
Multi-Client Attribute-Based and Predicate
Encryption from Standard Assumptions

David Pointcheval1,2 and Robert Schädlich2

1 Cosmian, Paris, France
2 DIENS, École normale superieure, CNRS, Inria, PSL University, Paris, France

Abstract. Multi-input Attribute-Based Encryption (ABE) is a generalization of
key-policy ABE where attributes can be independently encrypted across several
ciphertexts, and a joint decryption of these ciphertexts is possible if and only if the
combination of attributes satisfies the policy of the decryption key. We extend this
model by introducing a new primitive that we call Multi-Client ABE (MC-ABE),
which provides the usual enhancements of multi-client functional encryption over
multi-input functional encryption. Specifically, we separate the secret keys that are
used by the different encryptors and consider the case that some of them may be
corrupted by the adversary. Furthermore, we tie each ciphertext to a label and enable
a joint decryption of ciphertexts only if all ciphertexts share the same label. We
provide constructions of MC-ABE for various policy classes based on SXDH. Notably,
we can deal with policies that are not a conjunction of local policies, which has been
a limitation of previous constructions from standard assumptions.
Subsequently, we introduce the notion of Multi-Client Predicate Encryption (MC-PE)
which, in contrast to MC-ABE, does not only guarantee message-hiding but also
attribute-hiding. We present a new compiler that turns any constant-arity MC-ABE
into an MC-PE for the same arity and policy class. Security is proven under the
LWE assumption.

This is the full version of [PS25], DOI 10.1007/978-3-031-78020-2_2, published by Springer in the
proceedings of TCC 2024.

https://orcid.org/0000-0002-6668-683X
https://orcid.org/0000-0001-8643-9046
https://doi.org/10.1007/978-3-031-78020-2_2

2 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

Contents
1 Introduction 3

1.1 Related Work . 3
1.2 Our Results . 4
1.3 Relation to Witness Encryption . 5

2 Technical Overview 7
2.1 Construction of MC-ABE . 8
2.2 MC-PE from MC-ABE and Lockable Obfuscation 12

3 Preliminaries 15
3.1 Notational Conventions . 15
3.2 Pairing Groups and Hardness Assumptions 16
3.3 Monotone Access Structures and Linear Secret Sharing Schemes 17
3.4 Function-Hiding Slotted Inner-Product Functional Encryption 18
3.5 Identity-Based Encryption . 19
3.6 Lockable Obfuscation . 20

4 Multi-Client Attribute-Based and Predicate Encryption 21

5 Construction of MC-ABE 23
5.1 MC-ABE Without Repetitions . 24
5.2 MC-ABE With Repetitions . 28

6 Construction of MC-PE 36

References 43

David Pointcheval, Robert Schädlich 3

1 Introduction
Attribute-Based Encryption. Attribute-based encryption (ABE) [SW05, GPSW06] is
a powerful generalization of classical public-key encryption that enables fine-grained access
control on encrypted data. In (key-policy) ABE, a ciphertext CTx encrypting a message
µ is generated with respect to a public attribute x while a secret decryption key DKf is
generated with respect to a policy f . The decryption key DKf is authorized to decrypt the
ciphertext CTx if and only if the attribute x satisfies the policy f , i.e. f(x) = 1. Security
requires indistinguishability in the presence of collusion attacks. That is, for any attribute x
and any pair of messages (µ0, µ1), ciphertexts corresponding to (x, µ0) and to (x, µ1) are
indistinguishable, even for adversaries possessing a set of decryption keys {DKfi

}i unless
one of the keys DKfi

is individually authorized to decrypt. A strengthening of this
notion, traditionally referred to as Predicate Encryption (PE) [BW07, SBC+07], requires
ciphertexts to not only hide messages but also their associated attributes.

Decentralized Encryption. Until recently, ABE and PE were solely studied in the
centralized setting, i.e. the considered policies f have arity one. The notions of Multi-Input
ABE (MI-ABE) [BJK+18, AYY22] and Multi-Input PE (MI-PE) [FFMV23] overcome this
limitation by considering n encryptors who each encrypt their inputs (x1, µ1), . . . , (xn, µn)
independently using uncorrelated random coins. The key generator provides decryption
keys for arity n functions f , and a joint decryption recovers (µ1, . . . , µn) if and only
if f(x1, . . . , xn) = 1. As in the single-input case, the security model of MI-ABE only
guarantees to hide the message encoded in a ciphertext while MI-PE hides in addition the
associated attribute.

In practice, the multi-input versions of ABE and PE often seem more realistic as they
allow data to be encrypted in different locations or at different points in time. As an
example, consider a company that stores its client data in encrypted form on a server.
Each employee has their own decryption key which they can use to decrypt parts of the
data depending on the employee’s role. At one point, the company decides to expand and
opens several new branches across the country. Clients should be able to be served from
each branch. This requires that data can be independently encrypted and uploaded to
the central server while still being subject to the global access control for employees. To
implement these requirements, we could use an MI-ABE or MI-PE.

Let us extend the above scenario as follows. First, suppose that one of the company’s
branches falls victim to a hacker attack. Since MI-ABE and MI-PE use the same master
secret key across all encryption slots, an attack on a single branch threatens to compromise
the security of the entire system. Instead, it would be better if a restricted form of security
could be preserved even if a few branches are corrupted. Second, the company’s data might
be time-sensitive in a sense that, say, data from different years should not be authorized
for a joint decryption. To prevent unintended decryptions and the resulting data leakage,
we may wish to equip ciphertexts with timestamps and allow a joint decryption if and only
if all involved ciphertexts share the same timestamp.

To deal with this extended scenario, we introduce two natural generalization of MI-ABE
and MI-PE which we dub Multi-Client ABE (MC-ABE) and Multi-Client PE (MC-PE).
In contrast to MI-ABE and MI-PE, our new notions implement two additional features.
First, they separate the secret keys of the slots and guarantee security even if some of
them are known to the adversary. Second, encryption proceeds with respect to a label
that can be used to realize a timestamp.

1.1 Related Work
The notion of MI-ABE had been studied first by Brakerski et al. [BJK+18] as a new pathway
for achieving witness encryption. However, they did not consider strong security notions

4 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

nor did they provide any constructions. In [AYY22], Agrawal et al. provided the first
constructions for 2-input ABE for NC1 from LWE and a nonstandard assumption on pairings.
They also gave heuristic constructions for 2-input ABE for P and 3-input ABE for NC1.
Additionally, they gave a compiler that lifts a constant-input ABE scheme to a PE scheme
for the same arity and policy class, using a sophisticated nesting technique of lockable
obfuscation which can be based on LWE. In an independent work, Francati et al. [FFMV23]
built MI-PE for conjunctions of (bounded) polynomial-depth circuits from LWE1. Notably,
they can support a polynomial number of inputs. Furthermore, when restricting to constant
arity, they provide a construction that remains secure under user corruptions. On the
negative side, neither of their MI-PE constructions can be proven secure under collusions.
Very recently, Agrawal et al. [ARYY23] presented a constant-arity MI-ABE for NC1 whose
security is based on evasive LWE which is a strong knowledge type assumption. When
additionally assuming tensor LWE, they can upgrade their scheme to support arbitrary
policies in P.

MI-ABE and MI-PE can both be viewed as a special case of the more general primitive
Multi-Input Functional Encryption (MIFE) [GGG+14]. The notion of MIFE has been the
subject of extensive studies resulting in large body of works with various trade-offs between
expressiveness, security, underlying assumptions and efficiency, e.g. [GGG+14, AJ15,
AGRW17, DOT18, ACF+18, CDG+18, Tom19, ABKW19, ABG19, LT19, AGT21, AGT22].
As MIFE for NC1 is known to imply indistinguishability Obfuscation (iO) [BGI+01,
GGH+13] it remains an important area of research to build MIFE schemes for simpler
function classes from assumptions not known to imply iO. Some of these function classes
are still powerful enough to imply MI-ABE. Specifically, Nguyen et al. [NPP22] built the
first attribute-based Multi-Client Functional Encryption (MCFE) for inner products, where
policies are conjunctions of Linear Secret Sharings (LSS). As they consider MCFE instead
of MIFE, their construction supports corruption of users and encryption with respect
to labels. They make use of pairings and proof security under the SXDH assumption.
However, their security model does not allow repetitions2. In [ATY23], Agrawal et al.
presented the first attribute-based MIFE for attribute-weighted sums. The supported
policies are conjunctions of NC1 for a polynomial number of slots. Their construction uses
pairings and is proven secure under the matrix DDH assumption. By plugging the scheme
into the compiler from [AYY22], it can be lifted to MI-PE for constant arity and without
corruptions.

1.2 Our Results
In this work, we introduce the notions of MC-ABE and MC-PE as a generalization of their
multi-input siblings. We discuss our constructions for the two primitives below. For a
comparison with known results, please see Table 1.

MC-ABE for Non-Conjunctions. Prior to our work, all known constructions of
MI-ABE and MI-PE fall into one of two categories: they are either based on standard
assumptions but their supported policies are only conjunctions of local policies [NPP22,
FFMV23, ATY23], or they can handle more complex policy classes such as NC1 or P but
their security proof relies on nonstandard assumptions [AYY22, ARYY23]. We therefore
raise the following question:

1A policy f is said to be a conjunction of a policy class F if there exist policies f1, . . . , fn ∈ F such
that f(x1, . . . , xn) = f1(x1) ∧ · · · ∧ fn(xn).

2Unless stated otherwise, we use the term MCFE as a generalization of MIFE, so it allows multiple
uses of labels. In contrast, a weaker notion of MCFE has been considered in the literature [CDG+18]
where each label can be used only once, thus it does not imply MIFE. We refer to this weaker version as
MCFE without repetitions

David Pointcheval, Robert Schädlich 5

Is it possible to build MI-ABE or MC-ABE from standard assumptions for policies that
are not a conjunction of local policies?

It is well known that MI-ABE for LSS can be generically upgraded to MI-ABE for NC1

via a doubling of the attribute space, and that (polynomial-arity) MI-ABE for NC1 implies
Witness Encryption (WE) for languages that can be verified in NC1 [BJK+18]. Considering
the fact that the construction of WE with NC1 verification from standard assumptions
is still an open problem, it is not surprising that MI-ABE for policies that are not a
conjunction has also remained elusive so far, even for relatively simple policy classes
such as LSS. As previous works [FFMV23, ATY23], we are not able to build MI-ABE
or MC-ABE for a policy class that is powerful enough to trigger the entire chain of
implications up to WE. Nonetheless, we identify various special cases that circumvent the
known implications to WE, thereby giving an affirmative answer to the above question.
Specifically, we present constructions of MC-ABE for the following situations:

1. Small Parameters. If the arity n and the attribute space {0, 1}k are small (more
precisely, they satisfy kn = O(log λ)), then we can build an MC-ABE for all NC1

policies.

2. Simple Policies. If k = n = poly(λ), then we can build MC-ABEs for NC0 policies and
threshold policies with constant threshold, i.e. policies that accept any combination
of at least τ out of the total of kn attributes, where τ = O(1) or τ = kn − O(1).
Note that NC0 policies can only depend on a constant number of inputs whereas
threshold policies depend on all inputs; so they cannot be implemented in NC0.

3. Weaker Security. In the weaker MCFE model without repetitions, we can choose
k = n = poly(λ) and build MC-ABE for the policy class NC1 and no user corruptions,
or for the policy class LSS with user corruptions.

We discuss the relation between our constructions and the (non-)implications to WE in
more detail below.

From MC-ABE to MC-PE. In [AYY22], the authors present two generic compilers
that lift an MI-ABE scheme to MI-PE for the same policy class. The first one can deal
with any constant arity but works only in a weak security model where the adversary must
not obtain valid decryption keys for any ciphertext, even if the ciphertext corresponds
to a “non-challenge” encryption query (x, µ0, µ1) where µ0 = µ1. Note that the ability
to decrypt such non-challenge ciphertexts does not render the security game trivial and
admitting this kind of queries yields a stronger security model. Indeed, their second
compiler allows the decryption of non-challenge ciphertexts, but works only for arity 2.

In this work, we present a new generic compiler that works for a constant number
of inputs and achieves the stronger security model. Moreover, it can deal with labels
and corruption of users, thus turning MC-ABE into MC-PE. Similar to [AYY22], our
construction relies on lockable obfuscation whose security can be based on LWE.

1.3 Relation to Witness Encryption
A witness encryption (WE) scheme for an NP relation R defined over a language L allows
a sender to efficiently encrypt a message µ with respect to a problem instance x. A
receiver holding a witness w can recover the message µ if (x, w) ∈ R. Security requires
that ciphertexts for messages µ0 and µ1 are computationally indistinguishable if x /∈ L.
The authors of [BJK+18] define a relaxation of classical WE that they call non-trivially
eXponentially efficient WE (XWE), where the runtime of the encryption algorithm for
witnesses of length n is Õ(2γn) for some constant γ < 1 called the compression factor.

6 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

Table 1: Comparison with existing works in MI-ABE and MI-PE

Work Arity Attribute1 Collusion Corruption Labels Policy
Class Assumptions

[AYY22] 2 private ✓ ✗ ✗ NC1 KOALA2,
LWE

[ARYY23] const private ✓ ✗ ✗

NC1 Evasive LWE3

P Evasive and
Tensor LWE

[NPP22] poly public ✓ ✓ OT4 Conjunctions
of LSS SXDH

[FFMV23]
poly

private ✗
✗

✗
Conjunctions

of P LWE
const ✓

[ATY23] poly public ✓ ✓ ✗
Conjunctions

of NC1 Matrix DDH

[ATY23]
+ [AYY22] const private ✓ ✗ ✗

Conjunctions
of NC1

Matrix DDH,
LWE

Sec. 5.1 poly public ✓
✓

OT
LSS

SXDH
✗ NC1

Sec. 5.2
log5

public ✓ ✓ ✓

NC1

SXDH
poly NC0 or const

threshold

Sec. 5.2
+ Sec. 6 const6 private ✓ ✓ ✓ NC1 SXDH, LWE

[ATY23]
+ Sec. 6 const private ✓ ✓ ✗

Conjunctions
of NC1

Matrix DDH,
LWE

1 Public attributes correspond to ABE and private attributes to PE.
2 KOALA is a nonstandard knowledge type assumption on pairings.
3 Evasive LWE is a nonstandard knowledge type assumption on lattices.
4 OT refers to one-time labels, i.e. the weaker MCFE model without repetitions.
5 More precisely, the scheme’s arity n and attribute space {0, 1}k are subject to the

condition kn = O(log λ).
6 The limitation from 5 is still in place and translates into k = O(log λ). Therefore,

it does not include the next row which allows only conjunctions but k = poly(λ).

In [BJK+18], the authors show that n-input ABE for a policy class F implies WE
for relations with length n witnesses whose verification algorithm is in F . If n = poly(λ)
and F = P, we obtain WE for all NP relations. But even for smaller arity or simpler
policy classes there are nontrivial implications. Since there are NP relations that can be
verified in NC1 (e.g. 3-SAT), MI-ABE for NC1 policies already implies WE for certain NP
relations. Furthermore, it is shown that n-input ABE for n < poly(λ) implies XWE with
a compression factor of γ = 1/(n + 1). Plugging the two-input ABE from [AYY22] or the
O(1)-input ABE from [ARYY23] into the conversion to XWE, one obtains compression

David Pointcheval, Robert Schädlich 7

factors of γ = 1/3 and γ = 1/O(1), respectively; although the latter result may be
less interesting as their hardness assumption, evasive LWE, is already known to imply
WE [Tsa22, VWW22]. When relying on standard assumptions, the best known compression
factor is still γ = 1/2 which corresponds to a classical single-input ABE scheme, and
any improvement would be highly interesting. Unfortunately, all our constructions fail to
improve the compression factor due to the following reasons. (1) We either need n = poly(λ)
and k = 1 in which case we immediately get (polynomially efficient) WE, or n < poly(λ)
and k = poly(λ) in which case we obtain XWE with compression factor 1/(n + 1). If
both k, n < poly(λ), it is unclear how the compression factor could be improved. (2) NC0

or constant-threshold policies are not powerful enough to verify an NP language. (3) The
weaker MC-ABE model without repetitions does not imply MI-ABE, thus fails to imply
(X)WE.

The work [FFMV23] presents an interesting alternative pathway towards WE. If the MI-
ABE is secure under corruptions, then a two-input scheme for conjunctions of some policy
class F implies WE for any relation whose verification algorithm lies in F . Importantly, for
the conversion of [FFMV23] to work, the first slot must have a wildcard while the second
slot must not. This property is achieved by all our constructions. However, even in this case
our construction for NC1 fails to imply WE because for n = 2, the constraint kn = O(log λ)
translates into k = O(log λ) which is not enough as witnesses must be of polynomial
length.

2 Technical Overview
We first introduce our new primitives MC-ABE and MC-PE. Our syntax closely fol-
lows [ARYY23]. Specifically, the 0-th client (the “encryptor”) runs an algorithm Enc which
takes as input a label lab0, an attribute x0 and a message µ to create a ciphertext CTlab0,x0 .
The other clients 1, . . . , n− 1 (the “attribute key generators”) run an algorithm AKeyGen
which takes only a label labi and an attribute xi to generate a decryption key DKlabi,xi

.
Policy decryption keys DKf for a policy f are generated by a central authority which
runs an algorithm PKeyGen. CTlab0,x0 can be decrypted using {DKlabi,xi

}i and DKf if
lab0 = · · · = labn−1 and f(x0, . . . , xn−1) = 1. For MC-ABE security, we require the usual
ciphertext indistinguishability against collusion attacks under corruptions. MC-PE security
additionally considers left-or-right queries for attributes in both slot 0 ciphertexts and
slot i attribute decryption keys for all i ∈ [n− 1]. This leads to a subtle yet important
difference in the security models. In MC-ABE, the encryption oracle of client 0 is the
only left-or-right (“challenge”) oracle. In this case, public-key security is stronger than
secret-key security which is why we provide client 0 with a master public key MPK and all
other clients i ∈ [n− 1] with a secret key SKi. In MC-PE on the other hand, the oracles
of all clients take left-or-right queries. Now considering a public encryption algorithm
would actually make the primitive weaker due to inevitable leakage. This is a well-known
phenomenon in the context of MIFE and MCFE in general. For this reason, we consider
MC-PE in the secret-key setting where the encryptor takes a secret key SK0 instead of a
public key MPK. We summarize the syntax as follows:

Client 0 : Enc(MPK/SK0, lab, x0, µ)→ CTx0

Client i ∈ [n− 1] : AKeyGen(SKi, lab, xi)→ DKxi

Authority : PKeyGen(MSK, f)→ DKf

For completeness, we mention that MC-ABE and MC-PE can also be considered in an
n-message setting where not only the 0-th but all slots encrypt a message. In [AYY22], it
was shown that a single-message MI-ABE scheme can be generically lifted to an n-message
scheme. The conversion is extremely simple and basically runs n single-message schemes
in parallel with rotated slots. The same technique generalizes to MC-ABE and MC-PE.

8 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

2.1 Construction of MC-ABE
Ingredients to our Constructions. Let G = (G1,G2,Gt, g1, g2, gt, e, p) be a pairing
group. For i ∈ {1, 2, t} and a ∈ Zp, we write JaKi = ga

i and use additive notations for the
group operations.

An inner-product functional encryption (IPFE) scheme based on G enables the genera-
tion of ciphertexts iCT(JxK1) associated with vectors x ∈ ZN

p encoded in G1 and decryption
keys iDK(JyK2) for vectors y ∈ ZN

p encoded in G2 such that the decryption of iCT(JxK1)
with iDK(JyK2) reveals only the inner product Jx⊤yKt of x and y encoded in Gt and hides
all other information about x whereas JyK2 is usually public. When we use several IPFE
schemes in parallel, we add an index to indicate the respective instance, e.g. for the i-th
IPFE instance, we write iCTi(JxK1) and iDKi(JyK2).

In the same vein, identity-based encryption (IBE) allows creating ciphertexts idCT(i, µ)
associated with an identity i for a message µ, and decryption keys idDK(i′) associated
with an identity i′. Decryption is possible if i = i′.

Given a vector x ∈ {0, 1}k, we write Πx = {j ∈ [k] : x[j] = 1}. A linear se-
cret sharing (LSS) scheme allows to decompose a secret scalar s ∈ Zp into a vector of
shares Share(s, f)→ s ∈ Zk

p with respect to some policy f : {0, 1}k → {0, 1} such that s

can be reconstructed from a subset of the shares {s[j]}j∈Πx for x ∈ {0, 1}k if and only
if f(x) = 1. For this reconstruction, there exists an efficient algorithm FindCoef(Πx, f)
that outputs coefficients ω1, . . . , ωk such that ωj = 0 for all j /∈ Πx and

∑
j∈[k] ωjs[j] = s.

Key-Policy ABE for LSS Policies. Our starting point is a technique that combines
IPFE with secret sharing schemes. The same approach has recently been used to build
ciphertext-policy ABEs with interesting new features [AWY20, AG21, LLL22, AG23].
Very roughly, these works view a secret sharing as a weak form of one-time, non-collusion
resistant ABE, which is then lifted to full ABE using IPFE. To encrypt a message µ from a
polynomial-size space3 under a policy f , they generate secret shares Share(µ, f)→ s ∈ Zk

p

and encode them in the ciphertexts of k independent IPFE instances. To generate a key
for an attribute vector x ∈ {0, 1}k, one picks a uniformly random scalar r and generates
IPFE secret keys of r for those IPFE instances that correspond to indices in Πx:

CP-ABE.CTf : {iCTj(Js[j]K2)}j∈[k]

CP-ABE.DKx : JrKt,
{

iDKj(JrK1)
}

j∈Πx

}
JrKt,

{
Jr · s[j]Kt

}
j∈Πx

IPFE decryption yields target group encodings of rs[j] for all j ∈ Πx. If f(x) = 1, one can
run FindCoef(Πx, f)→ {ωj}j and recover the product r · µ encoded in Gt:∑

j∈Πx
ωjJr · s[j]Kt =

r
r ·

∑
j∈Πx

ωj · s[j]
z

t
= Jr · µKt

Then one can find µ by solving the discrete logarithm of Jr · µKt in basis JrKt. Under an
appropriate hardness assumption, the presence of r prevents adversaries from meaningfully
“combining” information obtained from decryptions with different ABE decryption keys.

To turn this into a key-policy scheme, the obvious idea is to flip ciphertexts and
decryption keys. However, there is one subtlety: when generating a secret sharing for a
policy f during the key generation, the message µ is not known. So one cannot generate
secret shares of µ. Therefore, we generate the secret sharing for a random scalar s which
is used to mask µ. Then one uses another IPFE instance to enable decryption:

KP-ABE.CTx : iCT0(Jr, µK1), {iCTj(JrK1)}j∈Πx

KP-ABE.DKf : iDK0(Js, 1K2), {iDKj(Js[j]K2)}j∈[k]

}
Jr · s + µKt,

{Jr · s[j]Kt}j∈Πx

3The restriction to a polynomial-size message space is only for notational convenience throughout
the technical overview. For superpolynomial size, one can simply view the construction as a KEM with
messages in Gt that can be used as a one-time pad.

David Pointcheval, Robert Schädlich 9

Similar to above, if f(x) = 1, one can run FindCoef(Πx, f) → {ωj}j and recover the
message µ encoded in Gt:

Jr · s + µKt −
∑

j∈Πx
ωjJr · s[j]Kt = Jr · s + µKt −

r
r ·

∑
j∈Πx

ωjs[j]
z

t
= JµKt

MC-ABE for LSS Without Repetitions. We next discuss how the generation of
the ciphertext CTx can be distributed so as to turn the above key-policy ABE into an
MC-ABE. A natural approach is to follow [CDG+18, NPP22] who construct (Decentralized)
MCFE for inner products. Even though not explicitly stated as such, they essentially
use an independent IPFE instance for each client, and the common randomness r in
the ciphertexts facing a secret sharing (s[j])j in the decryption keys is provided by a
random oracle. Translating this idea into our context, each client i ∈ [0; n− 1] holds
the master secret keys of k independent IPFE instances, where k is the dimension of
the attribute vectors4. The 0-th client additionally holds iMSK0 as it takes the message
input. To obtain the common random scalar JrK1 encoded in G1, we use a hash func-
tion H : {0, 1}∗ → G1. To generate a decryption key for an attribute vector xi ∈ {0, 1}k

with respect to a label lab, the corresponding client i ∈ [n− 1] computes JrK1 ← H(lab) and
issues {iCTi,j(JrK1)}j∈Πxi

. Similarly, to encrypt a message µ with respect to x0 ∈ {0, 1}k,
the 0-th client computes {iCT0,j(JrK1)}j∈Πx0

and additionally provides iCT0(Jr, µK1). De-
cryption keys DKf for policies f are still generated by a central authority, so the policy
key generation algorithm does not need to be modified. This leads us to the following
MC-ABE for LSS:

MC-ABE.CTx0 : iCT0(Jr, µK1),
{

iCT0,j(JrK1)
}

j∈Πx0

MC-ABE.DKxi
:

{
iCTi,j(JrK1)

}
j∈Πxi

MC-ABE.DKf : iDK0(Js, 1K2),
{

iDKi,j(Js[i, j]K2)
}j∈[k]

i∈[0;n−1]


Jrs + µKt,{
Jrs[i, j]Kt

}j∈Πxi

i∈[0;n−1]

where JrK1 ← H(lab) and s[i, j] denotes the entry of the share vector corresponding to
the j-th coordinate of xi for i ∈ [0; n− 1] and j ∈ [k]. The security notion that we can
achieve for this scheme suffers from the same limitations as [CDG+18, NPP22]; most
importantly, we cannot prove security under repetitions. Moreover, not being able to
prove security under repetitions implies that the encryption algorithm must take a secret
key, as otherwise the adversary could create multiple ciphertexts under the same label by
herself. The reason for these restrictions is the fact that our only source of randomness is
the random oracle whose only input is the label. Hence, to achieve security in a stronger
model, our first step is to remove the random oracle from the construction.

Removing the Random Oracle and Enabling Public Encryption. In our first
attempt above, the random oracle provides common randomness across independently
generated ciphertexts and keys. Clearly, this is not possible anymore without a random
oracle. Therefore, it seems inevitable to have one client (say, the 0-th) generate all the IPFE
ciphertexts {iCTi,j(JrK1)}i,j . However, when generating CTx0 , the vectors x1, . . . , xn−1
are unknown, so it is unclear which iCTi,j(JrK1) for i > 0 should be included in CTx0 .

As a solution, we let client 0 generate all ciphertexts {iCTi,j(JrK1)}j∈[k]
i∈[n−1], but instead

of providing them “in the clear”, we hide them with an additional layer of identity-based
encryption. Specifically, the 0-th client encrypts each iCTi,j(JrK1) with respect to the
identity (lab, j) using the public key of client i. Correspondingly, client i ∈ [n− 1] provides
the identity-based decryption keys idDKi(lab, j) for each j ∈ Πxi

needed to recover the
4Ciphertexts and decryption keys corresponding to the j-th IPFE scheme of client i are denoted

by iCTi,j and iDKi,j .

10 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

IPFE ciphertexts generated by client 0. This idea yields the following MC-ABE for LSS in
the standard model:

CTx0 :

iCT0(Jr, µK1),
{

iCT0,j(JrK1)
}

j∈Πx0{
idCTi

(
(lab, j), iCTi,j(JrK1)

)}j∈[k]
i∈[n−1]


DKxi

:
{

idDKi(lab, j)
}

j∈Πxi

DKf : iDK0(Js, 1K2),
{

iDKi,j(Js[i, j]K2)
}j∈[k]

i∈[0;n−1]


Jr · s + µKt,{
Jr · s[i, j]Kt

}j∈Πxi

i∈[0;n]
(1)

Here, r $← Zp is a fresh random scalar for each ciphertext. Due to this fact, the scheme
remains secure even under several encryption queries for the same label and, in particular,
enables a public encryption algorithm. Indeed, if each encryption samples a fresh r $← Zp,
then each message JµKt is hidden by a fresh looking mask Jr · sKt. So the ability to create
ciphertexts by herself does not help the adversary to recover information from a challenge
ciphertext anymore.

On the negative side, the scheme in (1) is still not secure under repetitions for slots i ∈
[n− 1]. For example, consider an adversary that submits queries for decryption keys DKxi

and DKx′
i

for two attribute vectors xi, x′
i ∈ {0, 1}k. Then DKyi

:= DKxi
∪ DKx′

i
is a

decryption key for the vector yi ∈ {0, 1}k having a 1 in all coordinates j ∈ [k] where 1 ∈
{x[j], x′[j]}. Thus, DKyi

may be used to decrypt ciphertexts that cannot be decrypted by
neither DKxi nor DKx′

i
.

MC-ABE for LSS With Repetitions. To achieve security under repetitions for
slots i ∈ [n− 1], we must make sure that multiple decryption keys for the same label-slot
pair (lab, i) cannot be combined in a meaningful way as it is possible for the scheme
in (1). In other words, all components of a decryption key DKxi

should “depend on”
the entire vector xi instead of only a single coordinate xi[j]. To this end, we now
let DKxi

= idDKi(lab, xi) as opposed to {idDKi(lab, j)}j∈Πxi
. Then security of the MC-

ABE under repetitions directly corresponds to the collusion resistance of the employed
IBE.

On the other hand, correctness is no longer straightforward. This is because a successful
decryption using the new keys requires the 0-th client to provide encryptions of the
IPFE ciphertexts {iCTi,j(JrK1)}i,j with respect to identities that depend on attribute
vectors x1, . . . , xn−1. These vectors are not given as input and, thus, are unknown at
encryption time. Moreover, decryption with a key DKf is supposed to work with any
combination of x1, . . . , xn−1 satisfying f(x0, . . . , xn−1) = 1. Therefore, the problem is not
only that these attribute vectors are unknown, but in general there can be many possible
choices that should allow decrypting. In particular, when f is the constant function
that always outputs 1, then decryption must succeed for any choice of x1, . . . , xn−1.
This observation ultimately forces the encryptor to provide encryptions of the IPFE
ciphertexts {iCTi,j(JrK1)}j with respect to every identity (lab, xi) such that xi ∈ {0, 1}k,
for i ∈ [n− 1]. More precisely, a ciphertext CTx0 for a message µ consists of the following
components:

CTx0 :

iCT0(Jrx, µK1),
{

iCT0,j(JrxK1)
}

j∈Πx0
,{

idCTi

(
(lab, xi), iCTi,j(JrxK1)

)}j∈Πxi

i∈[n−1]


x=(x1,...,xn−1)∈{0,1}(n−1)k

(2)

where rx
$← Zp for each x ∈ {0, 1}(n−1)k. It is clear that these ciphertexts have exponential

size if k or n are chosen too large. However, it remains polynomial if one chooses
e.g. k · n = O(log λ) which gives |{0, 1}(n−1)k| = poly(λ).

David Pointcheval, Robert Schädlich 11

Upgrading the Policy Class to NC1. Let f be a policy specified by an NC1 circuit
over the variables (x0, . . . , xn−1) ∈ {0, 1}[0;n−1]×[k]. We can view f as a Boolean formula
consisting of (fan-in 1) ¬ gates and (fan-in 2) ∧ and ∨ gates. Using De Morgan laws, we
can push the ¬ gates to the leaves such that all internal nodes consist only of ∧ and ∨
gates, while leaves are labeled by either attributes or their negations. In this way, we
obtain a monotone formula f : {0, 1}[0;n−1]×[k]×{0,1} → {0, 1} that is “equivalent” to f in
the following sense. For each x ∈ {0, 1}[k], we define the extended vector x ∈ {0, 1}[k]×{0,1}

component-wise via x[(j, 1)] = x[j] and x[(j, 0)] = 1 − x[j] for each j ∈ [k]5. Then we
have f(x0, . . . , xn−1) = f(x0, . . . , xn−1) for each (x0, . . . , xn−1). Lewko and Waters [LW11]
presented an LSS for all monotone access structures which implies that f can be captured
by an LSS.

Given an MC-ABE aFE for LSS policies f : {0, 1}[0;n−1]×[k]×{0,1} → {0, 1}, we can
build an MC-ABE aFE for NC1 policies f : {0, 1}[0;n−1]×[k] → {0, 1} by simply replacing
the inputs x0, . . . , xn−1 and f with x0, . . . , xn−1 and f . In general, aFE is only secure
if the adversary is not allowed to corrupt users. To see this, we first note that there
exist vectors x ∈ {0, 1}[k]×{0,1} that are not an extension of a vector x ∈ {0, 1}[k]. More
precisely, x is an extension of some x if and only if x[j, 0] = 1− x[j, 1] for all j ∈ [k]. Let
us call such vectors x valid. By construction, an aFE decryption key for a vector xi is
an aFE decryption key for the extended vector xi. Therefore, to reduce the security of aFE
to the security of aFE, we must argue that the adversary cannot obtain aFE decryption
keys for vectors that are not valid. Without corruptions, this is easy to see. However,
if the adversary can obtain a client’s secret key, then this is no longer the case, as the
adversary could generate decryption keys for invalid vectors by herself. Thus, using this
conversion generically, we can convert the schemes in (1) and (2) into MC-ABEs for NC1

without corruptions.
Moreover, we can even achieve security with corruptions when performing a concrete

security analysis for the scheme in (2). For this, we recall that the secret key SKi of some
client i ∈ [n− 1] consists of an IBE master secret key that is used to generate decryption
keys for identities (lab, xi). Even though this key could be maliciously used to generate
decryption keys for invalid vectors xi, this does not help to win the security game as these
identities do not occur in the challenge ciphertext.

Other Policy Classes. We recall from (2) that our scheme becomes inefficient when we
choose k, n = poly(λ) since then there is an exponential number of x = (x1, . . . , xn−1) ∈
{0, 1}[n−1]×[k]. Nevertheless, there exist nontrivial subclasses of NC1 which do not require
to consider all x during the encryption procedure.

• NC0 Policies. The output of an NC0 policy f depends only on a set L of size τ = O(1)
out of the total of kn inputs. As the remaining kn−τ inputs can be chosen arbitrarily
without changing the output, it suffices to consider vectors x that are 0 outside L.
There are

(
kn
τ

)
≤ (kn)τ = poly(λ) possible sets L and for each choice we only need

to consider 2τ = O(1) vectors x.

• Threshold Policies with Constant Threshold. Threshold policies with a threshold τ ≤
O(1) are not in NC0 as they depend on all kn inputs. However, they have the
property that each authorized set also has an authorized subset of size τ . This
allows an argument similar to above where we only deal with subsets L of size τ .
Symmetrically, we can also handle policies with a threshold kn− τ where we consider(

kn
kn−τ

)
≤ (kn)τ = poly(λ) sets L of size kn− τ .

While the idea is simple, the concrete implementation requires some care because it must
5We can think of x as a vector of length 2k whose coordinates are indexed by the set [k] × {0, 1} for

convenience.

12 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

be guaranteed that the choices of L in the 0-th client remain compatible with the IBE
keys provided by the other clients. For details, please see Section 5.2.

Security. To get a grasp of the security proof, it is instructive to first consider the case
where the IPFE is simulation secure. This means the only values that the adversary learns
are

• encodings JsK2 of random scalars s $← Zp sampled during the key generation and
their corresponding share vectors JsK2, and

• target group encodings of the form Jr · s + µKt (IPFE instance 0) and Jr · s[i, j]Kt
(IPFE instance (i, j)) for random scalars r $← Zp sampled during the encryption of
the challenge message.

Importantly, nothing about r is leaked in G1. So we can rely on the DDH to obtain a fresh
looking mask Jr · sKt with a fresh share vector Jr · sK2 for each combination of r and s.
Then we can exploit the one-time security provided by the LSS scheme to replace the
individual secret sharings with random values: by the admissibility of the adversary, there
does not exist any pair (r, s) such that the adversary has sufficient information about a
subset of shares that allows her to recover the mask Jr · sKt. Instead, they look uniformly
random and, thus, perfectly hide the challenge message.

Unfortunately, simulation security for many ciphertexts is known to be impossible in the
standard model [BSW11]. Therefore, we can only rely on an IPFE with indistinguishability-
based security. This makes the proof slightly more complex since we cannot directly
conclude anymore that the adversary learns the scalars r only as part of the inner products
encoded in Gt. To circumvent this problem, we use a primitive called slotted IPFE [LL20a]
which is a mix between public-key and private-key IPFE that provides standard security
on the public part and additionally hides the function vectors in the private part. Using
this primitive, we can move the scalar r from the message vectors encoded in G1 into a
hidden coordinate of the function vectors in G2. Subsequently, we can rely on the DDH
in G2 and proceed with the proof as in the case of simulation security.

Finally, we want to mention an important detail that occurs during the security proof.
The adversary’s admissibility condition only covers the case when she obtains at least one
key for each slot (via either corruption or attribute key generation queries). Therefore, we
must protect against so-called incomplete queries, where the adversary does not submit
a query for every slot, but still has sufficient information to decrypt. In the context of
IPFE (without access control) this can be done using a primitive called all-or-nothing
encoding [CDSG+20]. In the context of attribute-based MIFE for attribute-weighted
sums, [ATY23] uses a ciphertext-policy ABE for arithmetic branching programs which
was recently proposed by Lin and Luo [LL20b]. In our case, we can avoid the usage of a
complex primitive like ABE because we can model the completeness condition as part of
our policies. This is feasible since our construction can check a global condition before
releasing any information. Previous works considered only conjunctions of local checks in
each slot which is not powerful enough to verify completeness.

2.2 MC-PE from MC-ABE and Lockable Obfuscation
Lockable Obfuscation. We employ a primitive called lockable obfuscation (LO) [GKW17,
WZ17]. Roughly speaking, LO allows to obfuscate a circuit C with respect to a message µ
and a lock value σ. Correctness asks that an evaluation of the obfuscated circuit on some
input x yields µ if C(x) = σ and ⊥ otherwise. Simulation security requires that if σ looks
random to the adversary, then the obfuscated circuit is computationally indistinguishable
from a garbage program that does not carry any information about µ or C.

David Pointcheval, Robert Schädlich 13

The Compilers of [AYY22]. The authors of [AYY22] present two compilers from
MI-ABE to MI-PE which nest several obfuscated circuits in a sophisticated manner. Very
roughly, the obfuscated circuit C̃0 for the zeroth slot takes as input another obfuscated
circuit C̃1 for the first slot, which in turn takes an obfuscated circuit C̃2 for the second
slot and so on until one arrives at the last slot n − 1. C̃0 is generated with respect to
an attribute x0 and a message µ whereas the other C̃i’s only depend on an attribute xi.
The crucial part of the construction is to establish “communication” between consecutive
circuits without violating attribute privacy. The idea is to build a recursive evaluation
chain where the innermost circuit checks the condition f(x0, . . . , xn−1) = 1 using the
MI-ABE; and a successful evaluation of an obfuscated circuit C̃i, for i ∈ [n− 1], unlocks
the lock and reveals a secret which is needed for a successful evaluation of C̃i−1.

In their first compiler, these secret values are global secrets. This leads to a straight-
forward construction as all clients know these common secrets when they obfuscate their
circuits. However, the supported security model is weak. This is because once the adversary
submits any combination of oracle queries that enables a valid decryption process, these
global secrets are revealed and security collapses even if all involved oracle queries have the
same left and right input. To achieve security in a stronger model, their second compiler
avoids these global secrets. However, this makes the construction more complex, and they
are able to deal with only two slots. Our new construction can be viewed as a generalization
of this arity-2 compiler to any constant arity. We therefore recall the arity-2 construction
as a warm-up.

Construction in the Two-Input Setting. We start from an MI-ABE (aSetup,
aEnc, aAKeyGen, aPKeyGen, aDec). For notational convenience, we use the shorthand nota-
tions aCTℓ(x0, µ), aDKℓ(i, xi) and aDKℓ(f) to denote executions of aEncℓ(aMPKℓ, x0, µ),
aAKeyGen(aSKℓ,i, xi) and aPKeyGen(aMSKℓ, f), for two independently generated aFE in-
stances (aMPKℓ, aMSKℓ, {aSKℓ,i}i) ← aSetup(1λ) indexed by ℓ ∈ {0, 1}. The MI-PE
encryptor (client 0) possesses (aMPK0, aSK1) and the attribute key generator (client 1) pos-
sesses (aMPK1, aSK0). The master secret key contains the ABE master secret keys (aMSK0,
aMSK1). To encrypt a message µ with respect to an attribute x0, client 0 samples a ran-
dom lock value σ0 and computes aCT0(x0, σ0) and aDK1(1, x0). The final ciphertext is an
obfuscation C̃0 of a circuit C0[aCT0(x0, σ0), aDK1(1, x0)] with respect to the message µ and
lock value σ0. The notation C[α] indicates that the value α is hardwired in the description
of the circuit C. Similarly, to produce a decryption key with respect to an attribute x1,
client 1 samples a lock value σ1, generates aCT1(x1, σ1) and aDK0(1, x1) and outputs
an obfuscation C̃1 of a circuit C1[aCT1(x1, σ1)] with respect to the message aDK0(1, x1)
and lock value σ1. An MI-PE decryption key consists of a set of MI-ABE decryption
keys {aDK0(f), aDK1(f)}.

The pivotal point that makes the whole scheme work is the definition of the circuits.
Specifically, decryption evaluates the obfuscated outer circuit C̃0 on input the obfuscated in-
ner circuit C̃1 and the MI-ABE keys {aDK0(f), aDK1(f)}. Suppose that f(x0, x1) = 1. For
a successful decryption, we must unlock C̃0. The lock value σ0 is already hardwired in the
circuit C0[aCT0(x0, σ0), aDK1(1, x0)], however it is hidden in the ciphertext aCT0(x0, σ0).
To decrypt this ciphertext, we need the decryption key aDK0(1, x1) embedded in C̃1. For
this reason C0[aCT0(x0, σ0), aDK1(1, x0)] starts by evaluating C̃1 on input (aDK1(1, x0),
aDK1(f)). From its inputs, the inner circuit C1[aCT1(x1, σ1)] obtains everything it needs
to decrypt its hardwired ciphertext aCT1(xa, σ1) and to recover the correct lock value σ1
which unlocks C̃1 and reveals aDK0(1, x1). At this point, C0[aCT0(x0, σ0), aDK1(1, x0)] can
perform a similar computation by decrypting the ciphertext aCT0(x0, σ0) and recovering σ0.
This eventually unlocks C̃0 and outputs µ. Importantly, this construction does not use
global secrets, hence its security is not compromised after one successful decryption.

14 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

Generalization to Constant-Arity MC-ABE. Our new compiler generalizes this
framework to more than two slots and the more general MC-PE model. We will use
independent MC-ABE instances for each slot to check if decryption is permitted, and each
MC-PE client holds the key of one slot from each MC-ABE instance. Specifically, we let
client i ∈ [0; n− 1] control

• the i-th slot of the MC-ABE instances ℓ ∈ [0; i− 1],

• the 0-th slot of the MC-ABE instance ℓ = i, and

• the (i + 1)-th slot of the MC-ABE instances ℓ ∈ [i + 1; n− 1].

In particular, we note that each MC-PE client is the encryptor in exactly one of the
MC-ABE schemes.

To encrypt a message µ with respect to a label lab and an attribute x0, client 0 samples
a random lock value σ0 and creates aCT0(lab, x0, σ0) and aDKℓ(lab, 1, x0) for all ℓ ∈ [n− 1].
Then, it issues an obfuscation of a circuit C0[aCT0(lab, x0, σ0), {aDKℓ(lab, 1, x0)}ℓ∈[n−1]]
generated with respect to the message µ and the lock value σ0. Similarly, to generate
a key for a label lab and an attribute xi, client i ∈ [n− 1] samples a lock value σi

and creates aCTi(lab, xi, σi), aDKℓ(lab, i, xi) for ℓ ∈ [0; i− 1], and aDKℓ(lab, i + 1, xi) for
i ∈ [i + 1; n− 1]. Then it outputs an obfuscation of a circuit Ci[aCTi, {aDKℓ(lab, i +
1, xi)}ℓ∈[i+1;n−1]] generated with respect to the message {aDKℓ(lab, i, xi)}ℓ∈[0;i−1] and lock
value σi. Decryption keys for a policy f are a set of MC-ABE keys {aDKℓ(f)}ℓ∈[0;n−1].

As in the two-input case, the crucial point is to establish communication between the
obfuscated circuits in a secure way. However, the nested evaluations become more complex
now. We first observe the following properties satisfied by all obfuscated circuits C̃i

for i ∈ [0; n− 1]:

1. Decryption keys aDKℓ(lab, i + 1, xi) for ℓ > i are hardwired in the description of the
circuit. This means they can be accessed during the evaluation of C̃i and passed as
input to the evaluation of C̃j for j > i.

2. Decryption keys aDKℓ(lab, i, xi) for ℓ < i are stored as the message of C̃i which is
revealed in case of a successful evaluation. This means they can be recovered and
used during the evaluation of C̃j for j < i.

Suppose that f(x0, . . . , xn−1) = 1. Decryption evaluates C̃0 on input the obfuscated
circuits {C̃i}i∈[n−1] and the MC-ABE keys {aDKℓ(f)}ℓ∈[0;n−1]. The lock value of C̃0 is
hidden in its hardwired ciphertext aCT0(lab, x0, σ0). To decrypt this ciphertext, we need
the keys {aDK0(lab, i, xi)}i∈[n−1] stored in the messages of {C̃i}i∈[n−1], so we need to
evaluate them first. Specifically, via a chain of recursive calls where each C̃i invokes
the evaluation of C̃i+1, we arrive at the evaluation of C̃n−1. From property 1, it follows
that C̃n−1 receives as input all the keys {aDKn−1(lab, i, xi)}i∈[n−1] to decrypt its hardwired
ciphertext aCTn−1(lab, xn−1, σn−1) and to recover the lock value σn−1. In this way, C̃n−1
can be unlocked and its message revealed. In the next step, it follows from property 2 that
now the evaluation of C̃n−2 has everything it needs to perform a similar computation to
recover σn−2 and unlock C̃n−2, and so on.

While at first glance it may seem that this decryption procedure is efficient for any
(polynomial) number of slots, there is a subtle problem: each obfuscation increases the size
of the circuit by a polynomial factor. As we nest the evaluation of the circuits, this leads
to an exponential blow-up in the number of slots. Therefore, the decryption algorithm is
only efficient for n = O(1), i.e. constant arity.

David Pointcheval, Robert Schädlich 15

Security. The security proof is a simple sequence of hybrids over all slots from n − 1
to 0. In each hybrid, if f(x0, . . . , xn−1) = 0, then we can rely on the security of the
i-th MC-ABE instance to replace the ciphertext aCTi(xi, σi) hardwired in C̃i with a
ciphertext of the zero string aCTi(xi, 0). Then the lock value σi appears random to the
adversary and the obfuscated circuit C̃i can be replaced with a simulated obfuscation
that carries no information about xi. In the last step, we replace C̃0 with a simulation
that erases all information about x0 and µ. We stress the importance of the fact that
the global authorization is checked in each obfuscated circuit independently. Clearly, if a
client i ∈ [0; n− 1] is compromised, then the adversary can pick arbitrary attributes xi

and generate MC-ABE decryption keys aDKℓ(lab, i + 1, xi) for ℓ > i and aDKℓ(lab, i, xi)
for ℓ < i. But this does not help as long as the other clients j ∈ [0; n− 1] \ {i} do not
provide obfuscated circuits C̃j for attributes xj such that f(x0, . . . , xn−1) = 1 for at least
one attribute xi. This is because the condition f(x0, . . . , xn−1) = 1 is checked in each
obfuscated circuit C̃j using its own independent MC-ABE instance.

Comparison with [FFMV23]. The authors of [FFMV23] build single-key MI-ABE for
conjunctions of P. Their nesting technique bears similarities with ours which, in particular,
leads to the same limitation that n = O(1). The key difference between the constructions
is that they start from a single-input PE whereas we start from a multi-client ABE. This
has a significant impact on the supported policy classes as well as the achieved security
level.

For the former, we recall that single-input PE exists for powerful policy classes [GVW15],
which is why their construction can evaluate arbitrary local predicates in each slot, but
globally they are restricted to conjunctions. On the other hand, MC-ABE from standard
assumptions is only known for simple policy classes (also constructed in this work).
Nonetheless, these policies are not a conjunction, so the schemes’ supported policy classes
are incomparable.

To see the impact on security, we recall from the above sketch of the security proof
that it is crucial to check the global authorization in each obfuscated circuit. Clearly, this
is impossible with a single-input PE scheme. (Otherwise, we already had a multi-input
PE scheme and there was no need for a compiler). For this reason, the security argument
in [FFMV23] relies on the fact that there must exist a (fixed) non-corrupted slot i such
that the local predicate is not satisfied for any attribute xi that is input to a slot-i oracle
query. In this case, the chain of nested evaluations breaks at slot i and the message
embedded in C̃0 remains hidden. For two decryption keys DKf and DK′

f , the evaluation
chains could break at different slots i ̸= i′. So while these keys might not be individually
authorized for decryption, together they could be used to establish a complete decryption
chain, which is the reason that the scheme in [FFMV23] is not secure under collusions.
On the other hand, our MC-ABE scheme allows to check the global predicate in each
step of the nested evaluation. Hence, mixing two keys does not help if neither of them is
individually authorized, and we obtain security even under collusions.

3 Preliminaries
3.1 Notational Conventions
Let λ ∈ N be the security parameter. Except in the definitions, we will suppress λ in
subscripts for brevity. A nonnegative function ε : N→ R is negligible if ε(λ) = O(λ−n) for
all n ∈ N. An algorithm is said to be efficient if it runs in probabilistic polynomial time
(PPT) in the security parameter.

To avoid confusion, we always write vectors v and matrices A in boldface and use
uppercase letters for the latter. Scalars s are written in italics. Unless otherwise stated, all

16 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

vectors v are viewed as column vectors. The corresponding row vector is denoted by v⊤.

Security Experiments and Distributions. Let Exp be an interactive experiment that
interacts with an algorithm A (called the adversary), depends on the security parameter
λ and has binary outcome. We also refer to such objects as games or hybrids. We let
“ExpA(1λ)→ 1” denote the event that the outcome of running Exp with A on security
parameter λ is 1. For two experiments Exp0 and Exp1, we define the distinguishing
advantage of A against the tuple (Exp0, Exp1) as

AdvExp0,Exp1,A(λ) :=
∣∣Pr

[
Exp1

A(1λ)→ 1
]
− Pr

[
Exp0

A(1λ)→ 1
]∣∣ .

We write Exp0 ≈c Exp1 if the experiments are computationally indistinguishable, i.e.
their distinguishing advantage is negligible for all efficient adversaries A. We write
Exp0 ≈s Exp1 if the experiments are statistically indistinguishable, i.e. their distinguishing
advantage is negligible for all (even unbounded) adversaries. We write Exp0 ≡ Exp1 if the
experiments are identically distributed, i.e. their distinguishing advantage is 0 for all (even
unbounded) adversaries. By default, the term indistinguishable refers to computational
indistinguishability.

More general, the same notations can be used for sequences of distributions. Let
D0 = {D0

λ}λ∈N and D1 = {D1
λ}λ∈N be two sequences of distributions. For b ∈ {0, 1}, we

define Expb
A(1λ) as follows: sample x $← Db

λ, run A(1λ, x) and use the output of A as
the outcome of the experiment. Then we write D0 ≈c D1 (resp. D0 ≈s D1, D0 ≡ D1) if
Exp0

A ≈c Exp1
A (resp. Exp0

A ≈s Exp1
A, Exp0

A ≡ Exp1
A).

Sets and Indexing. We denote by Z and N the sets of integers and natural numbers
(positive integers). For integers m and n, we write [m; n] to denote the set {z ∈ Z : m ≤
z ≤ n} and let [n] := [1; n]. For a prime number p, Zp denotes the finite field of integers
modulo p. For a finite set S, we let 2S denote the power set of S.

To index a vector or the columns of a matrix, we write v[i] and A[j]. In contrast,
objects of some collection that is not regarded as a vector or matrix are indexed using
subscripts (or superscripts in some cases). For instance, vi represents a vector, not a
component of some vector. If i runs through some index set [n], it means that there are n
vectors v1, . . . , vn. If the n objects are scalars (or not explicitly vectors), we will write
v1, . . . , vn instead.

For convenience, objects might be indexed by arbitrary sets, not just integers. For
finite sets s, A, we write As := {(v[i])i∈s : v[i] ∈ A} for the set of vectors whose entries are
in A and indexed by s, e.g. Z[n]

p is just Zn
p . Suppose s1, s2 are two index sets with s1 ⊆ s2.

For a vector v ∈ Zs2
p , we denote by u = v|s1 its canonical projection onto Zs1

p , i.e. u ∈ Zs1
p

and u[i] = v[i] for all i ∈ s1. Conversely, for any vector u ∈ Zs1
p , we write v = u|s2 for its

zero-extension into Zs2
p , i.e. v ∈ Zs2

p and v[i] = u[i] if i ∈ s1, and v[i] = 0 if i ∈ s2 \ s1.

3.2 Pairing Groups and Hardness Assumptions
Pairing Groups. Our constructions use a sequence of pairing groups

G = {Gλ = (Gλ,1,Gλ,2,Gλ,t, gλ,1, gλ,2, gλ,t, eλ, pλ)}λ∈N ,

where Gλ,1 (resp. Gλ,2, Gλ,t) is a cyclic group of order pλ generated by gλ,1 (resp. gλ,2,
gλ,t), and eλ : Gλ,1×Gλ,2 → Gλ,t is the pairing operation satisfying eλ(ga

λ,1, gb
λ,2) = gab

λ,t for
all integers a, b. The group operations and the pairing map are required to be efficiently
computable.

Following the implicit notation in [EHK+13], we write JaKi to denote ga
λ,i for i ∈ {1, 2, t}.

This notation extends component-wise to matrices and vectors having entries in Zp.

David Pointcheval, Robert Schädlich 17

Equipped with these notations, group operations are written additively and the pairing
operation multiplicatively, e.g. JAK1 −BJCK1D = JA−BCDK1 and JAK1JBK2 = JABKt.

Computational Assumptions. We state the assumptions needed for our constructions.
Let {Gλ = (Gλ,1,Gλ,2,Gλ,t, gλ,1, gλ,2, gλ,t, eλ, pλ)}λ∈N be a sequence of pairing groups.

Definition 1 (Decisional Diffie-Hellman Assumption (DDH)). Let i ∈ {1, 2, t}. The DDH
assumption holds in {Gλ,i}λ∈N if {Ja, b, abKi}λ∈N ≈c {Ja, b, ab + cKi}λ∈N for a, b, c $← Zpλ

.

Definition 2 (Symmetric eXternal Diffie-Hellman Assumption (SXDH)). The SXDH as-
sumption holds in {Gλ}λ∈N if the DDH assumption holds in both {Gλ,1}λ∈N and {Gλ,2}λ∈N.

3.3 Monotone Access Structures and Linear Secret Sharing Schemes
Let X = {0, 1}s be the attribute universe with index set s. An access structure on X
is a collection S ⊆ 2s \ ∅ of nonempty subsets of s. We call the sets in S authorized,
and those in 2s \ S unauthorized. Each access structure S corresponds to an access
policy f : X → {0, 1} defined via

f(x) =
{

1 if {i ∈ s : x[i] = 1} ∈ S
0 if {i ∈ s : x[i] = 1} /∈ S .

An access structure S ⊆ 2s is said to be monotone if the following condition is satisfied for
all S1, S2 ⊆ s: if S1 ∈ S and S1 ⊆ S2, then S2 ∈ S. A policy is said to be monotone if its
corresponding access structure is monotone.

We next recall the definition of a linear secret sharing scheme.

Definition 3 (Linear Secret Sharing (LSS) Scheme [BL90, Bei96]). Let ℓ, n ∈ N and
p be a prime number. We denote e1 = (1, 0, . . . , 0)⊤ ∈ Zn

p the first unit-vector in Zn
p .

A linear secret sharing (LSS) scheme over Zp for an access structure S ⊆ 2s on an
attribute universe X = {0, 1}s is specified by a share generating matrix M ∈ Zn×ℓ

p and a
function ρ : [ℓ]→ s mapping the columns of M to indices in s, which satisfy the following
condition:

S ∈ S ⇐⇒ e1 ∈ span{M[j] : j ∈ [ℓ], ρ(j) ∈ S} . (3)

For convenience, we often do not distinguish between an access structure S, its corre-
sponding policy f and a pair (M, ρ) satisfying (3). In particular, we may write f = (M, ρ).
In order to share a value s ∈ Zp using an LSS scheme over Zp, one samples u $← Zn−1

p and
computes the share vector

s = (s, u[1], . . . , u[n− 1]) ·M ∈ Zℓ
p .

Then a set {s[j]}j∈J for some J ⊆ [ℓ] can be used to reconstruct s if and only if {ρ(j)}j∈J

is authorized with respect to the access structure corresponding to f = (M, ρ). Indeed, in
this case there exist coefficients ω1, . . . , ωℓ ∈ Zp such that ωj = 0 for all j ∈ [ℓ] \ J and∑

j∈[ℓ] ωjM[j] = e1. These coefficients can be used to compute∑
j∈J

ωjs[j] =
∑
j∈[ℓ]

ωjs[j] = (s, u[1], . . . , u[n− 1]) ·
∑
j∈[ℓ]

ωjM[j] = s .

Lewko and Waters [LW11] presented an LSS scheme for all monotone access structures.

18 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

3.4 Function-Hiding Slotted Inner-Product Functional Encryption
We recall the definition of slotted IPFE from [LL20a]. Similar to [LL20a, AWY20, LLL22],
this primitive will allow us to employ techniques akin to dual system encryption [Wat09,
LW10]. To adhere to the formalism used in this work, we present the syntax in a pairing-
based setting.

Definition 4 (Slotted IPFE). Let G = {Gλ = (Gλ,1,Gλ,2,Gλ,t, gλ,1, gλ,2, gλ,t, eλ, pλ)}λ∈N
be a sequence of pairing groups. A slotted IPFE scheme based on G consists of five efficient
algorithms:

Setup(1λ, spub, spri)→ (MPK, MSK): On input the security parameter and two disjoint
index sets, the public slot spub and the private slot spri, this algorithm outputs a pair
of a master public and a master secret key (MPK, MSK). We denote the whole index
set by s := spub ∪ spri.

Enc(MSK, JxK1)→ CT: On input a master secret key MSK and an encoding of a vector
x ∈ Zs

pλ
in Gλ,1, this algorithm outputs a ciphertext CT for x.

KeyGen(MSK, JyK2)→ SK: On input a master secret key MSK and an encoding of a vector
y ∈ Zs

pλ
in Gλ,2, this algorithm outputs a decryption key DK for y.

Dec(DK, CT)→ JdKt: On input a decryption key DK and a ciphertext CT, this algorithm
outputs an element JdKt ∈ Gλ,t.

SlotEnc(MPK, JxpubK1)→ CT: On input a master public key MPK and an encoding of a
message vector xpub ∈ Zspub

pλ in Gλ,1, this algorithm outputs a ciphertext for the vector
x = xpub|s ∈ Zs

pλ
.

Correctness. A slotted IPFE scheme satisfies decryption correctness if for all λ ∈ N, all
disjoint index sets spub, spri and all vectors x, y ∈ Zs

pλ
, it holds that

Pr

Dec(DK, CT) = J⟨x, y⟩Kt

∣∣∣∣∣∣∣
(MPK, MSK)← Setup(1λ, spub, spri)
CT← Enc(MSK, JxK1)
DK← KeyGen(MSK, JyK2)

 = 1 .

Furthermore, we say that a slotted IPFE scheme satisfies slot-mode correctness if for all
λ ∈ N, all disjoint index sets spub, spri and xpub ∈ Zspub

p , the following distributions D0,D1
are identical:

D0 =
{

(MPK, MSK, CT)

∣∣∣∣∣ (MPK, MSK)← Setup(1λ, spub, spri)
CT← Enc(MSK, Jxpub|sK1)

}
,

D1 =
{

(MPK, MSK, CT)

∣∣∣∣∣ (MPK, MSK)← Setup(1λ, spub, spri)
CT← SlotEnc(MPK, JxpubK1)

}
,

where the probability is taken over the random coins of the algorithms.

Security. We define adaptive function-hiding IND-CPA security.

Definition 5 (Function-Hiding Security). For a slotted IPFE scheme iFE and a PPT
adversary A, we define the security experiment Expsl-ipfe-b

iFE,A (1λ) as shown in Figure 1. The
oracles OKeyGen and OEnc can be called in any order and any (polynomial) number
of times. The adversary A is admissible with respect to Qenc and Qkey, denoted by
adm(A) = 1, if all (Jx0K1, Jx1K1) ∈ Qenc and (Jy0K2, Jy1K2) ∈ Qkey satisfy ⟨x0, y0⟩ = ⟨x1, y1⟩
and y0|spub = y1|spub . Otherwise, we say that A is not admissible and write adm(A) = 0.
We call iFE function-hiding if Expsl-ipfe-0

iFE,A (1λ) ≈c Expsl-ipfe-1
iFE,A (1λ).

David Pointcheval, Robert Schädlich 19

Initialize(1λ, spub, spri):
Qenc,Qkey ← ∅
(MPK, MSK)← Setup(1λ, spub, spri)
Return MPK

OEnc(Jx0K2, Jx1K2):
Qenc ← Qenc ∪ {(Jx0K1, Jx1K1)}
Return CT← Enc(MSK, JxbK1)

OKeyGen(Jy0K2, Jy1K2):
Qkey ← Qkey ∪ {(Jy0K2, Jy1K2)}
Return DK← KeyGen(MSK, JybK2)

Finalize(b′):
If adm(A) = 1, return β ← (b′ ?= b)
Else, return a random bit β $← {0, 1}

Figure 1: Security game Expsl-ipfe-b
iFE,A (1λ) for Definition 5

There exists a slotted IPFE scheme based on G which can be proven (adaptively)
function-hiding under the SXDH6 assumption in G. The construction is based on a sequence
of works [ALS16, Wee17, LV16, Lin17] and has been described explicitly in [LL20a].

3.5 Identity-Based Encryption
We recall the definition of identity-based encryption (IBE).
Definition 6 (Identity-Based Encryption). Let M = {Mλ}λ∈N and I = {Iλ}λ∈N be
sequences of message and identity spaces, respectively. An identity-based encryption scheme
for M and I consists of four efficient algorithms:
Setup(1λ)→ (MPK, MSK): On input the security parameter, this algorithm outputs a pair

of a master public key MPK and a master secret key MSK.

Enc(MPK, i, µ)→ CT: On input a master public key MSK, an identity i ∈ Iλ and a
message µ ∈Mλ, this algorithm outputs a ciphertext CT for µ created with respect
to i.

KeyGen(MSK, i′)→ DK: On input a master secret key MSK and an identity i′ ∈ Iλ, this
algorithm outputs a decryption key DK for i′.

Dec(DK, CT)→ µ′ ∨ ⊥: On input a decryption key DK and a ciphertext CT, this algorithm
outputs an element µ′ ∈Mλ or ⊥.

Correctness. An IBE scheme is said to be correct if for all λ ∈ N, all identities i ∈ Iλ

and all messages µ ∈Mλ, it holds that

Pr

Dec(DK, CT) = µ

∣∣∣∣∣∣∣
(MPK, MSK)← Setup(1λ)
CT← Enc(MPK, i, µ)
DK← KeyGen(MSK, i)

 = 1 ,

where the probability is taken over the random coins of the algorithms.

Security. We define adaptive IND-CPA security.
Definition 7 (Security). For an IBE scheme IBE and a PPT adversary A, we define the
security experiment Expibe-b

IBE,A(1λ) as shown in Figure 2. The oracle OKeyGen can be called
any (polynomial) number of times whereas the oracle OEnc can be called only once. We
call IBE secure if Expibe-0

IBE,A(1λ) ≈c Expibe-1
IBE,A(1λ).

There exist various IBE schemes in the group-based setting, e.g. [Wat09, CLL+13, JR17].
6More precisely, the security proof only relies on MDDHk, for any k > 1, in both G1 and G2. This

assumption is implied by SXDH on G.

20 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

Initialize(1λ):
Q ← ∅; ienc ← ⊥
(MPK, MSK)← Setup(1λ)
Return MPK

OKeyGen(i′):
Q ← Q∪ {i′}
Return DK← KeyGen(MSK, i′)

OEnc(i, µ0, µ1):
ienc ← i
Return CT← Enc(MPK, i, µb)

Finalize(b′):
If ienc /∈ Q, return β ← (b′ ?= b)
Else, return a random bit β $← {0, 1}

Figure 2: Security game Expibe-b
IBE,A(1λ) for Definition 7

3.6 Lockable Obfuscation
We recall the definition of a lockable obfuscator [GKW17, WZ17]. Given polynomials
n = n(λ),m = m(λ) and d = d(λ), we denote by Cn,m,d(λ) the class of depth d(λ) circuits
with n(λ) bits input and m(λ) bits output.

Definition 8 (Lockable Obfuscation). Let M = {Mλ}λ∈N be a sequence of message
spaces and {Cn,m,d(λ)}λ∈N a sequence of circuit classes. A lockable obfuscator for M
and C is a tuple of two efficient algorithms:

Obf(1λ, C, µ, σ)→ (C̃): On input 1λ, a circuit C ∈ Cn,m,d(λ), a message µ ∈ Mλ and a
“lock value” σ ∈ {0, 1}m(λ), this algorithm outputs an obfuscated circuit C̃.

Eval(C̃, x)→ µ′ ∨ ⊥: On input an obfuscated circuit C̃ and an input x ∈ {0, 1}n(λ), this
algorithm outputs a value µ′ ∈Mλ or ⊥.

Correctness. A lockable obfuscator satisfies (perfect) correctness if for all λ ∈ N, all
circuits C ∈ Cn,m,d(λ), all messages µ ∈ Mλ and all inputs x ∈ {0, 1}n(λ), the following
two implications are satisfied:

1. if C(x) = σ, then Eval(Obf(1λ, C, µ, σ), x) = µ

2. if C(x) ̸= σ, then Eval(Obf(1λ, C, µ, σ), x) = ⊥

Security. We define security against multiple challenges. In [AYY22], this definition was
observed to be equivalent to the original single-challenge version from [GKW17].

Definition 9 (Security against Multiple Queries). For a lockable obfuscation scheme LObf =
(Obf, Eval) and an efficient algorithm Sim, we define the following oracles:

OObf0(C, µ): sample σ $← {0, 1}m(λ) and return C̃ ← Obf(1λ, C, µ, σ)

OObf1(C, µ): return Sim(1λ, 1|C|, 1|µ|)

We call LObf secure if there exists a PPT simulator Sim such that for all PPT adversaries A,
there exists a negligible function negl(·) such that

Advlock
LObf,A(λ) :=

∣∣∣Pr
[
AOObf1

→ 1
]
− Pr

[
AOObf0

→ 1
]∣∣∣ ≤ negl(λ) .

Perfectly correct lockable obfuscators for general circuits are known to exist under the
LWE assumption [GKW17, GKVW20].

David Pointcheval, Robert Schädlich 21

4 Multi-Client Attribute-Based and Predicate Encryp-
tion

We define multi-client attribute-based encryption (MC-ABE) and multi-client predicate
encryption (MC-PE). Since the only difference between these notions lies in the security
game, we unify the syntax of the algorithms.

Definition 10 (Public-Key Syntax). Let n = n(λ) be a polynomial. Furthermore,
letM = {Mλ}λ∈N be a sequence of message spaces, X = {Xλ}λ∈N a sequence of attribute
universes, L = {Lλ}λ∈N a sequence of label spaces and F = {Fλ}λ∈N a sequence of policy
classes, where each policy fλ ∈ Fλ maps from Xn

λ to {0, 1}. An MC-ABE (resp. MC-PE)
scheme for M, X , F and L consists of five efficient algorithms:

Setup(1λ)→ (MPK, MSK, {SKi}i∈[n−1]): On input the security parameter 1λ, this algo-
rithm outputs a pair of master public key MPK and master secret key MSK as well
as a set of secret keys {SKi}i∈[n−1].

Enc(MPK, lab, x0, µ)→ CTlab: On input the master public key MPK, a label lab ∈ Lλ, an
attribute x0 ∈ Xλ and a message µ ∈Mλ, this algorithm outputs a ciphertext CTlab.

In case of an MC-ABE scheme, we assume that CTlab implicitly includes x0.

AKeyGen(SKi, lab, xi)→ DKlab,i: On input a secret key SKi for some i ∈ [n− 1], a label
lab ∈ Lλ and an attribute xi ∈ Xλ, this algorithm outputs a decryption key DKlab,i.

In case of an MC-ABE scheme, we assume that DKlab,i implicitly includes xi.

PKeyGen(MSK, f)→ DKf : On input the master secret key MSK and a policy f ∈ Fλ, this
algorithm outputs a decryption key DKf .

We assume that DKf implicitly includes a description of f .

Dec(DKf , {DKlab,i}i∈[n−1], CTlab)→ µ′ ∨ ⊥: On input a decryption key DKf for a pol-
icy f ∈ Fλ, a set of attribute decryption keys {DKlab,i}i∈[n−1] generated with respect
to some label lab ∈ Lλ and a ciphertext CTlab created with respect to the same
label lab, this algorithm outputs an element µ′ ∈Mλ or ⊥.

Below, we discuss security in the public-key and secret-key setting. In the secret-key
setting, we slightly change the syntax, as we find it more intuitive to let the encryption
algorithm take a secret key SK0 instead of a master public key MPK if this key is not given
to the adversary.

Remark 1 (Comparison With the Syntax of [AYY22, FFMV23, ARYY23]). Recent pa-
pers [AYY22, FFMV23, ARYY23] consider a varying syntax for MI-ABE and MI-PE. Our
definition follows [ARYY23] as their syntax is the most natural one for our MC-ABE
constructions. In fact, when removing the MCFE-related labels from our definition and
replacing all keys with a unique master secret key, we almost obtain their definition
except for one minor modification: their scheme defines n− 1 potentially different algo-
rithms {KeyGeni}i∈[n−1] for the attribute key generation whereas we consider only one
algorithm AKeyGen. In our constructions, the attribute key generation works in exactly
the same way for all clients. Therefore, this modification does not have any impact on the
semantics.

Correctness. An MC-ABE (resp. MC-PE) is correct if for every λ, n ∈ N, label
lab ∈ Lλ, message µ ∈ Mλ, policy f ∈ Fλ and attributes x0, . . . , xn−1 ∈ Xλ such that

22 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

Initialize(1λ):
C,Qenc,Qakey,Qpkey ← ∅
(MPK, MSK, {SKi}i∈[n−1])← Setup(1λ)
Return MPK

OCorrupt(i) for i ∈ [n− 1]:
C ← C ∪ {i}; return SKi

OEnc(lab, x0, µ0, µ1):
Qenc ← Qenc ∪ {(lab, x0, µ0, µ1)}
Return CT← Enc(MPK, lab, x0, µb)

OAKeyGen(i, lab, xi):
Qakey ← Qakey ∪ {(i, lab, xi)}
Return DKi ← AKeyGen(SKi, lab, xi)

OPKeyGen(f):
Qpkey ← Qpkey ∪ {f}
Return DKf ← PKeyGen(MSK, f)

Finalize(b′):
If adm(A) = 1, return β ← (b′ ?= b)
Else, return a random bit β $← {0, 1}

Figure 3: Security game Expmc-abe-b
aFE,A (1λ) for Definition 11

f(x0, . . . , xn−1) = 1, it holds that

Pr

µ′ = µ

∣∣∣∣∣∣∣∣∣∣∣∣

(MPK, MSK, {SKi}i∈[n−1])← Setup(1λ)
CTlab ← Enc(MPK, lab, x0, µ)
∀i ∈ [n− 1] : DKlab,i ← AKeyGen(SKi, lab, xi)
DKf ← PKeyGen(MSK, f)
µ′ := Dec(DKf , {DKlab,i}i∈[n−1], CTlab)

 = 1

Security. We define security for MC-ABE in the public-key setting as well as security
for MC-PE in the secret-key setting.

Definition 11 (Public-Key Security for MC-ABE). Let xxx ∈ {sel, adap} and yyy ∈
{norep, rep}. For an MC-ABE scheme aFE and a PPT adversary A, we define the experi-
ment Expmc-abe-b

aFE,A (1λ) as shown in Figure 3. The oracles OCorrupt, OEnc, OAKeyGen and
OPKeyGen can be called in any order and any polynomial number of times, except for OEnc
which can be called only once. Let (lab, x0, µ0, µ1) denote the single query to OEnc. The
adversary A is admissible, denoted by adm(A) = 1, if it satisfies the following conditions:

1. For all f ∈ Qpkey and x1, . . . , xn−1 ∈ Xλ such that (i, lab, xi) ∈ Qakey for all i ∈
[n− 1] \ C, it holds f(x0, . . . , xn−1) = 0.

2. If xxx = sel, then the adversary submits the queries toOCorrupt, OEnc andOAKeyGen
upfront in one shot.

3. If yyy = norep, then for each i ∈ [n− 1] and lab ∈ L the adversary submits at most
one query of the form OAKeyGen(i, lab, ⋆), i.e. we have |{xi ∈ {0, 1}k : (i, lab, xi) ∈
Qakey}| ≤ 1.

Otherwise, we say that A is not admissible and write adm(A) = 0. We call aFE xxx-yyy-
secure if Expmc-abe-0

aFE,A (1λ) ≈c Expmc-abe-1
aFE,A (1λ).

Definition 12 (Secret-Key Security for MC-PE). Let xxx ∈ {sel, adap} and yyy ∈
{norep, rep}. For an MC-PE scheme pFE and a PPT adversary A, we define the ex-
periment Expmc-pe-b

pFE,A (1λ) as shown in Figure 4. The oracles OCorrupt, OEnc, OAKeyGen
and OPKeyGen can be called in any order and any polynomial number of times. Let lab ∈ L.

David Pointcheval, Robert Schädlich 23

Initialize(1λ):
C,Qenc,Qakey,Qpkey ← ∅
({SKi}i∈[0;n−1], MSK)← Setup(1λ)

OCorrupt(i) for i ∈ [0; n− 1]]:
C ← C ∪ {i}; return SKi

OEnc(lab, x0
0, x1

0, µ0, µ1):
Qenc ← Qenc ∪ {(lab, x0

0, x1
0, µ0, µ1)}

Return CT← Enc(SK1, lab, xb
0, µb)

OAKeyGen(i, lab, x0
i , x1

i):
Qakey ← Qakey ∪ {(i, lab, x0

i , x1
i)}

Return DKi ← AKeyGen(SKi, lab, xb
i)

OPKeyGen(f):
Qpkey ← Qpkey ∪ {f}
Return DKf ← PKeyGen(MSK, f)

Finalize(b′):
If adm(A) = 1, return β ← (b′ ?= b)
Else, return a random bit β $← {0, 1}

Figure 4: Security game Expmc-pe-b
pFE,A (1λ) for Definition 12

We define Q′
0,lab = {(x0

0, x1
0, µ0, µ1) : (lab, x0

0, x1
0, µ0, µ1) ∈ Qenc} and Q′

i,lab = {(x0
i , x1

i) :
(i, lab, x0

i , x1
i) ∈ Qakey} as well as

Q0,lab =
{
Q′

0,lab if 0 ∈ [0; n− 1] \ C
Q′

0,lab ∪ {(x0, x0, µ, µ) : x0 ∈ X , µ ∈M} if 0 ∈ C

Qi,lab =
{
Q′

i,lab if i ∈ [0; n− 1] \ C
Q′

i,lab ∪ {(xi, xi) : xi ∈ X} if i ∈ C

for all i ∈ [n− 1]. The adversary A is admissible, denoted by adm(A) = 1, if it satisfies
the following conditions:

1. For all lab ∈ L, (x0
0, x1

0, µ0, µ1) ∈ Q0,lab, (x0
1, x1

1) ∈ Q1,lab, (x0
2, x1

2) ∈ Q2,lab, . . . ,
(x0

n−1, x1
n−1) ∈ Qn−1,lab and policies f ∈ Qpkey, it holds

f(x0
0, . . . , x0

n−1) = f(x1
0, . . . , x1

n−1) = 0 or (x0
0, . . . , x0

n−1, µ0) = (x1
0, . . . , x1

n−1, µ1).

2. If xxx = sel, then the adversary cannot call OCorrupt, OEnc and OAKeyGen anymore
after submitting the first query to OPKeyGen.

3. If yyy = norep, then for each i ∈ [n− 1] and lab ∈ L the adversary submits at most
one query of the form OAKeyGen(i, lab, ⋆, ⋆), i.e. we have |{xi ∈ {0, 1}k : (i, lab, xi) ∈
Qakey}| ≤ 1.

Otherwise, we say that A is not admissible and write adm(A) = 0. We call pFE xxx-yyy-
secure if Expmc-pe-0

pFE,A (1λ) ≈c Expmc-pe-1
pFE,A (1λ).

5 Construction of MC-ABE
In this section, we present our constructions for MC-ABE. For this, we need the following
two definitions.

Complete Policies. Let k, n ∈ N. We define the function c : {0, 1}[n−1]×{0} → {0, 1} by
c((xi,0)i∈[n−1]) =

∧
i∈[n−1] xi,0. Given a policy f : {0, 1}[0;n−1]×[k] → {0, 1}, we write (c∧f)

for the complete policy

(c ∧ f) : {0, 1}[0;n−1]×[0;k] → {0, 1}
(xi,j)i,j 7→ c

(
(xi,0)i∈[n−1]

)
∧ f

(
(xi,j)(i,j)∈[0;n−1]×[k]

)
.

24 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

We note that c is monotone (so having certificates of {¬xi,0}i∈[n−1] is never relevant) and
that (c ∧ f) does not depend on the attribute x0,0 at all. Taking these facts into account
would allow for a slight improvement in the efficiency of Constructions 2 and 5 below, as
some of the generated iFE instances are never used. We disregard this fact for the sake of
a clearer write-up.

Transformation to Monotone Policies. For (xi,j)i,j ∈ {0, 1}[0;n−1]×[0;k], we de-
fine (xβ

i,j)β
i,j ∈ {0, 1}[0;n−1]×[0;k]×{0,1} by x1

i,j = xi,j and x0
i,j = 1 − xi,j . Given a policy

f : {0, 1}[0;n−1]×[0;k] → {0, 1} computable by an NC1 circuit, we construct the correspond-
ing monotone policy f : {0, 1}[0;n−1]×[0;k]×{0,1} → {0, 1} as follows: first, we view f as
a Boolean formula consisting of (fan-in 1) ¬ gates and (fan-in 2) ∧ and ∨ gates. Then,
using De Morgan laws, we push the ¬ gates to the leaves such that all internal nodes
consist only of ∧ and ∨ gates, while leaves are labeled by either attributes or their nega-
tions. Finally, for each (i, j) ∈ [0; n− 1] × [0; k] we identify the attribute xi,j ∈ {0, 1}
with the attribute x1

i,j and the negation of xi,j with x0
i,j . The resulting formula f is

monotone and equivalent to f in the sense that it satisfies f((xβ
i,j)β

i,j) = f((xi,j)i,j) for all
inputs (xi,j)i,j ∈ {0, 1}[0;n−1]×[0;k].

We combine the transformation to monotone policies with complete policies. Given
an NC1 policy f : {0, 1}[0;n−1]×[k] → {0, 1}, we denote by (c ∧ f) : {0, 1}[0;n−1]×[0;k]×{0,1} →
{0, 1} the monotone policy obtained by applying the above transformation to the complete
policy (c ∧ f) : {0, 1}[0;n−1]×[0;k] → {0, 1}.

5.1 MC-ABE Without Repetitions
We start with the description of our MC-ABE for LSS without repetitions. As explained in
Section 2, this construction can be lifted to MC-ABE for NC1 policies when not considering
corruptions.

Construction 2 (MC-ABE for LSS Without Repetitions). Let k, n = poly(λ). For a
vector x ∈ {0, 1}k, we denote Πx = {j ∈ [k] : x[j] = 1}. Our construction uses the
following ingredients:

• A slotted IPFE scheme iFE = (iSetup, iEnc, iKeyGen, iDec) based on a pairing group G =
(G1,G2,Gt, g1, g2, gt, e, p).

• An identity-based encryption scheme idFE = (idSetup, idEnc, idKeyGen, idDec) with
identity space I = L × [0; k] for L = {0, 1}poly(λ) and message space being the
ciphertext space of iFE.

The MC-ABE scheme aFE for n clients and LSS policies with label space L, message
space M = Gt and attribute universe X = {0, 1}k works as follows:

Setup(1λ) takes as input the security parameter 1λ and generates

(iMPK0, iMSK0)← iSetup(1λ, {1, 2}, {3}){
(iMPKi,j , iMSKi,j)← iSetup(1λ, {1}, {2})

}
(i,j)∈([0;n−1]×[0;k]){

(idMPKi, idMSKi)← idSetup(1λ)
}

i∈[n−1] .

Then it outputs (MPK, MSK, {SKi}i∈[n−1]) as follows:

MPK =
(
iMPK0, {iMPKi,j}(i,j)∈([0;n−1]×[0;k]), {idMPKi}i∈[n−1]

)
MSK =

(
iMSK0, {iMSKi,j}(i,j)∈([0;n−1]×[0;k])

)
{SKi = idMSKi}i∈[n−1] .

We implicitly parse these keys in the algorithms below.

David Pointcheval, Robert Schädlich 25

Enc(MPK, lab, x0, JµKt) takes as input MPK, a label lab ∈ L, an attribute x0 ∈ {0, 1}k

and a message JµKt ∈ Gt. The algorithm samples random elements JrK1, JσK1
$← G1,

computes JdKt = Jσ + µKt and generates

iCT0 ← iSlotEnc(iMPK0, J(r, σ)K1){
iCTi,j ← iSlotEnc(iMPKi,j , JrK1)

}
(i,j)∈{0}×Πx0 ∪[n−1]×[0;k]{

idCTi,j ← idEnc(idMPKi, (lab, j), iCTi,j)
}

(i,j)∈[n−1]×[0;k] .

Then it outputs CTlab = (JdKt, iCT0, {iCT0,j}j∈Πx0
, {idCTi,j}(i,j)∈[n−1]×[0;k]).

AKeyGen(SKi, lab, xi) takes as input SKi for some i ∈ [n− 1], a label lab ∈ L and an
attribute xi ∈ {0, 1}k. Then the algorithm outputs the decryption key DKlab,i =
{idDKi,j}j∈{0}∪Πxi

computed as follows:

{idDKi,j ← idKeyGen(idMSKi, (lab, j))}j∈{0}∪Πxi
.

PKeyGen(MSK, f) takes as input MSK and a monotone policy f . Let (c ∧ f) = (M ∈
Zm×ℓ

p , ρ : [ℓ]→ ([0; n− 1]× [0; k])). The algorithm samples s $← Zp and u $← Zm−1
p ,

computes s = (s, u⊤) ·M and generates

iDK0 ← iKeyGen(iMSK0, J(s, 1, 0)K2){
iDKj ← iKeyGen(iMSKρ(j), J(s[j], 0)K2)

}
j∈[ℓ] .

Finally, it outputs DKf = {iDKj}j∈[0;ℓ].

Dec(DKf , {DKlab,i}i∈[n−1], CTlab) takes as input a decryption key DKf for a policy f , a set
of decryption keys {DKlab,i}i∈[n−1] generated with respect to attributes x1, . . . , xn−1 ∈
{0, 1}k and a label lab ∈ L, and a ciphertext CTlab created with respect to an at-
tribute x0 ∈ {0, 1}k and the same label lab. We parse DKf , {DKlab,i}i∈[n−1] and CTlab
as in the algorithms above. Let (c ∧ f) = (M ∈ Zm×ℓ

p , ρ : [ℓ]→ ([0; n− 1]× [0; k])).
If X =

⋃
i∈[0;n−1]({i} × ({0} ∪Πxi

)) ∩ ρ([ℓ]) does not satisfy the policy (c ∧ f), then
the algorithm outputs ⊥. Otherwise, it decrypts{

iCTi,j ← idDec(idDKi,j , idCTi,j)
}

(i,j)∈X∩([n−1]×[0;k]) ,

and finds coefficients ω1, . . . , ωℓ ∈ Zp such that
∑

j∈[ℓ] ωjM[j] = e1 and ωj = 0 for
all j /∈ ρ−1(X). Finally, the algorithm computes

Jd0Kt ← iDec(iDK0, iCT0){
JdjKt ← iDec(iDKj , iCTρ(j))

}
j∈ρ−1(X) ,

and outputs Jµ′Kt = JdKt − Jd0Kt +
∑

j∈ρ−1(X) ωjJdjKt.

Correctness. By the correctness of idFE and iFE, we have d0 = rs + σ and, for
all j ∈ ρ−1(X), dj = rs[j]. Note that

⋃
i∈[n−1]{(i, 0)} ⊆ X, so X always satisfies c.

If additionally f(x0, . . . , xn−1) = 1, then X is authorized with respect to c ∧ f . In this
case, we conclude from the correctness of the LSS scheme that

µ′ = d− d0 +
∑

j∈ρ−1(X)

ωjdj = (σ + µ)− (rs + σ) + r ·
∑

j∈ρ−1(X)

ωjs[j]

︸ ︷︷ ︸
= s

= µ

26 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

Security. We prove selective security without repetitions.

Proposition 3. If the DDH assumption holds in G2, iFE is slot-mode correct and function-
hiding and idFE is secure, then Construction 2 is sel-norep-secure.

When instantiating iFE with the slotted ABE from [LL20a] and idFE with the IBE
from [CLL+13, JR17]7, we obtain the following theorem.

Theorem 4. Assuming SXDH on pairings, there exist

• a sel-norep-secure MC-ABE for LSS, and

• a sel-norep-secure MC-ABE for NC1 without corruptions.

Proof (Proposition 3). We consider a sequence G0
0, . . . , G0

6, G1
6, . . . , G1

0 of hybrid games,
where Gb

0 = Expmc-abe-b
aFE,A (1λ). We argue G0

6 ≡ G1
6 and Gb

ν−1 ≈c Gb
ν for ν ∈ [6] and b ∈ {0, 1}.

Then the claim follows via a hybrid argument. Modifications between consecutive games
are highlighted using boxes .

Game Gb
0: This is Expmc-abe-b

aFE,A (1λ). In particular, for the reply to the (single) encryption
queryOEnc(lab, x0, Jµ0Kt, Jµ1Kt), the challenger samples random elements JrK1, JσK1

$←
G1, computes JdKt := Jσ + µbKt, generates

iCT0 ← iSlotEnc(iMPK0, J(r, σ)K1){
iCTi,j ← iSlotEnc(iMPKi,j , JrK1)

}
(i,j)∈{0}×Πx0 ∪[n−1]×[0;k]{

idCTi,j ← idEnc(idMPKi, (lab, j), iCTi,j)
}

(i,j)∈[n−1]×[0;k] ,

and sends CTlab = (JdKt, iCT0, {iCT0,j}j∈Πx0
, {idCTi,j}(i,j)∈[n−1]×[0;k]) to A.

Game Gb
1: This game is the same as Gb

0, except that the challenger computes

iCT0 ← iEnc(iMSK0, J(r, σ, 0)K1){
iCTi,j ← iEnc(iMSKi,j , J(r, 0)K1)

}
(i,j)∈{0}×Πx0 ∪[n−1]×[0;k] .

We have Gb
0 ≡ Gb

1 which follows from the slot-mode correctness of iFE.

Game Gb
2: We define the set J≥1 containing the indices of all ciphertexts idCTi,j that the

adversary is able to decrypt:

J≥1 =
(
C × [0; k]

)
∪ {(i, j) : ∃(i, lab, xi) ∈ Qakey s.t. (xi[j] = 1 ∨ j = 0)} .

This game is the same as Gb
1, except that the challenger now computes

iCTi,j ←

{
iEnc(iMSKi,j , J(r, 0)K1) if (i, j) ∈ J≥1

iEnc(iMSKi,j , J(0 , 0)K1) if (i, j) /∈ J≥1 .

We have Gb
1 ≈c Gb

2 from the security of idFE.

Game Gb
3: This game is the same as Gb

2, except that we hardwire the encryption query into
the decryption keys. Initially, the challenger samples r, σ $← Zp and answers to the

7The seminal adaptively secure group-based (H)IBE is [Wat09] but it relies on both DDH and D-Lin.

David Pointcheval, Robert Schädlich 27

selective encryption query by sending CTlab = (JdKt = Jσ + µbKt, iCT0, {iCT0,j}j∈Πx0
,

{idCTi,j}(i,j)∈[n−1]×[0;k]) computed as follows:

iCT0 ← iEnc(iMSK0, J (0, 0, 1) K1)

iCTi,j ←

{
iEnc(iMSKi,j , J (0, 1) K1) if (i, j) ∈ J

iEnc(iMSKi,j , J(0, 0)K1) if (i, j) /∈ J

idCTi,j ← idEnc(idMPKi, (lab, j), iCTi,j) ,

where J = J≥1 ∪ {(0, j) : x0[j] = 1}. Upon receiving a query OPKeyGen(f) with
(c ∧ f) = (M ∈ Zm×ℓ

p , ρ : [ℓ] → ([0; n− 1] × [0; k])), it samples s $← Zp, u $← Zm−1
p

and computes s = (s, u⊤) ·M. Then it sends DKf = {iDKκ}κ∈[0;ℓ] to A generated
as follows:

iDK0 ← iKeyGen(iMSK0, J(s, 1, r · s + σ)K2)

iDKκ ←

{
iKeyGen(iMSKρ(κ), J(s[κ], r · s[κ])K2) if ρ(κ) ∈ J

iKeyGen(iMSKρ(κ), J(s[κ], 0)K2) if ρ(κ) /∈ J .

As the public parts of the iFE keys and the inner products between vectors embedded
in the iFE keys and ciphertexts do not change, it follows Gb

2 ≈c Gb
3 from the function-

hiding security of iFE.

Game Gb
4: This game is the same as Gb

3 except that the challenger embeds a fresh secret
sharing in each decryption key. Specifically, upon receiving a query OPKeyGen(f)
with (c ∧ f) = (M, ρ), the challenger samples s, t $← Zp and u, v $← Zm−1

p , computes
s = (s, u⊤) ·M and t = (t, v⊤) ·M and sends DKf = {iDKκ}κ∈[0;ℓ] to A generated
as follows:

iDK0 ← iKeyGen(iMSK0, J(s, 1, t + σ)K2)

iDKκ ←

{
iKeyGen(iMSKρ(κ), J(s[κ], t[κ])K2) if ρ(κ) ∈ J

iKeyGen(iMSKρ(κ), J(s[κ], 0)K2) if ρ(κ) /∈ J .

It is not hard to see that Gb
3 ≈c Gb

4 under the DDH assumption in G2. (Note that we
can exploit the random self-reducibility of the DDH problem here, so a single DDH
instance suffices).

Let f ∈ Qpkey and (c ∧ f) = (M ∈ Zm×ℓ
p , ρ : [ℓ] → ([0; n− 1] × [0; k])). We let Mf =

span{M[κ] : κ ∈ [ℓ], ρ(κ) ∈ J} be the vector space spanned by the columns of M associated
with attributes in J . Furthermore, let M⊥

f denote the orthogonal complement of Mf and
A⊥

f the affine space of M⊥
f containing all vectors whose first coordinate is 1. We argue

that A⊥
f is nonempty. To do so, we distinguish two cases.

1. If there exists i ∈ [n− 1] such that i /∈ C and Qakey does not contain a tuple of the
form (i, lab, ⋆), then J ∩ ([n− 1]× {0}) does not satisfy c (and thus (c ∧ f)). Hence,
we have e1 /∈Mf which implies that A⊥

f is nonempty.

2. If there exists a tuple (i, lab, xi) ∈ Qakey for all i ∈ [n− 1] \ C, then it follows from
the admissibility of A that J ∩ ([n− 1]×k) cannot satisfy f (and thus (c∧f)), which
implies that e1 /∈Mf and A⊥

f is nonempty.

Game Gb
5: This game is the same as Gb

4, except that we modify how the challenger
generates the share vector t for the reply to a query OPKeyGen(f). Let (c ∧ f) =

28 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

(M, ρ). In Gb
4, the challenger samples t $← Zp, v $← Zm−1

p and computes t = (t, v⊤)·M.
In the current game, the challenger picks an additional vector (1, v)⊤ ∈ A⊥

f and sets

t = (t, v⊤) ·M + (0, tv⊤) ·M .

The distributions {v : v $← Zm−1
p } and {v + tv : v $← Zm−1

p } are identical for
any v ∈ Zm−1

p . The first distribution corresponds to Gb
4 and the second one to Gb

5
(followed by the same post-processing), so we have Gb

4 ≡ Gb
5.

Game Gb
6: This game is the same as Gb

5 except that we change the behavior of the key
generation oracle upon receiving a query OPKeyGen(f). Let (c ∧ f) = (M, ρ). As in
the previous hybrid, the challenger samples s, t $← Zp and u, v $← Zm−1

p and computes
s = (s, u⊤) ·M. In the current hybrid, it then generates DKf = {iDKκ}κ∈[0;ℓ] as
follows:

iDK0 ← iKeyGen(iMSK0, J(s, 1, t + σ)K2)

iDKκ ←

{
iKeyGen(iMSKρ(κ), J(s[κ], (0, v⊤) ·M[κ])K2) if ρ(κ) ∈ J

iKeyGen(iMSKρ(κ), J(s[κ], 0)K2) if ρ(κ) /∈ J ,

whereas in Gb
5, the challenger additionally picks (1, v)⊤ ∈ A⊥

f and computes

iDKκ ← iKeyGen(iMSKρ(κ), J(s[κ], (t, (v + tv)⊤) ·M[κ])K2)

for all κ ∈ [ℓ] such that ρ(κ) ∈ J . We can observe that

(t, (v + tv)⊤) ·M[κ] = (0, v⊤) ·M[κ] + t(1, v⊤) ·M[κ] = (0, v⊤) ·M[κ] ,

where the last equality follows from the fact that (1, v⊤) ∈ M⊥
f and M[κ] ∈ Mf .

Thus, we have Gb
5 ≡ Gb

6. We notice that in Gb
6 the random element JtK2

$← G2 appears
only in iDK0, so it perfectly masks JσK2. From this, it follows in turn that JσKt
serves as a perfect mask for the challenge message JµbKt in JdKt = Jσ + µbKt, and we
conclude that G0

6 ≡ G1
6.

5.2 MC-ABE With Repetitions
In this section, we present our construction of MC-ABE in the stronger security model
with repetitions.

Our Policy Classes. We consider various policy classes F containing policies of the
form f : {0, 1}[0;n−1]×[k] → {0, 1}.

• Small Parameters. Let k, n such that kn = O(log λ), i.e. the total length of
the input is logarithmic in λ. We let F log-att denote the class of all policies with
input {0, 1}[0;n−1]×[k] computable by an NC1 circuit and, for x0, . . . , xn ∈ {0, 1}k,
we define the sets

Πlog-att
x0

′ =
{

(y′
0, . . . , y′

n−1) : y′
0 = x0 ∧ y′

1, . . . , y′
n−1 ∈ {0, 1}k

}
,

and Ωlog-att
xi

′
= {xi} for i ∈ [n− 1].

David Pointcheval, Robert Schädlich 29

• NC0 Policies. Let k, n = poly(λ) and d = O(1) be some fixed upper bound on the
depth of the considered circuits. Then each policy depends on at most τ = 2d = O(1)
out of the kn input bits. We denote by F const-dep the set of all NC0 policies with
depth d and input {0, 1}[0;n−1]×[k]. For x0, . . . , xn ∈ {0, 1}k, we define the sets

Πconst-dep
x0

′ =
{

(y′
0, . . . , y′

n−1) :
y′

0 = x0 ∧ y′
1, . . . , y′

n−1 ∈ {0, 1,⊥}k

s.t.
∑

i∈[0;n−1] δ(y′
i) = τ

}
Ωconst-dep

xi

′ =
{

z′
i ∈ {0, 1,⊥}k : (∀j ∈ [k]. z′

i[j] ∈ {xi[j],⊥}) ∧ (δ(z′
i) ≤ τ)

}
,

where δ(y) = |{j ∈ [k] : y[j] ∈ {0, 1}}| denotes the number of coordinates being not
equal to ⊥.

• Threshold Policies. Let k, n = poly(λ). Instead of a constant input locality, we
may also consider policies, where every authorized set has a constant-size subset
that is also authorized. This property is satisfied by e.g. threshold policies with a
constant threshold τ = O(1). We denote by f t-thr the threshold policy which allows
the reconstruction of the secret from arbitrary t (out of the total of kn) shares. Then
we define the policy class F≤const-thr = {f t-thr : t ∈ [τ]} and, for x0, . . . , xn ∈ {0, 1}k,
we set

Π≤const-thr
x0

′ =
{

(y′
0, . . . , y′

n−1) :
y′

0 = x0 ∧ y′
1, . . . , y′

n−1 ∈ {1,⊥}k

s.t.
∑

i∈[0;n−1] δ(y′
i) = τ

}
Ω≤const-thr

xi

′ =
{

z′
i ∈ {1,⊥}k : (∀j ∈ [k]. z′

i[j] ∈ Sxi[j]) ∧ (δ(z′
i) ≤ τ)

}
,

where S0 = {⊥} and S1 = {1,⊥}. Note that threshold policies are in particular
monotone policies, which is why we can pick y′

i, z′
i ∈ {1,⊥}k as opposed to y′

i, z′
i ∈

{0, 1,⊥}k. This will improve the efficiency of the scheme as it reduces the size of the
sets Π≤const-thr

x0

′ and Ω≤const-thr
xi

′.
Conversely, we define the policy class F≥const-thr = {f t-thr : t ∈ [kn− τ ; kn]} and the
sets

Π≥const-thr
x0

′ =
{

(y′
0, . . . , y′

n−1) :
y′

0 = x0 ∧ y′
1, . . . , y′

n−1 ∈ {1,⊥}k

s.t.
∑

i∈[0;n−1] δ(y′
i) ≥ kn− τ

}

and Ω≥const-thr
xi

′ = {z′
i} where z′

i ∈ {1,⊥}k is defined coordinate-wise as z′
i[j] = sxi[j]

for all j ∈ [k] where s0 = ⊥ and s1 = 1.

As in Construction 2, we must protect against incomplete queries by considering the
complete policy (c ∧ f) instead of f . For this, we define

Πtype
x0

=
{

(y0, . . . , yn−1) :
y0 = (⊥, y′

0) ∧ y1 = (1, y′
1) ∧ · · · ∧ yn−1 = (1, y′

n−1)
s.t. (y′

0, . . . , y′
n−1) ∈ Πtype

x0

′

}
Ωtype

xi
=

{
zi = (1, z′

i) : z′
1 ∈ Ωtype

xi

′}
,

where type ∈ {log-att, const-dep,≤const-thr,≥const-thr} and i ∈ [n− 1].

Construction 5 (MC-ABE with Repetitions). Let type ∈ {log-att, const-loc,≤const-thr,
≥const-thr}. If type = log-att, pick k and n such that kn = O(log λ). Otherwise, let k =
n = poly(λ). Our construction uses the following ingredients:

• A slotted IPFE scheme iFE = (iSetup, iEnc, iKeyGen, iDec) based on a pairing group G =
(G1,G2,Gt, g1, g2, gt, e, p).

30 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

• An identity-based encryption scheme idFE = (idSetup, idEnc, idKeyGen, idDec) with
identity space I = L × {0, 1}[0;k] for L = {0, 1}poly(λ) and message space being the
ciphertext space of iFE

The MC-ABE scheme aFE for n clients and the policy class F type with message spaceM =
Gt, label space L and attribute universe X = {0, 1}k works as follows:

Setup(1λ) takes as input the security parameter 1λ and generates

(iMPK0, iMSK0)← iSetup(1λ, {1, 2}, {3}){
(iMPKβ

i,j , iMSKβ
i,j)← iSetup(1λ, {1}, {2})

}β∈{0,1}
(i,j)∈[0;n−1]×[0;k]{

(idMPKi, idMSKi)← idSetup(1λ)
}

i∈[n−1] .

Then it outputs (MPK, MSK, {SKi}i∈[n−1]) as follows:

MPK =
(
iMPK0, {iMPKβ

i,j}
β∈{0,1}
(i,j)∈[0;n−1]×[0;k], {idMPKi}i∈[n−1]

)
MSK =

(
iMSK0, {iMSKβ

i,j}
β∈{0,1}
(i,j)∈[0;n−1]×[0;k]

)
{SKi = idMSKi}i∈[n−1] .

We implicitly parse these keys in the algorithms below.

Enc(MPK, lab, x0, JµKt) takes MPK, a label lab ∈ L, an attribute x0 ∈ {0, 1}k and a
message JµKt ∈ Gt as input. We define q0 := |Πtype

x0 | and parse Πtype
x0 = {yν}ν∈[q0]

where yν = (yν
1 , . . . , yν

n). For i ∈ [0; n− 1], let Y ν
i = {i} × {j ∈ [0; k] : yν

i [j] ̸= ⊥}.
For convenience, we also set Y ν =

⋃
i∈[0;n−1] Y ν

i and Y ν
≥1 = Y ν \ Y ν

0 . The algorithm
samples random elements Jr1K1, . . . , Jrq0K1, JσK1

$← G1, computes JdKt = Jσ + µKt and
generates {

iCTν
0 ← iSlotEnc(iMPK0, J(rν , σ)K1)

}ν∈[q0]{
iCTν

i,j ← iSlotEnc(iMPKyν
i [j]

i,j , JrνK1)
}ν∈[q0]

(i,j)∈Y ν{
idCTν

i,j ← idEnc(idMPKi, (lab, yν
i), iCTν

i,j)
}ν∈[q0]

(i,j)∈Y ν
≥1

.

Finally, it outputs the ciphertext

CTlab =
(
JdKt, {iCTν

0}ν∈[q0], {iCTν
0,j}

ν∈[q0]
(0,j)∈Y ν

0
, {idCTν

i,j}
ν∈[q0]
(i,j)∈Y ν

≥1

)
.

AKeyGen(SKi, lab, xi) takes as input SKi for some i ∈ [n− 1], a label lab ∈ L and an
attribute xi ∈ {0, 1}k. We define qi := |Ωtype

xi | and parse Ωtype
xi = {zν

i }ν∈[qi]. The
algorithm outputs DKlab,i = {idDKν

i }ν∈[qi] computed as follows:

idDKν
i ← idKeyGen(idMSKi, (lab, zν

i)) .

PKeyGen(MSK, f) takes as input MSK and a policy f ∈ F type. Let (c ∧ f) = (M ∈
Zm×ℓ

p , ρ = (ρ1, ρ2, ρ3) : [ℓ] → [0; n− 1] × [0; k] × {0, 1}). The algorithm samples
s $← Zp and u $← Zm−1

p , computes s = (s, u⊤) ·M and generates

iDK0 ← iKeyGen(iMSK0, J(s, 1, 0)K2){
iDKκ ← iKeyGen(iMSKρ3(κ)

ρ1(κ),ρ2(κ), J(s[κ], 0)K2)
}

κ∈[ℓ] .

Finally, it outputs DKf = {iDKκ}κ∈[0;ℓ].

David Pointcheval, Robert Schädlich 31

Dec(DKf , {DKlab,i}i∈[n−1], CTlab) takes as input a decryption key DKf for a policy f ∈
F type, a set of decryption keys {DKlab,i}i∈[n−1] created with respect to attributes
x1, . . . , xn−1 ∈ {0, 1}k and a label lab ∈ L, and a ciphertext CTlab created with respect
to an attribute x0 ∈ {0, 1}k and the same label lab. Parse DKf , {DKlab,i}i∈[n−1],
CTlab, Πtype

x0 , {Ωtype
xi }i∈[n−1] and {Y ν}ν∈[q0] as in the algorithms above. Let (c ∧ f) =

(M ∈ Zm×ℓ
p , ρ : [ℓ] → [0; n− 1] × [0; k] × {0, 1}) The algorithm picks indices ν0 ∈

[q0], ν1 ∈ [q1], . . . , νn−1 ∈ [qn−1] such that

1. yν0
i = zνi

i for all i ∈ [n− 1], and
2. X = {(i, j, yν0

i [j]) : (i, j) ∈ Y ν0} ∩ ρ([ℓ]) satisfies the policy (c ∧ f).

If no such indices exist, then the algorithm outputs ⊥. Otherwise, it decrypts{
iCTi,j ← idDec(idDKνi

i , idCTν0
i,j)

}
(i,j)∈Y

ν0
≥1

,

and finds coefficients ω1, . . . , ωℓ ∈ Zp such that
∑

κ∈[ℓ] ωκM[κ] = e1 and ωκ = 0 for
all κ /∈ ρ−1(X). Finally, the algorithm computes

Jd0Kt ← iDec(iDK0, iCT0){
JdκKt ← iDec(iDKκ, iCTρ1(κ),ρ2(κ))

}
κ∈ρ−1(X) ,

and outputs Jµ′Kt = JdKt − Jd0Kt +
∑

κ∈ρ−1(X) ωκJdκKt.

Correctness. Let type ∈ {log-att, const-dep,≤const-thr,≥const-thr}. We consider at-
tributes x0, . . . , xn−1 ∈ {0, 1}k and f ∈ F type such that f(x0, . . . , xn−1) = 1. Let lab ∈ L
and DKf , {DKlab,i}i∈[n−1] and CTlab be computed as in Construction 5. We first argue
that there always exists a possible choice of indices ν0, . . . , νn−1 which satisfies conditions 1
and 2. For convenience, we parse Πtype

x0 and {Ωtype
xi }i∈[n−1] as in Construction 5.

• type = log-att. In this case, we have νi = 1 for all i ∈ [n− 1] since qi = 1,
and thus zνi

i = xi. For condition 1, we furthermore observe that there exists an
index ν0 ∈ [q0] such that yν0

i = xi for all i ∈ [n− 1]. This is because by definition,
Πlog-att

x0

′
contains the tuple (x0, . . . , xn−1) for all possible choices of x1, . . . , xn−1. For

condition 2, we first note that the choice of ν0 is unique, so X is uniquely determined.
Then it is not hard to see that this set X satisfies the policy (c ∧ f) since c only
checks that there is one decryption key DKlab,i for each i and f(x0, . . . , xn−1) = 1
by assumption.

• type = const-dep. We first observe that a circuit f of depth d = O(1) depends on
at most τ = 2d = O(1) inputs. For this reason, there exists a subset L ⊆ [n]× [k]
of size τ such that the output of f only depends on inputs in L. (If the locality
of f is smaller than τ , then the choice of L is not unique). For condition 1, let i ∈
[n− 1]. By construction of Ωconst-dep

xi , there exists an index νi such that zνi
i [j] = ⊥

for (i, j) ∈ ({i} × [k]) \ L and zνi
i [j] = xi[j] for (i, j) ∈ L. Furthermore, for

each choice of L and x1, . . . , xn−1, there exists an index ν0 ∈ [q0] such that for
all (i, j) ∈ [n− 1]× [k], it holds yν0

i [j] = xi[j] if (i, j) ∈ L and yν0
i [j] = ⊥ otherwise.

For condition 2, the argument is similar to the previous case. Once we have found
an assignment for ν0, . . . , νn−1 that satisfies the first condition, the second follows
since f(x0, . . . , xn−1) = 1.

• type = ≤const-thr. The argument is the same as in the case type = const-dep
except that now all tuples (yν0

0 , . . . , yν0
n−1) ∈ Π≤const-thr

x0
and vectors zνi

i ∈ Ω≤const-thr
xi

,
for i ∈ [n− 1], have coordinates in {1,⊥} instead of {0, 1,⊥}. For condition 1, this

32 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

is irrelevant as we replace the 0 coordinates with ⊥ in both the yν0
i and the zνi

i

vectors. So their equality is preserved. For condition 2, we exploit the fact that all
policies in F≤const-thr are monotone. Therefore, if a coordinate of yν0

i or zνi
i is 0 or ⊥

is irrelevant for the fact whether X satisfies (c ∧ f) or not.

• type = ≥const-thr. The argument is similar to the case type = log-att. For i ∈ [n− 1],
we have νi = 1 and for all j ∈ [k], z1

i [j] = 1 if xi = 1 and z1
i [j] = ⊥ otherwise.

If
∑

i∈[0;n−1] δ(xi) ≥ kn− τ , then there also exists ν0 ∈ [q0] such that yν0
i = z1

i for
all i ∈ [n− 1]. In contrast, such a ν0 does not exist if

∑
i∈[0;n−1] δ(xi) < kn− τ . But

this is irrelevant since f(x0, . . . , xn−1) = 0 in this case, i.e. such a combination of
attributes is never authorized regardless of the policy f .

Once the algorithm has chosen indices ν0, . . . , νn−1 that satisfy conditions 1 and 2, we can
argue as in Construction 2. By the correctness of idFE and iFE, we have d0 = rν0 · s + σ
and, for all κ ∈ ρ−1(X), dκ = rν0 · s[κ]. Then we conclude from the correctness of the LSS
scheme that

µ′ = d− d0 +
∑

κ∈ρ−1(X)

ωκdκ = (σ + µ)− (rν0s + σ) + rν0 ·
∑

κ∈ρ−1(X)

ωκs[κ]

︸ ︷︷ ︸
= s

= µ

Efficiency. For efficiency, we need to ensure that Πtype
x0 and Ωtype

xi have polynomial size
for all i ∈ [n− 1] and type ∈ {log-att, const-dep,≤const-thr,≥const-thr}.

• type = log-att. By construction, we have |Ωlog-att
xi | = 1 and∣∣Πlog-att

x0

∣∣ = 2k(n−1) = 2O(log λ) = poly(λ) ,

since kn = O(log λ).

• type = const-dep. Since τ = 2d = O(1), we have

∣∣Πconst-dep
x0

∣∣ ≤ (
kn

τ

)
· 2τ = poly(λ)

∣∣Ωconst-dep
xi

∣∣ ≤ ∑
ℓ∈[0;τ]

(
k

ℓ

)
· 2ℓ = poly(λ) .

• type = ≤const-thr. Similar to the case type = const-dep, as τ = O(1), we have

∣∣Π≤const-thr
x0

∣∣ ≤ (
kn

τ

)
= poly(λ)

∣∣Ω≤const-thr
xi

∣∣ ≤ ∑
ℓ∈[0;τ]

(
k

ℓ

)
= poly(λ) .

• type = ≥const-thr. Since τ = O(1), we have |Ω≥const-thr
xi

| = 1 and

∣∣Π≥const-thr
x0

∣∣ ≤ ∑
ℓ∈[0;τ]

(
kn

kn− ℓ

)
= poly(λ) .

David Pointcheval, Robert Schädlich 33

Security. We prove selective security with repetitions.

Proposition 6. Let type ∈ {log-att, const-dep,≤const-thr,≥const-thr}. If the DDH as-
sumption holds in G2, iFE is slot-mode correct and function-hiding and idFE is secure,
then Construction 5 is sel-rep-secure.

When instantiating iFE with the slotted ABE from [LL20a] and idFE with the IBE
from [CLL+13], we obtain the following theorem.

Theorem 7. Assuming SXDH on pairings, there exist

• a sel-rep-secure MC-ABE for the policy class NC1 where the parameters satisfy kn =
O(log λ), and

• a sel-rep-secure MC-ABE for the policy classes F const-dep, F≤const-thr and F≥const-thr

with k = n = poly(λ).

Proof (Proposition 6). Let OEnc(lab, x0, Jµ0Kt, Jµ1Kt) be the (single) encryption query.
We define q0 := |Πtype

x0 | and parse Πtype
x0 = {yν}ν∈[q0] where yν = (yν

1 , . . . , yν
n). For i ∈

[0; n− 1], let Y ν
i = {i} × {j ∈ [0; k] : yν

i [j] ̸= ⊥}, Y ν =
⋃

i∈[0;n−1] Y ν
i and Y ν

≥1 =
Y ν \ Y ν

0 . For the reply to the encryption query, the challenger samples random ele-
ments Jr1K1, . . . , Jrq0K1, JσK1

$← G1, computes JdKt = Jσ + µKt and generates{
iCTν

0 ← iSlotEnc(iMPK0, J(rν , σ)K1)
}ν∈[q0]{

iCTν
i,j ← iSlotEnc(iMPKyν

i [j]
i,j , JrνK1)

}ν∈[q0]
(i,j)∈Y ν{

idCTν
i,j ← idEnc(idMPKi, (lab, yν

i), iCTν
i,j)

}ν∈[q0]
(i,j)∈Y ν

≥1
.

Then it sends the following challenge ciphertext CT to A:

CTlab =
(
JdKt, {iCTν

0}ν∈[q0], {iCTν
0,j}

ν∈[q0]
(0,j)∈Y ν

0
, {idCTν

i,j}
ν∈[q0]
(i,j)∈Y ν

≥1

)
.

We consider a sequence of hybrid games Gb
ν , for ν ∈ [0; q0] and b ∈ {0, 1}, where Gb

ν is the
same as Expmc-abe-b

aFE,A (1λ) except that, for each ν′ ∈ [q0], the challenger computes

iCTν′

0 ←

{
iSlotEnc(iMPK0, J(rν′

, 0)K1) if ν′ ≤ ν

iSlotEnc(iMPK0, J(rν′
, σ)K1) if ν′ > ν

We note that Gb
0 = Expmc-abe-b

aFE,A (1λ) and G0
q0
≡ G1

q0
. For the latter, we observe that in the

hybrids G0
q0

and G1
q0

the random mask JσKt
$← Gt appears only in the terms JdKt := Jσ+µbKt,

which implies that the distributions Jσ + µ0Kt and Jσ + µ1Kt are identical. Below we prove
the following claim for all ν ∈ [q0] and b ∈ {0, 1}.
Claim 8. We have Gb

ν−1 ≈c Gb
ν under the slot-mode correctness and function-hiding security

of iFE, the security of idFE and the DDH assumption in G2.
This concludes the proof of the proposition.

We next prove the claim.

Proof (Claim 8). We consider a sequence of hybrids Ĝ0
0, . . . , Ĝ0

6, Ĝ1
6, . . . , Ĝ1

0, where Ĝ0
0 =

Gb
ν−1 and Ĝ1

0 = Gb
ν . We argue Ĝβ

α−1 ≈c Ĝβ
α, for α ∈ [6] and β ∈ {0, 1}, as well as G0

6 ≡ G1
6.

Then the claim follows via a hybrid argument. Modifications between consecutive games
are highlighted using boxes .

34 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

Game Ĝβ
0 : This is Gν−1+β .

Game Ĝβ
1 : This game is the same as Ĝβ

0 , except that the challenger computes

iCTν
0 ← iEnc(iMSK0, J(rν , ρβ , 0)K1){

iCTν
i,j ← iEnc(iMSKyν

i [j]
i,j , J(rν , 0)K1)

}
(i,j)∈Y ν ,

where ρ0 = σ and ρ1 = 0. We have Ĝβ
0 ≡ Ĝβ

1 which follows from the slot-mode
correctness of iFE.

Game Ĝβ
2 : We define the set J ⊆ [0; n− 1] × [0; k] containing the indices of all cipher-

texts iCTν
i,j known to the adversary:

J =
{

(i, j) ∈ Y ν :
[
i ∈ C ∪ {0}

]
∨

[
∃(i, lab, xi) ∈ Qakey s.t. yν

i ∈ Ωtype
xi

]}
.

This game is the same as Ĝβ
1 , except that the challenger now computes

iCTν
i,j ←

{
iEnc(iMSKyν

i [j]
i,j , J(rν , 0)K1) if (i, j) ∈ J

iEnc(iMSKyν
i [j]

i,j , J(0 , 0)K1) if (i, j) /∈ J .

We have Ĝβ
1 ≈c Ĝβ

2 from the security of idFE.

Game Ĝβ
3 : Next we deal with the ciphertexts iCTν

i,j such that (i, j) ∈ J . Initially, the
challenger needs to respond to the selective encryption query. In contrast to the
previous game, it now computes

iCT0 ← iEnc(iMSK0, J (0, 0, 1) K1)

iCTi,j ←

{
iEnc(iMSKyν

i [j]
i,j , J (0, 1) K1) if (i, j) ∈ J

iEnc(iMSKyν
i [j]

i,j , J(0, 0)K1) if (i, j) /∈ J .

Upon receiving a queryOPKeyGen(f) with (c ∧ f) = (M ∈ Zm×ℓ
p , ρ : [ℓ]→ [0; n− 1]×

[0; k] × {0, 1}), the challenger samples s $← Zp, u $← Zm−1
p and computes s =

(s, u⊤) ·M. Then it sends DKf = {iDKκ}κ∈[0;ℓ] to A generated as follows:

iDK0 ← iKeyGen(iMSK0, J(s, 1, rν · s + ρβ)K2)

iDKκ ←

{
iKeyGen(iMSKρ(κ), J(s[κ], rν · s[κ])K2) if ρ(κ) ∈ J

iKeyGen(iMSKρ(κ), J(s[κ], 0)K2) if ρ(κ) /∈ J ,

where the scalar rν $← Zp is sampled during the creation of the challenge ciphertext
(but not used). As the public parts of the iFE keys and the inner products between
vectors embedded in the iFE keys and ciphertexts do not change, it follows Ĝβ

2 ≈c Ĝβ
3

from the function-hiding security of iFE.

Game Ĝβ
4 : This game is the same as Ĝβ

3 except that the challenger embeds a fresh
secret sharing in each secret key. Specifically, upon receiving a query OPKeyGen(f)
with (c ∧ f) = (M ∈ Zm×ℓ

p , ρ : [ℓ]→ [0; n− 1]× [0; k]×{0, 1}), the challenger samples
s, t $← Zp and u, v $← Zm−1

p , computes s = (s, u⊤) ·M and t = (t, v⊤) ·M and sends
DKf = {iDKκ}κ∈[0;ℓ] to A generated as follows:

iDK0 ← iKeyGen(iMSK0, J(s, 1, t + ρβ)K2)

iDKκ ←

{
iKeyGen(iMSKρ(κ), J(s[κ], t[κ])K2) if ρ(κ) ∈ J

iKeyGen(iMSKρ(κ), J(s[κ], 0)K2) if ρ(κ) /∈ J .

David Pointcheval, Robert Schädlich 35

It is not hard to see that Ĝβ
3 ≈c Ĝβ

4 under the DDH assumption in G2. (Note that we
can exploit the random self-reducibility of the DDH problem here, so a single DDH
instance suffices).

Let f ∈ Qpkey and (c ∧ f) = (M ∈ Zm×ℓ
p , ρ : [ℓ]→ ([0; n− 1]× [0; k]× {0, 1})). We recall

that the adversary can learn the iFE ciphertexts corresponding to the attributes with
indices in J ′ := {(i, j, yν

i [j])}(i,j)∈J . Let Mf = span{M[κ] : κ ∈ [ℓ] ∧ ρ(κ) ∈ J ′} be the
vector space spanned by the columns of M associated with attributes in J ′. Furthermore,
let M⊥

f denote the orthogonal complement of Mf and A⊥
f the affine space of M⊥

f containing
all vectors whose first coordinate is 1. To argue that A⊥

f is nonempty, we distinguish two
cases:

1. If there exists i ∈ [n− 1]\C such that yν
i /∈ Ωtype

xi for all attributes xi with (i, lab, xi) ∈
Qakey, then J ′ does not satisfy c (and thus (c ∧ f)). Hence, we have e1 /∈Mf which
implies that A⊥

f is nonempty.

2. Otherwise, consider any sequence of attributes x1, . . . , xn−1 ∈ {0, 1}k such that for
all i ∈ [n− 1], we have[

i ∈ C ∨ (i, lab, xi) ∈ Qakey
]
∧

[
yν

i ∈ Ωtype
xi

]
.

For the sake of a contradiction, assume that J ′ satisfies (c ∧ f). Then it follows that
J ′′ := {(i, 0, 1)}i∈[n−1]∪{(i, j, xi[j])}(i,j)∈[0;n−1]×[k] also satisfies (c ∧ f) since J ′ ⊆ J ′′

and (c ∧ f) is a monotone policy. In this case, the equivalence between (c ∧ f)
and (c ∧ f) gives that

(c ∧ f)
(
(1, x0), . . . , (1, xn−1)

)
= 1 ,

which implies in particular that f(x0, . . . , xn−1) = 1. This contradicts the admis-
sibility of the adversary A. Therefore, J ′ cannot satisfy (c ∧ f), and we conclude
that e1 /∈Mf and A⊥

f is nonempty.

Game Ĝβ
5 : This game is the same as Ĝβ

4 , except that we modify how the challenger
generates the share vector t for the reply to a query OPKeyGen(f). Let (c ∧ f) =
(M ∈ Zm×ℓ

p , ρ : [ℓ]→ [0; n− 1]× [0; k]×{0, 1}). In Ĝβ
4 , the challenger samples t $← Zp,

v $← Zm−1
p and computes t = (t, v⊤) ·M. In the current game, the challenger picks

an additional vector (1, v)⊤ ∈ A⊥
f and sets

t = (t, v⊤) ·M + (0, tv⊤) ·M .

The distributions {v : v $← Zm−1
p } and {v + tv : v $← Zm−1

p } are identical for
any v ∈ Zm−1

p . The first distribution corresponds to Ĝβ
4 and the second one to Ĝβ

5
(followed by the same post-processing), so we have Ĝβ

4 ≡ Ĝβ
5 .

Game Ĝβ
6 : This game is the same as Ĝβ

5 except that we again change the behavior of the key
generation oracle when receiving a query OPKeyGen(f). Let (c ∧ f) = (M ∈ Zm×ℓ

p ,
ρ : [ℓ]→ [0; n− 1]× [0; k]×{0, 1}). As in the previous hybrid, the challenger samples
s, t $← Zp and u, v $← Zm−1

p and computes s = (s, u⊤) ·M. In the current hybrid, it
then generates DKf = {iDKκ}κ∈[0;ℓ] as follows:

iDK0 ← iKeyGen(iMSK0, J(s, 1, t + ρβ)K2)

iDKκ ←

{
iKeyGen(iMSKρ(κ), J(s[κ], (0, v⊤) ·M[κ])K2) if ρ(κ) ∈ J ′

iKeyGen(iMSKρ(κ), J(s[κ], 0)K2) if ρ(κ) /∈ J ′ ,

36 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

whereas in Ĝβ
5 , the challenger additionally picks (1, v)⊤ ∈ A⊥

f and computes

iDKκ ← iKeyGen(iMSKρ(κ), J(s[κ], (t, (v + tv)⊤) ·M[κ])K2)

for all κ ∈ [ℓ] such that ρ(κ) ∈ J ′. We can observe that

(t, (v + tv)⊤) ·M[κ] = (0, v⊤) ·M[κ] + t(1, v⊤) ·M[κ]
= (0, v⊤) ·M[κ] ,

where the last equality follows from the fact that (1, v⊤) ∈ M⊥
f and M[κ] ∈ Mf .

The first distribution corresponds to Ĝβ
5 and the second one to Ĝβ

6 (followed by the
same post-processing), thus we have Ĝβ

5 ≡ Ĝβ
6 . We further notice that in Ĝβ

6 the
random element JtK2

$← G2 appears only in iDK0, so it perfectly masks JρβK2 and we
conclude that Ĝ0

6 ≡ Ĝ1
6.

6 Construction of MC-PE
In this section, we present our new compiler that turns any O(1)-client ABE into an O(1)-
client PE scheme for the same policy class.

For each ℓ ∈ [0; n− 1], we define a permutation πℓ of the set [0; n− 1] via

πℓ(i) =


i + 1 if i ∈ [0; ℓ− 1]
0 if i = ℓ

i if i ∈ [ℓ + 1; n− 1] .

Correspondingly, for a policy f ∈ F and ℓ ∈ [0; n− 1], we define πℓ(f) as a variant of f
with permuted inputs:(

πℓ(f)
)

(x0, . . . , xn−1) = f(xπℓ(0), . . . , xπℓ(n−1)) .

Construction 9 (Multi-Client Predicate Ecryption). The construction uses the following
ingredients:

• An MC-ABE scheme aFE = (aSetup, aEnc, aAKeyGen, aPKeyGen, aDec) for a message
space M = {0, 1}m for some m = poly(λ), a label space L, an attribute universe X
and a policy class F .

• A lockable obfuscation scheme LObf = (Obf, Eval) with lock space M and message
space M′. We write C[x](y) to indicate that a circuit C has the value x hardwired
in its description and takes y as input.

The MC-PE scheme pFE for message space M′, label space L, attribute universe X and
policy class F works as follows:

Setup(1λ) takes as input the security parameter 1λ and generates n aFE instances{
(aMPKℓ, aMSKℓ, {aSKℓ,i}i∈[n−1])← aSetup(1λ)

}
ℓ∈[0;n−1] .

Then the algorithm outputs ({SKi}i∈[0;n−1], MSK) as follows:{
SKi := (aMPKi, {aSKℓ,j}(ℓ,j)∈Ji

)
}

i∈[0;n−1] , MSK := {aMSKℓ}ℓ∈[0;n−1] ,

where Ji = {(ℓ, πℓ(i))}ℓ∈[0;n−1]\{i}. We implicitly parse these keys in the algorithms
below.

David Pointcheval, Robert Schädlich 37

hardwired values :
• an aFE ciphertext aCTi

• a set of aFE attribute decryption keys {aDKℓ,i+1}ℓ∈[i+1;n−1]

input :
• a set of obfuscated circuits {C̃ℓ}ℓ∈[i+1;n−1]

• a set of aFE attribute decryption keys {aDKℓ,j}j∈[i]
ℓ∈[i;n−1]

• a set of aFE policy decryption keys {aDKℓ,f}ℓ∈[i;n−1]

output : an element of the lock space σi ∈M or ⊥

initialize {aDKℓ,j ← ⊥}j∈[i+1;n−1]
ℓ∈[0;j−1]

for k ← i + 1 to n− 1 do
ck ← Eval(C̃k, ({C̃ℓ}ℓ∈[k+1;n−1], {aDKℓ,j}j∈[k]

ℓ∈[k;n−1], {aDKℓ,f}ℓ∈[k;n−1]))
if ck = ⊥ then return ⊥
else parse {aDKℓ,k}ℓ∈[0;k−1] ← ck

end
return σi ← aDec(aDKi,f , {aDKi,j}j∈[n−1], aCTi)

Figure 5: Definition of the circuit Ci[aCTi, {aDKℓ,i+1}ℓ∈[i+1;n−1]] on input
({C̃ℓ}ℓ∈[i+1;n−1], {aDKℓ,j}j∈[i]

ℓ∈[i;n−1], {aDKℓ,f}ℓ∈[i;n−1])

Enc(SK0, lab, x0, µ) takes as input SK0, a label lab ∈ L, an attribute x0 ∈ X and a
message µ ∈M′. The algorithm samples σ0

$←M, runs

aCT0 ← aEnc(aMPK0, lab, x0, σ0){
aDKℓ,1 ← aAKeyGen(aSKℓ,1, lab, x0)

}
ℓ∈[n−1]

C̃0 ← Obf(1λ, C0[aCT0, {aDKℓ,1}ℓ∈[n−1]], µ, σ0)

and outputs CTlab := C̃0. The circuit C0 is described in Fig. 5.

AKeyGen(SKi, lab, xi) takes as input SKi for some i ∈ [n− 1], a label lab ∈ L and an
attribute xi ∈ X . The algorithm samples σi

$←M, runs

aCTi ← aEnc(aMPKi, lab, xi, σi){
aDKℓ,j ← aAKeyGen(aSKℓ,j , lab, xi)

}
(ℓ,j)∈Ji

C̃i ← Obf(1λ, Ci[aCTi, {aDKℓ,i+1}ℓ∈[i+1;n−1]], {aDKℓ,i}ℓ∈[0;i−1], σi)

and outputs DKlab,i := C̃i with Ci being described in Fig. 5.

PKeyGen(MSK, f) takes as input MSK and a policy f ∈ F , runs{
aDKℓ,f ← aPKeyGen(aMSKℓ, πℓ(f))

}
ℓ∈[0;n−1] ,

and outputs DKf := {aDKℓ,f}ℓ∈[n].

Dec(DKf , {DKlab,i}i∈[n−1], CTlab) takes a policy decryption key DKf = {aDKℓ,f}ℓ∈[0;n−1],
a set of attribute decryption keys {DKlab,i = C̃i}i∈[n−1] and a ciphertext CTlab = C̃0
as input. The algorithm outputs µ′ computed as follows:

µ′ ← Eval(C̃0, ({C̃i}i∈[n−1],∅, {aDKℓ,f}ℓ∈[0;n−1])) .

38 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

Correctness. Let λ, n ∈ N, lab ∈ L, µ ∈ M, f ∈ F and x0, . . . , xn−1 ∈ X such that
f(x0, . . . , xn−1) = 1. Furthermore, let DKf = {aDKℓ,f}ℓ∈[0;n−1], {DKlab,i = C̃i}i∈[n−1]

and CTlab = C̃0 be created as in Construction 9. To establish correctness, we prove the
following statement.

Lemma 10. For x0, . . . , xn−1 such that f(x0, . . . , xn−1) = 1 and i ∈ [0; n− 1], we have

Eval(C̃i, ({C̃ℓ}ℓ∈[i+1;n−1], {aDKℓ,j}j∈[i]
ℓ∈[i;n−1], {aDKℓ,f}ℓ∈[i;n−1])) = µi ,

where µ0 = µ and µi = {aDKℓ,i}ℓ∈[0;i−1] for i ∈ [n− 1]. In particular, correctness
corresponds to the case i = 0.

Furthermore, due to the nested evaluations, the scheme is efficient for constant arity,
i.e. n = O(1).

Proof (Lemma 10). We prove the lemma by induction over i from n− 1 to 0.

Base Case. Let i = n− 1. By construction, we have

C̃n−1 ← Obf(1λ, Cn−1[aCTn−1,∅], {aDKℓ,n−1}ℓ∈[0;n−2], σn−1) ,

where σn−1
$← M is the lock value of the obfuscated circuit. By definition, the circuit

Cn−1[aCTn−1,∅] takes as input (∅, {aDKn−1,j}j∈[n−1], {aDKn−1,f}) and outputs the result
of the decryption

σ′
n−1 ← aDec(aDKn−1,f , {aDKn−1,j}j∈[n−1], aCTn−1) .

By the correctness of aFE, we have σn = σ′
n and, by the correctness of LObf, the evaluation

of C̃n−1 outputs µn−1 = {aDKℓ,n−1}ℓ∈[0;n−2].

Induction Step. Let i ∈ [0; n− 2]. We show that, if

Eval(C̃k, ({C̃ℓ}ℓ∈[k+1;n−1], {aDKℓ,j}j∈[k]
ℓ∈[k;n−1], {aDKℓ,f}ℓ∈[k;n−1])) = µk

for all k ∈ [i + 1; n− 1], then

Eval(C̃i, ({C̃ℓ}ℓ∈[i+1;n−1], {aCTℓ,j}j∈[i]
ℓ∈[i;n−1], {aDKℓ,f}ℓ∈[i;n−1])) = µi .

By construction, C̃i is an obfuscation of Ci[aCTi, {aDKℓ,i+1}ℓ∈[i+1;n−1]] under the lock
value σi for the message µi. From the induction hypothesis, we obtain that the for loop
in the definition of Ci[aCTi, {aDKℓ,i+1}ℓ∈[i+1;n−1]] correctly recovers {aDKi,j}j∈[i+1;n−1].
Given in addition aCTi hardwired in the description of the circuit and {aDKi,j}j∈[i] from
the input, the circuit returns the decryption result

σ′
i ← aDec(aDKi,f , {aDKi,j}j∈[n−1], aCTi) .

The correctness of aFE implies σi = σ′
i, and we can conclude from the correctness of LObf

that the evaluation of the obfuscated circuit indeed yields µi as desired.

David Pointcheval, Robert Schädlich 39

Security. We show that the compiler preserves the security level of the underlying
MC-ABE.

Proposition 11. Let xxx ∈ {sel, adap} and yyy ∈ {rep, norep}. If aFE is xxx-yyy-secure
and LObf is secure, then the MC-PE scheme pFE in Construction 9 is also xxx-yyy-secure.

Proof. The proof proceeds via a sequence of hybrid games Gb
0.1, Gb

1.0, Gb
1.1, Gb

2.0, Gb
2.1, . . . ,

Gb
n.0, Gb

n.1 with Gb
0.1 = Expmc-pe-b

pFE,A (1λ) for b ∈ {0, 1} and G0
n.1 ≡ G1

n.1. We argue that
Gb

κ−1.1 ≈c Gb
κ.0 and Gb

κ.0 ≈c Gb
κ.1 for all κ ∈ [n] and b ∈ {0, 1}. Then the proposition

follows via a hybrid argument. Modifications between consecutive games are highlighted
using boxes .

Game Gb
0.1 for b ∈ {0, 1}: This game is the same as Expmc-pe-b

pFE,A (1λ).

Game Gb
κ.0 for κ ∈ [n− 1] and b ∈ {0, 1}: Let i = n − κ. This game is the same as

Gb
κ−1.1 except that in replies to queries of the form OAKeyGen(i, lab, x0

i , x1
i) with

x0
i ̸= x1

i , the challenger computes

aCTi ← aEnc(aMPKi, lab, xb
i , 0m) ,

as opposed to aCTi ← aEnc(aMPKi, lab, xb
i , σi) for σi

$←M.
Claim 12. If aFE is secure, then Gb

κ−1.1 ≈c Gb
κ.0.

Game Gb
κ.1 for κ ∈ [n− 1] and b ∈ {0, 1}: Let i = n − κ. The security of LObf guar-

antees the existence of an efficient simulator Sim. This game is the same as Gb
κ.0

except that in replies to queries of the form OAKeyGen(i, lab, x0
i , x1

i) with x0
i ̸= x1

i ,
the challenger computes

C̃i ← Sim(1λ, 1|Ci[aCTi,{aDKℓ,i+1}ℓ∈[i+1;n−1]]|, 1|{aDKℓ,i}ℓ∈[0;i−1]|) ,

instead of C̃i ← Obf(1λ, Ci[aCTi, {aDKℓ,i+1}ℓ∈[i+1;n−1]], {aDKℓ,i}ℓ∈[0;i−1], σi).
Claim 13. If LObf is secure, then Gb

κ.0 ≈c Gb
κ.1.

Game Gb
n.0 for b ∈ {0, 1}: This game is the same as Gb

n−1.1 except that in replies to
queries of the form OEnc(lab, x0

0, x1
0, µ0, µ1) with x0

0 ̸= x1
0, the challenger computes

aCT0 ← aEnc(aMPK0, lab, xb
0, 0m) ,

as opposed to aCT0 ← aEnc(aMPK0, lab, xb
0, σ0).

Claim 14. If aFE is secure, then Gb
n−1.1 ≈c Gb

n.0.

The proof of Claim 14 is similar to that of Claim 12.

Game Gb
n.1 for b ∈ {0, 1}: This game is the same as Gb

n.0 except that in replies to queries
of the formOEnc(lab, x0

0, x1
0, µ0, µ1) with x0

0 ̸= x1
0 or µ0 ̸= µ1, the challenger computes

C̃0 ← Obf(1λ, 1|C0[aCT0,{aDKℓ,1}ℓ∈[n−1]]|, 1|µb|) ,

as opposed to C̃0 ← Obf(1λ, C0[aCT0, {aDKℓ,1}ℓ∈[n−1]], µb, σ0).
Claim 15. If LObf is secure, then Gb

n.0 ≈c Gb
n.1.

The proof of Claim 15 is similar to that of Claim 13. It is not hard to see that
G0

n.1 ≡ G1
n.1 as |µ0| = |µ1| for all encryption queries OEnc(lab, x0

0, x1
0, µ0, µ1) and,

thus, all responses of the challenger are independent of the challenge bit b. This
concludes the proof of Proposition 11.

40 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

We now turn to the claims.

Proof (Claim 12). Let i = n−κ as above. We show that if a PPT adversaryA distinguishes
between Gb

κ−1.1 and Gb
κ.0 with non-negligible probability, then there exists a PPT adversary

B that can break the security of the i-th aFE instance using A. The reduction is as follows:
• Initialization. Upon A calling Initialize(1λ), B calls the initialization procedure

aMPKi ← Initialize(1λ) of its own game Expmc-abe-β
aFE,B (1λ) and generates keys for n− 1

aFE instances by running{
(aMPKℓ, aMSKℓ, {aSKℓ,i}i∈[n−1])← aSetup(1λ)

}
ℓ∈[0;n−1]\{i} .

• Corruption Queries. Upon A calling OCorrupt(k) for k ∈ [0; n− 1], B first checks
if k ̸= i, in which case it submits a query aSKi,ρi(k) ← OCorrupt(ρi(k)) to its own
challenger. Then it sends SKk = (aMPKk, {aSKℓ,j}(ℓ,j)∈Jk

) to A.
• Encryption Queries. Upon A calling OEnc(lab, x0

0, x1
0, µ0, µ1), B samples σ0

$←M,
submits a query aDKi,1 ← OAKeyGen(1, lab, xb

0) to its own game Expmc-abe-β
aFE,B (1λ)

and returns CTlab = C̃0 computed as follows

aCT0 ← aEnc(aMPK0, lab, xb
0, σ0){

aDKℓ,1 ← aAKeyGen(aSKℓ,1, lab, xb
0)

}
ℓ∈[n−1]\{i}

C̃0 ← Obf(1λ, C0[aCT0, {aDKℓ,1}ℓ∈[n−1]], µb, σ0) .

• Attribute Key Generation Queries. Upon A calling OAKeyGen(k, lab, x0
k, x1

k) for
k ∈ [n− 1], B behaves according to the following case distinction:

◦ If k ∈ [i− 1], then B samples σk
$←M, submits a query aDKi,k+1 ← OAKeyGen(k+

1, lab, xb
k) to its own game Expmc-abe-β

aFE,B (1λ) and returns DKlab,k = C̃k computed
as follows

aCTk ← aEnc(aMPKk, lab, xb
k, σk){

aDKℓ,j ← aAKeyGen(aSKℓ,j , lab, xb
k)

}
(ℓ,j)∈Jk\{(i,k+1)}

C̃k ← Obf(1λ, Ck[aCTk, {aDKℓ,k+1}ℓ∈[k+1;n−1]], {aDKℓ,k}ℓ∈[0;k−1], σk).

◦ If k = i, then B samples σi
$←M, sets

(v0, v1) =
{

(σi, 0m) if x0
i ̸= x1

i

(σi, σi) if x0
i = x1

i

,

submits a query aCTi ← OEnc(lab, xb
i , v0, v1) to its own challenger Expmc-abe-β

aFE,B (1λ)
and returns DKlab,i = C̃i computed as follows{

aDKℓ,j ← aAKeyGen(aSKℓ,j , lab, xb
i)

}
(ℓ,j)∈Ji

C̃i ← Obf(1λ, Ci[aCTi, {aDKℓ,i+1}ℓ∈[i+1;n−1]], {aDKℓ,i}ℓ∈[0;i−1], σi).

◦ If k ∈ [i + 1; n− 1], then B submits a query aDKi,k ← OAKeyGen(k, lab, xb
k)

to its own game Expmc-abe-β
aFE,B (1λ) and generates decryption keys aDKℓ,j ←

aAKeyGen(aSKℓ,j , lab, xb
k) for all (ℓ, j) ∈ Jk \ {(i, k)} by itself. If x0

k ̸= x1
k, it

computes

aCTk ← aEnc(aMPKk, lab, xb
k, 0m)

C̃k ← Sim(1λ, 1|Ck[aCTk,{aDKℓ,k+1}ℓ∈[k+1;n−1]]|, 1|{aDKℓ,k}ℓ∈[0;k−1]|) .

David Pointcheval, Robert Schädlich 41

Otherwise, B samples σk
$←M and computes

aCTk ← aEnc(aMPKk, lab, xb
k, σk)

C̃k ← Obf(1λ, Ck[aCTk, {aDKℓ,k+1}ℓ∈[k+1;n−1]], {aDKℓ,k}ℓ∈[0;k−1], σk).

Finally, B sends DKlab,k = C̃k to A.

• Policy Key Generation Queries. Upon A calling PKeyGen(f), B submits a query
aDKi,f ← OPKeyGen(πi(f)) to its own game Expmc-abe-β

aFE,B (1λ), runs{
aDKℓ,f ← aPKeyGen(aMSKℓ, πℓ(f))

}
ℓ∈[0;n−1]\{i} ,

and sends DKf = {aDKℓ,f}ℓ∈[0;n−1] to A.

• Finalization. Upon A calling Finalize(b′), B calls the finalization procedure Finalize(b′)
of its own game Expmc-abe-β

aFE,B (1λ).

We observe that if A is an admissible adversary in Expmc-pe-b
pFE,A (1λ), then B is admissible

in Expmc-abe-β
aFE,B (1λ). We further observe that if B’s challenger returns an encryption of v0

(i.e. β = 0), then B simulates Gb
κ−1.1; and if the challenger returns an encryption of v1

(i.e. β = 1), then B simulates Gb
κ.0.

Proof (Claim 13). Let i = n−κ as above. We show that if a PPT adversaryA distinguishes
between Gκ.0 and Gκ.1 with non-negligible probability, then there exists a PPT adversary
B that can break the strong security of LObf using A. The reduction is as follows:

• Initialization. Upon A calling Initialize(1λ), B generates n aFE instances{
(aMPKℓ, aMSKℓ, {aSKℓ,i}i∈[n−1])← aSetup(1λ)

}
ℓ∈[0;n−1] .

• Corruption Queries. Upon A calling OCorrupt(k) for k ∈ [0; n− 1], B sends SKi =
(aMPKi, {aSKℓ,j}(ℓ,j)∈Ji

) to A.

• Encryption Queries. Upon A calling OEnc(lab, x0
0, x1

0, µ0, µ1), B samples σ0
$←M

and returns CTlab = C̃0 computed as follows:

aCT0 ← aEnc(aMPK0, lab, xb
0, σ0){

aDKℓ,1 ← aAKeyGen(aSKℓ,1, lab, xb
0)

}
ℓ∈[n−1]

C̃0 ← Obf(1λ, C0[aCT0, {aDKℓ,1}ℓ∈[n−1]], µ, σ0) .

• Attribute Key Generation Queries. Upon A calling OAKeyGen(k, lab, x0
k, x1

k) for
k ∈ [n− 1], B behaves according to the following case distinction:

◦ If k ∈ [i− 1], then B samples σk
$← M and returns CTk = C̃k computed as

follows:

aCTk ← aEnc(aMPKk, lab, xb
k, σk){

aDKℓ,j ← aAKeyGen(aSKℓ,j , lab, xb
k)

}
(ℓ,j)∈Jk

C̃k ← Obf(1λ, Ck[aCTk, {aDKℓ,k+1}ℓ∈[k+1;n−1]], {aDKℓ,k}ℓ∈[0;k−1], σk).

42 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

◦ If k = i and x0
k ̸= x1

k, then B runs

aCTi ← aEnc(aMPKi, lab, xb
i , 0m){

aDKℓ,j ← aAKeyGen(aSKℓ,j , lab, xb
i)

}
(ℓ,j)∈Ji

,

and returns C̃i obtained from its own LObf challenger

C̃i ← LObf.OObfβ(Ci[aCTi, {aDKℓ,i+1}ℓ∈[i+1;n−1]], {aDKℓ,i}ℓ∈[0;i−1]) .

Otherwise, if k = i and x0
k = x1

k, then B samples σi
$←M and returns aCTi = C̃i

computed as follows:

aCTi ← aEnc(aMPKi, lab, xb
i , σi){

aDKℓ,j ← aAKeyGen(aSKℓ,j , lab, xb
i)

}
(ℓ,j)∈Ji

C̃i ← Obf(1λ, Ci[aCTi, {aDKℓ,i+1}ℓ∈[i+1;n−1]], {aDKℓ,i}ℓ∈[0;i−1], σi) .

◦ If k ∈ [i+1; n] and x0
k ≠ x1

k, then B sends aCTk = C̃k to A computed as follows:

aCTk ← aEnc(aMPKk, lab, xb
k, 0m){

aDKℓ,j ← aAKeyGen(aSKℓ,j , lab, xb
k)

}
(ℓ,j)∈Jk

C̃k ← Sim(1λ, 1|Ck[aCTk,{aDKℓ,k+1}ℓ∈[k+1;n−1]]|, 1|{aDKℓ,k}ℓ∈[0;k−1]|) .

Otherwise, if k ∈ [i+1; n] and x0
k = x1

k, it samples σk
$←M and returns aCTk =

C̃k computed as follows:

aCTk ← aEnc(aMPKk, lab, xb
k, σk){

aDKℓ,j ← aAKeyGen(aSKℓ,j , lab, xb
k)

}
(ℓ,j)∈Jk

C̃k ← Obf(1λ, Ck[aCTk, {aDKℓ,k+1}ℓ∈[k+1;n−1]], {aDKℓ,k}ℓ∈[0;k−1], σk) .

• Policy Key Generation Queries. Upon A calling OPKeyGen(f), B runs{
aDKℓ,f ← aPKeyGen(aMSKℓ, f)

}
ℓ∈[0;n−1] ,

and sends DKf = {aDKℓ,πℓ(f)}ℓ∈[0;n−1] to A.

• Finalization. Upon A calling Finalize(b′), B sends b′ to the LObf challenger.

We observe that if the challenge bit β of the LObf challenger is 0, i.e. the LObf challenger
returns a real obfuscation of Ci[{aCTℓ,i}ℓ∈[i;n]], then B simulates Gκ.0. Conversely, if β = 1,
then the LObf challenger returns a simulated obfuscation and B simulates Gκ.1.

Acknowledgments
This work was supported in part by the France 2030 ANR Project ANR-22-PECY-003
SecureCompute.

David Pointcheval, Robert Schädlich 43

References
[ABG19] Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input to

multi-client inner-product functional encryption. In Steven D. Galbraith and
Shiho Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS,
pages 552–582. Springer, Heidelberg, December 2019. doi:10.1007/978-3
-030-34618-8_19.

[ABKW19] Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik Wald-
ner. Decentralizing inner-product functional encryption. In Dongdai Lin and
Kazue Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 128–
157. Springer, Heidelberg, April 2019. doi:10.1007/978-3-030-17259-6_5.

[ACF+18] Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan
Ursu. Multi-input functional encryption for inner products: Function-hiding
realizations and constructions without pairings. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS,
pages 597–627. Springer, Heidelberg, August 2018. doi:10.1007/978-3-319
-96884-1_20.

[AG21] Miguel Ambrona and Romain Gay. Multi-authority ABE, revisited. Cryptol-
ogy ePrint Archive, Report 2021/1381, 2021. https://eprint.iacr.org/20
21/1381.

[AG23] Miguel Ambrona and Romain Gay. Multi-authority ABE for non-monotonic
access structures. In Alexandra Boldyreva and Vladimir Kolesnikov, edi-
tors, PKC 2023, Part II, volume 13941 of LNCS, pages 306–335. Springer,
Heidelberg, May 2023. doi:10.1007/978-3-031-31371-4_11.

[AGRW17] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-
input inner-product functional encryption from pairings. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume
10210 of LNCS, pages 601–626. Springer, Heidelberg, April / May 2017.
doi:10.1007/978-3-319-56620-7_21.

[AGT21] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic
functional encryption from pairings. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 208–238, Virtual Event,
August 2021. Springer, Heidelberg. doi:10.1007/978-3-030-84259-8_8.

[AGT22] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic
functional encryption: Stronger security, broader functionality. In Eike Kiltz
and Vinod Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of
LNCS, pages 711–740. Springer, Heidelberg, November 2022. doi:10.1007/
978-3-031-22318-1_25.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation
from compact functional encryption. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–
326. Springer, Heidelberg, August 2015. doi:10.1007/978-3-662-47989-6
_15.

[ALS16] Shweta Agrawal, Benoît Libert, and Damien Stehlé. Fully secure functional
encryption for inner products, from standard assumptions. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume
9816 of LNCS, pages 333–362. Springer, Heidelberg, August 2016. doi:
10.1007/978-3-662-53015-3_12.

https://doi.org/10.1007/978-3-030-34618-8_19
https://doi.org/10.1007/978-3-030-34618-8_19
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://eprint.iacr.org/2021/1381
https://eprint.iacr.org/2021/1381
https://doi.org/10.1007/978-3-031-31371-4_11
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-030-84259-8_8
https://doi.org/10.1007/978-3-031-22318-1_25
https://doi.org/10.1007/978-3-031-22318-1_25
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12

44 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

[ARYY23] Shweta Agrawal, Mélissa Rossi, Anshu Yadav, and Shota Yamada. Constant
input attribute based (and predicate) encryption from evasive and tensor
LWE. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023,
Part IV, volume 14084 of LNCS, pages 532–564. Springer, Heidelberg, August
2023. doi:10.1007/978-3-031-38551-3_17.

[ATY23] Shweta Agrawal, Junichi Tomida, and Anshu Yadav. Attribute-based multi-
input FE (and more) for attribute-weighted sums. In Helena Handschuh and
Anna Lysyanskaya, editors, CRYPTO 2023, Part IV, volume 14084 of LNCS,
pages 464–497. Springer, Heidelberg, August 2023. doi:10.1007/978-3-031
-38551-3_15.

[AWY20] Shweta Agrawal, Daniel Wichs, and Shota Yamada. Optimal broadcast
encryption from LWE and pairings in the standard model. In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS,
pages 149–178. Springer, Heidelberg, November 2020. doi:10.1007/978-3
-030-64375-1_6.

[AYY22] Shweta Agrawal, Anshu Yadav, and Shota Yamada. Multi-input attribute
based encryption and predicate encryption. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages
590–621. Springer, Heidelberg, August 2022. doi:10.1007/978-3-031-158
02-5_21.

[Bei96] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution.
PhD thesis, Technion - Israel Institute of Technology, Haifa, Israel, 1996.
https://www.cs.bgu.ac.il/~beimel/Papers/thesis.pdf.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18.
Springer, Heidelberg, August 2001. doi:10.1007/3-540-44647-8_1.

[BJK+18] Zvika Brakerski, Aayush Jain, Ilan Komargodski, Alain Passelègue, and
Daniel Wichs. Non-trivial witness encryption and null-iO from standard
assumptions. In Dario Catalano and Roberto De Prisco, editors, SCN 18,
volume 11035 of LNCS, pages 425–441. Springer, Heidelberg, September 2018.
doi:10.1007/978-3-319-98113-0_23.

[BL90] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and
monotone functions. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of
LNCS, pages 27–35. Springer, Heidelberg, August 1990. doi:10.1007/0-387
-34799-2_3.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS,
pages 253–273. Springer, Heidelberg, March 2011. doi:10.1007/978-3-642
-19571-6_16.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on
encrypted data. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS,
pages 535–554. Springer, Heidelberg, February 2007. doi:10.1007/978-3-5
40-70936-7_29.

[CDG+18] Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and
David Pointcheval. Decentralized multi-client functional encryption for inner

https://doi.org/10.1007/978-3-031-38551-3_17
https://doi.org/10.1007/978-3-031-38551-3_15
https://doi.org/10.1007/978-3-031-38551-3_15
https://doi.org/10.1007/978-3-030-64375-1_6
https://doi.org/10.1007/978-3-030-64375-1_6
https://doi.org/10.1007/978-3-031-15802-5_21
https://doi.org/10.1007/978-3-031-15802-5_21
https://www.cs.bgu.ac.il/~beimel/Papers/thesis.pdf
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-319-98113-0_23
https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-540-70936-7_29

David Pointcheval, Robert Schädlich 45

product. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018,
Part II, volume 11273 of LNCS, pages 703–732. Springer, Heidelberg, Decem-
ber 2018. doi:10.1007/978-3-030-03329-3_24.

[CDSG+20] Jérémy Chotard, Edouard Dufour-Sans, Romain Gay, Duong Hieu Phan,
and David Pointcheval. Dynamic decentralized functional encryption. In
Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I,
volume 12170 of LNCS, pages 747–775. Springer, Heidelberg, August 2020.
doi:10.1007/978-3-030-56784-2_25.

[CLL+13] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee.
Shorter IBE and signatures via asymmetric pairings. In Michel Abdalla and
Tanja Lange, editors, PAIRING 2012, volume 7708 of LNCS, pages 122–140.
Springer, Heidelberg, May 2013. doi:10.1007/978-3-642-36334-4_8.

[DOT18] Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. Full-hiding (un-
bounded) multi-input inner product functional encryption from the k-Linear
assumption. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018,
Part II, volume 10770 of LNCS, pages 245–277. Springer, Heidelberg, March
2018. doi:10.1007/978-3-319-76581-5_9.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An
algebraic framework for Diffie-Hellman assumptions. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
129–147. Springer, Heidelberg, August 2013. doi:10.1007/978-3-642-400
84-1_8.

[FFMV23] Danilo Francati, Daniele Friolo, Giulio Malavolta, and Daniele Venturi. Multi-
key and multi-input predicate encryption from learning with errors. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III,
volume 14006 of LNCS, pages 573–604. Springer, Heidelberg, April 2023.
doi:10.1007/978-3-031-30620-4_19.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan
Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-
input functional encryption. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602. Springer,
Heidelberg, May 2014. doi:10.1007/978-3-642-55220-5_32.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and functional
encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer
Society Press, October 2013. doi:10.1109/FOCS.2013.13.

[GKVW20] Rishab Goyal, Venkata Koppula, Satyanarayana Vusirikala, and Brent Waters.
On perfect correctness in (lockable) obfuscation. In Rafael Pass and Krzysztof
Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS, pages 229–259.
Springer, Heidelberg, November 2020. doi:10.1007/978-3-030-64375-1_9.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation.
In Chris Umans, editor, 58th FOCS, pages 612–621. IEEE Computer Society
Press, October 2017. doi:10.1109/FOCS.2017.62.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Ari Juels,
Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM

https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-030-56784-2_25
https://doi.org/10.1007/978-3-642-36334-4_8
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-031-30620-4_19
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-030-64375-1_9
https://doi.org/10.1109/FOCS.2017.62

46 Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions

CCS 2006, pages 89–98. ACM Press, October / November 2006. Available as
Cryptology ePrint Archive Report 2006/309. doi:10.1145/1180405.118041
8.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate
encryption for circuits from LWE. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
503–523. Springer, Heidelberg, August 2015. doi:10.1007/978-3-662-480
00-7_25.

[JR17] Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs
for linear subspaces. Journal of Cryptology, 30(4):1116–1156, October 2017.
doi:10.1007/s00145-016-9243-7.

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps
and locality-5 PRGs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 599–629. Springer,
Heidelberg, August 2017. doi:10.1007/978-3-319-63688-7_20.

[LL20a] Huijia Lin and Ji Luo. Compact adaptively secure ABE from k-Lin: Beyond
NC1 and towards NL. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part III, volume 12107 of LNCS, pages 247–277. Springer,
Heidelberg, May 2020. doi:10.1007/978-3-030-45727-3_9.

[LL20b] Huijia Lin and Ji Luo. Succinct and adaptively secure ABE for ABP from k-Lin.
In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III,
volume 12493 of LNCS, pages 437–466. Springer, Heidelberg, December 2020.
doi:10.1007/978-3-030-64840-4_15.

[LLL22] Hanjun Li, Huijia Lin, and Ji Luo. ABE for circuits with constant-size
secret keys and adaptive security. In Eike Kiltz and Vinod Vaikuntanathan,
editors, TCC 2022, Part I, volume 13747 of LNCS, pages 680–710. Springer,
Heidelberg, November 2022. doi:10.1007/978-3-031-22318-1_24.

[LT19] Benoît Libert and Radu Titiu. Multi-client functional encryption for linear
functions in the standard model from LWE. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages
520–551. Springer, Heidelberg, December 2019. doi:10.1007/978-3-030-3
4618-8_18.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from
DDH-like assumptions on constant-degree graded encodings. In Irit Dinur,
editor, 57th FOCS, pages 11–20. IEEE Computer Society Press, October 2016.
doi:10.1109/FOCS.2016.11.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryp-
tion and fully secure HIBE with short ciphertexts. In Daniele Micciancio,
editor, TCC 2010, volume 5978 of LNCS, pages 455–479. Springer, Heidelberg,
February 2010. doi:10.1007/978-3-642-11799-2_27.

[LW11] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 568–588. Springer, Heidelberg, May 2011. doi:10.1007/978-3-642-2
0465-4_31.

https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/s00145-016-9243-7
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-030-45727-3_9
https://doi.org/10.1007/978-3-030-64840-4_15
https://doi.org/10.1007/978-3-031-22318-1_24
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1109/FOCS.2016.11
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-20465-4_31

David Pointcheval, Robert Schädlich 47

[NPP22] Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Multi-client functional
encryption with fine-grained access control. In Shweta Agrawal and Dongdai
Lin, editors, ASIACRYPT 2022, Part I, volume 13791 of LNCS, pages 95–125.
Springer, Heidelberg, December 2022. doi:10.1007/978-3-031-22963-3_4.

[PS25] David Pointcheval and Robert Schädlich. Multi-client attribute-based
and predicate encryption from standard assumptions. In Elette Boyle and
Mohammad Mahmoody, editors, Theory of Cryptography, pages 31–64, Cham,
2025. Springer Nature Switzerland. doi:10.1007/978-3-031-78020-2_2.

[SBC+07] Elaine Shi, John Bethencourt, Hubert T.-H. Chan, Dawn Xiaodong Song, and
Adrian Perrig. Multi-dimensional range query over encrypted data. In 2007
IEEE Symposium on Security and Privacy, pages 350–364. IEEE Computer
Society Press, May 2007. doi:10.1109/SP.2007.29.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473.
Springer, Heidelberg, May 2005. doi:10.1007/11426639_27.

[Tom19] Junichi Tomida. Tightly secure inner product functional encryption: Multi-
input and function-hiding constructions. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages
459–488. Springer, Heidelberg, December 2019. doi:10.1007/978-3-030-3
4618-8_16.

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I,
volume 13507 of LNCS, pages 535–559. Springer, Heidelberg, August 2022.
doi:10.1007/978-3-031-15802-5_19.

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption
and null-IO from evasive LWE. In Shweta Agrawal and Dongdai Lin, editors,
ASIACRYPT 2022, Part I, volume 13791 of LNCS, pages 195–221. Springer,
Heidelberg, December 2022. doi:10.1007/978-3-031-22963-3_7.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and
HIBE under simple assumptions. In Shai Halevi, editor, CRYPTO 2009,
volume 5677 of LNCS, pages 619–636. Springer, Heidelberg, August 2009.
doi:10.1007/978-3-642-03356-8_36.

[Wee17] Hoeteck Wee. Attribute-hiding predicate encryption in bilinear groups, re-
visited. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, vol-
ume 10677 of LNCS, pages 206–233. Springer, Heidelberg, November 2017.
doi:10.1007/978-3-319-70500-2_8.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare pro-
grams under LWE. In Chris Umans, editor, 58th FOCS, pages 600–611. IEEE
Computer Society Press, October 2017. doi:10.1109/FOCS.2017.61.

https://doi.org/10.1007/978-3-031-22963-3_4
https://doi.org/10.1007/978-3-031-78020-2_2
https://doi.org/10.1109/SP.2007.29
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-030-34618-8_16
https://doi.org/10.1007/978-3-030-34618-8_16
https://doi.org/10.1007/978-3-031-15802-5_19
https://doi.org/10.1007/978-3-031-22963-3_7
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-319-70500-2_8
https://doi.org/10.1109/FOCS.2017.61

	Introduction
	Related Work
	Our Results
	Relation to Witness Encryption

	Technical Overview
	Construction of MC-ABE
	MC-PE from MC-ABE and Lockable Obfuscation

	Preliminaries
	Notational Conventions
	Pairing Groups and Hardness Assumptions
	Monotone Access Structures and Linear Secret Sharing Schemes
	Function-Hiding Slotted Inner-Product Functional Encryption
	Identity-Based Encryption
	Lockable Obfuscation

	Multi-Client Attribute-Based and Predicate Encryption
	Construction of MC-ABE
	MC-ABE Without Repetitions
	MC-ABE With Repetitions

	Construction of MC-PE
	References

