than (n + 1) log2 q. Depending on the LHE at hand,
several such dot products may be packed in a single LHE ciphertext in order to
further enhance compression. Using this technique, they [15] further show that
for GSW (with a binary plaintext domain and very specific parameters) and the
Dåmgard-Jurik scheme as the LHE, it is possible to asymptotically achieve “rate
1” FHE (although this result is of theoretical interest as it relies on the fact
that, for that latter scheme, the ratio between the plaintext modulus, Nk, and
the ciphertext modulus, Nk+1, tends to 1 as k goes to infinity).

In essence, our paper builds on these ideas in a more practically minded
fashion by focusing mainly on the non-asymptotic regime and considering sev-
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eral possible candidates for the LHE, depending on their plaintext/ciphertext
size ratios, the amount of “partially decrypted” messages that can be packed in
their plaintexts, and the conditions under which they admit an efficient decryp-
tion (as some LHE require solving a discrete log during decryption). We do so
with an explicit focus on TFHE [25]. It stands out in the FHE landscape as an
intrinsically LWE-based scheme compared to the other ones, which are based
on RLWE. Because of all the above degrees of freedom, some LHE are more
appropriate than others depending on the number of (T)FHE ciphertexts that
need to be transmitted. We also investigate how this approach can be combined
with other (lossy) compression techniques based on modulus switching, a simple
folklore method already used in several works [20, 34, 35, 48] for which we give
rigorous bounds for the probability of erroneous decryption.

1.1 Summary of Contributions

The contributions of this paper can be summarized as follows:

– We address the issue of compressing evaluated (T)FHE ciphertexts to reduce
the communication burden of transferring results from FHE computations
prior to their decryption. Contrary to prior works, we do so in the non-
asymptotic regime.

– We consider a simple, previously known (lossy) compression technique for
TLWE and TRLWE ciphertexts, which consists in reducing the precision of
their coefficients. Our contribution is then to carefully analyze the result-
ing noise increase and show how to choose the precision loss in order to
comply with a preset probability of incorrect decryption. Then, we further
demonstrate that this technique is a powerful tool when combined with other
compression techniques.

– We propose a new “compressed” variant of the linearly homomorphic BCP03
cryptosystem with ciphertext size reduced to logµ+|m|, where µ is the mod-
ulus of the scheme and |m| denotes the bitlength of the encrypted message
m. This variant, which we refer to as compressed Paillier-ElGamal (CPG for
short) in the sequel, may also be of independent interest.

– Building on the (known) idea of executing the linear part of the decryp-
tion function for a TLWE ciphertext over a more compact LHE scheme, we
investigate several candidates for the LHE (including the above) in combi-
nation with other techniques from the state-of-the-art or the present paper
to achieve a high compression rate of evaluated TFHE ciphertexts.

– We report extensive experimental results revealing the most appropriate
regime for each technique (depending on parameters for TFHE as well as
the number of FHE computation results that have to be transmitted).

– To the best of our knowledge, this paper is the first to demonstrate that ex-
pansion factors below 10 are practically achievable when transmitting results
of FHE calculations, with limited additional computational burden.
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1.2 Paper organization

This paper is organized as follows: Sect. 2 surveys existing techniques to re-
duce FHE ciphertext transmission overhead. Sect. 3 reviews the basics of TFHE
(needed for understanding the paper) and gives the necessary details on the LHE
that we use in this paper. Then, in Sect. 4, we present the compression tech-
niques for evaluated TFHE ciphertexts. In Sect. 5, we study several combinations
of techniques in order to achieve high compression rates of TFHE evaluated ci-
phertexts. We then report our experimental results in Sect. 6 and conclude the
paper in Sect. 7.

2 Related Work

In this section, we review existing techniques to reduce FHE ciphertext transmis-
sion overhead and analyze whether they are applicable for downlink ciphertext
compression under the TFHE scheme (which is the focus of this paper). Tab. 1
summarizes the comparison of the various approaches.

Paper Uplink Downlink TFHE BGV BFV CKKS GSW
[21] ✓ ✓ ✓ ✓ ✓ ✓ −
[6] ✓ − − ✓ ✓ ✓ −
[5] − ✓ ✓ ✓ ✓ ✓ −
[20] ✓ ✓ ✓ ◦ ◦ ◦ −
[34] − ✓ ◦ ✓ ✓ ◦ −
[48] − ✓ ◦ ✓ ✓ ◦ −
[15] − ✓ ◦ ◦ ◦ ◦ ✓
[35] − ✓ ✓ ✓ ✓ ✓ −
Our − ✓ ✓ ◦ ◦ ◦ −

Table 1: Related work comparison (✓- yes, − - no, ◦ - can be naturally applied).

In [21], the authors provide a toolkit to transform (R)LWE-based cipher-
texts by providing methods to perform a key-switching operation between LWE
ciphertexts, to transform an LWE ciphertext into an RLWE-based ciphertext,
and to merge multiple LWE ciphertexts into a single RLWE ciphertext. Al-
though the proposed keyswitch and packing methods can be applied to the TFHE
scheme [25], they do not achieve any ciphertext compression (the goal of [21] is
to reduce the storage requirement for key-switching keys and the computational
cost of the procedure). The authors claim that they achieve lightweight and low-
latency communication from the client to the server (thus, on the uplink), but
do not address the downlink case.

Paper [6] is focused on LWE to RLWE ring packing after uplink cipher-
text transmission. The objective is to efficiently obtain a CRT-encoded RLWE
ciphertext to support component-wise multiplications and not to achieve any
compression. Although the authors focus on the CKKS scheme [23], the pro-
posed techniques are also applicable to BGV [12] and BFV [10, 31]. However,
the approach cannot be easily applied for TFHE, as TRLWE samples use coeffi-
cient encoding. Moreover, their approach involves switching to larger ciphertext
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moduli (rather than smaller), which is both difficult to perform in the LWE
setting of TFHE and does not achieve compression.

In [5], the authors focus on verifiable computation over HE data. As a side
contribution, they also address the issue of minimizing the HE ciphertexts over-
head for a verifier. Their main idea is to avoid transmitting RLWE ciphertexts
with unused slots by means of a repacking procedure that also switches to a
smaller plaintext modulus (hence also a smaller ciphertext modulus), at the ex-
pense of dropping the homomorphic properties before downlink transmission.
The proposed approach is generic and can be adapted to TFHE, BGV, BFV,
and CKKS.

In [20], the authors present a constant bandwidth TFHE-based ORAM scheme
in a single server model. On the downlink, they use a ModSwitch operation [12]
for TRLWE samples to reduce the communication cost. For the uplink sce-
nario, [6,20,21] use the PRF-based synchronization technique, proposed in [1,44],
to avoid sending (R)LWE a coefficients. As already discussed, this technique is
not applicable for the downlink, as in this case a cannot be a priori known.

Papers [34, 48] present HE-based protocols for neural networks. In both pa-
pers, to reduce FHE communication overhead, the authors use a technique sim-
ilar to the one from [20]. Indeed, they achieve compression on the downlink by
sending only some of the most significant bits in the components of the LWE
ciphertexts. However, [20,34,48] provide only a very crude noise analysis and do
not assess the impact of the technique on the probability of erroneous decryption.

Another approach attempting to reduce the downlink FHE communication
burden consists in switching from a FHE scheme with linear decryption to a
LHE scheme with a smaller expansion factor. This approach was first proposed
in [15]. As the present paper, that paper is focused on techniques to compress
post-evaluation FHE ciphertexts (the downlink case) and does not discuss com-
pression techniques for the uplink case. In that setting, it introduces a general ap-
proach to build a rate-1 FHE by switching from GSW-style schemes [4,14,32,39]
to the Dåmgard-Jurik cryptosystem or to a “shrinked” RLWE scheme (cipher-
text shrinking is a technique introduced in that paper that has the nice property
of not impacting the decryption error probability). The authors claim that a
rate-1 expansion factor is achievable asymptotically (for very specific GSW pa-
rameters); as for the Dåmgard-Jurik cryptosystem, the rate log(µy)

log(µy+1) = 1− 1
y+1

approaches 1 as y grows. In this case, however, the asymptotic growth of y also
increases the computational cost of the latter scheme.

In [35], the authors put in an application for the idea from [15] of switching to
the Paillier/Dåmgard-Jurik scheme. The authors also briefly mention the exis-
tence of different scheme switching/compression techniques (i.e., scheme switch-
ing as in [9], key/modulus switching, dimension reduction [13, 40], transcipher-
ing, etc.), but do not compare their resulting expansion factors. They also use
the idea from [15] to pack several LWE samples into a single LHE ciphertext
and, interestingly, further improve this packing by first switching to a smaller
ciphertext modulus. However, they do not formally assess the induced increase
in decryption error probability beyond “just” stating that the smaller modulus
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q′ should satisfy q′ ≥ 2(n+1)t and investigate this technique only in the levelled
BFV/BGV setting by then switching to the smaller modulus in the hierarchy.
The authors experimentally conclude that this combined approach outperforms
the other above LWE to RLWE packing approaches.

With respect to positioning, we revisit ideas from both [15] and [35] but
adapt them to the specificities of the TFHE scheme, for which we provide a
rigorous analysis of the induced decryption error probability, eventually leading
to better compression ratios (4 to 5 times better than in [35]). We also consider
a more exhaustive set of LHE depending on the number K of TFHE ciphertexts
to transmit (including a new variant of the BPC03 scheme that allows us to
achieve best-in-class compression in the regime where K is a few tens).

3 Preliminaries

3.1 General notation

In the upcoming sections, we denote vectors by bold letters, so a vector x of
n elements is x = (x0, . . . , xn−1). The inner product of two vectors x and y is

⟨x,y⟩. x $←− D denotes sampling uniformly x from D, and x
N (0,σ2)←−−−−− D denotes

sampling x from D following a Gaussian distribution of mean 0 and variance σ2.

3.2 TFHE

TFHE cryptosystem [25] was proposed by Chillotti et al. in 2016 and is notably
implemented in the TFHE library [24]. It is intrinsically a LWE scheme work-
ing over the [0, 1) torus, which we denote by T. TFHE relies on three types
of ciphertexts: TLWE, TRLWE, and TRGSW. In this paper, we focus only on
the issue of compressing TLWE and TRLWE ciphertexts, as only those have
to be transmitted when performing homomorphic calculations. TRGSW cipher-
texts are only used temporarily within the bootstrapping procedure and never
transmitted (except, offline, for transferring the bootstrapping key).

– TLWE ciphertext: a pair (ã, b̃) is a valid TLWE encryption of m ∈ Zt (for
plaintext modulus t), with ã

$←− Tn and b̃ ∈ T if it verifies b̃ = ⟨ã, s⟩+ m
t + ẽ,

where s
$←− Bn is a TLWE secret key, and ẽ

N (0,σ2)←−−−−− T is a noise term.
– TRLWE ciphertext: a pair (ã, b̃) is a valid TRLWE encryption of m ∈

Zt[X]/(XN+1), with ã
$←− TN [X] and b̃ ∈ TN [X] if it verifies b̃ = ã·s+m

t +ẽ,

where s
$←− BN [X] is a TRLWE secret key, and ẽ

N (0,σ2)←−−−−− TN [X] is a noise
polynomial. Here polynomials are represented by vectors of their coefficients.

Please note that, as this paper focuses on the input/output of FHE cal-
culations, only a high-level understanding of the inner workings of the TFHE
scheme and, in particular, its bootstrapping procedure is required to understand
this work. We refer the reader to [25] for further details.

It should further be emphasized that TFHE is fully homomorphic only over
TLWE ciphertexts. Up to N TLWE ciphertexts can be packed to/unpacked
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from a single TRLWE ciphertext using standard techniques introduced in [11,
25, 43]. This may be useful for improving transmission efficiency (as we shall
later discuss) or to perform batched homomorphic additions. As an LWE-based
scheme, the TFHE decryption function is decomposed into a first linear part

⟨(b̃;−ã), (1; s)⟩ = φ̃ =
m

t
+ ẽ (1)

followed by a scale (up) and round operation

⌈tφ̃⌋ = m. (2)

In TFHE terminology, φ̃ is called the phase or the partial decryption of the
ciphertext (ã; b̃). One key observation from [15] is that, given some encryption
of s (with the appropriate form) over another LHE, (1) can be executed over the
latter to get an encryption of φ under that LHE. How and when this is practically
useful is investigated in the sequel. Equivalently, the scheme is always defined
relative to a discretization of the torus by steps of 1

q , where q is a power of
two (typically either 232 or 264). As such, TLWE or TRLWE ciphertexts are
equivalently represented as LWE or RLWE ciphertexts over Zq or Zq[X]/(XN +
1). When this representation is used, we will use the notations (a, b) and (a,b)
instead of (ã, b̃) and (ã, b̃) (with e.g., a = ⌈qã⌋ and similarly for the others).
Note also that the phase computation (1) over (a, b) returns φ = ∆m + e with
∆ = q

t , and decryption is finalized by outputting⌈ φ
∆

⌋
(3)

instead of Eq. (2). We will use the illustrative parameters in Tab. 2 as a running
example throughout the paper. This will allow us to provide illustrative numbers
before the reader reaches Sect. 6 on experimental results, where several sets of
TFHE parameters are investigated.

λ n q t N σ0 σBS

128 550 232 2 1024 q · 2.82× 10−4 q · 1.69× 10−2

Table 2: Illustrative TFHE parameters used as a running example.

3.3 Linear Homomorphic Encryption schemes

Tab. 3 provides the high-level characteristics of the LHE schemes that we con-
sider in this paper (namely Paillier [42], Dåmgard-Jurik [30], Elliptic Curve
ElGamal [38], and BCP03 [17]). As hinted in the previous Sect. we will consider
using these schemes to evaluate the linear part of the TFHE decryption function,
therefore converting one (or possibly more) ciphertext of size (n+ 1) log2 q into
a single ciphertext of the LHE scheme. For completion, we briefly recall their
definitions in Appendix Sect. A.
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Cryptosystem Plaintext
domain

Ciphertext
domain

Plaintext
size (bits)

Ciphertext
size (bits)

Expansion
factor

Paillier Zµ Zµ2 log2 µ 2 log2 µ 2

Dåmgard-Jurik Zµy Zµy+1 y log2 µ (y + 1) log2 µ 1 + 1
y

EC ElGamal Fω F2
ω p 2 log2 ω

2 log2 ω

p

BCP03 Zµ Z2
µ2 log2 µ 4 log2 µ 4

CPG (Sect. 4.2) Zµ Zµ × Zµ2 log2 µ log2 µ+ log2 U 1 + log2 U

log2 µ

Table 3: Summary of the main characteristics of the LHE schemes presented in
Sect. A.1.

4 Compression building-blocks for evaluated TFHE
ciphertexts

4.1 ℓ-truncation

Now we turn our attention to the basic (folklore) compression technique, which
consists in dropping least significant bits in LWE or RLWE pairs coefficients (we
refer to it as ℓ-truncation rather than modulus switching to emphasize that we
floor rather than round). The main question is whether the additional noise that
it finally induces may be small enough to allow significant compression without
prohibitively increasing the probability for decryption errors to occur. The goal
is then to carefully choose the number of discarded bits in order to comply with
a preset probability of incorrect decryption, e.g., ϵ = 2−k for k = 40, 64, or 128.

On one hand, TLWE ℓ-truncation can be combined with the LHE switching
technique of Sect. 5 to increase the number of TLWE partial decryptions that can
be packed into a single LHE ciphertext. On the other hand, its straightforward
extension to TRLWE (Sect. C.2) is also useful as a stand-alone method: we can
apply it after TLWE to TRLWE packing to reduce the size of the coefficient of
a TRLWE sample before transmission3.

We study how ℓ-truncation may be applied to a TLWE ciphertext. Let c =
(a0, . . . , an−1, b = an) denote a TLWE encryption of m. Given ℓ < ⌈log2(q)⌉, we
define the following three operations:

– PartialDec(c, s): return an − ⟨a, s⟩ = ∆m+ e, with ∆ = q
t .

– Trunc(c, ℓ): set a′i =
⌊
ai

2ℓ

⌋
for i ∈ {0, ..., n} and return c′ = (a′0, . . . , a

′
n).

– Rescale(c′, ℓ): set a′′i = 2ℓa′i for i ∈ {0, ..., n} and return c′′ = (a′′0 , . . . , a
′′
n).

3 It is worth mentioning that the RLWE ℓ-truncation technique can be applied to BGV
[12], BFV [10,31], and CKKS [23] RLWE ciphertexts. As these FHE cryptosystems
use composite ciphertext modulus, it is natural to think of reducing it via rescaling
before applying ℓ-truncation and sending the final result to the client. We leave this
idea as a perspective for future explorations.
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From these definitions, it follows that when c is a TLWE encryption of m with
noise e (i.e., PartialDec(c, s) = ∆m+e), then c′′ is an encryption of m with noise

e′′ = e−
n−1∑
i=0

e′′i si + e′′n (4)

where e′′i = −(ai mod 2ℓ). Now, given a preset probability of decryption error
ϵ = 2−k and a noise variance σ for e, we would like to be able to choose ℓ
such that an ℓ-truncated ciphertext decrypts correctly with probability at least
1 − ϵ, i.e., following Eq. (4) Pr

(
|e′′| < ∆

2

)
≥ 1 − ϵ. We then have the following

proposition, which provides us with a first lower bound for the choice of ℓ.

Proposition 1. Let c denote a TLWE encryption of m subject to a centered
Gaussian noise e with variance σ2, and let c′ = Trunc(c, ℓ0) with

ℓ0 ≤
⌊
log2

(
1

n+ 1

(
∆

2
− σ

√
2(k + 1) log 2

)
+ 1

)⌋
. (5)

Then,
⌈

1
∆PartialDec(Rescale(c′, ℓ0), s))

⌋
= m with probability at least 1− 2−k.

Proof. Let us start by bounding the probability that c′′ = Rescale(c′, ℓ) incor-
rectly decrypts, i.e., following (4), that

Pr

(
|e′′| ≥ ∆

2

)
= Pr

(∣∣∣∣∣e−
n−1∑
i=0

e′′i si + e′′n

∣∣∣∣∣ ≥ ∆

2

)
,

≤ Pr

(
|e| ≥ ∆

2
− (n+ 1)(2ℓ − 1)

)
,

as, by definition, |e′′i | ≤ 2ℓ − 1. Assuming e follows a (centered) Gaussian dis-
tribution of variance σ2, the Chernoff bound4 tells us that Pr

(
|e′′| ≥ ∆

2

)
≤

2e−
(∆

2
−(n+1)(2ℓ−1))

2

2σ2 . Which, letting 2e−
(∆

2
−(n+1)(2ℓ−1))

2

2σ2 = 2−k, leads to,

2ℓ =
1

n+ 1

(
∆

2
− σ

√
2(k + 1) log 2

)
+ 1,

hence the claim. ⊓⊔

Applying the ℓ-truncation technique, we focus on the probability of decryp-
tion error rather than the variance or infinite norm of the noise. It allows us to
ensure correct decryption after truncation for a preset probability of decryption
error. To do so, we based our noise analysis on the Chernoff bound rather than

4 Recall that for a (centered) Gaussian deviates, the two-sided Chernoff bound is such

that P (|X| ≥ α) ≤ 2e
− α2

2σ2 .
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the erf function, as the former is more manageable for very low probabilities
(e.g., 2−40) and quite tight5.

In general, we use Prop. 1 for evaluated ciphertexts, taking σ2 as the post-
bootstrapping variance σ2

BS. To give an intuition, with our running TFHE pa-
rameter example (Tab. 2), for ϵ = 2−40, Prop. 1 leads to ℓ0 = 19, meaning a
ciphertext size reduction of around 60%. Although it does not give us a closed-
form formula for ℓ, we give a slightly more precise proposition in Sect. C.1.

4.2 Compressed Paillier-ElGamal (CPG)

In this section, we recall a standard variant of the BCP encryption scheme,
which is commonly called Paillier-ElGamal [41, 45] and features smaller cipher-
text compared to the traditional BCP encryption scheme (3 logµ bits versus
4 logµ). Then, we show that this variants additionally supports an efficient com-
pression procedure, that allows to further reduce its ciphertext size down to
log µ + |m|, where |m| denotes the bitlength of the encrypted message m. This
compression procedure is incompatible with the homomorphic features of the
scheme, but can be used once all homomorphic operations have been computed,
before sending the final ciphertext to the owner of the secret key.

A variant of BCP with shorter ciphertexts. The following variant of BCP
is well-known and has roots in [27,28]. It builds upon the fact that

– KeyGen: Let µ = pq be an RSA modulus. Choose a random α ∈ Z∗
µ2 , a

random value d ∈ [1, ord(G)]. Set g = α2 mod µ and h = gµ·d mod µ2.
Return a public key pk = (µ, g, h) and a secret key sk = d.

– Enc: For a given message m ∈ Zµ, a random pad r
$←− Zµ2 return a ciphertext

c = (c0, c1) such that c0 = gr mod µ, c1 = hr(1 + µ)m mod µ2.6

– Dec: Compute c = c1(c0)
−µ·d mod µ2 and return m = c−1

µ .

We make a few remarks on the above scheme. Compared with BCP, h is now
computed as a µ-th power. This implies that c1 = hr(1 + µ)m = (grd)µ(1 +
µ)m mod µ2 (without the component c0) is actually a valid Paillier encryption
of m. Second, the component c0 is now given modulo µ, reducing the ciphertext
size by 25%. This is without loss of security, as one can easily check that [gr mod
µ]µ = gµr mod µ2.

Eventually, security-wise, the scheme can be proven IND-CPA secure under
the DCR assumption; hence, it achieves identical security guarantees compared
to Paillier. This follows from a sequence of straightforward game hops. We believe
this proof to be essentially folklore. However, to our knowledge it has not been
explicitly described anywhere, and we include it for convenience:

5 A bound for ℓ0, obtained using the erf, differs from (5) by one term (
√
k log 2 vs

erf−1(1− 2−k)), which is more challenging to compute. Furthermore, erf−1(1− 2−k)
is not defined for k > 54, while we want to determine ℓ0 for k = 64, 128 as well.

6 Note that (1+µ)m ≡ 1+µm mod µ2 (from Binomial theorem applied to (1+µ)m).
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– Hybrid 1: replace h = gµd mod µ2 with a uniformly random h
$←− Z∗

µ2 .
Under the DCR assumption, this hybrid is indistinguishable from the real
key generation algorithm.

– Hybrid 2: replace α with a random µ-th power α ← βµ mod µ2 for β
$←−

Zµ2 , and g ← α2 mod µ2. Under the DCR assumption, this hybrid is indis-
tinguishable from the previous one.

Then, observe that in Hybrid 2, the message m is statistically hidden given
a ciphertext (c0, c1). Indeed, the uniform distribution over Zµ2 is statistically
close to the uniform distribution over Zµ·ϕ(µ), because µ − ϕ(µ) = p + q − 1 is
of the order of √µ. By the chinese remainder theorem, as µ is coprime to ϕ(µ),
Zµ·ϕ(µ) is isomorphic to Zµ×Zϕ(µ). Write h = (1+n)agb mod µ2 for some (a, b)
(all elements admit such a decomposition), where a ̸= 0 and is coprime to µ
with overwhelming probability. Then, observe that since g generates a subgroup
of order ϕ(µ)/4, the ciphertext c0 leaks only the value r0 = [r mod ϕ(µ)/4]. In
contrast, c1 = hr(1+µ)m = (1+µ)ar1+m mod µgbr0 mod ϕ(µ)/4 mod µ2, where r1 =
[r mod µ] is statistically indistinguishable from random given r0 (by coprimality
of µ and ϕ(µ)). Hence, the value ar1 + m mod µ statistically hides m. This
concludes the proof. In the following, in line with previous works, we call the
above scheme Paillier-ElGamal.
Distributed discrete logarithm. The scheme above enjoys shorter cipher-
texts than BCP, but still larger than Paillier (3 log µ versus 2 logµ). In this sec-
tion, we recall the distributed discrete logarithm procedure introduced in [41,45].
At a high level, this procedure allows two parties, given divisive shares of (1 +
µ)m mod µ2 over Z∗

µ2 , to non-interactively derive substractive shares of m over
Zµ. We outline the procedure DDLogµ below.

Input. An element u ∈ Z∗
µ2 .

Output. A value v ∈ Zµ.
Procedure. Write u = u0+µ ·u1, where u0, u1 ∈ Zµ denote the base-µ decom-

position of u. Return v = u1/u0 mod µ.

We now explain why this procedure has the intended behavior. Let u, u′

denote two divisive shares over Z∗
µ2 of (1 + µ)m mod µ2; that is, u′/u = (1 +

µ)m = 1 + µm mod µ2. Writing u = u0 + µ · u1 and u′ = u′
0 + µ · u′

1, we
obtain u′

0 +µ · u′
1 = (u0 +µ · u1) · (1+ µ ·m) mod µ2. The above equation yields

u0 = u′
0 mod µ and u′

1 = u1+u0m mod µ. Therefore, m = u′
1/u

′
0−u1/u0 mod µ:

u′
1/u

′
0 and u1/u0 form subtractive shares of m over Zµ, as intended.

Compressing ciphertexts via DDLogµ. The distributed discrete logarithm
procedure implies a simple and efficient compression mechanism for Paillier-
ElGamal. The key observation is that given c0 = gr mod µ, the holder of the
secret key d can locally compute u = cµ·d0 = hr mod µ2. Then, u and c1 form
divisive shares of c1/u = (1+µm) mod µ2. This immediately yields the following
compression mechanism:

– Compress(c0, c1): run v′ ← DDLogµ(c1). Output (c0, v
′).
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– Dec′(c0, v
′): compute u ← cµ·d0 mod µ2 and v ← DDLogµ(u). Output m =

v′ − v mod µ.

The resulting compressed ciphertext size is 2 log µ, down from 3 log µ, matching
the size of a standard Paillier ciphertext. However, if m is known to be smaller
than a bound B < µ/2λ (where λ denotes a statistical security parameter), we
can do better. The main observation (which is not new; the same observation
was used in [41,45]) is that with overwhelming probability, v′, v form subtractive
shares of m over the integers. This stems from the following facts:

– Over the randomness of r, the value v′ = DDLogµ(c1) = DDLog(hr · (1 +
µm) mod µ2) is uniformly distributed over Zµ.

– Then, if m ≤ B, the probability that v′−m causes a wraparound modulo µ
is at most B/µ ≤ 1/2λ, hence v′ − v = m over the integers.

This observation allows to further reduce the compressed ciphertext size by
reducing v′ modulo B:

– Compress(c0, c1): run v′ ← DDLogµ(c1) and set v′′ ← [v′ mod B]. Output
(c0, v

′′).
– Dec′(c0, v

′): compute u ← cµ·d0 mod µ2 and v ← DDLogµ(u). Output m =
v′′ − v mod B.

With this last optimization, the ciphertext size went down to log µ + logB
bits. When B is small (e.g., B ≈ 240 as in our application), this yields an al-
most twofold size improvement over a standard Paillier encryption. We note
that a similar procedure has been previously described in the context of ElGa-
mal encryption [16]. The Paillier-ElGamal variant, which we outline here, has
the advantage of being extremely efficient, as compression amounts only to an
inversion and a product modulo µ followed by a modular reduction.

5 Switching to LHE

In this section, we investigate several approaches to switch from TLWE homo-
morphic ciphertexts to (more compact) linearly homomorphic ones by executing
the linear part of the (T)LWE decryption function, b − ⟨a, s⟩ (recall Eq. (1)),
under the target linearly homomorphic scheme. As a result of this operation,
we obtain encryptions of partial decryptions of TFHE ciphertexts under the tar-
get LHE. We consider several candidate LHE cryptosystems such as Paillier,
Dåmgard-Jurik, EC ElGamal, and our compressed variant of BCP03 (Sect. 4.2).
When the properties of the LHE allow it, we also consider packing the partial
decryptions of several TFHE ciphertexts in a single LHE ciphertext in order to
achieve better transmission efficiency when several evaluated TFHE ciphertexts
have to be transmitted. To reduce the number of bits needed to encode a par-
tial decryption (and hence be able to pack more partial decryptions per LHE
ciphertext), we also investigate the use of this technique in conjunction with the
ℓ-truncation technique, which we introduced in Sect. 4.1.
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Overall, the most appropriate choice for the LHE depends on several factors,
such as its plaintext/ciphertext ratio size, how many partial decryptions can be
packed in its plaintexts, and the conditions under which it can decrypt efficiently
(as some LHE require solving a discrete log in their decryption function). Because
of all these degrees of freedom, some LHE are more appropriate than others for
the purpose of transmitting a given number of evaluated TFHE ciphertexts.

5.1 A generic switching algorithm

Let EH denote an instance of TFHE and EL a target LHE. Let µ denote the
plaintext modulus of EL and v denote the number of bits necessary to represent
a partial decryption (because µ is generally much greater than q, the partial
decryptions are not computed modulo q, and we have to account for the carries
occurring in their computation). Then up to

M =

⌊
⌊log2 µ⌋

v

⌋
(6)

partial decryptions can be packed into a single LHE ciphertext. Switching then
works as follows. Let s ∈ Bn denote EH ’s secret key, and let c

(i)
s = EL.Enc(si)

for i ∈ {0, ..., n− 1} denote encryptions of its coefficients under EL. We further
denotes by (a(j), b(j)), j ∈ {0, ...,M − 1}, the M TLWE pairs that we wish to
convert. The conversion algorithm then starts with ciphertext c = EL.Enc(0).
For i = 0 to n − 1, we then perform, c := c ⊕

(
−
∑M−1

j=0 2jva
(j)
i

)
⊙ c

(i)
s , where

⊕ and ⊙ respectively denote the addition and the multiplication-by-a-constant
operator of EL (remark that −

∑M−1
j=0 2jva

(j)
i lives in the clear domain of EL).

Lastly, switching is finalized by doing7

c := c⊕ EL.Enc

M−1∑
j=0

2jvb(j)

 . (7)

Alg. 1 summarizes the above. As such, the algorithm terminates with an encryp-
tion of

∑M−1
j=0 2jv

(
b(j) − ⟨a(j), s⟩

)
but without the modulo q which is implicit in

Eq. (1). After LHE decryption, one may recover the j-th partial decryption by
doing

φ(j) =

(⌊
EL.Dec(c)

2jv

⌋
mod 2v

)
mod q, (8)

and decryption is finalized using Eq. (3). Lastly, (8) has to be slightly modified
as follows when ℓ-truncation is applied,

φ(j) = 2ℓ
(⌊
EL.Dec(c)

2jv′

⌋
mod 2v

′
)

mod q,

where v′ < v is used instead of v in Alg. 1.
7 When the target LHE provides an addition-by-a-constant operator, the latter can

be used in Eq. (7) instead of invoking the encryption function of the scheme.
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Algorithm 1 TLWEtoLHE

Input: Encryptions of EH ’s secret key coefficients under EL, c
(i)
s = EL.Enc(si), M

TLWE pairs (a(j), b(j)).
Output: c ∈ EL.C such that c is an encryption of

∑M−1
j=0 2jv

(
bj − ⟨aj , s⟩

)
.

1: c = EL.Enc(0)
2: for i = 0, i < n, i++ do,
3: c := c⊕

(
−
∑M−1

j=0 2jva
(j)
i

)
⊙ c

(i)
s ,

4: end for
5: return c := c⊕ EL.Enc

(∑M−1
j=0 2jvb(j)

)
.

Considering our running TFHE parameters example of Tab. 2, with q = 232,
we need v = 42 bits8 to be able to represent a partial decryption prior to its
reduction modulo q. This number goes down to 23 bits if we apply ℓ-truncation
as proposed in Sect. 4.1 and drop 19 least significant bits in the coefficients of
the LWE pairs prior to switching them (leading to a probability of erroneous
decryption of 2−40). We will use these numbers for illustration purposes in the
next subsections.

5.2 Switching to Paillier

Recall Sect. 3.3, Paillier scheme has respective plaintext and ciphertext domains
Zµ and Zµ2 , where µ is an RSA modulus. Following the previous Sect. we can
pack up to M =

⌊
⌊log2 µ⌋

v

⌋
partial decryptions in a single Paillier ciphertext. Let

K denote a number of partial decryptions that need to be transmitted, and let
r1 = K mod M and r2 = ⌊K/M⌋; then we have to pack these partial decryptions
M -by-M (from Alg. 1) using r2 Paillier ciphertexts when r1 = 0 or r2 + 1 such
ciphertexts otherwise. When r1 = 0, the expansion factor is then

⌈2 log2 µ⌉
M log2 t

(9)

(this is also the asymptotic expansion factor when K →∞), and, otherwise, the
expansion factor is given by (r2+1)⌈2 log2 µ⌉

K log2 t .

Considering an RSA modulus of 2048 bits (the usual recommendation to
achieve 128 bits security) and our running example of TFHE parameters (Tab.
2), we can pack around 2048/42 ≈ 48 TLWE partial decryptions per Paillier
ciphertext. For K ≤ 48 we then get an expansion factor of 4096/K, i.e. 4096
for K = 1 and around 85 for K = 48 (which is also the asymptotic expansion
factor). If we apply ℓ-truncation, then we can pack around 2048/23 ≈ 89 partial
decryptions in a single Paillier ciphertext. For K ≤ 89, we obtain an expan-
sion factor between 4096 (K = 1) and 46 (K = 89), this latter also being the
8 As we have to sum n+ 1 numbers (uniformly distributed) in {0, ..., q}, in the worst

case, we get (n+1)q, which requires ⌈log2(n+1)+ log2 q⌉ bits. With n between 512
and 1024 and q = 232, 42 bits are conservatively required.
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asymptotic expansion factor. Keep in mind that these latter numbers must be
compared with the raw expansion factor of 32800 induced by TLWE ciphertexts:
for K = 89 (with ℓ-truncation) the expansion thus becomes 713 times smaller.
We explore more TFHE parameters in Sect. 6.

5.3 Switching to Dåmgard-Jurik

As an alternative to Paillier (and as initially considered in [15]), we may consider
using the Damgård-Jurik scheme (recall the definition in Sect. 3.3), which gener-
alizes the former scheme with Zµy and Zµy+1 (y > 1) respectively as plaintext and
ciphertext domains. Because the plaintext modulus is larger than for Paillier, it
is possible to pack more TLWE partial decryptions into a single Dåmgard-Jurik
ciphertext. Indeed, following Sect. 5.1, we can now pack up to M =

⌊
⌊y log2 µ⌋

v

⌋
partial decryptions in a single Dåmgard-Jurik ciphertext. As in the previous
Sect., let K denote the number of partial decryptions that need to be transmit-
ted, and let r1 = K mod M as well as r2 = ⌊K/M⌋, then we have to pack these
partial decryptions M -by-M (Alg. 1) using r2 Dåmgard-Jurik ciphertexts, when
r1 = 0, or r2 + 1 such ciphertexts otherwise. When r1 = 0, the expansion factor
is then

⌈(y + 1) log2 µ⌉
M log2 t

(10)

(for a fixed y, this is also the asymptotic expansion factor when K → ∞)
and, otherwise, the expansion factor is given by (r2+1)⌈(y+1) log2 µ⌉

K log2 t . Interestingly,
Dåmgard-Jurik asymptotically achieves the lowest expansion factor when both K

and y increase to ∞. Indeed, (10) can be approximated by v(y+1) log2 µ
y log2 µ log2 t = v(y+1)

y log2 t

leading to limy→∞
v(y+1)
y log2 t = v

log2 t , which is the optimal rate achievable with the
LHE switching technique.

Returning to our favorite running TFHE parameter example and considering,
as for Paillier, a 2048-bit RSA modulus with y = 2, we can pack up to M =
4096/42 ≈ 97 TLWE partial decryptions in a single Dåmgard-Jurik ciphertext.
Then for K = 97 we illustratively obtain an expansion factor of around 63, this
is also the asymptotic expansion factor (for fixed y = 2) which can then be
compared with the value 85 obtained for Paillier. Lastly, putting ℓ-truncation
into the picture leads to M = 4096/23 ≈ 178 and an asymptotic expansion
factor (again for fixed y = 2) of around 34. We compare the different methods
and explore more TFHE parameters in Sect. 6.

5.4 Switching to compressed Paillier-ElGamal

We now consider packing TLWE partial decryptions within ciphertexts of the
compressed Paillier-ElGamal (CPG) scheme that we introduced in Sect. 4.2.
As for Paillier (and Dåmgard-Jurik), this scheme has a plaintext modulus µ.
However, the size of a ciphertext with an l-bits payload (l ≤ log2(µ)) is only
l + ⌈log2 µ⌉. As a consequence, this scheme is best used when small numbers of
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TLWE partial decryptions have to be transmitted. As in the Paillier case, we
can pack up to M =

⌊
⌊log2 µ⌋

v

⌋
partial decryptions in a single CPG ciphertext,

and the two schemes achieve the same asymptotic expansion factor. However,
when we wish to pack only K ≤M partial decryptions in a CPG ciphertext, the
resulting expansion factor is Kv+⌈log2 µ⌉

K log2 t compared to the Paillier case, which,

recall Eq. (9), gives 2 log2 µ
K log2 t .

Returning again to our running TFHE parameters example of Tab. 2 (and
reusing the numbers from the end of Sect. 5.2), we can pack up to 48 (w/o
ℓ-truncation) or 89 (with ℓ-truncation) partial decryptions in a single CPG ci-
phertext. Without ℓ-truncation, for K = 5, 10, and 40 we then obtain respective
expansion factors of 451, 247, and 93 (versus 819, 410, and 102 for Paillier).
With ℓ-truncation into the picture, again for K = 5, 10, and 40, we respectively
end up with 432, 228 and 74 (also versus 819, 410, and 102 for Paillier). More
comparisons are provided in Sect. 6 on various parameter sets.

5.5 Switching to EC ElGamal

For completeness, we also briefly consider packing partial decryptions in EC El-
Gamal ciphertexts (recall the definition in Sect. 3.3). This scheme is the most
compact that we consider in this work, but this compacity comes with the price
of having to solve a discrete logarithm in the scheme decryption function. As
such, we can only use it to encrypt small payloads (say, with a length of around
or slightly above 40 bits). As a consequence, it is not possible to pack many
TLWE partial decryptions in an EC ElGamal ciphertext, and this reduces its
applicability to settings when no more than one or two evaluated TLWE cipher-
texts have to be transmitted (using ℓ-truncation to decrease the number of bits
needed to represent their partial decryptions). Still, in such cases, it is competi-
tive with other approaches (transferring only one TLWE ciphertext always leads
to the worst expansion factor, as the size of the LHE ciphertext is not amortized).
Indeed, when a single TLWE ciphertext (a, b) has to be transmitted, switching
to EC ElGamal by executing b − ⟨a, s⟩ over that cryptosystem will lead to a
ciphertext of size around log2 ω bits, and an expansion factor will be ⌈log2 ω⌉

K log2(t)
.

For our favorite running TFHE parameters example, with t = 2 and K = 1 we
thus get 512 (which is the smallest expansion factor we obtain when transferring
a single TLWE partial decryption, all the others LHE being in the thousands
in that case). If we apply ℓ-truncation, we can either accelerate the decryption
function (only a discrete log with an upper bound of 23 bits then needs to be
solved) or attempt to pack two partial decryptions (needing 46 bits in total) in
a single ciphertext. In that latter case, the expansion factor gets down to 256.

6 Experimental results and comparisons

In our experimental analysis, we consider two TFHE parameter sets. The first
set is identical to the running example we have used so far for illustrative pur-
poses (Tab. 2) and our second parameter set is for t = 16 meaning that TFHE
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ciphertexts now have a 4-bit payload, rather than only 1 bit. We give the full
parameter sets in Sect. D.

6.1 Relationship between ℓ and k

Recall Eq. (5) on page 9, which tells the number of bits ℓ that we can drop in
the coefficients of a TLWE pair in function of a target probability of decryption
error 2−k. Since ℓ is influenced by log2 k and because a flooring occurs in the
formula (as only an integer number of bits can be dropped), we can expect that
a given choice for ℓ covers a wide range of decryption error probabilities.

We illustrate this in Tab. 4 for T(R)LWE ℓ-truncation. The table also shows
that in both cases, ℓ-truncation does not prevent achieving a negl(λ) probability
of decryption error, although of course fewer bits have to be dropped than for
larger probabilities of error. Note that the probability of bootstrapping error has
to be set consistently with the probability of erroneous decryption induced by ℓ-
truncation. For example, since our parameter set for t = 2 induces a probability
of bootstrapping error of 2−154, Tab. 4 tells us that we can drop up to 18 bits per
coefficient and still achieve an overall probability of decryption error less than
2−128, i.e. FHE correctness with overwhelming probability9. For comparison, in
Sect. E we also provide a similar table (Tab. 8c) for ℓ values found using Prop.
2.

t
ϵ

2−40 2−64 2−128

2 19.863057 19.408270 17.486391

16 17.217345 17.151246 17.010226

2 19.747898 19.203378 15.716669

16 17.217326 17.151221 17.010187

Table 4: Applying Prop. 1 for t = 2, 16 and several values for the probability of
decryption error ϵ, the upper part represents a maximum value for ℓ when ℓ-truncating
an evaluated (i.e., bootstrapped) TLWE ciphertext, and the bottom part – when ℓ-
truncating a degree-N TRLWE ciphertext in which N n-dimensional evaluated TLWE
ciphertexts have been packed.

6.2 Expansion factors

We now turn our attention to the expansion factor metric, which, recall, is defined
as the ratio between the ciphertext size and corresponding plaintext size. The
expansion factor formulas for the T(R)LWE-based compression techniques and
the LHE-based ones can be found in the respective sections describing these
methods and in Sect. E. In Tab. 5 we then provide a comparison between the
expansion factor obtained by the different methods for t = 16 as a function of
K, the number of evaluated TLWE ciphertexts that have to be transmitted.

9 This remark is important, as ensuring correctness is a natural countermeasure
against the recent CPAD attacks against TFHE and other schemes [19,22].
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K 1 50 150 250 500 ∞
TLWE 6008 6008 6008 6008 6008 6008

TLWE ℓ-truncation 2816.2 2816.2 2816.2 2816.2 2816.2 2816.2

Shrinking 16393 328.8 110.2 66.5 33.7 9

TLWEtoTRLWE 16392 335.6 117.2 73.5 40.7 16

TLWEtoTRLWE + ℓ-truncation 7683.75 157.35 55 34.5 19.11 7.5

Paillier (w. packing) 1024 40.9 27.3 24.5 22.5 21.3

ℓ-truncation + Paillier (w. packing) 1024 20.4 13.6 16.3 14.3 12.6

Dåmgard-Jurik (w. packing) 1536 30.7 20.4 18.4 18.4 15.8

ℓ-truncation + D.-J. (w. packing) 1536 30.7 10.2 12.2 12.2 9.4

CPG (w. packing) 522.5 31 24.1 22.7 21.7 21.1

ℓ-truncation + CPG (w. packing) 518.25 16.5 13 14.4 13.4 12.5

EC ElGamal 128 − − − − −
Table 5: Example expansion factors for each of the methods considered in this paper
(t = 16).

Overall, again for t = 16, when K = 1 or 2, EC ElGamal achieves the smallest
expansion factors (128 and 64, respectively). In the range 2 < K ≤ 81, the lowest
expansion factor is achieved by performing ℓ-truncation and then switching to
CPG (achieving, for example, an expansion factor of around 16.5 for K = 50).
Up to K ≤ 1000, Dåmgard-Jurik (with y = 2) gives the best compression,
achieving, for example, an expansion factor of around 12 for K = 250 and 500.
For K ≥ 1000, TRLWE packing followed by ℓ-truncation becomes the best
option and leads to an expansion factor of around 7. This is summarized10 in
Tab. 6. As discussed in Sect. 5.3, if we forget practicality for a moment and
let the y parameter of Dåmgard-Jurik increase and apply ℓ-truncation with ℓ =
17 (Tab. 4), we will eventually achieve the smallest possible expansion factor
of 32−17

4 = 3.75. As already emphasized, all these expansion factors must be
compared to the raw expansion factor of 6008 induced by TLWE ciphertexts for
t = 16.

6.3 Computational costs

This section further investigates the computational cost of the methods described
in this paper. For example, packing 1024 550-TLWE ciphertexts (t = 2) into a
single TRLWE ciphertext takes 0.4 secs when implemented by means of TFHE-
Lib. Then, switching 89 20-truncated partial decryptions (t = 2) to a Paillier
ciphertext with a 2048-bit RSA modulus takes 3.41 secs11 on a single-core, and

10 We also give two illustrative plots (Figs. 1 and 2) of the expansion factors change in
Sect. E.

11 Note that it is faster to “decrypt-then-pack”, which takes 2.83 secs (since comput-
ing the dot-product involves smaller numbers, hence leading to smaller exponent
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K Most compressive method Timing
1 ≤ K ≤ 2 Switch. to EC ElGamal 0.02 0.01 0.001

2 < K ≤ 81 ℓ-truncation + switch. to CPG (w.pack.) 6.93 5.66 0.86

81 < K ≤ 163 ℓ-truncation + switch. to D.-J. (w.pack.) 13.87 11.32 1.73

163 < K ≤ 243 ℓ-truncation + switch. to CPG (w.pack.) 20.79 16.89 2.58

243 < K ≤ 1141 ℓ-truncation + switch. to D.-J. (w.pack.) 97.09 79.24 12.11

1141 < K ≤ 1228 TLWEtoTRLWE + ℓ-truncation 0.4

1228 < K ≤ 1304 ℓ-truncation + switch. to D.-J. (w.pack.) 110.96 90.56 13.84

K > 1304 TLWEtoTRLWE + ℓ-truncation 0.4

Table 6: Most appropriate compression methods in function of K, the number of
evaluated TLWE ciphertexts that have to be transmitted. The timings are given in
seconds for the maximum value of K on the intervals: the first column corresponds
to “pack-then-decrypt” switching, the second to “decrypt-then-pack,” and the third to
parallelized “decrypt-then-pack”.

this number gets down to 0.42 secs with mild parallelization on an average lap-
top. For Dåmgard-Jurik, we obtain (estimated) timings of 10.24 secs to switch
178 20-truncated partial (t = 2) with a 2048-bit RSA modulus. Lastly, the run-
times for CPG are very close to those of Paillier. Additional timings (for t = 16)
are reported in Tab. 6.

All these numbers illustrate that our methods run quite fast in practice,
especially when comparing to the cost and latency of a typical homomorphic
computation which is generally a matter of minutes, if not much more.

7 Conclusion

In this paper, we have proposed and experimentally studied a versatile and prac-
tical toolbox to address the issue of compressing evaluated (T)FHE ciphertexts,
i.e., encrypted results obtained following the FHE evaluation of some useful func-
tion, to minimize their downlink transmission footprint towards decryption. To
the best of our knowledge, while this issue is very important to FHE practice, it
has so far been largely overshadowed in the literature by the issue of compress-
ing input FHE ciphertexts, i.e., encrypted inputs towards the FHE evaluation
of some useful function, to minimize their uplink transmission footprint from
encryption. Still, the two issues are very different in nature, and their solutions
require different corpora of techniques and tools. As key takeaways, we have re-
vealed the regimes in which the techniques we have studied are best applicable,
leading to the following concrete recommendations:

– Switching to EC ElGamal is the most compact option for transmitting a
single evaluated TFHE ciphertext.

corresponding mult-by-const operations under Paillier) than to “pack-then-decrypt”,
which accounts for 3.41 secs.
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– Switching to our new compressed variant of BCP03 (with several partial
decryptions packed in each ciphertext) is the most communication-efficient
option for transmitting up to around 100 evaluated TFHE ciphertexts.

– Above this value, we recommend switching to Damgard-Jurik (also with
several partial decryptions packed in each ciphertext) for compressing larger
numbers of evaluated TFHE ciphertexts, although this approach may even-
tually become too computationally costly, and, in that case, TRLWE packing
will provide relatively similar compression factors with a much lower com-
putational cost.

Additionally, all these approaches can be combined with a simple precision
reduction technique, which, we have shown, still allows to keep a manageable
probability of erroneous decryption. This technique allows to pack more par-
tial decryptions in each LHE ciphertext and thus further enhance compression.
Compared to the previous works, which have essentially focused on asymptotic
rates from a more theoretical viewpoint, all these approaches are practically
applicable.

As a concluding remark, let us emphasize that the techniques developed
in this paper are applicable and beneficial only to LWE-based schemes such as
TFHE. This is so for several reasons: first the LHE that we are considering in this
paper have a plaintext domain that is too small to absorb the large N typically
used for RLWE schemes such as BFV or BGV (which then achieve relatively
low expansion factors of 2 log2 q/ log2 t for both uplink and downlink12 and by
default fall in the large K regime in the terminology of Sect. 6). This is also true
for the ℓ-truncation technique. Indeed, as it significantly increases the ciphertext
noise, it can be applied only to schemes with an efficient bootstrapping procedure
(like TFHE), which then allows it to be applied to evaluated ciphertexts with
a sufficient noise margin. Trying to apply this technique in the SHE setting for
BFV or BGV would then require larger parameters and would most likely cancel
the benefits of using ℓ-truncation in the first place. As a perspective, developing
compression techniques practically applicable to partially-filled evaluated RLWE
ciphertexts is an interesting follow-up research question.
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A Linear Homomorphic Encryption schemes

Here we briefly recall Paillier [42], Dåmgard-Jurik [30], Elliptic Curve ElGamal
[38], and BCP03 [17] cryptosystems, which are used in the sequel.



Downlink (T)FHE ciphertexts compression 23

A.1 Paillier.

Paillier cryptosystem [42] is a public key encryption scheme invented by Pascal
Paillier in 1999. It is a partial homomorphic scheme that notably allows perform-
ing additions and multiplications-by-a-constant directly over its ciphertexts.

– KeyGen: Choose two large prime numbers p and q randomly and indepen-
dently such that gcd (pq, (p− 1)(q − 1)) = 1. Compute µ = pq, λ = φ(µ),
and set g = µ + 1, where g ∈ Z∗

µ2 , η = φ(µ)−1 mod µ. Return a public key
pk = (µ, g) and a secret key sk = (λ, η).

– Enc: Let m, 0 ≤ m < µ, be a message to encrypt. Select a random r : 0 <
r < µ and gcd(r, µ) = 1. Return a ciphertext c ∈ Z∗

µ2 as c = gm · rµ mod µ2.

– Dec: Return m = L(cλ mod µ2) · η mod µ, where L(x) = x−1
µ .

In summary, for Paillier scheme, a plaintext domain is Zµ and a ciphertext
domain is Zµ2 . A typical parameter choice to achieve 128-bit security or slightly
above consists in taking a modulus µ on 2048 bits. A Paillier ciphertext is there-
fore of size 4096 bits with a 2048-bit payload (leading to an expansion factor of
2).

A.2 Dåmgard-Jurik.

Dåmgard-Jurik cryptosystem [30] is a generalization of Paillier cryptosystem. It
uses a plaintext modulus µy and a ciphertext modulus µy+1, where µ is an RSA
modulus and y ∈ Z+. Paillier cryptosystem is the special case with y = 1.

– KeyGen: Choose an admissible RSA modulus µ = pq and compute λ =
lcm ((p− 1)(q − 1)). Return a public key pk = (µ) and a secret key sk = (λ).

– Enc: Let an integer m > 0 be a message to encrypt. Choose y : m < µy and
select a random r ∈ Z∗

µ. Return a ciphertext c = rµ
y

(1 + µ)m mod µy+1.

– Dec: Compute cλ mod µy+1 = (1+µ)mλ mod µy+1. Compute v = mλ mod ny

(apply an algorithm from Theorem 1 [30]). Return m = vλ−1 mod ny.

In summary, for Dåmgard-Jurik scheme, a plaintext domain is Zµy and a ci-
phertext domain is Zµy+1 . A typical parameter choice to achieve 128-bit security
or slightly above consists in taking a modulus µ on 2048 bits. A Dåmgard-Jurik
ciphertext is therefore of size 2048(y + 1) bits with a 2048y bits payload. Note
that a choice of y has no impact on security. Interestingly, an expansion factor
for Dåmgard-Jurik scheme is asymptotically such that limy→∞

2048(y+1)
2048y = 1.

A.3 Elliptic Curve ElGamal.

Elliptic Curve ElGamal [38] is a public key additive homomorphic encryption
scheme. It is a generalization of ElGamal public key cryptosystem over an elliptic
curve.
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– KeyGen: Choose a large prime ω and an elliptic curve E(Fω). Choose a point
P ∈ E, an integer a < ord(P ) and compute Q = aP . Return a public key
pk = (E,P,Q) and a secret key sk = (a).

– Enc: Let m, 0 ≤ m < ω be a message to encrypt. Express m as a point
X ∈ E: X = mP . Choose random r and return the ciphertext c = (c0, c1)
as c0 = rP, c1 = X + rQ.

– Dec: Compute X = c1 − ac0. Solve X = mP and return m.

In summary, to set up the scheme, we choose an elliptic curve y2 = x3 + ax +
b mod ω then a plaintext domain is Fω and a ciphertext domain is F2

ω. A typical
parameter choice to achieve 128-bit security or slightly above consists in taking
an elliptic curve Curve25519. An EC-ElGamal ciphertext is therefore of size 510
bits with a 255-bit payload. However, let us also emphasize that the decryp-
tion function requires solving an elliptic curve discrete logarithm problem over
Curve25519, which is practical only when a small upper bound is known for the
decrypted message. This means that only p ≤ 50 bits are truly usable from the
plaintext domain.

A.4 BCP03.

BCP03 [17] is another public key additive homomorphic cryptosystem that is
an ElGamal-style variant of Paillier scheme. The scheme is composed of three
algorithms defined below.

– KeyGen: Let µ = pq be an RSA modulus. Choose a random α ∈ Z∗
µ2 , a

random value d ∈ [1, ord(G)]. Set g = α2 mod µ2 and h = gd mod µ2.
Return a public key pk = (µ, g, h) and a secret key sk = (d).

– Enc: For a given message m ∈ Zµ, a random pad r
$←− Zµ2 return a ciphertext

c = (c0, c1) such that c0 = gr mod µ2, c1 = hr(1 + µ)m mod µ2.
– Dec: Compute c = c1(c0)

−d mod µ2 and return m = c−1
µ .

In summary, for a vanilla variant of this scheme, a plaintext domain is Zµ

and a ciphertext domain is Z2
µ2 . A typical parameter choice to achieve 128-bit

security or slightly above consists in taking a modulus µ of around 2048 bits. A
BCP03 ciphertext is therefore of size 8192 bits with a 2048-bit payload (leading
to an expansion factor of 4). As such, this scheme might not appear competitive
with the other LHE presented in this section; we, however, propose in Sect. 5.4
a more advanced variant, which we will refer to as compressed Paillier-ElGamal
(CPG), in which c0 is compressed onto 2048 bits and c1 onto log2 U bits (where
U is an upper bound on the encrypted message). As such, this new variant will
be much more competitive.

B Existing downlink compression techniques for FHE

B.1 TLWE packing to one TRLWE

In this Sect. we discuss a well-known idea of packing (up to) N > n TLWE sam-
ples into a single TRLWE sample in order to amortize the a vectors of TLWE
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samples. Doing that, we would need to transmit just one a vector for N TLWE
samples rather than one a vector for each of N TLWE samples. This TLWE sam-
ples packing technique is called TFHE Public Functional Key Switching, which
was introduced in [25]. We use TFHE Public Functional Key Switching with a
function being an identity function, which allows to pack N TLWE samples by
means of the Z−module isomorphism into a single TRLWE sample whereby N
TLWE messages m0, . . . ,mN−1 ∈ T 7→ m(X) =

∑N−1
i=0 miX

i ∈ TN [X].
Noise Analysis: Because additional noise increases a probability of erro-

neous decryption, it is important to characterize a noise variance σ2
pack in a

TRLWE sample obtained from TLWEtoTRLWE packing of N TLWE samples
with independant noises of variance bounded by σ2

BS. From [25], the error vari-
ance σ2

pack satisfies:

σ2
pack ≤ R2σ2

BS + ntdNσ2
TRLWE +

n

12
B−2td

KS , (11)

where R = 1 and σ2
TRLWE is the variance13 of the error in a keyswitch key (KS).

If K < N TLWE samples have to be transmitted, it is possible to pack
just K < N TLWE samples into a single TRLWE sample assuming a not-full
packing to avoid transmitting a part of the resulting TRLWE sample coefficients.
It means that we “fill” the first K slots of TRLWE with TLWEs and keep N−K
slots empty. To transmit a not-fully packed TRLWE sample on the downlink,
we transmit a and the first K coefficients of b: b0, . . . , bK−1. To decrypt this
TRLWE sample, we perform a decryption of the first K slots of TRLWE.

Now, let’s compute an expansion factor for TLWEtoTRLWE packing in the
downlink case. Let a value r2 = ⌊K/N⌋ define how many fully packed TRLWE
samples we get after packing K TLWE samples, and a value r1 = K mod N de-
fine how many TLWE samples are left to pack in a last not-fully packed TRLWE
sample. It means that we need to transmit r2 fully packed TRLWE samples and
one not-fully packed TRLWE sample with r1 (> 0) packed coefficients; then the
size of the resulting ciphertexts is 2r2N log2 q+(N+r1) log2 q. At the same time,
the resulting ciphertexts encrypt r2N+r1 plaintext messages of size log2 t; thus,
for r1 > 0 the expansion factor is (2r2N+N+r1) log2 q

(r2N+r1) log2 t , and for r1 = 0 : 2 log2 q
log2 t .

Then, for example, for t = 2 and K = N = 1024 the expansion factor is 64.

B.2 Shrinking

The so-called shrinking technique, first proposed in [15], allows for compressing
ciphertexts from a FHE scheme that supports linear decrypt-and-multiply, like
the GSW scheme [32]. It can also be applied directly to compress BFV-style ci-
phertexts as well as TRLWE ones. In a nutshell, given a TRLWE sample (a,b),
shrinking consists of computing two values, a ‘helper’ r ∈ Zq and a value w ∈ Zt

13 We use the identity function f as a public R-Lipschitz morphism; thus, R = 1; and
note that the keyswitch key KS is a fresh TRLWE sample; hence, the variance of
the error in KS is σ2

TRLWE.
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such that the decryption of the original ciphertext (which is not necessarily cor-
rect) can be recovered exactly14 from r and w (as well as, of course, the knowledge
of the secret key). Shrinking is interesting because a single helper value ‘r’ can
be used to cover the N LWE samples assembled in a RLWE ciphertext.

In a nutshell, shrinking works as follows. Let c = (a,b) be a TRLWE sample
we need to compress, and let s be a TRLWE secret key. To shrink the TRLWE
sample, we parse b = (b0, . . . , bN−1) ∈ ZN

q and compute the union of intervals
U ⊆ Zq, where B = σTLWE is a TLWE noise bound.

U =
⋃N−1

i=0

([
∆
2 − bi −B, ∆

2 − bi +B
]
∪
[
−∆

2 − bi −B,−∆
2 − bi +B

])
, for

∆ = q/t. Then we pick any r ∈ Zq\U and for i = [0, N−1] compute wi = ⌈bi+r⌋t,
where ⌈x⌋t =

⌈
x · tq

⌋
mod t is a rounding function. The resulting shrunk sample

is c̃ = (r,a, w0, . . . , wN−1). This therefore leads to an overhead of

(N + 1) log2 q +N log2 t

N log2 t
(12)

i.e., for N = 1024 (t = 2) it is ≈ 33 or for N = 2048 (t = 16) ≈ 9. If only K < N
LWE samples are to be transmitted (we assume not-full packing for TRLWE),
then, trivially from (12), the expansion factor is (N+1) log2 q+K log2 t

K log2 t .

To decrypt the shrunk TRLWE sample on the downlink, we do the following:
we compute v = s · a and parse v = (v0, . . . , vN−1). For i ∈ [0, N − 1] we then
compute m′

i = (wi − ⌈vi⌋t) mod t and output m′ = (m′
0, . . . ,m

′
N−1). The equiv-

alence between this decryption function and the original one then follows from
Lemma 1 of [15]. Let us emphasize, however, that when used for compressing
several TLWE ciphertexts, Shrinking affects the probability of erroneous decryp-
tion, as we can apply Shrinking only to TRLWE ciphertexts. As discussed in the
previous Sect. packing several TLWE increases the noise deviation.

C Further details on ℓ-truncation

C.1 Refined TLWE ℓ-truncation

Although it does not give us a closed-form formula for ℓ, the following proposition
is a bit more precise than Prop. 1.

Proposition 2. Let c denote a TLWE encryption of m subject to a centered
Gaussian noise e with variance σ2, and let c′ = Trunc(c, ℓ), then⌈

1
∆PartialDec(Rescale(c′, ℓ0), s))

⌋
= m with probability at least

1− 2 exp

(
−
(
∆
2 −

1
2 (n− 1)(2ℓ − 1)

)2
2
(
σ2 + 1

12 (n+ 1)(22ℓ − 1)
)) .

14 This is important for BFV-style schemes, which tend to induce large noise variances
in evaluated ciphertexts.
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Proof. Recall Eq. (4), we have e′′ = e +
∑n−1

i=0 (ai mod 2ℓ)︸ ︷︷ ︸
−e′′i

si − (an mod 2ℓ)︸ ︷︷ ︸
−e′′n

.

Under the assumption that q is a power of 2, ai mod 2ℓ (i ∈ {0, ..., n − 1}) is
uniformly distributed over {0, ..., 2ℓ − 1} as the associated ai’s are uniformly
distributed in Zq. Additionally, an mod 2ℓ is also uniformly distributed over
{0, ..., 2ℓ − 1} as, following the LWE assumption, b = an is indistinguishable
from a uniform deviate over Zq. Let n′ =

∑
i si; from the CLT, we can thus

assume that e′′ follows a Gaussian distribution with expectation E[e′′] = 1
2 (n

′−
1)(2ℓ− 1) ≤ 1

2 (n− 1)(2ℓ− 1), and variance15 V [e′′] = σ2 + 1
12 (n

′ +1)(22ℓ− 1) ≤
σ2 + 1

12 (n+ 1)(22ℓ − 1). The claim follows from applying the Chernoff bound16

to Pr
(
|e′′| ≥ ∆

2

)
. ⊓⊔

Using the latter Prop. in conjunction with Prop. 1 usually allows to slightly
increase the number of bits that may be dropped off. For example, as discussed
just above, with our running TFHE parameter set example, Prop. 1 tells that for
ϵ = 2−40, l0 = 19. Prop. 2, however, tells us that the probability of decryption
error is bounded by 2−116.06 for that value (part of that gap is explained by the
ceiling that occurs in (5), as we can only drop an integer number of bits). Then,
if we choose ℓ = 20, the bound drops to 2−81.78, still above our 2−40 target. As
this is the cutoff value, we can finally settle on ℓ = 20 meaning a ciphertext size
reduction of 62.5%. Overall, the expansion factor goes from 8816 down to 3306,
i.e., is reduced by a factor of 2.66.

C.2 TRLWE ℓ-truncation

ℓ-truncation can equally be applied to TRLWE ciphertext by dropping ℓ least
bits on all the coefficients of the b polynomial. Because this is very similar to
the TLWE case, we do not provide further details. For TRLWE, we also have
the analogous of Prop. 1 with Eq. (5) replaced by (recall from Sect. B.1 that, by
default, we pack N n-dimensional TLWE samples in a single degree-N TRLWE)

ℓ0 ≤
⌊
log2

(
1

n+ 1

(
∆

2
−
√
−2σ2 log(1− N

√
1− 2−(k+1))

)
+ 1

)⌋
.

which provides the guarantees that Pr
(
||e′′||∞ ≥ ∆

2

)
≤ 2−k. However, let us

emphasize that the above equation bounds the probability that an ℓ0-truncated
TRLWE ciphertext decrypts incorrectly, meaning that a decryption error occurs
in at least one slot of the message polynomial. Since the present work is focusing
on TFHE and is therefore TLWE-centric, we are only using TRLWE ciphertexts
as a mean to more efficiently transmit TLWE ciphertexts, and, in fine, it is the
decryption error probability of these TLWE ciphertexts that is important to us.
15 Recall that the variance of the discrete uniform distribution over {a, ..., b} is 1

12
((b−

a+ 1)2 − 1), leading to 1
12
(22l − 1) when a = 0 and b = 2ℓ − 1.

16 For a Gaussian deviate of expectation µ ≥ 0 and variance σ2, it holds that P (|X| ≥

α) ≤ 2e
− (α−µ)2

2σ2 . Furthermore, for µ′ ≥ µ and σ′ ≥ σ, e−
(α−µ)2

2σ2 ≤ e
− (α−µ′)2

2σ′2 .
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So despite the fact that we may use TRLWE ciphertexts for transmission, we
stick to the tools provided in the previous section in the sequel. However, in
using Prop. 1 and 2 to choose the number of bits that can be dropped from
coefficients of a TLWE pair embedded in a TRLWE ciphertext, we have to take
into account the extra variance induced by packing following Eq. (11).

Then, with our running TFHE parameter set example, Prop. 1 tells that for
ϵ = 2−40, l0 = 19. Prop. 2, however, tells us that the probability of decryption
error is bounded by 2−100.55 for that value. Then, if we choose ℓ = 20, the bound
drops to 2−70.86, still above our 2−40 target. As this is the cutoff value, we can
finally settle on ℓ = 20 (as in the previous Sect., meaning that TRLWE packing
does not affect how much we can truncate in the present setting). Assuming one
fully packed TRLWE, we get a ciphertext size reduction of 56.25%. Overall, the
expansion factor goes from 64 (Sect. B.1) down to 24, i.e., is reduced by a factor
of 2.66.

D TFHE parameters

In our experimental analysis, we consider the two TFHE parameter sets given in
Tab. 7. The first set is identical to the running example we have used so far for
illustrative purposes. This first parameter set is consistent with the “standard
TFHE gate bootstrapping” approach where TFHE is configured for performing
operations over binary plaintexts (i.e., t = 2). This first parameter set achieves
an error probability for bootstrapping of 2−154. Our second parameter set is
for t = 16, meaning that TFHE ciphertexts now have a 4-bit payload. This set
is the most interesting because, as we shall see, the increased payload length
will consistently lead to the smallest expansion factors in our experiments. Fur-
thermore, several recent works, notably [46, 47], hint that t = 16 may achieve
an optimal tradeoff between the bootstrapping time (which increases with t)
and the number of operations (which decreases with t) required when executing
(useful) algorithms over TFHE. However, for t = 16, the bootstrapping error
probability is increased to 2−46 and cannot be significantly lowered unless one
is willing to increase q to 264 (and also mechanically increase n). We do not
consider this latter option, as it would result in a large performance hit for the
FHE calculations themselves. Our two parameter sets achieve 128-bit security
according to the lattice-estimator and have been obtained following the method-
ology in [26]. Note that, since we have used our parameter set for the case where
t = 2 as a running example throughout the paper, the present section focuses
essentially on the case where t = 16.
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t q n N l td Bg BKS σTLWE σTRLWE

2 232 550 1024 2 1 256 1024 q · 2.82× 10−4 q · 5.6× 10−8

16 232 750 2048 2 2 1024 1024 q · 7.7× 10−6 q · 9.6× 10−11

t σBR σKS σBS σpack

2 q · 1.12× 10−2 q · 1.27× 10−2 q · 1.69× 10−2 q · 1.81× 10−2

16 q · 3.62× 10−4 q · 4.92× 10−4 q · 6.1082× 10−4 q · 6.1087× 10−4

Table 7: Our TFHE parameter sets are for t = 2 (binary payloads) and 16 (4-bit
payloads). The full set of parameters is provided for completion and reproducibility
of our results, but we do not detail the meaning of them all. As of the second of the
above tables, it provides the post-bootstrapping noise standard deviation σBS (which
characterizes the noise present in evaluated ciphertexts) and the post-packing standard
deviation (obtained after packing N , n-dimensional evaluated TLWE ciphertexts, hence
with a noise deviation of σBS, in a single degree-N TRLWE ciphertext). The other two
deviations are post-Blind Rotation (BR) and post-KeySwitch (KS), but we did not
need to detail these operations in this paper.

E Additional tables and plots

Fig. 1: Comparison of expansion factors for the downlink ciphertext compression meth-
ods studied in this paper and ℓ found using Prop. 1 (t = 16)
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Method Exp. factor

TLWE (n+1) log2 q

log2 t

TLWE ℓ-truncation (n+1)(log2 q−ℓ)

log2 t

Shrinking (N+1) log2 q+K log2 t

K log2 t

TLWEtoTRLWE (2r2N+N+r1) log2 q

K log2 t

TLWEtoTRLWE + ℓ-truncation (2r2N+N+r1)(log2 q−ℓ)

K log2 t

(a) Expansion factor formula for the different methods based on TLWE/TRLWE when
K evaluated TLWE ciphertexts have to be transmitted on the downlink. For RLWE-
based methods, r1 = K mod N and r2 = ⌊K/N⌋ when the K n-dimensional TLWE
are packed N -by-N in degree-N TRLWE ciphertexts.

Compression method M Exp. factor

Paillier (w. packing)
⌊

⌊log2 µ⌋
v

⌋
(r2+1)⌈2 log2 µ⌉

K log2 t

ℓ-truncation + Paillier (w. packing)
⌊

⌊log2 µ⌋
v−ℓ

⌋
Dåmgard-Jurik (w. packing)

⌊
⌊y log2 µ⌋

v

⌋
(r2+1)⌈(y+1) log2 µ⌉

K log2 t

ℓ-truncation + D.-J. (w. packing)
⌊

⌊y log2 µ⌋
v−ℓ

⌋
CPG (w. packing)

⌊
⌊log2 µ⌋

v

⌋
Kv+(r2+1)⌈log2 µ⌉

K log2 t

ℓ-truncation + CPG (w. packing)
⌊

⌊log2 µ⌋
v−ℓ

⌋
K(v−ℓ)+(r2+1)⌈log2 µ⌉

K log2 t

EC ElGamal 2 ⌈log2 ω⌉
K log2 t

(b) Expansion factor formula for the different LHE-based methods when K evaluated
TLWE ciphertexts have to be transmitted on the downlink. Above, M is the number
of TLWE partial decryptions that can be packed in a single LHE ciphertext (and v the
number of bits required to represent one such partial decryption). Let r1 = K mod N
and r2 = ⌊K/N⌋ when the K TLWE partial decryptions are packed M -by-M in LHE
ciphertexts.

t
ϵ

2−40 2−64 2−128

2 20 20 18

16 18 18 17

2 20 20 16

16 18 18 17

(c) Applying Prop. 2 for t = 2, 16 and several values for the probability of decryption
error ϵ, the upper part represents a maximum value for ℓ when ℓ-truncating an evaluated
(i.e., bootstrapped) TLWE ciphertext, and the bottom part – when ℓ-truncating a
degree-N TRLWE ciphertext in which N n-dimensional evaluated TLWE ciphertexts
have been packed.
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Fig. 2: Comparison of expansion factors for the downlink ciphertext compression meth-
ods studied in this paper for K ≤ 300 and ℓ found using Prop. 1 (t = 16)


