
Secure Multiparty Shuffle: Linear Online Phase is
Almost for Free

Abstract. Shuffle is a frequently used operation in secure multiparty
computations, with applications including joint data analysis, anony-
mous communication systems, secure multiparty sorting, etc. Despite a
series of ingenious works, the online (i.e. data-dependent) complexity of
malicious secure 𝑛-party shuffle protocol remains Ω(𝑛2𝑚) for shuffling
data array of length 𝑚. This potentially slows down the application and
MPC primitives built upon MPC shuffle.
In this paper, we study the online complexities of MPC shuffle proto-
col. We observe that most existing works follow a “permute-in-turn”
paradigm, where MPC shuffle protocol consists of 𝑛 sequential calls to
a more basic MPC permutation protocol. We hence raise the following
question: given only black-box access to an arbitrary MPC framework
and permutation protocol, can we build an MPC shuffle, whose online
complexities are independent of the underlying permutation protocol?
We answer this question affirmatively, offering generic transformation
from semi-honest/malicious MPC permutation protocols to MPC shuf-
fle protocols with semi-honest/malicious security and only 𝑂 (𝑛𝑚) online
communication and computation. The linear online phase is obtained
almost for free via the transformation, in the sense that in terms of over-
all complexities, the generated protocol equals the protocol generated by
naive permute-in-turn paradigm. Notably, instantiating our construction
with additive/Shamir secret sharing and corresponding optimal permu-
tation protocol, we obtain the first malicious secure shuffle protocols
with linear online complexities for additive/Shamir secret sharing, re-
spectively. These results are to be compared with previous optimal online
communication complexities of 𝑂 (𝐵𝑛2𝑚) and 𝑂 (𝑛2𝑚 log𝑚) for malicious
secure shuffle, for additive and Shamir secret sharing, respectively. We
provide formal security proofs for both semi-honest and malicious secure
transformations, showing that our malicious secure construction achieves
universally composable security. Experimental results indicate that our
construction significantly improves online performance while maintaining
a moderate increase in offline overhead. Given that shuffle is a frequently
used primitive in secure multiparty computation, we anticipate that our
constructions will accelerate many real-world MPC applications.
Keywords: multiparty computation, shuffle, random correlation

1 Introduction

Secure multiparty computation (MPC) has various real-world applications. In
an MPC scheme, multiple parties jointly compute a function based on their
secret inputs, while keeping each party’s input confidential from the others.

This is particularly relevant in scenarios such as joint database queries [1][2][3],
federated learning [4][5][6], etc.

In this paper, we focus on designing secure and efficient MPC shuffle proto-
cols. In an MPC shuffle protocol, the parties jointly hold an unknown secret data
array which is input or generated via MPC functionalities (e.g. secret sharing
schemes) while attempting to permute the array by a secret random permutation
known to no one. Such an MPC shuffle protocol is a powerful tool in MPC pro-
tocol design. For example, the shuffle-then-sort paradigm developed by Hamada
et al. [7] represents a class of most efficient MPC comparison-based sorting pro-
tocols, which is followed by [8][9]. Another MPC sorting protocol by Hamada
et al. [10] that is not comparison-based also utilizes an MPC shuffle protocol as a
subroutine, which is one of the most efficient MPC sorting protocols. MPC shuf-
fle protocols have also found direct real-world applications. For example, there
is a series of work concentrating on building MPC-based anonymous communi-
cation systems [11][12][13], where messages from users are secret shared among
all servers. The messages are shuffled and then opened, ensuring that no server
knows which message comes from which user.

Compared to other MPC primitives, MPC shuffle often represents the effi-
ciency bottleneck in entire MPC applications, especially when the total number
of parties is large [14]. Most existing MPC shuffle protocols follows a “permute-
in-turn” paradigm. Specifically, to construct a shuffle protocol, an MPC per-
mutation protocol is developed first, which allows one party to select a secret
permutation that is applied to the array. Then, by party permuting in turn,
the input array is shuffled by a secret uniform permutation. Following such a
paradigm, Keller and Scholl [15] propose a malicious secure MPC shuffle proto-
col with 𝑂 (𝑛2𝑚 log𝑚) communication, where 𝑛 is the total number of parties and
𝑚 is the size of the array. By adopting a variant of permute-in-turn paradigm
and enhancing the security with zero-knowledge proofs (ZKPs), Laur et al. [16]
propose a malicious secure MPC shuffle protocol with 𝑂 (2𝑛𝑛1.5𝑚 log𝑚) com-
munication complexity. As communication complexities here are quadratic in 𝑛

and super-linear in 𝑚, the MPC application built upon these shuffle protocols is
potentially slowed down.

Breakthroughs are made by recent works adopting a “two-phase” approach. In
this method, parties jointly perform expensive preparation work “offline” before
the input arrives. When the input is ready, the parties only need to conduct a sig-
nificantly reduced amount of work in an “online” phase. Chase et al. [17] propose
a very efficient 2-party shuffle protocol with 𝑂 (𝑚 log𝑚) offline communication
and 𝑂 (𝑚) online communication for semi-honest security. The work of Laud
[18] enhance the protocol of Chase et al. [17] to malicious security, and achieve
𝑂 (𝑛2𝑚 log𝑚) offline and 𝑂 (𝑛2𝑚) online communication. Eskandarian and Boneh
[13] firstly propose the concept of “shuffle correlation”. By generating the corre-
lation with the two-party protocol of [17] in the offline phase, they build a novel
shuffle protocol (and an anonymous communication system) that requires only
𝑂 (𝑛𝑚) online communication, and was believed to be malicious secure. Unfor-
tunately, a more recent study of Song et al. [14] shows that the constructions in

2

[18][13] are flawed, and achieve only semi-honest security. Although Song et al.
[14] propose their own malicious secure construction, it only achieves 𝑂 (𝐵𝑛2𝑚)
online complexity where 𝐵 is introduced by cut-and-choose technique and grows
with security parameter. As summarized in Table 1, the best online complexity
of existing MPC shuffle protocols remains quadratic in the number of partici-
pants. Therefore, it remains an open question how to construct malicious secure
MPC shuffle protocols with only linear online overhead.

Table 1. Existing MPC Shuffle Protocols

Protocol Offline Complexity Online Complexity Security Framework
[16] 𝑂 (1) 𝑂 (2𝑛𝑛1.5𝑚 log𝑚) malicious Threshold
[15] 𝑂 (𝑛2𝑚 log𝑚) 𝑂 (𝑛2𝑚 log𝑚) malicious Arbitrary
[18] 𝑂 (𝑛2𝑚 log𝑚) 𝑂 (𝑛2𝑚) semi-honest SPDZ
[13] 𝑂 (𝑛2𝑚 log𝑚 + 𝑛3𝑚) 𝑂 (𝑛𝑚) semi-honest SPDZ
[14] 𝑂 (𝐵𝑛2𝑚 log𝑚) 𝑂 (𝐵𝑛2𝑚) malicious SPDZ
ours 𝑂 (𝑛2𝑚 log𝑚) 𝑂 (𝑛𝑚)1 malicious Arbitrary
ours 𝑂 (𝐵𝑛2𝑚 log𝑚) 𝑂 (𝑛𝑚) malicious SPDZ

The table lists the upper-bound for both communication and computa-
tion complexity. For the online complexities, the two are identical in all
above protocols.
𝑛 is the number of parties. 𝑚 is the size of data to be shuffled. 𝐵 is
introduced by cut-and-choose in [14] and grows with security parameter.
[16] works only for threshold secret sharing, e.g. Shamir secret sharing.
We assume the offline complexity of multiplication in SPDZ is 𝑂 (𝑛) [19].

The online complexity of MPC shuffle protocol is important for several rea-
sons. One is that the online complexity represents the latency experienced at the
user end. As the offline task is data-independent, it can be pre-processed before
the arrival of user’s request. Thus, in real-world MPC application, e.g. MPC-
based anonymous communication system [13], it is the online complexities that
causes the latency the outside users must endure. Another reason is that MPC
shuffle protocol is frequently used as a primitive for building more complicated
MPC protocol. During this process, the online complexities are accumulated into
the online overheads of higher-level protocols. For example, the MPC oblivious
array built by Keller and Scholl [15] requires MPC shuffle as its building block.
The shuffle protocol adopted in [15] requires 𝑂 (𝑛2𝑚 log𝑚) online communica-
tion, which brings the 𝑛2𝑚 log𝑚 factor to its entire construction. Since MPC
oblivious array also serves as a building block for higher-level protocol, this fac-
tor could be carried upwards and amplified even further. Such an accumulation
could weaken the usability of MPC-based real-world service. Lastly, since of-
fline phase is data-independent, this automatically enables parallel processing
1 Strictly speaking, the online complexity of our protocol is Θ(𝑛(𝑛+𝑚)). However, as in

almost all real-world scenarios, the number of items is (asymptotically) larger than
the number of parties (i.e. 𝑛 = 𝑜(𝑚)), this is essentially Θ(𝑛𝑚).

3

for offline tasks. However, the online computation is data-dependent, which po-
tentially prevents parallelized processing. For example, the MPC radix sort of
[10] involves sequential invocations to underlying shuffle protocol, whose online
phases thus cannot be batched and parallelized like their offline phases. Hence,
it is likely that the communication/computation resource is more (somewhat)
expensive in online phase, and an MPC shuffle protocol with better online com-
plexities would bring immediate advances in many other MPC constructions.

In this paper, we handle the online complexities of MPC shuffle protocols
by presenting several novel constructions, which transform MPC permutation
protocols to MPC shuffle protocols with linear online complexities. At the core
of our constructions is a novel technique named shuffle correlation, which helps
accelerate the online phase of the shuffle protocol. We define the shuffle corre-
lations for both semi-honest security and malicious security, and show how to
utilize our correlations to implement shuffle protocol with linear online phase in
both settings. We also show how to generate such shuffle correlations with only
generic MPC primitives (i.e. inputting/outputting, addition and multiplication)
and a black-box semi-honest/malicious secure MPC permutation protocol. This
generality enables automatic generation of MPC shuffle protocols with linear
online complexities in several important MPC frameworks. Remarkably, by in-
stantiating our constructions with the SPDZ framework of [19] and the permu-
tation protocol of [14], we obtain a malicious secure MPC shuffle protocol with
𝑂 (𝐵𝑛2𝑚 log𝑚)/𝑂 (𝑛𝑚) offline/online communication and computation, which
outperforms previous optimal result of 𝑂 (𝐵𝑛2𝑚 log𝑚)/𝑂 (𝐵𝑛2𝑚) offline/online
overheads by [14]. Instantiating with the Shamir secret sharing scheme of [20]
and the permutation protocol of [15], we obtain a malicious secure MPC shuf-
fle protocol with 𝑂 (𝑛2𝑚 log𝑚)/𝑂 (𝑛𝑚) offline/online communication and com-
putation, outperforming previous optimal result of 𝑂 (𝑛2𝑚 log𝑚)/𝑂 (𝑛2𝑚 log𝑚)
offline/online overheads by [15]. Besides the significant improvements in online
complexities, the offline complexities match currently optimal results, respec-
tively. Thus, MPC shuffle protocols with linear online phase are obtained “almost
for free”.

Fig. 1 below demonstrates how our constructions work: by picking an MPC
framework on the left, picking an MPC permutation protocol (compatible with
the framework) in the middle, and finally applying our corresponding semi-
honest/malicious secure shuffle correlation and protocols, one obtains automati-
cally an MPC shuffle protocol on the right with linear online complexities, with
security level and offline complexities varying by choice of framework and per-
mutation protocol. Note that this illustration is not exhaustive, i.e. there may
exist other feasible MPC frameworks or permutation protocols not listed in the
diagram.

Our contributions are summarized as follows.

1. We refine the concept of shuffle correlation, define it for both the semi-honest
security and the malicious security, and show how our definitions can be used
to implement MPC shuffle protocol with linear online communication and
computation overheads. Our definition is generic, in the sense that it can

4

MPC Framework

[19]

[21]

[22]

[20]

[23]

Additive SS

Shamir SS

MPC Permutation

[14]

[18]

[15]

[16]

Shuffle Correlation

Alg. 1&2 or 4&5

Shuffle Protocol with

Linear Online Phase

MPC Shuffle

Fig. 1. Illustration of How Our Constructions Work

be (as we will demonstrate) generated with mere black-box access to basic
MPC primitives and an MPC permutation protocol. Contrasting previous
definition in [13], our definitions of shuffle correlations support malicious
security and are compatible with various MPC frameworks and MPC per-
mutation protocols. This compatibility brings potential advances in building
MPC shuffle protocol in various MPC frameworks.

2. We study the instantiation of our protocols and present several MPC shuf-
fle protocols with both online and offline complexities currently optimal.
Remarkably, our constructions directly imply actively secure shuffle proto-
cols with linear online phase in additive secret sharing scheme and Shamir
secret scheme, which are to be compared with currently optimal online com-
munication of 𝑂 (𝐵𝑛2𝑚) and 𝑂 (𝑛2𝑚 log𝑚), respectively. This is achieved by
combining our construction with the SPDZ framework of [19] and the per-
mutation protocol of [14], and combining Shamir secret sharing scheme of
[20] and the permutation protocol of [15], respectively.

3. We formally prove the security of our constructions. In malicious security in
particular, we prove that our construction is universally composable secure
(UC secure) in FMPC-hybrid model, where FMPC is an ideal functionality,
which supports basic MPC arithmetic operations and an MPC permutation.
This means our protocol can be instantiated with any MPC framework and
permutation protocol, and retains a corresponding security level.

4. Experiments are done to verify theoretical analysis. The results confirm
that compared to the shuffle protocol generated by naive permute-in-turn
paradigm, our protocol consumes much less online running time and online
communication resource, with moderate increasing in offline overheads.

The rest of this paper is organized as follows. In Section 2, we briefly review
previous works in literature. In Section 3, we present the primitives required
for our constructions, discuss the “permute-in-turn” paradigm and give the def-
inition of security. In Section 4 we discuss the main challenges in constructing
shuffle protocols with linear online complexities, and present our core insights in
overcoming them. Section 5 shows our definition for semi-honest shuffle correla-
tion and how to generate/use it, and Section 6 for malicious case. For clarity of
description and security, the construction given in Section 6 has 𝑂 (𝑛2𝑚) online
complexity, which will be optimized to 𝑂 (𝑛𝑚) in Section 7 via a standard batch

5

checking technique. The fully optimized malicious shuffle protocol is formally
presented in Section B, before proving its security. In Section 8, we show the
result of our experiments. Due to the page limit, we defer our security proof to
appendix. The formal proofs of semi-honest and malicious security are presented
in Section A and Section B, respectively. We will case study several candidates
that could be used to instantiate our construction to obtain MPC shuffle proto-
col for different MPC frameworks in Section C. Lastly in appendix, we discuss
several important issues w.r.t. the usage of shuffle protocol in practice in Section
D.

2 Related Works

This first shuffle protocol dates back to the seminal work of Chaum [24], appear-
ing by the concept of mix-net. From the view of modern cryptography, the work
of Chaum [24] implements anonymous communication in a server-aided scheme,
with semi-honest server. The work also inspires a serial of works by the concept
of “decryption shuffle”, which involves the sender encrypting its message with a
sequential public keys of servers, and then the server decrypting and permuting
the message in turn. The construction requires a linear communication overhead
and a moderate computation of asymmetric encryption.

The work of Chaum [24] considers only semi-honest case, in the sense that
all the servers must follow the protocol honestly, otherwise the security may
completely break down. There is a series of works enhancing the security of
the protocol [25][26][27][28]. The most common approach is via zero-knowledge
proof, i.e. each server generates a proof which proves that it has permuted the
ciphertext honestly, while hiding the permutation applied. This approach, while
being effective, is generally expensive and heavy in computation.

Very recently, a new construction for shuffling via multiparty computation
(MPC) appears, which offers potentially a different approach to achieve secu-
rity against malicious adversary. Chase et al. [17] design a shuffle protocol for
two-party computation, with obliviously punctured vector (OPV). Due to the
invention of oblivious transfer extension, the OPV can be generated considerably
fast. The core technique is a protocol that allows one of the parties to permute
the secret shared data with a permutation it chooses, and the shuffle protocol
consists of each party permuting once. Although the construction is specified for
two-party computation, a direct extension to 𝑛-party with 𝑂 (𝑛2𝑚) online com-
munication is possible, as is shown in [18], in an attempt to construct malicious
secure shuffle protocol. [13] also construct a shuffle protocol for anonymous com-
munication system, which is claimed to be malicious secure with only 𝑂 (𝑛𝑚)
online complexity. It seems that malicious secure MPC shuffle with linear online
complexity can be easily derived from such a construction.

However, a more recent study by Song et al. [14] points out that the im-
plementations of [18] and [13] are not secure against malicious adversary. By
constructing a selective abort attack to these two constructions, Song et al.
[14] demonstrate that malicious adversary could bypass the correctness check

6

of [18] and [13] with non-negligible probability, while gaining information about
permutation applied upon success. They hence also designed a shuffle protocol
for MPC, which has 𝑂 (𝐵𝑛2𝑚) online communication complexity, where 𝐵 is a
parameter introduced by cut-and-choose technique.

From all the above constructions, one observation is that all these construc-
tions follow a “permute-in-turn” paradigm. That is, letting parties permute the
items in turn, and the result is correctly shuffled with unknown permutation. All
the constructions of [24][25][26][17][18][13][14] follow this paradigm, even though
many of them are not designed for multiparty computation. Although [16] adopts
a slightly different approach, it is in essence letting groups of parties permute
in turn, which can be seen as a variant of permute-in-turn paradigm. However,
to the best of our knowledge, currently all malicious secure shuffle protocols
have their online phase executing the (online phase of) permutation protocol di-
rectly, e.g. in [16], [15] and [14], parties repeatedly form validly shared permuted
secret for 𝑛 times, which results in Ω(𝑛2𝑚) communication and computation.
This makes the online phase communication and computation heavy, which is
undesirable for many real world applications that require quick response.

Another perspective to view this issue is from the concept of shuffle correla-
tion. A shuffle correlation is a set of random values that are correlated, which
helps to implement shuffle operation in the online phase. The works of [17][18][14]
utilize permutation correlations that help them perform online permutation.
Thus, we may say that they have defined implicitly their shuffle correlation to
be the set of 𝑛 permutation correlations, each for one party. This results in hon-
estly/separately permuting the array 𝑛 times in the online phase, leading to an
Ω(𝑛2𝑚) online communication and computation. Though [13] first propose ex-
plicitly the concept of shuffle correlation, their shuffle correlation achieves only
semi-honest security. Also, as its generation relies heavily on the two-party per-
mutation protocol of [17] and is specialized for additive secret sharing, it is not
compatible with other MPC frameworks and permutation protocols.

Although the definition in [13] does not achieve malicious security, it ac-
complishes linear online complexity with a relatively small constant factor. This
raises the question whether it is possible to build a maliciously secure MPC
shuffle based on such a definition. However, this turns out to be difficult. The
primary obstacle is that all operations (i.e., addition and permutation) are linear
throughout the process, yet the parties cannot verify the correctness of interme-
diate values. During the process, each party locally adds a random mask to the
received messages, permutes them, and sends them to the next party. To en-
sure the secrecy of the underlying data, all values sent and received by a party
are independently random, preventing an honest party 𝑃𝑖 from confirming the
correctness of the values it receives. This inherent characteristic of shuffle cor-
relation makes it vulnerable to selective failure attacks, as constructed by Song
et al. [14], where a malicious party introduces additive errors in the interme-
diate values and later attempts to correct them. Such an attack can succeed
with non-negligible probability and, upon success, leaks information about the
permutations chosen by honest parties. Therefore, it seems implausible to rely

7

on the construction of [13] to achieve both malicious security and linear online
complexity.

We remark that, such an attack forms a main challenge in constructing ma-
licious secure shuffle correlation with linear online complexities. Facing such an
attack, each party must somewhat be able to verify that it is receiving correct
messages. However, this check cannot be done by the party alone, as the pri-
vacy requires that the received message must appear uniformly random to the
party. Since a malicious party can simply send garbage to honest party, it is not
possible for a party to locally check the correctness of the message. Worse still,
checking this 𝑚-long vector by MPC primitives seems also a bad idea, as merely
sharing it would require 𝑂 (𝑛𝑚) communication, which is already 𝑂 (𝑛2𝑚) for 𝑛

parties. We refer the reader to Section 4 for more involved discussions on these
challenges and our core insights for overcoming them.

3 Preliminary

3.1 Basic Notations

Throughout this paper, it is assumed that all numbers and operations are in a
large prime field F, with |F| ≥ 2𝜅 for any statistical security parameter 𝜅 fixed a
priori. Suppose there are 𝑛 parties 𝑃1, 𝑃2, ..., 𝑃𝑛, and 𝑚 field elements to shuffle.
Denote by

[𝑡] := {1, 2, ..., 𝑡},

the set of positive integers ranging from 1 to 𝑡 for any positive integer 𝑡.
Throughout this paper, we use lowercase letters for integers, e.g. 𝑥, 𝑦, 𝑧, and

bold font letters for vectors, e.g. x, y, z. We denote by x(𝑖) or 𝑥𝑖 the 𝑖-th entry of
vector x. Notation x(𝑖) is helpful when we are dealing with vectors with their own
indices, e.g. vector x1 and x2. As we are mostly dealing with vectors of length 𝑚,
hence any vector is of length 𝑚 unless stated otherwise. For an 𝑚-permutation
𝜋 : [𝑚] → [𝑚], define

𝜋(x) := (𝑥𝜋 (1) , 𝑥𝜋 (2) , ..., 𝑥𝜋 (𝑚)).

Note that permutation is additively homomorphic, i.e.

𝜋(x + y) = 𝜋(x) + 𝜋(y),

where the addition of two vectors is defined to be entry-wise.
The concatenation of two permutations 𝜋2, 𝜋1 is another permutation, which

is denoted as 𝜋2 ◦ 𝜋1 and satisfies

∀x ∈ F𝑚 : 𝜋2 ◦ 𝜋1 (x) = 𝜋2 (𝜋1 (x)).

For later notation convenience, for a sequence of permutations 𝜋1, 𝜋2, ..., 𝜋𝑛, we
denote

𝜋𝑖 := 𝜋𝑖 ◦ 𝜋𝑖−1 ◦ · · · ◦ 𝜋1.

8

Executing a sub-protocol is written as:

Π(𝑃𝑖 : 𝑥, 𝑦, ⟦𝑧⟧),

where “Π” is the name of the protocol. Parameter “𝑃𝑖 : 𝑥” means that this
protocol takes a private input 𝑥 from party 𝑃𝑖. Parameter “𝑦” means that this
protocol takes a public constant 𝑦 from all parties. Parameter ⟦𝑧⟧ means that 𝑧

is a value stored at FMPC. We will explain what “stored at FMPC” means in the
next subsection.

3.2 Primitives

We assume that secure arithmetic MPC primitives are available, including in-
putting a secret input, opening a secret, generating random values, computing
additions and multiplications. We assume also an ideal functionality of permu-
tation protocol, which takes as input a shared vector (i.e. shared entries) and
a permutation known to one party, and permutes the vector accordingly. By
assuming such functionalities in a black-box manner, our constructions can be
applied to a generic class of MPC framework to obtain shuffle protocols with
linear online complexity with fairly small constant.

To formalize, we follow the approach adopted by Escudero et al. [29], where an
ideal arithmetic MPC functionality is viewed as a Turing machine with internal
state. The functionality interacts honestly with all parties, taking inputs and
(restricted) commands from them and changing its internal state accordingly.
We assume that the ideal arithmetic MPC functionality FMPC supports following
commands:

– Πinput(𝑃𝑖 : 𝑥, id), which takes as input a field element 𝑥 from 𝑃𝑖 and stores
it as (id, 𝑥). “ id” is a unique identifier that all parties agree on, which can be
seen as a memory address of FMPC.

– Πinput(𝑦, id), which takes as input a public constant field element 𝑦 and stores
it as (id, 𝑦).

– Πrand (id), which draws a uniform random value 𝑟 ∈ F and stores it as (id, 𝑟).
– Πadd (id, id1, 𝐶), which retrieves (id1, 𝑥) from the memory and stores (id, 𝑥 +

𝐶), where 𝐶 is a public constant.
– Πadd (id, id1, id2), which retrieves (id1, 𝑥1) and (id2, 𝑥2) from the memory and

stores (id, 𝑥1 + 𝑥2).
– Πmul works same as Πadd, except it’s computing multiplications.
– Πopen(id), which retrieves (id, 𝑥) and outputs 𝑥 to the adversary. If the ad-

versary replies with “continue”, then FMPC sends also 𝑥 to honest parties;
otherwise it sends “abort” to the honest parties.

– Πopen(𝑃𝑖 , id), which retrieves (id, 𝑥) and outputs 𝑥 to party 𝑃𝑖.
– Πsend (𝑃𝑖 : 𝑥, 𝑃 𝑗) and Πbroadcast (𝑃𝑖 : 𝑥), which sends the message 𝑥 from

𝑃𝑖 to 𝑃 𝑗 or broadcasts it to all parties. The communication complexity of
broadcasting an item is assumed to be 𝑂 (𝑛).

– Πperm(𝑃𝑖 : 𝜋, (idj)𝑚𝑗=1, (id′j)𝑚𝑗=1), which takes a secret 𝑚-permutation from 𝑃𝑖,
retrieves (id 𝑗 , 𝑥 𝑗) and stores (id′𝑗 , 𝑥𝜋 (𝑗)).

9

For semi-honest adversary, we do not need Πmul, and FMPC can thus be in-
stantiated with Shamir secret sharing or additive secret sharing without MAC.
For malicious adversary, FMPC may be instantiated with additive secret sharing
(e.g. [22][21][30]), Shamir’s secret sharing (e.g. [23][31]), etc., based on specific
security requirement and application scenario.

For notation simplicity, we denote by ⟦𝑥⟧ a secret value 𝑥 stored by FMPC.
The reader familiar with secret sharing schemes may also understand this as
“sharing 𝑥 among all parties”, since FMPC will be implemented by secure multi-
party computation in practice. To distinguish between the case of semi-honest
adversary and malicious adversary, we write ⟨𝑥⟩ for secret stored at malicious
secure ideal functionality. We denote also

⟦𝑑⟧ ← ⟦𝑎⟧ · ⟦𝑏⟧ + ⟦𝑐⟧

the process of computing 𝑎 · 𝑏 + 𝑐 and store it in ideal functionality. Note that
different symbols refer to different identifiers for FMPC, which allows us to omit
the identifier in later description. We denote also ⟦x⟧ as storing each entry
separately in ideal MPC. Hence, we also denote

⟦z⟧ ← ⟦𝑎⟧ · ⟦x⟧ + ⟦y⟧

the process of computing 𝑎𝑥1 + 𝑦1, ..., 𝑎𝑥𝑚 + 𝑦𝑚 and storing it as z.
Similarly, we write

⟦x′⟧ ← Πperm(𝑃𝑖 : 𝜋, ⟦x⟧),

where x = (𝑥1, 𝑥2, ..., 𝑥𝑚) is a vector of length 𝑚 and

x′ = 𝜋(x) := (𝑥𝜋 (1) , 𝑥𝜋 (2) , ..., 𝑥𝜋 (𝑚)).

For malicious setting, we assume also a version of batched permutation protocol,
where

(⟨𝜋(x1)⟩, ..., ⟨𝜋(x𝑡)⟩) ← Πperm (𝑃𝑖 : 𝜋, ⟨x1⟩, ..., , ⟨x𝑡 ⟩).
This is a natural requirement for permutation protocol, since in real world
application, what is to be shuffled is usually a long vector (e.g. rows of the
database) instead of a single field element. As explicit examples, the protocols
in [16][17][18][13][14] all support such an operation.

To conclude, we assume an ideal functionality FMPC that supports the above
basic arithmetic commands and Πperm. The construction presented in this paper
will be hence proved secure under FMPC-hybrid model.

3.3 Permute-in-Turn Paradigm

To shuffle a secret shared vector ⟦x⟧ into some ⟦𝜋(x)⟧ with 𝜋 unknown to
any party, most previous works follow a “permute-in-turn” paradigm. That is,
suppose we now have a permutation protocol Πperm, which securely implement
the functionality

⟦𝜋(x)⟧ ← Πperm(𝑃𝑖 : 𝜋, ⟦x⟧).

10

Then the shuffle protocol can be implemented as sequential calls to Πperm. That
is, from 1 to 𝑛, each party selects a random permutation 𝜋𝑖, and compute se-
quentially for 𝑖 = 1, 2, ..., 𝑛

⟦y𝑖⟧ := ⟦𝜋𝑖 (y𝑖−1)⟧ ← Πperm(𝑃𝑖 : 𝜋𝑖 , ⟦y𝑖−1⟧),

where y0 := x. Note that

⟦y𝑛⟧ = ⟦𝜋(x)⟧ = ⟦𝜋𝑛 ◦ 𝜋𝑛−1 ◦ · · · ◦ 𝜋1 (x)⟧,

where 𝜋 is known to no party. In addition, as long as there is at least one honest
party 𝑃𝑖 that has chosen its permutation 𝜋𝑖 uniformly random, the resulted 𝜋

will be uniformly random.
What is achieved in this paper is to transform above permute-in-turn paradigm

into two phases, an offline phase Shuffleoff and an online phase Shuffleon. The rea-
son for doing so is to move the most computation and communication overheads
to the offline phase, and in specific, the 𝑛 invocations of basic Πperm protocols.
The online complexities of our constructions are hence independent of the im-
plementation of Πperm, while most constructions in previous works are not. For
example, the complexity of the online phase of our protocol is linear in both
the number of parties and the length of vector, which is not previously achieved
under malicious security. (C.f. Table 1 for a review of existing works.)

3.4 Security Model

Throughout this paper, we consider a static adversary, i.e. the corrupted parties
are chosen and fixed before protocol starts. We consider the case where a majority
of parties could be corrupted, i.e. dishonest majority. Note that, however, our
constructions is also applicable to the honest majority setting.

Our first construction guarantees semi-honest security, under FMPC-hybrid
model where FMPC is semi-honest secure. In the semi-honest security, the adver-
sary corrupting some parties is assumed to be following the protocol honestly,
but nevertheless may do some extra computations to gain the information about
other party’s input. As an analogue to universally composable security (UC se-
curity), we allow the adversary A to know the entire vector x that is to be
shuffled. This makes sense, since in practice when our protocol is used as sub-
routine, some entries of x might come from the input of corrupted parties. Hence,
we simply assume that the adversary knows the entire vector x. The security of
the protocol states that: even if the adversary combines x and its view during
the execution of the protocol, it cannot guess the input 𝜋𝑖 of any honest party
𝑃𝑖 better than purely random, i.e. information-theoretic security.

Definition 1 (Semi-honest Security). Suppose there is a shuffle protocol Π,
which takes as input a vector ⟦x⟧ stored at FMPC, and 𝜋𝑖 from each party 𝑃𝑖,
where each party 𝑃𝑖 chooses 𝜋𝑖 independently and uniformly. It interacts with
parties and FMPC, and finally makes FMPC store

⟦𝜋(x)⟧ = ⟦𝜋𝑛 ◦ 𝜋𝑛−1 ◦ · · · ◦ 𝜋1 (x)⟧.

11

Suppose adversary A corrupts the parties in set 𝑇 ⊊ [𝑛], and will follow the
protocol honestly. If for any x and {𝜋𝑖}𝑖∈𝑇 ,

𝐼 (x, view𝑇
Π (x, 𝜋1, 𝜋2, ..., 𝜋𝑛); (𝜋𝑖)𝑖∉𝑇) = 0,

then the protocol Π is said to be semi-honest secure, where 𝐼 is the mutual in-
formation, view𝑇

Π
is the view of corrupted parties in one execution of protocol Π

and 𝜋𝑖 is the input of party 𝑃𝑖.
Stated otherwise, (𝜋𝑖)𝑖∉𝑇 is independent (in a probability theory sense) of x

and the view of adversary.

In above definition, 𝜋𝑖 is the input of party 𝑃𝑖, which is by design a uniformly
random permutation and is the only input of party 𝑃𝑖 in our construction. In
later security proof, we will prove semi-honest security for protocol

Π = Shuffleon ◦ Shuffleoff ,

i.e. the combination of two phases of shuffle protocol is secure.
Our second construction guarantees security against a malicious adversary.

We will prove universally composable security (UC security) for this construc-
tion. The definition of UC security is as follows.

Definition 2 (Universally Composable Security [32], Sketch). Suppose
there is an environment E and an adversary A that controls the corrupted parties
𝑃𝑖 ∈ 𝑇 ⊊ [𝑛]. Let protocol Π be an implementation of the ideal functionality
Fshuffle.

Consider two games. One happens between E, A, FMPC and honest parties
𝑃𝑖 ∈ 𝑇 = {𝑃𝑖 ∉ 𝑇}, executing real protocol Π. Another happens between E,
simulator S and ideal functionality F (which is FMPC equipped with additional
ideal command ΠShuffle), simulating the view of adversary in ideal execution. In
each game, E chooses inputs of all honest parties, and sends them to either 𝑃𝑖 ∈ 𝑇
or F . When the corrupted parties controlled by A need to send a message, E
decides it, and when A receives anything, it reports to E. In this “real” execution,
if the protocol does not abort, E receives outputs of honest parties from honest
parties.

In the “ideal” world, S will not receive the input of any party. Nevertheless,
S needs to deduce the purported inputs of the corrupted parties, send them to
F , and is then informed by F of the output of the protocol for corrupted parties.
If E does not demand S to abort, and the protocol ends without abort, S sends
“continue” to F , who then sends all outputs of honest parties to E.
E keeps interacting with A/S during the entire process, while gaining infor-

mation and doing its own computation. When E halts, it outputs a bit, repre-
senting its guess on which game it is playing.

The protocol Π securely implemented F , if there exists a simulator S, such
that E cannot distinguish what game it is playing, i.e.��Pr [1← (E ⇆ Π𝑇,A)

]
− Pr

[
1← (E ⇆ F𝑇,S)

] �� < 𝜖 = 𝑂 (2−𝜅).

12

We remark that, the above definition considers only a dummy adversary,
which acts according to E’s command and sends everything it receives to E.
This is equivalent to a more “intelligent adversary”, as E could perform all com-
putations and decide the (malicious) actions. Also, the definition does not limit
the computation resource of the environment, and hence achieves statistical se-
curity. This is achievable, as we are proving it under FMPC-hybrid model. Also,
the above definition is merely a sketch and misses many important details in
constructing simulator. Nevertheless, we will present a more formal definition
before presenting a formal security proof.

Note also that in practice, the implementation of FMPC or protocol Πperm

(that is chosen by the developer) may achieve only simulation/standalone secu-
rity instead of UC security. Thus, after replacing the functionalities with real
implementations, the UC security cannot be achieved at all. Nevertheless, it
should be easy to modify our proof to prove that the combination achieves sim-
ulation/standalone security.

4 Technical Overview

Before diving into technical details, here we briefly review former attempts in
constructing shuffle correlation, as well as the main challenges at hand and our
core insights for overcoming them.

4.1 Semi-honest Shuffle Correlation

In the work of [17], a two-party share translation protocol is proposed. For
shuffling 𝑚-long vector, this protocol outputs (𝜋,∆) to party 𝑃1 and (a, b) to
party 𝑃2, such that 𝜋 is chosen (uniformly) by 𝑃1 and ∆ = 𝜋(a) + b.

Such an output can be viewed as a two-party permutation correlation. In the
online phase, to permute additively shared x = x1 + x2 (where 𝑃𝑖 holds x𝑖), 𝑃2

sends x2 + a to 𝑃1, and parties locally compute and hold

𝑃1 : x′1 ← 𝜋(x1 + (x2 + a)) −∆,

𝑃2 : x′2 ← b.

This shares x′ = 𝜋(x) among parties. Repeating above process for 𝑃2, this results
in a two-party shuffle protocol with 𝑂 (𝑚) online communication.

It is shown in [18] that the above construction can be extended to 𝑛-party
cases, with 𝑂 (𝑛2) invocations to the basic share translation protocol and 𝑂 (𝑛2𝑚)
online communication. To overcome the 𝑛2 factor, Eskandarian and Boneh [13]
first propose shuffle correlation, which is defined as follows.

Definition 3 (Shuffle Correlation in [13]). The 𝑛-party shuffle correlation
is a situation where for 𝑖 = 1, ..., 𝑛, 𝑃𝑖 holds:

1. random vectors a𝑖 , b𝑖 , a
′
𝑖
∈ F𝑚 and

2. a random permutation 𝜋𝑖 : [𝑚] → [𝑚].

13

𝑃𝑛 holds in addition a vector ∆𝑛 ∈ F𝑚, such that

∆𝑛 = 𝜋𝑛 (...(𝜋2 (𝜋1 (
𝑛∑︁
𝑖=2

a𝑖) + a′1) + a′2)... + a′𝑛−1) −
𝑛−1∑︁
𝑖=1

b𝑖 .

Suppose x is additively shared as x1, ..., x𝑛, with 𝑃𝑖 holding x𝑖. With such a
correlation, shuffle can be performed by first letting 𝑃𝑖 (𝑖 ≠ 1) send z𝑖 ← x𝑖 − a𝑖
to 𝑃1, who then computes and sends to 𝑃2

y1 ← 𝜋1 (
𝑛∑︁
𝑖=2

z𝑖 + x1) − a′1,

and locally holds x′1 ← b1. Then for 2 ≤ 𝑖 ≤ 𝑘 − 1, each 𝑃𝑖 computes and sends
to 𝑃𝑖+1

y𝑖 ← 𝜋𝑖 (y𝑖−1) − a′𝑖 ,
and locally holds x′

𝑖
← b𝑖. Lastly, 𝑃𝑛 holds x′𝑛 ← 𝜋𝑛 (y′𝑛−1) +∆𝑛. Thus, all parties

additively share x′, with

x′ = 𝜋𝑛 ◦ 𝜋𝑛−1 ◦ · · · ◦ 𝜋1 (x).
Generating above ∆ seems to require Ω(𝑛) sequential invocations of Πperm,

which is Ω(𝑛) rounds. To avoid such suboptimal round complexity, [13] further
defines

1. a𝑖 ← a1,𝑖, b𝑖 ← b𝑛,𝑖.
2. a′

𝑖
← ∑

𝑗∈[𝑛]\{𝑖+1} a𝑖+1, 𝑗 −
∑

𝑗∈[𝑘]\{𝑖} (b𝑖, 𝑗 +∆𝑖, 𝑗).
3. ∆𝑘 ←

∑
𝑗∈[𝑘−1] ∆𝑘, 𝑗 .

Wherein each (a𝑖, 𝑗 , b𝑖, 𝑗 ,∆𝑖, 𝑗) is from invoking the share translation protocol
of [17] for 𝑃𝑖 and 𝑃 𝑗 . To compute a′

𝑖
, [13] suggests each party 𝑃𝑖 shares each

a𝑖, 𝑗 , b𝑖, 𝑗 ,∆𝑖, 𝑗 back, which requires in addition 𝑂 (𝑛3𝑚) communication for sharing
𝑂 (𝑛2) random values.

From above, it is clear this previous definition of shuffle correlation is special-
ized for additive secret sharing, whose generation relies on the two-party share
translation protocol of [17] and requires 𝑂 (𝑛2𝑚 log𝑚 + 𝑛3𝑚) communication.

Contrasting to previous definition, our definition (c.f. Definition 4) for semi-
honest shuffle correlation is compatible with general MPC framework. Our defi-
nition follows a similar pattern of above, in that each 𝑃𝑖 sends y𝑖 = 𝜋𝑖 (y𝑖−1 + z𝑖)
to 𝑃𝑖+1, and finally 𝑃𝑛 broadcasts y𝑛. By subtracting y𝑛 with

⟦∆⟧ = ⟦𝜋𝑛 (𝜋𝑛−1 (...𝜋1 (z1) + z2)... + z𝑛)⟧,
the parties share permuted x as desired.

Furthermore, in our generation of shuffle correlation, we decompose z𝑖 as
r𝑖 − 𝜋𝑖−1 (r𝑖−1), and make ∆ = 𝜋𝑛 (r𝑛). This allows parallel invocations to Πperm

and accelerates the generation of these random resources. Also, our definition
thus requires only 𝑛-party-shared randomness (instead of sharing the random-
ness from the output of two-party protocol), which avoids the 𝑂 (𝑛3𝑚) terms and
achieves 𝑂 (𝑛2𝑚 log𝑚) offline communication. Thus, besides the compatibility
with other MPC framework, our definition also achieves better offline complex-
ities (compared to [13]) when applied in semi-honest additive secret sharing.

14

4.2 Malicious Shuffle Correlation

A major challenge we solve in the paper emerges in the attempt to achieve mali-
cious security. In such an attempt, [13] suggests that parties generate and share
in addition a random vector g and compute and share (via MPC multiplication)
h, such that h(𝑖) = x(𝑖) · g(𝑖). By shuffling g, h along with x, and checking at last
if h′ (𝑖) = x′ (𝑖) · g′ (𝑖) for all entry 𝑖, it is suggested that the protocol is secure
against malicious adversary.

However, as Song et al. [14] point out, such a construction is vulnerable to
a type of selective abort attack. For example, suppose 𝑃1 and 𝑃3 are corrupted.
The adversary can let 𝑃1 sends y1 +𝛿𝛿𝛿𝑖 instead of y1, where 𝛿𝛿𝛿𝑖 is a one-hot vector
with its 𝑖-th entry being 1. After receiving y2 from 𝑃2, 𝑃3 first adjusts it by
computing y2 − 𝛿𝛿𝛿 𝑗 , then acts honestly. If 𝑃2 happens to choose permutation 𝜋2
with 𝜋2 (𝑗) = 𝑖 (with non-negligible probability 1/𝑚), such action of 𝑃2 corrects
precisely the error introduced by 𝑃1. Hence, if parties do not abort in the final
check, this leaks information about 𝜋2 to the adversary without detection.

At first glance, it seems quite easy to defend against such an attack: just insert
a checking phase after each 𝑃𝑖+1 receives y𝑖 from 𝑃𝑖, and everything seems to work
out. However, such a check turns out to be difficult. To protect the underlying
secret, the message 𝑃𝑖+1 receives from 𝑃𝑖 is masked with uniform random mask,
which prevents 𝑃𝑖+1 from locally checking the correctness of the message. If 𝑃𝑖+1
wants to check if the message is correct, i.e. if the product relation is maintained,
it seems necessary that 𝑃𝑖+1 shares the entire message back to all parties, and
then all parties, after somehow jointly remove the random masks, carry out
𝑂 (𝑚) MPC multiplications over all 𝑂 (𝑚) entries, which is already 𝑂 (𝑛2𝑚) online
communication and computation.

However, such communication and computation are not inevitable, if we are
more selective about the implanted correlation in messages. Roughly, suppose
the message sent from 𝑃𝑖 to 𝑃𝑖+1 is y𝑖. Suppose we require 𝑃𝑖 to send in addition
some message y′

𝑖
that acts as MAC, which satisfies

𝛽y𝑖 = y′𝑖 + r′𝑖 ,

with ⟨𝛽⟩ and ⟨r′
𝑖
⟩ stored at FMPC. Due to the lack of element 𝛽 and vector r′

𝑖
,

𝑃𝑖 will not be able to forge wrong message satisfying such relation.
Further, this check can be batched, in that the 𝑃𝑖+1 can sample a challenge

𝜆, and turn to check if

⟨𝛽⟩
𝑚∑︁
𝑗=1

𝜆 𝑗−1y𝑖 (𝑗)︸ ︷︷ ︸
=𝑢

=

𝑚∑︁
𝑗=1

𝜆 𝑗−1y′𝑖 (𝑗)︸ ︷︷ ︸
=𝑣

+
𝑚∑︁
𝑗=1

𝜆 𝑗−1⟨r′𝑖 (𝑗)⟩︸ ︷︷ ︸
=𝑤

.

Now by 𝑃𝑖+1 broadcasting 𝜆, 𝑢 and 𝑣 and all parties computing and opening the
subtraction of above two terms, the check is done with 𝑂 (𝑛) communication. By
further moving the generation of 𝜆 (as now ⟨𝜆⟩) and 𝑤 (as ⟨𝑤⟩) to the offline
phase, the online computation becomes also linear.

15

We note that, for a clarity of protocol description, the protocols presented
in Section 6 achieve only 𝑂 (𝑛2𝑚) communication. In Section 7 we formalize the
above optimizations and achieve linear online complexities. Due to page limi-
tation, we present the fully developed protocols in Section B, before presenting
formal security proof.

5 Semi-honest Secure Shuffle

5.1 Functionality

In this section, we present our semi-honest shuffle protocol. Recall that we as-
sume an ideal functionality FMPC, which supports

⟦𝜋(x)⟧ ← Πperm (𝑃𝑖 : 𝜋, ⟦x⟧),

where x is an array of length 𝑚, and 𝜋 : ⟦𝑚⟧ → ⟦𝑚⟧ is a permutation known
only to 𝑃𝑖.

We give a two-phase shuffle protocol, consisting of an offline phase Shuffleoff
and an online phase Shuffleon. The offline phase is in essence shuffling random
numbers in order to generate a shuffle correlation. The online phase takes as
input an array ⟦x⟧ of length 𝑚, and consumes a fresh shuffle correlation. The
online phase consists of mostly plaintext permutation carried out by each party
locally, and is hence considerably fast.

5.2 Semi-honest Shuffle Correlation

The shuffle correlation for semi-honest multiparty computation is defined as
follows.

Definition 4 (Semi-honest Shuffle Correlation). The shuffle correlation
for semi-honest setting is defined as

cor := {(𝜋1, ..., 𝜋𝑛), ⟦r⟧, ⟦s⟧, (∅, z2, z3, ..., z𝑛)},

where

1. 𝜋𝑖 is an 𝑚-permutation (i.e. a permutation on 𝑚 elements) known only to
party 𝑃𝑖. 𝜋𝑖 is sampled by 𝑃𝑖 uniformly at random from all 𝑚-permutations.

2. ⟦r⟧ and ⟦s⟧ are two secret shared random vectors uniform over F𝑚.
3. z𝑖 is a random vector of length 𝑚 and is known only to party 𝑃𝑖. They are

uniformly random under the constraint

s = 𝜋𝑛 (𝜋𝑛−1 (· · · 𝜋2 (𝜋1 (r) − z2) − z3 · · ·) − z𝑛).

The shuffle correlation is generated in the offline phase of the shuffle protocol
and used to perform shuffle in the online phase. It is crucial that one shuffle
correlation can be used only in one shuffle protocol session, same as one-time
pad.

16

5.3 Offline Phase

The offline phase protocol Shuffleoff takes as input the size 𝑚 of the array and
𝑚-permutation 𝜋𝑖 from party 𝑃𝑖. It outputs a shuffle correlation for later use in
online phase. In later discussion, we show that 𝑚 does not need to be the exact
length of x; by a slight modification to the protocol, an upper bound will be
sufficient. For now, let’s assume 𝑚 is precise.

In offline phase, the parties first generate random vectors

⟦r1⟧, ⟦r2⟧, ..., ⟦r𝑛⟧,

each of length 𝑚. This is in essence generating 𝑛×𝑚 random field elements, with
MPC primitive Πrand.

Then the parties invoke functionality Πperm, and obtain

⟦𝜋1 (r1)⟧, ⟦𝜋2 (r2)⟧, ..., ⟦𝜋𝑛 (r𝑛)⟧,

where 𝜋𝑖 is a permutation chosen by 𝑃𝑖. If 𝑃𝑖 is honest, 𝜋𝑖 is uniformly random
and known only to 𝑃𝑖. This can be done by

⟦𝜋𝑖 (r𝑖)⟧ ← Πperm(𝑃𝑖 : 𝜋𝑖 , ⟦r𝑖⟧).

The parties then compute for 𝑖 = 2, 3, ..., 𝑛,

⟦z𝑖⟧ ← ⟦𝜋𝑖−1 (r𝑖−1)⟧ − ⟦r𝑖⟧,

and open the value of z𝑖 to party 𝑃𝑖.
This is the offline protocol Shuffleoff , which outputs a random vector of length

𝑚 to each party 𝑃2, 𝑃3, ..., 𝑃𝑛. We denote by

cor := {(𝜋1, ..., 𝜋𝑛), ⟦r1⟧, ⟦𝜋𝑛 (r𝑛)⟧, (∅, z2, z3, ..., z𝑛)}

the semi-honest shuffle correlation. Note that the ⟦r1⟧ and ⟦𝜋𝑛 (r𝑛)⟧ term are
stored at FMPC, while the rest 𝜋𝑖, z𝑖 is each held only by party 𝑃𝑖. To see that this
is consistent with Definition 4, note that ⟦r1⟧ and ⟦𝜋𝑛 (r𝑛)⟧ are exactly ⟦r⟧ and
⟦s⟧ in the Definition 4. To see that it also satisfies the conditional independency
(i.e. “uniform under the constraint...”), it suffices to note that after fixing 𝜋𝑖,
deciding all r𝑖 will uniquely determine all z𝑖, r, s. Hence, since all r𝑖 is uniformly
random, the resulting correlation will be uniform under the constraint given by
definition.

This protocol is formally presented in Algorithm 1.

5.4 Online Phase

At the online phase of the protocol, the input ⟦x⟧ arrives. The parties then
compute ⟦𝜋(𝑥)⟧, where

𝜋 = 𝜋𝑛 ◦ 𝜋𝑛−1 ◦ · · · ◦ 𝜋1.

17

Algorithm 1 cor← Shuffleoff (𝑚, 𝑃1 : 𝜋1, ..., 𝑃𝑛 : 𝜋𝑛)
Require: For honest 𝑃𝑖 , 𝜋𝑖 is sampled uniformly from all 𝑚-permutations.
Ensure: Return a new shuffle correlation for online use.

for 𝑖 = 1 to 𝑛 do parallel
Generate random vector ⟦r𝑖⟧ of length 𝑚.
⟦𝜋𝑖 (r𝑖)⟧ ← Πperm (𝑃𝑖 : 𝜋𝑖 , ⟦r𝑖⟧).

end for
for 𝑖 = 2 to 𝑛 do parallel
⟦z𝑖⟧ ← ⟦𝜋𝑖−1 (r𝑖−1)⟧ − ⟦r𝑖⟧
Open ⟦z𝑖⟧ to 𝑃𝑖 .

end for
Return {(𝜋1, ..., 𝜋𝑛), ⟦r1⟧, ⟦𝜋𝑛 (r𝑛)⟧, (∅, z2, z3, ..., z𝑛)}.

Suppose the parties hold a fresh shuffle correlation

cor = {(𝜋1, ..., 𝜋𝑛), ⟦r1⟧, ⟦𝜋𝑛 (r𝑛)⟧, (∅, z2, z3, ..., z𝑛)}

The parties first compute ⟦x − r1⟧, and open it to party 𝑃1. Denote by

z1 := x − r1,

which is known only to 𝑃1.
Party 𝑃1 computes and sends to 𝑃2

y1 := 𝜋1 (z1).

Then each party 𝑃𝑖 with 𝑖 = 2, 3, ..., 𝑛−1 sequentially locally computes and sends
to 𝑃𝑖+1

y𝑖 := 𝜋𝑖 (z𝑖 + y𝑖−1).
The last party 𝑃𝑛 receives y𝑛−1 from 𝑃𝑛−1, computes

y𝑛 := 𝜋𝑛 (z𝑛 + y𝑛−1),

and broadcasts it to all parties. Then all parties compute

⟦𝜋(x)⟧ = y𝑛 + ⟦𝜋𝑛 (r𝑛)⟧,

where ⟦𝜋𝑛 (r𝑛)⟧ comes from the correlation.
The above process is formally presented in Algorithm 2.
To see the correctness, note that each party 𝑃𝑖 holds and sends

z1 := x − r1, y1 := 𝜋1 (z1) = 𝜋1 (x) − 𝜋1 (r1),
z2 := 𝜋1 (r1) − r2, y2 := 𝜋2 (z2 + y1) = 𝜋2 (x) − 𝜋2 (r2),
z3 := 𝜋2 (r2) − r3, y3 := 𝜋3 (z3 + y2) = 𝜋3 (x) − 𝜋3 (r3),

...

z𝑛 := 𝜋𝑛−1 (r𝑛−1) − r𝑛, y𝑛 := 𝜋𝑛 (z𝑛 + y𝑛−1) = 𝜋𝑛 (x) − 𝜋𝑛 (r𝑛),

18

Algorithm 2 ⟦𝜋(x)⟧ ← Shuffleon (⟦x⟧)
Require: An unused correlation {(𝜋1, ..., 𝜋𝑛), ⟦r1⟧, ⟦𝜋𝑛 (r𝑛)⟧, (∅, z2, z3, ..., z𝑛)}.
Ensure: Return ⟦𝜋(x)⟧, with 𝜋 = 𝜋𝑛 ◦ 𝜋𝑛−1 ◦ · · · ◦ 𝜋1.
⟦z1⟧ ← ⟦x⟧ − ⟦r1⟧
Open z1 to 𝑃1.
𝑃1 computes locally y1 ← 𝜋1 (z1).
𝑃1 sends y1 to 𝑃2.
for 𝑖 = 2 to 𝑛 − 1 do

𝑃𝑖 receives y𝑖−1 from 𝑃𝑖−1.
𝑃𝑖 computes locally y𝑖 ← 𝜋𝑖 (z𝑖 + y𝑖−1).
𝑃𝑖 sends y𝑖 to 𝑃𝑖+1.

end for
𝑃𝑛 receives y𝑛−1 from 𝑃𝑛−1.
𝑃𝑛 computes locally y𝑛 ← 𝜋𝑛 (z𝑛 + y𝑛−1).
𝑃𝑛 broadcasts y𝑛 to all parties.
⟦x′⟧ ← y𝑛 + ⟦𝜋𝑛 (r𝑛)⟧
Return ⟦x′⟧.

where 𝜋𝑖 is an abbreviation for 𝜋𝑖 ◦ 𝜋𝑖−1 ◦ · · · ◦ 𝜋1. Hence, it is straightforward
that the result will be

⟦𝜋(x)⟧ = y𝑛 + ⟦𝜋𝑛 (r𝑛)⟧.
Due to page limit, the security proof is deferred to Section A in appendix.

6 Malicious Secure Shuffle

6.1 Functionality and Roadmap

In this section, we present our construction of shuffle protocol against malicious
adversary and possibly dishonest majority, as long as FMPC and Πperm support
so. For clarity of security proof, the construction proposed in this section has
𝑂 (𝑛2𝑚) online communication and computation complexity. Later in Section 7
we show how to optimize both complexities to 𝑂 (𝑛𝑚).

Recall that we assume FMPC supports command Πperm, such that

(⟨𝜋(x1)⟩, ..., , ⟨𝜋(x𝑡)⟩) ← Πperm(𝑃𝑖 : 𝜋, ⟨x1⟩, ..., , ⟨x𝑡 ⟩).

Our construction consists of two phases, an offline phase Shuffleoff and an
online phase Shuffleon, just like the semi-honest case. The offline phase will be
in essence calling Πperm to shuffle random values, and generating a shuffle cor-
relation. The online phase takes vector ⟨𝑥⟩ as input, consumes one fresh shuffle
correlation, and outputs ⟨𝜋(𝑥)⟩ with 𝜋 known to no one.

Recall that in semi-honest construction, each party 𝑃𝑖 computes locally

y𝑖 = 𝜋𝑖 (z𝑖 + y𝑖−1),

and sends it to 𝑃𝑖+1. As discussed in Section 4, to prevent a type of selective
abort attack, the protocol must guarantee the integrity of each y𝑖 separately.

19

Such guarantee is achieved by appending an authentication code (MAC) to
y𝑖, which (implicitly) forms certain correlation with original message. Denote by
y1
𝑖

the original message to be authenticated, and by y2
𝑖

the corresponding MAC,
which is also a vector of length 𝑚. The crux is, only if 𝑃𝑖 applies honestly the
operations specified by the protocol, will it obtain a well-formed message pair y1

𝑖

and y2
𝑖

with the correct correlation between them, which will pass the subsequent
correlation check. This correlation is hidden, in that anyone ignorant to certain
trapdoors would find the message uniformly random. As these trapdoors are
stored at FMPC, the adversary remains unaware of them, which prevents the
forging of valid messages that contain the correct correlation. Hence, the honest
behavior of 𝑃𝑖 is enforced, as the check will fail and the protocol will abort with
overwhelming probability if 𝑃𝑖 acts maliciously.

6.2 Malicious Shuffle Correlation

The shuffle correlation for malicious multiparty computation is defined as follows.

Definition 5 (Malicious Shuffle Correlation). The shuffle correlation for
malicious setting is defined as

cor =

⟨𝛽⟩ ⟨r⟩ ⟨𝛽r⟩ ⟨𝜋−11 (r′1)⟩ ⟨s⟩
𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 · · · 𝜋𝑛
⟨r′1⟩ ⟨r′2⟩ ⟨r′3⟩ ⟨r′4⟩ ⟨r′5⟩ · · · ⟨r′𝑛⟩

z2 z3 z4 z5 · · · z𝑛

 ,

where

1. 𝜋𝑖 is an 𝑚-permutation known only to 𝑃𝑖. It is sampled uniformly from all
possible 𝑚-permutations by 𝑃𝑖 (if 𝑃𝑖 is honest).

2. ⟨𝛽⟩ is a secret shared random variable. It plays the role of the authentication
key, i.e. MAC key.

3. ⟨r⟩, ⟨s⟩, ⟨r′1⟩, ..., ⟨r′𝑛⟩ are secret shared vectors of length 𝑚, with each entry
independently uniformly random. ⟨𝛽r⟩ is secret shared 𝛽 · r.

4. z𝑖 = (z1
𝑖
, z2

𝑖
), where each z

𝑗

𝑖
is a vector of length 𝑚. The entries of z1

𝑖
are

uniformly random, under the constraint{
z2𝑖 = 𝛽z1𝑖 + r′𝑖−1 − 𝜋−1𝑖 (r′𝑖) ∀𝑖 = 2, 3, ..., 𝑛

s = 𝜋𝑛 (𝜋𝑛−1 (· · · 𝜋2 (𝜋1 (r) − z12) − z13 · · ·) − z1𝑛)

This shuffle correlation will be generated in the offline phase of the shuffle
protocol and used in the online phase, as we demonstrate in following subsections.
Looking ahead, 𝛽 plays a role that is similar to the MAC key in SPDZ framework
[22] (which is usually denoted as “𝛼” in context), and helps check if the result
after each permutation is correct. Nevertheless, it should be noted that our
definition of shuffle correlation is not hence limited to SPDZ framework.

20

6.3 Correlation Check of Public Values

The functionality of protocol Verify(𝑎, 𝑏, ⟨𝛽⟩, ⟨𝑟⟩) is to check publicly whether
𝛽𝑎 = 𝑏+𝑟, where both 𝑎 and 𝑏 are publicly known. This is useful because, looking
ahead, we will implant a hidden correlation between the message y1

𝑖
and y2

𝑖
sent

by 𝑃𝑖. This correlation will assist the parties in checking whether 𝑃𝑖 has acted
honestly. Specifically, the correlation is exactly y2

𝑖
= 𝛽y1

𝑖
+ r′

𝑖
, with ⟨𝛽⟩ and ⟨r′

𝑖
⟩

hidden behind FMPC. Therefore, this protocol can be used to verify whether all
parties have followed the protocol honestly up to this point.

Such a check can be done easily. The parties simply compute and open

𝑎⟨𝛽⟩ − 𝑏 − ⟨𝑟⟩,

and check if it equals zero. As many MPC frameworks are based on linear se-
cret sharing scheme, it is likely that this computation can be done locally, as
it involves only addition and multiplication with public constant. Hence, the
overhead of this protocol equals an opening operation in MPC.

This protocol is formally presented in Algorithm 3.

Algorithm 3 Verify(𝑎, 𝑏, ⟨𝛽⟩, ⟨𝑟⟩)
Require: By protocol design, 𝛽𝑎 = 𝑏 + 𝑟.
Ensure: Abort if 𝛽𝑎 ≠ 𝑏 + 𝑟.

Compute 𝑑 ← 𝑎⟨𝛽⟩ − 𝑏 − ⟨𝑟⟩.
Open 𝑑 for all parties.
Abort if 𝑑 ≠ 0.

To see the security of this protocol, note that every operation carried out in
the protocol is via FMPC, i.e. some trivial arithmetic operations plus a public
opening operation. Hence, the protocol is secure by definition.

6.4 Offline Phase

The offline phase protocol Shuffleoff takes input the length 𝑚 of the vector ⟨x⟩
and 𝜋𝑖 from 𝑃𝑖. As mentioned in Section 5, let’s assume for now 𝑚 is the exact
length of later input vector ⟨x⟩.

In offline protocol Shuffleoff , the parties first generate a random field element
⟨𝛽⟩, which is referred to as the shuffle authentication key. Then the parties
generate 2𝑛 random vectors, denoted as

⟨r1⟩, ⟨r2⟩, ..., ⟨r𝑛⟩, ⟨r′1⟩, ⟨r′2⟩, ..., ⟨r′𝑛⟩.

The parties then call protocol Πmul and acquire

⟨𝛽r1⟩, ⟨𝛽r2⟩, ..., ⟨𝛽r𝑛⟩,

i.e. multiplying each entry by a same factor 𝛽.

21

The parties then invoke Πperm 𝑛 times, and acquire for 𝑖 ∈ [𝑛](
⟨𝜋𝑖 (r𝑖)⟩, ⟨𝜋𝑖 (𝛽r𝑖)⟩, ⟨𝜋𝑖 (r′𝑖)⟩

)
← Πperm(𝑃𝑖 : 𝜋𝑖 , ⟨r𝑖⟩, ⟨𝛽r𝑖⟩, ⟨r′𝑖⟩).

Now the parties compute for each 𝑖 ≥ 2

⟨z1𝑖 ⟩ ← ⟨𝜋𝑖−1 (r𝑖−1)⟩ − ⟨r𝑖⟩,
⟨z2𝑖 ⟩ ← ⟨𝜋𝑖−1 (𝛽r𝑖−1)⟩ + ⟨𝜋𝑖−1 (r′𝑖−1)⟩ − ⟨𝛽r𝑖⟩ − ⟨r′𝑖⟩,

where the superscript is simply an index, not “exponentiation”. For notation
convenience, denote by

⟨z𝑖⟩ = (⟨z1𝑖 ⟩, ⟨z2𝑖 ⟩).
Note that z𝑖 is a vector of length 2𝑚.

The parties then open each ⟨z𝑖⟩ to 𝑃𝑖, for 𝑖 ≥ 2. The shuffle correlation
returned by this protocol is

cor =

⟨𝛽⟩ ⟨r1⟩ ⟨𝛽r1⟩ ⟨r′1⟩ ⟨𝜋𝑛 (r𝑛)⟩
𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 · · · 𝜋𝑛

⟨𝜋1 (r′1)⟩ ⟨𝜋2 (r′2)⟩ ⟨𝜋3 (r′3)⟩ ⟨𝜋4 (r′4)⟩ ⟨𝜋5 (r′5)⟩ · · · ⟨𝜋𝑛 (r′𝑛)⟩
z2 z3 z4 z5 · · · z𝑛

 .

Note that each z𝑖 is held as plaintext by party 𝑃𝑖 for 𝑖 ≥ 2, and variables with
bracket is stored at FMPC, hidden from parties. To see that this is consistent with
Definition 5, note that r1, 𝛽r1, r

′
1, 𝜋𝑛 (r𝑛) and 𝜋𝑖 (r′𝑖) are exactly r, 𝛽r, 𝜋−11 (r′1), s

and r′
𝑖

in former definition. Also, it is straightforward to verify that these vari-
ables are uniformly independently random under the constraint given in Def-
inition 5, as determining all 𝛽, 𝜋𝑖 , r𝑖 and r′

𝑖
will uniquely determine the entire

shuffle correlation, i.e. there is a bijection between the correlations in definition
and the ones generated by the protocol.

This protocol is formally described in Algorithm 4.

6.5 Online Shuffle

The online shuffle protocol Shuffleon takes as input a length 𝑚 secret shared
vector ⟨x⟩. It consumes a fresh shuffle correlation cor, and outputs

⟨𝜋𝑛 (x)⟩ = ⟨𝜋𝑛 ◦ · · · ◦ 𝜋1 (x)⟩,

where 𝜋𝑖 is known to 𝑃𝑖 and is stored in the shuffle correlation. To pass the later
linear test, it is crucial that the performed permutation 𝜋𝑖 is exactly the one
used to generate correlation.

The parties first compute

⟨𝛽x⟩ ← Πmul (⟨𝛽⟩, ⟨x⟩),

i.e. multiplying every entry of x by 𝛽. Then they compute

⟨z11⟩ ← ⟨x⟩ − ⟨r1⟩,
⟨z21⟩ ← ⟨𝛽x⟩ − ⟨𝛽r1⟩ − ⟨r′1⟩.

22

Algorithm 4 cor← Shuffleoff (𝑚, 𝑃1 : 𝜋1, ..., 𝑃𝑛 : 𝜋𝑛)
Require: For honest 𝑃𝑖 , 𝜋𝑖 is sampled uniformly from all 𝑚-permutations.
Ensure: Return a new shuffle correlation.

Generate random value ⟨𝛽⟩.
for 𝑖 = 1 to 𝑛 do parallel

Generate random vectors ⟨r𝑖⟩ and ⟨r′
𝑖
⟩.

⟨𝛽r𝑖⟩ ← Πmul (⟨r𝑖⟩, ⟨𝛽⟩)(
⟨𝜋𝑖 (r𝑖)⟩, ⟨𝜋𝑖 (𝛽r𝑖)⟩, ⟨𝜋𝑖 (r′𝑖)⟩

)
← Πperm

(
𝑃𝑖 : 𝜋𝑖 , ⟨r𝑖⟩, ⟨𝛽r𝑖⟩, ⟨r′𝑖⟩

)
end for
for 𝑖 = 2 to 𝑛 do parallel
⟨z1
𝑖
⟩ ← ⟨𝜋𝑖−1 (r𝑖−1)⟩ − ⟨r𝑖⟩

⟨z2
𝑖
⟩ ← ⟨𝜋𝑖−1 (𝛽r𝑖−1)⟩ − ⟨𝛽r𝑖⟩ + ⟨𝜋𝑖−1 (r′𝑖−1)⟩ − ⟨r

′
𝑖
⟩

⟨z𝑖⟩ := (⟨z1𝑖 ⟩, ⟨z
2
𝑖
⟩)

Open z𝑖 to 𝑃𝑖 .
end for

Return cor =

⟨𝛽⟩ ⟨r1⟩ ⟨𝛽r1⟩ ⟨r′1⟩ ⟨𝜋𝑛 (r𝑛)⟩
𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 · · · 𝜋𝑛

⟨𝜋1 (r′1)⟩ ⟨𝜋2 (r
′
2)⟩ ⟨𝜋3 (r

′
3)⟩ ⟨𝜋4 (r

′
4)⟩ ⟨𝜋5 (r

′
5)⟩ · · · ⟨𝜋𝑛 (r

′
𝑛)⟩

z2 z3 z4 z5 · · · z𝑛

Note that except ⟨x⟩ and ⟨𝛽x⟩, all terms on the right-hand side above come from
correlation. The parties then open these two value to 𝑃1 as

z1 = (z11, z21).

Then, 𝑃1 computes and broadcasts

y1 ← 𝜋1 (z1).

Note that z1 is a vector of length 2𝑚, and here we slightly abuse the notation,
and define

𝜋1 (z1) := (𝜋1 (z11), 𝜋1 (z21)).
We define thus also for all vectors of length 2𝑚. This gives a simple representation
of operation which is consistent with semi-honest case, albeit what’s happening
under the surface is essentially different.

Then, after receiving y𝑖−1 from 𝑃𝑖−1, party 𝑃𝑖 computes and broadcasts

y𝑖 ← 𝜋𝑖 (z𝑖 + y𝑖−1).

The parties eventually receive

y𝑛 = (y1𝑛, y2𝑛).

The parties then invoke Πinput to acquire ⟨y1𝑛⟩, and compute

⟨x′⟩ ← ⟨y1𝑛⟩ + ⟨𝜋𝑛 (r𝑛)⟩,

which would equal 𝜋𝑛 (x) in plaintext, if all parties have acted honestly.

23

To enforce the honest behavior of each party, however, additional check re-
garding y𝑖 must be done. Note that by design,

𝛽y1𝑖 = y2𝑖 + 𝜋𝑖 (r′𝑖)

should hold for every 𝑖 ∈ [𝑛], where ⟨𝑟 ′
𝑖
⟩ is never opened. Hence, the parties call

protocol
Verify(y1𝑖 , y2𝑖 , ⟨𝛽⟩, ⟨𝜋𝑖 (r′𝑖)⟩)

for all 𝑖 ∈ [𝑛], and abort if any of them fail. Note that we here slightly abuse the
notation by passing vectors as parameter into the protocol, as an abbreviation
for calling in parallel

Verify(y1𝑖 (𝑗), y2𝑖 (𝑗), ⟨𝛽⟩, ⟨r′𝑖 (𝜋(𝑗))⟩),

for each 𝑗 ∈ [𝑚].
The protocol is formally presented in Algorithm 5.

Algorithm 5 ⟨𝜋𝑛 (x)⟩ ← Shuffleon (⟨x⟩)

Require: Fresh cor =

⟨𝛽⟩ ⟨r1⟩ ⟨𝛽r1⟩ ⟨r′1⟩ ⟨𝜋𝑛 (r𝑛)⟩
𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 · · · 𝜋𝑛

⟨𝜋1 (r′1)⟩ ⟨𝜋2 (r
′
2)⟩ ⟨𝜋3 (r

′
3)⟩ ⟨𝜋4 (r

′
4)⟩ ⟨𝜋5 (r

′
5)⟩ · · · ⟨𝜋𝑛 (r

′
𝑛)⟩

z2 z3 z4 z5 · · · z𝑛

.

Ensure: Return ⟨𝜋𝑛 (x)⟩ if the protocol does not abort.
⟨𝛽x⟩ ← Πmul (⟨𝛽⟩, ⟨x⟩)
⟨z11⟩ ← ⟨x⟩ − ⟨r1⟩
⟨z21⟩ ← ⟨𝛽x⟩ − ⟨𝛽r1⟩ − ⟨r

′
1⟩

Open z1 := (z11, z
2
1) to 𝑃1.

𝑃1 computes and broadcasts y1 ← 𝜋1 (z1) = (𝜋1 (z11), 𝜋1 (z
2
1)).

for 𝑖 = 2 to 𝑛 do
𝑃𝑖 computes and broadcasts y𝑖 ← 𝜋𝑖 (z𝑖 + y𝑖−1).

end for
for 𝑖 = 1 to 𝑛 do parallel

Verify(y1
𝑖
, y2

𝑖
, ⟨𝛽⟩, ⟨𝜋𝑖 (r′𝑖)⟩)

end for
⟨y1𝑛⟩ ← Πinput (y1𝑛).
⟨x′⟩ ← ⟨y1𝑛⟩ + ⟨𝜋𝑛 (r𝑛)⟩
Return ⟨x′⟩.

To see the correctness of above process when all parties are honest, note that
each 𝑃𝑖 holds z𝑖, where

z1 = x − r1, 𝛽x − 𝛽r1 − r′1,
z2 = 𝜋1 (r1) − r2, 𝜋1 (𝛽r1 + r′1) − 𝛽r2 − r′2,
z3 = 𝜋2 (r2) − r3, 𝜋2 (𝛽r2 + r′2) − 𝛽r3 − r′3,

...

z𝑛 = 𝜋𝑛−1 (r𝑛−1) − r𝑛, 𝜋𝑛−1 (𝛽r𝑛−1 + r′𝑛−1) − 𝛽r𝑛 − r′𝑛.

24

And the y𝑖 broadcast by each party 𝑃𝑖 is

y1 = 𝜋1 (x) − 𝜋1 (r1), 𝜋1 (𝛽x) − 𝜋1 (𝛽r1 + r′1),
y2 = 𝜋2 (x) − 𝜋2 (r2), 𝜋2 (𝛽x) − 𝜋2 (𝛽r2 + r′2),
y3 = 𝜋3 (x) − 𝜋3 (r3), 𝜋3 (𝛽x) − 𝜋3 (𝛽r3 + r′3),

...

y𝑛 = 𝜋𝑛 (x) − 𝜋𝑛 (r𝑛), 𝜋𝑛 (𝛽x) − 𝜋𝑛 (𝛽r𝑛 + r′𝑛).

Hence, if the parties input the first 𝑚 entries of y𝑛 as ⟨y1𝑛⟩ and add it by
⟨𝜋𝑛 (r𝑛)⟩, the result is indeed ⟨𝜋𝑛 (x)⟩. Also, if all parties act honestly, the calls
to Verify(y1

𝑖
, y2

𝑖
, ⟨𝛽⟩, ⟨𝜋𝑖 (r′𝑖)⟩) should all pass.

Due to the page limit, the security proof is deferred to Section B in appendix.

7 Achieve Linear Online Phase

7.1 Linear Online Communication

The online communication complexity for malicious secure shuffle has so far been
𝑂 (𝑛2𝑚), where 𝑛 is the number of parties and 𝑚 is the dimension of vector. This
is due to the broadcast of y𝑖, which is a vector of length 2𝑚.

However, we make the following simple observations:

1. If y𝑖−1 is correct, then the permutation chosen by 𝑃𝑖 is protected.
2. If y𝑛 is correct, then the result is correct.
3. The verifications of the correlation can be batched.

Hence, 𝑃𝑖 needs not care if the preceding y 𝑗 (except y𝑖−1) is correct or not. For
example, if 𝑃1, ..., 𝑃𝑖−1 are corrupted, y1, ..., y𝑖−2 can be arbitrary values. But as
long as y𝑖−1 is correct, this is somewhat the same as honest behavior, as other
parties do not care about preceding values at all. This gives the following idea,
that instead of broadcast, each party 𝑃𝑖 sends y𝑖 only to 𝑃𝑖+1, who batch-checks
if y𝑖 is correct, i.e. if it satisfies 𝛽y1

𝑖
= y2

𝑖
+ 𝜋𝑖 (r′𝑖). This is formally present in

Algorithm 6.

Algorithm 6 PartialVerify(𝑃𝑖+1, y1𝑖 , y
2
𝑖
, ⟨𝛽⟩, ⟨𝜋𝑖 (r′𝑖)⟩)

Require: By design 𝛽y1
𝑖
= y2

𝑖
+ 𝜋𝑖 (r′𝑖), with y1

𝑖
, y2

𝑖
sent from 𝑃𝑖 to 𝑃𝑖+1.

Ensure: If 𝑃𝑖+1 does not know correct y𝑏
𝑖
, abort w.h.p.

𝑃𝑖+1 locally samples 𝜆← F.
𝑃𝑖+1 computes 𝑤𝑏 :=

∑𝑚
𝑗=1 𝜆

𝑗−1y𝑏
𝑖
(𝑗), 𝑏 ∈ {1, 2}.

𝑃𝑖+1 broadcasts 𝜆, 𝑤1 and 𝑤2.
⟨𝑐⟩ ← 𝑤1 · ⟨𝛽⟩ − 𝑤2 −

∑𝑚
𝑗=1 𝜆

𝑗−1 · ⟨𝜋𝑖 (r′𝑖) (𝑗)⟩
Open 𝑐 to all parties.
Abort if 𝑐 ≠ 0.

We remark that the protocol is in essence a test of knowledge, in that it
passes if and only if 𝑃𝑖+1 (malicious or not) knows the correct y𝑖. In particular,

25

if 𝑃𝑖 and 𝑃𝑖+1 are both corrupted, 𝑃𝑖 can send garbage to 𝑃𝑖+1 as y𝑖, while 𝑃𝑖+1
runs the protocol as if it’s receiving another version of messages. However, the
test will pass only if 𝑃𝑖+1 broadcasts 𝜆′, w′1 and w′2 that are identical to the ones
generated with correct 𝜆 = 𝜆′ and y𝑖. As long as malicious 𝑃𝑖+1 proves that it
knows what the messages ought to be, the protocol can proceed normally.

By plugging in such check for each 𝑃𝑖 (𝑖 ≥ 2), and finally 𝑃𝑛 broadcasting
y𝑛 and all parties checking the correctness of y𝑛 together, the shuffle protocol is
implemented with 𝑂 (𝑛𝑚) communication and 𝑂 (𝑛2𝑚) computation.

7.2 Linear Computation

After the optimization of the previous section, the protocol now has 𝑂 (𝑛𝑚)
online communication. However, it has still 𝑂 (𝑛2𝑚) online computation, due
to computing the term

∑𝑚
𝑗=1 𝜆

𝑗−1 · 𝜋𝑖 (r′𝑖 (𝑗)), which involves all parties scanning
through the entire vector r′

𝑖
, resulting in 𝑂 (𝑛𝑚) computation per check. Since

this term is independent of x, it can be easily removed to the offline phase.
In the offline phase, the parties can call Πrand and generate 𝑛 random values

⟨𝑐1⟩, ⟨𝑐2⟩, ..., ⟨𝑐𝑛⟩.

Then for each ⟨𝑐𝑖⟩, the parties can raise it to 𝑗-th power, i.e. ⟨𝑐 𝑗

𝑖
⟩, for all 𝑗 ∈ [𝑚].

This can be done in log𝑚 rounds, with 𝑛𝑚 multiplication in total. We note that
there are also techniques to optimize this to 𝑂 (1) rounds with help of other MPC
primitives [33], albeit in practice this tends to be more inefficient due to large
constant. The parties are now able to compute the term

⟨𝑑𝑖⟩ :=
𝑚∑︁
𝑗=1

⟨𝑐 𝑗−1
𝑖
⟩ · ⟨r′𝑖 (𝑗)⟩,

in the offline phase, with again another 𝑛𝑚 multiplications.
Then in the online phase, when party 𝑃𝑖 receives y𝑖−1, all parties open ⟨𝑐𝑖⟩

to 𝑃𝑖. 𝑃𝑖 then computes locally and broadcasts

𝑤1 :=
𝑚∑︁
𝑗=1

𝑐
𝑗−1
𝑖

y1𝑖 (𝑗),

𝑤2 :=
𝑚∑︁
𝑗=1

𝑐
𝑗−1
𝑖

y2𝑖 (𝑗),

and all parties move to check if

𝛽𝑤1
?
= 𝑤2 + ⟨𝑑𝑖⟩,

which is trivial.
Due to page limitation, the full protocols undergone above optimizations are

presented in appendix, in Algorithm 7, 8 and 9.

26

We remark that, this approach achieves linear online computation with 𝑛

more calls to Πrand and 2𝑛𝑚 more multiplication in offline phase. Although
this does not increase asymptotic offline complexity, since the 𝑂 (𝑛2𝑚) online
computation (before this optimization) consists mostly of local field operations,
it is possible that the version with 𝑂 (𝑛2𝑚) online computation will be a better
trade off between offline and online overheads.

7.3 Complexity Analysis

Assume we enhance the protocol with above two optimizations. Below we briefly
analyze the complexity of our malicious secure shuffle protocol.

The offline communication and computation complexity of our protocol is
𝑂 (𝑛𝑃+𝑛𝑚𝑅+𝑛𝑚𝑀), where 𝑃 is the overall complexity for Πperm, 𝑅 is the overall
complexity for Πrand and 𝑀 is the overall complexity for Πmul. If 𝑅 = 𝑀 = 𝑂 (𝑛)
(e.g. [19][20]), since in current constructions 𝑃 = Ω(𝑛𝑚 log𝑚) (e.g. [14][15]), the
offline complexities are 𝑂 (𝑛𝑃). This indicates that the offline complexities are
asymptotically the same as invoking Πperm for 𝑛 times. Since these invocations
to Πperm are inevitable in permute-in-turn paradigm, our construction obtains
linear online phase almost for free.

The online communication complexity of our protocol is 𝑂 (𝑛(𝑛 + 𝑚)). By
passing around y𝑖 and finally broadcasting y𝑛, the communication of all parties
is 𝑂 (𝑛𝑚), since each vector is of length 2𝑚. The verification requires that parties
open 𝑐𝑖 to 𝑃𝑖, and that 𝑃𝑖 computes and broadcasts two elements 𝑤1 and 𝑤2,
which is 𝑂 (𝑛) communication per party. Also, each check requires opening one
shared element, which is in total 𝑂 (𝑛2) communication. Summing up, this is
𝑂 (𝑛(𝑛 + 𝑚)). Since in practice, the number of items to be shuffled is usually
much larger than the number of participants, this is 𝑂 (𝑛𝑚) in most cases.

The online computation complexity of our protocol is 𝑂 (𝑛𝑚), counted by
field operation. After receiving y𝑖−1, party 𝑃𝑖 needs to compute 𝑤1, 𝑤2 and y𝑖,
each of which requires 𝑂 (𝑚) computation. This is hence 𝑂 (𝑛𝑚) for all parties.

8 Experiments

8.1 Experiments Setting

We implement our shuffle protocol with the shuffle protocol of Song et al. [14] and
MP-SPDZ [34] MPC framework. MP-SPDZ framework supports Mascot protocol
[30], an MPC arithmetic protocol based on additive secret sharing. The Mascot
supports the multiplication operation our protocol require, and is secure against
malicious adversary and dishonest majority. We first implement the permutation
protocol and the shuffle protocol of Song et al. [14] (for convenient, we denote it
as “basic shuffle protocol” in the following), then implement our shuffle protocol
based on it, compare the performance of the two protocols. The target of our
experiment is to see if our construction could indeed significantly improve the
online communication/computation complexity of the basic shuffle protocol as
suggested by theoretical analysis.

27

We note that the choice of Mascot as the specific MPC framework is rather
casual, as our constructions are also compatible to other frameworks. The im-
portant thing is that we implement the shuffle protocol of Song et al. [14] also for
Mascot, so we are comparing the shuffle protocols under same MPC framework.

Our experiment is run on a host equipped with 32 processors, each being
Intel(R) Xeon(R) Gold 5122 CPU @ 3.60GHz. The operating system is Ubuntu
18.04.6 LTS. Each party is simulated by a process on the host, and the commu-
nication in between is via loopback. We use the Linux tc command to simulate
WAN network, with a bandwidth of 80 MB/s and RTT 60 ms.

We set the security parameter as 𝜅 = 40 and choose a prime field with size
around 264 for Mascot protocol. The basic shuffle protocol of [14] contains a
parameter to trade-off between communication overhead and computation over-
head, due to the application of sub-permutation decomposition technique of [17].
This parameter also affects offline/online running time. Hence, we report the re-
sults of two versions of basic protocols, one with the least online running time
and one with the least overall time. As the online phase of our protocol is unaf-
fected by basic permutation protocol, we report the result of our protocol with
the least overall running time.

Our code is available at https://github.com/GJCPP/MP-SPDZ-Shuffle.

8.2 Experiments with Number of Parties

We first test the protocols running by 𝑛 = 3, 6, 9, 12, 15 parties. This test aims
to verify that after the enhancement suggested in Section 7, our protocol has
linear online communication, while the basic shuffle protocol has 𝑂 (𝐵𝑛2𝑚) online
communication, where 𝑚 is the number of items. The results of the experiment
is listed in Table 2.

From these tables, it can be seen that the growth of both online communi-
cation and running time of our protocol appear to be much slower than that
of basic protocol. One of the significant phenomenons is that the online com-
munication overhead of our protocol is almost invariant for each party, which
coincides well with the theoretic result that the online communication should
be 𝑂 (𝑛(𝑛 + 𝑚)). Also, it can be seen that the trade-off of basic protocol has its
limit, in the sense that even if we choose a parameter that completely ignores
the offline cost, its online running time is still slower than our protocol. This is
because the basic shuffle protocol has its complexity inherently Θ(𝐵𝑛2𝑚), which
cannot be overcome by increasing offline computation overheads.

It should also be noted that, when optimizing the basic protocol by its overall
running time, its offline communication and running time are both much smaller
than ours, by approximately a fraction of 0.33 and 0.65, respectively. However,
the online communication and running time of our protocol are better than that
of the basic protocol by approximately two orders of magnitude. This coincides
with the theoretical analysis that the online complexity of basic protocol should
grow quadratically with the number of parties, while our protocol only linearly.

28

Table 2. Offline/Online Communication and Running Time

Communication per Party (MB) Running Time (s)
𝑛 3 6 9 12 15 3 6 9 12 15

[14]1 184 493 865 1260 1679 64.3 282 663 1214 2008
Offline [14]2 135 355 629 899 1278 102 401 936 1621 2735

ours 412 1294 2327 3552 4896 103 444 1085 1987 2875
[14]1 14.0 35.0 56.1 76.4 92.6 8.65 38.6 76.8 128 187

Online [14]2 7.73 18.3 28.3 36.0 45.9 6.67 25.3 47.8 66.0 95.4
ours 0.262 0.329 0.353 0.366 0.376 0.625 1.27 1.94 3.41 4.32

𝑛 is the number of parties. The number of items is 𝑚 = 212.
[14]1 is optimized to minimize total running time.
[14]2 is optimized to minimize online running time.

Table 3. Offline/Online Communication and Running Time

Communication per Party (MB) Running Time (s)
log2 𝑚 10 12 14 16 18 10 12 14 16 18

[14]1 22.4 89.0 449 1770 8473 7.84 30.0 135 553 2586
Offline [14]2 23.5 64.8 275 1069 5012 140 91.2 314 2029 3481

ours 56.5 230 908 2759 11950 15.7 51.7 213 771 3495
[14]1 1.88 6.94 35.6 135 666 1.15 1.88 8.66 38.3 159

Online [14]2 0.999 3.40 14.1 49.2 285 0.972 0.972 1.75 10.8 35.2
ours 0.049 0.196 0.786 3.14 12.5 0.336 0.350 0.398 0.502 1.23

𝑚 is the number of items. The number of parties is 𝑛 = 2.
[14]1 is optimized to minimize total running time.
[14]2 is optimized to minimize online running time.

29

8.3 Experiments with Number of Items

We also test the protocols for shuffling 𝑚 = 210, 212, ..., 218 items between 𝑛 = 2
parties. These tests aim at testing the scalability of the protocol with respect to
the growing of data. The results are listed in Table 3.

From the table we can see that, both online communication and running
time are far less than those of basic protocols. Also, it can be observed that the
communication and running time of all the three protocols scale approximately
by a factor of four, which is consistent with the theoretical result that all the
protocols are linear with respect to the number of items. Compared to the basic
protocol optimized to minimize total running time, our protocol is approximately
1.5× slower in the offline phase, yet is around 100× faster in the online phase
when the number of items is large. This advantage is due to the constant 𝐵

introduced by cut-and-choose technique in the basic protocol. The gap becomes
more significant with the growing of number of items, possibly due to that when
the number of items is small, the computation (in contrast to communication)
is the only bottleneck.

9 Conclusion

In this paper, we study how to design an MPC shuffle protocol with least on-
line overheads. We define shuffle correlation for both semi-honest and malicious
MPC. We show how to generate them and use them to obtain a shuffle protocol
with linear online communication and computation, with black-box access to
MPC permutation protocol and basic MPC arithmetic operations. Our defini-
tions are thus generic and can be instantiated with various MPC frameworks.
Remarkably, by instantiating our construction with the MPC permutation pro-
tocol by Song et al. [14], we obtain the first malicious secure MPC shuffle pro-
tocol with linear online phase for additive secret sharing scheme. Instantiating
with Shamir secret sharing and the MPC permutation protocol by Keller and
Scholl [15], we obtain the first MPC shuffle protocol with linear online phase
for Shamir secret sharing scheme, for both semi-honest and malicious security.
The security proofs for both constructions are presented, which show that our
malicious secure construction could achieve UC security in FMPC-hybrid model.
The experiments show that, compared to the basic shuffle protocol that is used
to instantiate our construction, our protocol performs notably better in both
online communication and running time.

30

Bibliography

[1] Sherman S.M. Chow, Jie Han Lee, and Lakshminarayanan Subramanian.
Two-party computation model for privacy-preserving queries over distributed
databases. 2009. Publisher Copyright: © 2009 Proceedings of the Symposium on
Network and Distributed System Security, NDSS 2009.

[2] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho, and Jennie
Rogers. Smcql: Secure querying for federated databases, 2017.

[3] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei
Lapets, and Azer Bestavros. Conclave: secure multi-party computation on big
data. EuroSys ’19, New York, NY, USA, 2019. Association for Computing Ma-
chinery. ISBN 9781450362818. https://doi.org/10.1145/3302424.3303982.

[4] Renuga Kanagavelu, Zengxiang Li, Juniarto Samsudin, Yechao Yang, Feng Yang,
Rick Siow Mong Goh, Mervyn Cheah, Praewpiraya Wiwatphonthana, Khajon-
pong Akkarajitsakul, and Shangguang Wang. Two-phase multi-party computation
enabled privacy-preserving federated learning. In 2020 20th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGRID), pages
410–419, 2020. https://doi.org/10.1109/CCGrid49817.2020.00-52.

[5] Vaikkunth Mugunthan, Antigoni Polychroniadou, David Byrd, and Tucker Hybi-
nette Balch. Smpai: Secure multi-party computation for federated learning. In
Proceedings of the NeurIPS 2019 Workshop on Robust AI in Financial Services,
volume 21. MIT Press Cambridge, MA, USA, 2019.

[6] Ekanut Sotthiwat, Liangli Zhen, Zengxiang Li, and Chi Zhang. Partially encrypted
multi-party computation for federated learning. In 2021 IEEE/ACM 21st Inter-
national Symposium on Cluster, Cloud and Internet Computing (CCGrid), pages
828–835. IEEE, 2021. https://doi.org/10.1109/CCGrid51090.2021.00101.

[7] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi.
Practically efficient multi-party sorting protocols from comparison sort algorithms.
In Information Security and Cryptology–ICISC 2012: 15th International Confer-
ence, Seoul, Korea, November 28-30, 2012, Revised Selected Papers 15, pages 202–
216. Springer, 2013. https://doi.org/10.1007/978-3-642-37682-5_15.

[8] Dan Bogdanov, Sven Laur, and Riivo Talviste. A practical analysis of oblivi-
ous sorting algorithms for secure multi-party computation. In Nordic Conference
on Secure IT Systems, pages 59–74. Springer, 2014. https://doi.org/10.1007/
978-3-319-11599-3_4.

[9] Peeter Laud and Martin Pettai. Secure multiparty sorting protocols with covert
privacy. In Secure IT Systems: 21st Nordic Conference, NordSec 2016, Oulu,
Finland, November 2-4, 2016. Proceedings 21, pages 216–231. Springer, 2016.
https://doi.org/10.1007/978-3-319-47560-8_14.

[10] Koki Hamada, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. Oblivious radix
sort: An efficient sorting algorithm for practical secure multi-party computation.
Cryptology ePrint Archive, 2014.

[11] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias.
Mcmix: Anonymous messaging via secure multiparty computation. In 26th
USENIX Security Symposium (USENIX Security 17), pages 1217–1234, 2017.

[12] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate,
and Andrew Miller. Honeybadgermpc and asynchromix: Practical asynchronous

https://doi.org/10.1145/3302424.3303982
https://doi.org/10.1145/3302424.3303982
https://doi.org/10.1109/CCGrid49817.2020.00-52
https://doi.org/10.1109/CCGrid49817.2020.00-52
https://doi.org/10.1109/CCGrid51090.2021.00101
https://doi.org/10.1109/CCGrid51090.2021.00101
https://doi.org/10.1007/978-3-642-37682-5_15
https://doi.org/10.1007/978-3-642-37682-5_15
https://doi.org/10.1007/978-3-319-11599-3_4
https://doi.org/10.1007/978-3-319-11599-3_4
https://doi.org/10.1007/978-3-319-11599-3_4
https://doi.org/10.1007/978-3-319-11599-3_4
https://doi.org/10.1007/978-3-319-47560-8_14
https://doi.org/10.1007/978-3-319-47560-8_14

mpc and its application to anonymous communication. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, pages
887–903, 2019. https://doi.org/10.1145/3319535.3354238.

[13] Saba Eskandarian and Dan Boneh. Clarion: Anonymous communication from
multiparty shuffling protocols. Cryptology ePrint Archive, 2021. https://doi.
org/10.14722/ndss.2022.24141.

[14] Xiangfu Song, Dong Yin, Jianli Bai, Changyu Dong, and Ee-Chien Chang. Secret-
shared shuffle with malicious security. Cryptology ePrint Archive, 2023. https:
//doi.org/10.14722/ndss.2024.24021.

[15] Marcel Keller and Peter Scholl. Efficient, oblivious data structures for MPC. In
Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT
2014, pages 506–525. Springer. ISBN 978-3-662-45608-8.

[16] Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-efficient oblivious
database manipulation. In Information Security: 14th International Conference,
ISC 2011, Xi’an, China, October 26-29, 2011. Proceedings 14, pages 262–277.
Springer, 2011. https://doi.org/10.1007/978-3-642-24861-0_18.

[17] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. Secret-shared shuffle. In
Advances in Cryptology–ASIACRYPT 2020: 26th International Conference on the
Theory and Application of Cryptology and Information Security, Daejeon, South
Korea, December 7–11, 2020, Proceedings, Part III 26, pages 342–372. Springer,
2020. https://doi.org/10.1007/978-3-030-64840-4_12.

[18] Peeter Laud. Linear-time oblivious permutations for spdz. In Cryptology and
Network Security: 20th International Conference, CANS 2021, Vienna, Austria,
December 13-15, 2021, Proceedings 20, pages 245–252. Springer, 2021. https:
//doi.org/10.1007/978-3-030-92548-2_13.

[19] S. Dov Gordon, Phi Hung Le, and Daniel McVicker. Linear communication in
malicious majority mpc. CCS ’23, page 2173–2187, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9798400700507. https://doi.org/
10.1145/3576915.3623162. URL https://doi.org/10.1145/3576915.3623162.

[20] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed Output Delivery Comes
Free in Honest Majority MPC. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology – CRYPTO 2020, pages 618–646, Cham, 2020.
Springer International Publishing. ISBN 978-3-030-56880-1. https://doi.org/
10.1007/978-3-030-56880-1_22.

[21] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making spdz great
again. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 158–189. Springer, 2018.

[22] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Annual Cryptol-
ogy Conference, pages 643–662. Springer, 2012. https://doi.org/10.1007/
978-3-642-32009-5_38.

[23] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure
multiparty computation. In Annual International Cryptology Conference, pages
572–590. Springer, 2007. https://doi.org/10.1007/978-3-540-74143-5_32.

[24] David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981. https://doi.
org/10.1145/358549.358563.

[25] Ben Adida and Douglas Wikström. How to shuffle in public. In Theory of Cryp-
tography: 4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The
Netherlands, February 21-24, 2007. Proceedings 4, pages 555–574. Springer, 2007.
https://doi.org/10.1007/978-3-540-70936-7_30.

32

https://doi.org/10.1145/3319535.3354238
https://doi.org/10.1145/3319535.3354238
https://doi.org/10.14722/ndss.2022.24141
https://doi.org/10.14722/ndss.2022.24141
https://doi.org/10.14722/ndss.2022.24141
https://doi.org/10.14722/ndss.2022.24141
https://doi.org/10.14722/ndss.2024.24021
https://doi.org/10.14722/ndss.2024.24021
https://doi.org/10.14722/ndss.2024.24021
https://doi.org/10.14722/ndss.2024.24021
https://doi.org/10.1007/978-3-642-24861-0_18
https://doi.org/10.1007/978-3-642-24861-0_18
https://doi.org/10.1007/978-3-030-64840-4_12
https://doi.org/10.1007/978-3-030-64840-4_12
https://doi.org/10.1007/978-3-030-92548-2_13
https://doi.org/10.1007/978-3-030-92548-2_13
https://doi.org/10.1007/978-3-030-92548-2_13
https://doi.org/10.1007/978-3-030-92548-2_13
https://doi.org/10.1145/3576915.3623162
https://doi.org/10.1145/3576915.3623162
https://doi.org/10.1145/3576915.3623162
https://doi.org/10.1145/3576915.3623162
https://doi.org/10.1145/3576915.3623162
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1007/978-3-540-70936-7_30
https://doi.org/10.1007/978-3-540-70936-7_30

[26] Jens Groth. A verifiable secret shuffle of homomorphic encryptions. Journal of
Cryptology, 23:546–579, 2010. https://doi.org/10.1007/3-540-36288-6_11.

[27] Susan Hohenberger, Guy N Rothblum, Abhi Shelat, and Vinod Vaikuntanathan.
Securely obfuscating re-encryption. In Theory of Cryptography Conference, pages
233–252. Springer, 2007. https://doi.org/10.1007/978-3-540-70936-7_13.

[28] Masayuki Abe. Mix-networks on permutation networks. In International Con-
ference on the Theory and Application of Cryptology and Information Security,
pages 258–273. Springer, 1999.

[29] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.
Improved primitives for mpc over mixed arithmetic-binary circuits. In Ad-
vances in Cryptology–CRYPTO 2020: 40th Annual International Cryptology Con-
ference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020, Pro-
ceedings, Part II 40, pages 823–852. Springer, 2020. https://doi.org/10.1007/
978-3-030-56880-1_29.

[30] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: faster malicious arith-
metic secure computation with oblivious transfer. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 830–842,
2016. https://doi.org/10.1145/2976749.2978357.

[31] Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure mpc with linear
communication complexity. In Theory of Cryptography Conference, pages 213–230.
Springer, 2008. https://doi.org/10.1007/978-3-540-78524-8_13.

[32] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings 42nd IEEE Symposium on Foundations of Computer Sci-
ence, pages 136–145. IEEE, 2001. https://doi.org/10.1109/SFCS.2001.959888.

[33] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas
Toft. Unconditionally secure constant-rounds multi-party computation for equal-
ity, comparison, bits and exponentiation. In Theory of Cryptography Conference,
pages 285–304. Springer, 2006. https://doi.org/10.1007/11681878_15.

[34] Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communi-
cations Security, 2020. https://doi.org/10.1145/3372297.3417872.

33

https://doi.org/10.1007/3-540-36288-6_11
https://doi.org/10.1007/3-540-36288-6_11
https://doi.org/10.1007/978-3-540-70936-7_13
https://doi.org/10.1007/978-3-540-70936-7_13
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/11681878_15
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872

A Security Proof for Semi-honest Secure Shuffle

Definition 6 (Security for Semi-honest Shuffle). Suppose there is an ad-
versary A, which can corrupt up to 𝑛 − 1 parties. The parties are to execute
protocol Shuffleoff followed by a protocol Shuffleon with the correlation just gen-
erated. After protocol Shuffleoff finishes, A is to choose a vector x, and input
it with Πinput. At the end of the protocol Shuffleon, A obtains an overall view,
denoted by viewA, which contains all values visible to corrupted parties.

Let the set of corrupted parties by 𝑇 ⊊ [𝑛], and 𝑇 the set of honest parties. The
shuffle protocol is said to be semi-honest secure, if for any possible permutations
(𝜋′

𝑖
)𝑖∈𝑇 ,

Pr[(𝜋𝑖)𝑖∈𝑇 = (𝜋′𝑖)𝑖∈𝑇 | viewA] =
1

(𝑚!) |𝑇 |
.

I.e. the tuple of all permutations performed by honest party 𝑃𝑖 ∈ 𝑇 , which is
(𝜋𝑖)𝑖∈𝑇 , is uniform over all possible permutations, even if conditioned on the
view of adversary. This can be expressed equivalently via mutual information, by
stating

𝐼 ((𝜋𝑖)𝑖∈𝑇 ; viewA) = 0,

i.e. the permutations of honest parties are independent of the view of adversary.

Theorem 1. The semi-honest two-phase shuffle protocol Shuffleoff and Shuffleon
is secure, in the sense that it satisfies the above definition for semi-honest shuffle
protocol. That is, the view of any adversary corrupting up to 𝑛 − 1 parties is
independent of the permutations of honest parties, i.e.

𝐼 ((𝜋𝑖)𝑖∈𝑇 ; viewA) = 0.

Proof. The core idea of proof is that, given the view of the adversary and any
choices of possible permutations of honest parties, there is exactly one assignment
to (r𝑖)𝑖∈[𝑛] and (z𝑖)𝑖∈𝑇 , such that the view of adversary is not altered, yet the
result becomes applying new permutations to x.

For a clear demonstration, let’s suppose the adversary corrupts exactly 𝑛− 1
parties, leaving 𝑃𝑘 the only honest party. The view of adversary contains

viewA =

x
𝜋1 𝜋2 · · · 𝜋𝑘−1 𝜋𝑘+1 · · · 𝜋𝑛
z1 z2 · · · z𝑘−1 z𝑘+1 · · · z𝑛
y1 y2 · · · y𝑘−1 y𝑘 y𝑘+1 · · · y𝑛

 .

Note that the view contains all y𝑖, including y𝑘 , since it’s the message from 𝑃𝑘

to 𝑃𝑘+1.
Let’s suppose honest party 𝑃𝑘 has originally chosen 𝜋𝑘 , but now we want the

result to be as if it has chosen 𝜋′
𝑘
. We claim that, there is exactly one assignment

to {z𝑖 , r𝑖 , 𝜋𝑖}𝑖∈[𝑛] , denoted by (z′
𝑖
)𝑖∈[𝑛] , (r′𝑖)𝑖∈[𝑛] and (𝜋′

𝑖
)𝑖∈[𝑛] , such that

1. For each 𝑖 ≠ 𝑘, 𝜋′
𝑖
= 𝜋𝑖.

34

2. For each 𝑖 ≠ 𝑘, z𝑖 = 𝜋𝑖−1 (r𝑖−1) − r𝑖 = 𝜋′
𝑖−1 (r′𝑖−1) − r′𝑖 = z′

𝑖
.

3. For 𝑃𝑘 , z′𝑘 = 𝜋′
𝑘−1 (r

′
𝑘−1) − r

′
𝑘
, which may not equal z𝑘 .

4. The output will be

⟦𝜋′𝑛⟧ := ⟦𝜋′𝑛 ◦ 𝜋′𝑛−1 ◦ · · · ◦ 𝜋′1 (x)⟧.

Note that the above statements imply that the view of corrupted parties is not
altered by replacing 𝜋𝑘 with arbitrary 𝜋′

𝑘
, and even remains consistent with

the new meaning we assign to it (i.e. shuffling with 𝜋′
𝑖
). Hence, since 𝜋′

𝑘
is an

arbitrary permutation, this indicates that any permutation 𝜋′
𝑘

is equally possible
in the view of adversary.

This exact assignment can be solved from the constraints put by the view.
Suppose first 𝑘 = 1, note that

z1 = x − r1, y1 = 𝜋1 (z1).

Since y1 appears in the view, it demands z′1 = 𝜋′−11 (y1). Luckily, z1 and z′1 does
not appear in the view, hence they can be different. And this gives the only
r′1 = x − 𝜋′−11 (y1). By examination,

y1 = 𝜋1 (x) − 𝜋1 (r1) = 𝜋′1 (x) − 𝜋′1 (r′1) = y′1,

which coincides with the requirement of y1 = y′1.
Now that it is demanded that z2 = z′2 = 𝜋′1 (r′1) − r′2, this gives exactly one

solution to r′2 = 𝜋′1 (r′1) − z2. Since 𝜋2 = 𝜋′2, y
′
1 = y1 and z′2 = z2, we have y′2 = y2

naturally. What’s more, it can be checked that

y′2 = y2 = 𝜋2 (y1 + z2) = 𝜋′2 (x) − 𝜋′2 (r′2),

which follows trivially from the fact that

y1 = y′1 = 𝜋′1 (x) − 𝜋′1 (r′1),

and
z2 = z′2 = 𝜋′1 (r′1) − r′2,

and 𝜋2 = 𝜋′2.
Now following this path, we can assign new value to each r𝑖 as r′

𝑖
for 𝑖 ≥ 2,

such that z′
𝑖
= z𝑖, yet the “explanation” of y𝑖 is replaced by

y𝑖 = y′𝑖 = 𝜋′𝑖 (x) − 𝜋′𝑖 (r′𝑖).

And at the end, party 𝑃𝑛 obtains

y𝑛 = y′𝑛 = 𝜋′𝑛 (x) − 𝜋′𝑛 (r′𝑛).

After broadcasting and adding it with ⟦𝜋′𝑛 (r′𝑛)⟧, the result is indeed 𝜋′𝑛 (x).
Hence, if 𝑃1 is honest, by seeing only the values in the view, 𝜋1 can be any

permutation 𝜋′1. And the probabilities of 𝜋1 being any 𝜋′1 are equal, since there

35

is exactly one set of assignment to r𝑖 that supports the claim 𝜋1 = 𝜋′1. As the
adversary does not know any r𝑖 or 𝜋𝑖 (r𝑖), it cannot prefer any value of 𝜋1 over
another. Thus, the choice of 𝜋1 is independent of the view of A.

The case for 𝑘 ≥ 2 can be deduced trivially from the case of 𝑘 = 1. In the
case of 𝑘 ≥ 2, all r𝑖 for 𝑖 < 𝑘 does not need to be modified, since they are already
uniquely decided given 𝜋1, ..., 𝜋𝑘−1 and z1, ..., z𝑘−1 and x. Further, they cannot
be modified, since A can deduce the exact value of r1, ..., r𝑘−1. However, since
the adversary lacks the view of z𝑘 , we are able to modify r𝑘 as r′

𝑘
, and the same

argument will continue to be valid.
Argument for the case where A corrupts arbitrary 𝑇 ⊊ [𝑛] can be easily

generalized from above argument, and hence we simply claim it true here.

B Security Proof for Malicious Secure Shuffle

B.1 Fully Developed Shuffle Protocol

Below in Algorithm 7, 8 and 9 are our final version of shuffle protocol for mali-
cious security, whose online communication, computation and round complexity
is 𝑂 (𝑛𝑚), 𝑂 (𝑛𝑚) and 𝑂 (𝑛), respectively. In the following, we are to prove that
this construction satisfies UC security under FMPC-hybrid model.

First, we present an extended malicious shuffle correlation. Compared to
Definition 5, this definition includes additional auxiliary information to reduce
online computation.

Definition 7 ((Extended) Malicious Shuffle Correlation). The shuffle
correlation for malicious setting is defined as

cor =

⟨𝛽⟩ ⟨r⟩ ⟨𝛽r⟩ ⟨𝜋−11 (r′1)⟩ ⟨s⟩
𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 · · · 𝜋𝑛
⟨r′1⟩ ⟨r′2⟩ ⟨r′3⟩ ⟨r′4⟩ ⟨r′5⟩ · · · ⟨r′𝑛⟩
⟨𝑐2⟩ ⟨𝑐3⟩ ⟨𝑐4⟩ ⟨𝑐5⟩ ... ⟨𝑐𝑛⟩
⟨𝑑2⟩ ⟨𝑑3⟩ ⟨𝑑4⟩ ⟨𝑑5⟩ ... ⟨𝑑𝑛⟩
z2 z3 z4 z5 · · · z𝑛

,

where

1. 𝜋𝑖 is an 𝑚-permutation known only to 𝑃𝑖. It is sampled uniformly from all
possible 𝑚-permutations by 𝑃𝑖 (if 𝑃𝑖 is honest).

2. ⟨𝛽⟩ is a secret shared random variable. It plays the role of the authentication
key, i.e. MAC key.

3. ⟨r⟩, ⟨s⟩, ⟨r′1⟩, ..., ⟨r′𝑛⟩ are secret shared vectors of length 𝑚, with each entry
independently uniformly random. ⟨𝛽r⟩ is secret shared 𝛽 · r.

4. 𝑐𝑖 is uniformly random, with

𝑑𝑖 =

𝑚∑︁
𝑗=1

𝑐
𝑗−1
𝑖

r′𝑖 .

36

5. z𝑖 = (z1
𝑖
, z2

𝑖
), where each z

𝑗

𝑖
is a vector of length 𝑚. The entries of z1

𝑖
are

uniformly random, under the constraint{
z2𝑖 = 𝛽z1𝑖 + r′𝑖−1 − 𝜋−1𝑖 (r′𝑖) ∀𝑖 = 2, 3, ..., 𝑛

s = 𝜋𝑛 (𝜋𝑛−1 (· · · 𝜋2 (𝜋1 (r) − z12) − z13 · · ·) − z1𝑛)

Algorithm 7 cor← Shuffleoff (𝑚, 𝑃1 : 𝜋1, ..., 𝑃𝑛 : 𝜋𝑛)
Require: For honest 𝑃𝑖 , 𝜋𝑖 is sampled uniformly from all 𝑚-permutations.
Ensure: Return a shuffle correlation.

Generate random value ⟨𝛽⟩.
for 𝑖 = 1 to 𝑛 do parallel

Generate random vectors ⟨r𝑖⟩ and ⟨r′
𝑖
⟩.

⟨𝛽r𝑖⟩ ← Πmul (⟨r𝑖⟩, ⟨𝛽⟩)(
⟨𝜋𝑖 (r𝑖)⟩, ⟨𝜋𝑖 (𝛽r𝑖)⟩, ⟨𝜋𝑖 (r′𝑖)⟩

)
← Πperm

(
𝑃𝑖 : 𝜋𝑖 , ⟨r𝑖⟩, ⟨𝛽r𝑖⟩, ⟨r′𝑖⟩

)
if 𝑖 ≥ 2 then
⟨z1
𝑖
⟩ ← ⟨𝜋𝑖−1 (r𝑖−1)⟩ − ⟨r𝑖⟩

⟨z2
𝑖
⟩ ← ⟨𝜋𝑖−1 (𝛽r𝑖−1)⟩ − ⟨𝛽r𝑖⟩ + ⟨𝜋𝑖−1 (r′𝑖−1)⟩ − ⟨r

′
𝑖
⟩

⟨z𝑖⟩ := (⟨z1𝑖 ⟩, ⟨z
2
𝑖
⟩)

⟨𝑐𝑖⟩ ← Πrand ()
Compute ⟨𝑐𝑖⟩, ⟨𝑐2𝑖 ⟩, ..., ⟨𝑐

𝑚−1
𝑖
⟩. ⊲ 𝑂 (𝑚) calls to Πmul.

⟨𝑑𝑖⟩ ←
∑𝑚

𝑗=1⟨𝑐
𝑗−1
𝑖
⟩ · ⟨𝜋𝑖−1 (r′𝑖−1 (𝑗))⟩

end if
end for
for 𝑖 = 2 to 𝑛 do parallel

Open z𝑖 to 𝑃𝑖 .
end for

Return cor =

⟨𝛽⟩ ⟨r1⟩ ⟨𝛽r1⟩ ⟨r′1⟩ ⟨𝜋𝑛 (r𝑛)⟩
𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 · · · 𝜋𝑛

⟨𝜋1 (r′1)⟩ ⟨𝜋2 (r
′
2)⟩ ⟨𝜋3 (r

′
3)⟩ ⟨𝜋4 (r

′
4)⟩ ⟨𝜋5 (r

′
4)⟩ · · · ⟨𝜋𝑛 (r

′
𝑛)⟩

⟨𝑐2⟩ ⟨𝑐3⟩ ⟨𝑐4⟩ ⟨𝑐5⟩ ... ⟨𝑐𝑛⟩
⟨𝑑2⟩ ⟨𝑑3⟩ ⟨𝑑4⟩ ⟨𝑑5⟩ ... ⟨𝑑𝑛⟩
z2 z3 z4 z5 · · · z𝑛

B.2 Roadmap and Ideal Functionality

Before we dive into a formal security proof, let’s give some intuitions on why the
above offline and online protocol is secure.

First recall that the offline phase of the protocol Shuffleoff has in essence done
nothing besides generating random value, doing some multiplications, calling
the functionality Πperm and opening some values. Since all these operations are
supported by FMPC, the security follows trivially.

In the online phase Shuffleon, what could potentially harm the security is
y𝑖. Since z𝑖 and 𝜋𝑖 is by design only known to party 𝑃𝑖, honest parties could

37

Algorithm 8 PartialVerify(𝑃𝑖+1, y1𝑖 , y
2
𝑖
, ⟨𝛽⟩, ⟨𝑐𝑖+1⟩, ⟨𝑑𝑖+1⟩)

Require: ⟨𝑐𝑖+1⟩ and ⟨𝑑𝑖+1⟩ come from malicious shuffle correlation.
Ensure: If honest 𝑃𝑖+1 does not receive 𝛽y1

𝑖
= y2

𝑖
+ 𝜋𝑖 (r′𝑖), abort w.h.p.

Parties open ⟨𝑐𝑖+1⟩ to 𝑃𝑖+1.
𝑃𝑖+1 computes 𝑤𝑏 :=

∑𝑚
𝑗=1 𝑐

𝑗−1
𝑖+1 y𝑏

𝑖
(𝑗), 𝑏 ∈ {1, 2}.

𝑃𝑖+1 broadcasts 𝑤1 and 𝑤2.
⟨𝑒⟩ ← 𝑤1 · ⟨𝛽⟩ − 𝑤2 − ⟨𝑑𝑖+1⟩.
Open 𝑒 for all parties.
Abort if 𝑒 ≠ 0.

Algorithm 9 ⟨𝜋𝑛 (x)⟩ ← Shuffleon (⟨x⟩)

Require: Fresh cor =

⟨𝛽⟩ ⟨r1⟩ ⟨𝛽r1⟩ ⟨r′1⟩ ⟨𝜋𝑛 (r𝑛)⟩
𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 · · · 𝜋𝑛

⟨𝜋1 (r′1)⟩ ⟨𝜋2 (r
′
2)⟩ ⟨𝜋3 (r

′
3)⟩ ⟨𝜋4 (r

′
4)⟩ ⟨𝜋5 (r

′
4)⟩ · · · ⟨𝜋𝑛 (r

′
𝑛)⟩

⟨𝑐2⟩ ⟨𝑐3⟩ ⟨𝑐4⟩ ⟨𝑐5⟩ ... ⟨𝑐𝑛⟩
⟨𝑑2⟩ ⟨𝑑3⟩ ⟨𝑑4⟩ ⟨𝑑5⟩ ... ⟨𝑑𝑛⟩
z2 z3 z4 z5 · · · z𝑛

.

Ensure: Return ⟨𝜋𝑛 (x)⟩ if the protocol does not abort.
⟨𝛽x⟩ ← Πmul (⟨𝛽⟩, ⟨x⟩)
⟨z11⟩ ← ⟨x⟩ − ⟨r1⟩
⟨z21⟩ ← ⟨𝛽x⟩ − ⟨𝛽r1⟩ − ⟨r

′
1⟩

Open z1 := (z11, z
2
1) to 𝑃1.

𝑃1 computes and broadcasts y1 = 𝜋1 (z1).
for 𝑖 = 2 to 𝑛 − 1 do

𝑃𝑖 computes and sends to 𝑃𝑖+1 y𝑖 = 𝜋𝑖 (z𝑖 + y𝑖−1).
end for
𝑃𝑛 computes and broadcasts y𝑛 = 𝜋𝑛 (z𝑛 + y𝑛−1).
for 𝑖 = 1 to 𝑛 − 1 do

PartialVerify(𝑃𝑖+1, y1𝑖 , y
2
𝑖
, ⟨𝛽⟩, ⟨𝑐𝑖+1⟩, ⟨𝑑𝑖+1⟩)

end for
Verify(y1𝑛, y2𝑛, ⟨𝛽⟩, ⟨𝜋𝑛 (r′𝑛)⟩)
⟨y1𝑛⟩ ← Πinput (y1𝑛).
⟨x′⟩ ← ⟨y1𝑛⟩ + ⟨𝜋𝑛 (r𝑛)⟩
Return ⟨x′⟩.

38

not tell if what 𝑃𝑖 sends is indeed y𝑖 = 𝜋𝑖 (z𝑖 + y𝑖−1). However, note that in our
construction, the parties will be able to check whether the correlation implanted
in y𝑖 is sound by PartialVerify. Intuitively, as 𝛽 and r′

𝑖
are both never revealed,

𝑃𝑖 cannot forge a fake y′
𝑖

and still pass the test. This guarantees all y𝑖 to be
correct, and hence the result.

Hence, in this section, we prove first that adversary cannot learn the shuffle
authentication key 𝛽 before entering any PartialCheck, even if it deviates from
the protocol. This is, of course, of vital importance. Then, we will prove that due
to having no knowledge to 𝛽, the adversary cannot forge y𝑖 and pass the test with
non-negligible probability, nor can it forge 𝑤1 and 𝑤2 broadcast in PartialVerify
and pass the test with non-negligible probability. This means that if the protocol
does not abort, w.h.p. all messages sent to honest parties are correctly computed
according to the protocol, which roughly makes the adversary semi-honest. Fi-
nally, we construct a simulator for the entire process, which either aborts with
same probability at the same step in a real execution, or proceeds and outputs
a view indistinguishable from the view in real execution, which finally concludes
the UC security.

Below, we assume the adversary A has corrupted all parties in 𝑇 ⊊ [𝑛],
leaving 𝑇 the set of honest parties.

The formal description of the functionality of the protocol is as follows. The
security is defined by the indistinguishability between the execution of protocol
in real world with an execution of the protocol in ideal world, with the help of
ideal functionality Fshuffle.

Definition 8. (Ideal Functionality of Shuffleoff) Denote by Foff an ideal func-
tionality, which is FMPC equipped with an additional (ideal) command Πoff . This
command takes as input a public length 𝑚 and each 𝑚-permutation 𝜋𝑖 from 𝑃𝑖,
and generates a shuffle correlation. That is,

cor =

⟨𝛽⟩ ⟨r⟩ ⟨𝛽r⟩ ⟨𝜋−11 (r′1)⟩ ⟨s⟩
𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 · · · 𝜋𝑛
⟨r′1⟩ ⟨r′2⟩ ⟨r′3⟩ ⟨r′4⟩ ⟨r′5⟩ · · · ⟨r′𝑛⟩
⟨𝑐2⟩ ⟨𝑐3⟩ ⟨𝑐4⟩ ⟨𝑐5⟩ ... ⟨𝑐𝑛⟩
⟨𝑑2⟩ ⟨𝑑3⟩ ⟨𝑑4⟩ ⟨𝑑5⟩ ... ⟨𝑑𝑛⟩
z2 z3 z4 z5 · · · z𝑛

,

which satisfies Definition 7.

Definition 9. (Ideal Functionality of Shuffle) Denote by Fshuffle an ideal func-
tionality, which is the ideal functionality FMPC equipped with an additional com-
mand Πshuffle. This command takes as input ⟨x⟩, and stores ⟨𝜋(x)⟩ in the ideal
functionality, where 𝜋 is uniformly randomly drawn by Fshuffle.

We begin with three lemmas. The first states that the offline phase is secure,
in the sense that the adversary cannot learn information more than z𝑖 that is
revealed to it. The second and third describe the security of protocol Verify and
PartialVerify, respectively.

39

Lemma 1 (Security of Offline Phase). The protocol Shuffleoff is UC secure
in the FMPC-hybrid model. Further, the view of adversary (besides 𝑚) in offline
phase is equivalent to

viewA = {𝜋𝑖 , z𝑖}𝑖∈𝑇 .
Note that since z1 is not included in the offline phase, it should be understood as
a null value here.

Proof. The protocol Shuffleoff is almost secure by definition. Nevertheless, as a
warming up, we prove the security by constructing the simulator.

First, we note that the protocol Shuffleoff correctly implements ideal func-
tionality Foff by outputting a correlation that satisfies Definition 7. This can be
verified directly by first noting that the constraints are satisfied. Moreover, note
that since in the protocol,

⟨z1𝑖 ⟩ ← ⟨𝜋𝑖−1 (r𝑖−1)⟩ − ⟨r𝑖⟩,
⟨z2𝑖 ⟩ ← ⟨𝜋𝑖−1 (𝛽r𝑖−1)⟩ − ⟨𝛽r𝑖⟩ + ⟨𝜋𝑖−1 (r′𝑖−1)⟩ − ⟨r′𝑖⟩.

This means that after fixing 𝜋𝑖 , 𝛽, r
′
𝑖
, r1 and r𝑛, there is a bijection between set

{(r𝑖)2≤𝑖≤𝑛−1 : r𝑖 ∈ F𝑚} and {(z𝑖)2≤𝑖≤𝑛 : constraint is satisfied} .

Since the protocol generates r𝑖 for 𝑖 ∈ {2, 3, ..., 𝑛 − 1} uniformly, this means z𝑖
will be uniform under the constraint, as required by definition.

Consider a simulator S that acts as follows. At the start of the game, E first
sends to Foff the input of honest parties, which is 𝜋𝑖 for 𝑃𝑖. S simply follows the
protocol, sinceA will obtain no output by calling to ideal FMPC in the real world.
In the step of calling Πperm (𝑃𝑖 : 𝜋𝑖 , ...) for corrupted party 𝑃𝑖, since in the real
world execution A will need to send 𝜋𝑖 to Πperm, S will receive (purported) 𝜋𝑖
from E. Hence, S can send 𝜋𝑖 to Foff , as part of the input required by command
Πoff .

When all inputs are gathered, Foff will send z𝑖 in the shuffle correlation to
S, for each corrupted 𝑃𝑖 with 𝑖 ≥ 2. S is then able to simulate the receiving of
z𝑖 for corrupted party 𝑃𝑖, as if 𝑃𝑖 has received z𝑖 in the real world.

Note also that during the process, whenever E demands S to abort, S simply
aborts as A does. If the protocol does not eventually abort, S sends “continue”
to Foff , who then reveals its final state (i.e. the entire shuffle correlation cor) to
E. This shuffle correlation is of course consistent with the view of adversary A,
as the z𝑖 and 𝜋𝑖 are the same. Hence, the above process is perfect, i.e. is identical
with the execution in the real world.

Additionally, it is also clear from above simulation that the adversary’s view
is z𝑖 opened to it during the protocol, plus the 𝜋𝑖 chosen by itself.

Lemma 2. The protocol Verify(𝑎, 𝑏, ⟨𝛽⟩, ⟨𝑟⟩) is secure, in the sense that if 𝛽𝑎 ≠

𝑏 + 𝑟, the test fails immediately and all parties abort.

Proof. Suppose 𝛽𝑎 ≠ 𝑏 + 𝑟. In protocol, parties compute and open

𝑑 ← 𝛼⟨𝛽⟩ − 𝑏 − ⟨𝑟⟩.

40

By the merit of the functionality FMPC, it is clear that the protocol will abort
if 𝑑 ≠ 0, since all computations included in the protocol is via FMPC.

Lemma 3. The protocol PartialVerify(𝑃𝑖+1, y1𝑖 , y
2
𝑖
, ⟨𝛽⟩, ⟨𝑐𝑖+1⟩, ⟨𝑑𝑖+1⟩) is secure,

in the sense that if honest 𝑃𝑖+1 does not receive valid y𝑖 such that 𝛽y1
𝑖
= y2

𝑖
+𝜋𝑖 (r′𝑖),

it aborts with probability

𝑝 ≥ 1 − 𝑚 − 1
2𝜅

.

Remark. We remark that receiving “valid” y𝑖 such that 𝛽y1
𝑖
= y2

𝑖
+ 𝜋𝑖 (r′𝑖) is

slightly different from receiving “correct” y𝑖 specified by the protocol, since the
adversary might (somehow) forge y′

𝑖
≠ y𝑖 that satisfies this correlation.

This lemma claims only that upon receiving y𝑖 that does not satisfy the
correlation, the parties abort w.h.p. In later proof, however, it turns out that
the adversary cannot forge y′

𝑖
≠ y𝑖 that satisfies this correlation, which makes the

statement “receiving valid y𝑖” equivalent to “receiving correct y𝑖” (except with
negligible probability).

Proof. Suppose 𝑃𝑖+1 is honest, and 𝛽y1
𝑖
≠ y2

𝑖
+ 𝜋𝑖 (r′𝑖). By Lemma 1, the offline

phase of the shuffle is secure. Thus, 𝑐𝑖+1 is uniformly random, and

𝑑𝑖+1 =

𝑚∑︁
𝑗=1

𝑐
𝑗−1
𝑖+1 𝜋𝑖 (r

′
𝑖) (𝑗).

Consider the polynomial

𝑓 (𝑋) =
𝑚∑︁
𝑗=1

(
𝛽 · y1𝑖 (𝑗) − y2𝑖 (𝑗) − 𝜋𝑖 (r′𝑖) (𝑗)

)
· 𝑋 𝑗−1.

As 𝛽y1
𝑖
≠ y2

𝑖
+ 𝜋𝑖 (r′𝑖), 𝑓 is a non-zero polynomial of degree at most 𝑚 − 1. Note

that the protocol PartialVerify opens exactly 𝑓 (𝑐𝑖+1) to all parties. As 𝑐𝑖+1 ap-
pears only in ⟨𝑐𝑖+1⟩ and ⟨𝑑𝑖+1⟩, which are never opened before the protocol
PartialVerify, 𝑐𝑖+1 appears uniformly random to the adversary. Thus, as 𝑓 has
at most 𝑚 − 1 roots in F, 𝑐𝑖+1 happens to be one of them with probability

𝑝pass = Pr(𝑓 (𝑐𝑖+1) = 0 | 𝑐𝑖+1 ← F) ≤ 𝑚 − 1
|F| .

Thus,

𝑝abort = 1 − 𝑝pass ≥ 1 − 𝑚 − 1
|F| ≥ 1 − 𝑚 − 1

2𝜅
.

B.3 Ignorance of Shuffle Authentication Key

Before proving the security of entire protocol, we first propose a somewhat
bizarre lemma, which claims that the “view” of all parties up to checking phase

41

(i.e. before executing any PartialVerify) cannot break the shuffle authentication
key 𝛽. This seems bizarre, because all parties united together should reveal ev-
erything in any multiparty computation, since there is nothing then to protect.
The point is that this “view” does not contain the value of 𝛽 and r′

𝑖
, which is

hidden behind FMPC.

Lemma 4. Consider the following view:

view =

x
z1 z2 · · · z𝑛
𝜋1 𝜋2 · · · 𝜋𝑛

 .

This view consists of x, all secret permutations held by parties and all opened
value during both the offline and online phase of the protocol, before entering
any PartialVerify. Note that y𝑖 can all be deduced from the view.

This lemma claims that, this view is independent of 𝛽, i.e.

𝐼 (𝛽; view) = 0.

Or equivalently,

Pr[𝛽 = 𝛽′ | view] = 1

|F| ,

for any 𝛽′ ∈ F.

Proof. This view can be expanded as

view =

x

x − r1 𝜋1 (r1) − r2 · · ·
𝛽x − 𝛽r1 − r′1 𝜋1 (𝛽r1 + r′1) − 𝛽r2 − r′2 · · ·

𝜋1 𝜋2 · · ·

 ,

where the second row is z1
𝑖

and third row z2
𝑖
. Now note that, we may further

simplify this view, and replace it by

view =

x
r1 r2 · · ·

𝛽x − 𝛽r1 − r′1 𝜋1 (𝛽r1 + r′1) − 𝛽r2 − r′2 · · ·
𝜋1 𝜋2 · · ·

 ,

since this view can deduce all the second row in former view, and vice versa.
Now it should be clear that this view is independent of 𝛽, since the third row

is the only row containing term 𝛽, yet each term is masked by an independent
random vector r′

𝑖
. Stated otherwise, for each possible assignment of 𝛽, there is

exactly one set of assignment to all r′
𝑖
such that the above view does not change.

Hence, the view is independent of 𝛽.

What can this lemma do? No surprisingly, it turns out that what it really
means is that, however the corrupted parties act, they cannot deduce any infor-
mation about 𝛽, before entering the checking phase. This is formally stated in
the following theorem.

42

Theorem 2. Before execution of any PartialVerify protocol, the adversary can-
not deduce any information about 𝛽 from the combined protocol Shuffle, however
it acts. Hence, the probability of the adversary guessing 𝛽 correct is 1/|F|, the
same as randomly drawing a field element.

Proof. Let’s consider the view of adversary. Firstly in the offline phase Shuffleoff ,
the view is exactly {z𝑖}𝑖∈𝑇\{1} and {𝜋𝑖}𝑖∈𝑇 . This is due to Lemma 1. As the offline
phase consists only of calls to FMPC subroutines, however the adversary acts, it
cannot learn more than this view.

In the online phase, the adversary A learns in extra the message of honest
party 𝑃𝑘 , which is y𝑘 . However, recall that

y𝑘 = 𝜋𝑘 (y𝑘−1 + z𝑘),

by the design of the protocol. Whatever y𝑘−1 the adversary may choose, the
information available in y𝑘 is no more than 𝜋𝑘 and z𝑘 . Note that in online
phase, before entering the checking phase, the only chance for the adversary to
learn any information is to choose possibly arbitrary y𝑘 and observe the output
of honest party 𝑃𝑘 .

Recall in Lemma 4, where the adversary learns precisely x and all the 𝜋𝑖 and
z𝑖 for 𝑖 ∈ [𝑛]. The lemma has stated that, this is still insufficient to deduce any
information about 𝛽 due to the ignorance of r′

𝑖
.

Remark. In above theorem we state that even if the adversary learns both 𝜋𝑖
and z𝑖 of honest 𝑃𝑖, it cannot learn anything about 𝛽 before entering the checking
phase. The fact that the adversary (in fact) cannot learn anything about 𝜋𝑖 of
honest 𝑃𝑖 is later shown by constructing UC simulator.

B.4 Enforcement of Honest Behaviors in Online Phase

The enforcement of honest behaviors of the adversary means that the adversary
cannot send any wrong messages (different from what is specified by protocol) to
any honest party, otherwise the protocol aborts with overwhelming probability
in the first check related to that message. To prove this, we first need another
theorem regarding the security of the correlation test protocol.

Theorem 3. In the sequential invocations of PartialVerify, if the invocation
does not yet abort for 𝑃𝑖+1, then with probability at least 1− 1

2𝜅 𝑃𝑖+1 has broadcast
correct 𝑤1 and 𝑤2, and the MAC key 𝛽 is safe.

Proof. Let’s prove by induction. The basic case is the invocation of verification
protocol for 𝑃2.

Without loss of generality, consider a malicious 𝑃2. By Theorem 2, before
entering the checking phase, the adversary does not have any knowledge about
𝛽. By examining the protocol, it is clear that the adversary remains ignorant
about 𝛽 upon broadcasting 𝑤1 and 𝑤2, since 𝑐2 opened to it is independent of 𝛽.
Also note that, if 𝑃2 is malicious, it must know correct 𝑤1 and 𝑤2, regardless of

43

whether 𝑃1 is honest or not. However, for one who knows (𝑤1, 𝑤2) and is ignorant
to 𝛽, forging valid (�̂�1, �̂�2) different from (𝑤1, 𝑤2) is equivalent to guessing 𝛽,
since

𝛽 =
�̂�2 − 𝑤2

�̂�1 − 𝑤1
.

Therefore, if the protocol exits normally, then with probability at least 1 − 1
2𝜅

that correct 𝑤1 and 𝑤2 is broadcast.
By a similar argument and induction, as long as the protocol does not abort

for 𝑃𝑖, the adversary remains ignorant of 𝛽. And due to its ignorance, the 𝑤1 and
𝑤2 broadcast so far must all be correct, except with negligible probability.

The next theorem enforces the correctness of all y𝑖, hence an honest online
phase.

Theorem 4. If the adversary A sends any wrong y𝑖 that is different from what
is specified by the protocol to honest 𝑃𝑖+1, then the protocol will abort with prob-
ability at least 1 − 𝑚

2𝜅 .
Further, if y𝑛 broadcast by 𝑃𝑛 is different from what is specified by the pro-

tocol, the protocol aborts with probability at least 1 − 1
2𝜅 .

Hence, if the tests pass, with overwhelming probability that all y𝑖 sent to
honest 𝑃𝑖+1 are accordant with the protocol, as well as the y𝑛 broadcast by 𝑃𝑛.

Proof. In the online phase Shuffleon, it is required that the test

PartialVerify(𝑃𝑖+1, y
1
𝑖 , y

2
𝑖 , ⟨𝛽⟩, ⟨𝑐𝑖+1⟩, ⟨𝑑𝑖+1⟩)

passes, for all honest 𝑃𝑖+1. This can be divided into two cases:

1. 𝛽y1
𝑖
= y2

𝑖
+ 𝜋𝑖 (r′𝑖), i.e. the message satisfies correct correlation, and the pro-

tocol exits normally.
2. 𝛽y1

𝑖
≠ y2

𝑖
+ 𝜋𝑖 (r′𝑖), but the protocol does not abort.

By Lemma 3, the second case happens with probability at most (𝑚−1)/2𝜅 . Also,
it is required that

Verify(y1𝑛, y2𝑛, ⟨𝛽⟩, ⟨𝜋𝑛 (r′𝑛)⟩)

passes, which by Lemma 2 means precisely 𝛽y1𝑛 = y2𝑛 + 𝜋𝑛 (r′𝑛). Hence, it remains
to prove that the adversary cannot forge wrong message with correct correlation,
except with probability at most 1/2𝜅 .

Assume for contradiction that the adversary somehow forges different ŷ𝑖 ≠ y𝑖
for some 𝑖 ∈ 𝑆 ⊂ [𝑛], such that 𝑃𝑖+1 is honest (if 𝑃𝑖+1 exists) and

𝛽ŷ1𝑖 = ŷ2𝑖 + 𝜋𝑖 (r′𝑖).

Let’s fix 𝑖 as the least element in 𝑆, so 𝑃𝑖+1 is the first “victim”. Since there are no
wrong messages sent to honest party before 𝑖, (malicious) 𝑃𝑖 must know correct
y𝑖 to send, which satisfies

𝛽y1𝑖 = y2𝑖 + 𝜋𝑖 (r′𝑖).

44

By subtracting two equations, the adversary obtains

𝛽(y1𝑖 − ŷ1𝑖) = y2𝑖 − ŷ2𝑖 .

Since y𝑖 ≠ ŷ𝑖, it has to be the case that

y1𝑖 ≠ ŷ1𝑖 .

Hence, the adversary will be able to find some index 𝑗 ∈ [𝑚], such that

𝛽(y1𝑖 (𝑗) − ŷ1𝑖 (𝑗)) = y2𝑖 (𝑗) − ŷ2𝑖 (𝑗) s.t. y1𝑖 (𝑗) − ŷ1𝑖 (𝑗) ≠ 0,

where y1
𝑖
(𝑗) denotes the 𝑗-th entry of the vector. This allows the adversary to

solve 𝛽 explicitly as

𝛽 =
y2
𝑖
(𝑗) − ŷ2

𝑖
(𝑗)

y1
𝑖
(𝑗) − ŷ1

𝑖
(𝑗)

.

Note that the action of sending ŷ𝑖 to honest party happens before the checking
phase. By Theorem 2, upon sending ŷ𝑖, the adversary could not learn 𝛽 from
its view, whereas here it has already solved it explicitly. Thus, the assumption
that “the adversary could somehow forge some different ŷ𝑖 that satisfies the
correlation” will not happen with probability better than the same probability
of guessing 𝛽 correctly, which is at most 1/2𝜅 .

Thus, if the protocol does not abort after all the checks, with overwhelming
probability 𝑝 ≥ 1 − 𝑚

2𝜅 all y𝑖 sent to honest parties are correct, in the sense that
it is precisely the one produced by honestly following the protocol.

Hence, we conclude in the following corollary that the honest behavior of the
adversary is enforced in both offline and online phase.

Corollary 1. The shuffle protocol enforces honest behaviors in both offline phase
and online phase, in the sense that any misbehavior deviating from the protocol
will cause abort with overwhelming probability.

In particular, in the online phase, this means that sending any incorrect mes-
sages (e.g. y𝑖, 𝑤1, 𝑤2) to honest parties will lead to immediate abort in the first
subsequent check related to that message, with overwhelming probability.

Proof. This is obtained by combining Theorem 3 and 4.

B.5 UC Simulator

We are now able to prove the UC security of the shuffle protocol. Firstly we
formally define the two games in real and ideal world, and the security of the
protocol depends upon.

Definition 10 (Real and Ideal Worlds). In the real execution of the shuffle
protocol, at the start of the game, the environment E sends x to FMPC, who stores
it locally as ⟨x⟩. E also sends 𝜋𝑖 to honest 𝑃𝑖, as 𝑃𝑖’s input for protocol Shuffle.

45

Then the adversary A corrupting 𝑇 ⊊ [𝑛] starts executing protocol Shuffle with
honest parties, while receiving commands from and sending information to E.
At the end of the protocol, if the parties do not abort, FMPC sends its output of
Shuffle to E, which is (by design) 𝜋(x). Denote this process by E ⇆ Π𝑇,A.

In the ideal world, A is replaced by simulator S, which plays the role of all
corrupted parties. FMPC is equipped with a new command Πshuffle, which requires
parties to agree on ⟨x⟩ to be shuffled, and takes as input 𝜋𝑖 from 𝑃𝑖. The modified
FMPC is hence denoted as Fshuffle. At the start of the game, E sends x to the ideal
functionality Fshuffle. E also sends 𝜋𝑖 for honest party 𝑃𝑖 to Fshuffle, as part of
the inputs for Πshuffle. Then E interacts with S as if with A, controlling what are
sent from corrupted parties and receiving what are received by corrupted parties.
If the game does not abort, E receives from Fshuffle the output vector. Denote this
process by E ⇆ F𝑇,S, where F means Fshuffle.

At the end of each game, E outputs a single bit, representing its judgement
on whether this is the real world game.

The protocol Shuffle UC-securely implements Πshuffle in FMPC-hybrid model,
if for every E and A, there is a probabilistic polynomial time simulator S, such
that ��Pr [1← (E ⇆ Π𝑇,A)

]
− Pr

[
1← (E ⇆ F𝑇,S)

] �� < 𝜖 = 𝑂 (𝑚
2𝜅
),

for some statistical secure parameter 𝜅 fixed a priori and length 𝑚 of x.

Remark. For the protocol to be UC secure, it is necessary to let E choose the x
to be shuffled, and then obtain the shuffled result. Since in practice, it could be
the case that x comes exactly from a Πinput command precedes the shuffle, and
will be opened directly after. The security relies on the fact that the simulator
S, while being completely ignorant of x and the 𝜋𝑖 of the honest party, can still
create the view of the adversary A in real world that is indistinguishable to any
E. When Fshuffle is replaced by real implementation of multiparty computation,
the universal composition theorem will guarantee the overall security.

Theorem 5. Assume the protocols are working in a field of size no smaller than
2𝜅 , where 𝜅 is a statistical security parameter chosen arbitrarily.

Then the protocol Shuffle is universally composable secure in FMPC-hybrid
model, in the sense that for any environment E and adversary A, there exists
probabilistic polynomial time simulator S such that��Pr [1← (E ⇆ Π𝑇,A)

]
− Pr

[
1← (E ⇆ F𝑇,S)

] �� < 𝜖 = 𝑂 (𝑚
2𝜅
).

Proof. We construct a simulator for dummy adversary A, who sends E what it
receives and lets E carry out computation and decide what to send.

At the beginning of the protocol, E decides the input x and the input 𝜋′
𝑖
for

honest party 𝑃𝑖, and sends all of them to the ideal functionality Fshuffle.
The simulator S works as follows. In the offline phase of the shuffle, S first

draws 𝛽 uniformly from F. It interacts with E and obtains the purported input
𝜋′
𝑖

for corrupted party 𝑃𝑖. The simulator can obtain 𝜋′
𝑖
, because it is the input

of corrupted party 𝑃𝑖 for Πperm, which means that E needs to send 𝜋′
𝑖
explicitly

46

to S upon calling Πperm. Then S simulates the output of offline phase with 𝛽

and 𝜋𝑖, acting as if each honest 𝑃𝑖 has chosen its permutation to be identical
permutation. It draws uniformly random vectors r𝑖, r′𝑖 and 𝑐𝑖, and computes z𝑖
and 𝑑𝑖 as is specified by the protocol. To be specific, S hence generates and
stores locally the entire shuffle correlation (in plaintext)

cor =

⟨𝛽⟩ ⟨r1⟩ ⟨𝛽r1⟩ ⟨r′1⟩ ⟨𝜋𝑛 (r𝑛)⟩
𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 · · · 𝜋𝑛

⟨𝜋1 (r′1)⟩ ⟨𝜋2 (r′2)⟩ ⟨𝜋3 (r′3)⟩ ⟨𝜋4 (r′4)⟩ ⟨𝜋5 (r′4)⟩ · · · ⟨𝜋𝑛 (r′𝑛)⟩
⟨𝑐2⟩ ⟨𝑐3⟩ ⟨𝑐4⟩ ⟨𝑐5⟩ ... ⟨𝑐𝑛⟩
⟨𝑑2⟩ ⟨𝑑3⟩ ⟨𝑑4⟩ ⟨𝑑5⟩ ... ⟨𝑑𝑛⟩
z2 z3 z4 z5 · · · z𝑛

where

𝜋𝑖 =

{
identical permutation if 𝑃𝑖 is honest,
𝜋′
𝑖

otherwise.

When corrupted party 𝑃𝑖 needs to receive z𝑖, S simply sends the z𝑖 it computes
internally to E. S also sends all 𝜋′

𝑖
for corrupted parties to Fshuffle. The simulation

up to here is perfect, since z𝑖 is uniformly random in both real and ideal world
games.

Then in the online phase, S simulates the message of each 𝑃𝑖. If 𝑃1 is honest,
S sends on behalf of 𝑃1

y1 := 𝜋1 (z1) = z1 = (r1,−𝛽r1 − r′1),

as if x = 0. If 𝑃1 is dishonest, S will inform E of 𝑃1 receiving the above z1,
leaving E to decide y1. Then for each 𝑃𝑖, if 𝑃𝑖 is honest, since S knows the entire
shuffle correlation, S acts honestly and sends on 𝑃𝑖’s behalf

y𝑖 := 𝜋𝑖 (y𝑖−1 + z𝑖) = y𝑖−1 + z𝑖

to 𝑃𝑖+1. For dishonest 𝑃𝑖, S leaves E to decide the message to send.
After 𝑃𝑛 broadcasts y𝑛, for each 𝑖 ≥ 2, S simulates PartialVerify. S first

opens 𝑐𝑖 to 𝑃𝑖. If 𝑃𝑖 is honest, S simulates it honestly by broadcasting

𝑤𝑏 =

𝑚∑︁
𝑗=1

𝑐
𝑗−1
𝑖+1 y

𝑏
𝑖 (𝑗).

If 𝑃𝑖 is corrupted, E decides 𝑤𝑏 to be broadcast. S then opens the resulted 𝑑,
and inform E of abortion if 𝑑 ≠ 0.

If above process does not yet abort, S continues to simulate Verify. If the
protocol ends without abort, and E does not demand S to abort, S requires
Fshuffle to continue. Fshuffle then proceeds to send

𝜋(x) := 𝜋′𝑛 ◦ 𝜋′𝑛−1 ◦ · · · ◦ 𝜋′1 (x)

to E, where recall that 𝜋′
𝑖

of honest 𝑃𝑖 is sent earlier from E to Fshuffle, and 𝜋′
𝑖

of corrupted 𝑃𝑖 is sent earlier from S.

47

To argue that this simulator indeed generates a view statistically indistin-
guishable from the view of the adversary in the real world game, note that by
Corollary 1, if E misbehaves (by sending wrong messages to any honest party),
the protocol aborts with overwhelming probability 𝑝 ≥ 1 − 𝑚

2𝜅 in the next (re-
lated) check in both real and ideal world. So if E misbehaves, the view will be
statistically indistinguishable, since if the protocol aborts, all values appear so
far are uniform random field elements, and in both worlds, the protocol aborts
with overwhelming probability.

If E acts honestly and the protocol finishes without abort, E will receive
permuted 𝜋(x). Tracing back, due to the ignorance of r𝑖 and r′

𝑖
, all values in

its view are “reasonable”. To be specific, for each possible assignment to 𝛽 and
{𝜋𝑖}𝑖∈𝑇 , E can find exactly one set of assignment to all r𝑖 and r′

𝑖
, so that all z𝑖

and y𝑖 are consistent with its view and the result is indeed 𝜋(x). This is the same
as the semi-honest case, in proof of Theorem 1.

C Case Studies

In this section, we present several concrete protocols generated by instantiating
our constructions with existing MPC permutation protocol of [14], [15] and [16],
respectively. The first construction works only for additive secret sharing, and
is considerably efficient, due to utilizing possibly currently most efficient MPC
permutation protocol. The second construction works for arbitrary MPC frame-
work supporting MPC multiplication, with fairly simple implementation. The
third construction may be adapted to threshold secret sharing scheme, but it
requires ZK proofs in its offline phase to achieve malicious security.

However, despite all these differences, all three constructions are actively
secure and have linear online complexity, due to our malicious-secure shuffle
correlation.

C.1 Shuffle Protocol for Additive Secret Sharing

The construction of Song et al. [14] is based on SPDZ framework [22], where a
variable stored at MPC is additively secret shared among all parties, along with
an additional MAC. That is, the statement “a variable 𝑎 is secret shared as ⟨𝑎⟩”
means that each party 𝑃𝑖 holds locally a tuple (𝑎𝑖 , 𝛾𝑖 (𝑎)) such that

𝑛∑︁
𝑖=1

𝑎𝑖 = 𝑎,

𝑛∑︁
𝑖=1

𝛾𝑖 (𝑎) = 𝛼𝑎,

where 𝛼 is a secret global key that is used to guarantee the integrity of opening.
Song et al. [14] proposes a two-party (sender and receiver) permutation protocol,
which permutes a secret shared array with permutation specified by one of the
party (i.e. the receiver).

Basically, this two-party permutation protocol is built from repeating basic
CGP protocol [17] for 𝐵 times with additional correctness checks, while 𝐵 is a

48

parameter required for applying cut-and-choose technique. If the receiver has
chosen permutation 𝜋1, ..., 𝜋𝐵 respectively in these sessions, the overall effect is
that the array is permuted by a single permutation 𝜋:

𝜋 = 𝜋𝐵 ◦ 𝜋𝐵−1 ◦ · · · ◦ 𝜋1.

This two-party permutation protocol is then extended to the case of 𝑛-party by
letting a fixed party 𝑃𝑖 act as the receiver in all (𝑛−1) ×𝐵 sessions, which can be
considered as permuting the shares of different party with same 𝐵 permutations.
Of course, extra works are done in Song et al. [14] to prevent 𝑃𝑖 from acting
inconsistently in session with different party, e.g. choosing different 𝐵 permuta-
tions when the sender is different. The protocol then checks if each session of
the CGP protocol finishes correctly, to guarantee that no misbehavior happens
so far.

To conclude, the work of Song et al. [14] provides us with exactly the func-
tionality

(⟨𝜋(x1)⟩, ..., , ⟨𝜋(x𝑡)⟩) ← Πperm(𝑃𝑖 : 𝜋, ⟨x1⟩, ..., , ⟨x𝑡 ⟩),
with an overhead of 𝑂 (𝐵𝑛𝑚𝑡 log𝑚) communication and computation complexity.
By instantiating with the SPDZ framework of [19] and fitting above permutation
protocol into Algorithm 7, we obtain a shuffle protocol with 𝑂 (𝐵𝑛2𝑚 log𝑚) offline
communication and computation complexity, whose online complexity is linear.

One intricate detail regarding implementation is that at the end of the shuffle
protocol, it must be guaranteed that the array is correctly shuffled. This is due
to the usage of MPC shuffle protocol, which is often followed by partial or com-
plete information disclosure, e.g. the Clarion anonymous communication system
designed by [13] opens all values after the shuffle. However, SPDZ itself does not
guarantee safe opening, i.e. before the MAC check passes, all opened value could
be wrong. This means that Πopen does not guarantee a safe open (which we have
assumed throughout), which means that all values during the shuffle protocol,
including those used in verification, could be wrong, and the correctness is not
guaranteed even if the protocol doesn’t abort. Luckily, SPDZ framework sup-
ports immediate MAC check, which checks if all previously opened values are
correct, with only 𝑂 (𝑛) communication and computation complexity. Therefore,
in practice, the shuffle protocol must be followed by such an immediate MAC
check, which in turn makes all previous Πopen safe. We remark that this is also
the approach followed by Song et al. [14], as their shuffle protocol ends with
precisely the MAC check of SPDZ.

We note that, this results in the first malicious secure shuffle protocol for
additive secret sharing with linear online complexities.

C.2 Shuffle Protocol for Shamir Secret Sharing

The construction of permutation protocol in [15] works for arbitrary MPC frame-
work supporting MPC multiplication. Assuming MPC multiplication can be
done within 𝑂 (𝑛) communication and computation, its implementation of Πperm

requires 𝑂 (𝑛𝑚 log𝑚) communication and computation in total.

49

The permutation protocol developed in [15] utilizes a specific permutation
network, which is a switching network of size 𝑂 (𝑚 log𝑚) and of depth 𝑂 (log𝑚).
Such a network consists of 𝑂 (log𝑚) layers of switches, each switch randomly
swapping two entries of the vector depending on an extra control bit. As a
permutation network is capable of representing any permutation by 𝑂 (𝑚 log𝑚)
switches, this allows parties to represent a permutation by 𝑂 (𝑚 log𝑚) bits.

Now suppose 𝑃𝑖 wants to permute ⟨x⟩ by permutation 𝜋. 𝑃𝑖 first represents
𝜋 by permutation network, which results in 𝑂 (𝑚 log𝑚) control bits, each corre-
sponding to the control bit of one switch. 𝑃𝑖 then shares these bits to parties,
who then check together whether the shared values are bits. This check can be
realized by MPC multiplication, by noting that ⟨𝑏⟩ is a bit if and only if 𝑏 · (1−𝑏)
is zero. By following the permutation network and using MPC multiplication to
simulate each switch, the parties are now able to permute any 𝑚-long vector by
𝜋.

Such an implementation matches exactly our requirements for Πperm. By
instantiating Πperm in Algorithm 7 with such implementation, we immediately
obtain a shuffle protocol for arbitrary MPC framework supporting MPC multi-
plication. The offline phase consists of 𝑂 (𝑛𝑚 log𝑚) many multiplications, which
results in 𝑂 (𝑛2𝑚 log𝑚) communication, computation and 𝑂 (log𝑚) rounds, as-
suming the communication and computation overhead of each multiplication
are both linear. By instantiating with the Shamir secret sharing scheme in [20],
we obtain a concrete construction that meets above complexities. The above
implementation can also be instantiated with SPDZ framework of [19], with
𝑂 (𝑛2𝑚 log𝑚) offline complexities that is asymptotically better than the above.
Nevertheless, since the primitives used in [14] might be cheaper than MPC mul-
tiplication, which construction is more concretely efficient may also depend on
concrete implementation.

We note that, this results in the first shuffle protocols for Shamir secret shar-
ing with linear online complexities, for both semi-honest and malicious security.

C.3 Shuffle Protocol Instantiated by Protocol of [18]

The construction of Laur et al. [16] works for threshold secret sharing, with
possibly malicious adversary. By its design, each party belongs to several groups,
and each group of parties will agree on a common permutation and permute
the array once. The size of each group is large enough, so that it is possible
to reconstruct all secret with the shares of the group member, which allows the
group to permute the array trivially by each member permuting the shares locally
and re-distributing their shares. For (𝑛/2)-threshold secret sharing, there will be
asymptotically 𝑂 (2𝑛/

√
𝑛) many groups, and by design at least one of the groups

consists of only honest parties. Hence, since this all-honest group permutes the
array with a uniform random permutation known only to its group members,
the array is shuffled with a permutation known to no one. The advantage of this
construction is that, when the number of parties are small and all parties are
semi-honest, it does not utilize any public key primitives and is extremely fast.
Also, most of the other MPC shuffle protocols works only with additive secret

50

sharing (e.g. [17][18][13][14]), while the construction of [16] works with threshold
secret sharing, e.g. Shamir secret sharing.

It is possible to extend our construction, so that the shuffle protocol may
be instantiated by the protocol of Laur et al. [16]. For clarity, suppose we are
working in semi-honest case. Suppose we have 𝑡 such groups

G = {𝐺1, 𝐺2, ..., 𝐺𝑡 },

by the design of [16], with 𝐺𝑖 ⊊ {𝑃𝑖}𝑖∈[𝑛] . All that needs to be done is to replace
the Πperm functionality by

⟦x⟧ ← Πperm(𝐺 : 𝜋, ⟦x⟧),

where 𝐺 ∈ G, i.e. 𝜋 is known only to members of 𝐺. The rest follows naturally by
viewing each 𝐺𝑖 as an individual, i.e. generating and permuting random vectors
with each permutation 𝜋𝑖 known only to members of 𝐺𝑖, opening z𝑖 to only
members of 𝐺𝑖, etc. The online phase hence consists of 𝑂 (2𝑛/

√
𝑛) rounds and

has 𝑂 (2𝑛𝑚/
√
𝑛) communication complexity. Note that instead of repeating this

same process on all members of 𝐺𝑖, each group 𝐺𝑖 can elect a party in the group
as its agent, who will permute the masked vector y𝑖−1, add the vector z𝑖 and
send y𝑖 to agent of the next group 𝐺𝑖+1.

Further, to reduce the online round complexity to 𝑂 (𝑛) and online commu-
nication to 𝑂 (𝑛𝑚), we can sort the groups in a particular order, such that each
𝑃𝑖 is the agent of only a consecutive sequence of groups. For example, if

G = ({𝑃1, 𝑃2}, {𝑃2, 𝑃3}, {𝑃1, 𝑃3}),

we can sort it as
G = ({𝑃1, 𝑃2}, {𝑃1, 𝑃3}, {𝑃2, 𝑃3}).

Now, by letting 𝑃1 be the agent of 𝐺1 and 𝐺2, 𝑃1 will be responsible for sending
both y1 and y2 in the online phase, and sending y2 to the agent of 𝐺3. It is clear
that 𝑃1 can carry out the computation locally, and sends only y2 to the agent of
𝐺3, which consumes only 1 round instead of 2. By letting a consecutive sequence
to have a common agent, this results in an 𝑂 (𝑛)-round online phase with 𝑂 (𝑛𝑚)
communication.

The online computation can also be made 𝑂 (𝑛𝑚). Since agent 𝑃𝑖 knows
all the permutations and masks it needs in online phase, it can carry out the
data independent part of the computation in offline phase. To be more specific,
suppose it needs to compute

y1 = 𝜋1 (x + z1),
y2 = 𝜋2 (y1 + z2),
y3 = 𝜋3 (y2 + z3),

...

y𝑘 = 𝜋𝑘 (y𝑘−1 + z𝑘).

51

This is simplified to compute

y𝑘 = 𝜋𝑘 ◦ 𝜋𝑘−1 ◦ · · · ◦ 𝜋1 (y1)
+ 𝜋𝑘 ◦ 𝜋𝑘−1 ◦ · · · ◦ 𝜋1 (z1)
+ 𝜋𝑘 ◦ 𝜋𝑘−1 ◦ · · · ◦ 𝜋2 (z2)
+ 𝜋𝑘 ◦ 𝜋𝑘−1 ◦ · · · ◦ 𝜋3 (z3)
...

+ 𝜋𝑘 (z𝑘).

It is clear that the permutations of z𝑖 can be computed and sumed up in offline
phase. Also, the party can first compute the permutation 𝜋𝑘 ◦ · · · ◦ 𝜋1, and hence
in the online phase it needs to only perform one permutation for y1 and add it
with the pre-processed sum.

This can be also extended to malicious security, with the same technique
used earlier in Section 6 and Section 7. Note that we only need to check if the
final result of agent 𝑃𝑖 is correct, since all other computations are done internal
𝑃𝑖. Hence, the overall online computation complexity remains 𝑂 (𝑛𝑚). Note that
as the construction of [16] utilizes ZK proof for malicious security, it is likely
that the construction instantiated with [14] or [15] would be more efficient in
practice. Nevertheless, if one wishes to build their MPC application with Shamir
secret sharing or replicated secret sharing (instead of additive secret sharing),
the construction of [14] will not be available, and instantiating shuffle protocol
with the construction of [16] might be a good choice.

D Discussion

D.1 Security of 𝚷open

One thing concerning the practical use is that, in most advanced MPC frame-
works, the integrity check of Πopen may not be immediate. For example, by
original design of SPDZ [22], all opened values should be independent random
values before the final output phase, which is preceded by a big batched check
Πcheck. This seems preferable, and it is tempting to batch all integrity checks,
both Πopen and Verify, into one big linearity check.

However, in real world application of shuffle, it is usually the case that the
shuffled values will be opened immediately without masks, e.g. the anonymous
communication service designed in [13]. Or more generally, the information of
the underlying element may be revealed, e.g. the shuffle-then-sort paradigm in
[7], which opens the result of comparison between elements directly after the
shuffle operation. After all, one major reason for turning to a shuffle protocol is
to reveal some information that is previously related to the “memory address”.
Hence, it is clear that the shuffle protocol must guarantee that if the protocol
finishes without abortion, then the array is indeed a correctly shuffled, with the
permutation uniform in the adversary’s view.

52

Hence, each shuffle protocol must be followed by immediate integrity check
regarding previously opened values, and the check of y1

𝑖
and y2

𝑖
must be carried

out before any information regarding the elements is to be opened. So it’s prob-
ably the safest to do the batched check immediately. This is also the strategy
adapted by Song et al. [14] to implement their malicious secure shuffle protocol.

D.2 Approximated Length of Vector

In the above protocol, the offline phase Shuffleoff is assumed to have 𝑚 as the
exact length of later input vector. In reality, it is very likely that 𝑚 will not be
exact, since the input has yet come. Below, we give a simple extension so that
the protocol requires only 𝑚 as an upper bound of length.

First note that, by a trivial extension, the shuffle protocol designed in this
paper can be used to shuffle vectors instead of field elements, as long as the
underlying Πperm supports so. This trivial extension simply replaces all “vectors”
by “matrices”, and everything works fine.

Hence, the parties could first pad the vector with dummy elements, so that
the vector is of length 𝑚. The parties then extend each element to a vector
of length 2, with second entry a public constant 0/1 indicating if this entry is
dummy. Then the parties could run the shuffle protocol for vectors of length 2,
and later open all the second entries and discard the dummy ones.

Note that this padding trick could also be applied to shuffling entries of a
vector, where only upper bound of length is known a priori.

53

	Secure Multiparty Shuffle: Linear Online Phase is Almost for Free

