
SoK: On the Security Goals of Key Transparency Systems

Nicholas Brandt1, Mia Filić2, and Sam A. Markelon3

1 ETH Zurich, Zurich, Switzerland, crypto@nicholasbrandt.de
2 ETH Zurich, Zurich, Switzerland, filicmia@gmail.com

3 University of Florida, Gainesville, FL, USA, smarkelon@ufl.edu

Abstract. Key Transparency (KT) systems have emerged as a critical technology for adding veri-
fiability to the distribution of public keys used in end-to-end encrypted messaging services. Despite
substantial academic interest, increased industry adoption, and IETF standardization efforts, KT
systems lack a holistic and formalized security model, limiting their resilience to practical threats
and constraining future development. In this paper, we survey the existing KT literature and
present the first cryptographically sound formalization of KT as an ideal functionality. Our work
clarifies the underlying assumptions, defines core security properties, and highlights potential vul-
nerabilities in deployed KT systems. We prove in the Universal Composability framework that our
concrete protocol achieves KT security as defined by our formalism. Our KT protocol builds on
the latest trends in KT design, guided by the formalization.

Contents

1 Introduction . 2
1.1 Clear Exposition of Security Guarantees and Assumptions . 3
1.2 A Formal Framework for KT Systems . 3
1.3 Perspective . 4
1.4 Contribution . 4

2 Related Work . 5
2.1 Comparison with Certificate Transparency . 5
2.2 Key Transparency Literature we Survey. 5

3 Distilling the Security Goals of KT Systems . 6
3.1 System-Level Assumptions . 8
3.2 Cryptographic Guarantees . 9

4 Modeling Key Transparency as Multi-Party Computation . 11
4.1 Secure Multi-Party Computation . 12
4.2 Abstraction Layers of KT Systems . 13
4.3 Ideal KT functionality . 13
4.4 Realizable KT Functionality . 15
4.5 Our KT functionality and Consistency Notions in Section 3 . 16

5 Key Transparency Protocol . 16
6 Conclusion . 21
A Preliminaries . 23

A.1 Notation and Conventions . 23
A.2 Verifiable Random Functions . 24
A.3 Non-Interactive Zero-Knowledge Proofs . 26
A.4 Hash Functions . 27
A.5 Patricia Tries . 27

B Key Transparency Scheme . 27

C Formal Constructions and Proofs . 30
C.1 KT Scheme Instantiation . 30
C.2 KT Protocol . 34
C.3 Intuition. 37
C.4 Formal analysis. 37
C.5 Epoch update outputs. 37
C.6 Query response outputs. 38
C.7 Conclusion. 39

D Comparison with SEEMless [CDG+19] . 39
D.1 Our KT Scheme vs. VKD . 39
D.2 Protocols . 39
D.3 Security Guarantees in [CDG+19] vs. UC security . 41

E Lack of Weak Consistency in SEEMless [CDG+19] . 41
F Direct Paper Quotes . 42

F.1 CONIKS [MBB+15] . 42
F.2 SEEMLESS [CDG+19] . 43
F.3 Parakeet [MKS+23] . 44
F.4 OPTIKS [LCG+23b] . 44
F.5 ELEKTRA [LCG+23a] . 45
F.6 IETF KEYTRANS Architecture Draft [McM25] . 45
F.7 IETF KEYTRANS Protocol Draft [ML24] . 46

1 Introduction

The security of end-to-end encrypted communication systems relies on the authenticity of the public keys
of the participating parties. Traditionally, verifying the authenticity of another party’s public key in secure
communication systems required either physical meetings to exchange keys—a cumbersome process,
especially with frequent key rotations and new device additions—or reliance on a third-party authority.
Key Transparency (KT) systems address these challenges by providing an automated mechanism that
allows users to verify they are receiving the correct public key, or at least one that is consistent with
what other users are seeing from the same service, while preserving privacy. That is, unlike traditional
public key infrastructure systems which require a trusted (third) party, KT systems aim to reduce or
even remove such trust assumptions.

KT systems have not only attracted significant academic interest [MBB+15; Bon16; CDG+19; TBP+19;
TKP+21; HHK+21; TFZ+22; CDG+22; MKS+23; LCG+23a; LCG+23b], but have also been imple-
mented (or proposed to be implemented) by platforms such as Keybase [Mar23], Zoom [BBC+22],
Google [HB20], WhatsApp [Lew23], Apple iMessage [App23], and Proton [GH24]. Complementing this
industry adoption, the Internet Engineering Task Force (IETF) has formed the KEYTRANS working
group [McM25; ML24] to both formalize and standardize KT systems.

Despite the growing body of research on KT, its core operational and security goals remain difficult
to distill from the existing literature. Unlike Certificate Transparency (CT), which has been subjected to
rigorous cryptographic analysis and has a well-defined set of security properties [DGH+16; CM16], KT
research is still evolving in a fragmented manner. Various works focus on the efficiency and/or security
of different components but there is no formal definition of what a KT system is or what exactly it
should aim to achieve. This lack of a proper conceptualization of KT systems makes it impossible to
clearly state the security assumptions and guarantees that a given KT system makes. To substantiate
our claim about the lack of a holistic approach to KT we survey the current KT literature in Section 3;
systematizing the common security goals and assumptions that support these goals.

2

1.1 Clear Exposition of Security Guarantees and Assumptions

Given the lack of a formal definition of KT systems, we argue that it is unclear how security guarantees
(e.g., about certain building blocks) and assumptions (e.g., about the behavior of certain parties) made
in the KT literature translate to the real world. Moreover, the gap between theoretical KT research and
practical deployment further complicates efforts to extract clear operational and security goals. Without
practical deployment insights, it is difficult to determine whether a proposed KT system provides security
guarantees that are achievable in real-world settings or whether it is merely a theoretical construct with
untested assumptions.

To support the claimed mismatch between theoretical modeling of KT systems and deployment we
observe that Whatsapp’s KT system [LL24b] is based on the SEEMless construction and security anal-
ysis of [CDG+19]. However, the security proof of the construction in [CDG+19] requires (as a building
block) a simulatable verifiable random function (sVRF) [CL07] whereas WhatsApp’s VRF implementa-
tion [LL24a] cannot be simulatable.1 Since the security proof of [CDG+19] cannot be applied to What-
sapp’s KT protocol, provable security cannot be claimed for their protocol on the basis of [CDG+19].2

Another example of the rather complicated state of KT literature is the fact that in state-of-the-art
protocols a user cannot prevent their impersonation. Instead, the intuitive security guarantee is that
an impersonated user can detect an attack against them by querying their own public key. We stress
that [CDG+19] clearly states that their “soundness” notion requires a user to audit their own public
key.3 However, what happens if an incorrect public key is detected is left unspecified. Similarly, Melara,
Blankstein, Bonneau, Felten, and Freedman [MBB+15] suggest a user to “whistleblow” the attack to
auditors “via social media or other high-traffic sites”. They “leave the complete specification of a whistle-
blowing protocol for future work”; we are not aware of any follow-up work. While such a security notion is
formally valid, they fall short of what most (non-tech-savy) users would intuitively expect from a secure
KT system. In particular, users generally assume that the system should prevent impersonation in the
first place, not merely allow its detection. Indeed, Melara, Blankstein, Bonneau, Felten, and Freedman
[MBB+15] already address this issue informally by distinguishing between a “default” and a “strict”
policy. Using our formal definition of KT functionality one can show that for this limitation is inherent
default mode user (those that cannot be assumed to remember a high-entropy secret).4

1.2 A Formal Framework for KT Systems

Previous works, [MBB+15; Bon16; CDG+19; TBP+19; TKP+21; HHK+21; TFZ+22; CDG+22; MKS+23;
LCG+23a; LCG+23b], to varying degrees, have treated key transparency (KT) systems as a monolithic
block, i.e., they fail to cleanly distinguish between the specification (the objective) of a KT systems,
and the protocol that realizes that specification (or they don’t give protocols at all). As a result, the
security formalisms for KT systems—when they are considered at all—tend to focus on the properties of
individual components, rather than establishing rigorous security guarantees for the system as a whole.

In our view, this complicates the analysis of KT systems and the interpretation of their security
guarantees. This situation is somewhat reminiscent of the early stages of the development of other multi-
party computation (MPC) applications [Yao82], like key exchange—where the word “key-exchange” was
used synonymously with the concrete Diffie–Hellman key-exchange protocol [DH76]. In contrast, the

1 In fact, the unconditional unique provability property of WhatsApp’s
ECVRF-EDWARDS25519-SHA512-TAI [GRP+23] VRF strongly contradicts (in a formal sense) the simulatability
of a sVRF as required by [CDG+19].

2 This does not necessarily mean that there is an attack against WhatsApp’s protocol.
3 For provable security every user would have to audit their own key at every epoch, which is not practical.
4 On a technical level, a malicious server can always simulate a (targeted) user towards a third (honest) user, if
the users don’t share secret information.

3

field today draws a clear distinction between the abstract objective of key exchange—typically defined
as an “ideal” functionality—the concept of a public-key encryption (PKE) scheme, and any specific
key-exchange protocol that realizes the functionality using a PKE scheme.

To remedy the above issues we provide a unified and formal framework that captures the desired
properties of KT systems (again, which we identify through a systematic analysis of the existing literature
in Section 3) in the Universal Composability (UC) model [Can01]. In Section 4 we provide a formal
definition of a KT system as an ideal functionality. Then, in Section 5 we realize this functionality using
a protocol, with (UC-)proofs in Appendix C.2.

1.3 Perspective

We hope that this works serves to provide clarity on what the objectives and guarantees of KT sys-
tems are and that our formal framework can be used to analyze existing KT systems and future ones
in a common and rigorous manner. Importantly, we emphasize that our findings are not meant as a
criticism of previous works; each work provides valuable insights to the problem at hand. Rather, we
feel that it is important to highlight conceptual problems as early and as clearly as possible to prevent
their solidification in standardizations5; in particular in light of the standardization efforts of the KEY-
TRANS workgroup [McM25; ML24]. We believe that specifying what exactly an adversary is allowed
to do (in form of an ideal functionality) contributes to the clarification of the necessary security and
operational assumptions, as well as the resulting security guarantees. In turn, this aids servers and users
in understanding what level of security is given under given explicit operational assumptions.

1.4 Contribution

We summarize the main contributions in this work:

• In Section 3, we survey the existing KT literature to systematically distill the common goals and
operational assumptions of various KT schemes. In turn, we leverage this analysis to help us specify
our idealized KT functionality.

• In Section 4, we model the (idealized) objective of a KT system as an ideal functionality and show
that this idealized version cannot be achieved due to inherent attacks. We propose a weakened ideal
functionality that still captures the essence of KT systems. This clarifies the assumptions, features and
security guarantees of KT systems which have been somewhat recondite in previous literature.

• We formally prove (in the Universal Composability framework [Can01]) that a protocol (given in Fig-
ure 3) inspired by the (implicit) protocols in the literature [CDG+19; LCG+23b] realizes this func-
tionality. We stress that obtaining a formal and composable (UC) proof for the implicit protocols in
the literature is not straightforward. Because existing work focuses on security guarantees for compo-
nents of a KT system, it requires significant effort to design a entire protocol and prove its security.
Moreover, because we aim for UC-security the security properties that we require from the protocol
components exceeds the capabilities of all previous works. In particular, our data structure for storing
keys (KT scheme) is extractable and simulatable whereas [CDG+19] only achieves simulatability.

• Notably, our work represents the first systematization of knowledge (SoK) on KT, capturing the current
state of the field. By clarifying the status quo, it lays a foundation for future progress and makes it
easier for the community to reason about, refine or extend the objectives and design goals of KT.
Should the objectives and design goals of KT systems evolve significantly, we still believe this SoK will
serve as an important milestone.

5 As was the case with standards such as early versions of SSL. [Sch22]

4

2 Related Work

2.1 Comparison with Certificate Transparency

Certificate transparency (CT) is a widely deployed system designed to enhance the security of the web
public key infrastructure by providing an append-only, publicly auditable log of TLS certificates issued by
certificate authorities (CAs) [Lau14]. This ensures that any mis-issued or maliciously issued certificates
(e.g., a rogue CA signing a certificate for google.com) can be detected and revoked before causing harm.
CT operates through public, verifiable logs where any entity—browsers, domain owners, or independent
auditors—can monitor the issuance of certificates to detect anomalies.

While there is a natural relation to key transparency, CT logs fully public certificates, whereas
KT must carefully balance verifiability with privacy. Publishing a global log of all users’ public keys,
as CT does for certificates, could expose sensitive metadata and enable surveillance. KT must also
handle frequent key updates (e.g., when users switch devices or rotate keys), whereas CT primarily
records relatively static certificate issuance events. While both systems rely on append-only logs to
prevent equivocation, CT ensures that domain owners can detect unauthorized certificates, whereas KT
ensures that users are communicating using the correct, i.e., globally consistent, public key—without
needing to trust a central provider. KT provides a mechanism for users to efficiently query their own key
state without downloading the full log. This portrays grounds for better scalability, and minimizes data
exposure—making it more suitable for user-centric secure communication.

Moreover, unlike in the case of KT, there have been efforts to formally analyze the end-to-end security
guarantees of CT. Most notable are the works of Dowling, Günther, Herath, and Stebila [DGH+16],
and Chase and Meiklejohn [CM16]. Dowling, Günther, Herath, and Stebila [DGH+16] highlight the
need for formal security analysis of CT beyond its practical deployment, aiming to define provable
security goals and demonstrate that CT meets the goals under standard cryptographic assumptions.
Prior work primarily described CT’s mechanism but lacked rigorous security proofs, which this study
addresses through a game-based formal model. The authors establish four key security properties for
transparent logging schemes such as CT and formally prove that a ubiquitous CT protocol does achieve
these properties. Their proofs rely on Merkle tree collision resistance and unforgeable signatures. However,
they highlight that these CT formalizations are insufficient for KT protocols due to the lack of privacy
guarantees and different key consistency-check requirements. In particular, they contrast CT with the
CONIKS KT system [MBB+15].

Chase and Meiklejohn [CM16] introduce a generalized cryptographic model for transparency, defining
transparency overlays as a cryptographic primitive called dynamic list commitments. This framework
enables a formal security analysis of transparency systems, which the authors apply to CT and Bitcoin,
proving their transparency properties. Similarly to [DGH+16], the formalization does not extend to KT
due to its additional privacy requirements and efficiency constraints.

2.2 Key Transparency Literature we Survey.

We now briefly introduce the literature we survey in depth in Section 3. We select papers that aim to
present full end-to-end KT protocols to do our systematic analysis on.

Melara, Blankstein, Bonneau, Felten, and Freedman introduce the first KT system, CONIKS. In par-
ticular, they introduce the idea of Merkle prefix trees to guarantee that all users see the same key bindings
and enabled clients to periodically verify consistency proofs to detect tampering. Additionally, the sys-
tem incorporates privacy-preserving mechanisms to limit unnecessary exposure of key data. Later, Chase,
Deshpande, Ghosh, and Malvai [CDG+19] present their KT system, called SEEMless, which improves
CONIKS in several ways. In particular, [CDG+19] takes a more modular approach than [MBB+15].
Concretely, Chase, Deshpande, Ghosh, and Malvai introduce two primitives called the “verifiable key
directory” (VKD) and the “append-only zero-knowledge set” (aZKS), and use them in black-box way

5

in their solution. We view this as an important step toward advancing KT systems—both in terms of
efficient constructions and minimizing the underlying assumptions. Moreover, Chase, Deshpande, Ghosh,
and Malvai define formal security properties of their primitives and provide proof sketches for the security
of their primitives. Overall, their work adopts a more formal approach compared to that of [MBB+15].

Building on these works, Malvai, Kokoris-Kogias, Sonnino, Ghosh, Oztürk, Lewi, and Lawlor [MKS+23]
introduce Parakeet. Parakeet addresses scalability concerns by introducing a more efficient VKD for large-
scale deployments. Further, they propose a compaction mechanism to limit the growth of the KT log
over time and a novel gossip protocol to distribute the log’s commitments and ensure consistency. We
also analyze OPTIKS by Len, Chase, Ghosh, Laine, and Moreno [LCG+23b] which provides further op-
timizations and scalability improvements. Further, we examine ELEKTRA by Len, Chase, Ghosh, Jost,
Kesavan, and Marcedone [LCG+23a] which is focused on the multi-device setting, in addition to improved
privacy and post-compromise security for KT systems. Lastly, we also analyze the IETF KEYTRANS
working group architecture draft [McM25] and protocol draft [ML24].

Further, there are a number of works that introduce valuable components (auditable logs, auditing
protocols, etc.) that could be used in key transparency systems [Bon16; TBP+19; LGG+20; HHK+21;
TKP+21; TFZ+22; CDG+22]. However, these papers do not attempt to put forth full KT protocols, so
we do not include them in Section 3. Moreover, we stress that the IETF KEYTRANS working group
architecture and protocol draft are strictly to be considered works in progress. We analyze the latest
versions at the time of creation of this paper (architecture draft version 03 and protocol draft version
00), but again emphasize that they are subject to updates and improvements.

3 Distilling the Security Goals of KT Systems

We start by surveying the literature for the desired security goals of KT systems. We then systemize
these goals, distilling them into a set of notions, categorized into cryptographic guarantees and the
system-level assumptions that support these goals. For each goal, we pull direct quotes from the relevant
literature supporting their inclusion in our analysis. Wherever possible, we support our analysis with
direct quotations from the original sources. For the sake of readability, the full text of each quote is
provided in Appendix F, and we reference them throughout our discussion.

As stated in Section 2, our analysis covers what we consider to be the core corpus of KT pro-
tocols: CONIKS [MBB+15], SEEMless [CDG+19], Parakeet [MKS+23], OPTIKS [LCG+23b], ELEK-
TRA [LCG+23a], and the IETF KEYTRANS architecture draft [McM25] and protocol draft [ML24].
These works present full or nearly full protocol designs and include formal definitions for key components.
However, they stop short of clearly articulating full protocol specifications or holistic security guarantees.
That is, while these papers formalize primitives such as verifiable key logs or authenticated dictionaries,
they do not rigorously define the precise security properties a complete KT protocol should satisfy.We
note one partial exception: the ongoing development of the IETF protocol draft [ML24], which includes
a partial protocol description. However, at the time of writing, it does not yet include a formal treatment
of security considerations and is a work in progress.

As an explicit example of this gap, we take a deeper look at SEEMless [CDG+19]. While the paper
specifies the underlying KT scheme with relative clarity, it never formalizes the surrounding protocol
or its intended security guarantees. In particular, the scheme does not inherently achieve even weak
consistency (see below): users’ views of the state of the key log can diverge indefinitely unless users
explicitly perform key history checks very frequently (i.e., check for the authentic inclusion of their own
key in the log every epoch). We present a detailed description of this issue in Appendix E. The authors
acknowledge the importance of these checks, but leave the exact necessary frequency and enforcement of
them to future work. This means that any consistency—or any protocol-level security property—depends
entirely on how the scheme is used, yet no concrete protocol is proposed. Furthermore, their experimental
evaluation assumes users only check their own key history after their own key updates, which undermines

6

the KT system’s core goal of detecting equivocation in others’ key bindings. Additionally, the paper’s
narrative, particularly the section in which the authors give an intuition for their construction, offers
various optimizations without clarifying how they meaningfully improve the security of the system or
what specific goals they aim to achieve. The result is a system that raises the cost of server misbehavior,
but neither clearly prevents it nor clearly defines the (reduced) level of security it guarantees. Without
a formal protocol definition—including specifics such as history check frequency—even the minimal KT
guarantees appear to remain unsatisfied (or, at best, informally described).

We also observe that the security and operational goals of KT systems rely on a number of system-
level assumptions. While we systemize these assumptions in detail below, we first provide a brief overview
as presented in OPTIKS [LCG+23b], where they are most clearly articulated. In OPTIKS, the server is
assumed to be fully malicious with respect to distributing incorrect keys to users, but it is still expected
to enforce access control and preserve the privacy of the key log. User devices, on the other hand, may
also be malicious, in the sense that they could attempt to access private information (e.g., the public
keys of users they are not authorized to communicate with). OPTIKS further assumes the existence of
a public bulletin board that allows users to receive a singular, consistent view of the key log, along with
at least one honest auditor responsible for verifying the correctness of the server’s commitments. An
auditor is a trusted third party who posts a signed statement of correctness of a given commitment to
the same bulletin board. In practice, a new commitment to the key log is posted at regular intervals,
typically over a short, fixed period known as an epoch. During each epoch, the server processes a batch
of key updates it has received, updates its internal key log accordingly, computes a commitment to the
updated state, and publishes this commitment to the public bulletin board, where it can be audited and
retrieved by users. The precise specification of this bulletin board is left as an open problem, although
the authors note that a public blockchain could be used for this purpose. Additionally, it is assumed that
users are able to track their devices and the approximate times of their own key updates. This enables
them to compare the current state of the key log with their expected update history from a user-centric
perspective. Finally, it is assumed that users, the server, auditors, and the bulletin board all maintain
approximately synchronized clocks.

Given the current state of the literature, it is a nontrivial task to distill a coherent set of holistic,
protocol-level goals for KT systems, along with the system-level assumptions required to support these
goals. Nonetheless, this is a crucial step toward understanding what a formal model of KT protocols
should capture. We undertake this task below. Specifically, we define the cryptographic guarantees that
KT systems appear to aim for and examine what the literature explicitly says about these goals—
supported by full textual quotes provided in Appendix F. We follow the same approach for identifying
and analyzing the system-level assumptions underlying these protocols. Leveraging this analysis, we
develop a formal framework for the security of KT protocols (Section 4), rigorously define a concrete
protocol (Section 5), and formally prove its security with respect to our model (Appendix C.2). For the
guarantees described below, where possible, we adopt terminology aligned with the current literature,
while clearly distinguishing between different types of guarantees to avoid ambiguity.

Importantly, our goal here is not to over-interpret or extend the original works beyond what they
themselves make explicit. Instead, we aim to faithfully reflect the level of specificity given in each source
and present a consolidated view of the protocol-level guarantees that are either stated or suggested.
Where contradictions or inconsistencies arise, we make them explicit. In some cases, we highlight how
certain guarantees may not hold under plausible interpretations of the respective works. Ultimately, this
effort is meant to clarify the current state of KT protocol design and serve as a step toward more rigorous,
comprehensive modeling.

7

3.1 System-Level Assumptions

We start by analyzing the common system-level assumptions of KT systems as these inform what is
possible to cryptographically guarantee in realistic settings.

Split-View Resistance: The KT server should not be able to serve distinct, conflicting views of the
state of the key directory to different users. That is, a broadcast functionality exists such that all parties
are able to retrieve a consistent commitment to the key directory.

Split-view resistance refers to the system-level assumption that users should be able to retrieve a
singular and consistent commitment to the state of the key log at any given point in time. Without
this property, it is not possible to bootstrap any meaningful cryptographic consistency guarantees. This
requirement was recognized early by CONIKS (Quote 1) and has been reaffirmed in the IETF KEY-
TRANS architecture draft (Quote 30). In practice, achieving split-view resistance remains a challenge.
Most works address it by assuming the existence of a public bulletin board—an abstraction that appears
in SEEMless (Quote 7), OPTIKS (Quote 19), and ELEKTRA (Quote 27). We adopt this assumption in
our work as well, as our focus is on the core cryptographic guarantees of KT protocols. Various mech-
anisms have been proposed to instantiate this bulletin board, including public blockchains and gossip
protocols. However, Parakeet argues that such approaches are unnecessarily heavyweight and instead
introduces a novel consensus-less protocol to achieve split-view resistance (Quote 14). Further research
is needed to formalize the notion of a public bulletin board and to design efficient, robust protocols that
can reliably implement this functionality.

Out-of-band Whistleblowing: A fundamental limitation of KT systems is that they cannot prevent
misbehavior by a malicious server—they can only detect when such behavior has occurred. A subtle
but critical assumption underlying all consistency properties is that when a user checks the validity of
their own key, the result confirms that the key is indeed correct. If this check fails (i.e., the user detects
that their key has been tampered with–then these consistency guarantees begin to break down). A
significantly underexplored area in the KT literature is how the system should respond once misbehavior
is actually detected. CONIKS identified this issue early and emphasized the need for a whistleblowing
mechanism to expose server misbehavior to others (Quote 2). This need is similarly echoed in the IETF
KEYTRANS architecture draft (Quote 31). However, neither CONIKS nor subsequent works provide
a concrete or standardized mechanism for whistleblowing, beyond the observation that some form of
authenticated, peer-to-peer, out-of-band communication is required. This gives rise to a subtle paradox:
such a communication channel implicitly assumes the existence of a trustworthy public key infrastructure
(PKI) to authenticate the whistleblower to others, yet the very motivation for KT systems is to serve as
a secure alternative to traditional PKI. In other words, enabling users to securely report KT misbehavior
appears to require a PKI that, in theory, KT is designed to replace.

Privacy via Access Control: Users should only be able to query for public keys that they are authorized
to access. This ensures that KT does not expose all registered identities in a way that could enable mass
surveillance or enumeration attacks.

Privacy via access control is the system-level assumption that underpins formal privacy guarantees in
key transparency systems. It defines which set of users are permitted to issue queries about a particular
user—or, more generally, how frequently users are allowed to interact with the system. In practice, this
means that only users who appear in each other’s contact lists should be allowed to issue KT queries
about one another. In the absence of a contact-based model, rate limiting can be employed to prevent
exhaustive enumeration of the key log. This assumption is explicitly stated in the literature, including by
CONIKS (Quote 3), SEEMless (Quote 8), OPTIKS (Quote 20), and the IETF KEYTRANS architecture
draft (Quote 32).

8

Censorship Resistance: A KT provider should not be able to suppress or delay key queries or updates
in a way that selectively prevents certain users from updating or verifying their keys. This prevents
targeted denial-of-service attacks on specific identities.

Numerous works have emphasized that a KT server should not be able to suppress updates—either
by delaying the release of new commitments beyond the designated epoch interval or by selectively ignor-
ing updates from certain users. This requirement is explicitly stated in CONIKS (Quote 4), SEEMless
(Quote 9), Parakeet (Quote 15), and the IETF KEYTRANS architecture draft (Quote 33). Despite this,
concrete mechanisms for enforcing such guarantees remain underexplored. In particular, distinguish-
ing between malicious censorship by the server and benign failures—such as server outages or network
disruptions—has yet to be rigorously addressed in the literature. Moreover, there is no proposed mech-
anism for dealing with such behavior, beyond the underspecified mechanism of whistleblowing.

3.2 Cryptographic Guarantees

We now put forth various notions of consistency and a notion of privacy for KT systems. These are derived
from an intuitive sense of what one would desire from KT systems, the above system-level assumption,
and direct evidence from the literature.

Strong Consistency: A KT system satisfies strong consistency if, for any honest user U , querying
the key transparency directory for the public key of another honest user V always returns the latest,
unique, authentic public key registered by V . This prevents key substitution attacks by malicious identity
providers.

Strong consistency represents the gold standard of what can be cryptographically achieved and guar-
anteed by a key transparency (KT) protocol. However, in practice, realizing this property—particularly
for all users within a system—is largely aspirational. This is because existing KT systems rely on the
assumption that users frequently check the validity of their own public keys, ideally at each update to the
system’s database (e.g. epoch). In reality, such behavior is impractical: it would require users to remain
continuously online and to run the KT-enabled application indefinitely.

This limitation is well acknowledged in the existing KT literature. Works that attempt to provide
formal definitions typically define a notion analogous to our strong consistency property under the
term soundness, as applied to their underlying verifiable log primitives [CDG+19; MKS+23; LCG+23b;
LCG+23a] (SEEMless [CDG+19] refers to this primitive as a verifiable key directory, while OPTIKS [LCG+23b]
describes it as a private authenticated history dictionary). As expected, these definitions carry an im-
portant caveat: strong consistency is only guaranteed if users check the validity of their own key within
a time window that is “current” relative to when another user queries it. In addition, an honest auditor
must verify the correctness of the log commitment published by the server to a public bulletin board. The
burden thus falls primarily on the user. This requirement is explicitly stated in SEEMless (Quote 10) and
reaffirmed in OPTIKS (Quote 21, Quote 22). Similarly, Parakeet claims to achieve strong consistency
under these same conditions (Quote 16), while also highlighting the role of honest auditors in ensuring
the property holds (Quote 17).

In reality, strong consistency is fundamentally unattainable in any setting where the server may be
malicious. A server can always attempt a key substitution attack; the best a KT protocol can offer is
the ability to detect such behavior. Thus, the security condition underlying strong consistency implicitly
assumes that the user not only performs a validity check of their own key, but that the check passes.
Without this, the consistency guarantee does not hold. Therefore, KT systems can only hope to achieve
a frailer, detection-based variant of strong consistency: a KT system satisfies this relaxed form if, for
any honest user U querying the directory for another honest user V , the response is either (i) the latest,
unique, and authentic public key registered by V , or (ii) a response that allows U to detect that the
key they received is not valid. However, as discussed in our section on whistleblowing, it remains unclear

9

how systems should handle detected misbehavior in practice, and what consequences should follow from
such a detection.

Weak Consistency: Given a commitment C to a KT log state, any two honest users querying the
log should receive the same public key for a given identity. This ensures that different users observe the
same key bindings when relying on the same transparency commitment.

Weak consistency is a more realistic, albeit further from the “spiritual” consistency goal of KT
systems. For systems like OPTIKS [LCG+23b] and ELEKTRA [LCG+23a], weak consistency can be
achieved without requiring users to ever check for the validity of their own key in the log. This is also
(on a high level) what we formally prove our KT protocol (Section 5) achieves. Moreover, we intuitively
explain under what conditions our protocol would satisfy stronger consistency notions.

For works that provide formal security definitions, a notion akin to weak consistency can be extracted
from primitives one level of abstraction below the verifiable log—namely, the (ordered) append-only zero-
knowledge set (aZKS). The soundness definitions of aZKS structures [CDG+19; LCG+23b; LCG+23a] are
essentially equivalent to our definition of weak consistency. An aZKS is a cryptographic data structure
that underpins verifiable (label-value) logs. It can be viewed as an append-only variant of a Merkle
tree [Mer87] that supports efficient membership and non-membership proofs, while also having additional
privacy guarantees.

SEEMless [CDG+19] formalizes soundness for their aZKS primitive as the property that no malicious
prover can generate two valid proofs for different values under the same label (user id and public key
version tuple in SEEMless) with respect to a fixed commitment (Quote 11). While SEEMless’s aZKS
soundness definition might suggest that the protocol satisfies weak consistency by default—without
additional behavioral assumptions on users—we demonstrate unequivocally that this is not the case
in Appendix E. This underscores the importance of analyzing complex systems like KT from a holistic
perspective.

Similarly, ELEKTRA claims to satisfy an analogous property, which they simply refer to as consis-
tency (Quote 28). The IETF KEYTRANS architecture draft also explicitly names weak consistency (or
rather, an equivalent notion) as a goal for KT systems (Quote 34), and the accompanying protocol draft
claims that their proposed protocol satisfies this goal as well (Quote 37)—although as the work is still
in early stages and no formal notions of security exist this claim is difficult to judge.

Relaxed Consistency: A KT system satisfies relaxed consistency if a user querying for a public key
receives an authenticated key under predefined conditions, such as temporal consistency constraints or
network partition scenarios; or misbehavior by the server is detected. This allows for flexibility while
ensuring that users eventually converge to the same authentic view.

Relaxed consistency can be viewed as a middle ground between the goal of strong consistency (or
more specifically the frailer notion that can only detect misbehavior) and the more practical goal of weak
consistency. At a high level, it guarantees that a user will eventually receive the authentic public key of
another user, contingent on a specific event. In practice, this means that a user can be confident in the
authenticity of another user’s public key, but only after that other user has verified the correctness of their
own key. If the server has behaved maliciously, this misbehavior will be detected once the targeted user
checks the validity of their own key. However, this notion does not impose strict timing guarantees—it
merely assumes that the user will perform this check at some point in the future.

SEEMless acknowledges that requiring users to check their key every epoch is unrealistic. Instead, it
suggests that consistency or misbehavior detection can still be achieved as long as users verify the validity
of their own key sufficiently often (Quote 12, Quote 13). However, the precise meaning of “sufficiently
often” is left undefined. Similarly, the IETF KEYTRANS architecture draft asserts that, assuming user
devices do not remain permanently offline, any malicious behavior by the server will eventually be

10

detected within a bounded time frame (Quote 35). In this model, detection occurs when the targeted
user eventually checks the validity of their own key.

Privacy: The KT system should minimize information leakage to external observers. This means that
an adversary who does not have explicit access rights should not be able to learn non-trivial information
about key bindings or update patterns beyond what is explicitly made public.

Unlike certificate transparency, KT systems explicitly aim to provide privacy as a core security goal.
Specifically, KT systems are designed to hide key bindings and update patterns associated with indi-
vidual users—including their very existence on the platform—from any party not explicitly authorized
to communicate with them (see Privacy via Access Control below). This includes protection from other
users, auditors, and external third parties. Such a notion of privacy is emphasized repeatedly in the
literature, including in OPTIKS (Quote 23, Quote 25) and ELEKTRA (Quote 29).

In contrast to consistency guarantees—where the server is modeled as fully malicious—privacy defi-
nitions typically assume that the server is honest-but-curious. That is, while the server has full visibility
into the log and could, in principle, leak this information, it is explicitly assumed not to do so. Instead,
the server is expected to follow the protocol and attempt to minimize privacy leakage. OPTIKS makes
this point explicitly (Quote 26).

CONIKS [MBB+15] claims to achieve an informal notion of consistency without requiring key bind-
ings to be made public (Quote 5). However, SEEMless [CDG+19] later presented an attack that revealed
CONIKS’ actual leakage was significantly greater than originally claimed. This discrepancy, arising from
the lack of formal security definitions in CONIKS, highlights the critical importance of adopting the prov-
able security paradigm when analyzing protocols designed for adversarial settings. Formal definitions are
essential for enabling precise and verifiable security claims.

SEEMless provides a formal leakage definition: auditors learn only the number of key updates per
epoch, and key queries reveal only the latest value and the corresponding epoch of addition (Quote 6).6

That is for key queries, a query for user U would solely reveal the public key associated with U (in
addition to some metadata), and no information about other users. Parakeet adopts the same leakage
profile as SEEMless (Quote 18). OPTIKS leaks similar information but also discloses the values and
epochs of all past keys for a user when their most recent key is queried (Quote 24). A comparable
privacy goal is stated in the IETF KEYTRANS architecture draft (Quote 36).

4 Modeling Key Transparency as Multi-Party Computation

Now that we have surveyed the existing literature on KT systems and established the need for a holistic
and formal security model on the protocol level, we are ready to present our formal framework for KT
systems.

Secure multi-party computation (MPC) enables several mutually distrusting parties to jointly com-
pute a common function on their inputs without unnecessarily compromising the privacy of their inputs.
Yao [Yao82] introduced the formal concept of MPC as a solution to the so-called “Millionaires’ Problem”
where two millionaires want to determine who is richer without revealing their actual wealth. General
MPC is not restricted to secure function evaluation but it actually allows parties to perform any arbitrary
interactive 7 computation securely, e.g., exchanging their public keys. Thus, the objective of a KT system
is (quite self-evidently) an interactive multi-party computation; and—in our view—should be formally
modeled as such. Before we can present our formal model of KT systems, we introduce some MPC basics
and provide some intuition for how security is defined for MPC protocols.

6 This is the same leakage as in our functionality.
7 Sometimes also called “reactive”.

11

4.1 Secure Multi-Party Computation

To reiterate, secure MPC [Yao82; Yao86] enables a group of mutually distrusting parties to jointly
perform a (interactive) computation as if the computation was performed by a trusted third party, i.e.,
in the intended way. To ensure this guarantee, the security of an MPC protocol is not evaluated using
game-based notions—i.e., by testing whether an adversary can win a specific predefined game. This is
because it has shown itself difficult to anticipate and enumerate all the ways in which an adversary might
misbehave in order to subvert the intended functionality [Can01; Lin17]. To address this, MPC security
is established by showing that every real execution of the protocol, even in the presence of malicious
parties, closely approximates an ideal execution where a trusted third party performs the computation.8

This approach is known as the “real-ideal paradigm” or simulation-based security [GM84].

The Real-Ideal Paradigm The objective of a given MPC task is specified by a so-called ideal
functionality (essentially corresponding to the code of the trusted third party) that the protocol tries
to emulate. We say a protocol π securely realizes an ideal functionality F if the real execution of the
protocol π is indistinguishable from the ideal execution of F . Naturally, in the real execution the honest
parties execute the protocol’s code whereas the adversary controls the corrupted parties behavior. In
contrast, in the ideal execution the (idealized) adversary, also called simulator, only has limited access to
the ideal functionality F (as per its definition). Honest parties are simply dummy parties that forward all
their inputs to the “ideal” functionality. Finally, given the transcript of either execution, a distinguisher
must not be able to tell which execution it is.

The rational behind this paradigm is that whatever havoc the real adversary can cause in the real
execution of the protocol, it cannot be too far from whatever the idealized adversary (simulator) can cause
in the ideal execution, thanks to the indistinguishability requirement. However, because the simulator
is allowed to behave arbitrarily, the indistinguishability requirement ensures that any action by the real
adversary is indistinguishable from something explicitly allowed in the ideal world. For a more thorough
introduction to MPC we refer the interested reader to the excellent monograph of Evans, Kolesnikov,
and Rosulek [EKR18].

The UC Framework It is often the case that the security of a practical protocol is proven under
the assumption—either implicit or explicit—that it runs as a single instance in isolation. As a result,
the proven guarantees may break when the protocol is executed concurrently—either with itself or
alongside other protocols—as is typically the case in real-world deployments.9 This limitation can be
sided by proving security within a composability framework, such as the Universal Composability (UC)
framework [Can00; Can01], which ensures that security properties are preserved even under arbitrary
composition. In other words, when designing protocol for functionalities that are themselves used in larger
(a priori unknown) contexts, the above simulation-based security (or some other game-based security),
might not suffice.

The UC framework has been used to analyze key exchange and secure channels [CK02], virtual smart
cards [ABM16], RFID security [DKL+10], and the Bitcoin blockchain protocol [BMT+24], to name a
few. In this work, we also conduct our analysis within the UC framework.

While the UC framework provides much stronger security guarantees than the standalone (simulation-
based) model, it comes with some inherent restrictions. Unfortunately, it is known to be impossible to
achieve universal composability without some kind of setup assumption[CF01; CKL06]. Therefore, in
our proofs, we assume that protocol parties can agree on a common reference string (CRS), which is

8 It is generally the case that a protocol is composed of smaller building blocks, whose individual game-based
security notions are used to argue the indistinguishability of the two executions.

9 A well-known example is that many zero-knowledge protocols fail to remain secure under parallel repetition.

12

a standard and widely accepted compromise in UC-based proofs. Moreover, the KT literature typically
assumes a CRS in their proofs,10 despite their security guarantees not being composable. We do not rely
on random oracles, and our protocols are proven UC-secure under standard cryptographic assumptions.

4.2 Abstraction Layers of KT Systems

While KT was first introduced in [MBB+15], we accredit the first step towards a proper formalization of
KT to Chase, Deshpande, Ghosh, and Malvai [CDG+19] through their notion of a verifiable key directory
(VKD). Though, while formally defining several algorithms, their definition lacks the previously described
distinction between the objective of the KT system and the protocol that realizes said objective. We argue
that in order to properly formalize KT, we distinguish between three formal concepts:
• A KT functionality specifies the objective of a KT system (e.g. supplying users with previously regis-
tered keys). Formally, any ideal MPC functionality is defined by the code of a (virtual) trusted third
party with whom the parties interact.

• A KT protocol realizes (in the real-ideal paradigm) the KT functionality, i.e., its execution should be
indistinguishable from the execution of the ideal functionality. Formally, a protocol consists of a set of
parties and defines the code of those (honest) parties that is executed during the run of the protocol.

• A KT scheme defines a set of algorithms (analogous to a PKE scheme). The purpose of the scheme is
to simplify the description and security proof of the protocol in which it is used.

Remark 1. A conceptually important distinction between a protocol and a scheme is that within the
scope of a scheme there are no parties. For example, consider the notion of a digital signature scheme
Σ = (Gen,Sign,Vfy). The scheme’s signing algorithm Sign does not need the explicit or implicit notion
of a signer party; it simply describes know the signing process works. In contrast, in a protocol a given
party may want to sign a particular message and hence invoke the signing algorithm at a specific point
in the protocol.

In Appendix D we discuss to which degree previous literature (specifically SEEMless [CDG+19])
captures or fails to capture these levels of abstraction, and how it affects the security guarantees made
by these works.

Why Worry About Layers of Abstraction? We argue that establishing a mathematically rigorous
model of KT systems is a necessary requirement for a robust standardization (the need of which is
reflected in the standardization efforts of the IETF [McM25; ML24]). Importantly, the soundness of
the formalization (including the distinction between functionality, protocol and scheme) is not a mere
academic exercise, but it in fact has real world consequences. As evidence of real-world implications
of the currently insufficient state of KT formalization we observe a fundamental flaw in the security
argument of Whatsapp’s KT system [LL24b]. While Whatsapp’s KT system is based on the construction
and security analysis of [CDG+19] the security proof of the construction in [CDG+19] requires (as a
building block) a simulatable verifiable random function (sVRF) [CL07]. However, WhatsApp’s VRF
implementation [LL24a] cannot be simulatable. We attribute this mismatch between the deployed VRF
and one that would work in the security proof of [CDG+19] directly to the aforementioned lack of rigor
in the existing KT literature.

4.3 Ideal KT functionality

First, we give a definition of an utopian KT functionality in Figure 1 that captures the features and
security that we intuitively expect from a KT system. This functionality allows two high-level procedures:

10 For example, per their use of simulatable verifiable random functions in their construction.

13

Functionality FidealKTS

FidealKTS proceeds as follows, running with security parameter λ, n users U = {id1, ..., idn}, server SP, and
adversary S. Messages not covered here are ignored. Initially, set the database D[id] := [] for each id ∈ [n].
• RegisterKey: When receiving a key k from user Uid, store D[id][|D[id]|+ 1] := k.
• QueryKey: When receiving query (QueryKey, id′) from user Uid, retrieve k := D[id′, |D[id′]|]. Send

(QueryKeyResponse, id′, k) to Uid.

Fig. 1: An overly optimistic functionality FidealKTS for a KT system that cannot be realized in practice.

1. Each user may register a new key at any point in time.
2. Each user Uid may query any user Uid′ ’s most recent key.
Unsurprisingly, we cannot realize FidealKTS if we assume a realistic communication model. Suppose that
users only communicate directly with the server in an authenticated manner.11 Now, suppose a server
simply crashes. In this scenario no protocol can securely realize FidealKTS. The simple reason is that no
honest party can ever obtain any other (honest) party’s registered key because all communication would
be routed through the server. However, according to the functionality FidealKTS, even in this scenario, any
honest party querying another party’s previously registered key should receive a correct response (from
the assumed trusted third party that executed FidealKT in the ideal world).

The takeaway from this toy example is that we have to weaken the ideal KT functionality according
to restrictions dictated by our model of the real world. However, in addition to a server crashing, there
are a number of other real-world attacks to consider to actually obtain a sane KT functionality. Again,
from here on out we assume that users only have authenticated channels to the server but not amongst
each other.

1. Impersonation attack: If we accept that users lose their device, i.e., they lose their entire (secret) state,
then we need to assume that the server is honest in order to make meaningful security guarantees.
The reason is that if the user has no secret state, then that user has no authenticated channel to
any other user, i.e., that user cannot communicate directly with other users. However, since the user
has no state (and thus no shared secret with another user), a malicious server can impersonate the
affected user simply by simulating the affected user.

2. Omission attack: If a user registers a new key with the server but that key is only sent to the server
(i.e., the new key is not correlated with the view of any other party), then there is no guarantee that
a (stop-fault) server will actually include the newly registered key in the next epoch update.

In addressing these attacks, Chase, Deshpande, Ghosh, and Malvai [CDG+19] define a “soundness”
security property for VKD underlying their KT system. When satisfied, it guarantees that if a user
has successfully verified their own key value in a given epoch, then all other users obtain the same key
within the epoch. However, it is important to note that the property definition makes no statement about
what happens if the check fails. Therefore, this VKD level property does not imply any security for its
corresponding KT system if the server is malicious.

Take, for example, a malicious server that injects their own key for a particular user. While the system
in this setting is clearly insecure according to common sense, the soundness notion is still satisfied. The
authors of [CDG+19] argue that such malicious server can be detected by users and that the users should
then complain “out-of-band”. However, exactly how this complaint is communicated to all system users,
what it entails, and why it would be acceptable in practical applications remains unspecified.

Even more critically, there is no mention of what happens if users are allowed to be completely
reset—such as by losing their device. Intuitively, a complete reset means that a user has lost the means

11 Assuming a priori authenticated channels between users defeats the purpose of creating a KT system in the
first place.

14

to prove their identity within the system. Note that in this setting the above attack implies that the
server is able to completely impersonate the user that is being reset without the means for the user to
raise a credible accusation within the model. Even more concerning, relying solely on the above soundness
notion from [CDG+19] would allow not only a malicious server to impersonate any user, but also enable
a malicious user to impersonate any other user. Consequently, in a system that allows users to lose their
device, the server must be assumed at least semi-honest.

We want to stress that some non-cryptographic techniques are considered to mitigate this problem
in practice. For example Linker and Basin [LB24] formalize the notion of social authentication and
implement a protocol for it. To tackle the problem of users impersonating each others, [CDG+19] relies
on application-level access control. The IETF working group on KT systems [McM25; ML24] adapts
the same approach. Obviously, these approaches may provide valuable security mechanisms in practice.
Since, we are interested in modeling KT systems in a cryptographically sound way, we consider these
approaches orthogonal to KT systems and thus out-of-scope.

4.4 Realizable KT Functionality

The functionality in Figure 2 captures real-world limitations described above. It allows for three proce-
dures: 1) users can register keys, 2) users can query keys, and 3) the server can increment the epoch.
Whenever a user Uid queries for the key of another user Uid′ in epoch τ , the functionality responds with
the most recent key that was added up to the previous epoch τ − 1. The resaon why FKT does not re-
spond with the key stored in the current epoch is that the user Uid′ could still overwrite their key in the
current epoch τ . In other words, the keys that users register in any given epoch only become persistent
(or committed to) once the epoch has passed.
Another noteworthy aspect of our functionality is that if the server is corrupted, then the simulator (the
adversary) must allow query responses before they are give to querying users, and the simulator gets
to overwrite the list of updated keys (but importantly it does not get to specify the entire database).
This behavior reflects the fault-stop attack discussed earlier. It also reflects the impersonation attack by
allowing a malicious server to impersonate a user by updating their key via LSP in Update.12 Imper-
sonation attacks are inherent to KT systems due to the need to support “default” users—those unable
to permanently store high-entropy secrets—so they can recover from complete state loss (e.g., losing all
devices) and reclaim their identity within the service [CDG+19; MBB+15].

In sum, our KT functionality in Figure 2 captures all issues described above, and we are able to
eventually realize it with our protocol in Section 5.

The limitation enabling impersonation attacks is not unique to the domain of KT; in the web PKI
ecosystem, certificate authorities (CAs) could issue certificates that bind a domain to an incorrect public
key—effectively facilitating impersonation attacks [Lau14; LLK13]. As a result, the security guarantee
offered by systems with this limitation shifts from prevention to detection: the impersonated entity (e.g.,
a service user) must be able to detect the attack (e.g., by querying their own public key). To this extent,
the web PKI ecosystem introduced Certificate Transparency (CT), a system for publicly logging all issued
certificates. KT adopt a similar strategy by (privately) logging all service public keys that receiving users
may accept as valid.

This is reflected in our KT functionality through the enforcement of a persistent database state for
each epoch τ , denoted by Dτ . Dτ is defined exactly once—immediately before the epoch begins, during the
transition from epoch τ to τ +1. As a result, any query issued during an epoch is answered consistently,
i.e., based on Dτ for the query input. Therefore, if a user queries for their own public key, they observe
the same value that all other users would —whether it is correct or has been maliciously modified—thus
providing means to detect impersonation attacks. As a remark, if detecting impersonation attacks with

12 The server can also maliciously omit or overwrite key registrations via LSP.

15

some delay of t is acceptable, our functionality can be readily extended to allow querying keys from
previous epochs, i.e., in respect to Dτ ′

, τ ′ < τ ,13 thereby enabling retrospective detection of such attacks.
For clarity of exposition, we omit this modification.

The append-only log maintained by a KT system must balance two competing goals: preserving user
privacy while enabling transparency. In particular, a KT system should prevent anyone from learning
which users or public keys are present in the system solely by inspecting the log. However, some degree
of privacy leakage is necessary to enable efficient constructions while still ensuring the detectability of
misbehavior. Consequently, the KT log should aim to reveal no more than the number of key regis-
trations [CDG+19; LCG+23b]. This is reflected in our functionality by allowing the adversary (via the
simulator) to learn the number of honest key registrations during each Update.

4.5 Our KT functionality and Consistency Notions in Section 3

Our KT functionality implies the notion of weak consistency as specified in Section 3—i.e., different users
observe the same key bindings when relying on the same transparency log state (epoch commitment).
Indeed, we observe by inspection that within each epoch (the same transparency log state), any two
users receiving a query answer from the functionality, receive the same public key for a given identity,
thereby ensuring weak consistency.

However, our functionality (unsurprisingly) does not imply strong consistency—i.e., ensuring that a
user’s query return contains the latest authentic key registered by the queried identity holder.

Nevertheless, such a alternative notion of strong consistency is achievable under certain system-level
assumptions. Namely, either strong consistency holds or key owners are able to detect maliciously injected
or omitted keys. For instance, we can modify our protocol such that users are forced to query for their
current epoch key in every epoch and raise an alarm on inconsistent key responses. Then this protocol14

fulfills the aforementioned notion of alternative strong consistency. That said, we stress the importance
of not over-relying on specific system-level assumptions such as the uptime of users, in particular in the
context of end-to-end communication.

5 Key Transparency Protocol

To realize our KT functionality FKT we propose a KT protocol that is inspired by the (implicit and
incomplete) protocol descriptions of [CDG+19; LCG+23b]. For modularity our KT protocol uses our KT
scheme (defined in Appendix B) as a building block—so that the concrete instantiation (Appendix C.1)
of the KT scheme can be changed with ease (e.g. from a group-based to a post-quantum secure scheme).
Moreover, the use of our KT scheme significantly simplifies the description and the UC-proof of our KT
protocol.

To closely reflect real-world deployment scenarios and applications, we make the following assump-
tions (standard in the KT literature)
• Each user has a unique (permanent) identifier id (e.g., a username such as a phone number or an email
address, or UUID).

• An asymmetric public-key infrastructure (PKI) exists. More concretely, the server holds two key pairs:
(pkΣ, skΣ) for a signature scheme, and (pkPKE, skPKE) for public-key encryption scheme.

• Each user has an authenticated channel with the server. This would typically be realized by a key-
exchange via two-factor authentication such as SMS or an authenticator app.

13 Note that our extended functionality guarantees that any query to Dτ ′
, regardless of when it is made after or

during epoch τ ′, would return a consistent result.
14 Under assumption that users are maximally honest-but-curious and never suppress alarms.

16

Functionality FKT

FKT proceeds as follows, running with security parameter λ, n users U = {U1, ...,Un} a server SP, and a simulator
S that is to emulate the world to an adversary A that corrupts C ⊆ U ∪{SP}. Messages not covered are ignored.
Initially, set the epoch counter τ := 0. For each user id ∈ [n] set the initial database as D−1[id] := (k = ⊥, v = 0)
(key–version pairs). For each epoch τ ′ ≥ −1 initialize an empty update list Lτ ′ [id′] := [] (containing keys only).
• RegisterKey:

1. Receive (RegisterKey, id, k ̸= ⊥) from user Uid.
2. Store Lτ [id] := k (overwriting).
3. If the server is corrupted, i.e., SP ∈ C, then

(a) send (RegisterKey, id, k) to S.
• QueryKey:

1. Receive query (QueryKey, id′) from user Uid.
2. Retrieve the key (k, v) := Dτ−1[id′],
3. If the server is not corrupted, i.e., SP ̸∈ C, then

(a) send (QueryKeyResponse, τ, id′, v, k) to Uid.
4. If the server is corrupted, i.e., SP ∈ C, then

(a) send (QueryKey, id, id′) to S,
(b) (possibly) receive (AllowQueryKey, τ, id, id′) from S.

i. Send (QueryKeyResponse, τ, id′, v, k) to user Uid.
• Update:

1. Receive Update from SP.
2. Initialize the next epoch database as Dτ := Dτ−1.
3. Update the database with the honest updates as follows: for each id ∈ [n] let (kτ−1,id, vτ−1,id) := Dτ−1[id]

be the key–version pair of user Uid in epoch τ − 1, let kτ,id := Lτ [id] be the key that user Uid registered in
epoch τ , set the new database entry Dτ [id] := (kτ,id, vτ,id) with incremented version vτ,id := vτ−1,id + 1.

4. Let ℓ := | { id | Lτ [id] ̸= ⊥} | be the number of honest users that updated their key in epoch τ . Send
(Update, ℓ) to S.

5. If the server is corrupted, i.e., SP ∈ C, then
(a) send Update to S,
(b) receive a list of id–key pairs as (Update, LSP) from S,
(c) tamper with the next epoch database as follows: for each id ∈ [n] let k̃τ,id := LSP[id] be the adversarial

key for user Uid in epoch τ ,
◦ if k̃τ,id = ⊥, reset the key that was registered by user Uid by setting Dτ [id] := Dτ−1[id] (i.e., the

user Uid’s key update is ignored, the version is not incremented),

◦ if k̃τ,id ̸= ⊥, set the adversarially chosen key as Dτ [id] := (k̃τ,id, vτ,id) (i.e., the user Uid’s key update
is replaced by the adversarially chosen key, the version is incremented).

6. Increment the epoch number τ := τ + 1.
7. Send (Update, τ) to each user Uid for id ∈ [n].
8. Ignore all further inputs (AllowQueryKey, τ ′, ·) for τ ′ ⪇ τ .

Fig. 2: Our KT functionality: The database state in epoch τ denoted by the variable Dτ is persistent, i.e., it is
defined only once during the update procedure from epoch τ to τ + 1. In contrast, the update list Lτ is volatile,
i.e., its entries can be overwritten by users and finally by the adversary during the same epoch τ . For the ease of
exposition, we have concentrated on the case where the number of users n ∈ N is fixed and known to all parties.

17

• The server can broadcast messages (e.g., epoch commitments) to all users. The mechanism for this
would typically entail the server signing the epoch commitment and then publishing it to a public
append-only database that is accessible to all users. Proposed real-world mechanisms for this include
blockchains [Bon16; TD17], gossip protocols [MKL+20], and a novel light-weight “consensusless” con-
sistency protocol described in [MKS+23].

Our KT scheme. Our KT scheme is inspired by the VKD primitive of [CDG+19] but neither its
construction nor its security proofs follow directly from [CDG+19]. We present the formal definition
in Appendix B and the concrete instantiation in detail in Appendix C.1. In Appendix A we provide
preliminaries that our scheme and the security proof of our protocol rely on. Instead of presenting a
formal definition of our KT scheme at this point, we give a high-level overview of its construction and
functionality to facilitate the understanding of how it is used in our KT protocol. Generally, our KT
scheme relies on an sVRF, a collision-resistant hash function, and a non-interactive zero-knowledge proof
(NIZK) system.
On a high level, our concrete KT scheme construction follows the structural approach of the VKD scheme
in [CDG+19]. In each epoch, we store database elements using a Patricia trie (via KTS.Commit), using
a simulatable verifiable random function (sVRF) to map elements to the positions in the database. The
root of the Patricia trie is the epoch commitment and commits to the entire database for that epoch.
Using the database of the previous epoch and the list of updated keys, we can generate the next epoch
commitment and prove (via KTS.UpdateEpoch) that the database of the next epoch is consistent with
the previous one. Then, following the approach in [LCG+23b], we respond to queries (via KTS.QryKey)
with an inclusion proof for the latest version of the queried user’s key, along with non-inclusion proofs for
the subsequent version. The querying user can then verify the query response via KTS.VfyQry using the
epoch commitment and the query response. Finally, to achieve consistency between epochs, we attach a
non-interactive zero-knowledge proof (NIZK) to the epoch update proofs that ensures that the databases
contained in the epoch commitment are “well-formed”, e.g. they don’t miss any intermediate version
of keys, and for each identity at most one new key was added relative to the database of the previous
database. This approach differs substantially from [CDG+19; LCG+23b], which do not employ NIZKs
and thus do not achieve what we call “inter-epoch consistency” in Appendix B. Naturally, our KT scheme
also achieve “intra-epoch consistency” (essentially weak consistency in Section 3) which is inherited from
the technique of [CDG+19]. Moreover, our KT scheme is private in a sense that an adversary cannot
learn any information about the keys of the users that it did not explicitly query for. Lastly, a major
difference to the VKD scheme of [CDG+19] and technical hurdle is the fact that our KT scheme is
extractible, meaning that with a trapdoor associated with the CRS one can extract (via KTS.ExtKeys)
the database that is committed to in the epoch commitment. This is crucial for our UC-proof to work
but extraction is only used in the UC-proof—not in the construction itself.15 While extractability at
first seems at odds with the succinctness of the epoch commitment (as a Patricia trie root is highly
compressing), we actually extract the database not only from the epoch commitment but also from the
epoch update proofs that the server publishes with each epoch commitment.

Our KT protocol. Our KT protocol is presented in Figure 3. Thanks to the usage of our KT scheme
the protocol itself (although formally well-defined) is relatively simple for a task as complex as KT. Note
that we are in the (FBC,Fcrs)-hybrid model, but that only the server needs to (upon epoch updates) uti-
lize the broadcast functionality FBC to publish the epoch commitment and the update proofs. Initially,
each party (users and server) obtain the CRS from the Fcrs functionality. A user that wants to register a
key in epoch τ simply sends that request to the server who stores the key in the list of current updates Lτ .

15 The reader familiar with UC may recall the UC commitment problem that require a commitment scheme to
be both simulatable and extractable.

18

SP(1λ)

1 : SP.crs← Fcrs // get CRS

2 : SP.st← KTS.Init(1λ)

3 : SP.τ := 0; SP.L0 := []; SP.v := []; SP.D−1 := []

Uid(1
λ)

1 : Uid.crs← Fcrs // get CRS

2 : Uid.com
−1
KTS := ⊥;Uid.τ := 0

Uid(RegisterKey, k)

1 : send (RegisterKey, id, k)→ SP

SP(RegisterKey, k← Uid)

1 : τ := SP.τ ; SP.Lτ [id] := k

Uid(QueryKey, id′)

1 : send (QueryKey, id′)→ SP

2 : receive (QueryKeyResponse, τ, id′, v, k, π)← SP

3 : req τ ̸= Uid.τ

4 : req k ̸= ⊥ ∨ v = 0 // ensure most recent key

5 : req KTS.VfyQry(Uid.com
τ
KTS, id

′, v, k, π,Uid.crs) = 1

6 : return (QueryKeyResponse, τ, id′, v, k)

SP(QueryKey, id′ ← Uid)

1 : τ := SP.τ

2 : (v, k, π) := KTS.QryKey(SP.st, SP.Dτ−1, id′, SP.crs,Uid.crs)

3 : send (QueryKeyResponse, τ, id′, v, k, π)→ Uid

SP(Update)

1 : τ := SP.τ // outgoing epoch

2 : // generate new database and update proof

3 : (SP.Dτ , πupd
KTS)

4 : ← KTS.UpdateEpoch(SP.st, SP.Dτ−1,SP.Lτ , SP.crs)

5 : // generate new epoch commitment

6 : comτ
KTS := KTS.Commit(SP.Dτ , SP.crs)

7 : SP.τ := τ + 1; SP.Lτ :=[] // increment epoch

8 : broadcast (Update, comτ
KTS, π

upd
KTS)→ FBC

Uid(Update, comKTS, π
upd
KTS ← SP)

1 : τ := Uid.τ

2 : req KTS.VerifyUpdate(Uid.com
τ
KTS, comKTS, π

upd
KTS) = 1

3 : // new epoch commitment accepted

4 : Uid.com
τ
KTS := comKTS

5 : // increment epoch counter

6 : Uid.τ := Uid.τ + 1

7 : return (Update, τ)

Fig. 3: Our KT protocol πKT using a KT scheme KTS to realize the functionality FKT in the {FBC,Fcrs}-hybrid
model. In the argument of the procedures we denote messages from other parties/functionality by ←; if ← is not
present, then it is input from the environment.

19

When the server increments the epoch it first computes the new database and update proof via KTS.UpdateEpoch
and then commits to the new database via KTS.Commit. Finally, the server broadcasts the new epoch
commitment and the update proof to all users.
To query a user Uid′ ’s current key a user Uid simply sends that request to the server who queries the KTS
(via KTS.QryKey) to obtain the stored key and query response proof. Then the server simply send the
key and the the proof back to the user Uid. The user Uid now verifies the query response and performs
some sanity-checks to handle edge cases.

Remark 2. Our protocol requires each user to independently verify epoch updates. However, it could
be adapted so that a single honest (potentially more powerful) user performs the verification for each
epoch and broadcasts the results to others. Such a variant would be secure under the assumption that
the verifying entity is at most honest-but-curious (as assumed in [LCG+23b; CDG+19]). In contrast,
our approach avoids reliance on trust between users, enabling security guarantees in the presence of fully
malicious users.

Our main formal result is the following:

Theorem 1. Let KTS be a KT scheme (as defined in Definition 5). Then the protocol πKT securely
UC-realizes the functionality FKT in the {FBC,Fcrs}-hybrid model.

We prove that our KT Protocol (Figure 3) securely UC-realizes the ideal functionality FKT (Figure 2)
in the UC framework. For space reasons, we defer the full proof to Appendix C, but provide a high-level
and intuitive overview here.
Our proof—like most UC proofs—shows that the real and the ideal execution are indistinguishable to an
efficient enviroment via sequence of intermediate hybrids games. For each two consecutive hybrid games
we argue that the environments outputs distribution only changes negligibly. This is done via a reduction
from some property of the KT scheme to the two hybrid games; if there output of the enviroment changes,
then that environment can be used to break the property of the KT scheme.

Proof Sketch. We start in the real protocol execution where protocol parties communicate with
the server. As a first modification, if the server is honest, we switch the CRS to simulation mode (by
mode indistinguishability of KTS) which means that we can simulate arbitrary proofs and are no longer
bound by any soundness requirements. Next, the (uncorrupted) server simulates the proofs for epoch
updates and key queries (by simulation indistinguishability of KTS). This is possible exactly because
we switched to simulation mode before. Next, the (uncorrupted) server does not commit to the actual
database in the epoch commitment but instead to a dummy database of the same size. This modification
is indistinguishable to the environment by the privacy of KTS; recall the the proofs are now simulated,
so the committed database can be arbitrary. Next, we introduce the ideal FKT functionality and dummy
parties for each honest party. Moreover, we fork all inputs from the environment to an honest protocol
party to the resp. dummy party with forwards it to FKT. However, all outputs from FKT to dummy parties
are (as of yet) dropped. Thus, this change does not affect the games output distribution at all. Now, we
abort the game when the outputs of the honest protocol parties don’t exaclty match the dummy parties’
dropped outputs. We argue that this abort only happens with negligible probability. An environment that
could induce an abort would (by reduction) break the inter-epoch or intra-epoch consistency of the KT
scheme. This step crucially relies on the extractability of KTS. Namely, if the corrupted server broadcasts
an epoch commitment the simulator needs to extract the database from the epoch commitment and the
update proof to feed into FKT.

16 Finally, we switch to the actual ideal exection with only dummy parties
but without protocol parties. Recall that—conditioned on no abort—the outputs of the honest protocol
parties are exactly the same as the outputs of the dummy parties.

16 This mechanism is analogous to the extractability of UC commitments in [CF01].

20

6 Conclusion

Despite their growing importance in securing end-to-end encrypted communication, the protocol-level
understanding of KT systems remains surprisingly underdeveloped. In this work, we took a step back to
ask a basic but overlooked question: what exactly are these systems trying to achieve?

We surveyed the core KT literature and found a landscape rich with clever constructions but lacking
in clarity. Protocol goals are inconsistently stated, system assumptions are often implicit, and guarantees
are difficult (if not impossible) to verify across contexts. Our work systematically distills these protocol-
level properties, classifies their assumptions, and pinpoints contradictions and gaps. We the presented
the first formalization of KT as an ideal functionality, capturing the security guarantees and system-level
assumptions suggested (but rarely made explicit) by the literature.

Our formalization provides a unified framework for reasoning about KT security and operational
guarantees. We show that several idealized goals—particularly strong consistency—cannot be achieved
in practice without unrealistic assumptions. Instead, we offer a realizable functionality that models KT
systems more accurately, accounting for real-world threats such as key substitution, omission attacks,
and delayed detection. We then construct and prove the security of a concrete KT protocol in the UC
framework, providing the first composable security guarantees for a KT system.

Our work is not a critique of any individual system, nor an academic exercise in formalism, but rather
a call for greater clarity, precision, and rigor in KT protocol design. We hope our formal framework
provides a useful foundation for the ongoing standardization efforts by IETF and inspires future work to
build KT systems that are not only practical, but also provably secure.

References

[ABM16] M. Abdalla, F. Benhamouda, and P. MacKenzie. Virtual smart cards: how to sign with a pass-
word and a server. In Public-Key Cryptography – PKC 2016, pages 353–381. Springer International
Publishing, 2016.

[App23] Apple Security Engineering and Architecture (SEAR). Imessage contact key verification. https :
//security.apple.com/blog/imessage− contact− key − verification, 2023. Accessed: 2023-04-01.

[BBC+22] J. Blum, S. Booth, B. Chen, O. Gal, M. Krohn, J. Len, K. Lyons, A. Marcedone, M. Maxim, M. E.
Mou, et al. Zoom cryptography whitepaper, 2022.

[BMT+24] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a transaction ledger: a composable
treatment. Journal of Cryptology, 37, 2024.

[Bon16] J. Bonneau. Ethiks: using ethereum to audit a coniks key transparency log. In International Con-
ference on Financial Cryptography and Data Security, pages 95–105. Springer, 2016.

[Can00] R. Canetti. Universally composable security: a new paradigm for cryptographic protocols. Cryptol-
ogy ePrint Archive, Report 2000/067, 2000.

[Can01] R. Canetti. Universally composable security: a new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CDG+19] M. Chase, A. Deshpande, E. Ghosh, and H. Malvai. Seemless: secure end-to-end encrypted messag-
ing with less trust. In Proceedings of the 2019 ACM SIGSAC conference on computer and commu-
nications security, pages 1639–1656, 2019.

[CDG+22] B. Chen, Y. Dodis, E. Ghosh, E. Goldin, B. Kesavan, A. Marcedone, and M. E. Mou. Rotatable zero
knowledge sets: post compromise secure auditable dictionaries with application to key transparency.
In International Conference on the Theory and Application of Cryptology and Information Security,
pages 547–580. Springer, 2022.

[CF01] R. Canetti and M. Fischlin. Universally composable commitments. In J. Kilian, editor, CRYPTO 2001,
volume 2139 of LNCS, pages 19–40. Springer, Berlin, Heidelberg, August 2001.

[CK02] R. Canetti and H. Krawczyk. Universally composable notions of key exchange and secure channels.
In L. R. Knudsen, editor, Advances in Cryptology — EUROCRYPT 2002, pages 337–351, Berlin,
Heidelberg. Springer Berlin Heidelberg, 2002.

21

https://security.apple.com/blog/imessage-contact-key-verification
https://security.apple.com/blog/imessage-contact-key-verification

[CKL06] R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally composable two-party
computation without set-up assumptions. Journal of Cryptology, 19(2):135–167, 2006.

[CL07] M. Chase and A. Lysyanskaya. Simulatable VRFs with applications to multi-theorem NIZK. In A.
Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 303–322. Springer, Berlin, Heidelberg,
August 2007.

[CM16] M. Chase and S. Meiklejohn. Transparency overlays and applications. In Proceedings of the 2016
acm sigsac conference on computer and communications security, pages 168–179, 2016.

[DGH+16] B. Dowling, F. Günther, U. Herath, and D. Stebila. Secure logging schemes and certificate trans-
parency. In Computer Security–ESORICS 2016: 21st European Symposium on Research in Com-
puter Security, Heraklion, Greece, September 26-30, 2016, Proceedings, Part II 21, pages 140–158.
Springer, 2016.

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976.

[DKL+10] D. N. Duc, D. M. Konidala, H. Lee, and K. Kim. A survey on rfid security and provably secure
grouping-proof protocols. International Journal of Internet Technology and Secured Transactions,
2(3–4):222–249, 2010.

[DP07] Y. Dodis and P. Puniya. Feistel networks made public, and applications. In M. Naor, editor, EU-
ROCRYPT 2007, volume 4515 of LNCS, pages 534–554. Springer, Berlin, Heidelberg, May 2007.

[EKR18] D. Evans, V. Kolesnikov, and M. Rosulek. A pragmatic introduction to secure multi-party compu-
tation. Foundations and Trends® in Privacy and Security, 2(2-3):70–246, 2018.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the
ACM, 33(4):792–807, October 1986.

[GH24] T. Göbel and D. Huigens. Proton key transparency whitepaper, 2024.
[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences,

28(2):270–299, 1984.
[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems

(extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May 1985.
[GMW91] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or all

languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(3):691–729, July
1991.

[GRP+23] S. Goldberg, L. Reyzin, D. Papadopoulos, and J. Včelák. Verifiable Random Functions (VRFs).
RFC 9381, August 2023.

[HB20] R. Hurst and G. Belvin. Google/keytransparency. https : //github.com/google/keytransparency/,
2020.

[HHK+21] Y. Hu, K. Hooshmand, H. Kalidhindi, S. J. Yang, and R. A. Popa. Merkle 2: a low-latency trans-
parency log system. In 2021 IEEE Symposium on Security and Privacy (SP), pages 285–303. IEEE,
2021.

[HIL+99] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way
function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[Lau14] B. Laurie. Certificate transparency. Communications of the ACM, 57(10):40–46, 2014.
[LB24] F. Linker and D. A. Basin. SOAP: A social authentication protocol. In D. Balzarotti and W. Xu,

editors, USENIX Security 2024. USENIX Association, August 2024.
[LCG+23a] J. Len, M. Chase, E. Ghosh, D. Jost, B. Kesavan, and A. Marcedone. Elektra: efficient lightweight

multi-device key transparency. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, pages 2915–2929, 2023.

[LCG+23b] J. Len, M. Chase, E. Ghosh, K. Laine, and R. C. Moreno. Optiks: an optimized key transparency
system. Cryptology ePrint Archive, 2023.

[Lew23] K. Lewi. Whatsapp key transparency. In Proceedings of the 2023 USENIX Conference on Privacy
Engineering Practice and Respect (PEPR ’23), Santa Clara, CA, 2023.

[LGG+20] D. Leung, Y. Gilad, S. Gorbunov, L. Reyzin, and N. Zeldovich. Aardvark: a concurrent authenticated
dictionary with short proofs. IACR Cryptol. ePrint Arch., 2020:975, 2020.

22

https://github.com/google/keytransparency/

[Lin17] Y. Lindell. How to simulate it – a tutorial on the simulation proof technique. In Tutorials on the
Foundations of Cryptography: Dedicated to Oded Goldreich. Y. Lindell, editor. Springer International
Publishing, Cham, 2017, pages 277–346.

[LL24a] S. Lawlor and K. Lewi. Akd. https : //github.com/facebook/akd, version v0.11.0, 2024.
[LL24b] S. Lawlor and K. Lewi. Whatsapp key transparency, 2024. Real World Cryptography 2024.
[LLK13] B. Laurie, A. Langley, and E. Kasper. Certificate Transparency. RFC 6962, June 2013.
[Mar23] A. Marcedone. Key transparency at keybase and zoom. Presentation at IETF 116 Meeting, March

2023. https : //datatracker.ietf.org/meeting/116/materials/slides−116−keytrans−keybase−and−
zoom− 00.pdf.

[MBB+15] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J. Freedman. {Coniks}: bringing key
transparency to end users. In 24th USENIX Security Symposium (USENIX Security 15), pages 383–
398, 2015.

[McM25] B. McMillion. Key Transparency Architecture. Internet-Draft draft-ietf-keytrans-architecture-03,
Internet Engineering Task Force, February 2025. 23 pages. Work in Progress.

[Mer87] R. C. Merkle. A digital signature based on a conventional encryption function. In Conference on
the theory and application of cryptographic techniques, pages 369–378. Springer, 1987.

[MKL+20] S. Meiklejohn, P. Kalinnikov, C. S. Lin, M. Hutchinson, G. Belvin, M. Raykova, and A. Cut-
ter. Think global, act local: gossip and client audits in verifiable data structures. arXiv preprint
arXiv:2011.04551, 2020.

[MKS+23] H. Malvai, L. Kokoris-Kogias, A. Sonnino, E. Ghosh, E. Oztürk, K. Lewi, and S. Lawlor. Parakeet:
practical key transparency for end-to-end encrypted messaging. NDSS Symposium 2023, 2023.

[ML24] B. McMillion and F. Linker. Key Transparency Protocol. Internet-Draft draft-ietf-keytrans-protocol-
00, Internet Engineering Task Force, December 2024. 34 pages. Work in Progress.

[Sch22] J. Schwenk. A short history of tls. In Guide to Internet Cryptography: Security Protocols and Real-
World Attack Implications. Springer International Publishing, Cham, 2022, pages 243–265.

[TBP+19] A. Tomescu, V. Bhupatiraju, D. Papadopoulos, C. Papamanthou, N. Triandopoulos, and S. De-
vadas. Transparency logs via append-only authenticated dictionaries. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, pages 1299–1316, 2019.

[TD17] A. Tomescu and S. Devadas. Catena: efficient non-equivocation via bitcoin. In 2017 IEEE Sympo-
sium on Security and Privacy (SP), pages 393–409. IEEE, 2017.

[TFZ+22] N. Tyagi, B. Fisch, A. Zitek, J. Bonneau, and S. Tessaro. Versa: verifiable registries with effi-
cient client audits from rsa authenticated dictionaries. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pages 2793–2807, 2022.

[TKP+21] I. Tzialla, A. Kothapalli, B. Parno, and S. Setty. Transparency dictionaries with succinct proofs of
correct operation. Cryptology ePrint Archive, 2021.

[Yao82] A. C.-C. Yao. Protocols for secure computations (extended abstract). In 23rd FOCS, pages 160–164.
IEEE Computer Society Press, November 1982.

[Yao86] A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages 162–
167. IEEE Computer Society Press, October 1986.

A Preliminaries

A.1 Notation and Conventions

Given an integer m ∈ Z+, we write [m] to mean the set {1, 2, ...,m}. We consider all logarithms to
be in base 2. Within our pseudocode we use the notation := for deterministic assignment, and ← for
assignment according to a distribution or randomized algorithm. We index into arrays using [·] notation.
For a k-dimensional array A, the entry at position (i1, i2, . . . , ik) is denoted A[i1, i2, . . . , ik]. Similarly, if
F is a function returning a k-dimensional array, we write F (x)[i1, i2, . . . , ik] to access the corresponding
element at those coordinates. For an array A we define the length of the array |A| := max { i | A[i] ̸= ⊥}
as the maximal index i at which a (non-⊥) entry is stored.

For any randomized algorithm alg, we may denote the coins that alg can use as an extra argument
r ∈ R where R is the set of possible coins, and write output =: alg(input1, input2, ..., inputl; r). We may

23

https://github.com/facebook/akd
https://datatracker.ietf.org/meeting/116/materials/slides-116-keytrans-keybase-and-zoom-00.pdf
https://datatracker.ietf.org/meeting/116/materials/slides-116-keytrans-keybase-and-zoom-00.pdf

also suppress coins whenever it is notationally convenient to do so. If an algorithm is deterministic, we
allow setting r to ⊥. We remark that the output of a randomized algorithm can be seen as a random
variable over the output space of the algorithm.

A.2 Verifiable Random Functions

A verifiable random function (VRF) is the public-key analog to the traditional pseudorandom func-
tion [GGM86]. Then evaluating the VRF using the secret key it is possible to generate an acompanying
proof that the output was correctly computed. Using the public verification key, the preimage, a pur-
posed image, and a proof anyone can verify that image indeed corresponds to the preimage. A simulatable
VRF (sVRF) [CL07] also has public parameters (or a common reference string, or alternatively is defined
relative to a (random) oracle). These parameters can be set up in two modes: a extraction mode and a
simulation mode. In the extraction mode, for each verificaton key and each preimage there exists at most
one image that verifies. In the simulation mode, given the trapdoor (or the ability to program the oracle),
one can generate valid proofs for any preimage-image pair. Moreover, both modes are computationally
indistinguishable. We mention in passing the folklore cosntruction of a simulatable VRF from a standard
PRF (or OWF via [HIL+99; GGM86]) and a non-interactive zero-knowledge proof system.

We emphasize that—as Chase, Deshpande, Ghosh, and Malvai [CDG+19]—we require a simulat-
able VRF. This is crucial for the formal security proof of our KT protocol (as well as the protocol
of [CDG+19]). Chase, Deshpande, Ghosh, and Malvai [CDG+19] omit the algorithms Setup,SimSetup,
SimQryKey,SimUpdateDS in the aZKS definition but consider them in a proof in the appendix of their
work.

Definition 1 (Simulatable Verifiable Random Function). A simulatable verifiable random func-
tion (sVRF) is a tuple of polynomial-time algorithms (Setup,Gen,Eval,Vfy,SimSetup,SimEval) where
• Setup(1λ) on input security parameter 1λ, outputs a CRS crs,
• Gen(1λ, crs) on input security parameter 1λ and CRS crs, outputs a verification key vk and a secret

key sk,
• Eval(sk, x, crs) on input secret key sk, preimage x and CRS crs, outputs an image y ∈ {0, 1}ℓy(λ) and a

proof π,
• Vfy(vk, x, y, π, crs) on input verification key vk, preimage x, image y, proof π and CRS crs, outputs 1

if the proof is valid and 0 otherwise,
• SimSetup(1λ) on input security parameter 1λ, outputs a simulated CRS crs and a trapdoor td,
• SimEval(vk, x, y, crs, td) on input verification key vk, preimage x, image y, CRS crs, and trapdoor td,

outputs a proof π.
Setup and Gen are necessarily probabilistic, Eval and Vfy are deterministic.
Correctness. We say a VRF VRF is α-correct if for all λ ∈ N it holds that

Pr

 crs← Setup(1λ)

(sk, vk)← Gen
(
λ, crs

)
(y, π)← Eval(sk, x)

: Vfyλ(vk, x, y, π) = 1

 ≥ α(λ) . (1)

Unique provability. We say a VRF VRF is ν-uniquely provable, iff for all λ ∈ N it holds that

Pr

crs← Setup(1λ) : ∀vk, x, y1, y2, π1, π2 :

Vfy(vk, x, y1, π1) = 1

∧ Vfy(vk, x, y2, π2) = 1

=⇒ y1 = y2

 ≥ ν(λ) . (2)

We say a VRF VRF is perfectly uniquely provable for ν(λ) = 1.
Pseudorandomness. We say a VRF VRF is (adaptively) pseudorandom if for each non-uniform

24

ExpprVRF,A(λ)

1 : L := ∅

2 : crs← VRF.Setup(1λ)

3 : (vk, sk)← VRF.Gen(1λ, crs)

4 : x∗ ← AO
(
1λ, vk

)
5 : b← {0, 1}

6 : y0 ← {0, 1}ℓ(λ)

7 : y1 ← VRF.Eval(sk, x∗)

8 : b′ ← AOEval

(
1λ, yb

)
9 : req b = b′ ∧ x∗ ̸∈ L

10 : return 1

Expmode
VRF,A(λ)

1 : b← {0, 1}

2 : crs0 ← VRF.Setup(1λ)

3 : (crs1, td)← VRF.SimSetup(1λ)

4 : b′ ← A
(
1λ, crsb

)
5 : req b = b′

6 : return 1

Exptd-indVRF,A(λ)

1 : b← {0, 1}

2 : (crs, td)← VRF.SimSetup(1λ)

3 : (vk, sk)← VRF.Gen(1λ, crs)

4 : b′ ← AO′
Eval

(
1λ, crs, vk

)
5 : req b = b′

6 : return 1

OEval(x)

1 : L := L ∪ {x}
2 : (y, π) := VRF.Eval(sk, x)

3 : return (y, π)

O′
Eval(x)

1 : (y0, π0) := VRF.Eval(sk, x)

2 : y1 ← {0, 1}ℓy(λ)

3 : π1 := VRF.SimEval(vk, x, y1, crs, td)

4 : return (yb, πb)

Fig. 4: ExpprVRF,A denotes the adaptive pseudorandomness game, Expmode
VRF,A denotes the mode indistinguishability

game, and Exptd-indVRF,A denotes the trapdoor indistinguishability game [CL07] for an sVRF VRF and (stateful)
adversary A. We assume w.l.o.g. that the adversary A never queries the same value twice.

25

polynomial-time-bounded (stateful) adversary A its advantage is bounded by∣∣∣Pr[ExpprVRF,A(λ) = 1
]
− 1/2

∣∣∣ ≤ negl(λ) (3)

with the pseudorandomness game defined in Figure 4.
Mode indistinguishability. We say a VRF VRF is CRS-indistinguishable if for all non-uniform
polynomial-time-bounded adversaries A its advantage is bounded by∣∣∣Pr[Expmode

VRF,A(λ) = 1
]
− 1/2

∣∣∣ ≤ negl(λ) (4)

with the mode indistinguishability game defined in Figure 4.
Invertability. We say a VRF VRF is invertible if there exists a (deterministic) algorithm Inv such that
for each preimage x it holds that

Pr

 crs← Setup(1λ)

(vk, sk)← Gen
(
λ
)

(y, π)← Eval(sk, x)

: Inv(sk, y, crs) = x

 = 1 . (5)

Remark 3. W.l.o.g. we assume that the VRF is invertable. Dodis and Puniya [DP07] show how to
construct a verifiable random permutation (VRP) from any VRF. Because their VRP is based in a
Feistel construction, the secret key can be used to invert the VRP. Although, they do not state their result
formally for simulatable VRFs, their construction does work with simulatable VRFs.
Invertability will be useful in the proof of extractability of our KT scheme in Appendix C.1 to extract the
database from the labels of the Patricia trie in the epoch commitment updates.

A.3 Non-Interactive Zero-Knowledge Proofs

A non-interactive zero-knowledge proof (NIZK) system [GMR85; GMW91] is a cryptographic primitive
that allows a prover to convince a verifier of the validity of a statement without revealing any additional
information about the statement.

Definition 2 (Non-Interactive Zero-Knowledge Proof System). A non-interactive zero-knowledge
proof system (NIZK) for an NP-relation R is a tuple of polynomial-time algorithms NIZK = (Setup,Prove,Vfy)
where
• Setup on input security parameter 1λ outputs a (sound) CRS crs,
• Prove on input CRS crs, statement x and a witness w outputs a proof π,
• Vfy on input CRS crs, statement x, and a proof π outputs a bit b indicating the validity of the proof,
• SimSetup on input security parameter 1λ outputs a (simulation) CRS crs and a (simulation) trapdoor

td,
• SimProve on input CRS crs, statement x and a trapdoor td outputs a proof π.

We define several properties for NIZKs.
Perfect completeness. For each statement–witness pair (x,w) ∈ R it holds that

Pr
[
crs← Setup(1λ), π ← Prove(x,w) : Vfy(x, π, crs) = 1

]
= 1 . (6)

Statistical soundness. We say NIZK is statistically ϵSND-sound, iff for each statement x ̸∈ LR it holds
that

Pr
[
crs← Setup(1λ) : ∃π : Vfy(x, π, crs) = 1

]
≤ ϵSND(λ) . (7)

Adaptive computational zero-knowledge. We say NIZK is ϵ-zero-knowledge if there exists a simu-
lator S such that for each polynomially time-bounded malicious verifier A the two following distributions

26

are ϵ-indistinguishable to polynomially time-bounded distinguishers:
crs← Setup(1λ)

(x,w, st)← A(crs)
x ∈ LR

π ← Prove(x,w, crs)

: (π, st)

 ≈ϵ

(crs, td)← SimSetup

(
1λ

)
(x,w, st)← A(crs)

x ∈ LR

π ← SimProve(x, td, crs)

: (π, st)

 (8)

We require that the malicious verifier produce a valid statement x ∈ LR.
CRS indistinguishability. We say NIZK is ϵ-CRS-indistinguishable if the two following distributions
are ϵ-indistinguishable to any polynomially time-bounded distinguisher:{

crs← Setup(1λ) : (crs)
}
≈ϵ

{
(crs, td)← SimSetup

(
1λ

)
: (crs)

}
. (9)

A.4 Hash Functions

Definition 3. A hash function is a tuple of polynomial-time algorithms (Setup,Eval) where
• Setup(1λ) on input security parameter 1λ, outputs a CRS crs,
• Eval(x, crs) on input CRS crs and input x, outputs a hash value y.
Setup is necessarily probabilistic, H is deterministic.
Collision-Resistance. We say a hash function H is ϵcr-collision-resistant if for all non-uniform polynomial-
time-bounded adversaries A it holds that

Pr

[
crs← Setup(1λ)

(x1, x2)← A(1λ, crs)
: x1 ̸= x2 ∧ Eval(x1, crs) = Eval(x2, crs)

]
≤ ϵcr(λ) . (10)

A.5 Patricia Tries

A Patricia trie is a data structure that allows for efficient storage and retrieval of key-value pairs. We
use essentially the Patricia trie as described in [CDG+19] and refer the interested reader to [CDG+19]
for a more detailed description of the implementation.

Definition 4. A Patricia trie is a tuple of polynomial-time algorithms PTrieH = (EvalH,CopathH,VfyH,DelimH)
using the hash function H where
• EvalH on input a set of label–value pairs {(ℓ1, h1), . . . , (ℓn, hn)} and a hash CRS, outputs the root hash

value hε of the Patricia trie,
• CopathH on input a set of label–value pairs {(ℓ1, h1), . . . , (ℓn, hn)}, a label ℓ, and hash CRS crs, outputs

the copath cp of the label ℓ in the Patricia trie,
• VfyH on input root hash hε, node hash value h, copath cp, and hash CRS crs, outputs 1 if the node

value h hashes to the root hash along the copath, and 0 otherwise,
• DelimH on input a set of label–value pairs {(ℓ1, h1), . . . , (ℓn, hn)}, a (intermediate) label ℓ, and hash

CRS crs, outputs the label–hash pairs of the parent (ℓparent, hparent) (the node this the longest common
prefix), (ℓleft, hleft) (the left child of the parent), and (ℓright, hright) (the right child of the parent).

B Key Transparency Scheme

In this section we formally introduce the notion of a key transparency scheme (KT scheme), similar
to a VKD scheme [CDG+19]. Our KT scheme will be used in the construction of our KT protocol
(Appendix C.2). The purpose of the KT scheme is twofold:

• It extremely simplifies the protocol description.

27

• Its formal security properties distill sufficient properties for the formal security proof of our KT
protocol.

• It allows to modularly switch between different implementation of KT schemes without the need to
overhaul the entire protocol (e.g. switch to post-quantum instantiations).

Definition 5 (Dual-Mode Key Transparency Scheme). A dual-mode key transparency (KT)
scheme is a tuple of efficient algorithms KTS = (ExtSetup, Init,Commit,QryKey,VfyQry,UpdateEpoch,
VerifyUpdate,SimSetup,SimQryKey,SimUpdateEpoch,ExtKeys) where

• ExtSetup(1λ) on input security parameter 1λ, outputs a CRS crs and an extraction trapdoor td.
• Init(1λ, crs) on input security parameter 1λ and CRS crs, outputs a server state st,
• Commit(st,D, crs) on input server state st, database D, and a common reference string (CRS) crs,

outputs a commitment com to the server state.
• QryKey(st,D, id, v, crs) on input server state st, database D, user identifier id, version v, and CRS

crs, outputs the key k associated with id at version v, and a proof π of correctness,
• VfyQry(com, id, v, k, π, crs) on input commitment com, user identifier id, version v, key k, proof π,

and CRS crs, outputs a bit indicating the correctness of the key relative to the commitment com.
• UpdateEpoch(st,D, L, crs) on input server state st, database D, list of key updates L = (idi, ki)i, and

CRS crs, outputs the new database D′ and a proof π of correctness.
• VerifyUpdate(com, com′, π, crs) on input commitments com, com′, proof π, and CRS crs, outputs a bit

indicating the validity of the new commitment relative to the previous commitment.
• SimSetup(1λ) on input security parameter 1λ, outputs a CRS crs and a simulation trapdoor td.
• SimQryKey(com, S, k, crs, td) on input commitment com, set of identifier–version–key triples S =
{(id, v, k)}, CRS crs, and simulation trapdoor td, outputs a list of proof (πid,v)id,v.

• SimUpdateEpoch(com, com′, crs, td) on input commitments com, com′, CRS crs, and simulation trap-
door td, outputs a proof π.

• ExtKeys(com1
KTS, ..., com

τ
KTS, π

1
upd, ..., π

τ
upd, crs, td) on input commitments comi, update proofs πi, CRS

crs, and extraction trapdoor td, outputs the database D associated with the commitment com.

In particular the algorithms Commit, QryKey, VerifyUpd and ExtKeys are deterministic.

We define several correctness and security properties for KT systems which games formalized in Fig-
ure 5.
Correctness. We say a KT scheme is (perfectly) correct iff for every (unbounded) stateful adversary
A, we have that Pr[ExpcorrKTS,A(λ) = 1] = 0 where ExpcorrKTS,A is the correctness game defined in Figure 5.
Correctness guarantees that (verifying) responses match the underlying database.
Intra-Epoch Consistency. We say a KT scheme is ϵintra-intra-epoch consistent iff for every (un-
bounded) adversary A, we have that Pr[ExpintraKTS,A(λ) = 1] ≤ ϵintra(λ) where ExpintraKTS,A is the intra-epoch
consistency game defined in Figure 5. Intra-Epoch consistency guarantees that within a single epoch (a
single commitment com) only a single key verifies for a given query, i.e., database label.
Inter-Epoch Consistency. Let us define a partial order ≤ on the set of databases. For each two
databases D1,D2 we write D1 ≤ D2 (D2 is a valid extension of D1), iff D2 contains all (non-⊥) keys of
D1 plus at most one new key for each user id. Formally,17

∀id, v ̸=
∣∣D1[id]

∣∣+ 1 : D2[id][v] = D1[id][v] . (11)

We say a KT scheme is ϵinter-inter-epoch consistent iff for every (unbounded) adversary A, we have that
Pr[ExpinterKTS,A(λ) = 1] ≤ ϵinter(λ) where ExpinterKTS,A is the inter-epoch consistency game defined in Figure 5.
This notion essentially corresponds to “VKD soundness” in [CDG+19]; it ensures once a given key
version has been added, its valid response remains consistent across epochs.
Privacy. We say a KT scheme is ϵpriv-private iff for all polynomially time-bounded adversaries A its

17 Note that our partial order ≤ is not transitive.

28

ExpcorrKTS,A(λ)

1 : (st, crs,D, id, v, L)← A(1λ)
2 : // honestly generate commitment

3 : com := KTS.Commit(st,D, crs)

4 : // honestly generate epoch update

5 : (D′, πupd) := KTS.UpdateEpoch(st,D, L, crs)

6 : // honestly generate next commitment

7 : com′ := KTS.Commit(st,D′, crs)

8 : // honestly generate query response

9 : (k, π) := KTS.QryKey(st,D, (id, v), crs)

10 : // adversary wins if

11 : // honest query response doesn’t match database

12 : if D[id, v] ̸= k return 1

13 : // honest query response doesn’t verify

14 : if KTS.VfyQry(com, id, v, k, π, crs) = 0

15 : return 1

16 : // honest update epoch doesn’t verify

17 : if KTS.VerifyUpdate(com, com′, πupd, crs) = 0

18 : return 1

19 : if D ≰ D′ return 1 // honest D′
doesn’t extend D

20 : // updates not exactly incorporated

21 : if ∃id : D′[id][|D[id] + 1|] ̸= L[id] return 1

22 : return 0

ExpsimKTS,A(λ)

1 : (crs, td)← KTS.SimSetup(1λ)

2 : st← KTS.Init(1λ, crs)

3 : (D, L)← A1(1
λ, crs, td, st)

4 : // generate update proofs

5 : (D′, π0
upd) := KTS.UpdateEpoch(st,D, L, crs)

6 : π1
upd := KTS.SimUpdateEpoch(comKTS,

7 : com′
KTS,

∣∣D′∣∣, crs, td)
8 : // generate query responses

9 : i := 1;N :=
∣∣D′∣∣

10 : comKTS := KTS.Commit(st,D, crs)

11 : for id, v : D[id][v] ̸= ⊥

12 : (k, π0
id,v) := KTS.QryKey(st,D, id, v, crs)

13 : π1
id,v := KTS.SimQryKey(com, id, v, k, i, N, crs, td)

14 : i := i+ 1

15 : b← {0, 1}

16 : P b := {(id, v, πb
id,v) | D[id][v] ̸= ⊥}

17 : b′ ← A2(1
λ, crs, td, st,D, P b, πb

upd)

18 : if b = b′ return 1

19 : else return 0

Expmode
KTS,A(λ)

1 : b← {0, 1}

2 : (crs0, td0)← KTS.ExtSetup(1λ)

3 : (crs1, td1)← KTS.SimSetup(1λ)

4 : b′ ← A(crsb)
5 : req b = b′

6 : return 1

ExpintraKTS,A(λ)

1 : (crs, td)← KTS.ExtSetup(1λ)

2 : (com1, ..., comτ , π1
upd, ..., π

τ
upd, id, v, k, π)← A(crs, td)

3 : com0 := ⊥
4 : for i ∈ {1, ..., d}

5 : req KTS.VerifyUpd(comi−1, comi, πi
upd, crs) = 1

6 : req KTS.VfyQry(comτ , id, v, k, π, crs) = 1

7 : Dτ := KTS.ExtKeys(com1, ..., comτ , π1
upd, ..., π

τ
upd, crs, td)

8 : req Dτ [id][v] ̸= k

9 : return 1

ExpinterKTS,A(λ)

1 : (crs, td)← KTS.ExtSetup(1λ)

2 : (com1, ..., comτ , π1
upd, ..., π

τ
upd)← A(crs, td)

3 : com0 := ⊥
4 : D0 = [[], ..., []] // empty database of n users

5 : for i ∈ {1, ..., d}
6 : req KTS.VerifyUpd(comi−1, comi, πi

upd, crs) = 1

7 : Di := KTS.ExtKeys(com1, ..., comi, π1
upd, ..., π

i
upd, crs, td)

8 : req ∃ι : Dι−1 ≰ Dι // Dι
is not a valid extension of Dι−1

9 : return 1

ExpprivKTS,A(λ)

1 : (crs, td)← KTS.SimSetup(1λ)

2 : (D0,D1)← A(crs)

3 : req
∣∣D0

∣∣ = ∣∣D1
∣∣

4 : st← KTS.Init(1λ)

5 : b← {0, 1}

6 : com := KTS.Commit(st,Db, crs)

7 : b′ ← AKTS.SimQryKey(·,·,·,crs,td),KTS.SimUpdateEpoch(·,·,·,crs,td)(crs, com)

8 : req b = b′

9 : return 1

Fig. 5: Games for our definition of KT schemes.

29

advantage is bounded by ∣∣∣2Pr[ExpprivKTS,A(λ) = 1
]
− 1

∣∣∣ ≤ ϵpriv(λ) (12)

where ExpprivKTS,A is the privacy game defined in Figure 5. Privacy guarantees that an adversary cannot
distinguish between two databases (in the simulation mode).
The following three properties are used only in the proof of security of our KT protocol.
Mode Indistinguishability. We say a KT scheme KTS is ϵpriv-CRS-indistinguishable if for all non-
uniform polynomially time-bounded adversaries A its advantage is bounded by∣∣∣2Pr[Expmode

KTS,A(λ) = 1
]
− 1

∣∣∣ ≤ ϵpriv(λ) (13)

with the mode indistinguishability game defined in Figure 5.
Simulation correctness. We say a KT scheme is simulation-correct if for each com, com′, ℓ, id1, v1, k1, ...,
idℓ, vℓ, kℓ, L we require that

Pr

[
(crs, td)← SimSetup(1λ)

(πi)i∈[ℓ] := SimQryKey(com, (idi, vi)i∈[ℓ], crs, td)
: ∀i ∈ [ℓ] : VfyQry(com, idi, vi, ki, πi, crs) = 1

]
= 1

(14)

and

Pr

[
(crs, td)← SimSetup(1λ)

πupd := SimUpdateEpoch(com, com′, L, crs, td)
: VerifyUpdate(com, com′, πupd, crs) = 1

]
= 1 . (15)

Perfect simulation indistinguishability. We say a KT scheme is ϵsim-simulation-indistinguishable
if for all non-uniform (unbounded) adversaries A1,A2 its advantage is bounded by∣∣∣2Pr[ExpsimKTS,A(λ) = 1

]
− 1

∣∣∣ ≤ ϵsim(λ) (16)

where ExpsimKTS,A is the privacy game defined in Figure 5. We use perfect simulation indistinguishability
ϵsim = 0 merely for ease of exhibition; computational indistinguishability suffices.

The keen reader will notice that our notion of a KT scheme is an adaptation of the verifiable key
directory scheme (VKD) in [CDG+19]. At their core both primitives provide the necessary interface to
store and verify data in a persistent manner. Because we deem it insightful for the further standarization
process of KT systems, we discuss the relation between our KT scheme and the VKD scheme of [CDG+19]
in Appendix D.

C Formal Constructions and Proofs

For our security analysis we assume adversaries to be non-uniform polynomial-time (or unbounded)
Turing machines. We denote by negl some negligible function (existentially quantified).

C.1 KT Scheme Instantiation

In this section we provide an instantiation of a KT scheme as introduced in Definition 5.
Our KT scheme is inspired by the VKD primitive of [CDG+19]. Whereas the VKD scheme of [CDG+19]

is based on another primitive, called append-only zero-knowledge set (aZKS) [CDG+19], we build our
KT scheme directly from (simulatable) VRFs and collision-resistant hash functions. The reasons are
twofold:

• In comparison to a VKD the security properties that we need from our KT scheme are stronger (e.g.
we need extractability).

30

• The VKD provides a simulation-type privacy notion, whereas for our purposes a simple indistin-
guishability notion suffices.

Construction 1 (KT Scheme Instantiation). Let VRF be an sVRF. Let H be a hash function. Let NIZK
be a NIZK. We define a KT scheme KTS in Figure 5 with the following NP relation: The statement
about the consistency of the epoch commitment xupd = (comKTS, com

′
KTS,W,W ′) and the witness wupd =

(sk, (idi, vi, ki)i∈|W ′\W |) is defined as follows:

• there exists a VRF secret key sk corresponding the public key vk, i.e., (vk, sk) ∈ VRF.Gen(1λ),
• for each (added) label–value pair (ℓ′i, h

′
i) ∈W ′ \W there exists a tuple (idi, vi, ki, hi) such that vi = 1

or (ℓi, hi) ∈W was already contained in the old commitment where (ℓi, ·) := VRF.Eval(sk, idi||vi−1).

Our construction follows the blueprint of the VKD scheme of [CDG+19]. That is we use a Patricia trie
to store the elements in the database. Proofs for queries contain a membership for the most current version
of an identity’s key, and a non-inclusion proof for the next version. Proofs for inter-epoch consistency
contain all new key-value pairs, and a proof that only those pairs were added to the Patricia trie (and
no previous entry modified).

Lemma 1. If VRF is uniquely provable and pseudorandom, H is collision-resistant, and NIZK is zero-
knowledge, sound and mode-indistinguishable, then the KT scheme from Construction 1 fulfills all prop-
erties specified in Definition 5.

Proof Sketch of Lemma 1. We prove that the KT scheme from Construction 1 fulfills all properties spec-
ified in Definition 5.

Correctness. The (perfect) correctness and simulation correctness of Construction 1 follows directly
from the perfect correctness of the sVRF and the perfect completeness of the NIZK.

Intra-Epoch consistency. The intra-epoch consistency of Construction 1 follows from the collision-
resistance of the hash function, and the uniqueness of the sVRF. Breaking intra-epoch consistency means
that an adversary produces two different valid query responses for the same id and version, but with
different keys k ̸= k′. Assuming the hash function is collision-resistant, then the root value of the Patricia
trie fixes all leaf values, in particular all ℓid,v and yid,v values. In turn, the the unique provability of the
sVRF then fixes id, v, k for every leaf. Hence, an adversary cannot produce two different valid query
responses for the same id and version, but with different keys k ̸= k′. This is conceptually similar to the
soundness notion in the VKD scheme of [CDG+19].

Inter-Epoch consistency. The inter-epoch consistency of Construction 1 follows from the soundness
of the NIZK, the collision-resistance of the hash function, and the uniqueness of the sVRF. Break-
ing inter-epoch consistency means that an adversary produces two different valid epoch commitments
comτ−1

KTS , com
τ
KTS whose underlying databases Dτ−1,Dτ are not well-ordered; in the sense of the ≤ relation

in Definition 5. Again, assuming the collision-resistance of the hash function and the uniqueness of the
sVRF, then the root value of the Patricia trie fixes the entire database (of an epoch) relative to its
epoch commitment. Now, the NIZK statement xupd essentially enforces the well-ordering of the database
D ≤ D′. Concretely, it enforces that all old keys of the old database Dτ−1 remain unmodified in the
new database Dτ . Moreover, it enforces that for each newly added key under identity id the previous
version already existed in the old database Dτ−1. Hence, by the soundness of the NIZK no adversary can
produce two different valid epoch commitments comτ−1

KTS , com
τ
KTS whose underlying databases Dτ−1,Dτ

are not well-ordered. This is differs from the soundness notion in the VKD scheme of [CDG+19] which
does not offer such “temporal” consistency.

31

ExtSetup(1λ)

1 : crsVRF ← VRF.Setup(1λ)

2 : crsH ← H.Setup(1λ)

3 : crsNIZK ← NIZK.Setup(1λ)

4 : crsKTS := (crsVRF, crsH, crsNIZK)

5 : (vk′, sk′)← VRF.Gen(1λ, crsVRF) // could be PRF as well

6 : tdKTS := sk′

7 : return (crsKTS, tdKTS)

Init(1λ)

1 : (vk, sk)← VRF.Gen(1λ, crsVRF)

2 : return stKTS := (vk, sk)

Commit(stKTS,D, crsKTS)

1 : (crsVRF, crsH, crsNIZK) := crsKTS

2 : (vk, sk) := stKTS

3 : for id

4 : for v ∈ [|D[id]|]
5 : k := D[id][v]

6 : (ℓid,v, πid,v) := VRF.Eval(skVRF, id||v, crsVRF)
7 : (yid,v, π

′
id,v) := VRF.Eval(skVRF, id||v||k, crsVRF)

8 : // list of labels and leaf values

9 : W := {(ℓid′,v′ , yid′,v′) | D[id′][v′] ̸= ⊥}
10 : hε := PTrieH.EvalH(W)

11 : return comKTS := (vk, hε)

QryKey(stKTS,D, id, v, crsKTS)

1 : (crsVRF, crsH, crsNIZK) := crsKTS

2 : (vk, sk) := stKTS

3 : for id′ ∈ [n], v′ ∈ [1, ...,
∣∣D[id′]∣∣]

4 : k′ := D[id′][v′]

5 : (ℓid′,v′ , πid′,v′) := VRF.Eval(skVRF, id
′||v′, crsVRF)

6 : (yid′,v′ , π
′
id′,v′) := VRF.Eval(skVRF, id

′||v′||k′, crsVRF)
7 : W := (ℓid,v, yid,v)id,v

8 : // inclusion proof of current version

9 : cp := PTrieH.CopathH(W, ℓid,v, crsH)

10 : // non-inclusion of next version

11 : (ℓparent, hparent, ℓleft, hleft, ℓright, hright)

12 : := PTrieH.DelimH(W, ℓid,v, crsH)

13 : cp′ := PTrieH.CopathH(W, ℓparent, crsH)

14 : π := (ℓid,v, πid,v, yid,v, π
′
id,v, cp,

15 : ℓparent, hparent, ℓleft, hleft, ℓright, hright, cp
′)

16 : return (k, π)

VfyQry(comKTS, id, v, k, π, crsKTS)

1 : (crsVRF, crsH, crsNIZK) := crsKTS

2 : (vk, hε) := comKTS

3 : (ℓid,v, πid,v, yid,v, π
′
id,v, cp,

4 : ℓparent, hparent, ℓleft, hleft, ℓright, hright, cp
′) := π

5 : req k ̸= ⊥
6 : // verify inclusion

7 : req VRF.Vfy(vk, id||v, ℓid,v, πid,v, crsVRF) = 1

8 : req VRF.Vfy(vk, id||v||k, yid,v, π′
id,v, crsVRF) = 1

9 : req PTrieH.Vfy(hε, hid,v, cp, crsH) = 1

10 : // verify non-inclusion

11 : req hparent = H.Eval(yleft||yright, crsH)
12 : req PTrieH.Vfy(hε, hparent, cp

′, crsH) = 1

13 : Lleft := |ℓleft| // ℓleft ∈ {0, 1}Lleft

14 : Lright := |ℓright| // ℓright ∈ {0, 1}Lright

15 : L := |ℓid,v| // L = ℓy(λ) is the VRF output length

16 : // ℓid,v is between ℓleft and ℓright

17 : req int(ℓleft||1L−Lleft) ⪇ int(ℓid,v) ⪇ int(ℓright||0L−Lright)

18 : return 1

UpdateEpoch(stKTS,D, L, crsKTS)

1 : D′ := D

2 : for id

3 : k := L[id]

4 : if k ̸= ⊥
5 : v := |D[id]|
6 : D′[id][v + 1] := k // insert new key at next version

7 : for id ∈ [n], v ∈ [
∣∣D′[id]

∣∣]
8 : k := D′[id][v]

9 : (ℓid,v, πid,v) := VRF.Eval(skVRF, id||v, crsVRF)
10 : (yid,v, π

′
id,v) := VRF.Eval(skVRF, id||v||k, crsVRF)

11 : W := {(ℓid′,v′ , yid′,v′) | D[id′][v′] ̸= ⊥}
12 : W ′ := {(ℓid′,v′ , yid′,v′) | D′[id′][v′] ̸= ⊥}
13 : ∆W := W ′ \W
14 : comKTS := KTS.Commit(stKTS,D, crsKTS)

15 : com′
KTS := KTS.Commit(stKTS,D

′, crsKTS)

16 : // statement of properly added keys

17 : xupd :=
(
comKTS, com

′
KTS,W,W ′)

18 : // witness for the statement

19 : wupd :=
(
sk, {(id, v, k)

∣∣ D[id][v] = ⊥ ∧ k := D′[id][v] ̸= ⊥}
)

20 : // generate the NIZK proof

21 : πNIZK ← NIZK.Prove(xupd,wupd, crsNIZK)

22 : πKTS := (∆W,πNIZK)

23 : return (D′, πKTS)
32

VerifyUpdate(com1
KTS, ..., com

τ
KTS, π

1
upd, ..., π

τ
upd, crsKTS)

1 : (crsVRF, crsH, crsNIZK) := crsKTS

2 : com0
KTS := ⊥;W 0 := ∅

3 : for ι ∈ [τ]

4 : (∆W ι, πι
NIZK) := πι

upd

5 : W ι := W ι−1 ∪∆W ι

6 : (vk, hε) := comι−1
KTS

7 : (vk′, h′
ε) := comι

KTS

8 : req vk = vk′

9 : req hε = PTrieH.EvalH(W
ι−1, crsH)

10 : req h′
ε = PTrieH.EvalH(W

ι, crsH)

11 : xupd := (comι−1
KTS, com

ι
KTS,W

ι−1,W ι)

12 : req NIZK.Vfy(xupd, π
ι
NIZK, crsNIZK) = 1

13 : return 1

SimSetup(1λ)

1 : (crsVRF, tdVRF)← VRF.SimSetup(1λ)

2 : crsH ← H.Setup(1λ)

3 : (crsNIZK, tdNIZK)← NIZK.SimSetup(1λ)

4 : crsKTS := (crsVRF, crsH, crsNIZK)

5 : (vk′, sk′)← VRF.Gen(1λ, crsVRF)

6 : tdKTS := (sk′, tdNIZK)

7 : return (crsKTS, tdKTS)

ExtKeys(com1
KTS, ..., com

τ
KTS, π

1
upd, ..., π

τ
upd, crsKTS, tdKTS)

1 : (crsVRF, crsH) := crsKTS

2 : sk′ := tdKTS

3 : com0
KTS := ⊥;W 0 := ∅

4 : for ι ∈ [τ]

5 : (∆W ι, πι
NIZK) := πι

upd

6 : W ι := W ι−1 ∪∆W ι

7 : D := [[], ..., []]

8 : for (ℓ, y) ∈W τ

9 : id||v||k := VRF.Inv(sk′, y, crsVRF)

10 : D[id][v] := k

11 : return D

SimQryKey(comKTS, id, v, k, i, N, crs, tdKTS)

1 : req i ∈ [N] ∧ b ∈ {0, 1}
2 : (crsVRF, crsH) := crsKTS

3 : (sk′, tdNIZK) := tdKTS

4 : for ι ∈ [N]

5 : (ℓι, ·) := VRF.Eval(sk′, ι||0)
6 : (yι, ·) := VRF.Eval(sk′, ι||1)
7 : hι := H.Eval(ℓι||yι, crsH)
8 : (ℓi, ·) := VRF.Eval(sk′, id||v)
9 : πi := VRF.SimEval(sk′, id||v, ℓi, crsVRF, tdVRF)

10 : π′
i := VRF.SimEval(sk′, id||v||k, yi, crsVRF, tdVRF)

11 : W := {(ℓι, yι) | ι ∈ [N]}
12 : // inclusion proof of current version

13 : cp := PTrieH.CopathH(W, ℓi, crsH)

14 : // non-inclusion of next version

15 : (ℓparent, hparent, ℓleft, hleft, ℓright, hright)

16 : := PTrieH.DelimH(W, ℓi, crsH)

17 : cp′ := PTrieH.CopathH(W, ℓparent, crsH)

18 : return π := (ℓi, πi, yi, π
′
i, cp,

19 : ℓparent, hparent, ℓleft, hleft, ℓright, hright, cp
′)

SimUpdateEpoch(comKTS, com
′
KTS, N

′, crs, tdKTS)

1 : (crsVRF, crsH) := crsKTS

2 : (sk′, tdNIZK) := tdKTS

3 : // generate dummy labels and leaf values

4 : for ι ∈ [N ′]

5 : (ℓι, ·) := VRF.Eval(sk′, ι||0)
6 : (yι, ·) := VRF.Eval(sk′, ι||1)
7 : Wι := {(ℓι̂, yι̂) | ι̂ ∈ [ι]}
8 : (vk, hε) := comKTS

9 : // find number of entries in commitment comKTS

10 : let N s.t. hε = PTrieH.EvalH(WN , crsH)

11 : W ′ := {(ℓι̂, yι̂) | ι̂ ∈ [N ′]}
12 : xupd := (comKTS, com

′
KTS,WN ,W ′)

13 : πNIZK ← NIZK.SimProve(xupd, crsNIZK, tdNIZK)

14 : ∆W := W ′ \WN

15 : return (∆W,πNIZK)

Fig. 5: Our KT scheme instantiation inspired by the append-only zero-knowledge set from [CDG+19]. We denote
the canonical Patricia trie by PTrieH = (EvalH,CopathH,VfyH,DelimH) using the hash function H.

33

Privacy. The privacy of Construction 1 simply follows from the privacy of the sVRF. In VRF simulation
mode, the leaf labels ℓid,v and values yid,v are essentially independent of the actual id–version–key triples.
Because those ℓ, y values are pseudorandom they don’t reveal any information (other than the total size
of the database) about the database.

Mode indistinguishability. The mode indistinguishability of Construction 1 follows direclty from the
mode indistinguishability of the NIZK and the sVRF.

Simulation indistinguishability. The simulation indistinguishability of Construction 1 follows from
the (trapdoor-)indistinguishability of the sVRF. In the case of perfect indistinguishability the distribution
of honestly generated query responses and proofs is simply identical because honestly generated VRF
proofs and simulated VRF proofs are perfectly indistinguishable.

C.2 KT Protocol

In this section we present our KT protocol formally and prove that is securely UC-realizes out KT
functionality FKT in the Fcrs,FBC-hybrid model.

Theorem 1. Let KTS be a KT scheme (as defined in Definition 5). Then the protocol πKT securely
UC-realizes the functionality FKT in the {FBC,Fcrs}-hybrid model.

Proof. Figure 6 shows the simulator for our protocol. As usual we prove UC security via a sequence of
hybrid games. The first one is the “real” execution of the protocol in the Fcrs-hybrid model, and the last
one is the “ideal” execution of the ideal functionality with dummy parties. By showing that each pair
of subsequent games are computationally indistinguishable, we can conclude that the real and the ideal
execution are computationally indistinguishable, and thus the protocol is UC secure. For the reader’s
convenience we depict the hybrids in Figure 7.
Game 0 (Real exection): This is the real execution of the protocol. Here, parties obtain inputs from
(and make outputs to) the environment and execute the protocol code for sending messages to each other
(or when receiving messages from other parties). In particular, the hybrid functionality Fcrs samples the
CRS honestly in the extraction mode (crs, tdext) ← KTS.ExtSetup(1λ). Note that (as usually in UC
security) the environment does not get to interact with the hybrid functionality directly.
Game 1 (Switch CRS to simulation mode): In this hybrid, if the server SP is honest, the CRS
functionality Fcrs outputs a CRS in simulation mode (crs, tdsim) ← KTS.SimSetup(1λ) instead of the
extraction mode. This step is justified by the mode indistinguishability property of the KT scheme KTS.
Game 2 (Simulate query responses and epoch update proofs): In this hybrid, the honest pro-
tocol server SP computes the query responses with KTS.SimQryKey(com, id, v, k, crs, tdsim) instead of
KTS.QryKey(st,D, id, v, crs). Also, the server generates the epoch update proofs as πupd := KTS.SimUpdateEpoch(com, com′, crs, tdsim)
instead of (D′, πupd) := KTS.UpdateEpoch(st,D, L, crs) where com′ := KTS.Commit(st,D′, crs). This step
is justified by the perfect simulation indistinguishability property of the KT scheme KTS.
Game 3 (Simulate database): Let D be some database with a total number of N :=

∑
id |D[id]| en-

tries. In this hybrid, whenever the honest server would commit to a database D via KTS.Commit(SP.st,D,SP.crs),
the server instead commits to the dummy database D′ where the first entity has N dummy entries
D′[1] = [0λ, ..., 0λ] ∈ ({0, 1}λ)N and all other entries are empty D[id] = [] for all id ∈ {2, ..., n}. This step
is justified by the privacy of the KT scheme KTS.
Game 4 (Introduce FKT): In this hybrid, we introduce the ideal functionality FKT. As before the
environment interacts directly with the honest (protocol) parties. Additionally, messages from the envi-
ronment to honest parties are duplicated (forked off) to dummy parties that forward them to the ideal
functionality FKT. However, in contrast to the actual ideal world these (intermediate) dummy parties

34

S(1λ)

1 : S.τ := 0

2 : if SP ∈ C

3 : (SP.crs, SP.tdext)← KTS.ExtSetup(1λ)

4 : S.Lτ := {}
5 : else

6 : (SP.crs, SP.tdsim)← KTS.SimSetup(1λ)

7 : S.st← KTS.Init(1λ, SP.crs)

8 : S.com0
KTS := ⊥

9 : S.D0 := [[], ...[]]

S(RegisterKey, id, k← FKT)

1 : S.I[id] := k

S(QueryKey, id, id′ ← FKT)

1 : τ := S.τ
2 : S.Qτ [id, id

′] := 1

S(Update, N ← FKT)

1 : S.Nτ := N

S(Update← FKT)

1 : τ := S.τ
2 : send (Update,S.Lτ)→ FKT

S.Fcrs(1
λ)

1 : for id ∈ [1, ..., n] do S.crs→ Uid

2 : S.crs→ SP

∆(Dτ−1,Dτ)

1 : for id ∈ [1, ..., n]

2 : vτ := |Dτ [id]|
3 : // check if the key under id id has a new version

4 : if vτ =
∣∣Dτ−1[id]

∣∣+ 1

5 : // add that new key to the list of new keys

6 : L∆[id] := Dτ [id][v]

7 : return L∆

S.Uid(QueryKeyResponse, τ, id′, v, k, π ← SP)

1 : // validate the query response

2 : req k ̸= ⊥ ∨ v = 0

3 : req KTS.VfyQry(S.comτ
KTS, id

′, v, k, π,S.crs) = 1

4 : if S.Qτ [id, id
′] = 1 // validate if query issued in the epoch

5 : send (AllowQueryKey, τ, id, id′)→ FKT as S
S.FBC(Update, comKTS, πupd ← SP)

1 : // validate the epoch update

2 : τ := S.τ

3 : req KTS.VerifyUpdate(S.comτ−1
KTS , comKTS, π

upd
KTS,S.crs) = 1

4 : S.τ := τ + 1;S.comτ
KTS := comKTS;S.πi

upd := πupd;S.i := 0

5 : if SP ∈ C

6 : LSP := ∆(S.Dτ−1,S.Dτ)

7 : // trigger new epoch via FKT

8 : send (Update, LSP)→ FKT as S
9 : else

10 : S.Dτ := KTS.ExtKeys(S.com1
KTS, ...,S.comτ

KTS,

11 : S.π1
upd, ...,S.πτ

upd,S.crs,S.tdext)
S.SP(RegisterKey, id, k← Uid)

1 : req k ̸= ⊥
2 : τ := S.τ
3 : S.Dτ [id] := k

4 : send (RegisterKey, id, k)→ FKT as Uid

5 :

S.SP(QueryKey, id′ ← Uid)

1 : Nτ := S.Nτ

2 : send (QueryKey, id′)→ FKT as Uid

3 : receive (QueryKeyResponse, τ, id′, v, k)← FKT as SP

4 : if k ̸= ⊥
5 : b := 0 // trigger inclusion proof

6 : S.i := S.i+ 1 // increment (inclusion) query counter

7 : else b := 1 // trigger non-inclusion proof

8 : π := KTS.SimQryKey(S.comτ
KTS, id

′, v, k, i, Nτ , b,S.crs,S.tdsim)

9 : send (QueryKeyResponse, τ, id′, v, k, π)→ Uid

S.SP(Update, τ ← FKT)

1 : Nτ := S.Nτ

2 : S.Dτ := [[0λ, ..., 0λ], ...[]] // S.Dτ
[1] ∈ { 0

λ }Nτ

3 : S.comτ
KTS := KTS.Commit(S.st,S.Dτ ,S.crs)

4 : πupd := KTS.SimUpdateEpoch(S.comτ−1
KTS ,S.com

τ
KTS, Nτ ,S.crs,S.tdsim)

5 : send (Update,S.comτ
KTS, π

upd
KTS)→ S.FBC

Fig. 6: SKT for our KT protocol πKTS. By S.FBC (resp. S.Fcrs) we denote the simulated FBC (resp. Fcrs) function-
ality. By S.Uid we denote the simulated (honest) user Uid and by S.SP the simulated (honest) server SP. Note
that the code of S.SP is only executed if the server is honest.

35

do not forward any messages that they receive from FKT back to the environment, those message are
simply dropped. Together with FKT we introduce our simulator SKT (defined in Figure 6). Messages from
the environment to the adversary are also duplicated to the simulator, but—as with dummy parties—
messages that the simulator receives from FKT not forwarded back to the environment. Because neither
the dummy parties nor the simulator actually output anything to the environment we don’t change the
output distribution at all; the change is merely syntactical.
Game 5 (Abort): In this hybrid, we abort the game if the outputs of the honest (modified) protocol
parties does not match the (so far dropped) outputs of the ideal functionality to the dummy parties, or
if the adversary’s output does not match the (so far dropped) simulator’s output. We prove in Claim 2
that the abort only happens with negligible probability.
Game 6 (Ideal execution): In this hybrid, the environment interacts with (honest) dummy parties
that relay all messages to and from the ideal functionality FKT. Conditioned on the non-abort event, this
hybrid game has exactly the same output distribution as the previous one by definition.

Claim 1. If the KT scheme KTS is ϵpriv(λ)-private, then any efficient PPT distinguisher between Game 2
and Game 3 (in particular the environment) as advantage at most poly(λ) · ϵpriv(λ).

Proof. If the server is corrupted, then Game 2 and Game 3 are identical. Henceforth, assume that the
server is honest and that the CRS is set up in simulation mode.

We can give a straightforward reduction R from the privacy of the KT scheme KTS to the indistin-
guishability of the two games. Let τ̂ ≤ poly(λ) be an upper bound on the number of epochs that the
environment Z issues. We proceed by at most τ̂+1 hybrids, where in hybrid j ∈ {0, ..., τ̂} the first j epoch
commitments are dummy commitments, the rest are computed as in Game 2. For each intermediate game
j we define a reduction Rj as follows: it plays (as the adversary) the privacy game with the KT scheme
KTS where it first obtains the (simulation mode) CRS. Then it runs the environment Z and simulates
the first j epochs with dummy commitments. Whenever the reduction need to generate query responses
or epoch updates, it uses its KTS.SimQryKey and KTS.SimUpdateEpoch oracles. Then it obtains the j-th
database D and generates the dummy commitment D′ with the same number of entries N as D. Then it
gives the two databases D0 := D and D1 = D′ to the privacy challenger who responds with a commitment
comKTS to the database D or D′. The reduction Rj finishes the protocol with the environment Z, and
the environment finally outputs a bit b′ (its guess whether it is in the real or ideal world). Finally, the
reduction R outputs b′. Now, note that if the privacy challenger chooses its bit b = 0, then the reduction
perfectly simulates intermediate game j to the environment Z. If the privacy challenger chooses its bit
b = 1, then the reduction perfectly simulates intermediate game j + 1 to the environment Z. Hence,
the probability that the environment Z outputs 0 can change at most by ϵpriv(λ) between Game 2 and
Game 3, i.e.,

ϵpriv(λ) ≥ |2Pr[Z = b]− 1| = |Pr[Z = 0 | b = 0] + Pr[Z = 1 | b = 1]− 1| (17)

= |Pr[Z = 0 | b = 0]− Pr[Z = 0 | b = 1]| = |PrGame j [Z = 0]− PrGame j+1[Z = 0]| . (18)

■

Claim 2. If the KT scheme KTS is ϵinter(λ)-inter-epoch-consistent and ϵintra(λ)-intra-epoch-consistent,
then the abort probability in Game 5 is at most ϵinter(λ) + ϵintra(λ).

Proof. If the server is honest, then the abort will never happen because FKT will not consult the simulator
for the list of adversarial key updates LSP. Moreover, whenever an honest protocol party has output
(Update, τ) the honest protocol server must have send a new epoch commitment (plus proof) via FBC

upon receiving (Update) from the environment. In this case, the (duplicate) dummy server forwards that
(Update) message from the environment to the ideal functionality FKT which then triggers a message
(Update, τ) to all dummy users. Henceforth, assume that the server is corrupted.

36

C.3 Intuition.

To induce differences between the outputs of the honest protocol parties and the dummy parties the
environment Z has to make the (corrupted) server behave in a way that cannot be mimiked by the
simulator. To this end the environment has two options:

• The environment can break inter-epoch consistency by broadcasting two (e.g. consecutive) epoch
commitments com1

KTS, com
2
KTS (plus a valid update proof), such that the databases D1,D2 (contained

in those commitments) violate temporal consistency. An example could be that in the second database
an entry has been deleted, i.e., |D2[id]| = |D1[id]| − 1 for some user id id. The environment can let a
third party Uid′ issue a query for the user Uid relative to each epoch commitment, receiving two key–
version pairs (k1, v1) and (k2, v2) respectively. In contrast, the simulator cannot enforce this behavior
because the ideal functionality FKT (by definition) will never output a version v2 ⪇ v1—no matter
what the simulator inputs into FKT.

• The environment can break intra-epoch consistency by letting the (corrupted) server sent a valid
query response (QueryKeyResponse, τ, id′, k, v, π) to an honest protocol party Uid such that the triple
of (id′, v, k) is inconsistent (D[id′][v] ̸= k) with the database D stored internally in FKT. In that case,
the honest protocol party Uid would output (QueryKeyResponse, τ, id′, k, v) to the environment. How-
ever, the simulator cannot force the ideal functionality FKT to output (QueryKeyResponse, τ, id′, k, v)
to the dummy party Uid because the ideal functionality FKT will only ever output (QueryKeyResponse, τ, id′, k′, v′)
where v′ := |D[id′]| and k′ := D[id′][v′].

C.4 Formal analysis.

We will show setp-by-step that real and ideal messages in Game 5 are consistent. Let us denote by yrealid,j

the j-th output of (honest) party Uid in Game 5 and let yidealid,j denote the j-th output of FKT to the
dummy party Uid in Game 5.

C.5 Epoch update outputs.

First, we note that iff yrealid,j = (Update, τ), then yidealid,j = (Update, τ) as well. By the definition of our
protocol an honest protocol party Uid only outputs (Update, τ) if it received via the FBC broadcast a

(valid) (Update, comKTS, π
upd
KTS) from the server SP. We distinguish two cases:

• If the server is corrupted, then the corrupted server must have broadcasted a valid (Update, comKTS, π
upd
KTS)

via the (simulated) FBC. In this case, (by definition) the simulator inputs Update into the ideal func-
tionality FKT (in the name of the server). Then FKT sends Update to S who (by definition) responds
with (Update, LSP) for some list of adversarial updates LSP. In turn, FKT sends (Update, τ) to the
honest party Uid which outputs (Update, τ).

• If the server is not corrupted, then it must have received the input Update from the environment.
In this case, the input Update is directly forwarded to the ideal functionality FKT via the (honest)
dummy server. Consequently, the ideal functionality FKT sends (Update, τ) to each honest party Uid

which outputs (Update, τ).
The opposite direction also holds; if an honest party outputs yidealid,j = (Update, τ) in Game 5, then it

outputs yrealid,j = (Update, τ) in Game 4 as well.
• If the server is corrupted, then the simulator must have input Update into the ideal functionality
FKT (in the name of the server). The simulator (by definition) only does this if the corrupted server

broadcasted a valid (Update, comKTS, π
upd
KTS) via the (simulated) FBC. In this case, the honest (protocol)

party Uid also outputs (Update, τ).
• If the server is not corrupted, then the ideal functionality FKT must have gotten input Update from
from the dummy server. Then the (honest) protocol server would broadcast a valid (Update, comKTS, π

upd
KTS)

and honest party Uid would output (Update, τ) as well.

37

■

C.6 Query response outputs.

The only other output that honest parties generate is of the form (QueryKeyResponse, τ, id′, v, k).
We observe that whenever yrealid,j = (QueryKeyResponse, τ, id′, v, k), then yidealid,j = (QueryKeyResponse,

τ, id′, v′, k′) for some (v′, k′) (which might be (v, k) or not).
Suppose an honest protocol party Uid outputs (QueryKeyResponse, id′, v, k), then it must have received
input (QueryKey, id′) from the environment beforehand. Hence, the corresponding dummy party Uid

inputs (QueryKey, id′) into the functionality FKT. Moreover, the protocol party Uid must have received
a valid (QueryKeyResponse, τ, id′, v, k, π) from SP. In case SP ∈ C, (by definition) the simulator inputs
(AllowQueryKey, τ, id, id′) into FKT. Because FKT received (QueryKey, id′) from Uid before, FKT sends
(QueryKeyResponse, τ, id′, v′, k′) to the dummy party Uid which forwards it to the environment. (Here
k′ and v′ are the unique key and version stored in the database of FKT.)
Analogously, we observe that whenever yidealid,j = (QueryKeyResponse, τ, id′, v′, k′), then yrealid,j = (QueryKeyResponse,

τ, id′, v, k) for some (v, k) (which might be (v′, k′) or not). Suppose a dummy party Uid outputs (QueryKeyResponse,
τ, id′, v, k), then it must have forwarded (QueryKey, id′) to FKT from the environment beforehand. Hence,
the corresponding protocol party Uid on input (QueryKey, id′) sent (QueryKey, id′) to the server SP. If
SP ̸∈ C is honest, then the protocol server must have sent a valid (QueryKeyResponse, τ, id′, v′, k′, π) to
the protocol party Uid. If SP ∈ C is corrupted, the simulator must have (AllowQueryKey, τ, id, id′) into
FKT. This only happens (by definition) only if the corrupted protocol server sent a valid (QueryKeyResponse, τ, id′, v′, k′, π)
to the protocol party Uid. That is, in both cases the honest protocol party Uid must have received a valid
(QueryKeyResponse, τ, id′, v′, k′, π) from the server SP which it outputs to the environment.

Now, we know that real and ideal query responses always occur in pairs where (v, k) denotes the
real version and key, and (v′, k′) denotes the ideal version and key. It remains to show that which
overwhelming probability the two pairs are equal. We do so by a reduction to the inter-epoch and intra-
epoch consistency of the KT scheme KTS. Recall that if the server is honest, then yrealid,j = yidealid,j for all j,
simply because the honest protocol server sends the same version and key to protocol party Uid as FKT

sends to the dummy party Uid.
Let D0 = [[], ..., []],D1, ...,Dτ be the databases extracted by the simulator (recall that the server is

corrupted). First, we want to show that the databases extracted by the simulator match the databases
stored in FKT. This ensures that the databases extracted by the simulator match the databases stored
in the ideal functionality. Suppose the environment (corrupting the server) makes the malicious server
broadcast epoch commitments com1

KTS, ..., com
τ
KTS (plus valid update proofs π1

upd, ..., π
τ
upd) s.t. Dτ−1 ≰

Dτ where τ is the first epoch where this happens. This means the environment created (valid) epoch
commitments that contain non-well-ordered databases. An environment that causes this event breaks
the inter-epoch consistency of the KT scheme KTS. Thus, any polynomially time-bounded environment
Z can cause this event with probability at most ϵinter(λ). Henceforth, we can assume that all extracted
databases Di are well-ordered. This ensures that the databases extracted by the simulator match the
databases stored in FKT.

Next, we what to show that the query responses given by the corrupted server match the ones given by
the ideal functionality. Now, suppose that the environment (corrupting the server) makes the malicious
server broadcast epoch commitments com1

KTS, ..., com
τ
KTS (plus valid update proofs π1

upd, ..., π
τ
upd), and

send a valid (QueryKeyResponse, τ, id′, v, k, π) to an honest protocol party Uid s.t. Dτ [id′][v] ̸= k. This
means that the enviroment created (valid) epoch commitments and a (valid) query response that is
inconsistent with the most current database. An environment that causes this event breaks the intra-
epoch consistency of the KT scheme KTS. Thus, any polynomially time-bounded environment Z can
cause this event with probability at most ϵintra(λ). Hence, we can assume that all query responses by the
corrupted protocol server match the ones given FKT.

38

C.7 Conclusion.

Let Z be a PPT environment. Overall, the environment Z’s advantage to distinguish between the real
and the ideal execution is bounded by

|PrGame 0[Z → 1]− PrGame 6[Z → 1]| ≤ ϵmode(λ) + poly(λ)ϵpriv(λ) + ϵinter(λ) + ϵintra(λ) . (19)

D Comparison with SEEMless [CDG+19]

To compare our work with [CDG+19], we have to cast their contributions into our framework of a
functionality, protocol and scheme.

First, we observe that Chase, Deshpande, Ghosh, and Malvai are the first to “formalize the security
and privacy requirements of a verifiable key directory service, [...] in terms of a new primitive that we
call Verifiable Key Directories (VKD).” We see the notion of a VKD (as a scheme) as a step in the right
direction towards a proper formalization of KT systems. Nevertheless, Chase, Deshpande, Ghosh, and
Malvai conflate the concept of a scheme (in the sense of a tuple of algorithms) and the concept of a
protocol (in the sense of code for parties interactiving with each other). We substantiate this view by
the observing that Chase, Deshpande, Ghosh, and Malvai state:

• “Definition 1. A VKD consists of three types of parties: an identity provider or server, clients or users
and external auditors”, which indicates that their VKD is a protocol, and

• “A Verifiable Key Directory is comprised of the algorithms [...]”, which formally defines VKD as a
scheme.

D.1 Our KT Scheme vs. VKD

Given the formal definition of a VKD we compare the VKD to our KT scheme. The main difference is that
our KT scheme makes many aspects explicit that are left unspecified in the VKD. For example, [CDG+19]
explicitly omit any specification of “system parameters”. Moreover, for their proof of VKD privacy Chase,
Deshpande, Ghosh, and Malvai need a simulator that is only mentioned in the privacy proof in Appendix
B of [CDG+19]. Our KT scheme makes this need for a simulator explicit by requiring algotithms SimSetup,
SimQryKey, and SimUpdateEpoch for the so-called simulation mode. A conceptually novelty of our KT
scheme is that we not only require the simulation mode but we observe that to prove UC security of our
protocol we need our KT scheme to also be extractable—hence our KT scheme is dual-mode: simulation
mode and extraction mode.18 We remark that the extraction property is not necessary in [CDG+19]
because they do not consider UC security.

D.2 Protocols

First, we observe that in [CDG+19] the protocol participants consist of a server, users and auditors. In
contrast, we do not consider auditors for reasons outlined below. We claim that the protocol description
in [CDG+19] lacks many (necessary) details; just two examples are:

• “The client checks each membership or non-membership proof, and the hash chain. Also check that
version α as part of proof is less than current epoch t”. However, it is not specified what the client
should do if the verification check succeeds or fails.

18 The dual-mode requirement is a direct consequence of the UC commitment problem [CF01] with requires a
commitment to be both extractable as well as equivocable (i.e. simulatable).

39

Z

Π1 Π2

U∗
3

FBC/Fcrs

A

(a) Game 0 through 3.

Z

Π1 U1 Π2 U2

U∗
3

FBC/Fcrs

FKT

A

SKT

(b) Game 4 and 5.

Z

U1 U2

U∗
3

FKT

A

SKT

(c) Game 6.

Fig. 7: Graphical representation of our UC proof with three examplary parties where one party U3 is corrupted.
Honest protocol parties are denoted by Πi, dummy parties are denoted by Ui, and corrupted parties are denoted
by U∗

i .

40

• “Auditors will audit the commitments and proofs to make sure that no entries ever get deleted in
either aZKS. They do so by verifying the update proofs ΠUpd output by the server. They also check
that at each epoch both aZKS commitments are added to the hash chain.” However, it is not specified
what the auditors should do if the verification check succeeds or fails.

We argue that this lack of detail inhibits the adoption of KT protocols in practice. Worse even, it opens
the door for security vulnerabilities due to mismatches between the theoretical protocol design and the
actual implementation.
In contrast, our protocol in Figure 3 is fully specified in terms of the input/output behavior of the parties.

D.3 Security Guarantees in [CDG+19] vs. UC security

Our usage of the UC framework to prove security of our protocol means that the type of security
guarantee is well understood from a theoretical standpoint. Moreover, we argue that our security notion
is also more intuitive that the ones in [CDG+19]. The reason is that if one asks whether a particular
scenario would be possible in the real world, then one only has to replay the scenario in the ideal world
to see if it is possible to come up with an environmental strategy that leads to the scenario in question.
If that is possible, then the scenario is secure, by definition of FKT, and thus is allowed to happen in the
real world as well.

In contrast, in [CDG+19] the security guarantees on the protocol level are essentially implications
of the type: if a party P does A, then party P ′ cannot do B. Let us consider the soundness notion
in [CDG+19]: “VKD soundness guarantees that if Alice has verified the update history of her key [...],
whenever Bob queried [...] he would have received Alice’s key value that is consistent with the key value
reported in Alice’s history query.” In simpler terms, the guarantee is that if Alice verifies her own key
history, she can be sure that any other party will only ever be served her keys. Notice here, that the
guarantee is of the form: if party P does A, then party P ′ cannot do B; here P is Alice, A is verifying
her key history, P ′ is the server, and B is serving a third party a key that is inconsistent with Alice’s
key history. The obvious problem with this type of guarantee is that it gives no security if the condition
is violated

A similar issue holds for the privacy guarantee in [CDG+19]. Namely, a third party may learn the
entire key history of every user, if he simply queries each user’s key in each epoch, although [CDG+19]
does state that a server should enforce some form of access control.

E Lack of Weak Consistency in SEEMless [CDG+19]

Our notion of weak consistency in Section 3 represents the most achievable notion of consistency for real-
world key transparency (KT) systems. Assuming all parties maintain a consistent view of the commitment
to the key log, this property can be realized—without placing any burden on users—even in the presence
of a fully malicious server, as we demonstrate in Appendix C.

A surface-level reading of SEEMless [CDG+19] may suggest that it achieves a similar guarantee under
the same assumptions. For instance, SEEMless states:

• “We also assume some way of ensuring that all parties have consistent views of the current root
commitment or at least that they periodically compare these values to make sure that their views
have not forked.”

• “We require the following security properties of an append-only ZKS: Soundness: For soundness we
want to capture two things: First, a malicious prover A∗ algorithm should not be able to produce
two verifying proofs for two different values for the same label with respect to a com. Second, since
the aZKS is append-only, a malicious server should be unable to modify an existing label.”

41

However, we show that SEEMless’s protocol does not satisfy weak consistency as we define it unless
the user explicitly checks the validity of their own key. In its current form, the server can serve divergent
views of the key log to different users without being detected unless the affected user later performs a
key history check. This issue is hinted at within the SEEMless text itself: “This does not prevent the
server from showing Bob a version where version is much higher than Alice’s real latest update. One
approach to prevent this would be to have the server provide a that version is not in the aZKSall for
any higher version than Alice’s current version. However, this potentially has a very high cost for Alice,
proportional to the total possible number of updates, i.e. the number of epochs. Instead, we want to
achieve the same guarantee but reduce Alice’s work. To do this, we have the server add a ‘marker’ node,
on every 2ith update Alice makes. When Bob queries for Alice’s key, he will also check that the previous
marker node is in the aZKSall. When Alice performs a KeyHistory check, she will also check that no
higher marker nodes are included in the aZKSall. Because we mark only the 2i th updates, this cost is
now only logarithmic in the number of epochs.”

While this mitigation attempts to reduce the user’s burden, a concrete discussion of the consequences
of omitting such checks is missing from SEEMless. We make this explicit here through a simple example
that assumes familiarity with the construction outlined in Section 4.3 of [CDG+19].

Suppose that Alice has legitimately added three versions of their key. Then, under honest opertion,
aZKSall should contain {(alice|1,PKa,1), (alice|2,PKa,2), (alice|3,PKa,3), (alice|mark|0, . . .)(alice|mark|1, . . .)}
and aZKSold should contain {(alice|1,null), (alice|2,null)}. Now suppose the server is malicious. It in-
serts a fabricated key version (alice|11,PKa,11) along with a forged marker node (alice|mark|8, . . .) into
aZKSall and commits to this altered log on the public bulletin board. Bob and Charlie each query for
Alice’s key. According to SEEMless’s query and verification procedure, the server can present version 3
(a legitimate key) to Bob and version 11 (a fabricated key) to Charlie, and both will verify successfully.
Neither user can detect this inconsistency—unless Alice herself later performs a key history check. Only
at that point would the discrepancy be exposed.

In summary, for SEEMless to achieve consistency equivalent to our notion of weak consistency, it is
necessary for users to check the validity of their own keys. This requirement is unsatisfying, as it places a
substantial burden on users to achieve even a minimal consistency guarantee. By contrast, our protocol
shows that weak consistency in adversarial settings can be achieved without requiring any action on the
part of the user.

F Direct Paper Quotes

Here we list the full text quotes we reference from each paper of the core literature in Section 3.

F.1 CONIKS [MBB+15]

• “An identity provider may attempt to equivocate by presenting diverging views of the name-
to-key bindings in its namespace to different users. Because CONIKS providers issue signed,
chained ‘snapshots’ of each version of the key directory, any equivocation to two distinct
parties must be maintained forever or else it will be detected by auditors who can then
broadcast non-repudiable cryptographic evidence, ensuring that equivocation will be detected
with high probability.” 1

• “If a client ever discovers two inconsistent STRs (for example, two distinct versions signed
for the same epoch time), they should notify the user and whistleblow by publishing them
to all auditors they arr able to contact. For example, clients could include them in messages
sent to other clients, or they could explicitly send whistleblowing messages to other identity
providers. We also envision out-of-band whistleblowing in which users publish inconsistent

42

STRs via social media or other high-traffic sites. We leave the complete specification of a
whistleblowing protocol for future work.” 2

• “CONIKS clients may only query for individual usernames (which can be rate-limited and/or

authenticated)...” 3
• “CONIKS servers may attempt to hide malicious behavior by ceasing to respond to queries.

We provide flexible defense against this, as servers may also simply go down. Servers may
publish an expected next epoch number with each STR in the policy section P. Clients must
decide whether they will accept STRs published at a later time than previously indicated.”
4

• “CONIKS servers do not need to make any information about their bindings public in order
to allow consistency verification. Specifically, an adversary who has obtained an arbitrary
number of consistency proofs at a given time, even for adversarially chosen usernames, cannot
learn any information about which other users exist in the namespace or what data is bound
to their usernames.” 5

F.2 SEEMLESS [CDG+19]

• “A party who only acts as an auditor learns only the numbers of keys added and keys updated
each epoch. If that party additionally acts as a user (Alice) performing KeyHistory queries,
the combined leakage may reveal when her keys are updated (even if she does not perform
more KeyHistory queries), but that is expected to be something Alice knows since she is the
one requesting the updates. If Alice additionally queries for Bob’s key, the leakage reveals
the version number of Bob’s current key and the epoch when it was last updated, and may
reveal when that key is no longer valid (because Bob performed an update), but will not

reveal anything about subsequent or previous updates.” 6
• “We also assume some way of ensuring that all parties have consistent views of the current

root commitment or at least that they periodically compare these values to make sure that
their views have not forked.” 7

• “We also assume that the server enforces some kind of access control on the public key
directory, for example only responding to Bob’s query for Alice’s key if he is on her contact
list.” 8

• “The updates should be sufficiently frequent, so that the user keys are not out-of-date for
long. The exact interval between these server updates, or epochs has to be chosen as a system
parameter.” 9

• “Note that the onus is on the user, Alice, to make sure that the server is giving out the most
recent and correct value for her key. Soundness guarantees that under the circumstances
described above, Bob will always see a key consistent with what Alice has audited. But Alice
needs to verify that her key as reported in the history query is consistent with the actual key
that she chose.” 10

• “...a malicious prover algorithm should not be able to produce two verifying proofs for two
different values for the same label with respect to a commitment.” 11

• “The functionality VKD.KeyHistory warrants further discussion since this is not a function-
ality that one usually expects from a key directory service. In a privacy-preserving verifiable
key directory service, intuitively, we expect the server to be able to prove to Bob that he
is seeing Alice’s latest key without leaking any additional information about the directory.
This is trivial to achieve if we assume that Alice can always sign her new public key with
her old secret key. But this is a completely unreasonable assumption from an average user
who may lose her device or re-install the software, thereby losing her previous secret key; the
user will only have access to her latest secret key which is stored on her latest device. It is

43

crucial to not assume that Alice or Bob can remember any cryptographic secret. Under this
constraint, we need Alice to monitor her key sufficiently often to make sure her latest key
is in the server directory. Only then, we can talk about Bob getting Alice’s latest key in a
meaningful way. Alice could of course check every epoch to make sure that her key is being
correctly reported, but this becomes costly, particularly when epochs are short. Instead, we
allow Alice to query periodically and retrieve a list of all the times her key has changed and
the resulting values using the VKD.KeyHistory interface.” 12

• “In addition to that, we want Alice’s client to check her key history sufficiently often. This
entails running KeyHistory query in the background periodically and notifying Alice if it is
not consistent with the updates she has made. keyver must also be run when Alice changes
her device or reinstalls the client software (thereby forcing a key update) in which cases the

software would display to Alice a list of the times when her key was updated.” 13

F.3 Parakeet [MKS+23]

• “One way to avoid these issues is having auditors run consensus on each update of the IdP,
essentially replacing the trust assumptions of the blockchain with a custom-made blockchain
just for the transparency layer. However, this is simply an overkill. As a final contribution,
Parakeet shows a consensus-less protocol that achieves all the desired properties for defend-
ing against split-view attacks.” 14

• “We provide an optional enhancement of the consistency protocol presented in Section V
providing censorship resistance from malicious IdP. This protocol allows users to tie the
liveness of their update requests with the liveness of the entire system effectively defending
against selective censorship attacks.” 15

• “As stated before, the soundness definition used in this paper is that of non-equivocation,
i.e., if, at an epoch t, Bob accepts a value val as Alice’s key, the server cannot convince Alice
that her key was val-prime for the same epoch t with val-prime 6 = val. Note, this is in the
presence of auditors.” 16

• “In other words, in the presence of auditing and witnesses, Alice and Bob must always agree
on the view of val Alice—the value associated with the label Alice.” 17

• “The leakage functions of this construction match those of [SEEMLESS’s] construction ex-

actly.” 18

F.4 OPTIKS [LCG+23b]

• “The server posts the commitments to its directory on a public bulletin board to which other
participants of the system have access. The bulletin board should be tamper proof as well as
append-only and also all participants should have a consistent view of its contents.” 19

• “Although we do not model this, we assume that the server enforces some kind of access
control for clients querying its system, e.g. rate limiting key lookups or executing key lookups
only if the requesting user is a contact of the user whose key is being queried.” 20

• “Our system relies on users being able to verify the history of their key updates. Therefore,
users must have some way of keeping track of their devices and the approximate times of
their key updates. This is an assumption made of other KT systems like SEEMless. One way
to facilitate this is to enable users to add notes to their key updates, such as “added new
laptop.” Also crucial to our system is that clients must be online to check their key history
each time period. We utilize this assumption as part of our scalability optimizations, which
we discuss in Section 5. Given that time periods are long, we expect most clients will achieve
this in practice and, indeed, this is a common assumption of KT systems. Moreover, this

44

is an improvement over many KT systems which assume that a client must be online each
epoch to check their keys [18].” 21

• “Assuming that all epochs are audited, the server cannot lie about a key’s value during a
lookup without the inconsistency being caught during a history check.” 22

• “A KT system should maintain privacy for the users of the system and updates to their keys.
We model this with a definition that says participants of the system (excluding the server)
should not learn anything from queries to the server except for some well-defined leakage
function. For instance, a key lookup for a user should not leak anything about the keys of
other users of the system.” 23

• “Both lookups and history checks leak the value and epoch of addition for each version of
a key. Our leakage profile is therefore nearly the same as that for SEEMless and Parakeet,
except that key lookups in their protocols leak only the version number for the key and the
value and epoch of addition for the latest key version.” 24

• “The client devices can be malicious in that they may aim to learn private information (public
keys, ho often a certain user changes her key, etc.) about other clients who are not on their

contact list.” 25
• “However, the server is trusted to exercise access control and not give out every client’s public

key to everyone else. In other words, the server is trusted for privacy.” 26

F.5 ELEKTRA [LCG+23a]

• “As in any KT protocol, our notion requires users and auditors to agree on the server’s
published commitments to achieve the strongest guarantees. Several approaches have been
proposed for achieving this, including running a gossip protocol between clients and auditors,
leveraging fully trusted auditors who will host commitments, or posting the commitments on
a blockchain. As a result, our formalization is agnostic to the specific consensus mechanism
– with the consistency guarantees only meaningful for parties that do have consensus.” 27

• “At a high level, consistency ensures that when two clients share the same MVKD commit-
ment com and query for the same user, they should output the same keychain.” 28

• “Ideally, in MVKD, the commitments and proofs from the server and interaction with the
server should leak no extra information about the server’s state (which includes the key
directory). In other words, the proofs for the queries and the transcripts should be simulatable

given the responses to the queries.” 29

F.6 IETF KEYTRANS Architecture Draft [McM25]

• “It is sometimes possible for a Transparency Log to present forked views of data to different
users. This means that, from an individual user’s perspective, a log may appear to be oper-
ating correctly in the sense that all of a user’s requests succeed and proofs verify correctly.
However, the Transparency Log has presented a view to the user that’s not globally consis-
tent with what it has shown other users. As such, the log may be able to change a label’s
value without the label’s owner becoming aware.” 30

• “This provides ample opportunity for users to detect when a fork has been presented, but
isn’t in itself sufficient for detection. To detect forks, users must either use peer-to-peer
communication or anonymous communication with the Transparency Log. With peer-to-
peer communication, two users gossip with each other to establish that they both have the
same view of the log’s data. This gossip is able to happen over any supported out-of-band
channel, even if it is heavily bandwidth-limited, such as scanning a QR code or talking over
the phone. With anonymous communication, a single user accesses the Transparency Log

45

over an anonymous channel and tries to establish that the log is presenting the same view
of data over the anonymous channel as it does over authenticated channels. In the event
that a fork is successfully detected, the user is able to produce non-repudiable proof of log
misbehavior which can be published.” 31

• “Applications determine the privacy of data in KT by relying on these properties when they
enforce access control policies on the queries issued by users, as discussed in Section 3.” 32

• “When a user modifies a label, they’re guaranteed that other users will see the modification
the next time they search for the label.” 33

• “A user that correctly verifies a proof from the Transparency Log (and does any required
monitoring afterwards) receives a guarantee that the Transparency Log operator executed
the label-value lookup correctly, and in a way that’s globally consistent with what it has
shown all other users. That is, when a user searches for a label, they’re guaranteed that the
result they receive represents the same result that any other user searching for the same label
would’ve seen.” 34

• “In short, assuming that the underlying cryptographic primitives used are secure, any deployment-
specific assumptions hold (such as non-collusion), and that user devices don’t go permanently
offline, then malicious behavior by the Transparency Log is always detected within a bounded
amount of time.” 35

• “In the event that a third-party auditor or manager is used, there’s additional information
leaked to the third-party that’s not visible to outsiders. In the case of a third-party auditor,
the auditor is able to learn the total number of distinct changes to the log. It is also able to
learn the order and approximate timing with which each change was made. However, auditors
are not able to learn the plaintext of any labels or values. This is because labels are masked
with a VRF, and values are only provided to auditors as commitments. They are also not
able to distinguish between whether a change represents a label being created for the first
time or being updated, or whether a change represents a ”real” change from an end-user or
a ”fake” padding change.In the case of a third-party manager, the manager generally learns
everything that the service operator would know. This includes the total set of plaintext
labels and values and their modification history. It also includes traffic patterns, such as how
often a specific label is looked up.” 36

F.7 IETF KEYTRANS Protocol Draft [ML24]

• “This document describes a protocol that enables a group of users to ensure that they all
have the same view of the public keys associated with each other’s accounts. Ensuring a
consistent view allows users to detect when unauthorized public keys have been associated
with their account, indicating a potential compromise.” 37

46

	SoK: On the Security Goals of Key Transparency Systems
	Introduction
	Clear Exposition of Security Guarantees and Assumptions
	A Formal Framework for KT Systems
	Perspective
	Contribution

	Related Work
	Comparison with Certificate Transparency
	Key Transparency Literature we Survey.

	Distilling the Security Goals of KT Systems
	System-Level Assumptions
	Cryptographic Guarantees

	Modeling Key Transparency as Multi-Party Computation
	Secure Multi-Party Computation
	Abstraction Layers of KT Systems
	Ideal KT functionality
	Realizable KT Functionality
	Our KT functionality and Consistency Notions in sec:literature-goals

	Key Transparency Protocol
	Conclusion
	Preliminaries
	Notation and Conventions
	Verifiable Random Functions
	Non-Interactive Zero-Knowledge Proofs
	Hash Functions
	Patricia Tries

	Key Transparency Scheme
	Formal Constructions and Proofs
	KT Scheme Instantiation
	KT Protocol
	Intuition.
	Formal analysis.
	Epoch update outputs.
	Query response outputs.
	Conclusion.

	Comparison with SEEMless chase2019seemless
	Our KT Scheme vs. VKD
	Protocols
	Security Guarantees in chase2019seemless vs. UC security

	Lack of Weak Consistency in SEEMless chase2019seemless
	Direct Paper Quotes
	CONIKS melara2015coniks
	SEEMLESS chase2019seemless
	Parakeet malvai2023parakeet
	OPTIKS len2023optiks
	ELEKTRA len2023elektra
	IETF KEYTRANS Architecture Draft ietf-keytrans-architecture-03
	IETF KEYTRANS Protocol Draft ietf-keytrans-protocol-00

