
Noname manuscript No.
(will be inserted by the editor)

DGMT: A Fully Dynamic Group Signature From Symmetric-key
Primitives

Mojtaba Fadavia,1, Sabyasachi Karati b,2, Aylar Erfanian c,1, Reihaneh Safavi-Naini d,1

1Department of Computer Science, University of Calgary, Canada,
2Cryptology and Security Research Unit, Indian Statistical Institute, Kolkata, India

Received: date / Accepted: date

Abstract A group signatures allows a user to sign a mes-
sage anonymously on behalf of a group and provides ac-
countability by using an opening authority who can “open”
a signature and reveal the signer’s identity. Group signatures
have been widely used in privacy-preserving applications in-
cluding anonymous attestation and anonymous authentica-
tion. Fully dynamic group signatures allow new members
to join the group and existing members to be revoked if
needed. Symmetric-key based group signature schemes are
post-quantum group signatures whose security rely on the
security of symmetric-key primitives such as cryptographic
hash functions and pseudorandom functions.

In this paper, we design a symmetric-key based fully dy-
namic group signature scheme, called DGMT, that redesigns
DGM (Buser et al. ESORICS 2019) and removes its two
important shortcomings that limit its application in practice:
(i) interaction with the group manager for signature verifica-
tion, and (ii) the need for storing and managing an unaccept-
ably large amount of data by the group manager. We prove
security of DGMT (unforgeability, anonymity, and trace-
ability) and give a full implementation of the system. Com-
pared to all known post-quantum group signature schemes
with the same security level, DGMT has the shortest sig-
nature size. We also analyze DGM signature revocation ap-
proach and show that despite its conceptual novelty, it has
significant hidden costs that makes it much more costly than
using traditional revocation list approach.

Keywords Symmetric cryptographic and hash functions ·
Privacy-preserving protocols · Group Signature Schemes ·
Post-quantum cryptography ·Hash-based signature schemes

ae-mail: mojtaba.fadavi@ucalgary.ca
be-mail: skarati@isical.ac.in
ce-mail:aylar.erfanianazadso@ucalgary.ca
de-mail: rei@ucalgary.ca

1 Introduction

Digital signatures underpin trust and secure authentication
and authorization over the internet. They have been used to
construct certificates in public key infrastructure, credentials
for user authentication and authorization, and signing trans-
actions in electronic commerce and cryptocurrencies. To-
day’s widely used digital signatures, such as (EC)DSA and
RSA signature scheme, rely on the hardness of two com-
putational problems, Discrete Logarithm Problem and Inte-
ger Factorization Problem, that can be efficiently solved by
the Shor’s quantum algorithm [49]. The prospect of the de-
velopment of quantum computers, that potentially lead to
the collapse of the cryptographic infrastructure of the Inter-
net, has generated a flurry of research and development in
academia and industry to design and develop post-quantum
cryptographic systems, and has initiated standardization ef-
forts around the world including NIST [1] and ETSI [22].

Post-quantum secure (PQ-secure) digital signature
schemes provide security against adversaries with access to
quantum computers. Known PQ-secure signature schemes
have based their security on the hardness of computa-
tional problems for which no efficient quantum algorithm
is known [4, 5, 16, 18, 28], or use only symmetric-key prim-
itives such as hash functions and pseudorandom functions
[10, 33, 34, 38, 44, 45]. Symmetric-key based approach is
particularly attractive because, if designed securely, can only
be threatened by advances in quantum algorithms that apply
to unstructured data, such as Grover’s algorithm [27].

Symmetric-key based signature schemes were first intro-
duced in [38] as a One-Time Signature (OTS) scheme, us-
ing only hash functions and designed for signing a single
message. Multi-message signature (MMS) schemes with
short public key was proposed by Merkle by constructing
a Merkle tree over a set of OTS public keys and using the
root of the tree as the scheme’s public key [45]. Merke tree

2

approach and its variations reduce the size of the public
key but increase the signature size, as the OTS public key
and the authentication path from the leaf to the root must
be included in the signature. Winternitz One-Time Signature
scheme (WOTS) [45] is a particularly attractive OTS design
in which the public key of the OTS can be derived from
the OTS signature and so need not be included in the MMS
signature, when using Merkle tree approach. Winternitz sig-
nature scheme and its variations serve as the main build-
ing block of stateful hash-based signature schemes that have
been standardized by NIST, including XMSS [10, 15] and
LMS [44].

Group Signature Schemes (GSS) [13] allow members
of a group to sign on behalf of the group and provide
anonymity and accountability for (group) members. In a
GSS, a manager initializes the system and enrolls members
to the group. A group member can sign anonymously on be-
half of the group and their signature can be verified by the
group public key. To provide accountability, signatures can
be opened by the manager (or a separate opening authority)
to reveal the identity of the signer. GSSs can be static where
group membership is determined at the initialization time,
partially dynamic that allow new members to join or existing
members to be revoked after the initialization, and fully dy-
namic that support both joining new members and revoking
existing members during the lifetime of the system [2, 3, 7].
GSSs and their variations have been used for Direct Anony-
mous Attestation in Trusted Platform Modules 1.2 [9], En-
hanced Privacy Identification (EPID) [6], anonymous repu-
tation systems [20], and digital rights management systems
[36].

Symmetric-key based GSSs.
Group Merkle (GM) is the first symmetric-key based

GSS. GM is a static GSS [19] and is based on a hash-based
multi-message signature scheme in which the public key is
the root of a Merkle tree. The tree is constructed over the
public keys of a set of OTSs where each OTS (hash of the)
public key forming a leaf node of the tree. The manager as-
signs a random subset of leaves to each user. The innovation
of GM is that it constructs the random subset by applying a
strong pseudorandom permutation to the leaves of the tree
which hides the association of the users to the leaves and
ensures the users’ anonymity. The manager knows the se-
cret key of the strong pseudorandom permutation and can
reveal the identity of the signer, guaranteeing accountabil-
ity. However, based on the GM’s implementation, it supports
218 signatures and can accommodate up to 217 users as each
user must be allocated at least two OTSs.

GMMT: is a partially dynamic hash-based GSS [51] that
uses GM approach and allows user revocation but not join.
The scheme replaces the Merkle tree of GM with a multi-
layer Merkle tree to increase the total number of signatures
while keeping initialization time practical.

Dynamic GM (DGM) is a fully dynamic symmetric-key
based GSS that extends GM approach to support user join
and revoke operations [11]. DGM uses an IMT/SMT tree
structure that consists of two types of Merkle trees: (i) An
Initial Merkle Tree (IMT) that is built on a set of random
strings that serve as its leaves, and (ii) a set of Signing
Merkle Trees (SMT), each built on the public keys of a set of
OTSs. The root of each SMT is linked to an internal node of
the IMT, referred to as a fallback node, using a fallback key
that is part of the signature 1. See Figure 3. The number of
fallback keys increases with the number of OTSs that DGM
provides. The manager generates and stores fallback keys
as new users join the group. During verification, the verifier
queries the validity of a fallback key, that is part of the signa-
ture, by interacting with the manager. This IMT/SMT struc-
ture allows the manager to gradually construct the tree over
the system’s lifetime and avoid the high computation cost of
building the entire tree during the initialization phase. This,
however, requires interaction with the group manager for
verification. See Subsection 3.2 for more details on DGM.

DGM permits multiple SMTs per fallback node and so
allows the total number of signatures that is provided by the
system to grow. This, however, not formalized and included
in the security proof. DGM also uses an innovative approach
to user revocation that employs a Symmetric Puncturable
Encryption scheme (SPE). In SPEs the decryption key can
be updated and punctured on a desired input to prevent de-
cryption of a ciphertext corresponding to that input. Revo-
cation in DGM uses encryption and decryption functions of
SPE to determine whether a signature is revoked or not. See
Subsection 2.1 and Section 6 for more details on SPE and
SPE-based revocation of DGM, respectively.

DGM shortcomings. DGM has two important shortcom-
ings: (i) It requires interaction between the verifier and the
manager for every signature verification, requiring the man-
ager to be online continuously to respond to the verifiers’
queries on the validity of the fallback key which is a part of
the signature; (ii) It requires the manager to store the index
of each OTS assigned to every user in order to open signa-
tures and revoke users, leading to a storage size that grows
linearly with the total number of signatures generated by the
scheme, denoted by Ttot. Additionally, the manager must
store all fallback keys to verify them for users. For instance,
to support Ttot = 264 OTSs, the manager would need to store
264 leaf node indexes for signature opening and revocation,
along with 262 fallback keys, amounting to approximately
108.7 terabytes of storage [51]. This storage demand is un-
acceptably large, making it impractical for real-world appli-
cations.

Another less obvious drawback of DGM that is uncov-
ered by our work is the very inefficient approach to revoca-

1We use the terminology from [11], particularly for terms like ‘fallback
node’ and ‘fallback key.’

3

tion. DGM SPE-based approach to revocation although ap-
pears novel, but incurs significant cost. See Section 6.

1.1 Our Contributions

In this work, we propose a symmetric-key based fully dy-
namic group signature scheme, called DGMT, that addresses
the design shortcomings of DGM, and implement and eval-
uate its performance. Our main contributions are as follows.

1- A new tree structure. In all existing symmetric-key
based GSSs discussed above, a virtual tree is constructed on
a set of leaves that each corresponds to the public key of
an OTS. The root of this tree is the GSS’s public key. The
innovation of each system is in the way the tree leaves are
managed during assignment and revocation, with the goal
of providing user anonymity and accountability, and security
and efficiency for the GSS. We construct a virtual tree on the
set of OTSs that extends the IMT/SMT structure of DGM to
IMT/SMTMT and explicitly uses multiple SMTMT per each
IMT tree internal node. The tree is designed to accommo-
dates the required total number of signatures, Ttot, using a
relatively small number of fallback keys. This allows the list
of fallback keys can be generated and published during ini-
tialization (e.g. on a public bulletin board). The verifier can
directly verify a signature by accessing the published infor-
mation and without the need to interact with the manager.

2- Reducing server storage. We design a new signa-
ture assignment algorithm where the manager’s storage is
proportional to the maximum number of users, denoted by
Nmax, rather than the total number of signatures Ttot. This
significantly reduces the manager’s storage requirements, as
each user is typically associated with a large number of
OTSs. To achieve this, we assign a fixed, unique (and dis-
joint) interval of the list [0,1, · · · ,α − 1] for an integer α ,
to each user, and use a strong pseudorandom permutation to
map the intervals to (pseudo)random leaves of the signature
tree.

3- Implementation. We provide a full implementation
of DGMT and all its algorithms. The software is written
in C language, which is the NIST-recommended reference
language, and the code is available at https://github.
com/submissionOfCode/DGMT_ref. In addition to signa-
ture and verification algorithms, we have implemented key
management algorithms, that consist of the initial key as-
signment, and user join and revocation. Key generation, and
storage that support signature opening, and management
of revocation list are the most complex parts of our code.
(DGM only provides implementation of the signing and ver-
ification algorithms.)

For user revocation, DGMT uses a public revocation list.
In Section 6, we analyse the user revocation approach of
DGM that is based on SPE, and compare it with DGMT ap-
proach, demonstrating that DGM’s approach is significantly

more costly in both computation and storage cost. Table 8
summarizes our results. In Appendix A, we show an alter-
native way of using SPE-based revocation in DGM which
improves its efficiency and reduces the cost of revocation.

1.2 Related work

To provide combined anonymity and accountability,
symmetric-key based group signature schemes have used
two approaches. The schemes in [11, 19, 51, 52] use multi-
time hash-based signature schemes together with other
symmetric-key cryptographic primitives such as pseudo-
random permutations and symmetric-key encryption. The
group public key is the root of a Markle tree that is con-
structed over a set of leaves where each leaf corresponds
to an OTS public key. The group manager allocates a “ran-
dom” subset of leaves to each user and provides them with
the secret keys of the allocated OTSs and the corresponding
authentication paths to the root of the Merkle tree. The user
uses one OTS and its associated authentication path at most
once. DGM and GMMT allow the user to request additional
OTS keys from the group manager by presenting their se-
cret credentials, that are obtained during enrollment, to au-
thenticate themselves. The schemes in [6, 14, 31] also use
symmetric-key primitives and Merkle tree but employ Non-
Interactive Zero-Knowledge (NIZK) proofs to construct the
signature. We note that the scheme in [6] is an EPID and
does not provide opening function to link a signature to a
user, and the scheme in [31] is a static group signature. The
scheme in [14] however is a fully dynamic symmetric-key
based group signature that uses a hybrid approach: it uses a
multi-time hash-based signature scheme, that is a modified
version of SPHINCS+, and is optimized for multiparty com-
putation, and a NIZK to achieve anonymity. In Subsection
4.1 we give a comparison of DGM and DGMT algorithms,
and in Section 1.2.1 give a more detailed look at [14] and its
comparison with DGMT.

Table 1 summarizes comparison of all known
symmetric-key based group signature schemes. All
rows except the last row of the Table 1 are sourced from
Table 1 in [14].

1.2.1 Sphinx-in-the-Head

Sphinx-in-the-Head (SiTH) is a post-quantum fully-
dynamic symmetric-key based group signature scheme. It
uses a new mult-message hash-based signature scheme
which is a modification of SPHINCS+ with the goal of mak-
ing it more “friendly” for MPC (multiparty computation)
that is needed for NIZK that is used in the scheme.

SiTH splits the role of the manager between a group
issuer and a group tracer each receiving a corresponding

https://github.com/submissionOfCode/DGMT_ref
https://github.com/submissionOfCode/DGMT_ref

4

Table 1 A Comparison of Hash-Based Group Signature Schemes

Schemes Underlying Signatures Group Credentials Static/Fully Dynamic Group Size∗ Non-frameability

G-Merkle [19] OTS Merkle signature static 26∗∗ no

DGM [11] OTS Merkle signature Fully dynamic – no

DGM+ [52] OTS XMSS-T Fully dynamic – no

GMMT [51] OTS XMSS-T dynamic 216∗∗∗ no

KKW [31] NIZK Merkle signature static 213 no

BEF [6] NIZK Merkle or Goldreich signature static – no

SiTH [14] NIZK F-SPHINCS+ Fully dynamic 260 yes

This work OTS Merkle signature Fully dynamic 215 no

∗ refers to the maximum group size that has been implemented and reported in the paper; “–” indicates that no implementation has been reported.
∗∗ To ensure the anonymity of GM, each user requires two OTSs. Therefore, according to the GM’s implementation in Table 1, if the GM provides
218 OTSs, it can support up to 217 users.
∗∗∗ In Table 4 in [51], it is mentioned at most 210.

private key from the user, preventing each of the two au-
thorities to “frame” the user by generating a signature on
their behalf, and hence providing non-frameability. This
makes SiTH unique among other post-quantum symmetric-
key based full-dynamic group signature schemes that use
a single trusted group manager and do not provide non-
frameability. SiTH scheme uses NIZK that allows the user to
prove to the verifier a set of relations that are defined by its
secret values, the signed message, and the published values
of the system. Using NIZK results in a much slower sig-
nature generation and verification time, and a significantly
larger signature size, compared to DGMT.

Similar to DGMT, SiTH uses a revocation list to keep
track of the revoked users. The revocation list will include
the secret tracing key of the user and so revokes all the sig-
natures of the user, including the past ones. Authors noted
that SiTH can be made forward anonymous by including the
hash of the private tracing key in the revocation list. This
however increases the computation cost of the signer who
must show that the signing key has not been revoked.

In DGMT however the signatures are individually re-
voked. In our revocation algorithm we will include all sig-
natures of a revoked user to the revocation list and so effec-
tively revoke all signatures of the user. DGMT, however, can
provide forward anonymity by revoking the signatures indi-
vidually. This is by including the output of the strong pseu-
dorandom permutation on the index of the revoked OTSs
and all the remaining keys of the user, leaving out its past
signatures. Thus will require minor changes to the current
algorithms (e.g. “revoked” flag) that will not affect security.

1.2.2 DGMT and Other Post-Quantum GSSs

There is a large body of research on Lattice-based GSSs in-
cluding static [4, 21, 26, 37], partially dynamic [39, 40, 42],
and fully dynamic lattice-based GSSs [41]. There are also

constructions of code-based [23, 46] and isogeny-based [4]
GSS. Table 2 gives a comparison of signature sizes of the
most efficient known post-quantum GSSs. Rows 3–5 of the
table are from Table 1 in [4]. All schemes except DGMT
and SiTH are static. The only known fully dynamic GSS
that uses a computational assumption is lattice-based [41],
and is not included in the table because the signature size
is only known asymptotically, that is Õ(λ logN) bits, where
λ and N are the security parameter and group size, respec-
tively. As seen in the table, DGMT has the shortest signature
size among all known schemes.

1.3 Organization

Section 2 is preliminaries and Section 3 introduces a security
model for fully dynamic symmetric-key based GSS. Section
4 gives the construction of DGMT, followed by the presen-
tation of its security proof in Section 5. An analysis of the
revocation using SPE in DGM is provided in Section 6. Sec-
tion 7 is the implementation of DGMT and its experimental
results. Appendix A gives a more efficient SPE-based revo-
cation method for DGM, and Appendix B outlines an ap-
proach for reducing setup time in DGMT.

1.4 Notations

Let N be the set of positive integers and λ ∈ N be the secu-
rity parameter. For two given integers a,b ∈ N, we denote
the representation of a in base b by (a)b, and for a ≤ b, we
denote the set {x∈Z | a≤ x≤ b} by [a,b]. For a given list L,
we denote the n-th element of this list by L[n]. For two given
strings x and y, we denote their concatenation by x ∥ y. If S
is a set or a list, we denote its size by |S| and the operation of

randomly selecting an element x from S by x $← S. We write

5

Table 2 Signature size of the most efficient post-quantum GSSs, given in Kilobyte (KB). The signature sizes of the GSSs [4, 14, 21, 23]
depend on the number of users (group size), denoted by N. To show how many users are accommodated in each scheme, we consider N ∈
{24,25,210,212,215,220,221,224,260}.

GSS Signature Type Based on bit security N
24 25 210 212 215 220 221 224 260

[23] Static Code 80 157 – – 205 – – – 200704 –

[43] Static Lattice – 203

[4] Static Lattice – – 126 129 – – – 134 – –

[21] Static Lattice – – 12 19 – – – – – –

[4] Static Isogeny 128 – 6 9 – – – 15.5 – –

[14] Fully dynamic Symmetric 128 – – 571 – – 851 – – 2000

DGMT Fully dynamic Symmetric 128 5.75∗ – – – –

DGMT Fully dynamic Symmetric 192 11.62∗ – – – –

∗ See the Subsections 4.4 for computing signature size and the bit security of DGMT.
”–” shows that either scheme cannot accommodate N users or no information has been reported in their papers.

x← A(a) for an algorithm A that runs on input a and outputs
x. We call a function ε(·) :N→R+ negligible in the security
parameter λ if for every polynomial p(·) and all sufficiently
large values of λ , ε(λ)< 1

p(λ) holds. ⌈·⌉ is the ceiling func-

tion. For a given adversary A and i ∈ N, A f1,··· , fi , indicates
that the adversary A is given access to the oracles f1, · · · , fi.

2 Preliminaries

In the following, we recall some cryptographic primitives
[24, 32, 47, 48]. Let m(x) and ℓ(x) be two polynomials and
λ ∈ N be the security parameter.

One-way Function (OWF): A function f : {0,1}∗ →
{0,1}∗ is one-way if (i) for all x ∈ {0,1}∗, f (x) is efficiently
computable, and (ii) it is hard to invert the function; that is
for every Probabilistic Polynomial Time (PPT) adversary A

Pr[x $←{0,1}λ | f (A(1λ , f (x))) = f (x)]

is negligible in terms of λ .
Pseudorandom Function (PRF): A functions

F : {0,1}λ ×{0,1}m(λ)→{0,1}ℓ(λ)

is pseudorandom if (i) for all k and x, F(k,x) is efficiently
computable, and (ii) for any PPT adversary A

AdvPRFA =
∣∣∣Pr

[
AF(k,·)(1λ) = 1

]
−Pr

[
A f (·)(1λ) = 1

]∣∣∣
is negligible in terms of λ , where k $←{0,1}λ and f is cho-
sen randomly from the the set of all functions mapping m(λ)

bits to ℓ(λ) bits.
Strong Pseudorandom Permutation (SPRP): A func-

tion
E : {0,1}λ ×{0,1}m(λ)→{0,1}m(λ)

is a strong pseudorandom permutation if (i) for all k and
x, E(k,x) and E−1(k,x) is efficiently computable, where
E−1 : {0,1}λ ×{0,1}m(λ)→{0,1}m(λ), and (ii) for any PPT
adversary A

AdvSPRPA =
∣∣∣Pr

[
AE(k,·),E−1(k,·)(1λ) = 1

]
−

Pr
[
Aπ(·),π−1(·)(1λ) = 1

]∣∣∣
is negligible in terms of λ , where k $← {0,1}λ and π is
chosen randomly from the the set of all permutations on
{0,1}m(λ).

Collision-resistant Hash Function (CRH): A set of
functions

HF = {Hk : {0,1}m(λ)→{0,1}λ}k∈{0,1}λ ,m(λ)>λ
,

is a family of collision-resistant hash functions if (i) for all
key k and x ∈ {0,1}m(λ), Hk is efficiently computable, (ii)
for all PPT adversaries A

AdvcolA,HF = Pr[k $←{0,1}λ , (x,x′)←A(k) |
x ̸= x′, and Hk(x) = Hk(x′)]

is negligible in terms of λ .
Symmetric Key Encryption: A symmetric key en-

cryption scheme is a tuple of polynomial-time algo-
rithms SE = (SE.KG,SE.Enc,SE.Dec) where the key gen-
eration algorithm SE.KG generates a random λ -bit key
k ← SE.KG(1λ), and the encryption and decryption algo-
rithms work as follows. The encryption algorithm SE.Enc :
{0,1}λ × {0,1}m(λ) → {0,1}m(λ) encrypts a message m
into the ciphertext c as c← SE.Enc(k,m), and the decryp-
tion algorithm SE.Dec : {0,1}λ ×{0,1}m(λ) → {0,1}m(λ)

decrypts a ciphertext c into the plaintext m as m ←
SE.Dec(k,c). The correctness property of SE says that
SE.Dec(k,SE.Enc(k,m)) = m.

6

2.1 Symmetric Puncturable Encryption Scheme (SPE)

DGM uses an SPE-based revocation scheme. To provide a
concrete analysis of DGM revocation algorithm, we recall
the SPE algorithm that was proposed in [50] and used in
DGM. The construction uses the puncturable pseudoran-
dom function (Pun-PRF) given in [29].

Let K, KP, Y and T be the set of key space, punctured
key space, output space, and tag space (or input) of the Pun-
PRF, respectively. Let F ′ be a PRF, F ′ : K×T→ Y. A Pun-
PRF F , constructed from F ′ is a PRF with a pair of algo-
rithms (F.Punc,F.Eval) defined as follows: F.Punc takes
a key k ∈ K and a tag t ∈ T, and outputs a punctured key
pkt ∈KP. The evaluation function F.Eval takes a punctured
key pkt and a tag t ′, computes F.Eval(k, t ′) = F ′(k, t ′) if pkt
is not punctured at tag t ′, and outputs fail (⊥), otherwise.
That is,

F.Punc : K×T→KP, s. t. F.Punc(k, t) = pkt

F.Eval : KP×T→ Y∪{⊥}, s.t.

F.Eval(pkt , t ′) =
{

F ′(k, t ′) = y, if t ̸= t ′,
⊥, if t = t ′.

A Construction for SPE. A symmetric d-puncturable en-
cryption scheme is a tuple of algorithms

SPE= (SPE.KeyGen,SPE.Enc,SPE.Punc,SPE.Dec)

that allows the input key to be punctured on up to d tags.
The SPE master key msk remains unchanged. The encryp-
tion key is computed once but the decryption key is updated
with each puncturing of a tag. The construction in [50] uses
three building blocks: (i) a family of collision-resistant hash
functions {Hk : N→K}k∈K (ii) a symmetric key encryption
system (SE.Enc,SE.Dec) with key space K and (iii) a PRF
F ′ as defined above.

The initial decryption key of SPE is the same as the en-
cryption key msk, that is SK0 = {msk}. The decryption key,
however, is updated with each punctured tag t ′i . SPE algo-
rithms are outlined below.

– msk← SPE.KeyGen(1λ ,d) : The algorithm takes the se-
curity parameter λ and d ∈N and outputs the master en-

cryption key msk = (sk0,d), where sk0
$←K.

– ctt ← SPE.Enc(msk,m, t) : The algorithm takes the en-
cryption key msk, message m and tag t, and outputs the
ciphertext ctt .

{ski : 1≤ i≤ d, ski← Hski−1(i)},

κt ←
d⊕

i=0

F ′(ski, t),

ctt ← SE.Enc(κt ,m).

– The Decryption algorithm uses a punctured key, a ci-
phertext, and a tag as inputs and outputs a ciphertext or

failure. First, we describe how SPE.Punc updates the de-
cryption key, and then how to decrypt the ciphertext.
1. SKi← SPE.Punc(SKi−1, t ′i) : The algorithm updates

the decryption key for the i-th punctured tag, given
the previous key and the associated set of punctured
tags. It takes SKi−1 = {mski−1, psk1, · · · , pski−1},
where mski−1 = (ski−1,d) for 1 ≤ i ≤ d and SK0 =

msk, for the set of tags Ti−1 = {t ′1, t ′2, · · · , t ′i−1}, and
outputs SKi. F.Punc is defined recursively below.

pski← F.Punc(ski−1, t ′i),

ski← Hski−1(i),

mski = (ski,d)

SKi = {mski, psk1, · · · , pski}.
2. mt ← SPE.Dec(SKi,ctt , t) : The algorithm takes the

SKi, the ciphertext ctt and a tag t, and outputs the
plaintext mt as follows. If 1≤ i < d, compute sk j←
Hsk j−1(j) for i < j ≤ d.

κ
′
t ←

i⊕
j=1

F.Eval(pski, t)
d⊕

j=i

F ′(ski, t),

mt ← SE.Dec(κ ′t ,ctt)

2.2 One-Time Signature (OTS)

An OTS scheme is a digital signature scheme
that is designed for signing a single message.
It consists of three polynomial-time algorithms
OTS = (OTS.KG,OTS.Sig,OTS.Vf), which operate
as follows

– (OTS.sk,OTS.pk) ← OTS.KG(1λ). This algorithm
generates a key pair (OTS.sk,OTS.pk), where OTS.sk
is the secret key and OTS.pk is the public key.

– σ ← OTS.Sig(OTS.sk,m). This algorithm signs a mes-
sage m with a secret key OTS.sk and outputs a valid
digital signature σ .

– 0/1← OTS.Vf(m,σ ,OTS.pk). This is a deterministic
algorithm that checks the validity of the signature σ on
message m using OTS.pk. OTS.Vf outputs 1 if the mes-
sage and signature pair is valid, otherwise, it outputs 0.

An OTS scheme is called existentially unforgeable under
chosen message attack (EU-CMA) if for any PPT adversary
A

AdvEU−CMA
A,OTS = Pr

[
(OTS.sk,OTS.pk)← OTS.KG(1λ);

(m∗,σ∗)←AOTS.Sig(OTS.sk,·)(OTS.pk);
Let (m,σ) be the query-answer pair of OTS.Sig(OTS.sk, ·) |

m ̸= m∗∧1← OTS.Vf(m∗,σ∗,OTS.pk)
]

is negligible in terms of λ [33].

Winternitz One-time Signature (WOTS) is one of the
most efficient OTS schemes, designed for both lightweight
performance and strong security.

7

Let f : {0,1}∗→ {0,1}λ be a one-way function, H be a
hash function chosen randomly from the collision-resistant
hash function family HF2, and f i be the i-fold iteration
function of f for every i ∈ N, i.e. for all x ∈ {0,1}∗ if i > 0,
f i(x) = f (f i−1(x)), and f 0(x) = x. WOTS relies on two key
parameters: the security parameter λ and the Winternitz pa-
rameter w. These parameters are used to define the following
quantities:

ξ1 = ⌈
λ

w
⌉, ξ2 = ⌊

log(ξ1(2w−1))
w

⌋+1, ξ = ξ1+ξ2.

WOTS consists of three algorithms

WOTS= (WOTS.KG,WOTS.Sig,WOTS.Vf),

and works as follows.

(WOTS.sk,WOTS.pk) ← WOTS.KG(1λ) : The key
generation algorithm produces a secret key WOTS.sk =

(x0,x1, . . . ,xξ−1), where xi
$← {0,1}λ for all 0 ≤ i ≤ ξ − 1,

and computes the public key WOTS.pk= (y0,y1, . . . ,yξ−1),
where yi = f 2w−1(xi) for all 0≤ i≤ ξ −1.

WOTS.σ ← WOTS.Sig(WOTS.sk,m) : For a given
message m, this sginng algorithm first computes d← H(m)

and represents d in base 2w as (d)2w = (b0, · · · ,bξ1−1)2w .

Then, it computes the checksum c=∑
ξ1−1
i=0 (2w−1−bi), and

appends (c)2w to (d)2w to obtain

B = (d)2w ∥ (c)2w = (b0, · · · ,bξ1−1,bξ1
,bξ1+1, · · · ,bξ−1)2w .

The signature on message m is WOTS.σ = (σ0, · · · ,σξ−1),
where

σi = f bi(xi), for all 0≤ i≤ ξ −1.

0/1←WOTS.Vf(m,WOTS.σ ,WOTS.pk) : The verifi-
cation algorithm computes B = (d)2w ∥ (c)2w using the mes-
sage m as done in the signing algorithm WOTS.Sig. It veri-
fies the signature WOTS.σ by outputting 1 if

WOTS.pk=
(

f 2w−1−b0(σ0), . . . , f 2w−1−bξ−1(σξ−1)
)
,

otherwise, it outputs 0.

2.3 Merkle Tree and Multi-message Signature Scheme
(MSS)

A Merkle tree is a binary tree in which every leaf node is
the hash value of a data block, and each non-leaf node is the
hash value of the concatenation of its two children. The root
of the Merkle tree, also known as the Merkle root, serves as
a compact representation of the entire dataset, that can be
used to provide membership proof for the dataset elements.

2From now on, for simplicity, we only write H rather than Hk.

This structure efficiently verifies the integrity of any data
block using a logarithmic number of hash operations and a
comparison.

Figure 1 gives an example of a Merkle tree of height 3
constructed on 8 data blocks. The leaf nodes y3[i], 0≤ i≤ 7,
are the hash values of the data blocks and all the other nodes
are computed as y j[i]← H(y j+1[2i] ∥ y j+1[2i+ 1]), where
0 ≤ j ≤ 2, 0 ≤ i < 2 j, and H is chosen randomly from the
collision-resistant hash function family HF. To verify the
membership of a data block, say y3[3] (marked in orange),
we provide the authentication path that is the sibling nodes
of the nodes on the path from the mentioned data block to
the root. For example the authentication path for y3[3] is the
set {y3[2],y2[0],y1[1]} (marked in yellow). Now we can se-
quentially compute the nodes y2[1],y1[0] and y0[0] (marked
in green) which are on the path from y3[3] to root y0[0]. By
comparing the computed root and published root, we can
determine the membership of a data block.

y3[0] y3[1] y3[2] y3[3] y3[4] y3[5] y3[6] y3[7]

y2[2] y2[3]y2[0] y2[1]

y1[0]

y0[0]

y1[1]

Fig. 1 A Merkle tree of height 3

Multimessage signaure scheme (MSS). To construct an
MSS that supports up to Ttot = 2h signatures and has a short
public key, Merkle [45] proposed to construct a Merkle tree
on the hash values of the public keys of the set OTSs that are
used in the signature, and use the root of the tree as the MSS
public key. Specifically, for 0 ≤ i < 2h, the i-th leaf node is
defined as yh[i]← H(OTS.pki), where (OTS.ski,OTS.pki)

is the i-th OTS key pair. For 0 ≤ j < h and 0 ≤ i < 2 j, the
i-th node at height j is computed as y j[i] ← H(y j+1[2i] ∥
y j+1[2i+ 1]). The root of the Merkle tree, y0[0], acts as the
public key of the scheme.

MSS uses leaf nodes of the Merkle tree to sign mes-
sages. The signature of a message m, using the i-th OTS
is σ = (i,OTS.σi,OTS.pki,A.pathi), where OTS.σi ←
OTS.Sig(OTS.ski,m), and A.pathi = (a0,a1, · · · ,ah−1) is
authentication path for the i-leaf node, that is yh[i]. To ver-
ify the signature σ on the message m, the verifier first veri-
fies the OTS.σi by OTS.Vf(m,OTS.σi,OTS.pki) and upon
success they compute the root of the Merkle tree using the
authentication path A.pathi and yh[i]. If the computed root is
the same as the given public key y0[0], signature σi will be
accepted.

8

Remark 1 Using WOTS in a multi-message signature
scheme removes the need for including the public key
of the OTS in the signature. The signature of message
m using the WOTS key pair (WOTS.ski,WOTS.pki)

is σ = (i,WOTS.σ i,A.pathi), where WOTS.σ i =

(σ0, · · · ,σξ−1) ← WOTS.Sig(WOTS.ski,m). To ver-
ify the message-signature pair (m,σ), the verifier computes(

f 2w−1−b0(σ0), . . . , f 2w−1−bξ−1(σξ−1)
)

to derive the corre-
sponding leaf node yh[i], and verifies if the computed leaf
node and the authentication path A.pathi matches the root
of the Merkle tree, y0[0]. If the match succeeds the signature
σ is accepted.

(m,σd−1)

Layer d− 2

σd−1

Layer 0

σ0

h

h

h
Layer d− 1

Fig. 2 A d-layer Merkle tree

Multi-tree structure. As we discussed above, construct-
ing an MSS using a Merkle tree requires deriving the public
key by computing all the leaves of the tree first. For a large
number Ttot, this would require a significant amount of ini-
tial computation and storage. A d-layer Merkle tree reduces
the initial computation required for a large number Ttot by
constructing the tree gradually [35].

An overview of a d-layer Merkle tree is shown in Fig-
ure 2. The root of the Layer 0 Merkle tree is the public key
of the signature scheme and to compute the public key, only
the topmost layer of the multi-tree has to be constructed. Ev-
ery leaf node of a Merkle tree of layer d−1 signs a message,
and every leaf node of the sub-trees of the layer 0≤ i< d−1
signs the Merkle root of a sub-tree of the layer below, like
σd−1 and σ0 in Figure 2, respectively. Thus, each signature
of MSS in a multi-tree structure contains d OTS signatures,
one for each layer. Consequently, verifying an MSS signa-
ture in a multi-tree structure includes the cost of verifying d
OTS signatures.

3 Fully Dynamic Group Signature

In this section, we describe a model of a fully dynamic
group signature (FDGS). Our model is based on [3, 7] and
is adapted to fully dynamic symmetric-key based GSS [11].
Similar to [11] (i) we consider a single trusted authority for
key generation and group management (i.e. join and revoke),
as well as opening of signatures, and (ii) include a request
subroutine that allows users to request new keys when their
existing keys are run out.

Our security model is based on [3, 7, 12] and loosely
follows [11]. In particular, we adopt the anonymity notion
that was introduced in [12] and do not allow the adversary
to corrupt the manager or the two selected honest users in
the anonymity game.

A FDGS is composed of three types of entities:

– A Trusted manager, denoted by M, is the central author-
ity responsible for the perfect functioning of the group.
M allows new members to join the group, can reveal the
identity of a signer, and can revoke the signing ability of
misbehaved members and their generated signatures.

– Members/users anonymously sign messages on behalf of
the group.

– Verifier verifies the validity of a group signature using
only the public parameters.

Let λ be the security parameter and FDGS.SetPr be
the setup parameters. A FDGS consists of the following
polynomial-time algorithms.

– (FDGS.SK,FDGS.PubPr) ←
FDGS.KG(1λ ,FDGS.SetPr) : The manager M runs
this algorithm to generate the manager’s secret key
FDGS.SK, including the manager master secret key
msk and other group secret information, and the public
parameters FDGS.PubPr, including the group public
key gpk and other group public information that are
necessary for verifying signatures.

– ((PLM, ID),(id,cid))/⊥ ← FDGS.Join(Username) :
This is an interactive joining protocol between a user
with identity Username, and the manager M. In line
with the model in [3], the communication occurs over
secure (i.e., private and authenticated) channels, with
the user initiating the protocol by sending their identity
Username. Let ID represent the list of identities of users
who have already joined the group and Nmax denote the
maximum number of users the system supports. Upon
receiving the identity Username, if Username ∈ ID
or |ID| ≥ Nmax, the algorithm outputs ⊥. Otherwise,
i.e. if Username /∈ ID and |ID| < Nmax, the manager
M selects the smallest unassigned identifier id with
1 ≤ id ≤ Nmax and generates a corresponding secret
value cid and sends (id,cid) to the user. Then, M

stores(i) (id,cid,Active) in a private list PLM, where

9

Active indicates that the user is valid, and (ii) the user’s
identity Username as the id-th element in the list ID,
i.e. ID[id] = Username. Thus knowing the identifier id
allows the manager to retrieve the identity Username
and vice versa. Two lists PLM and ID are both initially
empty and PLM is private. When a user with identifier
id needs new keys, the user proves their identity by
securely transmitting (id,cid) to M through the secure
channel. If (id,cid,Active) ∈ PLM, the manager M

sends new keys to the user through the secure channel.
– σ ← FDGS.Sig(m,gskid) : This algorithm is run by a

user with identifier id. It takes a message m and a key
gskid and generates a group signature σ .

– 0/1← FDGS.Vf(m,σ ,FDGS.PubPr) : This is a deter-
ministic verification algorithm run by a verifier. It takes
as input a message m, a group signature σ , and the pub-
lic parameters FDGS.PubPr, and outputs 1 if σ is a valid
group signature on m with respect to FDGS.PubPr, and
0 otherwise.

– id/⊥ ← FDGS.Op(σ ,FDGS.SK) : This deterministic
opening algorithm is run by M. It takes a valid group
signature σ and the manager’s secret key FDGS.SK, and
outputs either the identifier id of the user who generated
σ , or ⊥ if the signature cannot be attributed to any spe-
cific user. With id, the manager can retrieve the identity
Username of the user by looking up the id-th entry in the
list ID, where Username is stored.

– (PLM,FDGS.PubPr) ←
FDGS.Rev(FDGS.SK,PLM,FDGS.PubPr,R) : The
manager M runs this algorithm to revoke users with
identifiers in a set R and invalidate their signatures.
It takes as input a set R, the manager’s secret key
FDGS.SK, the private list PLM, and the public pa-
rameters FDGS.PubPr, and updates both the public
parameters FDGS.PubPr and the private list PLM.
Specifically, for each id ∈ R, the manager replaces
(id,cid,Active) with (id,cid,Revoked) in PLM, prevent-
ing these users from requesting further keys.

3.1 Fully Dynamic Group Signature: Security Model

A fully dynamic group signature must satisfy four proper-
ties: Correctness, Unforgeability, Anonymity, and Traceabil-
ity. Each of these properties is defined using the game, where
each game is defined between a PPT adversary denoted by
A and a Challenger. Each of these properties is quantified
by the success probability of A in its game. In these games,
the adversary has access to various oracles, each specify-
ing their capabilities, which can be invoked a polynomially
many times during the game.

We first describe the oracles in Table 3, and then in Def-
inition 1 formally define the security properties of the sig-
nature scheme. The corresponding security experiments are

given in Table 4. In the following, the notations H, C, and
R denote the set of honest, corrupted, and revoked users,
respectively. N, Nmax, ID, and PLM denote the number of
users who have already joined the group, the max number
of users that the group supports, the list of identities of users
(i.e. Usernames of the joined users) and the private list of
manager. Also, CL and SL indicate the challenging list and
the signing list.

– AddHU(Username) : This oracle simulates the join pro-
tocol FDGS.Join between a user with identity Username
and the manager M. If Username /∈ ID and N < Nmax,
this oracle adds this user to the group as an honest user,
i.e. adds (id,cid,Active) to the private list PLM and
stores the user’s identity Username as the id-th element
in the list ID, where id is the smallest unassigned identi-
fier in [1,Nmax]. Finally, it returns id to the adversary A.
A does not learn cid.

– AddCU(id) : This oracle allows the adversary A to cor-
rupt an honest user with identifier id. It adds id to C and
removes id from H and finally returns the secret value
cid to A, enabling A to communicate with the manger
M and receive this user’s keys from M.

– Revoke(R) : This oracle allows the adversary A to re-
voke the set R of users by updating the private list PLM
and the public parameters FDGS.PubPr. Specifically,
for any id ∈ R, (id,cid,Active) will be replaced with
(id,cid,Revoked) in PLM, preventing these ids from re-
questing further keys. Also, it invalidates their previ-
ously generated signatures by updating FDGS.PubPr.

– Chb(id0, id1,m) : This oracle takes the identifiers id0 and
id1 of two honest users along with a message m, then ran-
domly selects a bit b and outputs the signature σb on m
by an unused secret key of the user idb. It keeps (m,σb)

in the challenge list CL to prevent A from calling the
opening oracle Open(·, ·) on (m,σb) in the Anonymity
experiment.

– Open(m,σ) : This oracle takes as input a pair (m,σ). If
σ is a valid signature on m and (m,σ) /∈ CL, it returns
FDGS.Op(σ ,FDGS.SK), which is either the identifier
id of the user who produced the signature σ , or ⊥ if σ

cannot be attributed to any user.
– SignHU(id,m) : This oracle takes as input an identifier

id and a message m. If this user is honest, it returns
σ ← FDGS.Sig(m,gskid), where gskid is a secret key of
this user. The oracle also adds (m,σ) to the signing list
SL to prevent A from using (m,σ) in the Unforgeability
experiment.
The Correctness property ensures that even if the ad-

versary A corrupts a set of users (possibly all except one),
the honest user can successfully enroll and create valid sig-
natures that can be traced back to them. The Unforgeabil-
ity property ensures that the adversary cannot produce a
valid signature that can be falsely attributed to an honest

10

Table 3 Oracles

AddHU(Username)

1 : if Username ∈ ID∨N ≥Nmax, then return ⊥;

2 : ID= ID∪{Username}; N = N +1;

3 : (id,cid,Active)← FDGS.Join(Username);

4 : PLM = PLM∪ (id,cid,Active);
5 : H =H∪{id};
6 : return id;

AddCU(id)

1 : if id /∈H, then return ⊥;

2 : C= C∪{id}; H =H \{id};
3 : Retrieve (id,cid,Active) from the list PLM;

4 : return cid;

SignHU(id,m)

1 : if id /∈H, then return ⊥;

2 : Selects a key gskid of id;

3 : σ ← FDGS.Sig(m,gskid);

4 : SL= SL∪{(m,σ)}; return σ ;

Open(m,σ)

1 : if (m,σ) ∈ CL∨FDGS.Vf(m,σ ,FDGS.PubPr) = 0, then return ⊥;

2 : return FDGS.Op(σ ,FDGS.SK);

Revoke(R)

1 : if R ̸⊂ {1, · · · ,N}, then return ⊥;

2 : R′ = R\R; R= R′∪R;

3 : (PLM,FDGS.PubPr)← FDGS.Rev(FDGS.SK,PLM,FDGS.PubPr,R′);

4 : return FDGS.PubPr;

Chb(id0, id1,m)

1 : if {id0, id1} ̸⊂H, then return ⊥;

2 : Selects a key gskidb of idb;

3 : σb← FDGS.Sig(m,gskidb);

4 : CL= {(m,σb)};
5 : return σb;

user, even if the adversary corrupts the rest of the users.
Anonymity is defined through an indistinguishability exper-
iment between the adversary and the challenger. In this ex-
periment, the adversary knows the secret keys of all users
except two. The Anonymity property requires that the ad-
versary has only a negligible advantage in distinguishing a
signature generated by randomly selecting one of the two
identifiers and using the corresponding private key to sign
the message. Finally, Traceability ensures that all valid sig-
natures that pass verification can be linked to a user.

Definition 1 For any security parameter λ ∈ N and for any
PPT adversary A, we say that an FDGS provides:

1. Correctness if there exists a negligible function ε1 such
that

AdvCorr
FDGS,A(λ) = Pr

[
ExpCorr

FDGS,A(λ) = 1
]
≤ ε1(λ),

2. Unforgeability if there exists a negligible function ε2
such that

AdvUnforg
FDGS,A(λ) = Pr

[
ExpUnforg

FDGS,A(λ) = 1
]
≤ ε2(λ),

3. Anonymity if there exists a negligible function ε3 such
that

AdvAnon
FDGS,A(λ) =

∣∣∣Pr
[
ExpAnon−0

FDGS,A(λ) = 1
]

− Pr
[
ExpAnon−1

FDGS,A(λ) = 1
]∣∣∣≤ ε3(λ),

4. Traceability if there exists a negligible function ε4 such
that

AdvTrace
FDGS,A(λ) = Pr

[
ExpTrace

FDGS,A(λ) = 1
]
≤ ε4(λ),

where ExpCorr
FDGS,A(λ), ExpUnforg

FDGS,A(λ), ExpAnon−b
FDGS,A(λ)

and ExpTrace
FDGS,A(λ) are defined in Table 4.

Table 4 Experiments

ExpCorr
FDGS,A(λ)

1 : (FDGS.SK,FDGS.PubPr)← FDGS.KG(1λ ,FDGS.SetPr);

2 : N = 0; ID= /0; id=⊥; H = /0; C= /0; R= /0;

3 : m, id←AAddHU,AddCU,Revoke(FDGS.PubPr);

4 : if id /∈H, then return 0;

5 : σ ← FDGS.Sig(m,gskid);

6 : if FDGS.Vf(m,σ ,FDGS.PubPr) = 0, then return 1;

7 : if FDGS.Op(σ ,FDGS.SK) ̸= id, then return 1;

8 : return 0;

11

ExpUnforg
FDGS,A(λ)

1 : (FDGS.SK,FDGS.PubPr)← FDGS.KG(1λ ,FDGS.SetPr);

2 : N = 0; ID= /0; H = /0; C= /0; R= /0; SL= /0;

3 : (m,σ)←AAddHU,AddCU,SignHU,Revoke(FDGS.PubPr);

4 : if(m,σ) ∈ SL∨FDGS.Vf(m,σ ,FDGS.PubPr) = 0, then return 0;

5 : if FDGS.Op(σ ,FDGS.SK) /∈H, then return 0;

6 : return 1;

ExpAnon−b
FDGS,A(λ)

1 : (FDGS.SK,FDGS.PubPr)← FDGS.KG(1λ ,FDGS.SetPr);

2 : N = 0; ID= /0; H = /0; C= /0; R= /0; CL= /0;

3 : b′←AAddHU,AddCU,SignHU,Revoke,Open,Chb (FDGS.PubPr);

4 : return b′;

ExpTrace
FDGS,A(λ)

1 : (FDGS.SK,FDGS.PubPr)← FDGS.KG(1λ ,FDGS.SetPr);

2 : N = 0; ID= /0; H = /0; C= /0; R= /0;

3 : (m,σ)←AAddHU,AddCU,SignHU,Revoke(FDGS.PubPr);

4 : if FDGS.Vf(m,σ ,FDGS.PubPr) = 0, then return 0;

5 : if FDGS.Op(σ ,FDGS.SK) =⊥, then return 1;

6 : return 0;

3.2 An Overview of DGM

DGM is a fully dynamic group signature scheme based
on symmetric primitives that uses a collision-resistant hash
function H, an OTS scheme, a symmetric puncturable en-
cryption scheme SPE, and a symmetric key encryption
scheme SE. DGM employs two types of Merkle trees: One
Initial Merkle tree (IMT) and multiple Signing Merkle trees
(SMT). This IMT/SMT structure allows the manager to
gradually construct the tree, avoiding the unacceptable com-
putational cost of building the entire tree during the setup
phase. In the following, we review DGM and mention its
main shortcomings. See [11] for further details.

In DGM, the IMT is of height 20 and its leaf nodes
are randomly chosen binary strings. The root of the IMT
is the group public key DGM.gpk. SMTs are variable-height
Merkle trees and their leaf nodes correspond to the OTSs
that are used to sign messages by users. Each SMT is con-
nected to only one internal node of the IMT. While DGM
allows multiple SMTs per fallback node, this is not formal-
ized or included in the security proof. The height of an SMT
is equal to 20−h∗, where h∗ is the height of the correspond-
ing internal node in the IMT. When a user requires B signing
keys, they send a request to the manager, who randomly se-
lects B internal nodes from the IMT and allocates the next

available B OTSs from the B SMTs linked to those internal
nodes. If an SMT has no available OTS, the manager gener-
ates a new SMT, links it to the corresponding internal node,
and assigns an OTS from the newly created SMT.

SMT Generation. SMTs are generated gradually and
linked randomly to the internal nodes of IMT and their leaf
nodes will be distributed among the users. Let the height
of the t-th SMT be h′. The DGM manager generates z = 2h′

OTS key pairs (OTS.skt,l ,OTS.pkt,l) for 0≤ l < z, and shuf-
fles the leaf nodes of this SMT, indexed by {(t, l)}z−1

l=0 , using
the symmetric encryption scheme SE. More precisely, the
leaf nodes are constructed as H(OTS.pkt,l ∥ DGM.post,l),
where DGM.post,l← SE.Enc(msk, t ∥ l), with msk being the
manager’s secret key. These nodes are then sorted in increas-
ing order based on their DGM.post,l values for 0≤ l < z. We
note that after sorting the leaf nodes, the l-th leaf node will
be located at index l′.

Let rt be the root of the t-th SMT, which is connected
to an internal node of the IMT, denoted by Fni (called fall-
back node), using a fallback key Fkt← SE.Dec(rt ,Fni) (See
Figure 3). The signature of a message m by OTS.skt,l is

σDGM =((i, l′),OTS.σt,l ,OTS.pkt,l ,DGM.post,l ,Fkt ,DGM.pathi,l′),

where i is the index of fallback node Fni, l′ is
the index of the leaf node of the OTS key pair
(OTS.skt,l ,OTS.pkt,l) after sorting the leaf nodes,
OTS.σt,l ← OTS.Sig(OTS.skt,l ,m), and DGM.pathi,l′ is
the authentication path from the leaf node with index (i, l′)
in SMT to the root of IMT. See figure 3 for the IMT/SMT
structure of DMG.

DGM Limitations. There are two main shortcomings
in DGM. First, during verification, the verifier must interact
with the manager to check the validity of the fallback key
Fkt , requiring the manager to be always online. This creates
a system bottleneck and a single point of failure. Second,
the manager must maintain a list containing all the allocated
DGM.post,l to users for the purpose of opening signatures
via list-based searches, and revoking users. Thus, the man-
ager’s storage grows linearly with the total number of signa-
tures in the system and becomes unacceptably large when a
large number of signatures is required. For instance, to ac-
commodate Ttot = 264 OTSs, the manager requires ∼ 108.7

Terabytes of storage (see [51] for details).

12

hSMT = 1

hIMT = 3

rt

rt′

Fni

Fkt

Fkt′

DGM.gpk

Fnj

user1 user2

user4 user5

hSMT = 2

user3

SMTs

1 2 3 4

5 6
IMT

Fig. 3 IMT/SMT structure of DGM. The red node represents the
group public key DGM.gpk, the orange nodes represent the fallback
nodes {Fni}6

i=1, the green nodes Fkt and Fkt ′ represent the fallback
keys, and the yellow nodes are the root of the SMTs. The fallback key
Fkt is computed as Fkt ← SE.Dec(rt ,Fni), where rt is the key.

4 DGMT: A Flexible Fully Dynamic Symmetric-key
based GSS

DGMT is an improved version of DGM that removes
DGM’s notable shortcomings, such as the need for interac-
tive verification and the unreasonable storage requirements
proportional to Ttot, the total number of supported signa-
tures. In this section, we first present an overview of DGMT
in Subsction 4.1, then explain the details of the DGMT’s
tree construction and its algorithms in Subsections 4.2 and
4.3, respectively. Finally, we discuss the typical parameters
of DGMT in Subsection 4.4. A list of the main symbols are
summarized in Table 5.

4.1 DGMT: An Overview

DGMT uses a hash function H : {0,1}∗ → {0,1}λ that
is randomly selected from a collision-resistant hash func-
tion family HF, an EU-CMA one-time signature scheme
OTS = (OTS.KG,OTS.Sig,OTS.Vf), a PRF f : {0,1}λ ×
{0,1}λ →{0,1}λ , and two SPRPs g1 : {0,1}λ ×{0,1}λ →
{0,1}λ and g2 : {0,1}λ ×{0,1}λ →{0,1}λ .

Tree structure. DGMT uses the IMT/SMTMT struc-
ture, which is similar to the IMT/SMT structure of DGM,
with two key modifications outlined below. First, similar to
DGM, the IMT is a Merkle tree generated over a set of
randomly chosen leaf nodes and its root forms the group
public key, denoted by DGMT.gpk. However, in DGMT all
nodes of IMT, except the root node, are used as fallback
nodes. Second, unlike DGM which uses SMTs with variable
heights, DGMT employs SMTMTs with the same height,
where each SMTMT is a two-layer Merkle tree, and both lay-
ers have the same height hS. The root node of an SMTMT is
connected to a fallback node using a fallback key. A fallback
node is used to attach γ number of SMTMTs, each using a

distinct fallback key, to the IMT. We use the numbering of
IMT nodes and the multiplicity number of SMTMTs that are
attached to an IMT node to give a unique sequential index to
each SMTMT. Thus the j-th SMTMT that is connected to the
i-fallback node Fni will be labeled SMTMT

i,j and will be as-
sociated with the fallback key Fki, j. Figure 4 illustrates the
IMT/SMTMT structure of DGMT.

The top and bottom layers of the two-layer SMTMT are
denoted by SMT(1) and SMT(2), respectively. In particular,
the SMT(1) of the SMTMT

i,j is denoted by SMT(1)
i,j and the

SMT(2) of the SMTMT
i,j linked to the k-th leaf node (from

left) of SMT(1)
i,j is denoted by SMT(2)

i,j,k. From now on, we

let (i, j,k) be the index of the k-th leaf node of SMT(1)
i,j , and

(i, j,k, l) be the index of the l-th leaf node of SMT(2)
i,j,k.

The manager uses the PRF f and a secret key SMT1.key
to generate OTS key pairs (OTS.ski, j,k,OTS.pki, j,k), for

0 ≤ k < 2hs , and construct the SMT(1)
i,j as an MSS, as de-

scribed in Subsection 2.3. Also, the manager uses the PRF
f and a secret key SMT2.key to generate the OTS key pairs
(OTS.ski, j,k,l ,OTS.pki, j,k,l), for 0 ≤ l < 2hs , and construct

SMT(2)
i,j,k for all i, j,k. However, for SMT(2)

i,j,ks the manager
first permutes the set {(i, j,k, l) | 0 ≤ l < 2hs} using the
SPRP g1 (See Algorithm 2). Let the index (i, j,k, l′) be
the permuted position of the index (i, j,k, l). After permu-
tation, the leaf node at index (i, j,k, l′), for 0 ≤ l′ < 2hs ,
is computed as H(OTS.pki, j,k,l′ ∥ DGMT.posi, j,k,l), where
DGMT.posi, j,k,l← g2(msk, i ∥ j ∥ k ∥ l) and msk is the man-

ager’s master secret key of the SPRP g2. Finally, SMT(2)
i,j,k is

constructed as an MSS using these permuted leaf nodes. See
Algorithm 3.

Setup phase. During the setup phase, the manager per-
forms the following steps:(i) Generates the group secret
keys DGMT.SK, (ii) Constructs the IMT to compute the
group public key DGMT.gpk, (iii) Constructs all SMT(1)

i,j ,

for all valid i and j, and uses the root of each SMT(1)
i,j ,

denoted by ri, j, to compute its corresponding fallback key
Fki, j ← g1(ri, j,Fni), linking SMTMT

i,j to the internal node
Fni of IMT, and iv) Publishes the group public parameter
DGMT.PubPr = (DGMT.gpk,FK,RL), where FK is the
list of all fallback keys and RL is the revocation list, ini-
tially empty. There are γ fallback keys for each IMT internal
node, and Fki, j is stored as the (γ(i− 1)+ j)-th element in
the list FK. See Subsection 4.2 specifically Algorithm 1.

Join and Request OTS key pairs. In DGMT, a user first
joins the group and receives (id,cid). When the user with
identifier id needs OTS key pairs, they send (id,cid) as a
request for new keys to the manager. Upon receiving this re-
quest, if (id,cid) is valid and the user has not been revoked
(i.e. (id,cid,Active) ∈ PLM), the manager randomly selects
B fallback nodes {Fni}B

i=1 and allocates the first available

13

IMT

hI = 2

hS = 2

γ = 2

: Fallback key, Fk

: Root of SMTMT

: Signing OTS

SMTMTs as d-layer Merkle tree with d = 2

: Fallback Node, Fn

: Root of IMT, Public Key of DGMT

Fn6

SMTMT
6,1

SMTMT
6,2

Fk6,1

Fk6,2

1 2 3 4

5 6

user1 user2

user1 user2

Nmax = 2

: User

DGMT.gpk

Fig. 4 IMT/SMTMT structure of DGMT. The red node represents the
group public key DGMT.gpk, the orange nodes represent the fallback
nodes {Fni}6

i=1, the yellow nodes Fk6,1 and Fk6,2 represent the fall-
back keys, the green nodes are the root of the SMTMTs, and the fall-
back key Fk6,1← g1(r6,1,Fn6), where r6,1 is the key

OTS key pair from the corresponding SMTMTs. If no avail-
able OTS keys remain in a selected SMTMT, the manager
deterministically generates a new SMTMT, ensuring the fall-
back keys match those computed during the setup phase.
This request can be repeated when all OTS keys are ex-
hausted to receive a new keys. This process is similar to the
approach used in DGM. See Subsection 4.2.

Signing. The format of the DGMT signature σDGMT
on a message m, generated using the OTS key pair
(OTS.ski, j,k,l′ ,OTS.pki, j,k,l′) at index (i, j,k, l′), is as fol-
lows:

σDGMT =
(
(i, j,k, l′),OTS.Sig(OTS.ski, j,k,l′ ,m),OTS.pki, j,k,l′ ,

DGMT.posi, j,k,l ,A.pathi, j,k,l′ ,OTS.Sig(OTS.ski, j,k,ri, j,k),

OTS.pki, j,k,A.pathi, j,k,A.pathi
)
. (1)

OTS.Sig(OTS.ski, j,k,l′ ,m) is the only part of σDGMT that
is computed by signer, while the remainder is provided by
the manager during the OTS key pair request phase. Each
signature has a unique and secret value DGMT.posi, j,k,l that
is used for both tracing and revoking signatures. The au-
thentication path from the leaf node indexed by (i, j,k, l′)
to DGMT.gpk consists of three parts:(i) the authentica-
tion path A.pathi, j,k,l′ from the leaf node at index (i, j,k, l′)

to the root SMT(2)
i,j,k, denoted by ri, j,k, (ii) the authentica-

tion path A.pathi, j,k from the leaf node at index (i, j,k)

to the root SMT(1)
i,j , denoted by ri, j, and (iii) the authen-

tication path A.pathi from Fni to DGMT.gpk. Moreover,

OTS.Sig(OTS.ski, j,k,ri, j,k) is the signature on ri, j,k by the
OTS key pair (OTS.ski, j,k,OTS.pki, j,k). See Algorithm 7.

Revoking a user. DGMT employs a SPRP g2 to com-
pute and add all assigned DGMT.poss of a misbehaving user
to the revocation list RL. In DGMT, each user is assigned
a unique interval, allowing the manager to run this process
efficiently without the need to store all users’ DGMT.poss
in advance, computing them only when necessary. See Al-
gorithm 5 in Subsection 4.3. In contrast, in DGM, the man-
ager uses a symmetric puncturable encryption scheme SPE

to puncture all DGM.post,l of a misbehaved user. Our re-
vocation list based method requires significantly less stor-
age and computation compared to SPE-based revocation of
DGM. See Section 6 for a detailed analysis.

Verification. Verifying a signature σDGMT on
a message m involves the following four steps:
(i) Ensure that DGMT.posi, j,k,l /∈ RL, (ii) Verify
OTS.Sig(OTS.ski, j,k,l′ ,m) and OTS.Sig(OTS.ski, j,k,ri, j,k)

using the public keys OTS.pki, j,k,l′ and OTS.pki, j,k, (iii)
Compute Fni ← g−11

(
ri, j,FK[(γ(i − 1) + j)]

)
, where

FK[(γ(i−1)+ j)] is the (γ(i−1)+ j)-th element of the list
FK, and iv) Verify that the computed group public key from
DGMT.posi, j,k,l , the authentication path, and Fni equals
to DGMT.gpk. See Algorithm 8 for details. Unlike DGM,
DGMT’s verification is non-interactive, and the fallback
key is not included in the signature.

Opening. DGMT opens the signature σDGMT by com-
puting i ∥ j ∥ k ∥ l ← g−1

2 (msk,DGMT.posi, j,k,l). Indeed,
the method of distributing leaf nodes among users and in-
cluding DGMT.posi, j,k,l as part of the signature σDGMT al-
lows the manager to trace each signature using the secret key
msk. See Algorithm 10 for details. In contrast, in DGM, the
manager must store DGM.post,l in a list and search through
the list to open each signature, a process that becomes pro-
hibitively expensive for large Ttot.

4.2 Constructing DGMT Tree

In this subsection, we provide a detailed explanation of the
DGMT tree framework and discuss how its design effec-
tively removes the limitations of DGM.

4.2.1 Setup parameters

DGMT is designed to support Ttot signatures and Nmax

users. Based on these values, DGMT selects three param-
eters hI , hSM , and γ and defines its setup parameters as

DGMT.SetPr = (hI ,hSM,γ,Ttot,Nmax),

where hI , hSM , and γ represent the height of the IMT, the
height of the SMTMTs, and the number of SMTMTs attached

14

Table 5 List of Symbols

IMT Initial Merkle Tree

rIMT The root of IMT

Fni The i-th internal node of IMT (the i-th fallback node)

SMTMT Multilayer Signing Merkle Tree; We use 2-layer tree

SMT(1) First (or Upper) layer of SMTMT

SMT(2) Second (or Lower) layer of SMTMT

SMTMT
i,j The j-th SMTMT that is attached to Fni

SMT(1)
i,j SMT(1) of SMTMT

i,j

SMT(2)
i,j,k SMT(2) attached to the k-th leaf node (from left) of SMT(1)

i,j

(i, j,k) The index of the k-th leaf node of SMT(1)
i,j

(i, j,k, l) The index of the l-th-leaf node of SMT(2)
i,j,k

hI ,hSM ,hS Heights of IMT, SMTMT, and SMT(1) (SMT(2)), respectively

α The number of leaves of SMT(1) and SMT(2); α = 2hS

Ttot The total number of signatures that DGMT supports

Nmax The maximum member of users that DGMT supports

β The number of keys allocated to a user in each SMT(2)

msk The manager’s master secret key of the SPRP g2

IMT.key The key of the PRF f for generating the leaf nodes of the IMT

SMT1.key The key of the PRF f for generating the leaf nodes of SMT(1)
i,j

SMT2.key The key of the PRF f for generating the leaf nodes of SMT(2)
i,j,k

shuffle.key The secret key of the SPRP g1 for shuffling the leaves of SMT(2)
i,j,k

(OTS.ski, j,k,OTS.pki, j,k) OTS key pair corresponding to the leaf node at index (i, j,k)

(OTS.ski, j,k,l ,OTS.pki, j,k,l) OTS key pair corresponding to the leaf node at index (i, j,k, l)

ri, j The root of the SMTMT
i,j (or SMT(1)

i,j)

ri, j,k The root of SMT(2)
i,j,k

γ The number of SMTMTs linked to each internal node of IMT

FK The list of fallback keys

Fki, j The fallback key that links SMTMT
i,j to the internal node Fni. Fki, j is stored as the ((i− 1)γ + j)-th

elemenet of the list FK.

RL The revocation list

It The interval [β (t−1), tβ −1] for index t

DGMT.SetPr The setup parameters of DGMT; (hI ,hSM ,γ,Ttot,Nmax)

DGMT.SK The secret keys (msk, IMT.key,SMT1.key,SMT2.key,shuffle.key)

DGMT.gpk The group public key, which is the root of IMT, i.e. rIMT

DGMT.PubPr The group public parameters (DGMT.gpk,FK,RL)

Li, j,k The shuffled index list of leaves of SMT(2)
i,j,k

σi, j,k The signature OTS.Sig(OTS.ski, j,k,ri, j,k)

σi, j,k,l The signature OTS.Sig(OTS.ski, j,k,l ,m)

DGMT.posi, j,k,l g2(msk, i ∥ j ∥ k ∥ l)

A.pathi Authentication path from Fni to rIMT

A.pathi, j,k Authentication path from leaf node (i, j,k) to ri j

A.pathi, j,k,l′ Authentication path from leaf node (i, j,k, l′) to ri, j,k

15

to each fallback node, respectively. These parameters pro-
vide flexibility to the system, allowing it to efficiently gen-
erate at least Ttot OTS key pairs and accommodate Nmax

users. DGMT also uses two public lists:(i) A list FK of the
fallback keys, and (ii) A revocation list RL of revoked sig-
natures. The following relations hold in the IMT/SMTMT

structure of DGMT.

1. Each SMTMT is a two-layer Merkle tree with layers of
equal height hS, so hSM = 2hS.

2. Given the parameters hI , hSM , and γ in DGMT, the total
number of OTS key pairs is Ttot = γ(2hI+1−2)2hSM .

3. The number of fallback keys in DGMT for the given
setup parameters DGMT.SetPr is |FK| = γ(2hI+1 −
2) = Ttot/2hSM .

4. Each user must receive at least two keys from each
SMT(2)

i,j,k, for every (i, j,k), thus hS must satisfy Nmax ≤
α/2, where α = 2hS (See the Anonymity proof in Sec-
tion 5).

5. For each tuple (i, j,k) and (i, j,k, l), we have 1 ≤ i <
2hI+1−1, 1≤ j ≤ γ, and 0≤ k, l ≤ α−1, where α =

2hS .

Based on the second and third relations mentioned
above, for a given Ttot the number of fallback keys is
|FK| = γ(2hI+1 − 2) = Ttot/2hSM . Therefore, if the man-
ager selects hSM so that Ttot/2hSM is sufficiently small, the
manager can effectively generate and publish all the fallback
keys at the setup phase. This allows the verifier to check
the validity of the fallback keys without interacting with the
manager, making DGMT a non-interactive group signature
scheme and addressing the first shortcoming of DGM.

Remark 2 For a given Ttot, the parameters hI ,hSM, and
γ are chosen such that Ttot = γ(2hI+1 − 2)2hSM , ensuring
|FK|= Ttot/2hSM is sufficiently small. This creates a trade-
off between γ and hI : a smaller γ results in a larger IMT.
Since IMT nodes are stored in memory, a larger hI increases
memory costs. Therefore, γ must be large enough to have
a reasonable hI . The terms “sufficiently small” and “large
enough” depend on the available system and communica-
tion cost.

4.2.2 Tree Construction and allocation of intervals to users

Constructing the DGMT tree is a two-step process.

1. In the setup phase, the manager constructs the IMT
along with all SMT(1)

i,j s, for every i and j, to compute
and publish DGMT.gpk and

FK= [Fki, j← g1(ri, j,Fni) | 1≤ i< 2hI+1−1, 1≤ j≤ γ],

where ri, j is the root of SMTMT
i,j and Fni is the i-th fall-

back node. See Algorihtm 1.

2. During the join phase when a user requests keys (or dur-
ing the sign phase when a user requests new OTS key
pairs) and no available key pairs remain in some current
SMT(2)s for this user, the manager must construct new
SMT(2)s. The manager then randomly selects new OTS
key pairs from these newly constructed trees and assigns
them to the user.

To explain the different steps of construct-
ing DGMT’s tree, we assume the manager
has generated the secret key DGMT.SK =

(msk, IMT.key,SMT1.key,SMT2.key,shuffle.key), where
each of them is a λ -bit random strings (See Algorithm 4 for
details). Also, let DGMT.SetPr = (hI ,hSM,γ,Ttot,Nmax)

be the setup parameters. Thus, the number of leaf nodes in
SMT(1)s and SMT(2)s is α = 2hS and hSM = 2hS.

Algorithm 1 DGMT.PubPrCons

Input: The security parameter λ , DGMT.SetPr =
(hI ,hSM ,γ,Ttot,Nmax), and DGMT.SK =
(msk, IMT.key,SMT1.key,SMT2.key,shuffle.key).
Output: DGMT.PubPr = (DGMT.gpk,FK,RL).

1: RL= []; FK= [];
2: /* Construction of IMT */
3: for 1≤ i≤ 2hI do;
4: Compute f(IMT.key, i);
5: end for
6: Construct a Merkle tree using {f(IMT.key, i)}2hI

i=1, called IMT; Let
its root be rIMT;

7: DGMT.gpk= rIMT;
8: /* Construction of the Fallback keys */
9: for 1≤ i < 2(hI+1)−1 do

10: for 1≤ j ≤ γ do
11: for 0≤ k ≤ α−1 do
12: OTS.ski, j,k← f(SMT1.key, i ∥ j ∥ k);
13: Compute OTS.pki, j,k from OTS.ski, j,k;
14: end for
15: Construct a Merkle tree using {OTS.pki, j,k}α−1

k=0 , called

SMT(1)
i,j ; Let the root of SMT(1)

i,j be ri, j;
16: Fki, j ← g1(ri, j,Fni);
17: Append Fki, j to the list FK;
18: end for
19: end for
20: DGMT.PubPr = (DGMT.gpk,FK,RL);
21: return DGMT.PubPr;

1. Constructing the IMT and SMT(1)s and publishing
DGMT.PubPr: The manager runs this process to pub-
lish DGMT.PubPr = (DGMT.gpk,FK,RL). This pro-
cess is detailed in Algorithm 1, where the DGMT.gpk is
computed in lines 3–7 and FK is computed in lines 9–
19. The fallback key for SMTMT

i,j is Fki, j← g1(ri, j,Fni),
where ri, j serves as the key for g1 (line 16). FK is a pub-
lic list, and its (γ(i− 1)+ j)-th element is Fki, j, where
1 ≤ i < 2hI+1− 1 and 1 ≤ j ≤ γ . Also, RL is initially

16

empty and will be updated by the Algorithm 9 whenever
the manager revokes a misbehaving user.

2. Constructing SMT(2)s and allocating their leaf nodes
to users: The manager constructs SMT(2)s when they
want to randomly allocate the leaf nodes to users. Each
user id ∈ [1,Nmax] is assigned a unique interval

Iid = [β (id−1),β id−1] = {β (id−1), · · · ,β id−1},

for the following purposes:
(a) Efficient Random Allocation. The manager shuffles

the leaf nodes of SMT(2) using Algorithm 2, which
takes an index (i, j,k) and shuffle.key, and outputs
the shuffled index list of leaves of SMT(2)

i,j,k as

Li, j,k = [l′0, . . . , l
′
β−1, . . . , l

′
β (Nmax−1), . . . , l

′
βNmax−1].

For each 1≤ id≤ Nmax, sublist [l′
β (id−1), · · · , l

′
β id−1]

represents the β leaf nodes of SMT(2)
i,j,k allocated to

user id, which the manager uses to assign the corre-
sponding OTS key pairs to user id.

(b) Efficient Opening and Revocation. Each signa-
ture σDGMT contains a unique DGMT.posi, j,k,l ←
g(msk, i ∥ j ∥ k ∥ l). To open a signature, the manager
computes i ∥ j ∥ k ∥ l← g−1

2 (msk,DGMT.posi, j,k,l)

and identifies the identifier id as the signer if l ∈ Iid
(or equivalently announce id= ⌈ l+0.5

β
⌉ as the signer).

This approach results in an efficient signature open-
ing algorithm. Additionally, by using these intervals,
the manager only needs to compute and add some
specific DGMT.posi, j,k,ls to the revocation list RL,
ensuring efficient signature revocation. See Algo-
rithms 9 and 10.

Remark 3 As discussed in Section 3.2, DGM’s sec-
ond limitation is its inefficient management of stor-
age, which scales linearly with Ttot. Indeed, this
inefficiency arises from its simple random alloca-
tion of leaf nodes, requiring the manager to store
all DGM.post,l values, for each t and l, to enable
signature opening and revocation. This approach de-
mands an impractical amount of storage, requiring
approximately 108.7 terabytes to support Ttot = 264

OTSs [51]. In contrast, our proposed interval-based
method overcomes this limitation and reduces stor-
age requirements to scale with the number of inter-
vals (or equivalently Nmax), rather than Ttot.

To construct SMT(2)
i,j,k, the manager first computes Li, j,k.

The l-th element in this list indicates the position
of the leaf node (i, j,k, l) after permuting the leaf
nodes. Then, the manager computes the OTS key pairs
(OTS.ski, j,k,l′ ,OTS.pki, j,k,l′) and DGMT.posi, j,k,l , for

all 0 ≤ l, l′ ≤ α − 1. The l′-th leaf node of SMT(2)
i,j,k

Algorithm 2 DGMT.Shuffle
Input: The secret key DGMT.SK =
(msk, IMT.key,SMT1.key,SMT2.key,shuffle.key) and the
index (i, j,k) (the index of the k-th leaf node of SMT(1)

i,j).

Output: Li, j,k, the shuffled index list of leaves of SMT(2)
i,j,k

1: Li, j,k = [];
2: L1 = [g1(shuffle.key, i ∥ j ∥ k ∥ l) | 0≤ l ≤ α−1];
3: L2← Sort(L1); ▷ Sorting L1 in ascending integer order
4: for 0≤ l ≤ α−1 do
5: Append the position of L1[l] in the list L2 to the list Li, j,k;
6: end for;
7: return Li, j,k;

is H(OTS.pki, j,k,l′ ∥ DGMT.posi, j,k,l). After computing
all the leaf nodes of this tree, the manager constructs
SMT(2)

i,j,k and signs its root, ri, j,k, by OTS.ski, j,k to attach

SMT(2)
i,j,k to SMT(1)

i,j . See Algorithm 3.

Algorithm 3 DGMT.SMTTWOCons
Input: The secret key DGMT.SK =
(msk, IMT.key,SMT1.key,SMT2.key,shuffle.key) and in-
dex (i, j,k).
Output: SMT(2)

i,j,k.

1: Li, j,k← DGMT.Shuffle(DGMT.SK,(i, j,k));
2: for 0≤ l ≤ α−1 do
3: DGMT.posi, j,k,l ← g2(msk, i ∥ j ∥ k ∥ l);
4: l′ = Li, j,k[l];
5: OTS.ski, j,k,l′ ← f(SMT2.key, i ∥ j ∥ k ∥ l′);
6: Compute OTS.pki, j,k,l′ from OTS.ski, j,k,l′ ;
7: hl′ ←H(OTS.pki, j,k,l′ ∥DGMT.posi, j,k,l);
8: end for
9: Construct a Merkle tree using {hl′}α−1

l′=0 , called SMT(2)
i,j,k;

10: return SMT(2)
i,j,k;

4.3 DGMT’s Algorithms

In Subsection 3, we presented the algorithms of a FDGS.
Here, we describe all the algorithms of DGMT in detail, as
a FDGS.

1. (DGMT.SK,DGMT.PubPr) ← DGMT.KG(1λ ,

DGMT.SetPr): The manager runs algorithm 4 on
the security parameter λ and the setup parameters
DGMT.SetPr = (hI ,hSM,γ,Ttot,Nmax) to obtain
(DGMT.SK,DGMT.PubPr), where DGMT.SK =

(msk, IMT.key,SMT1.key,SMT2.key,shuffle.key) and
DGMT.PubPr = (DGMT.gpk,FK,RL). These values
are generated as follows:

– msk
$←− {0,1}λ is the manager’s master secret key

of the SPRP g2 that is used for opening signatures,
revoking users, and generating SMT(2)s.

17

– IMT.key
$←−{0,1}λ is the secret key of the PRF f for

generating an IMT of height hI , where its root, i.e.
rIMT, is the group public key DGMT.gpk.

– SMT1.key
$←− {0,1}λ is the secret key of the PRF

f for generating the SMT(1)s on the OTS key pairs
(OTS.ski, j,k,OTS.pki, j,k), with 1 ≤ i < 2hI+1 − 1,
1≤ j ≤ γ and 1≤ k ≤ α .

– SMT2.key
$←− {0,1}λ is the secret key of the PRF

f for generating the SMT(2)s on the OTS key pairs
(OTS.ski, j,k,l ,OTS.pki, j,k,l)s, with 1≤ i< 2hI+1−1,
1≤ j ≤ γ and 1≤ k, l ≤ α .

– shuffle.key
$←− {0,1}λ is the secret key of the SPRP

g1 for shuffling the leaf nodes of SMT(2)s.
– FK= [Fki, j← g1(ri, j,Fni) | 1≤ i < 2hI+1−1, 1≤

j ≤ γ].

– RL is the revocation list that is initially empty.

Algorithm 4 DGMT.KG

Input: The security parameter λ and DGMT.SetPr =
(hI ,hSM ,γ,Ttot,Nmax).
Output: (DGMT.SK,DGMT.PubPr)

1: msk, IMT.key,SMT1.key,SMT2.key,shuffle.key
$←− {0,1}λ ;

2: DGMT.SK=(msk, IMT.key,SMT1.key,SMT2.key,shuffle.key);
3: DGMT.PubPr←DGMT.PubPrCons(1λ ,DGMT.SetPr,DGMT.SK);
4: return (DGMT.SK,DGMT.PubPr);

2. ((PLM, ID),(id,cid))/⊥← DGMT.Join(Username) :
This interactive joining protocol, the same as FDGS.Join
in Section 3.1, occurs between the manager M and a
prospective user with identity Username over a secure
channel. If Username /∈ ID and |ID| < Nmax, the man-
ager M allocates the smallest unassigned identifier id
with 1 ≤ id ≤ Nmax along with a secret value cid to this
user and sends (id,cid) to the user. Otherwise, the algo-
rithm outputs ⊥. The manager M stores (id,cid,Active)

Algorithm 5 DGMT.Join
Input: The identity Username of a user
Output: (id,cid)

1: The user sends Username along with a request to join the group;
2: The manager M takes the next available unassigned id≤Nmax;

3: M generates cid
$←{0,1}λ ;

4: M sends (id,cid) to Username;
5: M appends (id,cid,Active) to the list PLM;
6: M appends Username to the id-th position in the list ID.
7: Username stores the received (id,cid);

in the private list PLM and the user’s identity Username
as the id-th element in the list ID, where ID is the list of

the users’ identities who have already joined the group
and is initially empty. See Algorithm 5 for details.
When a user with identifier id requires new OTS key
pairs, they initiate Subroutine 6 by sending a request to
the manager via the Algorithm DGMT.OTSReq(id,cid).
Upon receiving the request, the manager allocates B
new private keys {gskidir , j,k,l′}

B
r=1 to the user by execut-

ing the Algorithm DGMT.KeyDist(id), provided that
(id,cid,Active) ∈ PLM, i.e. the user has already joined
the group and has not been revoked.
To execute the key allocation effectively, the manager
assigns each user with identifier id ∈ [1,Nmax] a list:

Indexid = [(i,(j,k, l)) | 1≤ i < 2hI −1].

This list corresponds to the internal nodes of the IMT,
where the second component of the i-th entry, i.e.
(j,k, l), represents the last signing key assigned to the
user id from the SMTMT linked to the internal node
Fni. In other words, the entry (i,(j,k, l)) ∈ Indexid in-
dicates that user id has received their l-th signing key
from SMT(2)

i,j,k. Initially, this list is set as Indexid =

[(i,(1,0,0)) | 1 ≤ i < 2hI −1], and is updated after each
allocation. Algorithm DGMT.KeyDist explains the pro-
cess of selecting the next B available indexes for the user
id and updating Indexid accordingly.

Remark 4 In lines 5–9 of Algorithm DGMT.KeyDist,
we maintain the bound l ≤ β − 2 to ensure that every
user has at least one unused key in each SMT(2)

i,j,k, as re-
quired by the anonymity proof.

3. σDGMT ← DGMT.Sig(m,gskidi, j,k,l′) : The signing algo-
rithm takes as input a message m and an unused private
key gskidi, j,k,l′ that belongs to the user id and outputs a
signature σDGMT as explained in Algorithm 7.

Remark 5 In Algorithm 7, the depth µ of the internal
node Fni in the IMT is used. The use of fixed-height
SMTMTs results in variable-length signatures, and in-
cluding µ as part of the signed message helps pre-
vent potential exploitation of this variability in signature
length.

4. 0/1←DGMT.Vf(m,σDGMT,DGMT.PubPr) : To verify
a pair (m,σDGMT), the verifier runs the deterministic Al-
gorithm 8, which outputs 1 if and only if σDGMT is a
valid signature on m.

Remark 6 In DGMT, having (i, j) allows the verifier to
uniquely determine the fallback key Fki, j from the pub-
lic list FK. Therefore, unlike DGM where Fki, j is a part
of the signature, in DGMT Fki, j is not a part of the sig-
nature.

18

Algorithm 6 Subroutines of Key Distribution of DGMT

DGMT.OTSReq:

Input: A pair (id,cid) and Indexid
Output: {gskidir , j,k,l′}

B
r=1 or ⊥.

1: if (id,cid,Active) /∈ PLM then;
2: return ⊥ ;
3: end if
4: {gskidir , j,k,l′}

B
r=1←DGMT.KeyDist(id)

5: return {gskidir , j,k,l′}
B
r=1

DGMT.KeyDist:

Input: An identifier id.
Output: B new keys {gskidir , j,k,l′}

B
r=1.

1: count← 1;
2: while (count≤ B) do
3: Randomly choose an internal node Fni;
4: (j,k, l)← The second component of the i-th tuple from Indexid;
5: if l < β −2, then (j,k, l)← (j,k, l +1);
6: else if l = β −2∧ k < α−1, then (j,k, l)← (j,k+1,0);
7: else if l = β − 2∧ k = α − 1∧ j < γ , then (j,k, l) ← (j +

1,0,0);
8: else goto Step 3;
9: end if

10: if k = 0, then construct the SMT(1)
i,j if does not exist;

11: end if
12: if l = 0, then construct the SMT(2)

i,j,k if does not exist;
13: end if
14: l′← Li, j,k[l +(id−1)β];

15: Retrieve the l′-th signing key from SMT(2)
i,j,k,

gskidi, j,k,l′ = ((i, j,k, l′),OTS.ski, j,k,l′ ,OTS.pki, j,k,l′ ,DGMT.posi, j,k,l ,

A.pathi, j,k,l′ ,σi, j,k,OTS.pki, j,k,A.pathi, j,k,A.pathi); (2)

//where,
16: //(i, j,k, l′): Index of the signing OTS;
17: //OTS.ski, j,k,l′ : OTS secret key of the leaf node at index

(i, j,k, l′);
18: //OTS.pki, j,k,l′ : OTS public key of the leaf node at index

(i, j,k, l′);
19: //DGMT.posi, j,k,l : g2(msk, i ∥ j ∥ k ∥ l);
20: //A.pathi, j,k,l′ : Authentication path from leaf node at index

(i, j,k, l′) to the root ri, j,k of SMT(2)
i,j,k;

21: //OTS.ski, j,k: OTS secret key of the leaf node at index
(i, j,k);

22: //OTS.pki, j,k: OTS public key of the leaf node at index
(i, j,k);

23: //σi, j,k: OTS signature on ri, j,k using OTS.ski, j,k;
24: //A.pathi, j,k: Authentication path from leaf node at index

(i, j,k) to the root ri, j of SMT(1)
i,j ;

25: //A.pathi: Authentication path from the fallback node Fni to
the root of IMT;

26: count← count+1;
27: end while
28: return {gskidir , j,k,l′}

B
r=1

Algorithm 7 DGMT.Sig

Input: A message m and an unused signing key gskidi, j,k,l′ .
Output: σDGMT

1: Parse gskidi, j,k,l′ as

gskidi, j,k,l′ = ((i, j,k, l′),OTS.ski, j,k,l′ ,OTS.pki, j,k,l′ ,DGMT.posi, j,k,l ,

A.pathi, j,k,l′ ,σi, j,k,OTS.pki, j,k,A.pathi, j,k,A.pathi);

2: Compute the height µ of Fni in the IMT from i;
3: m′←H(m∥µ);
4: σi, j,k,l′ ←OTS.Sig(OTS.ski, j,k,l′ ,m′);
5: Compute σDGMT as

σDGMT = ((i, j,k, l′),σi, j,k,l′ ,OTS.pki, j,k,l′ ,DGMT.posi, j,k,l ,

A.pathi, j,k,l′ ,σi, j,k,OTS.pki, j,k,A.pathi, j,k,A.pathi); (3)

6: if gskidi, j,k,l′ was the last unused key of user id, then
7: user id requests for new keys by the Algorithm

DGMT.OTSReq(id,cid);
8: end if
9: return σDGMT;

Algorithm 8 DGMT.Vf
Input: message m, signature σDGMT, and DGMT.PubPr =
(DGMT.gpk,FK,RL).
Output: 0/1

1: Parse σDGMT as

σDGMT = ((i, j,k, l′),σi, j,k,l′ ,OTS.pki, j,k,l′ ,DGMT.posi, j,k,l ,

A.pathi, j,k,l′ ,σi, j,k,OTS.pki, j,k,A.pathi, j,k,A.pathi);

2: if DGMT.posi, j,k,l ∈ RL, then return 0;
3: end if
4: Compute the height µ of Fni in the IMT from i;
5: m′←H(m∥µ);
6: if OTS.Vf(m′,σi, j,k,l′ ,OTS.pki, j,k,l′) = 0, then return 0;
7: end if
8: h′←H

(
OTS.pki, j,k,l′ ∥DGMT.posi, j,k,l

)
;

9: Compute r′i, j,k, as the root of SMT(2)
i,j,k, using the index (i, j,k, l′),

h′, and A.pathi, j,k,l′ ;
10: if OTS.Vf(r′i, j,k,σi, j,k,OTS.pki, j,k) = 0, then return 0;
11: end if
12: Compute r′i, j , as the root of SMT(1)

i,j , using the index (i, j,k),
OTS.pki, j,k, and A.pathi, j,k;

13: Fn′i← g−11 (r′i, j,FK[γ(i−1)+ j]);
14: Compute r′IMT from i,Fn′i, and A.pathi;
15: if r′IMT =DGMT.gpk then return 1;
16: else return 0;
17: end if

5. (PLM,DGMT.PubPr) ←
DGMT.Rev(DGMT.SK,PLM,DGMT.PubPr,R) :
To revoke a set R of users, the manager runs Algorithm
9 to update both PLM and DGMT.PubPr. In particular,
this algorithm changes the status of each id ∈ R in PLM,
preventing them from requesting any further keys. See

19

Algorithm 9. For two given indexes (j1,k1, l1) and
(j2,k2, l2), we have (j1,k1, l1)≤ (j2,k2, l2) if j1 < j2, or
(j1 = j2∧ k1 < k2), or (j1 = j2∧ k1 = k2∧ l1 ≤ l2).

Algorithm 9 DGMT.Rev

Input: A list R, PLM, DGMT.SK = (msk,FK,RL), and
DGMT.PubPr = (DGMT.gpk,FK,RL)
Output: (PLM,DGMT.PubPr)

1: for id ∈ R do
2: for 1≤ i < 2hI −1 do
3: Replace (id,cid,Active) with (id,cid,Revoked) in PLM.
4: (ji,ki, li)← Retrieve the second component of the i-th entry

in assignid;
5: RL = RL ∪ {g2(msk, i ∥ j ∥ k ∥ l + (id −

1)β)| for all (j,k, l)≤ (ji,ki, li)};
6: end for;
7: end for;
8: DGMT.PubPr = (DGMT.gpk,FK,RL);
9: return (PLM,DGMT.PubPr);

6. id/⊥← DGMT.Op(σDGMT,DGMT.SK) : The manager
runs the deterministic algorithm 10 to open the signature
σDGMT. This algorithm outputs either the identifier id of
the user who generated σ , or ⊥ if the signature cannot
be attributed to any specific user. As we already men-
tioned, the manager can retrieve the identity Username
of the user by looking up the id-th entry in the list ID.
See Algorithm 10.

Algorithm 10 DGMT.Op

Input: A signature σDGMT and DGMT.SK= (msk,FK,RL).
Output: id/⊥

1: Extract DGMT.posi, j,k,l from σDGMT;
2: i ∥ j ∥ k ∥ l← g−1

2 (msk,DGMT.posi, j,k,l);
3: if (1 ≤ i < 2hI+1 − 1)∧ (0 ≤ j ≤ γ)∧ (0 ≤ k, l ≤ α − 1), then

return id= ⌈ l+0.5
β
⌉;

4: else return ⊥;
5: end if

4.4 Instantiating DGMT and Parameter Estimation

To compute the signature and public key size of DGMT,
we use WOTS as the OTS. As argued in Remark 1, using
WOTS allows us to omit OTS.pki, j,k,l′ and OTS.pki, j,k from
the DGMT signature and it will be as:

σDGMT =((i, j,k, l′),σi, j,k,l′ ,DGMT.posi, j,k,l ,

A.pathi, j,k,l′ ,σi, j,k,A.pathi, j,k,A.pathi).

Now we compute the signature and public key sizes of
DGMT in terms of the setup parameters of the system, se-
curity parameter λ and Winternitz parameter w.

Signature size:

– (i, j,k, l′) is the index of the leaf node and is λ bits.
– σi, j,k,l′ and σi, j,k are WOTS signature, each of size ξ λ

bits, where ξ is the number of elements in WOTS signa-
ture.

– DGMT.posi, j,k,l is the output of the SPRP g2 and is λ

bits.
– A.pathi, j,k,l′ ,A.pathi, j,k, and A.pathi are the authentica-

tion paths in the SMT(2)
i,j,k, SMT(1)

i,j , and IMT, which is
totally (hI +hSM)λ bits.

Thus, the signature size in bits, is bounded by

(hI +hSM +2+2ξ)λ . (4)

Public key size: The public key of DGMT is the root of the
IMT, and is λ bits.

Parameter selection in our implementation: We con-
sider a GSS with Ttot = 264 OTSs and Nmax = 212

users, and choose the setup parameters DGMT.SetPr =
(hI ,hSM,γ,Ttot,Nmax) = (16,32,216,264,212). The config-
uration allows each user to receive up to 252 OTSs from the
manager3. The number of fallback keys is 232 which can
be generated comfortably during initialization. We note that,
Nmax is bounded to 2hS−1 so having two-layer SMTMTs with
hSM = 32 allows the system to accommodate 215 users.

Let the security parameter λ ∈ {256,384} and ω = 4.
Given these parameters, Table 6 provides the signature size
and public key size of DGMT. Theorem (1) shows that secu-
rity of DGMT relies on the security of some symmetric-key
primitives, especially the collision resistance of the underly-
ing hash family. Thus classic and quantum security when λ

is the output size of the hash function, are respectively λ/2
bits and λ/3 qbits. Therefore, for λ = 256,384 its classic
security is respectively 128 and 192 bits, and its quantum
security is respectively 85 and 128 qbits [8, 31].

Remark 7 Security DGMT relies on the collision resistance
of the hash function that is used to construct the Merkle trees
(IMT and SMT MT . Using the approach in [17] one can mod-
ify the trees so that the security of the resulting signature re-
lies on the second pre-image resistance. This will allow the
output size of the hash function to be halved for the same
security level (the complexity of the best collision and pre-
image attacks for a hash function with output size λ is 2λ/2

and 2λ , respectively), resulting in a shorter signature. This
however requires careful analysis of the design because of
multi-target attack that is applicable to the new design.

Multi-target attack was introduced in [30] in which the
adversary makes d hash queries and succeeds if a second
preimage for any of the queried values is found. It was

3This configuration provides exactly γ(2hI −2)2hSM = 264−248 OTSs.

20

Security parameter ξ1 =
⌈

λ

w

⌉
ξ2 =

⌊
log(ξ1(2w−1))

w

⌋
+1 ξ = ξ1 +ξ2 |σDGMT |= (hI +hSM +2+2ξ)λ |DGMT.gpk|= λ

λ = 256 64 3 67 (16+32+2+2×67)256 bits = 5.75 KB 256 bits

λ = 384 96 3 99 (16+32+2+2×99)384 bits = 11.62 KB 384 bits

Table 6 Signature and public key sizes of DGMT for the given parameters.

shown that for a hash function with λ -bit output allow-
ing d queries reduces the attack complexity from O(2λ) to
O(2λ/d) and so for λ -bit security either the hash function
output size must be increased, or different keyed hash func-
tions for each call must be used [30]. Adapting DGMT de-
sign to reduce security to second pre-image resistance will
be our future work.

5 Security Proofs

In this section, we prove that DGMT provides Correctness,
Unforgeability, Anonymity, and Traceability.

Theorem 1 Let DGMT be the scheme described in Sec-
tion 4. If (i) H is a randomly selected hash function from
the collision-resistant hash function family HF, (ii) OTS is
an EU-CMA One-time Signature scheme, (iii) f : {0,1}λ ×
{0,1}λ →{0,1}λ is a PRF, and (iv) g1 : {0,1}λ×{0,1}λ →
{0,1}λ and g2 : {0,1}λ ×{0,1}λ →{0,1}λ are two SPRPs,
such that for any randomly selected tuple (k,m,c) with
c ← g1(k,m) the probability of finding a key k∗ ̸= k with
c← g1(k∗,m) is negligible, then DGMT satisfies Correct-
ness, Unforgeability, Anonymity, and Traceability.

Proof We follow the adversarial game model of [7, 12] to
establish that DGMT satisfies Correctness, Unforgeability,
Anonymity, and Traceability. Below we provide sketches of
the proofs for each case.

Correctness: To prove correctness of DGMT, we show
that if an adversary A corrupt all but one user, the honest
user can successfully enroll and create signatures that are ac-
cepted by the verification algorithm and will be traced back
to the user.

In the correctness game ExpCorr
FDGS,A(λ), a PPT adver-

sary A can use oracles AddHU, and Revoke to add honest
users and revoke the users, and AddCU to corrupt all but
one user. In presence of such adversary, the honest user can
still establish a secure channel to the (honest) group man-
ager and securely receive (id,cid). Only user and the group
manager know (id,cid) and the user uses (id,cid) to receive
{gskidi, j,k,l′}B

i=1 from the manager using a secure challenge
and generates correct signatures.

These keys are specifically allocated to this honest user,
ensuring that for all 1 ≤ i ≤ B, we have l ∈ Iid = [(id−
1)β , idβ − 1], where (i, j,k, l′) represents the index of the

leaf node (i, j,k, l) after permutation by the SPRP g1 (See
Algorithm 2). Let gskidi, j,k,l′ ∈ {gsk

id
i, j,k,l′}B

i=1 and σDGMT ←
DGMT.Sig(m,gskidi, j,k,l′) be as

σDGMT = ((i, j,k, l′),σi, j,k,l′ ,OTS.pki, j,k,l′ ,DGMT.posi, j,k,l ,

A.pathi, j,k,l′ ,σi, j,k,OTS.pki, j,k,A.pathi, j,k,A.pathi).

By computing

i ∥ j ∥ k ∥ l = g−1
2 (msk,DGMT.posi, j,k,l), (5)

the manager finds l ∈ Iid = [(id− 1)β , idβ − 1], i.e. (id−
1)β ≤ l ≤ idβ −1, so

idβ +(0.5−β)

β
≤ l +0.5

β
≤ idβ −0.5

β
,

ensuring that computing
⌈

l+0.5
β

⌉
yields the identifier id of

the signer (⌈·⌉ is the ceiling function.).

Unforgeability: To prove the unforgeability property of
DGMT, we show that if an adversary A can forge a signa-
ture, then it creates a contradiction to the assumptions of the
theorem.

In the unforgeability security game ExpUnforg
FDGS,A(λ),

a challenger first runs the DGMT.KG to create the
IMT/SMTMT trees and the secret and public keys of the sys-
tem. Then the challenger gives access to the oracles AddHU,
AddCU, SignHU, and Revoke to a PPT adversary A. There-
fore, A is allowed to obtain the signatures of every honest
user on arbitrary messages. Each message-signature pair is
stored in the signing list SL, preventing A from using these
signatures as forgeries for their corresponding messages. A
can revoke users, so their signatures will not be verified. Ad-
ditionally, A can corrupt users to obtain their (id,cid) and
sign messages on their behalf, however, the generated sig-
natures cannot be used as forgeries as those users are not
honest.

We show that if A succeeds in forging a signature, i.e. it
outputs a valid signature

σ
∗
DGMT = ((i, j,k, l′),σ∗i, j,k,l′ ,OTS.pk

∗
i, j,k,l′ ,DGMT.pos∗i, j,k,l ,

A.path∗i, j,k,l′ ,σ
∗
i, j,k,OTS.pk

∗
i, j,k,A.path∗i, j,k,A.path∗i),

(6)

on a message m at the end of the query phase such that
id∗ ∈H, where id∗← DGMT.Op(σ∗DGMT ,DGMT.SK), and
(m,σ∗DGMT) /∈ SL, then we can construct another PPT ad-
versary B that simulates the role of the challenger for A to

21

find a collision for the hash function H, or forge a valid sig-
nature for OTS, or can find a second-key for g1 that maps
Fki, j to Fni for some i, j. Note that in each case, one of the
assumptions of the theorem will cause a contradiction.

Let σ∗DGMT be a forged signature on message m. Since
(m,σ∗DGMT) is a valid signature then the index (i, j,k, l′) of
the σ∗DGMT must be a valid index, i.e. 1 ≤ i < 2hI+1 − 1,
1 ≤ j ≤ γ , and 0 ≤ k, l′ ≤ α − 1. Let the index (i, j,k, l′)
belong to a user with identifier id. As B simulates the role
of the challenger, it knows

gskidi, j,k,l′ =((i, j,k, l′),OTS.ski, j,k,l′ ,OTS.pki, j,k,l′ ,

DGMT.posi, j,k,l ,A.pathi, j,k,l′ ,σi, j,k,OTS.pki, j,k,

A.pathi, j,k,A.pathi), (7)

and computes σDGMT ← DGMT.Sig(m,gskidi, j,k,l′), where

σDGMT = ((i, j,k, l′),σi, j,k,l′ ,OTS.pki, j,k,l′ ,DGMT.posi, j,k,l ,

A.pathi, j,k,l′ ,σi, j,k,OTS.pki, j,k,A.pathi, j,k,A.pathi).

(8)

1. Let A.pathi ̸= A.path∗i . However σDGMT and σ∗DGMT are
both valid signatures for the index (i, j,k, l′). This im-
plies that both paths lead to the same group public-key
DGMT.gpk. Therefore, B found a collision for H that
contradicts the fact that H is a collision-resistant hash
function.

2. Assume that A.pathi =A.path∗i . Suppose that A.pathi, j,k
leads to SMTMT root node ri, j and A.path∗i, j,k leads to
SMTMT root node r∗i, j. In both cases, the (γ(i−1)+ j)-
th element of FK, which is Fki, j, will be used to ver-
ify the signatures. Then we have Fni ← g−1

1 (ri, j,Fki, j)

and Fn∗i ← g−1
1 (r∗i, j,Fki, j). Now we have three cases.

(i) Let Fni ̸= Fn∗i . Then B found a collision for H
because A.pathi = A.path∗i and both of them leads to
DGMT.gpk.
(ii) If Fni = Fn∗i and ri, j ̸= r∗i, j. In this case, simulator B
found two keys ri, j ̸= r∗i, j such that FKi, j← g1(ri, j,Fni)

and FKi, j ← g1(r∗i, j,Fni) which is a contradiction with
the assumptions.
(iii) If Fni = Fn∗i and ri, j = r∗i, j which is discussed next.

3. If (Fni,ri, j,A.pathi) = (Fn∗i ,r
∗
i, j,A.path∗i). We have two

cases:
(i) If A.pathi, j,k ̸= A.path∗i, j,k. Since ri, j = r∗i, j, B found
a collision for H and it forms a contradiction to the as-
sumptions.
(ii) Next we discuss the case when A.pathi, j,k =

A.path∗i, j,k.
4. If A.pathi, j,k = A.path∗i, j,k and OTS.pki, j,k ̸=

OTS.pk∗i, j,k. There are three possible cases.
(i) If H(OTS.pki, j,k) = H(OTS.pk∗i, j,k), B found a col-
lision for H and it forms a contradiction to the assump-
tions.

(ii) Let H(OTS.pki, j,k) ̸= H(OTS.pk∗i, j,k). Since
A.pathi, j,k = A.path∗i, j,k and ri, j = r∗i, j, B found a col-
lision for the hash function H.
(iii) Let H(OTS.pki, j,k) ̸= H(OTS.pk∗i, j,k) and both the
authentication path A.pathi, j,k and A.path∗i, j,k leads to
two different SMTMT root nodes ri, j and r∗i, j respectively.
If Fni ̸= Fn∗i , then we are in case 2(i). If Fni = Fn∗i , we
are in the situation of case 2(ii).

5. If A.pathi, j,k = A.path∗i, j,k and OTS.pki, j,k =

OTS.pk∗i, j,k. There are two cases:
(i) If σi, j,k ̸= σ∗i, j,k. This implies that B found a forgery
for the OTS that contradicts the fact the OTS is EU-CMA
secure.
(ii) If σi, j,k = σ∗i, j,k, which is discussed in the next case.

6. If (σi, j,k,OTS.pki, j,k,A.pathi, j,k,Fni,ri, j,A.pathi) =

(σ∗i, j,k,OTS.pk
∗
i, j,k,A.path∗i, j,k,Fn∗i ,r

∗
i, j,A.path∗i). As-

sume that A.pathi, j,k,l′ leads to a SMT(2) root node ri, j,k

and A.path∗i, j,k,l′ leads to a SMT(2) root node r∗i, j,k. We
can divide this case into three subcases.
(i) If ri, j,k ̸= r∗i, j,k, then B found a forgery
(r∗i, j,k,σi, j,k,OTS.pki, j,k) of OTS that contradicts to
that the OTS is EU-CMA secure.
(ii) Let ri, j,k = r∗i, j,k and A.pathi, j,k,l′ ̸= A.path∗i, j,k,l′ .
Then two different authentication paths of the same
length hS lead to the same SMT(2) root node ri, j,k. There-
fore, B found a collision for the hash function H and
hence a contradiction.
(iii) If ri, j,k = r∗i, j,k and A.pathi, j,k,l′ = A.path∗i, j,k,l′ ,
which is discussed in the next case.

7. If (A.pathi, j,k,l′ ,ri, j,k,σi, j,k,OTS.pki, j,k,A.pathi, j,k,Fni, j,

ri, j,A.pathi) = (A.path∗i, j,k,l′ ,r
∗
i, j,k,σ

∗
i, j,k,OTS.pk

∗
i, j,k,

A.path∗i, j,k,Fn∗i, j,r
∗
i, j,A.path∗i). There are two cases.

(i) Let (OTS.pki, j,k,l′ ,DGMT.posi, j,k,l) ̸=
(OTS.pk∗i, j,k,l′ ,DGMT.pos∗i, j,k,l). If H(OTS.pki, j,k,l′∥
DGMT.posi, j,k,l) = H(OTS.pk∗i, j,k,l′∥DGMT.pos∗i, j,k,l),
B found a collision for H and hence a contradiction.
(ii) On the other hand, let H(OTS.pki, j,k,l′∥
DGMT.posi, j,k,l) ̸= H(OTS.pk∗i, j,k,l′∥DGMT.pos∗i, j,k,l).
Since A.pathi, j,k,l′ = A.path∗i, j,k,l′ and ri, j,k = r∗i, j,k, B

found a collision for H and that leads to a contradiction.
8. Lastly, we assume that all the components of σDGMT and

σ∗DGMT are the same except the components σi, j,k,l′ and
σ∗i, j,k,l′ , that is σi, j,k,l′ ̸= σ∗i, j,k,l′ . Then B found a forgery
for the for OTS that contradicts the EU-CMA security of
the OTS.

Therefore, we can conclude that DGMT achieves unforge-
bility.

Traceability: In traceability game ExpTrace
FDGS,A(λ),

the challenger runs the DGMT.KG to create the
IMT/SMTMT tree and generate the secret and public
keys of the system. The PPT adversary A has access to
oracles AddHU, Revoke, AddCU, and SignHU oracles and

22

can add and revoke users, corrupts them and obtain their
(id,cid), and obtains all signatures of honest users. At the
end of the query phase, the adversary A has to output a
valid signature

σ
∗
DGMT = ((i, j,k, l′),σ∗i, j,k,l′ ,OTS.pk

∗
i, j,k,l′ ,DGMT.pos∗i, j,k,l ,

A.path∗i, j,k,l′ ,σ
∗
i, j,k,OTS.pk

∗
i, j,k,A.path∗i, j,k,A.path∗i),

on a message m with DGMT.Op(σ∗DGMT ,DGMT.SK) =⊥.
We will use this adversary to construct another PPT adver-
sary B that simulates the role of the challenger for A to find
a collision for the hash function H, or forge a valid signature
for OTS, or can find a second-key for g1 that maps Fki, j to
Fni for some i, j. Note that in each case, one of the assump-
tions of the theorem will cause a contradiction.

Let σ∗DGMT be a valid signature on m, with
DGMT.Op(σ∗DGMT ,DGMT.SK) =⊥. The (i, j,k, l′) is
a valid index, so it belongs to a user with identifier id and
the manager knows its corresponding gskidi, j,k,l′ given in (7)
and is able to compute σDGMT ← DGMT.Sig(m,gskidi, j,k,l′),
where

σDGMT = ((i, j,k, l′),σi, j,k,l′ ,OTS.pki, j,k,l′ ,DGMT.posi, j,k,l ,

A.pathi, j,k,l′ ,σi, j,k,OTS.pki, j,k,A.pathi, j,k,A.pathi).

The proof arguments are the same as the proof
presented for Unforgeability. The only difference is
that DGMT.pos∗i, j,k,l ̸= DGMT.posi, j,k,l in the traceabil-
ity proof because DGMT.Op(σ∗DGMT ,DGMT.SK) =⊥ and
DGMT.Op(σDGMT ,DGMT.SK) = id. Therefore, we also
have OTS.pk∗i, j,k,l′ ∥ DGMT.pos∗i, j,k,l ̸= OTS.pki, j,k,l′ ∥
DGMT.posi, j,k,l .

1. If H(OTS.pk∗i, j,k,l′ ∥DGMT.pos∗i, j,k,l) =H(OTS.pki, j,k,l′

∥ DGMT.posi, j,k,l), then we found a collision for H. If
not, then we have the next cases.

2. Let H(OTS.pk∗i, j,k,l′ ∥ DGMT.pos∗i, j,k,l) ̸=
H(OTS.pki, j,k,l′ ∥ DGMT.posi, j,k,l), and A.pathi, j,k

and A.path∗i, j,k leads to SMT(2) root nodes ri, j,k and r∗i, j,k
respectively. If ri, j,k = r∗i, j,k, then B found a collision for
H. Otherwise, this leads to the next case.

3. Let ri, j,k ̸= r∗i, j,k. If OTS.pki, j,k = OTS.pk∗i, j,k, then
we found a forgery for the OTS scheme. However, if
OTS.pki, j,k ̸= OTS.pk∗i, j,k then there are two cases:
(i) If H(OTS.pki, j,k) = H(OTS.pk∗i, j,k), thus B found a
collision for H.
(ii) If H(OTS.pki, j,k) ̸= H(OTS.pk∗i, j,k), we have the
next case.

4. Let H(OTS.pki, j,k) ̸= H(OTS.pk∗i, j,k), and A.pathi, j and
A.path∗i, j leads to SMTMT root nodes ri, j and r∗i, j respec-
tively. If ri, j = r∗i, j, then B found a collision for H. Next,
we consider the case ri, j ̸= r∗i, j.

5. Let ri, j ̸= r∗i, j. Assume that Fni = g−1
1 (ri, j,FKi, j) and

Fn∗i = g−1
1 (r∗i, j,FKi, j). If Fni = Fn∗i , then the adver-

sary B can find a new key r∗i, j such that g1(ri, j,Fni) =

g1(r∗i, j,Fni). Otherwise, that is if Fni ̸= Fn∗i , then B

can find a collision for H using the authentication paths
A.pathi and A.path∗i because both the paths lead to the
group public key DGMT.gpk.

Hence, we achieve traceability.

Anonymity: We show that if A succeeds with a non-
negligible advantage in distinguishing a signature generated
by randomly selecting one of the two honest users with iden-
tifiers id0 and id1, then we can distinguish the outputs of
the SPRP g1 or g2 from random permutations with non-
negligible probability, which is a contradiction with our as-
sumptions

In the anonymity security game ExpAnon−b
FDGS,A(λ), a PPT

adversary A has access to the oracles AddHU, AddCU,
Revoke, SignHU, Chb, and Open. The adversary A is al-
lowed to add honest users to the group and to revoke users
from the group. It also can corrupt honest users to obtain
their (id,cid)s and sign messages on their behalf. Addition-
ally, A can use the oracle SignHU to obtain signatures from
honest users on arbitrary messages. Furthermore, A can use
the oracle Open to find the identity of the signer for any
message-signature pair.

At some stage of the game, A calls Chb. A selects a
message m along with two users with identifiers id0 and id1
and send them to the challenger. The challenger checks if
id0 and id1 are honest or not. If they are honest, the chal-
lenger selects randomly a SMT(2), say SMT(2)

i,j,k, and a ran-
dom bit b. According to Algorithm DGMT.KeyDist in Al-
gorithm 6, every user has at least one unused key in ev-
ery SMT(2). So, the manager can select two unused keys
of the users with identifiers id0 and id1 in SMT(2)

i,j,k. Let
(i, j,k, l′0) and (i, j,k, l′1) be the indexes of the leaf nodes
of these unused keys which belong to the users id0 and
id1, respectively (i.e. these two unused keys are gskid0

i, j,k,l′0

and gskid1
i, j,k,l′1

). The challenger generates (m,σb
DGMT), where

σb
DGMT ← DGMT.Sig(m,gsk

idb
i, j,k,l′b

) is

σ
b
DGMT = ((i, j,k, l′b),σi, j,k,l′b

,OTS.pki, j,k,l′b
,DGMT.posi, j,k,lb ,

A.pathi, j,k,l′b
,σi, j,k,OTS.pki, j,k,A.pathi, j,k,A.pathi),

with DGMT.posi, j,k,lb ← g2(msk, i ∥ j ∥ k ∥ lb), and sends
it back to the adversary A to determine whose signature it
is. A has still access with oracles AddHU, Revoke, SignHU,
Chb, and Open. However, A cannot call the oracle Open
on the signatures generated by Chb, which are stored in the
challenge list CL. Also, A cannot invoke the oracle Revoke
on users with identifiers id0 or id1, as this would allow A to
distinguish the signer by searching DGMT.posi, j,k,lb in the

23

revocation list before and after calling the oracle Revoke on
one of these identifiers. Finally, A outputs a bit b′ and wins
the anonymity experiment if b′ = b.

Notice that (i, j,k, l′b) and DGMT.posi, j,k,lb are the only
elements of the signature σb

DGMT that allows A to distinguish
the signer. We discuss both cases separately below.

1. A breaks the anonymity with non-negligible probability
using (i, j,k, l′b):
With the provided oracles, the adversary A can request
signatures on arbitrary messages using all the leaf nodes
of the selected SMT(2)

i,j,k, except for the leaf nodes in-
dexed by (i, j,k, l′0) and (i, j,k, l′1). Let (i, j,k, l∗) and
(i, j,k, l+) represent the tuples assigned to the leaf nodes
indexed by (i, j,k, l′0) and (i, j,k, l′1) before permutation.
According to the security model, A knows the values
of g1(shuffle.key, i ∥ j ∥ k ∥ l), for all l ̸= l∗, l+. Conse-
quently, A knows the permutation of (at most) all the
leaf nodes of SMT(2)

i,j,k except two leaf nodes indexed
by (i, j,k, l∗) and (i, j,k, l+), and does not have any in-
formation on the values of g1(shuffle.key, i ∥ j ∥ k ∥
l∗) and g1(shuffle.key, i ∥ j ∥ k ∥ l+). If A breaks the
anonymity experiment by (i, j,k, l′b) with non-negligible
probability, it means that A is able to extract informa-
tion on the two values g1(shuffle.key, i ∥ j ∥ k ∥ l∗) and
g1(shuffle.key, i ∥ j ∥ k ∥ l+), and identify which one
would be located at the position (i, j,k, l′b) with non-
negligible probability. This would mean that A can dis-
tinguish the outputs of the SPRP g1 from a random func-
tion with non-negligible probability, which leads to a
contradiction.

2. A breaks the anonymity with non-negligible probability
using DGMT.posi, j,k,lb :
Using the notation of the previous case,
DGMT.posi, j,k,lb is either g2(msk,(i ∥ j ∥ k ∥ l∗))
or g2(msk,(i ∥ j ∥ k ∥ l+)). Hence, if the adver-
sary A breaks the anonymity experiment using
DGMT.posi, j,k,lb with non-negligible probability, it
means that A is able to win the indistinguishability
game of g2 for two pairs (i ∥ j ∥ k ∥ l∗) and (i ∥ j ∥ k ∥ l+)
with non-negligible probability, which is a contradiction
with our assumption.

It is important to note that although (i, j,k, l′b) and
DGMT.posi, j,k,lb are both related to the index (i, j,k, lb). The
former represents the location of (i, j,k, lb) after the permu-
tation of the leaf nodes, determined by the SPRP g1 and
the secret key shuffle.key through the shuffling Algorithm 2.
The latter is computed using the SPRP g2 and the key msk.
As a result, these values together do not reveal any informa-
tion about the index (i, j,k, lb) and equivalently the identifier
of the signer. ⊓⊔

6 Revocation in DGM and DGMT

One of the main contributions of DGM is the introduction
of a new approach to revocation that uses SPE as its main
building block. In the following, we review this approach
and show that there is a significant hidden cost in using the
approach, which makes the traditional revocation list a much
better choice in practice for revocation. Moreover, in Ap-
pendix A, we describe how SPE decryption keys can be used
to construct a revocation list, providing a more efficient ap-
proach to revocation than the original DGM. See Tabel 8 for
the comparative study.

6.1 Revocation in DGM

DGM uses SPE-based approach to revocation. A DGM sig-
nature includes a unique tag that is the encryption of the
index of the leaf node (called DGM.pos) whose associated
OTS has been used to sign the message. The verifier checks
if the OTS key is revoked or not by checking whether it is
getting back the message of the signature by first encrypting
it using the master secret key and then decrypting the en-
crypted message using the punctured decryption key while
using DGM.pos as the tag. If the OTS key is revoked, the
decryption key SKd is punctured at the tag DGM.pos.

In the following, we use the description and parame-
ters of SPE that was introduced in Section 2.1 to explain
the revocation algorithm of DGM. Assume that there are d′

punctured leaves in IMT/SMT structure at a certain point
of time in DGM. If the manager wants to revoke a user to
whom d′′ signature positions are assigned, then the man-
ager invokes the SPE.KeyGen algorithm with d = d′+ d′′

and receives the key DGM.rvk0 = msk. Next, the man-
ager punctures the DGM.rvk0 at all the previous d′ posi-
tions and new d′′ positions by calling the SPE.Punc al-
gorithm d times, and gets the punctured decryption key
DGM.rvk1 = SKd . The manager replaces the old keys with
the new key pair (DGM.rvk0,DGM.rvk1) and publishes
them. Here DGM.rvk0 is the new encryption key of the
SPE, and DGM.rvk1 is the new decryption key. The veri-
fier checks whether a signature is revoked by checking,

m ?
= SPE.Dec(DGM.rvk1,SPE.Enc(DGM.rvk0,m, t), t),

(9)

where t = DGM.pos is the encrypted index of the leaf node
associated with the signature and m is the received mes-
sage. The tag space is the set of all possible leaf index. If
the DGM.rvk1 is punctured at the position t, then the key of
SPE.Enc derived from (DGM.rvk0, t) is different from the
key of SPE.Dec derived from (DGM.rvk1, t) and thus com-
parison (9) will fail. For checking if a signature is revoked,

24

the verifier performs two computational steps: SPE.Enc and
SPE.Dec.

1. Encryption step SPE.Enc. Verifier first computes a
chain of d keys: sk1,sk2, . . . ,skd from DGM.rvk0 = msk =

(sk0,d). Then verifier applies the pseudorandom function F ′

on each of the (d + 1) ski for i = 0,1, . . . ,d along the tag t
as described in Equation 9. DGM uses the construction of
Pun-PRF in [29] and realizes SPE by constructing F ′ using
GGM construction [25].

GGM-based construction of F ′. Let G be a length dou-
bling pseudorandom generator defined as G : {0,1}λ →
{0,1}2λ . Let us denote the least significant λ bits and
most significant λ bits of G(seed) by G0(seed) and
G1(seed) respectively. Let tag t be a λ -bit long binary-string
{bλ−1 · · ·b1b0}. We compute F ′(ski, t) as

F ′(ski, t) = Gbλ−1

(
· · ·Gb1

(
Gb0(ski)

)
· · ·

)
.

We can view all executions of G as a binary tree of height
λ where G0(seed) and G1(seed) are the right and left child,
respectively, of the parent node seed and the tree is called
GGM tree. Now the t-th leaf node of the GGM tree with root
ski is the F ′(ski, t). Therefore, each F ′(ski, t) computation
needs λ evaluations of G and, as a consequence, the verifier
has to evaluate G λ (d +1) times to compute the encryption
key of SE.Enc oexcluding the Xors and computation of hash
functions.

2. Decryption step SPE.Dec. During the computation
of the decryption key with d punctured tags, the veri-
fier needs to evaluate F.Eval d times and F ′ once on
the key DGM.rvk1 = SKd and the tag t. Let SKd =

{(skd ,d), psk1, psk2, . . . , pskd} which is punctured at tags
{t1, t2, . . . , td}. Each pski is the list of λ sibling nodes of the
path that leads to the ti-th leaf node of the GGM tree with
the root ski−1 and the j-th sibling node is

Gb̄i, j

(
Gbi, j−1

(
· · ·Gi,b0(ski−1) · · ·

))
where ti be a λ -bit binary string ti = {bi,λ−1 · · ·bi,1bi,0} and
b̄i, j is bit-wise complement of bi, j. Therefore, each punc-
ture or revocation needs λ evaluations of G and each punc-
ture needs λ 2-bit storage. Notice that, given pski, we can
compute any leaf node of the GGM tree with root ski−1
except the leaf node at position ti, that is we can compute
F.Eval(pski, t) = F ′(ski−1, t) as long as t ̸= ti. Evaluation of
F.Eval(pski, t) needs the sibling node in pski which is the
root of the GGM subtree containing the t-th leaf node. Then,
F.Eval(pski, t) needs at most λ −1 and minimum 0 evalua-
tions of G, that is, on average (λ −1)/2 evaluations of G is
required. Therefore, the verifier has to perform on average
d(λ −1)/2+λ evaluations of G to compute the decryption
key of SE.Dec of SPE.Dec.

Total computation cost of revocation includes computa-
tion of SPE encryption key, evaluation of SE.Enc, computa-
tion of SPE decryption key, evaluation of SE.Dec, and string

comparison which in total will be, λ (d+1)+d(λ −1)/2+
λ = (3λ − 1)d/2+ 2λ evaluations of G, one evaluation of
SE.Enc and SE.Dec, and a string comparison on average.

6.2 Revocation in DGMT

In DGMT, for each revoked signature the manager appends
DGMT.pos of the revoked signature to the revocation list
RL, and so after revoking d signatures, the revocation list
will require dλ bits of storage. For verification of a signature
when d signatures are revoked, the verifier needs to, at the
most, traverse a list of d elements with a string comparison
at each element.

In comparison, for each revocation in DGM, the man-
ager appends λ strings of length λ bits to the list DGM.rvk1,
and so when d signatures are revoked, DGM requires dλ 2

bits of storage. For verification of a signature, the verifier
requires (3λ −1)d/2+2λ evaluations of G, one evaluation
of SE.Enc and SE.Dec, and a string comparison.

Thus for both computation and storage, the DGMT re-
vocation list approach outperforms the DGM SPE-based ap-
proach.

7 Implementation and Experiments

In this section, we present our implementation and experi-
mental results. Our implementation is for all the algorithms
in Section 4. The implementation provides all the functions
required in a fully dynamic symmetric-key based group sig-
nature. The code is available at https://github.com/

submissionOfCode/DGMT_ref.
In our experiment, we use a system with OS Ubuntu

18.04, and the code is compiled using GCC-8.4.0. The
processor of the system is Intel®CoreTMi7-9700 8-Core
CPU @ 3.00GHZ and it has 8GB RAM. We use XMSS
reference code, given in https://github.com/XMSS/

xmss-reference, as the base of our software DGMT to
comply with the fact the XMSS is a standard [15]. We use
the AES functions in OpenSSL as a SPRP. We only use a
single core without hyper-threading and turbo-boost. All the
experimental results are listed in Table 7 and each reported
timing is the average of 5 runs. Our experimental results
show that DGMT is practical for large values of Ttot.

In the following, we explain the parameters chosen for
our experiments. Consider the height of the IMT trees and
setup time. For Ttot = 221 to 227 signatures, we use an
IMT of height hI = 4 and SMT of height hS = 8,9, and
10. Thus the number of fallback keys is (2hI+1−2)γ = 30γ

for γ = 1,2,4. For ≈ 223 signatures, DGM needs an IMT
with hI = 20 and 524286 fallback keys which is significantly
larger than the corresponding numbers in DGMT. Further-
more, DGM needs 4 seconds for the setup phase for ≈ 223

https://github.com/submissionOfCode/DGMT_ref
https://github.com/submissionOfCode/DGMT_ref
https://github.com/XMSS/xmss-reference
https://github.com/XMSS/xmss-reference

25

Table 7 Timings for different Group Signature Operations, and Sizes of Signatures, IMT and different files in all the directories for different group
parameters for B = 8. We use SHA-256 as the hash function and the Winternitz parameter w is 4. The column with γ = 1 is used for comparison
for DGM. (s, ms, B, KB, and MB stand for seconds, Milliseconds, Bytes, Kilobytes, and Megabytes respectively).

Parameters
hI 4

hS (each layer of SMTMT) 8 9 10

β (leaf nodes/SMTMT
i,j,k/user) 4 4 8

γ (number of SMTMTs per IMT node) 1 2 4 1 2 4 1 2 4

Nmax (group size) 26 26 26 27 27 27 27 27 27

Ttot (approx.) 220.54 221.54 222.54 222.54 223.54 224.54 224.76 225.76 226.76

Timings
Setup (s) 7.784 15.412 30.843 15.425 31.179 61.765 31.006 61.639 123.259

Initial Key Distribution (s) 862.080 861.170 861.709 5283.238 4805.827 4508.836 20679.256 17393.360 20903.315

Joining (s) 2.062 2.058 2.060 4.117 4.139 4.116 8.219 8.222 8.529

User Signing (ms) 0.468 0.495 0.428 0.429 0.445 0.455 0.402 0.429 0.399

Verification before any revocation (s) 1.026 1.010 1.104 1.161 1.099 1.095 1.123 1.121 1.183

Revocation (Min) (ms) 0.073 0.074 0.073 0.074 0.073 0.074 0.131 0.135 0.134

Verification after revocation (Min) (s) 1.045 1.031 1.123 1.180 1.118 1.114 1.160 1.161 1.223

Opening (ms) 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

Sizes
Signature (average) (KB) 5.216 5.216 5.216 5.280 5.280 5.280 5.344 5.344 5.344

IMT size (B) (primary Memory) 960 960 960 960 960 960 960 960 960

FallBackKeys (KB) 0.960 1.920 3.840 0.960 1.920 3.840 0.960 1.920 3.840

Each file in m user (B) 240 240 240 240 240 240 240 240 240

Each file in dgmt/manager/smt/smtU (B) 132 132 132 132 132 132 132 132 132

Each file in dgmt/manager/smt/smtD (MB) 0.637 0.637 0.637 1.291 1.291 1.291 2.614 2.614 2.614

There is a minor difference of ≈ 0.3 KB between the computed signature size of DGMT in (4), and the value shown in the table. This difference
is because DGMT code uses XMSS code that incorporates additional data (e.g. index and public seed) in the signature. These date are not needed
in DGMT.

signatures (Fig. 3 of [11]) while DGMT needs only 10 more
extra seconds including the generation of all the fallback
keys, and completely removes the interaction between the
manager and the verifier. We have Nmax = 2hS/β , where
β is the total number of keys per user per SMT. We used
β = 4,8 and so Nmax = 2hS−2 and 2hS−3. The following dis-
cussion provides the rationale for the results of our exper-
iments. Joining time in DGMT depends on hS and B only
and does not depend on β and γ . This is because during the
join operation of a user, for any γ , the first unassigned node
of the user (from the B randomly chosen nodes of SMT(2)

i,j,k)
will be sent to the user. If hS increases by one then the join-
ing time increases by a factor of 2. Because an increase in
hS by one causes an increase in tree size by a factor of 2, and
consequently the computation times of SMT(1)

i,j and SMT(2)
i,j,k

increase 2 times. Notice that, user signing is of constant time
but the verification time is variable and is larger than the
user signing time. In a traditional MSS, the signing time in-
cludes the time required for computing both a WOTS and
an authentication path. In DGMT however, the authentica-
tion paths are computed by the manager and sent privately to
the user. Thus the user signing time is the time to compute
a WOTS signature, and this takes a constant time. During

verification, however, the verifier must check the signature
against the revocation list to ensure it is not a revoked sig-
nature, and then recomputes the root of the IMT and com-
pares it with the published root (public key). The time to
check the signature against the revocation list depends on
the size of the revocation list and the position of the corre-
sponding encrypted label in the list, and for an unrevoked
signature requires traversing the full revocation list. The re-
computation time of the IMT root depends on the level of
the fallback node in IMT and the hS. Table 7 shows the
average verification time for an empty revocation list, and
when the B signatures of a single revoked user is included
in the list. The signature opening is constant time because it
only needs to decrypt the encrypted label which is a part of
the signature. The revocation time depends on β and γ . For
hS = 8,Nmax = 26, and hS = 9,Nmax = 27, so we have β = 4.
For hS = 10,Nmax = 27, so β = 8. In our experiments, we
revoke a user after the initial joining. Therefore, in the first
two cases, we encrypt β ×B = 32 labels and add them to
the revocation list. In third case, we have to encrypt and add
64 labels to the revocation list. Because of this, the revoca-
tion times for hS = 8,Nmax = 26, and hS = 9,Nmax = 27 are
the same in Table 7, and hS = 10,Nmax = 27 shows doubled
revocation time.

26

8 Concluding Remarks

We proposed DGMT, a post-quantum symmetric-key based
fully dynamic group signature scheme that improves upon
DGM by addressing two major shortcomings: (i) the need
for interaction with the manager during signature verifica-
tion, and (ii) the manager’s storage size that grows propor-
tional to the total number of signatures. We defined, formal-
ized and proved DGMT and its security, and implemented
and evaluated the scheme. Our experiments were conducted
for Ttot ≈ 224, but our design can support a much larger
number of signatures: the flexible structure allows the setup
parameters to be chosen for a total number Ttot of OTSs
and Nmax users, where Nmax is upper bounded by half of the
number of leaves of SMT(2).

An important advantage of DGMT over other post-
quantum fully dynamic group signature schemes is that the
signature length of DGMT is the shortest among all other
known schemes with the same security level. Compared
to SiTH, the only other fully implemented fully dynamic
symmetric-key based group signature scheme, DGMT’s sig-
nature size is approximately 100 times shorter (see Table 2).

Interesting directions for future work are: (i) design of
more efficient stateless fully dynamic symmetric-key based
group signature scheme, and (ii) adapting DGMT for appli-
cations that use EPID applications where large group sizes
(e.g., 260 that is supported by SiTH) are supported but trace-
ability (signature opening) is not required.

Appendix A: A More Efficient SPE-based approach

We show that SPE decryption key DGM.rvk1 can be used
to construct a revocation list, which is much more efficient
than the approach taken in DGM. Let the index of the re-
voked node for pski be t̂ = {bλ−1 · · ·b1b0}. Then the j-

th sibling node is Gb̄ j

(
Gb j−1

(
· · ·Gb0(ski−1) · · ·

))
for lev-

els j = 0, . . . ,λ − 1. Now only the values of the sibling
nodes do not convey whether a sibling node is a left child
or right child of the parent and without that information,
we cannot say which sibling node we need to compute
F.Eval(pski, t). Therefore, we must associate an index with
each sibling node and the j-th sibling node of pski must be(

Gb̄ j

(
Gb j−1

(
· · ·Gb0(ski−1) · · ·

))
, b̄ j

)
. Thus from the sib-

ling nodes of pski, we can retrieve the λ -bit value of the
tag t̂ which is nothing but the DGM.pos and is also explic-
itly mentioned in the signature. Therefore, we can construct
a revocation list containing d tags t̂i corresponding to pski
for i = 1, . . . ,d. In DGM, one can easily replace the SPE
with the revocation list we just constructed. Therefore, ev-
ery single revocation requires appending the DGM.pos of
the revoked signature to the list. However, in the worst case,
checking membership needs a traversal of the full list with

d elements and d string comparisons. Table 8 summarizes
our finding of the drawbacks of the SPE-based revocation
method in DGM compared to the case of using a revocation
list.

Appendix B: Reducing Setup Time

To reduce DGMT setup time, including the required time
for generating the list FK, one may increase the num-
ber of layers of SMTMT at the cost of increasing the sig-
nature length. For example, we can consider three-layer
SMTMTs where the topmost layers are short Merkle trees
of height h0. The number of fallback keys in this case will
be 264/232+h0 and the computation of the list of fallback
keys will be faster as the short topmost Merkle trees can be
generated more quickly. As illustrated by the following ex-
ample, the resulting increase in signature size is not overly
significant. Setting λ = 256 and λ = 384 results in ξ = 67
and ξ = 99. Therefore, employing an IMT/SMTMT struc-
ture with hIMT = 16 and SMTMTs consisting of three lay-
ers and hSMTMT = 33 (where the topmost layer has height
h0 = 1 and the two lower layers each are of height 16)
yields a signature size of (hI + hSM + 2+ 3ξ)λ bits which
are respectively (16+ 33+ 2+ 3× 67)256 = 7.87KB and
(16 + 33 + 2 + 3× 99)384 = 16.31KB. Although this ap-
proach increases the DGMT signature size by 2KB to 5KB
compared to the configuration given in Subsection 4.4, it sig-
nificantly reduces the required setup time.

Author contribution The initial design of DGMT was
proposed by Mojtaba Fadavi, who, along with Sabyasachi
Karati and Reihaneh Safavi-Naini, contributed to its devel-
opment, analysis, and the writing of this paper. The im-
plementation of DGMT and related experiments were con-
ducted by Sabyasachi Karati. Aylar Erfanian was involved
in the project during the initial phase and contributed to the
editing of the first version of the paper.

Funding The project was funded in part by Natural Sci-
ences and Engineering Research Council of Canada under
Industrial Chair Program supported by Telus Communica-
tions.

Declaration
Conflict of Interests The authors declare that they have
no known competing financial interests or personal relation-
ships that could have appeared to influence the work re-
ported in this paper.

Ethical Approval This study does not engage human par-
ticipants or animals; hence, ethical issues pertaining to hu-
man or animal subjects are not relevant for this paper.

27

Table 8 Comparison between SPE-based revocation and Revocation list. GM stands for the manager.

SPE Revocation list (RL)
Computation Cost

Per revocation (GM) λ evaluation of G Addition of 1 encrypted OTS position
or DGM.pos to the RL

Checking revoked or not (Verifier) (3λ −1)d/2+2λ evaluations of G d/2 string comparison
(average case) +1 evaluation of SE.Enc

+1 evaluation of SE.Dec
+1 string comparison

Memory (in bits)

Per revocation (GM) λ 2 λ

Checking revoked or not (Verifier) dλ 2 dλ

References

1. Alagic G., Apon D., Cooper D., Dang Q., Dang T.,
Kelsey J., Lichtinger J., Miller C., Moody D., Peralta R.,
et al.: Status report on the third round of the NIST post-
quantum cryptography standardization process. US De-
partment of Commerce, NIST (2022)

2. Bellare M., Micciancio D., Warinschi B.: Foundations
of Group Signatures: Formal Definitions, Simplified
Requirements, and a Construction Based on General
Assumptions. in Advances in Cryptology - EURO-
CRYPT 2003, vol. 2656, pp. 614–629, Springer, 2003.
https://doi.org/10.1007/3-540-39200-9 38

3. Bellare M., Shi H., Zhang C.: Foundations of Group Sig-
natures: The Case of Dynamic Groups. in Topics in Cryp-
tology - CT-RSA 2005, vol. 3376, pp. 136–153, Springer,
2005.

4. Beullens W., Dobson S., Katsumata S., Lai Y., Pintore F.:
Group signatures and more from isogenies and lattices:
generic, simple, and efficient. Des. Codes Cryptogr., vol.
91, no. 6, pp. 2141–2200, 2023.

5. Beullens W., Kleinjung T., Vercauteren F.: CSI-FiSh: Ef-
ficient Isogeny Based Signatures Through Class Group
Computations. in Advances in Cryptology - ASI-
ACRYPT 2019, vol. 11921, pp. 227–247, Springer, 2019.

6. Boneh D., Eskandarian S., Fisch B.: Post-quantum EPID
Signatures from Symmetric Primitives. in Topics in
Cryptology - CT-RSA 2019, vol. 11405, pp. 251–271,
Springer, 2019.

7. Bootle J., Cerulli A., Chaidos P., Ghadafi E., Groth J.:
Foundations of Fully Dynamic Group Signatures. in Ap-
plied Cryptography and Network Security - ACNS 2016,
vol. 9696, pp. 117–136, Springer, 2016.

8. Brassard G., Høyer P., Tapp A.: Quantum Cryptanaly-
sis of Hash and Claw-Free Functions. in LATIN ’98:
Theoretical Informatics, Third Latin American Sympo-

sium, Campinas, Brazil, 1998, vol. 1380, pp. 163–169,
Springer.

9. Brickell E. F., Camenisch J., Chen L.: Direct Anonymous
Attestation. in Proceedings of the 11th ACM Conference
on Computer and Communications Security, Washing-
ton, USA, pp. 132–145, 2004.

10. Buchmann J., Dahmen E., Hülsing A.: XMSS - A Prac-
tical Forward Secure Signature Scheme Based on Mini-
mal Security Assumptions. in Post-Quantum Cryptogra-
phy - PQCrypto 2011, vol. 7071, pp. 117–129, Springer,
2011.

11. Buser M., Liu J. K., Steinfeld R., Sakzad A., Sun S.:
DGM: A Dynamic and Revocable Group Merkle Signa-
ture. in Computer Security - ESORICS 2019, vol. 11735,
pp. 194–214, Springer, 2019.

12. Camenisch J., Groth J.: Group Signatures: Better Effi-
ciency and New Theoretical Aspects. in Security in Com-
munication Networks - SCN 2004, vol. 3352, pp. 120–
133, Springer, 2004.

13. Chaum D., van Heyst E.: Group Signatures. in Ad-
vances in Cryptology - EUROCRYPT ’91, vol. 547, pp.
257–265, Springer, 1991.

14. Chen, L., Dong, C., Newton, C.J.P., Wang, Y.: Sphinx-
in-the-Head: Group Signatures from Symmetric Primi-
tives. ACM Trans. Priv. Secur. 27(1), 11:1–11:35 (2024).

15. Cooper, D.A., Apon, D.C., Dang, Q.H., Davidson,
M.S., Dworkin, M.J., Miller, C.A.: Recommendation
for stateful hash-based signature schemes. NIST Special
Publication, 800(208), 800–208 (2020).

16. Courtois N. T., Finiasz M., Sendrier N.: How to Achieve
a McEliece-Based Digital Signature Scheme, in Ad-
vances in Cryptology - ASIACRYPT 2001, vol. 2248, pp.
157–174, Springer, 2001.

17. Dahmen E., Okeya K., Takagi T., Vuillaume C.: Dig-
ital Signatures Out of Second-Preimage Resistant Hash

28

Functions. in Post-Quantum Cryptography, Second Inter-
national Workshop, PQCrypto 2008, vol. 5299, pp. 109–
123, Springer, 2008.

18. Ducas L., Lepoint T., Lyubashevsky V., Schwabe
P., Seiler G., Stehlé D.: CRYSTALS - Dilithium:
Digital Signatures from Module Lattices. IACR
Cryptol. ePrint Arch., vol. 2017, pp. 633, 2017.
http://eprint.iacr.org/2017/633

19. El Bansarkhani R., Misoczki R.: G-Merkle: A Hash-
Based Group Signature Scheme from Standard Assump-
tions. in Post-Quantum Cryptography - PQCrypto 2018,
vol. 10786, pp. 441–463, Springer, 2018.

20. El Kaafarani A., Katsumata S., Solomon R.: Anony-
mous Reputation Systems Achieving Full Dynamicity
from Lattices. in Financial Cryptography and Data Secu-
rity - FC 2018, vol. 10957, pp. 388–406, Springer, 2018.

21. Esgin M. F., Steinfeld R., Zhao R. K.: MatRiCT+: More
Efficient Post-Quantum Private Blockchain Payments. in
Proc. 43rd IEEE Symposium on Security and Privacy,
San Francisco, USA, pp. 1281–1298, 2022.

22. ETSI: Quantum Safe Signatures, Standard ETSI TR 103
616 v1.1.

23. Ezerman M. F., Lee H. T., Ling S., Nguyen K., Wang
H.: Provably Secure Group Signature Schemes From
Code-Based Assumptions. IEEE Trans. Inf. Theory, vol.
66, no. 9, pp. 5754–5773, 2020.

24. Goldreich O.: Foundations of Cryptography. Volumes
2. Cambridge University Press, 2004.

25. Goldreich O., Goldwasser S., Micali S.: How to Con-
struct Random Functions (Extended Abstract). in Proc.
25th Annual Symp. on Foundations of Computer Sci-
ence, West Palm Beach, USA, pp. 464–479, 1984.

26. Gordon S. D., Katz J., Vaikuntanathan V.: A Group Sig-
nature Scheme from Lattice Assumptions. in Advances
in Cryptology - ASIACRYPT 2010, vol. 6477, pp. 395–
412, Springer, 2010.

27. Grover L. K.: A Fast Quantum Mechanical Algorithm
for Database Search. in Proc. 28th Annual ACM Symp.
on Theory of Computing, Philadelphia, USA, pp. 212–
219, 1996.

28. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A
Ring-Based Public Key Cryptosystem. In: Buhler, J. (ed.)
Algorithmic Number Theory, Third International Sym-
posium, ANTS-III, Portland, Oregon, USA, June 21-25,
1998, Proceedings. Lecture Notes in Computer Science,
vol. 1423, pp. 267–288. Springer, (1998).

29. Hohenberger S., Koppula V., Waters B.: Adaptively Se-
cure Puncturable Pseudorandom Functions in the Stan-
dard Model. in Advances in Cryptology - ASIACRYPT
2015, vol. 9452, pp. 79–102, Springer, 2015.

30. Hülsing, A., Rijneveld, J., Song, F.: Mitigating Multi-
target Attacks in Hash-Based Signatures. In: Cheng,
C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.)

Public-Key Cryptography - PKC 2016 - 19th IACR In-
ternational Conference on Practice and Theory in Public-
Key Cryptography, Taipei, Taiwan, March 6-9, 2016,
Proceedings, Part I. Lecture Notes in Computer Science,
vol. 9614, pp. 387–416. Springer (2016).

31. Katz J., Kolesnikov V., Wang X.: Improved Non-
Interactive Zero Knowledge with Applications to Post-
Quantum Signatures. in Proc. 2018 ACM SIGSAC Conf.
on Computer and Communications Security, Toronto,
Canada, pp. 525–537, 2018.

32. Katz J., Lindell Y.: Introduction to Modern Cryptogra-
phy. 2nd ed., CRC Press, 2014.

33. Hülsing A.: WOTS+ - Shorter Signatures for Hash-
Based Signature Schemes. IACR Cryptol. ePrint Arch.,
vol. 2017, pp. 965, 2017. http://eprint.iacr.org/2017/965

34. Hülsing A., Butin D., Gazdag S., Rijneveld J., Mohaisen
A.: XMSS: eXtended Merkle Signature Scheme. RFC,
vol. 8391, pp. 1–74, 2018.

35. Hülsing A., Rausch L., Buchmann J.: Optimal Param-
eters for XMSSMT. in Security Engineering and In-
telligence Informatics - CD-ARES 2013 Workshops:
MoCrySEn and SeCIHD, vol. 8128, pp. 194–208,
Springer, 2013.

36. Kiayias A., Yung M.: Extracting Group Signatures from
Traitor Tracing Schemes. in Advances in Cryptology -
EUROCRYPT 2003, vol. 2656, pp. 630–648, Springer,
2003.

37. Laguillaumie F., Langlois A., Libert B., Stehlé D.:
Lattice-Based Group Signatures with Logarithmic Sig-
nature Size. in Advances in Cryptology - ASIACRYPT
2013, vol. 8270, pp. 41–61, Springer, 2013.

38. Lamport L.: Constructing digital signatures from a one-
way function. Technical Report CSL-98, SRI Interna-
tional, 1979.

39. Langlois A., Ling S., Nguyen K., Wang H.: Lattice-
Based Group Signature Scheme with Verifier-Local Re-
vocation. in Public-Key Cryptography - PKC 2014, vol.
8383, pp. 345–361, Springer, 2014.

40. Libert B., Ling S., Mouhartem F., Nguyen K., Wang H.:
Signature Schemes with Efficient Protocols and Dynamic
Group Signatures from Lattice Assumptions. in Ad-
vances in Cryptology - ASIACRYPT 2016, vol. 10032,
pp. 373–403, Springer, 2016.

41. Ling S., Nguyen K., Wang H., Xu Y.: Lattice-Based
Group Signatures: Achieving Full Dynamicity with Ease.
in Applied Cryptography and Network Security - ACNS
2017, vol. 10355, pp. 293–312, Springer, 2017.

42. Ling S., Nguyen K., Wang H., Xu Y.: Constant-Size
Group Signatures from Lattices. in Public-Key Cryp-
tography - PKC 2018, vol. 10770, pp. 58–88, Springer,
2018.

43. Lyubashevsky V., Nguyen N. K., Plançon M., Seiler
G.: Shorter Lattice-Based Group Signatures via ’Almost

29

Free’ Encryption and Other Optimizations. in Advances
in Cryptology - ASIACRYPT 2021, vol. 13093, pp. 218–
248, Springer, 2021.

44. McGrew D. A., Curcio M., Fluhrer S. R.: Leighton-
Micali Hash-Based Signatures. RFC, vol. 8554, pp. 1–
61, 2019.

45. Merkle R. C.: A Certified Digital Signature. in Ad-
vances in Cryptology - CRYPTO ’89, vol. 435, pp. 218–
238, Springer, 1989.

46. Nguyen K., Tang H., Wang H., Zeng N.: New Code-
Based Privacy-Preserving Cryptographic Constructions.
in Advances in Cryptology - ASIACRYPT 2019, vol.
11922, pp. 25–55, Springer, 2019.

47. Rogaway P.: Formalizing Human Ignorance:
Collision-Resistant Hashing without the Keys. IACR
Cryptol. ePrint Arch., vol. 2006, pp. 281, 2006.
http://eprint.iacr.org/2006/281

48. Pass R., Shelat A.: A Course in Cryptography. 2017.

49. Shor P. W.: Algorithms for Quantum Computation: Dis-
crete Logarithms and Factoring. in Proc. 35th Annual
Symp. on Foundations of Computer Science, Santa Fe,
USA, pp. 124–134, 1994.

50. Sun S., Yuan X., Liu J. K., Steinfeld R., Sakzad A.,
Vo V., Nepal S.: Practical Backward-Secure Searchable
Encryption from Symmetric Puncturable Encryption. in
Proc. 2018 ACM SIGSAC Conf. on Computer and Com-
munications Security, Toronto, Canada, pp. 763–780,
2018.

51. Yehia M., AlTawy R., Gulliver T. A.: GMMT : A Re-
vocable Group Merkle Multi-Tree Signature Scheme. in
Cryptology and Network Security - CANS 2021, vol.
13099, pp. 136–157, Springer, 2021.

52. Yehia M., AlTawy R., Gulliver T. A.: Security Analysis
of DGM and GM Group Signature Schemes Instantiated
with XMSS-T. in Information Security and Cryptology -
Inscrypt 2021, vol. 13007, pp. 61–81, Springer, 2021.

	Introduction
	Preliminaries
	Fully Dynamic Group Signature
	DGMT: A Flexible Fully Dynamic Symmetric-key based GSS
	Security Proofs
	Revocation in DGM and DGMT
	Implementation and Experiments
	Concluding Remarks
	A More Efficient SPE-based approach
	Reducing Setup Time

