
On Concrete Security Treatment of Signatures
Based on Multiple Discrete Logarithms

George Teşeleanu1,2

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania

tgeorge@dcti.ro
2 Simion Stoilow Institute of Mathematics of the Romanian Academy

21 Calea Grivitei, Bucharest, Romania

Abstract. In this paper, we present a generalization of Schnorr’s digital
signature that allows a user to simultaneously sign multiple messages.
Compared to Schnorr’s scheme that concatenates messages and then
signs them, the new protocol takes advantage of multiple threads to
process messages in parallel. We prove the security of our novel protocol
and discuss different variants of it. Last but not least, we extend Ferradi
et al.’s co-signature protocol by exploiting the inherent parallelism of our
proposed signature scheme.

Keywords: digital signatures, Schnorr signature, zero knowledge pro-
tocols, multi-message signature

1 Introduction

Schnorr’s signature scheme was introduced in [28] and was proven secure in
[23, 26, 27] using the random oracle paradigm. Pointcheval and Stern [26, 27]
analyze Schnorr’s signature directly and use the forking lemma to prove it secure.
A different approach is used in [23]. Instead of analyzing the signature, Ohta and
Okamoto [23] study the security of the underlying primitive and then reduce the
security of the signature to that of the primitive (e.g. the identification protocol
used to derive Schnorr’s signature). Therefore, they obtain a more natural way
to prove the signature’s security, since analyzing the corresponding identification
protocol is easier.

In this paper, we present a generalization of Schnorr’s signature, which
enables users to simultaneously sign multiple messages. Based on Ohta and
Okamoto’s work [23], we adapt their reduction technique to a multiple-messages
signature and then use it to prove the security of our proposal. Our solution
enhances the efficiency of the signing process by using multiple threads. In this
scenario, each message is processed by a separate thread, allowing us to ac-
celerate the signing and verification process. By employing this approach, we
reduce the running time compared to concatenating all the messages and sign-
ing them using Schnorr’s signature. This multithreading technique optimizes the
performance of our proposal, making it a possible solution for fast and efficient

https://orcid.org/0000-0003-3953-2744

2

signature processing. To the best of our knowledge, this is the first signature
proposal that uses parallelism to accelerate the signing of multiple messages.

We also propose a different use case in the field of contract signing. When
designing contract signing protocols, we have several design categories to choose
from: gradual release [13, 15, 17, 25], optimistic [5, 7, 22] and concurrent [9, 29]
or legally fair [12, 19] models. Compared to older paradigms such as gradual
release or optimistic models, concurrent signatures or legally fair protocols do
not rely on trusted third parties and require less interaction between co-signers.
Therefore, this design category is more attractive to users. In consequence, in
this paper we only consider legally fair co-signing protocols, excluding the older
solutions.

In general, a co-signing protocol involves two mutually distrustful signing
partners Alice and Bob, who wish to sign a common contract. Using our multi-
message signature, we managed to adapt the solution presented in [12] to the
multi-message scenario. In addition to the speed advantage inherited from our
signature proposal, the new co-signature scheme offers an additional advantage.
Typically, when two companies want to enter into an agreement, the process
involves multiple contracts that need signing. Moreover, the agreement phase
for each contact can involve multiple negotiations, making the signing of all
contracts a sequential process. Using our proposal, Alice and Bob can start
the signing process and handle contracts as they become ready. Once all the
negotiations are concluded, they can complete the signing protocol and output
a single signature for all the documents.

Structure of the paper. We establish the theoretical framework needed for our
proposals in Section 2. In Section 3 we introduce our security reduction technique
from a multi-message signature’s security to a multi-challenge protocol’s security.
Our proposed multi-challenge identification protocol is presented in Section 4.
In Section 5 we present our main result, a multi-message signature protocol.
Following Ferradi et al.’s co-signature protocol [12], in Section 6 we describe a
multi-message co-signature protocol. We conclude in Section 7.

Notations. In this paper, λ represents a security parameter. The notation |S|
denotes the cardinality of a set S. The subset {1, . . . , s} ∈ N is denoted by [1, s].
The action of selecting a random element x from a sample space X is represented
by x

$←− X, while x ← y indicates the assignment of value y to variable x. The
concatenation of two strings a and b is denoted by a∥b. Multidimensional vectors
v = (v1, . . . , vs) are represented as v = {vi}i∈[1,s]. For a probabilistic polynomial
time machine we use the abbreviation PPT. The base of the natural logarithm
is denoted by e.

2 Framework
In this section we define a special class of signature schemes that support the
signing of multiple messages at once. In order to prove their security, we re-
duce the breaking of the signature primitive to a type of identification scheme

3

that allows the prover to vary the number of challenges sent to the verifier.
Finally, we introduce the framework needed for co-signature schemes based on
multi-messages signatures. Note that when we restrict ourselves to only one mes-
sage, the notions introduced in this section coincide with the classical notions
for identification [23], signature [23] and co-signature [12] schemes and their
corresponding security models.

2.1 Multi-Challenge Identification Scheme

Definition 1 (Multi-Challenge Identification Scheme). A multi-challenge
identification scheme between a prover P and a verifier V is composed of the
following

Key generation: Let n > 0 be an integer. The prover P interrogates a key
generation algorithm G which on input λ outputs n pairs {(Ki

p,K
i
s)}i∈[1,n].

The prover’s public key is {Ki
p}i∈[1,n], while the corresponding secret key is

{Ki
s}i∈[1,n].

Identification protocol: P proves his identity to V as follows
Step 1. P selects an integer ℓ ∈ [1, n], generates X from a random string

R and sends them to V .
Step 2. Let E be the challenge space. V randomly generates Ei

$←− E for
i ∈ [1, ℓ] and sends the challenge {Ei}i∈[1,ℓ] to P .

Step 3. P generates an answer Y from ({Ki
s}i∈[1,ℓ], R, {Ei}i∈[1,ℓ]) and sends

it to V .
Step 4. V checks the validity of the relations of ({Ki

p}i∈[1,ℓ], X, {Ei}i∈[1,ℓ], Y).

We further assume that multi-challenge identification schemes are perfect
zero knowledge against an honest verifier. We recall the definition [16, 21] of a
zero knowledge protocol next.

Definition 2 (Zero Knowledge Protocol). A protocol (P, V) is zero-knowledge
if for every efficient program V̄ there exists an efficient program S, the simu-
lator, such that the output of S is indistinguishable from a transcript of the
protocol execution between P and V̄ . If the indistinguishability is perfect3, then
the protocol is called perfect zero-knowledge.

Definition 3 (Soundness). A PPT adversary A breaks a multi-challenge iden-
tification scheme with (t, ε) if and only if A as a prover can cheat an honest
verifier V with a success probability greater than ε within processing time t.
Note that the probability is taken over the coin flips of A and V , and A does not
conduct any active attack.

A multi-challenge identification scheme is (t, ε)-secure if and only if there is
no adversary that can break it with (t, ε).

3i.e. the probability distribution of the simulated and the actual transcript are
identical

4

An essential tool for constructing a zero knowledge simulator, is a special
property called c-simulatability. More precisely, it is sufficient to check that a
protocol is c-simulatable for one round of the protocol in order to prove that it
is zero knowledge. We recall these results next [21].
Definition 4. A three-move protocol round4 with challenge space E is c-simulatable
if for any value Ei ∈ E one can efficiently generate a triple (X, {Ei}i∈[1,ℓ], Y)
with the same distribution as occurring in the protocol.
Theorem 1. A protocol consisting of c-simulatable three-move rounds, with uni-
formly chosen challenge from a polynomially bounded5 challenge space Eℓ, is
perfect zero-knowledge.

To show that the multi-challenge identification protocols proposed by us are
secure we will reduce their security to a key searching problem. Therefore, we
further introduce a definition from [23].
Definition 5 (Key Searching Problem). A PPT adversary A breaks a key
searching problem if and only if A can find the secret key from a public key
with a success probability greater than ε within processing time t. Note that the
probability is taken over the coin flips of A.

A key searching problem is (t, ε)-secure if and only if there is no adversary
that can break it with (t, ε).

We further introduce the notions of a Boolean matrix [23] and of an τ -heavy
row in such a matrix. These definitions are then used in stating the τ -heavy row
lemma. Note that when τ = 2 we obtain the concept of a heavy row and the
heavy row lemma presented in [10,23].
Definition 6 (Boolean Matrix of Random Tapes). Let us consider a ma-
trix M whose rows consist of all possible random choices of an adversary and
the columns consist of all possible random choices of a challenger. Its entries are
0 if the adversary fails the game and 1 otherwise.
Definition 7 (τ-Heavy Row). Let τ > 1 be an integer. A row of M is τ -heavy
if the fraction of 1’s along the row is at least ε/τ , where ε is the adversary’s
success probability.
Lemma 1 (τ-Heavy Row Lemma). The 1’s in M are located in τ -heavy rows
with a probability of at least (τ − 1)/τ .
Proof. Let M ′ be the sub-matrix of M consisting of all the rows that are not
τ -heavy. Let µ and µ′ be the number of entries in M and M ′, respectively. Using
our assumption we have that the number of 1’s in M and M ′ is µε and smaller
than µ′ε/τ , respectively. Therefore, the number of 1’s located in the τ -heavy
rows h satisfies

h > µε− µ′ε

τ
≥ µε− µε

τ
= µε · τ − 1

τ
,

as desired. ⊓⊔
4P sends X, V sends {Ei}i∈[1,ℓ], P sends Y
5per round

5

2.2 Multi-Message Signatures Scheme

Definition 8 (Multi-Message Signature Scheme). A multi-message signa-
ture scheme consists of the following three PPT algorithms

Key generation: Let n > 0 be an integer. The P interrogates a key generation
algorithm G which on input λ outputs n pairs {(Ki

p,K
i
s)}i∈[1,n]. The signer’s

public key is {Ki
p}i∈[1,n], while the corresponding secret key is {Ki

s}i∈[1,n].
Signature generation: Let ℓ ∈ [1, n]. P generates the signature of his messages

M = {mi}i∈[1,ℓ] using ℓ distinct public random oracle functions {Fi}i∈[1,ℓ]

as follows: P generates X from a random string R, accesses the random
oracle functions to get Ei ← Fi(X,mi) ∈ E for i ∈ [1, ℓ], computes Y using
{Ki

s}i∈[1,ℓ] and R, {Ei}i∈[1,ℓ], and publishes the signature (X,M, Y)6.
Signature verification: A verifier V checks the validity of the signature by the

relations of ({Ki
p}i∈[1,ℓ], X, {Ei}i∈[1,ℓ], Y) and Ei ← Fi(X,mi) for i ∈ [1, ℓ].

Definition 9 (Multi-Message Signature Unforgeability). In a chosen multi-
message attack, a PPT adversary A can ask the legitimate user P to sign up
to qsig chosen message vectors and output their signatures. We also allow the
adversary to invoke the Fi random oracle up to qFi times.

We say that A breaks a multi-message signature with (t, qsig, {qFi}i∈[1,n], ε) if
and only if A can forge a signature of a message vector M with success probability
greater than ε within processing time t. Note that the probability is taken over
the coin flips of A, F and the signing oracle P . We also impose the restriction
that M was never queried to P .

A multi-message signature scheme is (t, qsig, {qFi
}i∈[1,n], ε)-secure if and only

if there is no adversary that can break it with (t, qsig, {qFi
}i∈[1,n], ε).

2.3 Multi-Message Co-Signatures Scheme

Multi-message co-signatures have the same structure as the multi-message signa-
tures. The main differences are that the signature generation is computed jointly
by two users and that the signature verification is checked using the joint public
key of two users.

In the case of multi-message co-signatures, adversary A can perform the
following queries

Random oracle queries: A can request the value of Fi(x) for an x of his
choosing.

Sign queries: A can request user C a valid signature (X,Y) for a message
vector {mi}i∈[1,ℓ] and a public key {Ki

C,p}i∈[1,n] of his choosing.
CoSign queries: A can request a valid co-signature (X,Y) from users C and

D for a message vector {mi}i∈[1,ℓ] and a common public key {Ki
C∥D,p}i∈[1,n]

of his choosing.
6We will simply denote it by (X,Y) when it is clear from the context for which M

it was generated.

6

Transcript queries: A can request a valid transcript of the co-signing protocol
for a message vector {mi}i∈[1,ℓ] of his choosing, between users C and D of
his choosing.

SKExtract queries: A can request the private key corresponding to a public
key.

Directory queries: A can request the public key of any user.

Definition 10 (Multi-Message Co-Signature Unforgeability). The no-
tion of unforgeability for co-signatures is defined in terms of the following security
game between the adversary A and a challenger:

1. The key generation algorithm is run and all the public parameters are pro-
vided to A.

2. A can perform any number of queries to the challenger, as described above.
3. Finally, A outputs a tuple (X, {mi}i∈[1,ℓ], Y).

A wins the game if the verification algorithm outputs true and there exist public
keys KC = {Ki

C,p}i∈[1,n] and KD = {Ki
D,p}i∈[1,n] such that Ki

C∥D,p = Ki
C,pK

i
D,p

for all i and either of the following holds

– A did not query SKExtract on the public keys KC nor on KD, and did not
query CoSign on ({mi}i∈[1,ℓ], {Ki

C∥D,p}i∈[1,n]), and did not query Transcript
on ({mi}i∈[1,ℓ],KC ,KD) nor ({mi}i∈[1,ℓ],KD,KC).

– A did not query Transcript on ({mi}i∈[1,ℓ],KC ,Ki) for any Ki ̸= KC and did
not query SKExtract on KC , and did not query CoSign on ({mi}i∈[1,ℓ],KC ,Ki)
for any Ki ̸= KC .

We say that a co-signature scheme is unforgeable when the success probability of
A in this game is negligible.

The second constrain imposed in Definition 10 corresponds to the situation
where the adversary is one of the signers (i.e. A = C or D), and thus A knows
one of the secret keys.

3 Reduction Lemma

In this section we introduce a technique that reduces the security of multi-
message signatures to multi-challenge identification schemes. When n = 1 we
obtain the result proven in [23]. Since we generalize the result of Ohta and
Okamoto [23], our proof is based on their original proof, with necessary modi-
fications to accommodate the new functionality. Note that we assume uniform
coin flips over E . We further assume, without loss of generality, that on query
i ∈ [1, qsig] adversary A wants to sign ℓi messages and when it outputs the
forgery it uses ℓ messages.

Theorem 2. Let

ε ≥ (maxiqFi
) ·
(
τ(ℓ+ 1)

|E|ℓ
+

qsig ·maxiℓi
|E|

)
+

1− |E|ℓ

1− |E|
· 1

|E|ℓ
.

7

1. If A1 breaks a multi-message signature with (t, qsig, {qFi
}i∈[1,n], ε) there exists

A2 which breaks the multi-message signature with (t, qsig, {1}i∈[1,n], ε
′), where

ε′ =
1

(maxiqFi)
ℓ

(
ε− 1− |E|ℓ

1− |E|
· 1

|E|ℓ

)
.

2. If A2 breaks a multi-message signature with (t, qsig, {1}i∈[1,n], ε
′) there exists

A3 which breaks the multi-message signature with (t′, 0, {1}i∈[1,n], ε
′′), where

ε′′ = ε′ − qsig ·maxiℓi
|E|

and t′ = t+ the simulation time of qsig signatures.
3. If A3 breaks a multi-message signature with (t′, 0, {1}i∈[1,n], ε

′′) there exists
A4 which breaks the corresponding multi-challenge identification protocol with
(t′, ε′′).

Proof. Item 1. Let Qi,j be the j-th query from A1 to the i-th random oracle Fi

and ρi,j be the j-th answer from Fi to A1. We construct an adversary B using
A1 as follows

Step 1. Randomly select n integers ji such that 1 ≤ ji ≤ qFi
.

Step 2. Run A1 with the random oracles {Fi}i∈[1,n] and obtain the values
(X, {mi}i∈[1,ℓ], {Ei}i∈[1,ℓ], Y).

Step 3. If for any i we have that (X,mi) = Qi,ji and Ei = ρi,ji then output
the forged signature (X, {mi}i∈[1,ℓ], Y). Otherwise, output ⊥.

If adversary A1 succeeds in forging a signature (X, {mi}i∈[1,ℓ], Y), then there
are ℓ+ 1 cases

– the values (X,mi) were not asked to the random oracle Fi for any i ∈ [1, ℓ];
– (X,m1) was asked as the j-th query to oracle F1, where j ∈ [1, qF1] and the

remaining values (X,mi) were not asked to the random oracle Fi for any
i ∈ [2, ℓ];

– (X,mi) was asked as the j-th query to oracle Fi, where j ∈ [1, qFi
] and

i ∈ [1, 2] and the remaining values (X,mi) were not asked to the random
oracle Fi for any i ∈ [3, ℓ];

– . . .
– (X,mi) was asked as the j-th query to oracle Fi, where j ∈ [1, qFi] and

i ∈ [1, ℓ].

We denote the last ℓ cases by F . Then, the success probability of A1 when F is
at most

Pr[F] ≤ 1− |E|ℓ

1− |E|
· 1

|E|ℓ

due to the randomness of Fi.

8

Let Pr[A1] be the probability that A1 succeeds. In the first case, B’s success
probability Pr[B] is

Pr[B] ≥
qF1∑
j1=0

qF2∑
j2=0

. . .

qFℓ∑
jℓ=0

Pr[(j1, j2, . . . , jℓ) is selected]Pr[A1&((X,mi) = Qi,ji , ∀i)]

=

qF1∑
j1=0

qF2∑
j2=0

. . .

qFℓ∑
jℓ=0

1

qF1qF2 . . . qFℓ

Pr[A1&((X,mi) = Qi,ji , ∀i)]

=
1

qF1
qF2

. . . qFℓ

qF1∑
j1=0

qF2∑
j2=0

. . .

qFℓ∑
jℓ=0

Pr[A1&((X,mi) = Qi,ji , ∀i)]

≥ 1

(maxiqFi
)ℓ

qF1∑
j1=0

qF2∑
j2=0

. . .

qFℓ∑
jℓ=0

Pr[A1&((X,mi) = Qi,ji , ∀i)]

=
1

(maxiqFi
)ℓ
(Pr[A1]− Pr[A1&F])

≥ 1

(maxiqFi
)ℓ

(
ε− 1− |E|ℓ

1− |E|
· 1

|E|ℓ

)
,

where for the last inequality we used the fact that Pr[A1&F] < Pr[F].
Using B we construct adversary A2 as follows

Step 1. Randomly select n integers ji such that 1 ≤ ji ≤ qFi
.

Step 2. Run A1 with the random oracles {Fi}i∈[1,n] and the random tapes
{Θi}i∈[1,n], and obtain the values (X, {mi}i∈[1,ℓ], {Ei}i∈[1,ℓ], Y), where only
the ji query is asked to Fi and the remaining qFi − 1 queries to Θi. Here Θi

contains qFi − 1 random blocks used as answers to Θi.
Step 3. If for any i we have that (X,mi) = Qi,ji and Ei = ρi,ji then output

the forged signature (X, {mi}i∈[1,ℓ], Y). Otherwise, output ⊥.

Remark that A1 cannot distinguish qFi
− 1 random blocks of Θi from qFi

−
1 answers from Fi due to the randomness of Fi. Therefore, A2 has the same
probability of success as B.

Item 2. We construct adversary A3 using A2 as follows

Step 1. For k = 1 to qsig do
Step a. Run A2 with simulated (Xj , {mi,j}i∈[1,ℓj], {Ei,j}i∈[1,ℓj], Yj) for j ∈

[1, k − 1] and get a message {mi,k}i∈[1,ℓk] chosen by A2 whose signature
is requested to the signer.

Step b. Simulate (Xk, {mi,k}i∈[1,ℓk], {Ei,k}i∈[1,ℓk], Yk) by the standard per-
fect zero knowledge protocol simulation technique of the corresponding
identification scheme with an honest verifier. If there exist an integer
j < k such that Xj = Xk, discard Xk and repeat this step.

Step 2. Run algorithm A2 with random oracles {Fi}i∈[1,n] and simulated values
(Xj , {mi,j}i∈[1,ℓj], {Ei,j}i∈[1,ℓj], Yj) for j ∈ [1, qsig] and get the signature
(X, {mi}i∈[1,ℓ], Y).

9

Step 3. Output the forged signature (X, {mi}i∈[1,ℓ], Y).

If A2 does not ask (Xj ,mi,j), where j ∈ [1, qsig], to Fi, then the adversary
cannot distinguish the simulated environment from a legitimate one due to the
perfect zero knowledge protocol simulation and the randomness of oracle Fi.
Therefore, A3’s success probability Pr[A3] is

Pr[A3] = Pr[A2&((Xj ,mi,j) ̸= (A2’s query to Fi)∀i ∈ [1, ℓj] and ∀j ∈ [1, qsig])]

= Pr[A2]− Pr[∃i ∈ [1, ℓj]&∃j ∈ [1, qsig]&((Xj ,mi,j) = (A2’s query to Fi)]

≥ ε′ −
ℓ1 + ℓ2 + . . .+ ℓqsig

|E|

≥ ε′ − qsig ·maxiℓi
|E|

and its running time is t′ = t+ the simulation time of qsig signatures.

Item 3. Let Qi be a query from A3 to the i-th random oracle Fi and ρi be
the answer from Fi to A3. Then A4 interacts with an honest verifier V as follows

Step 1. Run A3 and for all i get the query Qi = (X,mi) to Fi.
Step 2. Send (ℓ,X) to V and get a challenge {Ei}i∈[1,ℓ] from V .
Step 3. Run machine A3 with input {ρi}i∈[1,ℓ] = {Ei}i∈[1,ℓ] and get the forged

signature (X, {mi}i∈[1,ℓ], Y).
Step 4. Output Y to V .

Note that A3 outputs a valid signature (X, {mi}i∈[1,ℓ], Y) which satisfies a
relation of ({Ki

p}i∈[1,ℓ], X, {Ei}i∈[1,ℓ], Y) and Ei ← Fi(X,mi). Therefore, when
V checks the validity of this relation, V accepts A4’s proof with (t′, ε′′). ⊓⊔

Remark 1. In order to be able to use the τ -heavy row lemma in following section
(see Theorem 3), we need ε′′ ≥ τ(ℓ+ 1)/|E|ℓ. This leads to

ε′ − qsig ·maxiℓi
|E|

≥ τ(ℓ+ 1)

|E|ℓ
⇔ ε′ ≥ τ(ℓ+ 1)

|E|ℓ
+

qsig ·maxiℓi
|E|

and

1

(maxiqFi
)ℓ

(
ε− 1− |E|ℓ

1− |E|
· 1

|E|ℓ

)
≥ τ(ℓ+ 1)

|E|ℓ
+

qsig ·maxiℓi
|E|

⇔

ε ≥ (maxiqFi
) ·
(
τ(ℓ+ 1)

|E|ℓ
+

qsig ·maxiℓi
|E|

)
+

1− |E|ℓ

1− |E|
· 1

|E|ℓ
.

This is exactly the condition imposed in Theorem 2.

10

4 Multi-Challenge Identification Schemes

4.1 Description

Inspired by the Schnorr [28] and the Chaum et al. [8] protocols, we introduce
a multi-challenge identification protocol. Therefore, let p = 2q + 1 be a prime
number such that q is also prime. Select an element g ∈ G of order q in some
multiplicative group of order p − 1. Also, let E be a challenge space. The de-
tailed multi-challenge protocol is presented in Figure 1. Note that {xi}i∈[1,n]

and {zi}i∈[1,n] play the role of the secret key and the public key, respectively.
Remark that when ℓ is known beforehand, it can be omitted in the first message.

Note that when n = 1 the Schnorr scheme [28] is a special case of our protocol.
Also, when ℓ = n and E = {0, 1} we obtain the Chaum et al. protocol [8].

Peggy V ictor

Knows {xi}i∈[1,n]
$←− Zn

q . Knows {zi}i∈[1,n].
Computes {zi}i∈[1,n] = {gxi}i∈[1,n].

Select ℓ ∈ [1, n].

Choose k
$←− Zq.

Compute t← gk.
ℓ,t−−−−−→

Choose c = {ci}i∈[1,ℓ]
$←− Eℓ ⊆ Zℓ

q.
c←−−−−−

Compute r ← k +
∑ℓ

i=1 xici mod q.
r−−−−−→

If gr = t ·
(∏ℓ

i=1 z
ci
i

)
return true.

Else return false.

Fig. 1. A multi-challenge protocol (SBP7).

Correctness. To prove that Peggy’s proof always convinces V ictor, we evaluate
the verification condition

gr = gk+x1c1+...+xℓcℓ = gkgx1c1 . . . gxℓcℓ = tzc11 . . . zcℓℓ .

Let s = |E|. Note that a corrupt prover P̄ can cheat V ictor with a prob-
ability of s−ℓ per iteration by guessing the {ci}i∈[1,ℓ] vector, preparing t =

gkz−c1
1 . . . z−cℓ

ℓ in the first step, and providing r = k in the last step. Therefore,
we must choose s and the number of iteration v such that s−vℓ is negligible.

11

4.2 Security Analysis

We further assume, without loss of generality, that when an adversary A succeeds
in cheating the verifier V , V sends a challenge vector with ℓ entries. Also, to
simplify our analysis we assume that E = Zq.

In the case of our protocol, the key searching problem that we use is the
following: Given (p, q, g,G, n, {zi}i∈[1,n]) compute xi ∈ Zq such that gxi = zi for
i ∈ [1, ℓ]. We further refer to it as the ℓ out of n discrete logarithms problem.
Note that when n = 1 we obtain the classical discrete logarithm problem.

Theorem 3. Let ε ≥ τ(ℓ + 1)/qℓ and (5τ/3(τ − 1))ℓ be polynomially bounded.
Suppose that the ℓ out of n discrete logarithms problem is (t̄, ε̄)-secure. Then the
SBP protocol is (t, ε)-secure, where

t̄ =
(1 + τℓ)(t+ Φ1)

ε
+ Φ3 and ε̄ =

(
τ − 1

τ

)ℓ(
1− 1

e

)ℓ+1

>
3

5

(
3(τ − 1)

5τ

)ℓ

.

By Φ1 we denoted the verification time of the identification protocol and Φ3 is
time needed to compute the {xi}i∈[1,ℓ] vector in the final stage.

Proof. Before starting our proof we remark that the Boolean matrix M has qℓ

columns. Therefore, the condition ε/τ ≥ (ℓ + 1)/qℓ assures us that a τ -heavy
row contains at least ℓ+ 1 ones.

Let A be a PPT adversary who can break the identification scheme with (t, ε).
We further construct an adversary B which computes ℓ discrete logarithms out
of n with (t̄, ε̄) using A.

B will first repeatedly probe the Boolean matrix M at random, until it
finds an entry a(1) with an 1. This happens after an expected number of 1/ε
repetitions. In this case, B’s success probability is 1− (1− 1/ε)1/ε > 1− 1/e.

According to the τ -heavy row lemma with probability (τ − 1)/τ , the first 1
that B found lies in a τ -heavy row. Therefore, if B continues probing at random
along this row, with probability (ετ q−1)/q B will find another 1 in one attempt.
Therefore, after q/(ετ q − 1) ≃ τ/ε repetitions B will find a second entry a(2)
with an 1. In this case, B’s success probability is

τ − 1

τ

(
1−

(
1− τ

ε

) τ
ε

)
>

τ − 1

τ

(
1− 1

e

)
.

Using the same procedure as above, B continues probing until it obtains
other ℓ− 1 entries {a(i)}i∈[3,ℓ+1] with an 1. Note that for entry i ∈ [3, ℓ+ 1] the
expected number of tries to find an 1 is q/(ετ q − i+ 1) ≃ τ/ε.

Therefore, B makes a total of

1

ε
+

ℓ+1∑
i=2

q
ε
τ q − i+ 1

≃ 1 + τℓ

ε

7Schnorr Based Protocol

12

expected repetitions and has a success probability of(
1− 1

e

)
·
ℓ+1∏
i=2

τ − 1

τ

(
1− 1

e

)
=

(
τ − 1

τ

)ℓ(
1− 1

e

)ℓ+1

>

(
τ − 1

τ

)ℓ(
3

5

)ℓ+1

.

Now we are in possession of ℓ + 1 entries from the same row. Therefore,
we have ℓ + 1 protocol transcripts (tj , cj , rj), where j ∈ [1, ℓ + 1], such that
t1 = . . . = tℓ+1. This translates in the following system

r1 = k + x1c1,1 + . . .+ xℓc1,ℓ

r2 = k + x1c2,1 + . . .+ xℓc2,ℓ

· · ·
rℓ+1 = k + x1cℓ+1,1 + . . .+ xℓcℓ+1,ℓ

that has ℓ + 1 unknowns. According to [6], the probability that the system’s
determinant is not zero is (1− 1/q)(1− 1/q2) . . . (1− 1/qℓ+1) ≃ 1. Therefore, we
can determine the {xi}i∈[1,ℓ] vector with non-negligible probability. ⊓⊔

Remark 2. When ℓ = 1 and τ = 2 we obtain the result from [23], i.e. ε̄ > 0.18.
For ℓ = 8 we can select τ = 40 to get ε̄ > 0.008.

Theorem 4. The SBP protocol is a perfect zero knowledge protocol if |Eℓ| is
polynomially bounded.

Proof. For every g and {zi}i∈[1,n] the output of the simulator has to be indistin-
guishable from the distribution of a real transcript. Such a simulator is presented
in Algorithm 1. Therefore, we obtain that SBP is c-simulatable. Using Theorem 1
we obtain the desired result.

Algorithm 1: The simulator S.
Input: The public key {zi}i∈[1,n]

Output: A transcript L
1 foreach j ∈ [1, v] do
2 Select an integer ℓ

3 Select c = {ci}i∈[1,ℓ] at random from Cℓ

4 Select a random number r
$←− Zq

5 Compute t← grz−c1
1 . . . z

−cℓ
ℓ

6 L← L ∪ {(t, c, r)}
7 end
8 return L

⊓⊔

13

Peggy V ictor

Knows X. Knows Z.

Select ℓ ∈ [1, n].

Choose {kj}j∈[1,α]
$←− Zα

q .

Compute t← gk1
1 . . . gkα

α .
ℓ,t−−−−−→

Choose c = {ci}i∈[1,ℓ]
$←− Eℓ ⊆ Zℓ

q.
c←−−−−−

Compute {rj}j∈[1,α] such that
rj ← kj +

∑ℓ
i=1 xi,jci mod q.

{rj}j∈[1,α]−−−−−−−→

If gr11 . . . grαα = t ·
(∏ℓ

i=1 z
ci
i

)
return

true. Else return false.

Fig. 2. Another multi-challenge protocol.

4.3 Variations

4.3.1 Girault based protocol. We further discuss a variation of the SBP
protocol, further denoted GBP. Let p = 2fp′ + 1 and q = 2fq′ + 1 be prime
numbers such that f , p′ and q′ are distinct primes. Select an element g ∈ Z∗

N of
order f , where N = pq. Note that p and q are secret.

We further present the differences between the GBP version and the SBP
protocol. The secret key is selected from Zn

f instead of Zn
q . In the first step of

the protocol Peggy randomly selects k from Zf instead of Zq. In the second
step the challenge space is chosen such that Eℓ ⊆ Zℓ

f and in the third step we
compute r modulo f instead of modulo q.

Note that when n = 1 we obtain the Girault protocol [14] and when ℓ = n
we obtain a protocol introduced in [20].

4.3.2 Multiple discrete logarithm representation based protocol. Let
α > 0 be an integer. In this variant of the protocol we select α elements {gj}j∈[1,α]

of order q from G. Peggy’s secret key is X = ({x1,j}j∈[1,α], . . . , {xn,j}j∈[1,α])
and the public key is computed such that zi = g

xi,1

1 . . . g
xi,α
α for i ∈ [1, n]. Let

Z = {zi}i∈[1,n]. We present the protocol based on representations in Figure 2.
Note that when n = 1 we obtain a protocol proposed by Maurer in [21] which

is a generalization of the protocols presented by Okamoto in [24] and Chaum
et.al. in [8]. Also, when ℓ = n we obtain a protocol introduced in [20].

14

Chaum et al. [8] also provide a protocol variant for a composite n. Thus, by
adapting the GBP protocol and tweaking the previously described one, we can
obtain a similar version for composite numbers.

Correctness. To prove that Peggy’s proof always convinces V ictor, we evaluate
the verification condition

gr11 . . . grαα =

α∏
j=1

g
kj+x1,jc1+...+xℓ,jcℓ
j

=

α∏
j=1

g
kj

j

 α∏
j=1

g
x1,j

j

c1

. . .

 α∏
j=1

g
xℓ,j

j

cℓ

= tzc11 . . . zcℓℓ .

Similarly to the case of SBP, a corrupt prover P̄ can cheat V ictor with a
probability of s−ℓ per iteration by guessing the challenge. Therefore, we must
choose s and v such that s−vℓ is negligible.

5 Multi-Message Signature Schemes

5.1 Description

In this section we transform the SBP protocol into a multi-message signature
scheme. Note that when n = 1 we obtain the classical Schnorr signature.

Key generation: Let n > 0 be an integer. Generate two large prime numbers
p, q, such that q ≥ 2λ and q|p− 1. Select a cyclic group G of order p− 1 and
let g ∈ G be an element of order q. Let h : {0, 1}∗ → Z∗

q be a hash function.
Choose xi

$←− Z∗
q and compute yi ← gxi for i ∈ [1, n]. Output the public key

pk = (p, q, g,G, n, h, {yi}i∈[1,n]). The secret key is sk = {xi}i∈[1,n].
Signature generation: Let ℓ ∈ [1, n] and i ∈ [1, ℓ]. To sign ℓ messages mi ∈
{0, 1}∗, first generate a random number k

$←− Zq. Then compute the values
t ← gk, ei ← h(i∥t∥mi) and r ← k + x1e1 + . . . + xℓeℓ mod q. Output the
signature (t, r).

Signature verification: To verify the signature (t, r) of messages {mi}i∈[1,ℓ],
compute ei ← h(i∥t∥mi) and check if

gr = t ·

(
ℓ∏

i=1

zeii

)
(1)

holds. Output true if and only if Equation (1) holds. Otherwise, output
false.

15

5.2 Security Analysis
In order to prove the security of our proposal we model Fi(·) = h(i∥·) as random
oracles. Therefore, we are able to use Theorems 2 and 3 to obtain the following
result. We further denote by SBS8 our proposed signature.
Theorem 5. Let ε′ ≥ (τ(ℓ+ 1) + qℓ−1qsig ·maxiℓi)/q

ℓ, where

ε′ =
1

(maxiqFi)
ℓ

(
ε− 1− qℓ

1− q
· 1
qℓ

)
.

Also, let (5τ/3(τ − 1))ℓ be polynomially bounded. Suppose that the ℓ out of n
discrete logarithms problem is (t̄, ε̄)-secure. Then the SBS signature scheme is
(t, qsig, {qFi

}i∈[1,n], ε)-secure, where

t̄ =
(1 + τℓ)t′

ε
+ Φ3 and ε̄ =

(
τ − 1

τ

)ℓ(
1− 1

e

)ℓ+1

>
3

5

(
3(τ − 1)

5τ

)ℓ

,

and

t′ = t+ Φ1 + Φ2 and ε′′ = ε′ − qsig ·maxiℓi
q

.

By Φ1 we denoted the verification time of the identification protocol, Φ2 is the
simulation time of qsig signatures and Φ3 is time needed to compute the {xi}i∈[1,ℓ]

vector in the final stage.
Proof. The only thing we need to apply Theorem 2 is to provide a simulator
for the SBP protocol. The simulator S described in Algorithm 1 can mimic the
communication in SBP with an indistinguishable probability distribution. Note
that in Algorithm 1 v denotes the number of protocol iterations.

⊓⊔

5.3 Implementation
We implemented in C using the GMP library [4] our multi-message signature
with SHA256 (SBS-256) and with SHA512 (SBS-512). For comparison we also
implemented the Schnorr signature with SHA256 (Sch-256) and with SHA512
(Sch-512). The hash function used internally by the algorithms is either SHA256
or SHA512 [1].

The programs were run on a CPU Intel i7-4790 4.00 GHz and compiled with
GCC with the O3 flag activated. Note that our processor has at most 8 threads.
In our experiments for each prime size of 2048, 3072 and 4096 bits, we ran the
algorithms with 100 safe prime numbers from [3]. Let th be the number of used
threads. For each prime we measured the average running time for 100 random
th megabytes messages using the function omp_get_wtime() [2]. Note that for
the Schnorr signature we sign the entire message of size th megabytes in one go.

The results of our experiments are presented in Figures 3 to 8. We can see
from the plots that our signature has a better execution times than the Schnorr
signature no matter if we use SHA256 or SHA512.

8Schnorr Based Signature

16

2 4 6 8

1

2

3

·10−2

Number of threads

Se
co

nd
s

Sch-256
Sch-512
SBS-256
SBS-512

Fig. 3. Signing time for λ = 2048

2 4 6 8

1

2

3

·10−2

Number of threads

Se
co

nd
s

Sch-256
Sch-512
SBS-256
SBS-512

Fig. 4. Verification time for λ = 2048

2 4 6 8
1

2

3

4
·10−2

Number of threads

Se
co

nd
s

Sch-256
Sch-512
SBS-256
SBS-512

Fig. 5. Signing time for λ = 3072

2 4 6 8

2

3

4

·10−2

Number of threads

Se
co

nd
s

Sch-256
Sch-512
SBS-256
SBS-512

Fig. 6. Verification time for λ = 3072

2 4 6 8

3

4

5

·10−2

Number of threads

Se
co

nd
s

Sch-256
Sch-512
SBS-256
SBS-512

Fig. 7. Signing time for λ = 4096

2 4 6 8

3

4

5

·10−2

Number of threads

Se
co

nd
s

Sch-256
Sch-512
SBS-256
SBS-512

Fig. 8. Verification time for λ = 4096

17

6 Multi-Message Co-Signature Scheme

In [12] the authors present a contract signing paradigm to achieve legal fairness.
Their provably secure co-signature construction is based on the Schnorr digital
signature [28]. Using our multi-message signature, we extend Ferradi et al.’s co-
signature to support multiple messages. Our novel co-signature is presented in
Figure 9. Note that, as in the original scheme [12], the property of ambiguity9

does not apply, since our scheme produces only a single output. Also, the notion
of fairness10 is inherent, as a co-signature becomes binding for both parties
simultaneously.

In Figure 9, L represents a local non-volatile memory used by Bob, and
{(xA,i, zA,i)}i∈[1,n] and {(xB,i, zB,i)}i∈[1,n] are the keys used by Alice and Bob,
respectively. Also, note that {zi}i∈[1,n] is the joint public key of Alice and Bob.
During the protocol, Alice makes use of a publicly known auxiliary signature
scheme σ using her secret key xA,1, and Bob uses σ’s verification algorithm to
check if ω is correct.

Correctness. The correctness of the co-signing scheme described in Figure 9
follows from

gr = grA+rB

= grA · grB

= tA ·

(
ℓ∏

i=1

(zA,i)
ei

)
· tB ·

(
ℓ∏

i=1

(zB,i)
ei

)

= tA · tB ·

(
ℓ∏

i=1

(zA,i · zB,i)
ei

)

= t ·

(
ℓ∏

i=1

zeii

)
.

6.1 Security Analysis

We prove that our proposed co-signature is secure in the random oracle model
using the following strategy: assuming that adversary A is an efficient forger for
the co-signature protocol, we turn A into an efficient forger for the SBS signature.
There are two possible scenarios that we address, either A plays the role of Alice
or the role of Bob. We further denote by Co-SBS our proposed multi-message
co-signature.

9It is impossible to determine which of the two parties produced the signature.
10Bob cannot be placed in a situation where their signature is bound while Alice’s

initial signature remains unbound.

18

Alice Bob

zi ← zA,i · zB,i ∀i ∈ [1, n] zi ← zA,i · zB,i ∀i ∈ [1, n]

kA
$←− Zq kB

$←− Zq

tA ← gkA tB ← gkB

ρ← h(0∥tB)
ρ←−−−−−

w ← σ(tA∥Alice∥Bob) tA,w−−−−−→
if w is incorrect then abort
store w in L

tB←−−−−−
if h(0∥tB) ̸= ρ then abort
t← tA · tB t← tA · tB
ei ← h(i∥mi∥t∥Alice∥Bob) ∀i ∈ [1, n] ei ← h(i∥mi∥t∥Alice∥Bob) ∀i ∈ [1, n]

rA ← kA +
∑ℓ

i=1 xA,iei mod q rB ← kB +
∑ℓ

i=1 xB,iei mod q
store rB in L

rB←−−−−−
if rB is incorrect then abort

rA−−−−−→
if rA is incorrect then abort

r ← rA + rB mod q r ← rA + rB mod q
if {m, t, r} is valid then

erase w, rB from L

Fig. 9. A legally fair multi-message signature.

6.1.1 Adversary Attacks Bob
Theorem 6. If AAlice plays the role of Alice and is able to forge a Co-SBS
co-signature with non-negligible probability, then we can construct an adversary
that breaks SBS with a non-negligible probability of success.

Proof. We further show how to construct a simulator SBob that interacts with
AAlice and forces the adversary to produce an SBS forgery. Note that SBob has
to emulate not only Bob, but also all oracles and the directory D. Here is how
this simulator behaves at each step of the protocol.

Key Establishment Phase. SBob is given as input the target’s public key
{zi}i∈[1,n]. To inject it into AAlice, the simulator SBob reads {zA,i}i∈[1,n] from
D and impersonates Bob whose public key is {zB,i}i∈[1,n], where zB,i ← ziz

−1
A,i

for all i. Therefore, the common key between AAlice and SBob is {zA∥B,i}i∈[1,n],
where zA∥B,i ← zA,izB,i for all i, which is by construction {zi}i∈[1,n].

Now SBob starts the protocol with AAlice, who queries the directory and gets
{zB,i}i∈[1,n]. From the point of view of AAlice, she has successfully established a
co-signature protocol with the “co-signer” SBob.

19

Query Phase. AAlice will start to present queries to SBob. Therefore, SBob

must respond to three types of queries: random oracles queries, co-signature
queries and transcript queries. We present in Algorithm 2 the simulation of
the random oracle Fi. Note that at the beginning of the simulation Ti ← ∅.
The simulation for the co-signature protocol is described in Algorithm 3. Note
that when AAlice requests a conversation transcript, SBob replies by sending the
transcript from a previously successful interaction.

Algorithm 2: Random oracle OFi
simulation for Fi.

Input: A random oracle query qj from AAlice

1 if ∃hj , {qj , hj} ∈ Ti then
2 e← hj

3 else
4 e

$←− Zq

5 Append {qj , e} to Ti

6 end
7 return e

Output Phase. After performing its queries, AAlice eventually outputs a valid
co-signature (t, r) for {zA∥B,i}i∈[1,n] where t = tAtB and r = rA+rB . By design,
these parameters are those of an SBS signature, and thus AAlice has produced
an SBS forgery.

Algorithm 3: Co-signing oracle simulation for SBob.
Input: A co-signature query {mi}i∈[1,ℓ] from AAlice

1 rB
$←− Zq

2 {ei}i∈[1,ℓ]
$←− Zℓ

q

3 tB ← grB ·
∏ℓ

i=1 z
−ei
i

4 Send h(0∥tB) to AAlice

5 Receive tA, w from AAlice

6 Send tB to AAlice

7 t← tAtB
8 ui ← i∥m∥t∥Alice∥Bob
9 if ∀i ∃e′i ̸= ei, {ui, e

′
i} ∈ Ti then

10 abort
11 else
12 Append {ui, ei} to Ti

13 end
14 return sB

20

There is a case in which SBob aborts the protocol before completion. This
happens when it turns out that i∥m∥t∥Alice∥Bob has been previously queried
by AAlice. In this case, SBob cannot reprogram oracle OFi , and thus it has to
abort. Since AAlice does not know the random value tB , such an event would
happen with a negligible probability qFi

/q, where qFi
is the number of queries

to OFi
.

Therefore, AAlice breaks the SBS signature with probability 1−(ℓ·maxiqFi
)/q.

If AAlice has a success probability ε, the success probability of AAlice in the sim-
ulated environment is ε′ = (1− (ℓ ·maxiqFi)/q)ε. ⊓⊔

6.1.2 Adversary Attacks Alice

Theorem 7. If ABob plays the role of Bob and is able to forge a Co-SBS co-
signature with non-negligible probability, then we can construct an adversary
that breaks SBS with a non-negligible probability of success if signature σ can be
simulated without knowing the secret key xA,1.

Proof. This proof is similar to Theorem 6, and thus we omit some details. In
this case, we construct a simulator SAlice that interacts with ABob and forces it
to produce an SDS forgery. The simulator’s behavior at different stages of the
security game is as follows.

Key Establishment Phase. SAlice is given the target’s public key {zi}i∈[1,n].
SAlice injects {zA,i}i∈[1,n] into ABob as described in Theorem 6. Now SAlice

activates ABob, who queries D and gets {zA,i}i∈[1,n]. From the point of view of
ABob, he has successfully established a co-signature protocol with the “co-signer”
SAlice.

Query Phase. ABob will start to present queries to SAlice. Therefore, SAlice

must respond to four types of queries: random oracles queries, signature queries,
co-signature queries and transcript queries. We consider oracles OFi

as in Theo-
rem 6. We denote by Oσ the simulation of σ. The simulation for the co-signature
protocol is described in Algorithm 4. Note that when ABob requests a conver-
sation transcript, SAlice replies by sending the transcript from a previously suc-
cessful interaction.

Output Phase. After performing its queries, ABob eventually outputs a valid
co-signature (t, r) for {zA∥B,i}i∈[1,n] where t = tAtB and r = rA+rB . By design,
these parameters are those of an SBS signature, and thus ABob has produced an
SBS forgery.

As in Theorem 6, Algorithm 4 may fail with probability qFi
/q. Thus, the

success probability of ABob in the simulated environment is ε′ = (1 − (ℓ ·
maxiqFi

)/q)ε. ⊓⊔

21

Algorithm 4: Co-signing oracle simulation for SAlice.
Input: A co-signature query {mi}i∈[1,ℓ] from ABob

1 Receive ρ from ABob

2 Query T0 to retrieve tB such that F0(tB) = ρ

3 rA
$←− Zq

4 {ei}i∈[1,ℓ]
$←− Zℓ

q

5 t← tB · grA ·
∏ℓ

i=1 z
−ei
i

6 ui ← i∥m∥t∥Alice∥Bob
7 if ∀i ∃e′i ̸= ei, {ui, e

′
i} ∈ Ti then

8 abort
9 else

10 Append {ui, ei} to Ti

11 end
12 tA ← tt−1

B

13 u0 ← tA∥Alice∥Bob
14 w ← Oσ(u0)
15 Send tA, w to ABob

16 Receive tB from ABob

17 Receive rB from ABob

18 return rA

7 Conclusions

In this paper we presented a novel signature scheme and we introduced the the-
oretical framework needed to prove its security. We also conducted a series of
experiments to show that our proposal is more efficient that the Schnorr signa-
ture in the multiple-message scenario. Based on our signature scheme we also
introduced a co-signature scheme that inherits the properties of its underlying
primitive.

Future work. Starting from the framework introduced in [21], the authors of [20]
further generalize it to include more zero-knowledge protocols. Some particu-
lar cases of this generic framework are the Feige-Fiat-Shamir protocol [11], the
Guillou-Quisquater [18] protocol and the Schnorr protocol [28]. An interesting
research direction is to see how we can apply signatures based on the frame-
work from [20] in the multiple-message scenario. As seen in this paper, we only
managed to adapt it to discrete logarithm based signatures.

References

1. mbed TLS. https://tls.mbed.org
2. OpenMP. https://www.openmp.org/
3. Safe Prime Database. https://2ton.com.au/safeprimes/
4. The GNU Multiple Precision Arithmetic Library. https://gmplib.org/

https://tls.mbed.org
https://www.openmp.org/
https://2ton.com.au/safeprimes/
https://gmplib.org/

22

5. Asokan, N., Schunter, M., Waidner, M.: Optimistic Protocols for Fair Exchange.
In: CCS 1997. pp. 7–17. ACM (1997)

6. Brent, R.P., McKay, B.D.: Determinants and Ranks of Random Matrices over Zm.
Discrete Mathematics 66(1-2), 35–49 (1987)

7. Cachin, C., Camenisch, J.: Optimistic Fair Secure Computation. In: CRYPTO
2000. Lecture Notes in Computer Science, vol. 1880, pp. 93–111. Springer (2000)

8. Chaum, D., Evertse, J.H., Van De Graaf, J.: An Improved Protocol for Demon-
strating Possession of Discrete Logarithms and Some Generalizations. In: EURO-
CRYPT 1987. Lecture Notes in Computer Science, vol. 304, pp. 127–141. Springer
(1987)

9. Chen, L., Kudla, C., Paterson, K.G.: Concurrent Signatures. In: EUROCRYPT
2004. Lecture Notes in Computer Science, vol. 3027, pp. 287–305. Springer (2004)

10. Damgård, I.: On Σ-protocols. https://www.cs.au.dk/~ivan/Sigma.pdf (2010)
11. Feige, U., Fiat, A., Shamir, A.: Zero-Knowledge Proofs of Identity. Journal of

cryptology 1(2), 77–94 (1988)
12. Ferradi, H., Géraud, R., Maimuţ, D., Naccache, D., Pointcheval, D.: Legally Fair

Contract Signing Without Keystones. In: International Conference on Applied
Cryptography and Network Security - ACNS’16. Lecture Notes in Computer Sci-
ence, vol. 9696, pp. 175–190. Springer (2016)

13. Garay, J., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource Fairness and Com-
posability of Cryptographic Protocols. In: TCC 2006. Lecture Notes in Computer
Science, vol. 3876, pp. 404–428. Springer (2006)

14. Girault, M.: An Identity-based Identification Scheme Based on Discrete Logarithms
Modulo a Composite Number. In: EUROCRYPT 1990. Lecture Notes in Computer
Science, vol. 473, pp. 481–486. Springer (1990)

15. Goldwasser, S., Levin, L., Vanstone, S.A.: Fair Computation of General Functions
in Presence of Immoral Majority. In: CRYPT0 1990. Lecture Notes in Computer
Science, vol. 537, pp. 77–93. Springer (1991)

16. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof Systems. SIAM J. Comput. 18(1), 186–208 (1989)

17. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete Fairness in Secure Two-
Party Computation. Jornal of the ACM 58(6), 1–37 (December 2011)

18. Guillou, L.C., Quisquater, J.J.: A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessor Minimizing Both Transmission and Memory. In: EURO-
CRYP 1988. Lecture Notes in Computer Science, vol. 330, pp. 123–128. Springer
(1988)

19. Maimuţ, D., Teşeleanu, G.: A Unified Security Perspective on Legally Fair Contract
Signing Protocols. In: SECITC 2018. Lecture Notes in Computer Science, vol.
11359, pp. 477–491. Springer (2018)

20. Maimuţ, D., Teşeleanu, G.: A Generic View on the Unified Zero-Knowledge Pro-
tocol and Its Applications. In: WISTP 2019. Lecture Notes in Computer Science,
vol. 12024, pp. 32–46. Springer (2019)

21. Maurer, U.: Zero-Knowledge Proofs of Knowledge for Group Homomorphisms.
Designs, Codes and Cryptography 77(2-3), 663–676 (2015)

22. Micali, S.: Simple and Fast Optimistic Protocols for Fair Electronic Exchange. In:
PODC 2003. pp. 12–19. ACM (2003)

23. Ohta, K., Okamoto, T.: On Concrete Security Treatment of Signatures Derived
from Identification. In: CRYPTO 1998. Lecture Notes in Computer Science,
vol. 1462, pp. 354–369. Springer (1998)

https://www.cs.au.dk/~ivan/Sigma.pdf

23

24. Okamoto, T.: Provably Secure and Practical Identification Schemes and Corre-
sponding Signature Schemes. In: CRYPTO 1992. Lecture Notes in Computer Sci-
ence, vol. 740, pp. 31–53. Springer (1992)

25. Pinkas, B.: Fair Secure Two-Party Computation. In: EUROCRYPT 2003. Lecture
Notes in Computer Science, vol. 2656, pp. 87–105. Springer (2003)

26. Pointcheval, D., Stern, J.: Security Proofs for Signature Schemes. In: EURO-
CRYPT 1996. Lecture Notes in Computer Science, vol. 1070, pp. 387–398. Springer
(1996)

27. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13(3), 361–396 (2000)

28. Schnorr, C.P.: Efficient Identification and Signatures For Smart Cards. In:
CRYPTO 1989. Lecture Notes in Computer Science, vol. 435, pp. 239–252. Springer
(1989)

29. Teşeleanu, G.: Concurrent Signatures from a Variety of Keys. In: Inscrypt 2021.
Lecture Notes in Computer Science, vol. 13007, pp. 3–22. Springer (2021)

	On Concrete Security Treatment of Signatures Based on Multiple Discrete Logarithms

