
Machine Learning-Based Detection of Glitch
Attacks in Clock Signal Data

Asier Gambra1,2 ID , Durba Chatterjee1 ID , Unai Rioja2 ID , Igor

Armendariz2 ID , and Lejla Batina1 ID

1 Digital Security Group, Radboud University Nijmegen, The Netherlands
2 Ikerlan Technology Research Centre, Spain

Abstract. Voltage fault injection attacks are a particularly powerful
threat to secure embedded devices because they exploit brief, hard-to-
detect power fluctuations causing errors or bypassing security mecha-
nisms. To counter these attacks, various detectors are employed, but
as defenses strengthen, increasingly elusive glitches continue to emerge.
Artificial intelligence, with its inherent ability to learn and adapt to com-
plex patterns, presents a promising solution. This research presents an
AI-driven voltage fault injection detector that analyzes clock signals di-
rectly. We provide a detailed fault characterization of the STM32F410
microcontroller, emphasizing the impact of faults on the clock signal. Our
findings reveal how power supply glitches directly impact the clock, cor-
relating closely with the amount of power injected. This led to developing
a lightweight Multi-Layer Perceptron model that analyzes clock traces
to distinguish between safe executions, glitches that keep the device run-
ning but may introduce faults, and glitches that cause the target to reset.
While previous fault injection AI applications have primarily focused on
parameter optimization and simulation assistance, in this work we use
the adaptability of machine learning to create a fault detection model
that is specifically adjusted to the hardware that implements it. The
developed glitch detector has a high accuracy showing this a promising
direction to combat FI attacks on a variety of platform.

Keywords: Fault injection · Machine learning · Fault tolerance.

1 Introduction

Embedded devices are designed to operate within specific conditions to meet
functional and performance requirements. When exposed to conditions outside
their normal range, faults can occur. In 1997, Boneh, DeMillo, and Lipton first
suggested taking advantage of transient faults to break secure cryptographic
algorithm implementations [8]. They show that with one faulty RSA signature
one could retrieve the private key and this created a precedent that following
years of publications would build on, making fault injection a field of research
in their own right. The attack is known as Bellcore attack. Soon after, Biham

https://orcid.org/0009-0003-2253-2702
https://orcid.org/0000-0001-7665-0876
https://orcid.org/0000-0003-0892-3611
https://orcid.org/0000-0002-5055-455X
https://orcid.org/0000-0003-0727-3573


2 A. Gambra et al.

and Shamir [7] discovered that the same principle could be applied to extract
the secret key of a DES algorithm by comparing the correct encryption results
with faulty ones. They named this attack Differential Fault Analysis (DFA), as
it used information from comparing differences between numerous correct and
faulty cyphertexts.

A fault model is a mathematical description of how a fault could compro-
mise a system’s (correct) operation by exploiting vulnerabilities in its implemen-
tation. These vulnerabilities arise from the specific design and construction of
the hardware components. Any fault injection technique that aligns with the
characteristics of a fault model is theoretically capable of successfully exploit-
ing its vulnerabilities. In other words, if a fault injection technique matches the
conditions defined by a fault model, it can induce a fault that compromises
the system’s security. Various real-world conditions can cause chips to function
outside their intended parameters, thus leading to faulty behavior. Those condi-
tions can be also provoked by active attackers capable of introducing some sort
of glitch in a system. Actually, fault injection attacks replicate one or more of
these conditions in a controlled environment to compromise the security of a sys-
tem and create or exploit a vulnerability, ultimately with the goal of correcting
potential fault tolerance deficiencies in the system.

Fault injection attacks can be applied to all cryptographic algorithms. For
instance, Differential Fault Analysis (DFA) can be applied to symmetric ciphers
like AES [14] by injecting precise bit flips that enable secret key extraction. The
required bit flip can be achieved glitching a microcontroller’s clock signal [1], but
also injecting glitch attacks on the implementation’s power source [21]; or even
without physical contact using electromagnetic emanation. Dehbaoui et al. [13]
performed Fault Injection by focusing an infrared laser beam at a wavelength
of 1,064 nm on the decapsulated chip. Colombier et al. [12], applied a voltage
pulse on the backside substrate of an integrated circuit using a conductive needle
(Body Biasing Injection) and Chancel et al. [11]; demonstrated that one could
tamper with the Dynamic Voltage and Frequency Scaling energy management
mechanisms embedded within a Trusted Execution Environment [34]. Given that
the fault model for many AES implementations only requires a reproducible sin-
gle bit-flip, it is no surprise that DFA has emerged as a popular attack method.
This vulnerability allows attackers to exploit predictable changes in the output
caused by specific fault injections, making DFA an effective technique for com-
promising AES encryption. In addition to bit flips, other popular transient faults
are instruction skips [30], memory access disruption [32], or execution failures.
This makes them challenging to diagnose, reproduce, and mitigate, especially
considering their temporary nature and lack of lasting damage. Moreover, it ab-
stracts the algorithm being executed from its implementation, leaving different
approaches to maintain the code execution’s integrity against faulty attacks.
Several countermeasures have been developed to mitigate these risks, primarily
focusing on intrusion detection, algorithmic resistance, and error detection and
correction techniques [4].



ML-based Detection of Glitch Attacks in Clock Signal Data 3

Algorithmic resistance aims to tolerate certain types of faults by strength-
ening the algorithms with additional constants, double checks, loop integrity
checks, or flow monitoring. Nevertheless, while the source code may be secure,
the compiled binary can still be vulnerable due to compiler optimizations. Hence,
protecting security implementations against active adversary has to be done on
all implementation levels, from algorithms to circuits.

In this article, we focus on voltage glitching intrusion detection, which in-
volves continuously monitoring the system for anomalies that might indicate a
fault attack, such as unexpected changes in execution time, power consumption,
error rates, or, in this case, utilizing machine learning model to detect anomalies
on the system clock signal. Dedicated hardware AI accelerators, model com-
pression techniques, cloud-based solutions, and optimized software frameworks
are enabling the growing feasibility of machine learning on embedded devices.
Zhang et al. [37] recently proposed a real-time facial expression recognition sys-
tem using an AI-powered microcontroller assessing four deep learning algorithms.
Real-world voltage fault injection attacks often require iterative adjustments of
glitch parameters to discover the precise attack values that trigger the desired
fault. A system capable of detecting such behavior could implement effective
intrusion detection countermeasures, dynamically updating its security model
without relying on traditional analog detection methods.

This article introduces an artificial neural network-based approach for detect-
ing potential glitch attacks. By analyzing the system’s clock signal, the presented
model is capable of distinguishing between normal operation, glitches that al-
low continued operation, and those that cause resets. The model is specifically
trained for the hardware properties of the device under test (DUT), a Cortex-
M4 STM32 Nucleo board. The characterization of the physical properties of the
board is algorithm agnostic, as it is based on the dependency between the power
supply and the clock signal.

This article offers two key contributions:

– The characterization of the glitches on the targeted hardware. We exhaus-
tively study the impact of voltage glitches on a 32-bit microcontroller’s logic
and clock signal. We create a detailed understanding of glitch effects by
systematically testing various glitch parameters and monitoring both device
outputs and clock signals.

– A neural network-based glitch detection model. As a proof-of-concept, we
develop a lightweight neural network that can accurately identify the influ-
ence of glitches on the device’s logic using only clock trace data. This lays a
solid foundation for future research on voltage fault injection detection and
mitigation.

The rest of the paper is organized as follows. In Sect. 2 we give a brief back-
ground on fault injection attacks and countermeasures and machine learning.
In Sect. 3 we mention previous machine learning applications in the field. In
Sect. 4 we detail the experimental setup for voltage fault injection, alongside the
measurements made. In Sect. 5 and Sect. 5 we introduce the machine learning



4 A. Gambra et al.

model developed for glitch prediction and we give a comprehensive analysis of
its performance. Sect. 7 concludes the paper.

2 Background

2.1 Voltage Fault Injection

Voltage Fault Injection (VFI) is a specific FI technique used to disrupt the nor-
mal operation of integrated circuits by introducing brief disturbances into their
power supply and revealing weaknesses in a device’s ability to handle abnormal
conditions. The disturbances are known as voltage glitches or simply glitches.
When a glitch is injected at a critical moment–brief enough to avoid causing a
shutdown but strong enough to induce a malfunction–it can create a fault that
exploits weaknesses in a target execution. The waveform of a glitch is typically
characterized by its voltage, duration, and timing, as illustrated in Fig. 1.

Sy
nc

Time

Supply
voltage

Normal
Vcc

Glitch
Vcc

Offset
Duration

Fig. 1. The parameters of a voltage glitch.

A VFI setup involves systematically introducing glitches into a system and
observing its responses to categorize the outcomes. The target can exhibit three
main behaviors in response to glitches: NORMAL, where the system functions
correctly and ignores the glitch; RESET, where the system ceases to respond
entirely; and SUCCESS, where the system behaves differently than expected, in-
dicating that the fault injection was effective. A fault parameter search aimed at
identifying faulty behavior typically involves a systematic approach that iterates
between normal operation and induced reset glitches. The process begins by ex-
ecuting the system under normal conditions to establish a baseline performance
profile. During the search, the system alternates between normal operation and
the introduction of these glitches. Each iteration involves monitoring the sys-
tem’s response to the faults and assessing how they impact outputs, error rates,
or overall functionality. By varying the characteristics of the glitches, the search



ML-based Detection of Glitch Attacks in Clock Signal Data 5

can pinpoint specific conditions that trigger faulty behavior. With knowledge of
the fault parameters, developers can implement mitigation strategies or modify
the system architecture to enhance resilience against identified faults.

Over the last two decades, many different fault injection mechanisms followed
the path opened by Boneh et al. and established techniques to attack imple-
mentations of cryptographic algorithms. Aumüller et al. [3] published the first
practical demonstration of the Bellcore attack on RSA using electrical glitches in
smartcards with hardware protections disabled. O’Flynn [24] enhanced voltage
fault injection by providing high temporal resolution by introducing a crowbar
circuit, allowing for precise control over glitch timing. Bozzato et al. [9] proposed
an alternative to the crowbar circuit by using a Digital-to-Analog Converter to
precisely optimize glitch pulse shapes with genetic algorithms, enhancing the
accuracy and effectiveness of fault injection attacks. Recently, Saß et al. [30] ex-
tended O’Flynn’s circuit to bypass the ARM’s TrustZone-M security protections
with multiple coordinated voltage faults.

2.2 Machine Learning

Machine learning (ML) is a subfield of artificial intelligence that empowers com-
puter systems to learn from data and make probabilistic decisions or predictions
without explicit programming [5]. This involves the construction of algorithms
that can learn from and make predictions or decisions based on data. The most
commonly used ML types include supervised learning, where models are trained
on labeled datasets to predict outcomes; unsupervised learning, which identi-
fies patterns in unlabeled data; and reinforcement learning, which optimizes
decision-making processes through trial and error.

In the context of fault injection, machine learning establishes complex rela-
tionships within various fault conditions and learns to approach these insights
autonomously. By analyzing data from past fault occurrences and their propaga-
tion, ML algorithms have the potential to detect ongoing faulty executions [16]
or identify optimal fault parameters that expose vulnerabilities [26].

3 Related Work

3.1 ML-based Fault Injection Attacks

Fault injection evaluations aim to uncover vulnerabilities in systems by simu-
lating adversarial attacks, which involves navigating a complex parameter space
with factors like fault type, location, timing, and duration. Manual or brute-
force searching through this space can be computationally expensive and time-
consuming. Machine learning algorithms that optimize complex search spaces
are well-suited for this task.

Picek et al. first introduced ML-based parameter search optimization on
hardware FIA with a genetic algorithm approach [26]. Genetic algorithms are
a form of evolutionary optimization technique that perfectly adapts to search



6 A. Gambra et al.

for optimal solutions in complex, well-defined problem spaces such as glitch pa-
rameters. In the literature, optimization algorithms have been instrumental in
multiple fault injection techniques, including voltage glitching [10, 25, 35], elec-
tromagnetic fault injection (EMFI) [22, 23], and laser fault injection [19, 20],
showcasing its versatility across different techniques. On the software side, ma-
chine learning (ML) has significantly advanced fault analysis, including assisting
reverse engineering embedded systems [18], getting to automate bit-flip fault
injections in white-box AES implementations [36] or identifying non-relevant
information on virtual platforms’ fault propagation, allowing precise counter-
measures [28].

3.2 ML-based Fault Injection Countermeasures

On the other end of adversarial models, ML applications are also employed to de-
velop countermeasures and fault detection systems. Methods for addressing fault
injection attacks fall into two main categories: attack detection, which involves
monitoring both hardware and software to spot ongoing attacks, and software
vulnerability identification, which focuses on finding potential weaknesses that
attackers could exploit.

Unlike adversarial models, these techniques often use supervised learning,
where the algorithm is trained on a labeled dataset. In supervised learning, the
model learns to classify and distinguish between secure data outcomes and poten-
tial security risks based on this training data. As a result, a model can effectively
identify and respond to anomalies or threats in real-time, providing immediate
responses to potential security breaches. Software approaches to fault behavior
detection aim to differentiate between normal and anomalous behavior. Gan-
golli et al. [16] use real-time monitoring in IoT systems to identify and classify
software faults. Meanwhile, Saha et al. [29] analyze ciphertext distributions to
detect fault-induced leakage, identifying anomalies produced by fault injection
attacks.

Hardware approaches to fault detection often focus on identifying rapid
glitches that conventional methods might miss by examining their effects on
glitch-sensitive circuits. For example, specialized hardware glitch detectors are
designed to catch fast glitches that standard detectors might overlook [17]. How-
ever, these detectors require fine-tuning and are typically effective only for spe-
cific types of glitches. Facon et al. [15] introduced an AI framework that adjusts
each sensor’s threshold individually, leading to notable improvements in EMFI
detection. Similarly, Shrivastwa et al. [31] combined digital sensors with artificial
intelligence to continuously monitor sensor data and use AI for real-time fault
classification and analysis. Monitoring the system clock through a detector cir-
cuit that identifies timing violations can also be effective for detecting glitches,
which are the basis of voltage and glitch attacks. However, high-speed clock
glitching attacks can still be executed successfully, even in systems protected by
such detectors [2].

In contrast, the novel approach presented in this work relies exclusively on
AI to detect anomalies caused by fault glitches. To the best of our knowledge, no



ML-based Detection of Glitch Attacks in Clock Signal Data 7

prior research has directly used machine learning models to monitor an embedded
system’s signals for identifying potentially insecure behaviors resulting from fault
injection.

4 Voltage Fault Injection Testbed

This section presents an experimental fault injection evaluation of a Cortex-M4
STM32F410RB board [33] running at its default 16 MHz. The setup provides
insights into microcontroller vulnerability and adversarial strategies for improv-
ing fault tolerance and security in embedded systems. To this end, experiments
attempt to modify the running program on the DUT by injecting glitches in its
power supply mid-operation. Fig. 2 illustrates the setup, which can be considered
a standard onboard fault injection system.

TargetPC

Glitch
Injector

Oscilloscope

Power
Supply

Trigger

Serial COM Supply voltage

Glitch voltage

Reset line System clock

Fig. 2. Voltage fault injection setup.

Setup configuration The setup was built on the Riscure fault injection FPGA-
Based Inspector platform [27]. It counts with precise timing control signals, high
clock frequencies with a dual-core running at 125 MHz, and analog outputs with
4 ns pulse resolution. The complex tasks and algorithms, the attack logic, and
the specific communication protocol used by the target are implemented in a
custom Java framework that orchestrates fault injection evaluation. Algorithm 1
presents a glitch measurement loop in which glitches are injected into the target
through an internal voltage regulator pin. This pin usually regulates voltage for
all digital circuits within the chip, except for the backup domain and standby
circuitry, and is designed to support an external capacitor for stable operation.
However, it also provides an access point for localizing voltage glitches on the
chip’s core logic, making it ideal for voltage fault injection. The board is powered
by an external supply and connects to the PC via a serial interface and to
the glitch injector via an output GPIO (General Purpose Input/Output). The
GPIO provides a timing reference for glitch injection to the PC, signaling when



8 A. Gambra et al.

Algorithm 1: Fault injection sequence
init fault injection sequence
enable inputPin triggerP in
enable serialCOM uartBoard
enable oscilloscope
load n sets of glitch parameters
for each set of glitch parameters

reset board
when triggerPin is high

sleep offset ns
supplyVcc ← glitch_voltage
sleep glitch_duration ns
supplyVcc ← normal_supply_voltage

if uartBoard.receive(r32) then
if r32 = ones then

verdict ← normal
else

verdict ← success
else

verdict ← reset
oscilloscope.receive(clk trace)

targeted instructions are imminent. Serial communication is used to transmit
feedback messages, and a fault is identified if the feedback message deviates
from the expected response. Additionally, the board outputs its system clock
through another GPIO connected to an oscilloscope. The oscilloscope records
the clock signal trace for each glitch injection, using the GPIO as a trigger to
synchronize with the measurements.

The DUT is modified by removing external capacitors from power supply
pins, the reset pin, and the internal voltage regulator– a standard practice to
increase susceptibility to voltage fluctuations. Algorithm 2 presents the main on-
board code executed. The program clears a 32-bit register, raises a trigger signal,
sets all bits to one using four assembly instructions, and sends the register to
the PC. If the PC receives a message where all 32 bits are set to one, it confirms
that the code has executed as expected without any glitches or errors. However,
if the message contains zeros, it means there was a fault during execution. If
the PC receives no message at all, it means the injected glitch caused a system
restart.

Fault parameter space Literature shows that many parameters affect the
performance of glitches on their fault-inducing capability, such as timing, power,
length, absolute glitch voltage, and even waveform [9].

In our experiments, a glitch is characterized by its offset, voltage, and du-
ration. The offset measures the interval between the trigger signal sent by the
DUT and the glitch injection and is set to range from 0 to 600 ns in 16-ns steps.
The glitch voltage refers to the absolute voltage level reached during a glitch. On



ML-based Detection of Glitch Attacks in Clock Signal Data 9

Algorithm 2: On-board code
init board
enable outputPin triggerP in
enable serialCOM uartPC
r32← 0
triggerP in← high
repeat 4 times for different bits

r32← flip 8 bits
uartPC.transmit(r32)

the target voltage supply line, the glitch voltage ranged from 1.1 V (the nominal
operating voltage) to 0 V (ground), in 0.1-V steps. Finally, the glitch duration
determines the duration of the voltage deviation from its nominal value, set
between 4 and 88 ns, in 16-ns steps.

Injected faults Here we examine the logical outcomes resulting from different
glitch injections, while clock traces are addressed in the next section. We analyze
normal executions, faults, and resets in relation to the glitch parameters that
caused them. In order to comprehensively visualize the results, a distinct color
was assigned to the three possible verdicts: green represents NORMAL behav-
ior, where the program works as expected; yellow shows the glitch parameters
that produced a RESET on the target; and red represents the SUCCESS glitch
parameters that modified the outcome of the onboard program. These colors
represent the logical feedback received from the DUT for each combination of
parameters within the specified ranges. Fig. 3 visualizes the verdicts as points on
a three-dimensional plot, where the axes represent glitch voltage (z), duration
(x), and timing (y) across the specified value ranges.

As shown by the accumulation of yellow dots, combinations of low glitch volt-
age values and extended glitch durations are likely to trigger a reset in the DUT.
Conversely, the code functions as intended when the glitch voltage is close to the
nominal supply value of 1.1 V. The most interesting behavior, represented by red
dots, occurs in the intermediate range between these two states, where the stress
nearly causes failures but ultimately does not. While the parameter combina-
tions are reproducible, the occurrence of faults is probabilistic, meaning they do
not always propagate to the system’s logical output. Nonetheless, a SUCCESS
verdict signifies that the recorded clock trace is directly associated with faulty
behavior and helps characterize how the hardware responds in the presence of
faults. This behavior is precisely what a fault detector aims to identify, as it
represents the signature of failures in maintaining code execution integrity.

A total of 10,488 measurements were conducted, yielding the following re-
sults: 92.63% were NORMAL operation, 6.00% resulted in a RESET, and 1.35%
produced a SUCCESS output, which occurred within 24-88 ns glitch durations
and below 0.8V glitch voltages. The parameter ranges that characterize each
outcome are presented in Table 1.



10 A. Gambra et al.

Normal
Success
Reset

Fig. 3. FI verdicts (color-coded) sorted by glitch parameters (axes).

5 Glitch detection model

Next, we take the obtained traces and build a glitch detector model able to
predict if a potential fault-injecting glitch is being injected on the DUT based
on their clock signal. The primary goal of the experiment was to observe the
impact of these faults on the clock signal, and it is evident that different glitch
power values significantly affect it. Fig. 4 illustrates recorded clock and glitch
voltage traces of three cases: regular operation (no glitch), a glitched operation
that successfully produced a fault, and a reset-inducing glitched operation.

The fundamental objective of a glitch detector is to identify potential glitch
attacks. The neural network is trained with three distinct labels based on glitch
characteristics. Traces with no glitches, where the glitch voltage is at the nominal
1.1 V, are considered safe and labeled as no glitch (blue). Traces with glitches



ML-based Detection of Glitch Attacks in Clock Signal Data 11

Table 1. Experimental outcome parameter limits

Parameter range Success Normal Reset
Absolute glitch Vcc max 0.8V 1.1V 0.85V
Absolute glitch Vcc min 0.0V 0.0V 0.0V
Glitch Delay max 520.0ns 600.0ns 600.0ns
Glitch Delay min 40.0ns 8.0ns 8.0ns
Glitch Duration max 88.0 ns 88.0ns 88.0ns
Glitch Duration min 24.0 ns 8.0ns 24.0ns
Glitch power max 96.8pW 96.8pW 96.8pW
Glitch power min 19.6pW 0.0pW 18.0pW

0

0.5

1

1.5

Vo
lta

ge
 (V

)

Power supply
No Glitch
Glitch
Glitch&Reset

0 2 5 7 10 12 15 17 20
Clock cycles

0

1

2

3

Vo
lta

ge
 (V

)

Clock signal
No Glitch
Glitch
Glitch&Reset

Fig. 4. Power supply glitches and their resulting clock signal traces.

that lead to a system restart, characterized by high glitch power (low voltage
and long duration), are labeled as reset (orange). The remaining traces, which
contain glitches of varying intensity but do not trigger a reset, are labeled as
glitch (cyan), indicating potential fault injection risks.

We adapted the ASCAD Multi-Layer Perceptron (MLP) model for our ex-
periment to meet the specific needs of clock signal fault detection [6]. The MLP’s
architecture, originally designed for side-channel analysis, was used to capture
anomalies in clock traces related to power supply glitches, leveraging its strength
in identifying subtle patterns in temporal data. MLPs are a type of artificial neu-



12 A. Gambra et al.

ral network composed of multiple layers of interconnected nodes. The parameters
used for the MLP in this experiment are presented in Table 2.

Table 2. MLP model parameters

Parameter Value
Number of layers 6
Number of nodes (Hidden layers) 200
Activation function (Hidden layers) ReLU
Input dimension 500
Output classes 3
Activation function (Output layer) Softmax
Optimizer RMSprop
Learning rate 0.00005
Loss function Categorical cross-entropy
Metrics Accuracy

Due to its focus on glitch characterization, the dataset is imbalanced as only
4.3% of traces are glitch-free, and 6.0% show reset behavior. This imbalance can
cause the model to favor the majority class, reducing its ability to accurately
detect less common cases. To address this issue, we exclude glitched traces with
power levels outside the 20 to 27 pW range and reset-inducing glitches with
power below 50 pW. This adjustment reduces the proportion of glitched traces to
55.12% while increasing the proportions of reset and glitch-free traces to 22.82%
and 22.05%, respectively. Fig. 5 shows the glitch parameters of the selected traces
used to train the neural network.

Trace preprocessing The model is trained using clock traces as inputs and the
corresponding labels as metadata. The clock traces were decimated at a rate of
100 with a 0.5 overlap moving average filter to simulate a lower sample frequency.
Measured traces have 50 000 samples recorded at a 6.25 GHz sample freq, while
input pre-processed traces have 500 samples at 62.5 MHz (approximately 4 times
the DUT clock frequency). The trained model will then learn to recognize the
patterns glitch attacks produce on the clock signal in order to detect fault attack
attempts.

6 Performance evaluation

Results shown in Table 3 are averaged from 10 training runs with different ran-
dom seeds. This approach reduces variability from data shuffling and model
initialization, providing a more reliable measure of performance. The model per-
forms exceptionally well, with an accuracy of 99.20% and low standard error,
indicating high consistency. Additionally, the recall and F1 scores are reported
for each class (no glitch, glitch, and reset-producing glitches) to further com-
prehend the model’s performance across different scenarios. Recall, or the true



ML-based Detection of Glitch Attacks in Clock Signal Data 13

No Glitch
Glitch
Glitch & Reset

Fig. 5. Dataset class labels (color-coded) sorted by glitch parameters (axes).

Table 3. Model performance metrics

Metric Value Standard Error
Accuracy 99.20% 0.001907
Recall – No glitch 100.00% 0
Recall – Glitch 99.91% 0.000583
Recall – Reset 96.82% 0.007705
F1 Score – No glitch 99.87% 0.000828
F1 Score – Glitch 99.31% 0.001763
F1 Score – Reset 98.26% 0.004201



14 A. Gambra et al.

positive rate, measures the proportion of actual positive instances correctly iden-
tified by the model. The F1 score combines recall with precision, which is the
proportion of true positive predictions out of all positive predictions made. By
balancing the two metrics, the F1 score provides a comprehensive assessment of
the model’s performance, particularly in imbalanced datasets, where it accounts
for both false positives and false negatives. The model perfectly identifies cases
with no glitches, meaning no false negative prediction of glitches is identified as
no glitch. The very low standard error glitch recall indicates that the model is
highly sensitive to detecting glitches, making it well-suited for identifying mi-
nor fault conditions. Although slightly lower, it performs well in detecting true
reset-producing glitches. The higher standard error suggests more variability in
this category, meaning reset behavior is harder to identify than the others. In
summary, the model shows excellent performance, though it may benefit from
improvements in detecting the less frequent reset-producing glitches.

7 Conclusions

The glitch detector has demonstrated high accuracy and effectively identifies var-
ious effects glitches can have on the target, showcasing its potential as a robust
fault detection tool. Improvements could involve implementing real-time detec-
tion for immediate response, boosting its practical value. Future enhancements
might include extending the detector to other fault injection methods.

References

1. Agoyan, M., Dutertre, J.M., Naccache, D., Robisson, B., Tria, A.: When clocks fail:
On critical paths and clock faults. In: Gollmann, D., Lanet, J.L., Iguchi-Cartigny,
J. (eds.) Smart Card Research and Advanced Application. LNCS, vol. 6035, pp.
182–193. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

2. Askeland, A., Nikova, S., Nikov, V.: Who watches the watchers: Attacking glitch
detection circuits. IACR Transactions on Cryptographic Hardware and Embedded
Systems 2024(1), 157–179 (Dec 2023). https://doi.org/10.46586/tches.v2024.
i1.157-179

3. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault attacks on rsa
with crt: Concrete results and practical countermeasures. In: Kaliski, B.S., Koç,
ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES
2002. pp. 260–275. Springer Berlin Heidelberg, Berlin, Heidelberg (2003). https:
//doi.org/10.1007/3-540-36400-5_20

4. Barenghi, A., Breveglieri, L., Koren, I., Pelosi, G., Regazzoni, F.: Countermeasures
against fault attacks on software implemented aes: effectiveness and cost. In: Pro-
ceedings of the 5th Workshop on Embedded Systems Security. p. 7. WESS ’10, As-
sociation for Computing Machinery, New York, NY, USA (10 2010). https://doi.
org/10.1145/1873548.1873555, https://doi.org/10.1145/1873548.1873555

5. Bell, J.: Machine Learning: Hands-on for Developers and Technical Professionals.
Wiley (2014), https://books.google.es/books?id=YP-7nQAACAAJ

https://doi.org/10.46586/tches.v2024.i1.157-179
https://doi.org/10.46586/tches.v2024.i1.157-179
https://doi.org/10.46586/tches.v2024.i1.157-179
https://doi.org/10.46586/tches.v2024.i1.157-179
https://doi.org/10.1007/3-540-36400-5_20
https://doi.org/10.1007/3-540-36400-5_20
https://doi.org/10.1007/3-540-36400-5_20
https://doi.org/10.1007/3-540-36400-5_20
https://doi.org/10.1145/1873548.1873555
https://doi.org/10.1145/1873548.1873555
https://doi.org/10.1145/1873548.1873555
https://doi.org/10.1145/1873548.1873555
https://doi.org/10.1145/1873548.1873555
https://books.google.es/books?id=YP-7nQAACAAJ


ML-based Detection of Glitch Attacks in Clock Signal Data 15

6. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning
for side-channel analysis and introduction to ascad database. Journal of Cryp-
tographic Engineering 10(2), 163–188 (Jun 2020). https://doi.org/10.1007/
s13389-019-00220-8, https://doi.org/10.1007/s13389-019-00220-8

7. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) Advances in Cryptology — CRYPTO ’97. pp. 513–525. Springer
Berlin Heidelberg, Berlin, Heidelberg (1997)

8. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) Advances in Cryptology — EU-
ROCRYPT ’97. pp. 37–51. Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

9. Bozzato, C., Focardi, R., Palmarini, F.: Shaping the glitch: Optimizing voltage fault
injection attacks. IACR Transactions on Cryptographic Hardware and Embedded
Systems (2), 199–224 (Feb 2019). https://doi.org/10.13154/tches.v2019.i2.
199-224, https://tches.iacr.org/index.php/TCHES/article/view/7390

10. Carpi, R.B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., Golub, M.: Glitch it
if you can: Parameter search strategies for successful fault injection. In: Francillon,
A., Rohatgi, P. (eds.) Smart Card Research and Advanced Applications. vol. 8419,
pp. 236–252. Springer International Publishing, Cham (Jun 2014). https://doi.
org/10.1007/978-3-319-08302-5_16

11. Chancel, G., Galliere, J.M., Maurine, P.: A better practice for body biasing in-
jection. In: 2023 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC). pp. 48–59. IEEE (Sep 2023). https://doi.org/10.1109/FDTC60478.
2023.00014

12. Colombier, B., Menu, A., Dutertre, J.M., Moëllic, P.A., Rigaud, J.B., Danger, J.L.:
Laser-induced single-bit faults in flash memory: Instructions corruption on a 32-
bit microcontroller. In: 2019 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). pp. 1–10. IEEE (2019). https://doi.org/10.1109/
HST.2019.8741030

13. Dehbaoui, A., Dutertre, J.M., Robisson, B., Tria, A.: Electromagnetic transient
faults injection on a hardware and a software implementations of aes. In: 2012
Workshop on Fault Diagnosis and Tolerance in Cryptography. pp. 7–15. IEEE
(Sep 2012). https://doi.org/10.1109/FDTC.2012.15

14. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on a.e.s. In: In-
ternational Conference on Applied Cryptography and Network Security (2003),
https://api.semanticscholar.org/CorpusID:1089

15. Facon, A., Guilley, S., Ngo, X.T., Nguyen, R., Perianin, T., Shrivastwa, R.R.:
High precision emfi detector using machine learning and sensor fusion. In: Cesar-
Conference 2019 (2019)

16. Gangolli, A.A., Mahmoud, Q., Azim, A.: A machine learning based approach to
detect fault injection attacks in iot software systems. In: 2022 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). pp. 2900–2905. IEEE (Oct
2022). https://doi.org/10.1109/SMC53654.2022.9945117

17. Goikoetxea Yanci, A., Pickles, S., Arslan, T.: Detecting voltage glitch attacks on
secure devices. In: 2008 Bio-inspired, Learning and Intelligent Systems for Security.
IEEE (Aug 2008). https://doi.org/10.1109/bliss.2008.26

18. Khosrowjerdi, H., Meinke, K., Rasmusson, A.: Virtualized-fault injection testing:
A machine learning approach. In: 2018 IEEE 11th International Conference on
Software Testing, Verification and Validation (ICST). IEEE (Apr 2018). https:
//doi.org/10.1109/ICST.2018.00037

https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.13154/tches.v2019.i2.199-224
https://doi.org/10.13154/tches.v2019.i2.199-224
https://doi.org/10.13154/tches.v2019.i2.199-224
https://doi.org/10.13154/tches.v2019.i2.199-224
https://tches.iacr.org/index.php/TCHES/article/view/7390
https://doi.org/10.1007/978-3-319-08302-5_16
https://doi.org/10.1007/978-3-319-08302-5_16
https://doi.org/10.1007/978-3-319-08302-5_16
https://doi.org/10.1007/978-3-319-08302-5_16
https://doi.org/10.1109/FDTC60478.2023.00014
https://doi.org/10.1109/FDTC60478.2023.00014
https://doi.org/10.1109/FDTC60478.2023.00014
https://doi.org/10.1109/FDTC60478.2023.00014
https://doi.org/10.1109/HST.2019.8741030
https://doi.org/10.1109/HST.2019.8741030
https://doi.org/10.1109/HST.2019.8741030
https://doi.org/10.1109/HST.2019.8741030
https://doi.org/10.1109/FDTC.2012.15
https://doi.org/10.1109/FDTC.2012.15
https://api.semanticscholar.org/CorpusID:1089
https://doi.org/10.1109/SMC53654.2022.9945117
https://doi.org/10.1109/SMC53654.2022.9945117
https://doi.org/10.1109/bliss.2008.26
https://doi.org/10.1109/bliss.2008.26
https://doi.org/10.1109/ICST.2018.00037
https://doi.org/10.1109/ICST.2018.00037
https://doi.org/10.1109/ICST.2018.00037
https://doi.org/10.1109/ICST.2018.00037


16 A. Gambra et al.

19. Krcek, M., Fronte, D., Picek, S.: On the importance of initial solutions selection in
fault injection. In: 2021 Workshop on Fault Detection and Tolerance in Cryptogra-
phy (FDTC). pp. 1–12. IEEE (Sep 2021). https://doi.org/10.1109/FDTC53659.
2021.00011

20. Krcek, M., Ordas, T., Fronte, D., Picek, S.: The more you know: Improving laser
fault injection with prior knowledge. In: 2022 Workshop on Fault Detection and
Tolerance in Cryptography (FDTC). pp. 18–29 (Sep 2022). https://doi.org/10.
1109/FDTC57191.2022.00012

21. Lu, Y.: Attacking hardware aes with dfa. ArXiv abs/1902.08693 (2019), https:
//api.semanticscholar.org/CorpusID:67856731

22. Maldini, A., Samwel, N., Picek, S., Batina, L.: Genetic algorithm-based electro-
magnetic fault injection. In: 2018 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC). pp. 35–42 (Sep 2018). https://doi.org/10.1109/FDTC.
2018.00014

23. Maldini, A., Samwel, N., Picek, S., Batina, L.: Automated Methods in Crypto-
graphic Fault Analysis, chap. Optimizing Electromagnetic Fault Injection with
Genetic Algorithms, pp. 281–300. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-11333-9_13

24. O’Flynn, C.: Fault injection using crowbars on embedded systems. IACR Cryptol.
ePrint Arch. 2016, 810 (2016), https://api.semanticscholar.org/CorpusID:
8502986

25. Picek, S., Batina, L., Buzing, P., Jakobovic, D.: Fault Injection with a New Flavor:
Memetic Algorithms Make a Difference, LNCS, vol. 9064. Springer International
Publishing (Apr 2015). https://doi.org/10.1007/978-3-319-21476-4

26. Picek, S., Batina, L., Jakobovic, D., Carpi, R.: Evolving genetic algorithms for
fault injection attacks. In: 2014 37th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO). pp. 1106–
1111. IEEE (May 2014). https://doi.org/10.1109/MIPRO.2014.6859734

27. Riscure: Inspector fi, https://riscure.com/security-tools/inspector-fi/
28. Rosa, F., Garibotti, R., Ost, L., Reis, R.: Using machine learning techniques to eval-

uate multicore soft error reliability. Circuits and Systems I: Regular Papers, IEEE
Transactions on PP (Apr 2019). https://doi.org/10.1109/TCSI.2019.2906155

29. Saha, S., Alam, M., Bag, A., Mukhopadhyay, D., Dasgupta, P.: Learn from your
faults: Leakage assessment in fault attacks using deep learning. Journal of Cryp-
tology 36 (05 2023). https://doi.org/10.1007/s00145-023-09462-6

30. Saß, X.M., Mitev, R., Sadeghi, A.R.: Oops..! i glitched it again! how to Multi-
Glitch the Glitching-Protections on ARM TrustZone-M. In: 32nd USENIX Secu-
rity Symposium (USENIX Security 23). pp. 6239–6256. USENIX Association, Ana-
heim, CA (Aug 2023), https://www.usenix.org/conference/usenixsecurity23/
presentation/sass

31. Shrivastwa, R.R., Guilley, S., Danger, J.L.: Multi-source fault injection detection
using machine learning and sensor fusion. In: Stănică, P., Mesnager, S., Debnath,
S., Kumar (eds.) Security and Privacy. vol. 1497, pp. 93–107. Springer (11 2021).
https://doi.org/10.1007/978-3-030-90553-8_7

32. Skorobogatov, S.: Optical fault masking attacks. In: 2010 Workshop on Fault Di-
agnosis and Tolerance in Cryptography. pp. 23–29. IEEE (Aug 2010). https:
//doi.org/10.1109/FDTC.2010.18

33. STMicroelectronics: Stm32 nucleo-64 development board with stm32f410rb mcu,
https://www.st.com/en/evaluation-tools/nucleo-f410rb.html

https://doi.org/10.1109/FDTC53659.2021.00011
https://doi.org/10.1109/FDTC53659.2021.00011
https://doi.org/10.1109/FDTC53659.2021.00011
https://doi.org/10.1109/FDTC53659.2021.00011
https://doi.org/10.1109/FDTC57191.2022.00012
https://doi.org/10.1109/FDTC57191.2022.00012
https://doi.org/10.1109/FDTC57191.2022.00012
https://doi.org/10.1109/FDTC57191.2022.00012
https://api.semanticscholar.org/CorpusID:67856731
https://api.semanticscholar.org/CorpusID:67856731
https://doi.org/10.1109/FDTC.2018.00014
https://doi.org/10.1109/FDTC.2018.00014
https://doi.org/10.1109/FDTC.2018.00014
https://doi.org/10.1109/FDTC.2018.00014
https://doi.org/10.1007/978-3-030-11333-9_13
https://doi.org/10.1007/978-3-030-11333-9_13
https://api.semanticscholar.org/CorpusID:8502986
https://api.semanticscholar.org/CorpusID:8502986
https://doi.org/10.1007/978-3-319-21476-4
https://doi.org/10.1007/978-3-319-21476-4
https://doi.org/10.1109/MIPRO.2014.6859734
https://doi.org/10.1109/MIPRO.2014.6859734
https://riscure.com/security-tools/inspector-fi/
https://doi.org/10.1109/TCSI.2019.2906155
https://doi.org/10.1109/TCSI.2019.2906155
https://doi.org/10.1007/s00145-023-09462-6
https://doi.org/10.1007/s00145-023-09462-6
https://www.usenix.org/conference/usenixsecurity23/presentation/sass
https://www.usenix.org/conference/usenixsecurity23/presentation/sass
https://doi.org/10.1007/978-3-030-90553-8_7
https://doi.org/10.1007/978-3-030-90553-8_7
https://doi.org/10.1109/FDTC.2010.18
https://doi.org/10.1109/FDTC.2010.18
https://doi.org/10.1109/FDTC.2010.18
https://doi.org/10.1109/FDTC.2010.18
https://www.st.com/en/evaluation-tools/nucleo-f410rb.html


ML-based Detection of Glitch Attacks in Clock Signal Data 17

34. Tang, A., Sethumadhavan, S., Stolfo, S.: CLKSCREW: Exposing the perils
of Security-Oblivious energy management. In: 26th USENIX Security Sympo-
sium (USENIX Security 17). pp. 1057–1074. USENIX Association, Vancou-
ver, BC (Aug 2017), https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/tang

35. Werner, V., Maingault, L., Potet, M.L.: Fast calibration of fault injection equip-
ment with hyperparameter optimization techniques. In: Grosso, V., Pöppelmann,
T. (eds.) Smart Card Research and Advanced Applications. vol. 13173, pp.
121–138. Springer International Publishing (2022). https://doi.org/10.1007/
978-3-030-97348-3_7

36. Wu, L., Ribera, G., Beringuier-Boher, N., Picek, S.: A fast characterization
method for semi-invasive fault injection attacks. In: Topics in Cryptology – CT-
RSA 2020. pp. 146–170. Cham (Feb 2020). https://doi.org/.org/10.1007/
978-3-030-40186-3_8

37. Zhang, J., Xie, X., Peng, G., Liu, L., Yang, H., Guo, R., Cao, J., Yang, J.: A
real-time and privacy-preserving facial expression recognition system using an ai-
powered microcontroller. Electronics 13(14), 2791 (Jul 2024). https://doi.org/
10.3390/electronics13142791, https://www.mdpi.com/2079-9292/13/14/2791

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://doi.org/10.1007/978-3-030-97348-3_7
https://doi.org/10.1007/978-3-030-97348-3_7
https://doi.org/10.1007/978-3-030-97348-3_7
https://doi.org/10.1007/978-3-030-97348-3_7
https://doi.org/.org/10.1007/978-3-030-40186-3_8
https://doi.org/.org/10.1007/978-3-030-40186-3_8
https://doi.org/.org/10.1007/978-3-030-40186-3_8
https://doi.org/.org/10.1007/978-3-030-40186-3_8
https://doi.org/10.3390/electronics13142791
https://doi.org/10.3390/electronics13142791
https://doi.org/10.3390/electronics13142791
https://doi.org/10.3390/electronics13142791
https://www.mdpi.com/2079-9292/13/14/2791

	 Machine Learning-Based Detection of Glitch Attacks in Clock Signal Data 

